WO2012074021A1 - タッチパネルセンサー - Google Patents

タッチパネルセンサー Download PDF

Info

Publication number
WO2012074021A1
WO2012074021A1 PCT/JP2011/077701 JP2011077701W WO2012074021A1 WO 2012074021 A1 WO2012074021 A1 WO 2012074021A1 JP 2011077701 W JP2011077701 W JP 2011077701W WO 2012074021 A1 WO2012074021 A1 WO 2012074021A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch panel
film
panel sensor
alloy film
alloy
Prior art date
Application number
PCT/JP2011/077701
Other languages
English (en)
French (fr)
Inventor
博行 奥野
綾 三木
釘宮 敏洋
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010268687A external-priority patent/JP5416681B2/ja
Priority claimed from JP2010268688A external-priority patent/JP5416682B2/ja
Priority claimed from JP2010268689A external-priority patent/JP5416683B2/ja
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to US13/990,981 priority Critical patent/US20130249571A1/en
Priority to KR1020137014123A priority patent/KR101479887B1/ko
Publication of WO2012074021A1 publication Critical patent/WO2012074021A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means

Definitions

  • the present invention relates to a touch panel sensor having a transparent conductive film and wiring connected thereto.
  • the touch panel sensor used as an input switch integrated with the image display device, is located on the front of the image display device. Due to its ease of use, the touch panel sensor is widely used for bank ATMs, ticket vending machines, car navigation systems, PDAs, and copy machine operation screens. in use.
  • Examples of the input point detection method include a resistance film method, a capacitance method, an optical method, an ultrasonic surface acoustic wave method, and a piezoelectric method. Of these, the resistive film method is most widely used because of its low cost and simple structure.
  • a resistive film type touch panel sensor is roughly divided into an upper electrode, a lower electrode, and a tail part.
  • a transparent conductive film provided on a substrate (for example, a film substrate) constituting the upper electrode, and a lower electrode are provided.
  • substrate (for example, glass substrate) to comprise comprises the structure which opposed the spacer.
  • the wiring such as the lead wiring for connecting the transparent conductive film and the control circuit and the metal wiring for connecting the transparent conductive film is generally conductive paste such as silver paste or conductive ink. Is formed by printing with an inkjet or other printing method.
  • wiring made of pure silver or a silver alloy has poor adhesion to glass, resin, etc., and causes aggregation due to aggregation on the substrate at the connection portion with an external device, leading to defects due to increased electrical resistance or disconnection. There is a problem such as.
  • the touch panel sensor is a sensor that senses indentation by a person's finger or the like, and temporarily undergoes minute deformation due to stress applied during touch. Due to repeated use of the touch panel, this minute deformation repeatedly occurs, and stress is repeatedly applied to the wiring. Accordingly, the wiring is particularly required to have durability (resistance to stress).
  • durability resistance to stress
  • it is difficult to say that the wiring formed using a conductive paste made of pure silver or a silver alloy has sufficient durability, and the wiring is easily damaged during use of the touch panel. If the wiring is damaged, the electrical resistance of the wiring increases and a voltage drop occurs, so that the accuracy of position detection of the touch panel sensor tends to decrease.
  • the pen touch method it is necessary to reduce the pitch of the wiring.
  • the paste it is difficult to reduce the pitch because it is formed by a coating method.
  • Patent Document 1 A Ni / Co alloy film (single-layer wiring material) is disclosed in Patent Document 1.
  • the object of the present invention is particularly excellent in durability in the vertical direction such as indentation load, is less likely to cause disconnection and increase in electrical resistance over time, is reliable, has high glossiness, and has high color.
  • the object is to provide a touch panel sensor with excellent expressive power.
  • the present invention provides the following touch panel sensor.
  • the wiring is composed of a refractory metal film, an Al alloy film, and a refractory metal film in order from the substrate side.
  • the Al alloy film contains 0.05 to 5 atomic% of a rare earth element.
  • the rare earth element is one or more elements selected from the group consisting of Nd, Gd, La, Y, Ce, Pr, and Dy.
  • the transparent conductive film is made of indium tin oxide (ITO) or indium zinc oxide (IZO).
  • the Al alloy film contains 0.05 to 1 atomic% of a rare earth element, has a hardness of 2 to 3.5 GPa, and a density of grain boundary triple points existing in the Al alloy structure is 2 ⁇ 10.
  • the touch panel sensor according to any one of (1) to (3), wherein the number is 8 / mm 2 or more.
  • the Young's modulus of the Al alloy film is 80 to 200 GPa, and the maximum value of the constant direction tangent diameter (Feret diameter) of the crystal grains is 100 to 350 nm.
  • the touch panel sensor according to any one of the above.
  • the hardness and grain boundary of the Al alloy film Since the triple point density is controlled appropriately, it is particularly excellent in durability in the vertical direction such as indentation load, and it is difficult to cause disconnection and increase in electrical resistance over time.
  • the present invention is effective for various touch panels, but is preferably used for a contact type touch panel sensor that operates by pressing a portion displayed on a screen such as an ATM of a financial institution such as a bank or a vending machine such as a station or a restaurant. It is done.
  • the touch panel of the present invention is suitably used for a capacitive touch panel sensor that is operated by tracing the screen in multiple directions with a finger or the like, such as a portable game machine or a tablet computer. Furthermore, when an Al alloy film having excellent glossiness is used, a touch panel sensor having excellent color expression can be provided.
  • the present inventors have widely used wiring materials for touch panel sensor wirings, that is, Al alloy films containing rare earth elements (hereinafter, sometimes abbreviated as Al-rare earth element alloy films or simply Al alloy films).
  • Al alloy films containing rare earth elements hereinafter, sometimes abbreviated as Al-rare earth element alloy films or simply Al alloy films.
  • an Al alloy film having a predetermined hardness and grain boundary density, or a maximum value of Young's modulus and a tangential diameter (Feret diameter) of crystal grains (hereinafter referred to as a maximum grain size) It was found that the intended purpose can be achieved by using an Al alloy film having a glossiness of 800% or more, and the present invention was completed.
  • the characteristic part of the present invention is that the Al-rare earth alloy film for wiring used together with the refractory metal film has a hardness of 2 to 3.5 GPa and a density of grain boundary triple points existing in the Al alloy structure Al alloy film of 2 ⁇ 10 8 pieces / mm 2 or more, or Young's modulus of 80 to 200 GPa and maximum value of constant direction tangent diameter (Feret diameter) of crystal grains (hereinafter sometimes abbreviated as maximum grain size) 100
  • An Al alloy film having a thickness of 350 nm or an Al alloy film having a glossiness of 800% or more is employed.
  • the Al alloy film used in the present invention contains 0.05 to 5 atomic% of rare earth elements.
  • the balance is preferably Al and inevitable impurities.
  • the composition of the Al alloy film to be used is not characterized, and the Al alloy film containing rare earth elements has heat resistance and is known to be used as a wiring material. From the viewpoint of providing materials suitable for touch panel sensors, Al alloy films with controlled hardness and triple point density, Al alloy films with controlled Young's modulus and maximum particle size, glossiness and rare earth element content are appropriate A controlled Al alloy film has not been disclosed so far.
  • the hardness of the Al-rare earth alloy film is preferably 2 to 3.5 GPa.
  • the touch panel excels in deformability (followability) when touched (during use), especially when the screen is strongly touched with a pen or finger, an excessive load is applied, and stress is temporarily applied to the sensor edge. Even if the wiring is deformed or deteriorates due to concentration, it is required to have durability in the vertical direction so that the wiring is not broken, broken or peeled off.
  • the hardness is set from such a viewpoint, and is set in consideration of the balance with the hardness of the refractory metal film disposed above and below the Al alloy film.
  • the wiring material that makes up the wiring is too soft, the wiring will be repeatedly deformed due to stress concentration, resulting in deterioration of the wiring, resulting in failure such as breakage or peeling, resulting in increased electrical resistance. There is. On the other hand, if the wiring material is too hard, it is difficult for deformation to occur due to the indentation load, so that degradation such as microcracking or peeling may occur.
  • the balance with the hardness of the refractory metal film is further taken into account when setting the hardness of the Al alloy film.
  • the hardness of the Al alloy film is set to 2 GPa or more and 3.5 GPa or less. Preferably it is 2.5 GPa or more and 3.3 GPa or less.
  • the hardness of the Al alloy film is a value measured by the method described in the examples described later.
  • the Al alloy film used in the present invention satisfies the density of grain boundary triple points existing in the Al alloy structure (hereinafter sometimes abbreviated as triple point density) of 2 ⁇ 10 8 pieces / mm 2 or more. Is.
  • triple point density the density of grain boundary triple points existing in the Al alloy structure
  • the hardness is closely related to the triple point density, and the rare earth element content is within the range of the present invention. When it is (1 atomic% or less), the hardness tends to increase as the triple point density increases.
  • the triple point density is set to 2 ⁇ 10 8 pieces / mm 2 or more from the viewpoint of securing the lower limit (2 GPa) of the hardness of the Al alloy film.
  • it is 2.4 ⁇ 10 8 pieces / mm 2 or more.
  • the upper limit of the triple point density is preferably 8.0 ⁇ 10 8 pieces / mm 2 in consideration of the efficiency of sputtering film formation.
  • the triple point density of the Al alloy film is a value measured by the method described in the examples described later.
  • the Al alloy film used in the present invention preferably contains 0.05 to 1 atom% of rare earth elements, and the balance is Al and inevitable impurities, from the viewpoint of ensuring the above-mentioned hardness and triple point density range. .
  • the rare earth element content decreases, the hardness tends to decrease, and the rare earth element content is lower than the lower limit specified in the present invention. At least one is out of the scope of the present invention.
  • the rare earth element content increases, the hardness also tends to increase. When the rare earth element content exceeds the above upper limit, at least one of hardness and triple point density is out of the scope of the present invention. End up.
  • the Young's modulus of the Al-rare earth alloy film is preferably 80 to 200 GPa. If the Young's modulus of the wiring material that forms the wiring is small (too soft), the wiring will be repeatedly deformed due to stress concentration, causing the wiring to deteriorate, causing problems such as increased electrical resistance due to breakage or peeling. May occur. On the other hand, when the Young's modulus of the wiring material is large (too hard), deformation is difficult to occur with respect to the indentation load, so that deterioration such as microcracking or peeling may occur.
  • the balance with the Young's modulus of the refractory metal film is further increased. It is necessary to consider that the upper limit of the Young's modulus of the Al alloy film should be controlled to be approximately the same as the Young's modulus of the refractory metal constituting the refractory metal film, while the lower limit of the Young's modulus of the Al alloy film It is better that the difference in Young's modulus of a substrate typified by a glass substrate is not so great.
  • the Young's modulus of the Al alloy film is set to 80 GPa or more and 200 GPa or less. Preferably, it is 85 GPa or more and 180 GPa or less.
  • the Young's modulus of the Al alloy film is a value measured by the method described in the examples described later.
  • the maximum particle diameter [maximum value of the tangential diameter (Feret diameter) of crystal grains] of the Al alloy film used in the present invention satisfies 100 to 350 nm.
  • the Young's modulus of the Al alloy film it is necessary to control the Young's modulus of the Al alloy film within a predetermined range. Normally, the Young's modulus is generally closely related to the maximum particle size, and the rare earth element content is When it is within the range of the invention (5 atomic% or less), the Young's modulus tends to decrease as the maximum particle size increases.
  • the upper limit of the maximum particle size is set to 350 nm, and from the viewpoint of securing the upper limit of the Young's modulus of the Al alloy film (200 GPa),
  • the lower limit of the maximum particle size was set to 100 nm.
  • a preferable maximum particle size is 130 nm or more and 320 nm or less.
  • the maximum grain size means the maximum value of the tangential diameter of crystal grains (also referred to as Feret diameter or Green diameter). Specifically, it is the distance (distance) between two parallel lines in a certain direction across the particle, and when there is a dent in the crystal grain, it is the distance between the parallel external tangents in the projection, and when there is no dent in the crystal grain ( (Sphere) is a value obtained by dividing the circumference by ⁇ .
  • the Al alloy film used in the present invention contains 0.05 to 5 atomic% of rare earth elements (the balance is preferably Al and inevitable impurities).
  • the heat resistance action can be effectively exhibited, while by setting the rare earth element content to the upper limit or less, the range of the Young's modulus and the maximum particle size specified in the present invention. Can be secured. As the rare earth element content increases, the Young's modulus increases and the maximum particle size tends to decrease.
  • the glossiness of the wiring film has a great influence on the color of the touch panel sensor, and the grain size of the crystal grains of the Al alloy film constituting the wiring material (specifically, the directional tangential diameter called the Feret diameter) When the maximum value) is large or the density of the particle size is small, the glossiness of the Al alloy film decreases, resulting in poor color expression of the touch panel sensor.
  • Al in detail The glossiness of the alloy film is almost determined by the size and density of the above-mentioned particle size immediately after film formation, and even when heat treatment (annealing) is performed after film formation, there is almost no change in glossiness.
  • the glossiness of the Al-rare earth alloy film is preferably 800% or more. Thereby, the glossiness of the touch panel sensor is also increased. The higher the glossiness, the better, preferably 805% or more.
  • the upper limit of the glossiness of the Al alloy film is not specified, but the conditions for ensuring the desired glossiness (details such as the content of rare earth elements contained in the Al alloy film and the production conditions of the Al alloy film will be described later). Is about 840%.
  • the glossiness of the Al alloy film is a value measured by the method described in Examples described later.
  • the Al alloy film used in the present invention contains 0.05 to 5 atomic% of rare earth elements (the balance is preferably Al and inevitable impurities).
  • the rare earth element content is set to be equal to or higher than the above lower limit, the heat resistance action can be effectively exhibited, and by setting the content to the upper limit or lower, the lower limit of glossiness defined in the present invention is ensured. Can do.
  • the glossiness of the Al alloy film is closely related to the content of the rare earth element, and when the Al alloy film is produced under the same conditions, the higher the content of the rare earth element is, although the glossiness of the Al alloy film also tends to increase, if the rare earth element content becomes too high, a new problem of etching residue occurs and the color is impaired, so the upper limit was set to 5 atomic%. Moreover, if it is in the said range, the electrical resistance of wiring can also be restrained low.
  • the rare earth element used in the present invention an element obtained by adding Sc (scandium) and Y (yttrium) to a lanthanoid element (a total of 15 elements from La of atomic number 57 to Lu of atomic number 71 in the periodic table). Groups. In the present invention, these elements can be used alone or in combination of two or more.
  • the rare earth element content is a single amount when contained alone, and when two or more kinds are contained, Total amount.
  • Preferred rare earth elements are one or more elements selected from the group consisting of Nd, Gd, La, Y, Ce, Pr, and Dy.
  • a wiring material in which a refractory metal film is laminated on the upper and lower sides of the Al alloy film is used.
  • the refractory metal film is widely used as an underlayer of the Al alloy film in order to prevent the oxidation of Al.
  • Mo, Ti, Cr, W, or an alloy thereof is used. Can do.
  • the composition of the refractory metal films disposed above and below the Al alloy film may be the same or different at the top and bottom.
  • the preferable thickness of the Al alloy film is about 150 to 600 nm, and the preferable thickness of the refractory metal film is about 30 to 100 nm.
  • Heat treatment is preferably performed within a range of ⁇ 230 ° C.
  • the touch panel manufacturing process generally suffers from a thermal history of about room temperature to about 250 ° C.
  • an appropriate annealing temperature may be set according to the addition amount of the rare earth element, and more preferably 150 to 230 ° C.
  • an Al alloy film by a sputtering method from the viewpoints of thinning and homogenizing alloy components in the film, and controlling the amount of added elements easily.
  • the sputtering method it is preferable to control the film forming temperature during sputtering to approximately 180 ° C. or lower and the Ar gas pressure to approximately 3 mTorr or lower.
  • the film quality of the formed film becomes closer to the bulk, a dense film tends to be formed, and the hardness of the film tends to increase.
  • the Ar gas pressure is increased, the density of the film decreases and the hardness of the film tends to decrease.
  • Such adjustment of the film forming conditions is also preferable from the viewpoint of suppressing the sparseness of the film structure and easily causing corrosion.
  • the conditions during sputtering are appropriately controlled. It is preferable. That is, in the present invention, it is recommended to form an Al alloy film by sputtering from the viewpoint of thinning and homogenizing the alloy components in the film and controlling the amount of added elements easily. It is preferable to control the film forming temperature to about 230 ° C. or lower and the Ar gas pressure to about 20 mTorr or lower. Moreover, it is preferable to control the substrate temperature at the time of sputtering to about 180 ° C. or lower.
  • the higher the substrate temperature and the film formation temperature the closer the film quality of the formed film becomes to that of the bulk, and a dense film tends to be formed, and the Young's modulus of the film tends to increase. Further, as the Ar gas pressure is increased, the density of the film decreases, and the Young's modulus of the film tends to decrease.
  • Such adjustment of the film forming conditions is also preferable from the viewpoint of suppressing the sparseness of the film structure and easily causing corrosion.
  • the Al alloy film formed by sputtering as described above is preferably heat-treated (annealed) in the range of room temperature to 230 ° C.
  • the touch panel manufacturing process generally suffers from a thermal history of about room temperature to about 250 ° C.
  • an appropriate annealing temperature may be set according to the addition amount of the rare earth element, and more preferably 150 to 230 ° C.
  • the present invention in order to obtain an Al alloy film whose glossiness is appropriately controlled, it is preferable to appropriately control the sputtering conditions in addition to using an Al alloy film containing a predetermined rare earth element. That is, in the present invention, it is recommended to form an Al alloy film by sputtering from the viewpoint of thinning and homogenizing the alloy components in the film and controlling the amount of added elements easily. It is preferable to control the film forming temperature to about 250 ° C. or lower and the Ar gas pressure to about 15 mTorr or lower. Moreover, it is preferable to control the substrate temperature at the time of sputtering to about 250 ° C. or lower.
  • the glossiness of the Al alloy film (immediately after) formed under the above-mentioned preferred sputtering conditions is as high as 800% or more, and such high glossiness is maintained as it is regardless of the conditions of the subsequent heat treatment (annealing).
  • the This is largely different from the reflectance that is strongly influenced by the state of the Al alloy film after heat treatment (such as crystal grain size and density).
  • the touch panel manufacturing process it is generally exposed to a thermal history of about room temperature to about 250 ° C. Even if the annealing temperature exceeds the above range, for example, heat treatment is performed at 300 ° C, the Al alloy after the heat treatment is used.
  • the glossiness of the film is maintained at a high level of 800% or more (see Examples described later).
  • the preferred heat treatment temperature is about 150 to 230 ° C.
  • a resistive touch panel sensor can be manufactured as follows. That is, after forming a transparent conductive film on a substrate, resist coating, exposure, development, and etching are sequentially performed, and then a refractory metal film, an Al alloy film, and a refractory metal film are sequentially formed, and resist coating, Exposure, development, and etching are performed to form a wiring, and then an insulating film or the like that covers the wiring is formed to form an upper electrode. Also, after forming a transparent conductive film on the substrate, photolithography is performed in the same manner as the upper electrode, and then the wiring made of a refractory metal film, an Al alloy film, and a refractory metal film, as in the case of the upper electrode. Then, an insulating film covering the wiring is formed, and a micro dot spacer is formed to form a lower electrode. Then, the touch panel sensor can be manufactured by laminating the upper electrode, the lower electrode, and the tail portion separately formed.
  • the transparent conductive film is not particularly limited, and as a representative example, one made of indium tin oxide (ITO) or indium zinc oxide (IZO) can be used.
  • the substrate for example, glass, polycarbonate, or polyamide can be used as a commonly used substrate.
  • the substrate of the lower electrode that is a fixed electrode is made of glass.
  • a polycarbonate film or the like can be used for the substrate of the upper electrode that needs flexibility.
  • the touch panel sensor of the present invention can be used as a touch panel sensor such as a capacitive method or an ultrasonic surface acoustic wave method in addition to the resistive film method.
  • Example 1 A non-alkali glass plate (plate thickness 0.7 mm, diameter 4 inches) is used as a substrate, and the surface of the substrate is subjected to DC magnetron sputtering, as shown in Table 1 below. Further, Al alloy films (thicknesses are both about 500 nm) with different balances: Al and inevitable impurities were formed. Before film formation, the atmosphere in the chamber is once set to an ultimate vacuum of 3 ⁇ 10 ⁇ 6 Torr, and then a disk type target having the same component composition as each Al alloy film and having a diameter of 4 inches is used. It carried out on the conditions shown in. Next, the Al alloy after film formation was heat-treated at various annealing temperatures shown in Table 1 for 30 minutes in a nitrogen atmosphere.
  • the Al alloy film obtained as described above is observed with a TEM at a magnification of 150,000 times, and Al present in the grain boundary triple point is observed in the measurement field (one field is 1.2 ⁇ m ⁇ 1.6 ⁇ m).
  • the density of the alloy (triple point density) was measured. The measurement was performed with a total of three fields of view, and the average value was defined as the triple point density of the Al alloy.
  • E + 07 means 10 7 .
  • 9.0E + 07 of 1 means 9.0 ⁇ 10 7 .
  • No. 5 to 22 are examples of Al alloy films containing Nd as a rare earth element.
  • the hardness and triple point density tend to increase with increasing Nd content [for example, when the annealing temperature is room temperature ( ⁇ ), No. 5, 9, 13, 19], it can be seen that it is effective to set the upper limit of the Nd content to 1 atomic% in order to control the hardness and the triple point density within a predetermined range.
  • the hardness and the triple point density tend to decrease [for example, when the annealing temperature is 250 ° C., no. 8, 12, 17, 22], it can be seen that it is effective to control the upper limit of the annealing temperature to 230 ° C. in order to control the hardness and triple point density within the predetermined ranges.
  • No. 23 to 41 are examples using Al alloy films containing rare earth elements other than Nd. All of these materials contain the rare earth element content defined in the present invention, and are manufactured by controlling the annealing temperature within the preferred range of the present invention, so the hardness and triple point density are controlled within the scope of the present invention. It was. In addition, it was confirmed by experiments that the same experimental results as those of Nd described above were observed when the rare earth elements other than Nd were used (not shown in Table 1).
  • the use of the Al-rare earth element alloy film of the present invention can provide a highly reliable touch panel sensor that is excellent in durability in the vertical direction and hardly causes disconnection or increase in electrical resistance over time. Is highly expected.
  • No. Nos. 1 to 4 are examples of pure Al containing no rare earth element, and it was not possible to control the hardness and triple point density defined in the present invention, no matter how the annealing temperature was controlled.
  • Example 2 A thin film sample having the composition shown in Table 2 was prepared in the same manner as in Example 1. Using the obtained Al alloy film, the hardness test of the film with a nanoindenter was performed, and the Young's modulus was measured. In this test, continuous stiffness measurement was performed using an XP chip using a Nano Indenter G200 (analysis software: Test Works 4) manufactured by Agilent Technologies. The indentation depth was 500 nm, and the average value of the results of measuring 15 points was determined.
  • the Al alloy film obtained as described above was observed with a TEM at a magnification of 150,000 times, and the grain size (constant tangent line) observed in the measurement field (one field is 1.2 ⁇ m ⁇ 1.6 ⁇ m). Diameter, Feret diameter). The measurement was performed in a total of three fields, and the maximum value in the three fields was taken as the maximum particle size.
  • No. 105 to 122 are examples of Al alloy films containing Nd as a rare earth element.
  • the Young's modulus tends to increase as the amount of Nd increases [for example, when the annealing temperature is room temperature ( ⁇ ), No. 105, 109, 113, 119], whereas the maximum particle size tends to decrease slightly.
  • the Young's modulus decreases and the maximum particle size increases [for example, No. 117 and 118], it can be seen that it is effective to control the upper limit of the annealing temperature to 230 ° C. in order to control the Young's modulus and the maximum grain size within the predetermined ranges.
  • No. 123 to 140 are examples using an Al alloy film containing a rare earth element other than Nd. All of these were prepared by controlling the sputtering conditions and the annealing temperature within the preferred range of the present invention, including the rare earth element content defined in the present invention, so that the Young's modulus and the maximum particle size were within the scope of the present invention. Was controlled. Further, it has been confirmed by experiments that the same experimental results as those of Nd described above are observed when the rare earth elements other than Nd are used (not shown in Table 2).
  • No. 101 to 103 are examples of pure Al containing no rare earth element, and it was not possible to control the Young's modulus and the maximum grain size defined in the present invention regardless of the annealing temperature.
  • Example 3 A thin film sample having the composition shown in Table 3 was prepared in the same manner as in Example 1. Using the obtained Al alloy film, the 60 ° specular gloss was measured based on JIS K7105-1981. The glossiness is expressed as a value (%) when the glossiness of the glass surface having a refractive index of 1.567 is defined as 100.
  • Table 3 shows the results of the glossiness after the heat treatment (annealing), and it was confirmed that this value is almost the same as the glossiness immediately after the film formation (before annealing).
  • No. 204 to 211 are examples of Al alloy films containing Nd as a rare earth element. It can be seen that when the sputtering conditions and the annealing temperature are all the same, the glossiness tends to increase with an increase in the amount of Nd [for example, when the annealing temperature is room temperature ( ⁇ ), no. 204, 205, 206, 207, 210, 211]. Moreover, although an etching residue comes to be observed when the amount of Nd increases, it was within the acceptable range within the upper limit (5 atomic%) defined in the present invention.
  • No. Reference numerals 212 to 217 are examples using Al alloy films containing rare earth elements other than Nd. All of these were prepared by including the rare earth element content defined in the present invention and controlling the sputtering conditions within the preferable range of the present invention, so that the glossiness was controlled within the range of the present invention. In addition, it was confirmed by experiments that the same experimental results as those of Nd described above were observed when the rare earth elements other than Nd were used (not shown in Table 3).
  • No. Nos. 201 to 203 are examples of pure Al containing no rare earth element, and although the sputtering conditions were controlled within the preferable range of the present invention, they could not be controlled within the gloss range defined in the present invention. .
  • the hardness and grain boundary of the Al alloy film Since the triple point density is controlled appropriately, it is particularly excellent in durability in the vertical direction such as indentation load, and it is difficult to cause disconnection and increase in electrical resistance over time.
  • the present invention is effective for various touch panels, but is preferably used for a contact type touch panel sensor that operates by pressing a portion displayed on a screen such as an ATM of a financial institution such as a bank or a vending machine such as a station or a restaurant. It is done.
  • the touch panel of the present invention is suitably used for a capacitive touch panel sensor that is operated by tracing the screen in multiple directions with a finger or the like, such as a portable game machine or a tablet computer. Furthermore, when an Al alloy film having excellent glossiness is used, a touch panel sensor having excellent color expression can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Physical Vapour Deposition (AREA)
  • Position Input By Displaying (AREA)

Abstract

 特に押し込み荷重などのような縦方向に対する耐久性に優れており、断線や経時的な電気抵抗の増加が起こり難い、信頼性の高く、さらには光沢度が高く、色彩の表現力に優れたタッチパネルセンサーを提供する。本発明のタッチパネルセンサーは、透明導電膜、および前記透明導電膜と接続する配線を有するタッチパネルセンサーにおいて、配線は、基板側から順に、高融点金属膜と、Al合金膜と、高融点金属膜とから構成されており、Al合金膜は、希土類元素を0.05~5原子%含有する。硬度は2~3.5GPaであり、Al合金組織に存在する粒界三重点の密度は2×108個/mm2以上であることが好ましい。ヤング率は80~200GPaであり、結晶粒の定方向接線径(Feret径)の最大値が100~350nmであることが好ましい。光沢度は800%以上であることが好ましい。

Description

タッチパネルセンサー
 本発明は、透明導電膜およびこれと接続する配線を有するタッチパネルセンサーに関する。
 画像表示装置の前面に配置された、画像表示装置と一体型の入力スイッチとして用いられるタッチパネルセンサーは、その使い勝手のよさから、銀行のATMや券売機、カーナビ、PDA、コピー機の操作画面など幅広く使用されている。その入力ポイントの検出方式には、抵抗膜方式、静電容量方式、光学式、超音波表面弾性波方式、圧電式等が挙げられる。これらのうち、抵抗膜方式が、コストがかからず構造が単純である等の理由から最も広く用いられる。
 抵抗膜方式のタッチパネルセンサーは、大別して、上部電極、下部電極、およびテール部分から構成されており、上部電極を構成する基板(例えばフィルム基板)上に設けられた透明導電膜と、下部電極を構成する基板(例えばガラス基板)上に設けられた透明導電膜が、スペーサを隔てて相対した構成となっている。この様な構成のタッチパネルセンサーにおける上記フィルム面を、指やペン等でタッチすると、上記両透明導電膜が接触し、透明導電膜の両端の電極を介して電流が流れ、上記それぞれの透明導電膜の抵抗による分圧比を測定することで、タッチされた位置が検出される。
 上記タッチパネルセンサーを製造するプロセスにおいて、透明導電膜と制御回路を接続するための引き回し配線や透明導電膜間を接続する金属配線などの配線は、一般に、銀ペーストなどの導電性ペーストや導電性インクを、インクジェットやその他の印刷方法で印刷することにより形成される。しかし、純銀または銀合金からなる配線は、ガラスや樹脂等との密着性が悪く、また、外部装置との接続部分において基板上で凝集することにより、電気抵抗の増加や断線等による不良を招く、といった問題がある。
 更にタッチパネルセンサーは、人の指等による押し込みを感知するセンサーであり、タッチ時に加わる応力により一時的に微小変形が生じる。タッチパネルの度重なる使用により、この微小変形が繰り返し生じ、配線にも応力が繰り返し加わる。よって、上記配線には、特に耐久性(応力に対する耐性)も要求される。しかし、純銀または銀合金からなる導電性ペーストを用いて形成された配線は、上記耐久性が十分であるとは言い難く、タッチパネル使用中に配線が損傷し易い。配線が損傷すると、該配線の電気抵抗が大きくなり電圧降下が生じて、タッチパネルセンサーの位置検出の精度が低下し易くなる。また、ペンタッチ方式を採用する場合には、上記配線の狭ピッチ化が必要であるが、ペーストを用いる場合には塗布法で形成するため、狭ピッチ化が難しい。
 一方、電気抵抗率の十分に低い純Alを配線の材料に適用することも考えられる。しかし、配線の材料に純Alを使用すると、タッチパネルセンサーにおける透明導電膜と純Al膜の間に絶縁性の酸化アルミニウムが形成され、電気伝導性を確保することができない、といった問題が発生する。そこで、Alの酸化を防止して電気伝導性を確保するためにMo、Tiなどの高融点金属からなるバリアメタル層を透明導電膜と純Al膜との間に介在させて下地層として用いたり、純Alの代わりに耐熱性などに優れたNdを含むAl-Nd合金を用いる方法が提案されている。また、本願出願人は、透明導電膜と直接接続させても低い電気抵抗を示すと共に、経時的な電気抵抗の増加や断線も生じ難いAl膜として、Niおよび/またはCoを所定量含むAl-Ni/Co合金膜(単層の配線材料)を特許文献1に開示している。
日本国特開2009-245422号公報
 本発明の目的は、特に押し込み荷重などのような縦方向に対する耐久性に優れており、断線や経時的な電気抵抗の増加が起こり難い、信頼性があり、さらには光沢度が高く、色彩の表現力に優れたタッチパネルセンサーを提供することにある。
 本発明は、以下のタッチパネルセンサーを提供する。
 (1) 透明導電膜、および前記透明導電膜と接続する配線を有するタッチパネルセンサーにおいて、前記配線は、基板側から順に、高融点金属膜と、Al合金膜と、高融点金属膜とから構成されており、前記Al合金膜は、希土類元素を0.05~5原子%含有することを特徴とするタッチパネルセンサー。
 (2) 前記希土類元素は、Nd、Gd、La、Y、Ce、PrおよびDyよりなる群から選択される1種以上の元素である(1)に記載のタッチパネルセンサー。
 (3) 前記透明導電膜は、酸化インジウム錫(ITO)または酸化インジウム亜鉛(IZO)からなる(1)または(2)に記載のタッチパネルセンサー。
 (4) 前記Al合金膜は、希土類元素を0.05~1原子%含有し、且つ、硬度は2~3.5GPaであり、Al合金組織に存在する粒界三重点の密度は2×108個/mm2以上であることを特徴とする(1)~(3)のいずれか一つに記載のタッチパネルセンサー。
 (5) 前記Al合金膜のヤング率は80~200GPaであり、結晶粒の定方向接線径(Feret径)の最大値が100~350nmであることを特徴とする(1)~(4)のいずれか一つに記載のタッチパネルセンサー。
 (6) 前記Al合金膜の光沢度は800%以上であることを特徴とする(1)~(5)のいずれか一つに記載のタッチパネルセンサー。
 本発明によれば、タッチパネルセンサー用配線として、希土類元素を含むAl合金膜の上および下に高融点金属膜が配置された配線材料を用いたタッチパネルセンサーにおいて、上記Al合金膜の硬度および粒界三重点密度を適切に制御しているため、特に、押し込み荷重などのような縦方向に対する耐久性に優れており、断線や経時的な電気抵抗の増加が起こり難く、信頼性の高いタッチパネルセンサーを提供することができた。本発明は各種タッチパネルに有効であるが、例えば銀行など金融機関のATM、駅やレストランなどの自動販売機などのように画面に表示された部分を押して操作する接触式のタッチパネルセンサーに好適に用いられる。また、上記Al合金膜のヤング率および結晶粒の定方向接線径(Feret径)の最大値を適切に制御しているため、特に、横方向に対する耐久性に優れており、断線や経時的な電気抵抗の増加が起こり難く、信頼性の高いタッチパネルセンサーを提供することができた。本発明のタッチパネルは、例えば携帯ゲーム機やタブレット型コンピュータなどのように画面を指などで多方向になぞって操作する静電容量式のタッチパネルセンサーに好適に用いられる。さらに、光沢度に優れたAl合金膜を使用すると、色彩の表現力に優れたタッチパネルセンサーを提供することができる。
 本発明者らは、タッチパネルセンサー用配線として汎用されている配線材料、すなわち、希土類元素を含むAl合金膜(以下、Al-希土類元素合金膜、または単にAl合金膜と略記する場合がある。)の上および下にMoなどの高融点金属膜が積層された配線材料を有するタッチパネルセンサーにおいて、上記の特徴と効果を有する配線材料を提供するため、検討を重ねてきた。その結果、上記Al-希土類元素合金膜として、所定の硬度と粒界密度を有するAl合金膜、あるいはヤング率と結晶粒の定方向接線径(Feret径)の最大値(以下、最大粒径と略記する場合がある。)を有するAl合金膜、あるいは光沢度が800%以上のAl合金膜を用いれば所期の目的が達成されることを見出し、本発明を完成した。
 すなわち、本発明の特徴部分は、高融点金属膜と共に用いられる配線用Al-希土類合金膜として、硬度が2~3.5GPaであり、且つ、Al合金組織に存在する粒界三重点の密度が2×108個/mm2以上のAl合金膜、あるいはヤング率80~200GPaと結晶粒の定方向接線径(Feret径)の最大値(以下、最大粒径と略記する場合がある。)100~350nmを有するAl合金膜、あるいは光沢度が800%以上のAl合金膜を採用したところにある。
 本発明に用いられるAl合金膜は、希土類元素を0.05~5原子%含有する。残部はAlおよび不可避的不純物であることが好ましい。本発明では、使用するAl合金膜の組成に特徴はなく、希土類元素を含むAl合金膜が耐熱性を有しており、配線材料として用いられることは知られているが、特に、接触式のタッチパネルセンサーに好適な素材を提供するとの観点から、硬度および三重点密度が制御されたAl合金膜、ヤング率および最大粒径が制御されたAl合金膜、光沢度および希土類元素の含有量が適切に制御されたAl合金膜はこれまで開示されていない。
 まず、Al-希土類合金膜の硬度は2~3.5GPaとすることが好ましい。タッチパネルには、タッチしたとき(使用時)の変形能(追随性)に優れており、特に画面をペンや指などで強くタッチして過度の荷重が負荷され、センサー端部に応力が一時的に集中して配線が変形したり劣化したりしても配線の断線、破断、剥離などが発生しない程度の縦方向に対する耐久性も備えていることが要求される。上記硬度はこのような観点から設定されたものであり、Al合金膜の上下に配置される高融点金属膜の硬度とのバランスも考慮して設定されたものである。
 詳細には、配線を構成する配線材料が軟らかすぎる場合には、応力集中により配線の変形が繰り返されて配線が劣化し、破断や剥離等が生じて電気抵抗が増加する等の不具合が生じる場合がある。一方、配線材料が硬すぎると、押し込み荷重に対して変形が起こり難くなるため、微小なクラックが入ったり剥がれなどの劣化が生じ得る。また、本発明のようにAl合金膜と高融点金属膜との積層物を配線材料として用いる場合は、Al合金膜の硬度を設定するに当たり、高融点金属膜の硬度とのバランスも更に考慮する必要があり、Al合金膜の硬度の上限は、高融点金属膜を構成する高融点金属とおおむね同程度の硬さに制御することが良く、一方、Al合金膜の硬度の下限は、高融点金属の硬度とあまり差が大きくならない方が良い。このような観点に基づき、本発明では、Al合金膜の硬度を2GPa以上3.5GPa以下と定めた。好ましくは2.5GPa以上3.3GPa以下である。なお、Al合金膜の硬度は、後記する実施例に記載の方法で測定した値である。
 更に本発明に用いられるAl合金膜は、Al合金組織に存在する粒界三重点の密度(以下、三重点密度と略記する場合がある。)が2×108個/mm2以上を満足するものである。上述したように本発明では、Al合金膜の硬度を所定範囲に制御する必要があるが、通常、硬度は三重点密度と密接な関係を有し、希土類元素の含有量が本発明の範囲内(1原子%以下)にあるときは、三重点密度が大きくなる程、硬度も大きくなる傾向にある。本発明では、Al合金膜の硬度の下限(2GPa)を確保するとの観点から、三重点密度を2×108個/mm2以上と定めた。好ましくは2.4×108個/mm2以上である。三重点密度の上限は、スパッタリング成膜の効率性などを考慮すると、8.0×108個/mm2であることが好ましい。なお、Al合金膜の三重点密度は、後記する実施例に記載の方法で測定した値である。
 本発明に用いられるAl合金膜は、上記硬度および三重点密度の範囲を確保するという観点から、希土類元素を0.05~1原子%含有し、残部:Alおよび不可避的不純物とすることが好ましい。後記する実施例に示すように、希土類元素の含有量が少なくなるにつれ、硬度が低下する傾向にあり、希土類元素の含有量が本発明で規定する下限を下回るものは、硬度または三重点密度の少なくとも一方が、本発明の範囲を外れてしまう。一方、希土類元素の含有量が多くなるにつれ、硬度も増加する傾向にあり、希土類元素の含有量が上記上限を超えるものは、硬度または三重点密度の少なくとも一方が、本発明の範囲を外れてしまう。
 Al-希土類合金膜のヤング率は80~200GPaとすることが好ましい。配線を構成する配線材料のヤング率が小さい(軟らかすぎる)場合には、応力集中により配線の変形が繰り返されて配線が劣化し、破断や剥離等が生じて電気抵抗が増加する等の不具合が生じる場合がある。一方、配線材料のヤング率が大きい(硬すぎる)と、押し込み荷重に対して変形が起こり難くなるため、微小なクラックが入ったり剥がれなどの劣化が生じ得る。また、本発明のようにAl合金膜と高融点金属膜との積層物を配線材料として用いる場合は、Al合金膜のヤング率を設定するに当たり、高融点金属膜のヤング率とのバランスも更に考慮する必要があり、Al合金膜のヤング率の上限は、高融点金属膜を構成する高融点金属とおおむね同程度のヤング率に制御することが良く、一方、Al合金膜のヤング率の下限は、ガラス基板に代表される基板のヤング率とあまり差が大きくならない方が良い。このような観点に基づき、本発明では、Al合金膜のヤング率を80GPa以上200GPa以下と定めた。好ましくは85GPa以上180GPa以下である。なお、Al合金膜のヤング率は、後記する実施例に記載の方法で測定した値である。
 更に本発明に用いられるAl合金膜の最大粒径[結晶粒の定方向接線径(Feret径)の最大値]は、100~350nmを満足するものであることが好ましい。上述したように本発明では、Al合金膜のヤング率を所定範囲に制御する必要があるが、通常、ヤング率は最大粒径と、おおむね密接な関係を有し、希土類元素の含有量が本発明の範囲内(5原子%以下)にあるときは、最大粒径が大きくなると、ヤング率が小さくなる傾向にある。本発明では、Al合金膜のヤング率の下限(80GPa)を確保するとの観点から、最大粒径の上限を350nmと定め、Al合金膜のヤング率の上限(200GPa)を確保するとの観点から、最大粒径の下限を100nmと定めた。好ましい最大粒径は130nm以上、320nm以下である。
 ここで最大粒径とは、結晶粒の定方向接線径(Feret径またはGreen径とも呼ばれる)の最大値を意味する。具体的には粒子を挟む一定方向の二本の平行線の間隔(距離)であり、結晶粒に凹みがある場合は投影図の平行外接線間距離であり、結晶粒に凹みがない場合(球)は周長さをπで割った値である。
 本発明に用いられるAl合金膜は、上述したように、希土類元素を0.05~5原子%含有する(残部はAlおよび不可避的不純物であることが好ましい)。希土類元素の含有量を、上記下限以上とすることで、耐熱性作用を有効に発揮させることができ、一方、上記上限以下とすることで、本発明で規定するヤング率および最大粒径の範囲を確保することができる。希土類元素の含有量が多くなるにつれ、ヤング率は増加し最大粒径は減少する傾向にある。
 (I)配線膜の光沢度はタッチパネルセンサーの色彩に大きな影響を及ぼしており、配線材料を構成する上記Al合金膜の結晶粒の粒径(詳細には、Feret径と呼ばれる定方向接線径の最大値)が大きい場合や、当該粒径の密度が小さい場合には、Al合金膜の光沢度が低下し、結果的にタッチパネルセンサーの色彩の表現力に劣ること、(II)詳細にはAl合金膜の光沢度は、成膜直後の上記粒径のサイズや密度によってほぼ決定され、成膜後に熱処理(アニール)を行なっても、光沢度の変化は殆ど見られないこと、(III)高い光沢度を実現するためには、成膜条件(好ましくはスパッタリング時の温度およびArガス圧)を適切に制御することが有効であること、が判明した。更にAl合金膜中の希土類元素の含有量もAl合金膜の光沢度と密接な関係を有しており、(IV)希土類元素の含有量が増加するにつれて光沢度は上昇する傾向にあるが、多量に添加すると、エッチング残渣の問題からタッチパネルセンサーの色彩が損なわれることから、その上限を5原子%に制御することが有効であること、(V)このように光沢度および希土類元素の含有量が適切に制御されたAl合金膜は、タッチパネルセンサー用配線の素材として、単独で用いることもできるし、その上限にMoなどの高融点金属膜が積層された積層材料として用いることもできることを見出し、本発明を完成した。
 Al-希土類合金膜の光沢度は800%以上とすることが好ましい。これにより、タッチパネルセンサーの光沢度も高められる。光沢度は高い程良く、好ましくは805%以上である。なお、Al合金膜の光沢度の上限は特に規定されないが、所望の光沢度を確保するための条件(Al合金膜に含まれる希土類元素の含有量やAl合金膜の製造条件など、詳細は後述する。)を考慮すると、おおむね、840%程度である。Al合金膜の光沢度は、後記する実施例に記載の方法で測定した値である。
 本発明に用いられるAl合金膜は、上述したように、希土類元素を0.05~5原子%含有する(残部はAlおよび不可避的不純物であることが好ましい)。希土類元素の含有量を、上記下限以上とすることで、耐熱性作用を有効に発揮させることができ、一方、上記上限以下とすることで、本発明で規定する光沢度の下限を確保することができる。すなわち後記する実施例に示すように、Al合金膜の光沢度は希土類元素の含有量と密接に関係しており、同じ条件でAl合金膜を作製した場合、希土類元素の含有量が多くなる程、Al合金膜の光沢度も増加する傾向にあるが、希土類元素の含有量が多くなり過ぎるとエッチング残渣の新たな問題が生じて色彩が損なわれるため、その上限を5原子%と定めた。また上記範囲内であれば、配線の電気抵抗も低く抑えることができる。
 本発明に用いられる希土類元素としては、ランタノイド元素(周期表において、原子番号57のLaから原子番号71のLuまでの合計15元素)に、Sc(スカンジウム)とY(イットリウム)とを加えた元素群が挙げられる。本発明ではこれらの元素を、単独または2種以上を併用して用いることができ、上記希土類元素の含有量とは、単独で含むときは単独の量であり、2種以上を含むときはその合計量である。好ましい希土類元素は、Nd、Gd、La、Y、Ce、PrおよびDyよりなる群から選択される1種以上の元素である。
 本発明では、配線材料として、上記のAl合金膜の上下に高融点金属膜が積層されたものを用いる。上述したように高融点金属膜は、Alの酸化を防止するためにAl合金膜の下地層などとして汎用されており、本発明でも、Mo、Ti、Cr、W、またはこれらの合金を用いることができる。Al合金膜の上下に配置される高融点金属膜の組成は、上および下の夫々において同一であっても良いし、異なっていても良い。
 上記Al合金膜の好ましい厚さは、おおむね150~600nmであり、高融点金属膜の好ましい厚さは、おおむね30~100nmである。
 本発明において、硬度および三重点密度が適切に制御されたAl合金膜を得るためには、所定の希土類元素を含有するAl合金膜を用いることに加え、成膜後のAl合金膜を、室温~230℃の範囲内で熱処理(アニール)することが好ましい。タッチパネルの製造プロセスでは、一般に室温~約250℃程度の熱履歴を被ることが多いが、アニール温度が高くなると、希土類元素の析出およびAl合金の粒成長のため、硬度および三重点密度が低下するようになる。具体的には希土類元素の添加量などに応じて、適切なアニール温度を設定すれば良いが、より好ましくは150~230℃である。
 更に本発明では、細線化や膜内の合金成分の均一化を図り、添加元素量を容易にコントロールできるなどの観点から、Al合金膜をスパッタリング法で形成することが好ましい。スパッタリング法では、スパッタリング時の成膜温度をおおむね、180℃以下、Arガス圧をおおむね、3mTorr以下に制御することが好ましい。基板温度や成膜温度が高いほど形成される膜の膜質はバルクに近づき、緻密な膜が形成され易く、膜の硬度が増加する傾向にある。また、Arガス圧を上げるほど膜の密度が低下し、膜の硬度が低下する傾向にある。この様な成膜条件の調整は、膜の構造が疎となって腐食が生じやすくなるのを抑制する観点からも好ましい。
 本発明において、ヤング率および最大粒径が適切に制御されたAl合金膜を得るためには、所定の希土類元素を含有するAl合金膜を用いることに加え、スパッタリング時の条件を適切に制御することが好ましい。すなわち本発明では、細線化や膜内の合金成分の均一化を図り、添加元素量を容易にコントロールできるなどの観点から、Al合金膜をスパッタリング法で形成することが推奨されるが、スパッタリング時の成膜温度をおおむね、230℃以下、Arガス圧をおおむね、20mTorr以下に制御することが好ましい。またスパッタリング時の基板温度をおおむね、180℃以下に制御することが好ましい。基板温度や成膜温度が高いほど形成される膜の膜質はバルクに近づき、緻密な膜が形成され易く、膜のヤング率が増加する傾向にある。また、Arガス圧を上げるほど膜の密度が低下し、膜のヤング率が低下する傾向にある。この様な成膜条件の調整は、膜の構造が疎となって腐食が生じやすくなるのを抑制する観点からも好ましい。
 なお、上記のようにしてスパッタリング法により成膜した後のAl合金膜は、室温~230℃の範囲内で熱処理(アニール)することが好ましい。タッチパネルの製造プロセスでは、一般に室温~約250℃程度の熱履歴を被ることが多いが、アニール温度が高くなると、希土類元素の析出およびAl合金の粒成長のため、ヤング率および最大粒径が低下するようになる。具体的には希土類元素の添加量などに応じて、適切なアニール温度を設定すれば良いが、より好ましくは150~230℃である。
 本発明において、光沢度が適切に制御されたAl合金膜を得るためには、所定の希土類元素を含有するAl合金膜を用いることに加え、スパッタリング時の条件を適切に制御することが好ましい。すなわち本発明では、細線化や膜内の合金成分の均一化を図り、添加元素量を容易にコントロールできるなどの観点から、Al合金膜をスパッタリング法で形成することが推奨されるが、スパッタリング時の成膜温度をおおむね、250℃以下、Arガス圧をおおむね、15mTorr以下に制御することが好ましい。またスパッタリング時の基板温度をおおむね、250℃以下に制御することが好ましい。基板温度や成膜温度が高いほどスパッタ粒子が基板表面で動き易くなり、粗大な結晶粒径を形成する原因となり、結果的に光沢度が低下するからである。また、Arガス圧が高くなると、スパッタ粒子とArガス圧の衝突頻度が高くなるため、スパッタ粒子が基板に到達した際のエネルギーが低くなって結晶粒の密度が低下し、結果的に、光沢度が低下するからである。
 上述した好ましいスパッタリング条件で成膜した(直後の)Al合金膜の光沢度は、800%以上と高く、このような高い光沢度は、その後の熱処理(アニール)の条件にかかわらず、そのまま維持される。この点、熱処理後のAl合金膜の状態(結晶粒のサイズや密度など)の影響を強く受ける反射率とは大きく相違する。タッチパネルの製造プロセスでは、一般に室温~約250℃程度の熱履歴に曝されることが多いが、アニール温度が上記範囲を超えて、例えば300℃で熱処理を行なったとしても、熱処理後のAl合金膜の光沢度は800%以上の高いレベルを持続している(後記する実施例を参照)。ただし、樹脂の耐熱性を考慮すると、好ましい熱処理温度は約150~230℃である。
 本発明では、透明導電膜と接続する配線に用いられるAl合金膜の光沢度を規定したところに最大の特徴があり、それ以外の構成は特に限定されず、タッチパネルセンサーの分野で通常用いられる公知の構成を採用することができる。
 例えば、抵抗膜方式のタッチパネルセンサーは、次の様にして製造することができる。即ち、基板上に透明導電膜を形成してから、レジスト塗布、露光、現像、エッチングを順次行った後、高融点金属膜、Al合金膜、高融点金属膜を順次形成して、レジスト塗布、露光、現像、エッチングを実施して配線を形成し、次いで、該配線を被覆する絶縁膜等を形成して、上部電極とすることができる。また、基板上に透明導電膜を形成してから、上部電極と同様にフォトリソグラフィを行い、次いで、上部電極の場合と同様に、高融点金属膜、Al合金膜、高融点金属膜からなる配線を形成してから、該配線を被覆する絶縁膜を形成し、マイクロ・ドット・スペーサ等を形成して下部電極とすることができる。そして、上記の上部電極、下部電極、および別途形成したテール部分を張り合わせて、タッチパネルセンサーを製造することができる。
 上記透明導電膜は特に限定されず、代表例として、酸化インジウム錫(ITO)または酸化インジウム亜鉛(IZO)からなるものを使用することができる。また、上記基板(透明基板)は、一般的に使用されているものとして、例えばガラス、ポリカーボネート系、またはポリアミド系のものを使用することができ、例えば、固定電極である下部電極の基板にガラスを用い、可撓性の必要な上部電極の基板にポリカーボネート系等のフィルムを用いることができる。
 また、本発明のタッチパネルセンサーは、上記抵抗膜方式以外に、静電容量方式や超音波表面弾性波方式等のタッチパネルセンサーとしても用いることができる。
 実施例1
 無アルカリ硝子板(板厚0.7mm、直径4インチ)を基板とし、その表面に、DCマグネトロンスパッタリング法で、下記表1に示すように希土類元素の種類および含有量(単位は原子%であり、残部:Alおよび不可避的不純物)が異なるAl合金膜(膜厚はいずれも約500nm)を形成した。成膜は、成膜前にチャンバー内の雰囲気を一旦、到達真空度:3×10-6Torrにしてから、各Al合金膜と同一の成分組成の直径4インチの円盤型ターゲットを用い、下記に示す条件で行った。次に、成膜後のAl合金について、窒素雰囲気中、表1に記載の種々のアニール温度にて30分間熱処理を行なった。表1中、「-」とは加熱なし(すなわち室温)を意味する。尚、形成されたAl合金膜の組成は、誘導結合プラズマ(Inductively  Coupled  Plasma:ICP)質量分析法で確認した。
    (スパッタリング条件)
      ・Arガス圧:2mTorr
      ・Arガス流量:30sccm
      ・スパッタパワー:260W
      ・成膜温度:室温℃
 上記の様にして得られたAl合金膜を用いて、ナノインデンターによる膜の硬度試験を行った。この試験では、MTS社製  Nano  Indenter  XP  (解析用ソフト:Test  Works  4)を用い、XPチップを用い、連続剛性測定を行った。押し込み深さを300nmとし、励起振動周波数:45Hz、振幅:2nmの条件で15点を測定した結果の平均値を求めた。
 更に上記の様にして得られたAl合金膜を倍率15万倍でTEM観察し、測定視野(一視野は1.2μm×1.6μm)中に観察される、粒界三重点に存在するAl合金の密度(三重点密度)を測定した。測定は合計3視野で行い、その平均値をAl合金の三重点密度とした。
 Al合金膜の代わりに純Al膜を形成した試料についても、上記と同様にして硬度および三重点密度を測定した。
 これらの結果を表1に併記する。表1中、「E+07」とは107を意味する。例えば表1のNo.1の「9.0E+07」とは9.0×107の意味である。
Figure JPOXMLDOC01-appb-T000001
 表1中、No.5~22は、いずれも希土類元素としてNdを含むAl合金膜の例である。アニール温度が同じ場合、Nd量の増加に伴って硬度および三重点密度が増加する傾向にあり[例えばアニール温度が室温(-)の場合、No.5、9、13、19を参照]、硬度および三重点密度を所定範囲内に制御するためには、Nd量の上限を1原子%にすることが有効であることが分かる。またNd量が同じであっても、アニール温度が本発明の好ましい範囲を超えて高くなると、硬度および三重点密度が減少する傾向にあり[例えばアニール温度が250℃の場合、No.8、12、17、22を参照]、硬度および三重点密度を所定範囲内に制御するためには、アニール温度の上限を230℃に制御することが有効であることが分かる。
 表1中、No.23~41は、Nd以外の希土類元素を含むAl合金膜を用いた例である。これらはいずれも、本発明で規定する希土類元素の含有量を含み、且つ、アニール温度を本発明の好ましい範囲に制御して作製したため、硬度および三重点密度が本発明の範囲内に制御されていた。また、Nd以外の上記希土類元素を用いた場合にも、上述したNdと同様の実験結果が見られることを実験により確認した(表1には示さず)。
 これらの結果より、本発明のAl-希土類元素合金膜を用いれば、縦方向に対する耐久性に優れており、断線や経時的な電気抵抗の増加が起こり難い、信頼性の高いタッチパネルセンサーを提供できることが大いに期待される。
 これに対し、No.1~4は、希土類元素を含まない純Alの例であり、アニール温度をどのように制御しても、本発明で規定する硬度および三重点密度に制御することはできなかった。
 実施例2
 実施例1と同様に表2の組成をもつ薄膜試料を準備した。得られたAl合金膜を用いて、ナノインデンターによる膜の硬度試験を行い、ヤング率を測定した。この試験では、Agilent Technologies社製Nano Indenter G200(解析用ソフト:Test Works 4)を用い、XPチップを用いて連続剛性測定を行った。押し込み深さを500nmとし、15点を測定した結果の平均値を求めた。
 更に上記の様にして得られたAl合金膜を倍率15万倍でTEM観察し、測定視野(一視野は1.2μm×1.6μm)中に観察される結晶粒の粒径(定方向接線径、Feret径)を測定した。測定は合計3視野で行い、3視野中の最大値を最大粒径とした。
 Al合金膜の代わりに純Al膜を形成した試料についても、上記と同様にしてヤング率および最大粒径を測定した。
 これらの結果を表2に併記する。
 
Figure JPOXMLDOC01-appb-T000002
 表2中、No.105~122は、いずれも希土類元素としてNdを含むAl合金膜の例である。スパッタリング条件およびアニール温度がすべて同じ場合、Nd量の増加に伴ってヤング率は増加する傾向にあり[例えばアニール温度が室温(-)の場合、No.105、109、113、119を参照]、一方、最大粒径はやや減少する傾向にある。またNd量およびスパッタリング条件が同じであっても、アニール温度が本発明の好ましい範囲を超えて高くなると、ヤング率が減少し最大粒径が増加するため[例えばNo.117と118を参照]、ヤング率および最大粒径を所定範囲内に制御するためには、アニール温度の上限を230℃に制御することが有効であることが分かる。
 表2中、No.123~140は、Nd以外の希土類元素を含むAl合金膜を用いた例である。これらはいずれも、本発明で規定する希土類元素の含有量を含み、且つ、スパッタリング条件およびアニール温度を本発明の好ましい範囲に制御して作製したため、ヤング率および最大粒径が本発明の範囲内に制御されていた。また、Nd以外の上記希土類元素を用いた場合にも、上述したNdと同様の実験結果が見られることを実験により確認している(表2には示さず)。
 これらの結果より、本発明のAl-希土類元素合金膜を用いれば、横方向に対する耐久性に優れており、断線や経時的な電気抵抗の増加が起こり難い、信頼性の高いタッチパネルセンサーを提供できることが大いに期待される。
 これに対し、No.101~103は、希土類元素を含まない純Alの例であり、アニール温度にかかわらず、本発明で規定するヤング率および最大粒径に制御することはできなかった。
 実施例3
 実施例1と同様に表3の組成をもつ薄膜試料を準備した。得られたAl合金膜を用いて、JIS  K7105-1981に基づき、60°鏡面光沢度を測定した。光沢度は、屈折率1.567のガラス表面の光沢度を100としたときの値(%)で表記した。
 上記のアルミニウム合金膜を用いて、エッチング残渣を評価した。詳細には、40℃に加温して混酸エッチング液(リン酸:硝酸:酢酸:水=70:2:10:18)にAl合金膜を浸漬し、エッチング完了時間+50%の時間に相当する時間(オーバーエッチング時間)エッチングを行なった。エッチング後のガラス表面を光学顕微鏡(倍率1000倍)およびSEM(倍率3万倍)で観察し、いずれで観察してもエッチング残渣が見られなかったものを○、SEM観察でのみエッチング残渣が見られたものを△、SEM観察だけでなく光学顕微鏡による観察でもエッチング残渣が見られたものを×とした。本実施例では、○または△をエッチング性良好と判断する。
 Al合金膜の代わりに純Al膜を形成した試料についても、上記と同様にして光沢度およびエッチング残渣を測定した。
 これらの結果を表3に併記する。表3には、熱処理(アニール)後の光沢度の結果を記載しているが、この値は、成膜直後(アニール前)の光沢度と殆ど変わらないことを確認した。
Figure JPOXMLDOC01-appb-T000003
 表3中、No.204~211は、いずれも希土類元素としてNdを含むAl合金膜の例である。スパッタリング条件およびアニール温度がすべて同じ場合、Nd量の増加に伴って光沢度は増加する傾向にあることが分かる[例えばアニール温度が室温(-)の場合、No.204、205、206、207、210、211を参照]。また、Nd量が多くなるとエッチング残渣が観察されるようになるが、本発明で規定する上限(5原子%)の範囲内では、合格圏内であった。
 表3中、No.212~217は、Nd以外の希土類元素を含むAl合金膜を用いた例である。これらはいずれも、本発明で規定する希土類元素の含有量を含み、且つ、スパッタリング条件を本発明の好ましい範囲に制御して作製したため、光沢度が本発明の範囲内に制御されていた。また、Nd以外の上記希土類元素を用いた場合にも、上述したNdと同様の実験結果が見られることを実験により確認した(表3には示さず)。
 これらの結果より、本発明のAl-希土類元素合金膜を用いれば、光沢度の高いタッチパネルセンサーを提供できることが大いに期待される。
 これに対し、No.201~203は、希土類元素を含まない純Alの例であり、スパッタリング条件を本発明の好ましい範囲に制御したにもかかわらず、本発明で規定する光沢度の範囲に制御することはできなかった。
 本出願を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2010年12月1日出願の日本特許出願(特願2010-268687)、2010年12月1日出願の日本特許出願(特願2010-268688)、2010年12月1日出願の日本特許出願(特願2010-268689)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明によれば、タッチパネルセンサー用配線として、希土類元素を含むAl合金膜の上および下に高融点金属膜が配置された配線材料を用いたタッチパネルセンサーにおいて、上記Al合金膜の硬度および粒界三重点密度を適切に制御しているため、特に、押し込み荷重などのような縦方向に対する耐久性に優れており、断線や経時的な電気抵抗の増加が起こり難く、信頼性の高いタッチパネルセンサーを提供することができた。本発明は各種タッチパネルに有効であるが、例えば銀行など金融機関のATM、駅やレストランなどの自動販売機などのように画面に表示された部分を押して操作する接触式のタッチパネルセンサーに好適に用いられる。また、上記Al合金膜のヤング率および結晶粒の定方向接線径(Feret径)の最大値を適切に制御しているため、特に、横方向に対する耐久性に優れており、断線や経時的な電気抵抗の増加が起こり難く、信頼性の高いタッチパネルセンサーを提供することができた。本発明のタッチパネルは、例えば携帯ゲーム機やタブレット型コンピュータなどのように画面を指などで多方向になぞって操作する静電容量式のタッチパネルセンサーに好適に用いられる。さらに、光沢度に優れたAl合金膜を使用すると、色彩の表現力に優れたタッチパネルセンサーを提供することができる。

Claims (6)

  1.  透明導電膜、および前記透明導電膜と接続する配線を有するタッチパネルセンサーにおいて、前記配線は、基板側から順に、高融点金属膜と、Al合金膜と、高融点金属膜とから構成されており、前記Al合金膜は、希土類元素を0.05~5原子%含有することを特徴とするタッチパネルセンサー。
  2.  前記希土類元素は、Nd、Gd、La、Y、Ce、PrおよびDyよりなる群から選択される1種以上の元素である請求項1に記載のタッチパネルセンサー。
  3.  前記透明導電膜は、酸化インジウム錫(ITO)または酸化インジウム亜鉛(IZO)からなる請求項1に記載のタッチパネルセンサー。
  4.  前記Al合金膜は、希土類元素を0.05~1原子%含有し、且つ、硬度は2~3.5GPaであり、Al合金組織に存在する粒界三重点の密度は2×108個/mm2以上であることを特徴とする請求項1に記載のタッチパネルセンサー。
  5.  前記Al合金膜のヤング率は80~200GPaであり、結晶粒の定方向接線径(Feret径)の最大値が100~350nmであることを特徴とする請求項1に記載のタッチパネルセンサー。
  6.  前記Al合金膜の光沢度は800%以上であることを特徴とする請求項1に記載のタッチパネルセンサー。
PCT/JP2011/077701 2010-12-01 2011-11-30 タッチパネルセンサー WO2012074021A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/990,981 US20130249571A1 (en) 2010-12-01 2011-11-30 Touch panel sensor
KR1020137014123A KR101479887B1 (ko) 2010-12-01 2011-11-30 터치 패널 센서

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010268687A JP5416681B2 (ja) 2010-12-01 2010-12-01 タッチパネルセンサーおよびその製造方法
JP2010268688A JP5416682B2 (ja) 2010-12-01 2010-12-01 タッチパネルセンサーおよびその製造方法
JP2010-268689 2010-12-01
JP2010-268687 2010-12-01
JP2010-268688 2010-12-01
JP2010268689A JP5416683B2 (ja) 2010-12-01 2010-12-01 タッチパネルセンサーおよびその製造方法

Publications (1)

Publication Number Publication Date
WO2012074021A1 true WO2012074021A1 (ja) 2012-06-07

Family

ID=46171947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077701 WO2012074021A1 (ja) 2010-12-01 2011-11-30 タッチパネルセンサー

Country Status (4)

Country Link
US (1) US20130249571A1 (ja)
KR (1) KR101479887B1 (ja)
TW (1) TWI480774B (ja)
WO (1) WO2012074021A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10824285B2 (en) 2018-02-06 2020-11-03 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Electrode structure and method for manufacturing the same
JP2019185164A (ja) 2018-04-03 2019-10-24 富士通コンポーネント株式会社 触感提示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008108042A1 (ja) * 2007-03-01 2008-09-12 Sharp Kabushiki Kaisha 表示パネル用基板、表示パネル、表示装置、および表示パネル用基板の製造方法
JP2009245422A (ja) * 2008-02-22 2009-10-22 Kobe Steel Ltd タッチパネルセンサー
JP2010198608A (ja) * 2009-01-28 2010-09-09 Semiconductor Energy Lab Co Ltd 表示装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005275102A (ja) * 2004-03-25 2005-10-06 Nec Lcd Technologies Ltd 半透過型液晶表示装置及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008108042A1 (ja) * 2007-03-01 2008-09-12 Sharp Kabushiki Kaisha 表示パネル用基板、表示パネル、表示装置、および表示パネル用基板の製造方法
JP2009245422A (ja) * 2008-02-22 2009-10-22 Kobe Steel Ltd タッチパネルセンサー
JP2010198608A (ja) * 2009-01-28 2010-09-09 Semiconductor Energy Lab Co Ltd 表示装置

Also Published As

Publication number Publication date
US20130249571A1 (en) 2013-09-26
KR101479887B1 (ko) 2015-01-06
TWI480774B (zh) 2015-04-11
KR20130088860A (ko) 2013-08-08
TW201237707A (en) 2012-09-16

Similar Documents

Publication Publication Date Title
TWI382428B (zh) Touch panel sensor
TWI537400B (zh) 觸控面板感測器用銅合金配線膜及其之製造方法、以及觸控面板感測器、以及濺鍍靶
JP2011165191A (ja) タッチセンサ装置
KR20160067958A (ko) 전극 및 그 제조 방법
WO2006132413A1 (ja) 電極、配線及び電磁波遮蔽用の銀合金
JPWO2009078283A1 (ja) タッチパネル、タッチパネルの製造方法
JP5190854B2 (ja) 透明導電フィルム及び透明導電積層体並びにタッチパネル
JP6043264B2 (ja) 入力装置に用いられる電極
JP5416682B2 (ja) タッチパネルセンサーおよびその製造方法
WO2012074021A1 (ja) タッチパネルセンサー
JP6361957B2 (ja) 電子部品用積層配線膜および被覆層形成用スパッタリングターゲット材
JP2013119632A (ja) タッチパネルセンサー用Cu合金配線膜、及びタッチパネルセンサー、並びにスパッタリングターゲット
KR101597018B1 (ko) 금속 박막 및 금속 박막 형성용 Mo 합금 스퍼터링 타깃재
JP5416681B2 (ja) タッチパネルセンサーおよびその製造方法
JP5416683B2 (ja) タッチパネルセンサーおよびその製造方法
JP4214063B2 (ja) 透明導電性積層体およびタッチパネル
CN114630919A (zh) 层叠结构体
JP2016157297A (ja) 透明導電性積層体とタッチパネル
JP6146658B2 (ja) 電子部品を作製するために用いられる積層体
JP2016031748A (ja) 電極およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11845383

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137014123

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13990981

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11845383

Country of ref document: EP

Kind code of ref document: A1