WO2009099140A1 - 光学活性インドリン-2-カルボン酸類またはその誘導体の製造方法 - Google Patents

光学活性インドリン-2-カルボン酸類またはその誘導体の製造方法 Download PDF

Info

Publication number
WO2009099140A1
WO2009099140A1 PCT/JP2009/051957 JP2009051957W WO2009099140A1 WO 2009099140 A1 WO2009099140 A1 WO 2009099140A1 JP 2009051957 W JP2009051957 W JP 2009051957W WO 2009099140 A1 WO2009099140 A1 WO 2009099140A1
Authority
WO
WIPO (PCT)
Prior art keywords
indoline
carboxylic acid
optically active
substituted
producing
Prior art date
Application number
PCT/JP2009/051957
Other languages
English (en)
French (fr)
Inventor
Akifumi Iida
Youichi Kyuuko
Original Assignee
Mitsubishi Gas Chemical Company, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Company, Inc. filed Critical Mitsubishi Gas Chemical Company, Inc.
Priority to EP09707649A priority Critical patent/EP2251431A4/en
Priority to JP2009552511A priority patent/JP5093248B2/ja
Priority to CN200980104417XA priority patent/CN101939444A/zh
Priority to US12/866,006 priority patent/US20100330625A1/en
Publication of WO2009099140A1 publication Critical patent/WO2009099140A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/10Nitrogen as only ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
    • C12P41/003Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by ester formation, lactone formation or the inverse reactions
    • C12P41/005Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by ester formation, lactone formation or the inverse reactions by esterification of carboxylic acid groups in the enantiomers or the inverse reaction

Definitions

  • the present invention relates to an efficient method for producing optically active indoline-2-carboxylic acids and derivatives useful as synthetic raw materials for pharmaceuticals. Specifically, from indoline-2-carboxylic acid represented by formula (1), optically active indoline-2-carboxylic acid, optically active indoline-2-carboxylic acid ester having excellent chemical purity and optical purity, optical activity
  • the present invention relates to a method for producing N-substituted-indoline-2-carboxylic acid or optically active N-substituted-indoline-2-carboxylic acid ester in high yield.
  • optically active indoline-2-carboxylic acids and derivatives thereof are very important as raw materials for synthesizing pharmaceuticals and the like that require optical activity.
  • the substituent R in the formula represents a formyl group, an acetyl group, a methoxycarbonyl group, a tert-butoxycarbonyl group, or a benzyloxycarbonyl group.
  • optically active indoline-2-carboxylic acid As a synthesis method of optically active indoline-2-carboxylic acid, (1) a method of hydrolyzing optically active indoline-2-carboxylic acid ester asymmetrically using a biocatalyst (for example, see Non-patent Document 1) (2) A method of optical resolution by a diastereomer method using an optically active amine (for example, see Patent Documents 1 and 2), (3) A synthesis method using an asymmetric ligand (for example, Non-Patent Document 2) See). (1) is a reaction in an aqueous system, and the reaction rate is slow and the reaction yield is low.
  • an optically active amine used as an optical resolution agent is expensive, and further, a process for recovering and purifying amine is complicated, which causes a problem in industrialization.
  • (3) is still a research stage method and has many problems such as a large amount of ligand to be used and a complicated method for producing the ligand.
  • JP 2004-182670 A JP-A-11-292844 Takashi Sugai, et al., Bull.Chem.Jpn., 77,1021-1025 (2004) Yoshihiko Ito, et al., J. Am. Chem. Soc., 122, 7614-7615 (2005)
  • the object of the present invention is to solve the above-mentioned problems of the prior art and to provide a simple and industrially advantageous method for producing optically active indoline-2-carboxylic acids and derivatives thereof.
  • an indoline-2-carboxylic acid represented by formula (1) is converted to an N-substituted-indoline-2-carboxylic acid represented by formula (2) in which a substituent is introduced at the nitrogen site, and then the compound is used as a substrate.
  • an indoline-2-carboxylic acid represented by formula (1) is converted to an N-substituted-indoline-2-carboxylic acid represented by formula (2) in which a substituent is introduced at the nitrogen site, and then the compound is used as a substrate.
  • the stereoselectivity is much higher than when indoline-2-carboxylic acid represented by formula (1) is used as it is as a substrate.
  • the carboxyl group of indoline-2-carboxylic acid can be esterified with a high yield, and the optically active N in the relationship between the obtained optically active N-substituted-indoline-2-carboxylic acid ester and the other enantiomer.
  • Partitioning between organic solvent layer / water layer with salt of substituted-indoline-2-carboxylic acid is optically active with optically active indoline-2-carboxylic acid ester Since it becomes easier to separate as compared with the salt of nundrin-2-carboxylic acid, the optically active substance can be easily separated, and the obtained optically active N-substituted-indoline-2-carboxylic acid ester And the optically active N-substituted-indoline-2-carboxylic acid (salt) by hydrolysis or deprotection treatment, in a high yield without decreasing the optical purity.
  • an optically active indoline-2-carboxylic acid consisting of an optically active N-substituted-indoline-2-carboxylic acid (salt), or an optically active indoline-2-carboxylic acid ester or an optically active N-substituted-indoline-2
  • an optically active indoline-2-carboxylic acid derivative comprising a carboxylic acid ester and to complete the present invention was Tsu.
  • the present invention provides a method for producing optically active indoline-2-carboxylic acids or derivatives thereof having excellent quality and yield from the indoline-2-carboxylic acid represented by formula (1) shown in the following 1 to 10: About.
  • a method for producing optically active indoline-2-carboxylic acids or derivatives thereof from indoline-2-carboxylic acid represented by formula (1) comprising the following steps (A) to (B) and steps (A) to ( C), the following steps (A) to (D), or the following steps (A), (B) and (E).
  • the optically active N-substituted-indoline-2-carboxylic acid ester was in the relationship between the optically active N-substituted-indoline-2-carboxylic acid ester and the other non-esterified enantiomer. Obtaining a composition comprising an acid.
  • the substituent R in the formula represents a formyl group, an acetyl group, a methoxycarbonyl group, a tert-butoxycarbonyl group, or a benzyloxycarbonyl group.
  • 2. The method for producing an optically active indoline-2-carboxylic acid or a derivative thereof according to 1, wherein the biocatalyst having stereoselectivity is an ester hydrolase.
  • 3. The method for producing an optically active indoline-2-carboxylic acid or a derivative thereof according to 2, wherein the ester hydrolase is lipase. 4). 4.
  • Primary or secondary alcohol is methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 1-pentanol, 2-pentanol, and 3
  • optically active indoline-2-carboxylic acid derivative is an optically active indoline-2-carboxylic acid ester or an optically active N-substituted-indoline-2-carboxylic acid ester.
  • an N-substituted-indoline-2-carboxylic acid represented by the formula (2) in which a substituent R is introduced into the nitrogen site of the indoline-2-carboxylic acid represented by the formula (1) is used.
  • a substance converted to N-substituted-indoline-2-carboxylic acid as a reaction substrate stereoselective esterification reaction using a biocatalyst proceeds with extremely high selectivity and yield. It becomes like this.
  • the substituent R introduced into the nitrogen moiety of indoline-2-carboxylic acid is preferably a formyl group, acetyl group, methoxycarbonyl group, tert-butoxycarbonyl group, or benzyloxycarbonyl group, and particularly preferably an acetyl group.
  • a method for introducing the substituent R into the nitrogen site a method using acetic anhydride, benzyloxycarbonyl chloride, di-tert-butyl carbonate or the like under basic conditions is generally well known.
  • a formyl substituent is reacted with formic acid
  • an acetyl substituent is reacted with acetic anhydride
  • a methoxycarbonyl substituent is reacted with methyl chloroformate
  • a tert-butoxycarbonyl substituent is di-tert-
  • the benzyloxycarbonyl substituent can be easily obtained by reacting with benzyl chloroformate.
  • the nitrogen moiety and carboxyl group having high reactivity are often used after protection, so that the optically active N-substituted-indoline-2 obtained in the above step (B) of the present invention is used.
  • -Carboxylic acid esters and optically active N-substituted-indoline-2-carboxylic acids or salts thereof obtained in the above-mentioned step (B) or (C) of the present invention can also be used as pharmaceutical raw materials.
  • the biocatalyst used in the present invention is any one that has the ability to stereoselectively esterify either enantiomer of N-substituted-indoline-2-carboxylic acid in an organic solvent containing alcohol.
  • the origin is not particularly limited.
  • biocatalysts having such ability include ester hydrolases, for example, lipases derived from microorganisms, that is, those derived from microorganisms belonging to the genus Candida, Aspergillus, Alkagenes, Pseudomonas, etc.
  • lipases derived from yeast belonging to the genus Candida particularly lipases produced by Candida antarctica can be mentioned as suitable examples.
  • the form of lipase is not particularly limited, and lipase-containing microbial cells, lipase itself, immobilized lipase immobilized on a carrier, and the like can be used.
  • Examples of the alcohol in the organic solvent used in the present invention include primary or secondary alcohols, specifically, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2- Methyl-1-propanol, 1-pentanol, 2-pentanol or 3-pentanol is used. Of these, methanol and ethanol are preferable, and methanol is more preferable.
  • the organic solvent used in the present invention does not inhibit this reaction using a biocatalyst, and the substrate is N-substituted-indoline-2-carboxylic acid and the product is optically active N-substituted-indoline-2-. It is preferable to dissolve the carboxylic acid ester well, separate the layer from water, and have an appropriate boiling point.
  • solvents examples include aliphatic hydrocarbons such as n-hexane, n-heptane, and isooctane, aromatic hydrocarbons such as benzene and toluene, dimethyl ether, diethyl ether, diisopropyl ether, tert-butyl ether, and n-butyl ether. And ethers such as methyl acetate and ethyl acetate. These organic solvents can be used alone or in admixture of two or more. In addition, when performing esterification reaction with a high conversion rate, it is desirable that the amount of water contained in the organic solvent is small, preferably 1.0% by weight or less, more preferably 0.5% by weight or less.
  • the concentration of the reaction substrate, N-substituted-indoline-2-carboxylic acid, in the reaction solution is preferably 0.5 to 20% by weight, more preferably 1 to 10% by weight.
  • the molar ratio of alcohol to N-substituted-indoline-2-carboxylic acid is preferably 1 to 10 times mol, more preferably 1 to 5 times mol.
  • the esterification reaction is not limited to a batch type or a continuous type, and the reaction can be performed in any type.
  • the activity of the biocatalyst varies depending on the production lot, and the activity may vary depending on the form.
  • the amount of lipase used can be appropriately determined according to the activity of the lipase used so as to match the target reaction yield and reaction time.
  • the biocatalyst Since the biocatalyst has a temperature range suitable for the reaction, it is necessary to select a suitable reaction temperature according to the biocatalyst to be used and the reaction solution composition.
  • a preferable reaction temperature range in the present invention is 30 to 90 ° C. When the reaction temperature is lower than 30 ° C, a sufficient reaction rate cannot be obtained. When the reaction temperature is higher than 90 ° C, biocatalytic activity decreases due to thermal denaturation and the reaction rate decreases. So it will be disadvantageous. In general, heat resistance can be imparted by immobilizing a biocatalyst on a carrier, which is useful for increasing the reaction rate.
  • optically active N-substituted-indoline-2-carboxylic acid ester and non-esterified optically active N-substituted-indoline-2-carboxylic acid can be separated by extraction separation using an organic solvent. That is, when optically active N-substituted-indoline-2-carboxylic acid is converted to an alkali metal salt such as sodium, the solubility in organic solvents decreases and the solubility in water increases.
  • an optically active N-substituted-indoline-2-carboxylic acid that has not been stereoselectively esterified can be obtained by adding an aqueous sodium carbonate solution to the reaction solution after completion of the stereoselective esterification reaction. Can be transferred to the aqueous layer in the form of a sodium salt and can be separated from the stereoselectively esterified optically active N-substituted-indoline-2-carboxylic acid ester present in the organic solvent layer.
  • the optically active N-substituted-indoline-2-carboxylic acid ester of the organic solvent layer can be isolated by distilling off the organic solvent.
  • the optically active N-substituted-indoline-2-carboxylic acid sodium salt present in the aqueous layer can be obtained as an optically active N-substituted-indoline-2-carboxylic acid by treating with an aqueous acid solution such as hydrochloric acid. It can also be purified if necessary.
  • optically active N-substituted-indoline-2-carboxylic acid ester is heated and hydrolyzed in an aqueous alkali solution such as sodium hydroxide, so that the optically active N-substituted-indoline-2-carboxylic acid ester is obtained without racemization. It can be obtained as an acid.
  • an aqueous alkali solution such as sodium hydroxide
  • Optically active N-substituted-indoline-2-carboxylic acid can be obtained as optically active indoline-2-carboxylic acid without racemization by removing the substituent by a known method.
  • the formyl substituent is reacted with sodium hydroxide
  • the acetyl substituent is reacted with hydrochloric acid
  • the methoxycarbonyl substituent is reacted with trifluoroacetic acid
  • the tert-butoxycarbonyl substituent is reacted with trifluoroacetic acid.
  • the optically active indoline-2-carboxylic acid ester can be obtained by removing the substituent of the optically active N-substituted-indoline-2-carboxylic acid ester.
  • a biocatalyst having stereoselectivity using N-substituted-indoline-2-carboxylic acid as a substrate in which a substituent is introduced into the nitrogen atom of indoline-2-carboxylic acid instead of indoline-2-carboxylic acid By carrying out the reaction, it becomes possible to produce optically active indoline-2-carboxylic acids and derivatives thereof excellent in target chemical purity and optical purity in high yield.
  • the optically active indoline-2-carboxylic acid obtained by subjecting the optically active indoline-2-carboxylic acid obtained in the above step (D) or (E) of the present invention to an ester reaction or an N-substitution reaction is further provided.
  • An acid ester, an optically active N-substituted-indoline-2-carboxylic acid ester, an optically active N-substituted-indoline-2-carboxylic acid or a salt thereof can also be obtained.
  • Example 1 Production of (S) -indoline-2-carboxylic acid and (R) -indoline-2-carboxylic acid from indoline-2-carboxylic acid Production of (S) -N-acetylindoline-2-carboxylic acid methyl ester and (R) -N-acetylindoline-2-carboxylic acid An acetyl group is introduced into the nitrogen atom of racemic indoline-2-carboxylic acid.
  • Racemic N-acetylindoline-2-carboxylic acid 3 g, n-butyl ether 54 g, methanol 1.5 g, immobilized lipase CHIRAZYME, L-21, cf, C2, 1.5 g as a biocatalyst Was added to a 200 ml autoclave and allowed to react under stirring conditions of 80 ° C. and 120 rpm for 24 hours.
  • the reaction solution was analyzed by HPLC, the conversion rate of N-acetylindoline-2-carboxylic acid in the raw material to (S) -N-acetylindoline-2-carboxylic acid methyl ester was 45.7%, and the optical purity was 98. 0.8% ee.
  • Example 2 0.20 g of racemic N-tert-butoxycarbonylindoline-2-carboxylic acid obtained by introducing a tert-butoxycarbonyl group into the nitrogen atom of racemic indoline-2-carboxylic acid, 30 g of isopropyl ether, methanol 0.20 g, CHIRAZYME, L-2, cf, C2, and 0.2 g were added to a 100 ml glass vial, and the mixture was allowed to react by shaking at 150 rpm in an 80 ° C. water bath for 24 hours.
  • Example 3 100 ml glass of 0.2 g of racemic N-acetylindoline-2-carboxylic acid, 30 g of isopropyl ether, 0.2 g of ethanol, CHIRAZYMEL-2, cf, C2, 0.2 g obtained in the same manner as in Example 1. In addition to the vial, it was shaken at 150 rpm in an 80 ° C. water bath for 24 hours. When the reaction solution was analyzed by HPLC, (S) -N-acetylindoline-2-carboxylic acid ethyl ester having an optical purity of 99% ee was obtained at a conversion rate of 20.9%.
  • the present invention is useful for producing optically active indoline-2-carboxylic acids and derivatives thereof useful as synthetic raw materials for pharmaceuticals with high purity and high efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Analytical Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Indole Compounds (AREA)

Abstract

【課題】インドリン-2-カルボン酸から、医薬品の合成原料等として有用な光学活性インドリン-2-カルボン酸類およびその誘導体を工業的に有利に製造する方法を提供する。 【解決手段】インドリン-2-カルボン酸をN-置換-インドリン-2-カルボン酸に変換した後、アルコールを含む有機溶媒中で立体選択性を有する生体触媒を用いてエステル化する。次いで、アルカリを用いて光学活性N-置換-インドリン-2-カルボン酸エステルと光学活性N-置換-インドリン-2-カルボン酸またはその塩となした後、有機溶媒/水系における分配特性を利用して両光学活性体を分離する。さらに両物質を加水分解や脱保護処理することによって、医薬品の合成原料等として有用な光学活性インドリン-2-カルボン酸類またはその誘導体を経済的に製造し提供することが可能となる。

Description

光学活性インドリン-2-カルボン酸類またはその誘導体の製造方法
 本発明は、医薬品の合成原料等として有用な光学活性インドリン-2-カルボン酸類およびその誘導体の効率的な製造方法に関する。即ち、詳しくは、式(1)に示すインドリン-2-カルボン酸から、化学的純度および光学的純度ともに優れた光学活性インドリン-2-カルボン酸、光学活性インドリン-2-カルボン酸エステル、光学活性N-置換-インドリン-2-カルボン酸、または光学活性N-置換-インドリン-2-カルボン酸エステルを高い収率で製造する方法に関する。これらの光学活性インドリン-2-カルボン酸類およびその誘導体は、光学活性を必要とする医薬品等の合成原料として大変重要である。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
(ただし、式中の置換基Rはホルミル基、アセチル基、メトキシカルボニル基、tert-ブトキシカルボニル基、またはベンジルオキシカルボニル基を示す。)
 光学活性インドリン-2-カルボン酸の合成法としては、(1)生体触媒を用いて不斉選択的に光学活性インドリン-2-カルボン酸エステルを加水分解する方法(例えば、非特許文献1参照)、(2)光学活性アミンを用いたジアステレオマー法で光学分割する方法(例えば、特許文献1、2参照)、(3)不斉配位子を用いた合成法(例えば、非特許文献2参照)がある。(1)は、水系で反応させたものであり反応速度が遅く反応収率が低い。(2)は光学分割剤として使用する光学活性アミンが高価であり、さらにアミンの回収精製工程が煩雑であり、工業化の際に問題となる。(3)はまだ研究段階の方法であり、使用する配位子量が多い、配位子の製造方法が煩雑であるなど多くの問題点を有する。
特開2004-182670号公報 特開平11-292844号公報 Takashi Sugai,et al.,Bull.Chem.Jpn.,77,1021-1025(2004) Yoshihiko Ito,et al.,J.Am.Chem.Soc.,122,7614-7615(2005)
 本発明の目的は、従来技術の上記したような課題を解決し、簡便で工業的に有利な光学活性インドリン-2-カルボン酸類およびその誘導体の製造方法を提供することにある。
 本発明者等は、かかる課題を解決するため鋭意検討重ね、本発明に到達した。すなわち、式(1)に示すインドリン-2-カルボン酸をその窒素部位に置換基を導入した式(2)に示すN-置換-インドリン-2-カルボン酸に変換した後、該化合物を基質に用い、アルコールを含む有機溶媒中、立体選択性を有する生体触媒を用いて反応させることにより、式(1)に示すインドリン-2-カルボン酸をそのまま基質として用いた場合よりも極めて高い立体選択性でインドリン-2-カルボン酸のカルボキシル基を収率よくエステル化できること、また、得られた光学活性N-置換-インドリン-2-カルボン酸エステルと、もう一方のエナンチオマーの関係にあった光学活性N-置換-インドリン-2-カルボン酸の塩との有機溶媒層/水層間での分配が、光学活性インドリン-2-カルボン酸エステルと光学活性インドリン-2-カルボン酸の塩の場合に比較してより分かれ易くなるため、光学活性体を容易に分離できるようになること、および得られた光学活性N-置換-インドリン-2-カルボン酸エステルと光学活性N-置換-インドリン-2-カルボン酸(塩)を、加水分解や脱保護処理することによって、光学純度を低下させることなく高収率で、光学活性インドリン-2-カルボン酸(塩)若しくは光学活性N-置換-インドリン-2-カルボン酸(塩)からなる光学活性インドリン-2-カルボン酸類に、または、光学活性インドリン-2-カルボン酸エステル若しくは光学活性N-置換-インドリン-2-カルボン酸エステルからなる光学活性インドリン-2-カルボン酸誘導体となすことができることを見出し、本発明を完成するに至った。
 即ち、本発明は、下記の1~10に示す、式(1)に示すインドリン-2-カルボン酸からの品質および収率的に優れた光学活性インドリン-2-カルボン酸類またはその誘導体の製造方法に関する。
1.式(1)に示すインドリン-2-カルボン酸から、光学活性インドリン-2-カルボン酸類またはその誘導体を製造する方法であって、下記工程(A)~(B)、下記工程(A)~(C)、下記工程(A)~(D)、または、下記工程(A)、(B)および(E)を有することを特徴とする方法。
工程(A):式(1)に示すインドリン-2-カルボン酸を式(2)に示すN-置換-インドリン-2-カルボン酸に変換した後、アルコールを含む有機溶媒中で、立体選択性を有する生体触媒を用いてエステル化し、光学活性N-置換-インドリン-2-カルボン酸エステルと、エステル化されなかったもう一方のエナンチオマーの関係にあった光学活性N-置換-インドリン-2-カルボン酸を含む組成物を得る工程。
工程(B):工程(A)で得られた組成物を有機溶媒、塩基性物質、および水存在下に混合し二層分離させた後、光学活性N-置換-インドリン-2-カルボン酸エステルを含む有機溶媒層と、光学活性N-置換-インドリン-2-カルボン酸またはその塩を含む水層を分取する工程。
工程(C):工程(B)で分取した有機溶媒層より得られた光学活性N-置換-インドリン-2-カルボン酸エステルを加水分解して光学活性N-置換-インドリン-2-カルボン酸を得る工程。
工程(D):工程(C)で得られた光学活性N-置換-インドリン-2-カルボン酸のN-置換基を脱保護して光学活性インドリン-2-カルボン酸を得る工程。
工程(E):工程(B)で分取した水層より得られた光学活性N-置換-インドリン-2-カルボン酸またはその塩のN-置換基を脱保護して、光学活性インドリン-2-カルボン酸を得る工程。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
(ただし、式中の置換基Rはホルミル基、アセチル基、メトキシカルボニル基、tert-ブトキシカルボニル基、またはベンジルオキシカルボニル基を示す。)
2.立体選択性を有する生体触媒がエステル加水分解酵素である、1に記載の光学活性インドリン-2-カルボン酸類またはその誘導体の製造方法。
3.エステル加水分解酵素がリパーゼである、2に記載の光学活性インドリン-2-カルボン酸類またはその誘導体の製造方法。
4.リパーゼがキャンディダ属に属する酵母由来のものである、3に記載の光学活性インドリン-2-カルボン酸類またはその誘導体の製造方法。
5.アルコールが1級または2級のアルコールである、1に記載の光学活性インドリン-2-カルボン酸類またはその誘導体の製造方法。
6.1級または2級アルコールが、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-1-プロパノール、1-ペンタノール、2-ペンタノール、および3-ペンタノールからなる群より選ばれた一つ以上である、5に記載の光学活性インドリン-2-カルボン酸類またはその誘導体の製造方法。
7.アルコールがメタノールである、5に記載の光学活性インドリン-2-カルボン酸類またはその誘導体の製造方法。
8.有機溶媒がジイソプロピルエーテル、n-ブチルエーテル、および酢酸エチルからなる群より選ばれた一種以上である、1に記載の光学活性インドリン-2-カルボン酸類またはその誘導体の製造方法。
9.工程(D)または(E)で得られた光学活性インドリン-2-カルボン酸またはその塩をさらにエステル反応またはN-置換反応に供する工程を備えてなる、1に記載の光学活性インドリン-2-カルボン酸類またはその誘導体の製造方法。
10.光学活性インドリン-2-カルボン酸誘導体が、光学活性インドリン-2-カルボン酸エステル、または光学活性N-置換-インドリン-2-カルボン酸エステルである、1乃至9の何れか1項に記載の光学活性インドリン-2-カルボン酸類またはその誘導体の製造方法。
 本発明によれば、医薬品の合成原料等として有用な、化学的純度および光学的純度ともに優れた光学活性インドリン-2-カルボン酸類およびその誘導体を効率的に製造することが可能となる。
 以下、本発明を詳細に説明する。
 本発明においては、式(1)で示すインドリン-2-カルボン酸の窒素部位に置換基Rを導入した式(2)で示すN-置換-インドリン-2-カルボン酸を用いる。このように、反応基質としてN-置換-インドリン-2-カルボン酸に変換させた物質を用いることによって、生体触媒を用いた立体選択的なエステル化反応が極めて高い選択率および収率で進行するようになる。
 インドリン-2-カルボン酸の窒素部位に導入する置換基Rとしては、ホルミル基、アセチル基、メトキシカルボニル基、tert-ブトキシカルボニル基、またはベンジルオキシカルボニル基が好ましく、アセチル基が特に好ましい。
 置換基Rの窒素部位への導入方法としては、塩基性条件下、無水酢酸、塩化ベンジルオキシカルボニル、ジ-tert-ブチルカーボネート等を用いる方法が一般的に良く知られている。例えば、ホルミル置換体は蟻酸と反応させることで、アセチル置換体は無水酢酸と反応させることで、メトキシカルボニル置換体はクロロ蟻酸メチルと反応させることで、tert-ブトキシカルボニル置換体はジ-tert-ブチルジカルボネートと反応させることで、ベンジルオキシカルボニル置換体はクロロ蟻酸ベンジルと反応させることでそれぞれ容易に取得することが可能である。
 なお、医薬品合成においては、反応性に富んだ窒素部位やカルボキシル基を保護した上で使用することが多いので、本発明の上記工程(B)で得られた光学活性N-置換-インドリン-2-カルボン酸エステルや本発明の上記工程(B)または(C)で得られた光学活性N-置換-インドリン-2-カルボン酸またはその塩を医薬品の合成原料等として利用することもできる。
 本発明で使用される生体触媒としては、アルコールを含む有機溶媒中で、N-置換-インドリン-2-カルボン酸のどちらか一方のエナンチオマーを立体選択的にエステル化する能力を有するものであれば良く、特に由来は限定されない。このような能力を有する生体触媒としては、エステル加水分解酵素、例えば、微生物由来のリパーゼ、即ち、例えば、キャンディダ属、アスペルギルス属、アルカリゲネス属、またはシュードモナス属等に属する微生物由来のものを挙げることができ、中でも、キャンディダ属に属する酵母由来のリパーゼ、特にキャンディダ アンタルクティカ(Candida antarctica)が産生するリパーゼをその好適な例として挙げることができる。なお、リパーゼの形態は特に限定されず、リパーゼを含有する微生物細胞、リパーゼ自体、担体に固定化した固定化リパーゼ等を用いることができる。
 本発明に用いられる有機溶媒中のアルコールとしては、1級または2級のアルコールが挙げられ、具体的にはメタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-1-プロパノール、1-ペンタノール、2-ペンタノール、または3-ペンタノールが用いられる。中でも好ましいのはメタノール、エタノールであり、より好ましくはメタノールである。
 本発明で用いられる有機溶媒としては、生体触媒を用いた本反応を阻害せず、基質であるN-置換-インドリン-2-カルボン酸および生成物である光学活性N-置換-インドリン-2-カルボン酸エステルをよく溶解し、水と層分離し、かつ適度な沸点を有するものが好ましい。このような溶媒としてはn-ヘキサン、n-ヘプタン、イソオクタンなどの脂肪族炭化水素類、ベンゼン、トルエンなどの芳香族炭化水素類、ジメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、tert-ブチルエーテル、n-ブチルエーテルなどのエーテル類、酢酸メチル、酢酸エチルなどのエステル類が挙げられる。これら有機溶媒は単独でまたは二種類以上を混合して用いることができる。なお、転化率よくエステル化反応を行う上で、有機溶媒中に含まれる水分は少ないことが望ましく、好ましくは1.0重量%以下、より好ましくは0.5重量%以下であることが望ましい。
 反応基質であるN-置換-インドリン-2-カルボン酸の反応液中の濃度は、0.5~20重量%が好ましく、1~10重量%がより好ましい。なお、N-置換-インドリン-2-カルボン酸に対するアルコールのモル比は、1~10倍モルが好ましく、1~5倍モルがより好ましい。また、本エステル化反応は回分式、連続式といった反応形式に制限は無く、何れの形式でも反応を行うことが可能である。
 ところで、生体触媒は製造ロットごとに活性が異なり、なお且つその形態によっても活性が異なることがある。リパーゼの使用量は、使用するリパーゼの活性に応じて、目標とする反応収率と反応時間に適合するように適宜決めることができる。
 生体触媒には反応に適した温度範囲があるため、使用する生体触媒および反応液組成に応じ好適な反応温度を選ぶ必要がある。本発明における好ましい反応温度範囲は30~90℃であり、反応温度が30℃を下回ると十分な反応速度が得られず、90℃を上回ると熱変性により生体触媒活性が低下し反応速度が落ちるので不利となる。なお、一般的に生体触媒を担体に固定化することによって耐熱性を付与することができるので、反応速度を高めるうえで有用である。
 得られた光学活性N-置換-インドリン-2-カルボン酸エステルとエステル化されなかった光学活性N-置換-インドリン-2-カルボン酸は有機溶媒を用いた抽出分離による分離が可能である。即ち、光学活性N-置換-インドリン-2-カルボン酸はナトリウム等のアルカリ金属塩にすると有機溶媒に対する溶解度が低下し,水に対する溶解度が高くなる。この性質を利用して、立体選択的なエステル化反応終了後の反応液に炭酸ナトリウム水溶液などを添加すれば、立体選択的にエステル化されなかった光学活性N-置換-インドリン-2-カルボン酸のみをナトリウム塩の形で水層へ移すことができ、有機溶媒層に存在する立体選択的にエステル化された光学活性N-置換-インドリン-2-カルボン酸エステルと分離することができる。
 有機溶媒層の光学活性N-置換-インドリン-2-カルボン酸エステルは、有機溶媒を留去することによって単離することが可能である。また、水層に存在する光学活性N-置換-インドリン-2-カルボン酸のナトリウム塩は、塩酸などの酸水溶液で処理することで光学活性N-置換-インドリン-2-カルボン酸として得ることができ、また必要に応じて精製することも可能である。
 得られた光学活性N-置換-インドリン-2-カルボン酸エステルは水酸化ナトリウムなどのアルカリ水溶液中で加熱し加水分解することによって、ラセミ化することなく光学活性N-置換-インドリン-2-カルボン酸として得ることができる。
 光学活性N-置換-インドリン-2-カルボン酸は公知の方法により置換基を外すことで、ラセミ化することなく光学活性インドリン-2-カルボン酸として得ることが出来る。例えば、ホルミル置換体は水酸化ナトリウムと反応させることで、アセチル置換体は塩酸と反応させることで、メトキシカルボニル置換体はトリフルオロ酢酸と反応させることで、tert-ブトキシカルボニル置換体はトリフルオロ酢酸と反応させることで、ベンジルオキシカルボニル置換体は接触水素化することで、それぞれ容易に置換基を外すことが出来る。なお、光学活性N-置換-インドリン-2-カルボン酸エステルの置換基を外すことによって光学活性インドリン-2-カルボン酸エステルを得ることが出来る。
 このように、インドリン-2-カルボン酸に換えてインドリン-2-カルボン酸の窒素原子に置換基を導入したN-置換-インドリン-2-カルボン酸を基質に用いて立体選択性を有する生体触媒反応を行うことによって、目的とする化学純度および光学純度に優れた光学活性インドリン-2-カルボン酸類およびその誘導体を高収率で製造することが可能となる。
 なお、本発明の上記工程(D)または(E)で得られた光学活性インドリン-2-カルボン酸をさらにエステル反応またはN-置換反応に供する工程に供することにより、光学活性インドリン-2-カルボン酸エステル、光学活性N-置換-インドリン-2-カルボン酸エステル、光学活性N-置換-インドリン-2-カルボン酸またはその塩などを得ることもできる。
 以下、実施例および比較例をもって本発明をさらに詳しく説明するが、本発明はこれらの例に限定されるものではない。
 なお、光学活性N-置換-インドリン-2-カルボン酸エステル、光学活性N-置換-インドリン-2-カルボン酸等の光学純度は高速液体クロマトグラフィー(HPLC)により測定した。また、立体選択性を有する生体触媒としては、キャンディダ アンタルクティカ(Candida antarctica)由来のリパーゼを担体に固定化したCHIRAZYME L-2,c-f,C2(ロシュ・ダイアグノスティックス社製)を用いた。
実施例1
インドリン-2-カルボン酸からの(S)-インドリン-2-カルボン酸および(R)-インドリン-2-カルボン酸の製造
1.(S)-N-アセチルインドリン-2-カルボン酸メチルエステル、および(R)-N-アセチルインドリン-2-カルボン酸の製造
 ラセミ体のインドリン-2-カルボン酸の窒素原子にアセチル基を導入することによって得られたラセミ体のN-アセチルインドリン-2-カルボン酸3g、n-ブチルエーテル54g、メタノール1.5g、生体触媒として固定化リパーゼCHIRAZYME,L-21,c-f,C2、1.5gを200mlオートクレーブに加え、80℃、120rpmの攪拌条件下で24時間反応させた。反応液をHPLCで分析すると、原料中のN-アセチルインドリン-2-カルボン酸の(S)-N-アセチルインドリン-2-カルボン酸メチルエステルへの転化率は45.7%、光学純度は98.8%eeであった。一方、未反応の(R)-N-アセチルインドリン-2-カルボン酸の光学純度は83.0%eeであった。
2.(S)-N-アセチルインドリン-2-カルボン酸メチルエステルと(R)-N-アセチルインドリン-2-カルボン酸の分離
 上記反応液にメタノール10mlを添加して、析出している未反応の(R)-N-アセチルインドリン-2-カルボン酸を溶解させた後、上記固定化生体触媒を濾別した。濾液中のメタノール、n-ブチルエーテルをロータリーエバポレータにて浴温90℃で減圧下に留去した後、得られた結晶に、酢酸エチル50mlと3%炭酸水素ナトリウム水溶液50mlを添加し、(S)-N-アセチルインドリン-2-カルボン酸メチルエステルを有機層に、(R)-N-アセチルインドリン-2-カルボン酸ナトリウム塩を水層に抽出した。次いで、分取した有機層の酢酸エチルをロータリーエバポレータにて浴温60℃で減圧下に留去し、光学純度98.9%eeの(S)-N-アセチルインドリン-2-カルボン酸メチルエステル1.45g(収率99.0%)を取得した。一方、分取した水層を3M塩酸水溶液で中和し、析出した結晶を濾別することで、光学純度83.1%eeの(R)-N-アセチルインドリン-2-カルボン酸1.47g(収率90.2%)を得た。
3.(S)-N-アセチルインドリン-2-カルボン酸の製造
 上記2のようにして取得した(S)-N-アセチルインドリン-2-カルボン酸メチルエステル3.0gを2.5Mの水酸化ナトリウム水溶液12mlに溶解し、Ar雰囲気、80℃で4時間撹拌した。冷却後、反応液を3M 塩酸水溶液12mlで中和処理し、析出した結晶を濾別、乾燥することで、光学純度99.0%eeの(S)-N-アセチルインドリン-2-カルボン酸2.26g(収率80.5%)を得た。
4.(S)-インドリン-2-カルボン酸の製造
 上記3のようにして取得した(S)-N-アセチルインドリン-2-カルボン酸3.0gを3M塩酸水溶液10mlに溶解し、100℃で4時間撹拌してアセチル基を外した。冷却後、反応液を50%水酸化ナトリウム水溶液でpH5.0に調整し、析出した結晶を濾別後、乾燥することで、光学純度99.9%ee以上の(S)-インドリン-2カルボン酸1.86g(収率78.0%)を得た。
5.(R)-インドリン-2-カルボン酸の製造
 上記2のようにして取得した(R)-N-アセチルインドリン-2-カルボン酸3.0gを3M塩酸水溶液10mlに溶解し、100℃で4時間撹拌してアセチル基を外した。冷却後、反応液を50%水酸化ナトリウム水溶液でpH5.0に調整し、析出した結晶を濾別後、乾燥することで、光学純度86.0%eeの(R)-インドリン-2カルボン酸1.86g(収率78.0%)を得た。
実施例2
 ラセミ体のインドリン-2-カルボン酸の窒素原子にtert-ブトキシカルボニル基を導入することによって得られたラセミ体のN-tert-ブトキシカルボニルインドリン-2-カルボン酸0.20g、イソプロピルエーテル30g、メタノール0.20g、CHIRAZYME,L-2,c-f,C2、0.2gを100mlガラスバイアル加えて80℃の湯浴で24時間、150rpmで振盪し反応させた。反応液をHPLCで分析すると光学純度は99%eeの(S)-N-tert-ブトキシカルボニルインドリン-2-カルボン酸メチルエステルが転化率47.4%で得られた。
 次いで、実施例1の2から4の方法と同様にしてN-置換基およびエステル基の脱離を行った結果、(S)-N-tert-ブトキシカルボニルインドリン-2-カルボン酸メチルエステルから収率61.5%で光学純度99.9%以上の(S)-インドリン-2-カルボン酸が得られた。
比較例1
 ラセミ体のインドリン-2-カルボン酸20mg、n-ブチルエーテル1g、メタノール20mg、CHIRAZYME,L-2,c-f,C2、20mgを50mlガラスバイアルに加えて40℃の湯浴で2時間、150rpmで振盪した。反応液をHPLCで分析すると(S)-インドリン-2-カルボン酸が転化率38.1%で、(R)-インドリン-2-カルボン酸が転化率22.9%でメチルエステルとなった。生成した(S)-インドリン-2-カルボン酸メチルエステルの光学純度は25.0%eeと低値となった。
実施例3
 実施例1と同様にして得たラセミ体のN-アセチルインドリン-2-カルボン酸0.2g、イソプロピルエーテル30g、エタノール0.2g、CHIRAZYMEL-2,c-f,C2、0.2gを100mlガラスバイアルに加えて、80℃の湯浴で24時間、150rpmで振盪した。反応液をHPLCで分析すると、光学純度99%eeの(S)-N-アセチルインドリン-2-カルボン酸エチルエステルが転化率20.9%で得られた。
 次いで、実施例1の2から4の方法と同様にしてN-置換基およびエステル基の脱離を行った結果、(S)-N-アセチルインドリン-2-カルボン酸エチルエステルから収率60.8%で光学純度99.9%以上の(S)-インドリン-2-カルボン酸が得られた。
比較例2
 ラセミ体のインドリン-2-カルボン酸20mg、イソプロピルエーテル1.0g、エタノール20mg、CHIRAZYME,L-2,c-f,C2、20mgを50mlガラスバイアルに加えて40℃の湯浴で2時間、150rpmで振盪した。反応液をHPLCで分析すると(S)-インドリン-2-カルボン酸が転化率17.1%で、(R)-インドリン-2-カルボン酸が転化率10.2%でエチルエステルとなった。生成した(S)-インドリン-2-カルボン酸エチルエステルの光学純度は25.3%eeと低値となった。
 本発明は、医薬品の合成原料等として有用な光学活性インドリン-2-カルボン酸類およびその誘導体を高い純度および高い効率で製造するために有用である。

Claims (10)

  1.  式(1)に示すインドリン-2-カルボン酸から、光学活性インドリン-2-カルボン酸類またはその誘導体を製造する方法であって、下記工程(A)~(B)、下記工程(A)~(C)、下記工程(A)~(D)、または、下記工程(A)、(B)および(E)を有することを特徴とする方法。
    工程(A):式(1)に示すインドリン-2-カルボン酸を式(2)に示すN-置換-インドリン-2-カルボン酸に変換した後、アルコールを含む有機溶媒中で、立体選択性を有する生体触媒を用いてエステル化し、光学活性N-置換-インドリン-2-カルボン酸エステルと、エステル化されなかったもう一方のエナンチオマーの関係にあった光学活性N-置換-インドリン-2-カルボン酸を含む組成物を得る工程。
    工程(B):工程(A)で得られた組成物を有機溶媒、塩基性物質、および水存在下に混合し二層分離させた後、光学活性N-置換-インドリン-2-カルボン酸エステルを含む有機溶媒層と、光学活性N-置換-インドリン-2-カルボン酸またはその塩を含む水層を分取する工程。
    工程(C):工程(B)で分取した有機溶媒層より得られた光学活性N-置換-インドリン-2-カルボン酸エステルを加水分解して光学活性N-置換-インドリン-2-カルボン酸を得る工程。
    工程(D):工程(C)で得られた光学活性N-置換-インドリン-2-カルボン酸のN-置換基を脱保護して光学活性インドリン-2-カルボン酸を得る工程。
    工程(E):工程(B)で分取した水層より得られた光学活性N-置換-インドリン-2-カルボン酸またはその塩のN-置換基を脱保護して、光学活性インドリン-2-カルボン酸を得る工程。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    (ただし、式中の置換基Rはホルミル基、アセチル基、メトキシカルボニル基、tert-ブトキシカルボニル基、またはベンジルオキシカルボニル基を示す。)
  2.  立体選択性を有する生体触媒がエステル加水分解酵素である、請求項1に記載の光学活性インドリン-2-カルボン酸類またはその誘導体の製造方法。
  3.  エステル加水分解酵素がリパーゼである、請求項2に記載の光学活性インドリン-2-カルボン酸類またはその誘導体の製造方法。
  4.  リパーゼがキャンディダ属に属する酵母由来のものである、請求項3に記載の光学活性インドリン-2-カルボン酸類またはその誘導体の製造方法。
  5.  アルコールが1級または2級のアルコールである、請求項1に記載の光学活性インドリン-2-カルボン酸類またはその誘導体の製造方法。
  6.  1級または2級アルコールが、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-1-プロパノール、1-ペンタノール、2-ペンタノール、および3-ペンタノールからなる群より選ばれた一つ以上である、請求項5に記載の光学活性インドリン-2-カルボン酸類またはその誘導体の製造方法。
  7.  アルコールがメタノールである、請求項5に記載の光学活性インドリン-2-カルボン酸類またはその誘導体の製造方法。
  8.  有機溶媒がジイソプロピルエーテル、n-ブチルエーテル、および酢酸エチルからなる群より選ばれた一種以上である、請求項1に記載の光学活性インドリン-2-カルボン酸類またはその誘導体の製造方法。
  9.  工程(D)または(E)で得られた光学活性インドリン-2-カルボン酸をさらにエステル反応またはN-置換反応に供する工程を備えてなる、請求項1に記載の光学活性インドリン-2-カルボン酸類またはその誘導体の製造方法。
  10.  光学活性インドリン-2-カルボン酸誘導体が、光学活性インドリン-2-カルボン酸エステル、または光学活性N-置換-インドリン-2-カルボン酸エステルである、請求項1乃至9の何れか1項に記載の光学活性インドリン-2-カルボン酸類またはその誘導体の製造方法。
PCT/JP2009/051957 2008-02-06 2009-02-05 光学活性インドリン-2-カルボン酸類またはその誘導体の製造方法 WO2009099140A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09707649A EP2251431A4 (en) 2008-02-06 2009-02-05 PROCESS FOR PRODUCING OPTICALLY ACTIVE INDOLINE-2-CARBOXYLIC ACID OR A DERIVATIVE THEREOF
JP2009552511A JP5093248B2 (ja) 2008-02-06 2009-02-05 光学活性インドリン−2−カルボン酸類またはその誘導体の製造方法
CN200980104417XA CN101939444A (zh) 2008-02-06 2009-02-05 光学活性二氢吲哚-2-羧酸或其衍生物的制备方法
US12/866,006 US20100330625A1 (en) 2008-02-06 2009-02-05 Process for production of optically active indoline-2-carboxylic acid or derivative thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008026115 2008-02-06
JP2008-026115 2008-02-06

Publications (1)

Publication Number Publication Date
WO2009099140A1 true WO2009099140A1 (ja) 2009-08-13

Family

ID=40952213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051957 WO2009099140A1 (ja) 2008-02-06 2009-02-05 光学活性インドリン-2-カルボン酸類またはその誘導体の製造方法

Country Status (5)

Country Link
US (1) US20100330625A1 (ja)
EP (1) EP2251431A4 (ja)
JP (1) JP5093248B2 (ja)
CN (1) CN101939444A (ja)
WO (1) WO2009099140A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022511911A (ja) * 2018-12-10 2022-02-01 華南理工大学 酵素によるキラル化合物の分割方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110452950A (zh) * 2019-07-15 2019-11-15 江苏永达药业有限公司 一种群多普利中间体的消旋体的拆分方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11292844A (ja) 1998-02-13 1999-10-26 Dsm Nv 光学的に活性なインドリン―2―カルボン酸またはその誘導体の製造法
JP2004182670A (ja) 2002-12-05 2004-07-02 Toray Ind Inc 光学活性1−保護インドリン−2−カルボン酸誘導体の製造方法および光学活性インドリン−2−カルボン酸誘導体の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6192595A (ja) * 1984-10-09 1986-05-10 Kanegafuchi Chem Ind Co Ltd 光学分割によるインドリン−2−カルボン酸の製造方法
EP0197474B1 (en) * 1985-04-01 1991-07-10 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Process for preparing optically active indoline-2-carboxylic acid
DE3727411A1 (de) * 1986-08-19 1988-03-24 Ciba Geigy Ag Verfahren zur herstellung von 2-indolincarbonsaeure
DK306189D0 (da) * 1989-06-21 1989-06-21 Novo Nordisk As Immobiliseret lipasepraeparat og anvendelse deraf til estersyntese

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11292844A (ja) 1998-02-13 1999-10-26 Dsm Nv 光学的に活性なインドリン―2―カルボン酸またはその誘導体の製造法
JP2004182670A (ja) 2002-12-05 2004-07-02 Toray Ind Inc 光学活性1−保護インドリン−2−カルボン酸誘導体の製造方法および光学活性インドリン−2−カルボン酸誘導体の製造方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
KUROKAWA M ET AL.: "Both Enantiomers of N-Boc- indoline-2-carboxylic Esters", BULL. CHEM. SOC. JPN., vol. 77, no. 5, 2004, pages 1021 - 1025 *
RAMOS TOMBO GM ET AL.: "Application of Microbes and Microbial Esterases to the Preparation of Optically Active N-Acetylindoline-2-Carboxylic Acid", AGRIC. BIOL. CHEM., vol. 51, no. 7, 1987, pages 1833 - 1838 *
See also references of EP2251431A4 *
TAKASHI SUGAI ET AL., BULL. CHEM. JPN., vol. 77, 2004, pages 1021 - 1025
TAKEHISA OHASHI, CHIRAL TECHNOLOGY NO SHIN TENKAI, 2001, pages 251 *
YOSHIHIKO ITO ET AL., J. AM. CHEM. SOC., vol. 122, 2005, pages 7614 - 7615
ZHANG HY ET AL.: "Experimental optimization of enzymic kinetic resolution of racemic flurbiprofen", BIOTECHNOL. APPL. BIOCHEM., vol. 42, no. 1, 2005, pages 67 - 71 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022511911A (ja) * 2018-12-10 2022-02-01 華南理工大学 酵素によるキラル化合物の分割方法
JP7169025B2 (ja) 2018-12-10 2022-11-10 華南理工大学 酵素によるキラル化合物の分割方法

Also Published As

Publication number Publication date
JPWO2009099140A1 (ja) 2011-05-26
JP5093248B2 (ja) 2012-12-12
CN101939444A (zh) 2011-01-05
US20100330625A1 (en) 2010-12-30
EP2251431A1 (en) 2010-11-17
EP2251431A4 (en) 2011-06-08

Similar Documents

Publication Publication Date Title
JP2707076B2 (ja) 光学活性化合物の製造法
JP3010497B2 (ja) 光学活性α―ヒドロキシエステル類の製造方法
US20130095535A1 (en) Enzymatic resolution of racemic (2r,s)-2-(acetylamino)-3-methoxy-n-(phenylmethyl)propanamide
JP5093248B2 (ja) 光学活性インドリン−2−カルボン酸類またはその誘導体の製造方法
WO2004108944A1 (ja) 光学活性クロマンカルボン酸エステルの製造方法
JP5266875B2 (ja) 有機カルボン酸エステルからの光学活性有機カルボン酸の製造方法
JP5092466B2 (ja) 光学活性ピペコリン酸またはその誘導体の製造方法。
JP5092465B2 (ja) ピペコリン酸の立体選択的なエステル化方法
CN1928102B (zh) 一种拆分β-氨基酸的方法
JP3704731B2 (ja) 光学活性3−ヒドロキシヘキサン酸類の製造方法
CN112195203B (zh) 一种酶法合成(s)-2-氨基丁酰胺的方法
WO2003042393A1 (en) Enzymatic preparation of mycophenolate mofetil
JP4720132B2 (ja) 光学活性なn−保護−オクタヒドロ−1h−インドール−2−カルボン酸の製造方法
EP1536017B1 (en) Process for producing optically active octahydro-1H-indole-2-carboxylic acid
CN106520857A (zh) 一种酶法合成氨曲南的方法
JP3010382B2 (ja) (r)−2−プロポキシベンゼン誘導体の製造法
JP2007117034A (ja) 光学活性ニペコチン酸化合物の製造方法
CN106636292B (zh) (1r,4s)-(-)-2-氮杂双环[2.2.1]庚-5-烯-3-酮的制备方法
JP2002253293A (ja) 光学活性L−tert−ロイシンの製造法
JP4257975B2 (ja) 光学活性アミノインダノール類及びアミノテトラリノール類の製造法
JP4544385B2 (ja) 光学活性2,6−ジアミノヘプタン酸の製造法
JP4461642B2 (ja) 光学活性トランス−2−オキソ−4−オキサゾリジンカルボン酸及びエステル類の製造方法
WO2006009338A1 (en) Process for preparing chiral substituted carboxylic acid
JPH11313695A (ja) 光学活性3,3,3−トリフルオロ−2−ヒドロキシ−2−メチルプロピオン酸の製造方法
JP2010505417A (ja) (3)−アミノ−3−アリールプロピオン酸エステルのn−非保護(r)−エステルの特異的加水分解

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980104417.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09707649

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009552511

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12866006

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009707649

Country of ref document: EP