WO2009079905A1 - A selective hydrogenation catalyst and the preparation thereof - Google Patents

A selective hydrogenation catalyst and the preparation thereof Download PDF

Info

Publication number
WO2009079905A1
WO2009079905A1 PCT/CN2008/001780 CN2008001780W WO2009079905A1 WO 2009079905 A1 WO2009079905 A1 WO 2009079905A1 CN 2008001780 W CN2008001780 W CN 2008001780W WO 2009079905 A1 WO2009079905 A1 WO 2009079905A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
catalyst
selective hydrogenation
alumina
cerium
Prior art date
Application number
PCT/CN2008/001780
Other languages
English (en)
French (fr)
Other versions
WO2009079905A8 (zh
Inventor
Shunqin Liang
Liming Sun
Longgang Lv
Ying Qian
Yundi Zheng
Jie Wu
Tinghai Wang
Xiaoyan Li
Original Assignee
Petrochina Company Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petrochina Company Limited filed Critical Petrochina Company Limited
Priority to KR1020107014866A priority Critical patent/KR101521673B1/ko
Priority to JP2010537232A priority patent/JP5298135B2/ja
Priority to EP08863972.9A priority patent/EP2233208B1/en
Priority to US12/747,865 priority patent/US8211823B2/en
Publication of WO2009079905A1 publication Critical patent/WO2009079905A1/zh
Publication of WO2009079905A8 publication Critical patent/WO2009079905A8/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/397
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0205Impregnation in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/10Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/32Selective hydrogenation of the diolefin or acetylene compounds
    • C10G45/34Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used
    • C10G45/40Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used containing platinum group metals or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J35/633
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline

Definitions

  • the invention relates to a selective hydrogenation catalyst and a preparation method thereof, which are suitable for selective hydrogenation of medium and low distillates, and are particularly suitable for a selective hydrogenation process for cracking gasoline fractions.
  • Pyrolysis gasoline is a by-product of ethylene production process, C S -200 ° C, its output is 50% ⁇ 80% of ethylene production capacity, and the aromatic content is up to 50%. It is an important aromatic resource, which contains highly unsaturated hydrocarbons. For example, diolefins, styrene, etc., are selectively hydrogenated to become the corresponding monoolefins, as a raw material for extracting aromatic hydrocarbons. In recent years, the ethylene industry has achieved unprecedented development, and the ethylene production capacity has increased year by year. The output of pyrolysis gasoline, which is an important by-product of ethylene, is bound to increase substantially.
  • the hydrogenation technology with pyrolysis gasoline hydrogenation catalyst as the core is an important branch in the hydrogenation field, occupying a pivotal position in the post-treatment of steam cracking ethylene technology.
  • the palladium-based catalyst has the advantages of low starting temperature, high hydrogenation activity, large amount of processing materials, and long catalyst life.
  • the water and arsenic content of the raw materials of some pyrolysis gasoline hydrogenation units exceeded the standard, the fractions were heavy, and the hydrogenation load was too large, resulting in poor stability of the existing catalysts in industrial operation, and catalyst life. short.
  • CN 200410061031 reports a palladium-alumina catalyst and a preparation method, which relates to a pre-coated with an appropriate amount of alkaline earth metal oxides, and calcined at high temperature A1 2 0 3 as the carrier is impregnated with a palladium content of 0.15 % ⁇ 0. 24°/. Made into a catalyst.
  • CN1175931C discloses a hydrogen peroxide-supported palladium-alumina catalyst for preparing a hydrogen peroxide and a preparation method thereof, which are related to pre-coating a suitable amount of rare earth oxide and calcining at a high temperature of 900 to 1000 ° C.
  • the catalyst is made up of a catalyst.
  • CN85100761A discloses a fiber-supported catalyst for cracking gasoline distillate selective hydrogenation of a diolefin, the invention being characterized in that the specific surface area of the crucible is 20 ⁇ 150m7g, pore volume 0. 1 ⁇ 0. 3ml / g of n-A1 2 0 3 porous fibrous carrier, the catalyst has high initial activity, but the pore volume is too small, when the raw material of the pyrolysis gasoline hydrogenation unit is colloidal, arsenic content, When the water content exceeds the standard, the pores on the catalyst are easily clogged and affect the hydrogenation stability of the catalyst.
  • An excellent selective hydrogenation catalyst not only has higher hydrogenation activity, better selectivity, but more importantly, has good stability, that is, the catalyst should have water and gel resistance. The ability to extend the life of the catalyst.
  • the object of the present invention is to provide a novel selective hydrogenation catalyst which is particularly suitable for pyrolysis gasoline and a preparation method thereof, which has strong water and anti-colloid properties, and also has a certain resistance to high load and Oil product change performance and high hydrogenation stability.
  • the selective hydrogenation catalyst of the invention comprises alumina as a carrier, and the active component metal palladium is supported on the alumina carrier, and the active component is distributed on the surface of the carrier in an eggshell type, characterized in that the catalyst is 100% by weight. , containing active component Pd 0.2 ⁇ 0.5wt%, auxiliary agent 2 ⁇ 8wt% ⁇ and/or ⁇ , 2 ⁇ 8wt°/O earth metal element, catalyst shell thickness 0.07 ⁇ 0.15mm, specific surface 70 ⁇ 150 m 2 /g, the pore volume is 0.3 ⁇ 0.6ml/g, and the crystal form of the carrier alumina is ⁇ -type or ⁇ -type mixed crystal form mainly composed of ⁇ type.
  • the catalyst of the invention is suitable for the selective hydrogenation of low and middle distillate dienes, and is particularly suitable for the selective hydrogenation of pyrolysis gasoline fractions.
  • the preparation process of the alumina carrier of the invention may be a common preparation method, such as: in the preparation process of the carrier, after kneading the alumina powder, water, etc., extruding the strip, drying at 40 to 120 ° C, baking at 300 to 600 V 4 to 6 hours.
  • the catalyst of the present invention is prepared by the most common impregnation method, that is, the addition of the active component is carried out by impregnation.
  • the invention also provides an optimum preparation method of the catalyst: the alkaline earth metal, lanthanum and/or cerium is preferably added before the palladium, especially before the formation of the twinned alumina or the ⁇ , ⁇ mixed crystal alumina. Well, this will better improve the pH and activity and stability of the carrier.
  • the invention also provides a specific preparation method of the catalyst: alkaline earth metal elements, strontium and/or Or a soluble salt such as nitrate, dissolved in water, immersed in a carrier, dried at 40 to 120 ° C, and calcined at 900 to 1100 ° C for 4 to 6 hours to obtain an alkaline earth metal element, cerium and/or lanthanum.
  • Twin crystal alumina carrier or ⁇ , ⁇ mixed crystal alumina carrier; metal palladium impregnation load is the same as ordinary shell catalyst impregnation technology: first use a liquid prepreg carrier that can be miscible with the impregnation solution, and then contain precious metal The salt solution of palladium is impregnated with the pre-impregnated twin crystal alumina carrier or the ⁇ , ⁇ mixed crystal alumina carrier, and the impregnated carrier is washed, dried, and calcined at 350 to 500 ° C for 2 to 4 hours to obtain a catalyst. Finished product.
  • the liquid used for the prepreg carrier which is miscible with the immersion liquid is most commonly used as deionized water.
  • the catalyst of the present invention may also be used in another preparation method: the soluble salt of the alkaline earth metal, the soluble salt of cerium and/or cerium is dissolved in water, added to the alumina powder, kneaded and extruded, and dried at 40 to 120 ° C. , calcined at 900 to 1100 ° C for 4 to 6 hours, and then impregnated with palladium. Palladium impregnation as described above, a general impregnation method can be used.
  • the catalyst of the present invention is not limited to the one obtained by the preparation methods exemplified herein.
  • the finished catalyst of the present invention can be used only by hydrogen reduction in the reactor.
  • the amount of the active component Pd in the catalyst of the present invention is 0. 2 ⁇ 0. 5wt%, preferably 0. 2 ⁇ 0. 4 wt%, too low catalyst hydrogenation activity is too low, too high catalyst initial activity is too high.
  • the invention can suppress the growth of A1 2 0 3 grains, increase the dispersion of Pd, enhance the alkalinity of the surface of the carrier, and improve the hydrogenation activity and stability of the catalyst by adding cerium and/or lanthanum to the catalyst.
  • the content of bismuth and/or bismuth is 2 ⁇ 8 W t°/ Q , preferably 2 ⁇ 6wt%, the effect of too low is not obvious, and the high activity affects the activity of the catalyst, which may be one or two, preferably cerium.
  • the high temperature calcination can adjust the surface acidity of the catalyst and improve the anti-colloidal property during the hydrogenation reaction of the catalyst.
  • the alkaline earth metal can be combined with ⁇ and / Or a synergistic effect with alumina, inhibiting the loss of the specific surface of the alumina carrier, and improving the thermal stability and chemical stability of the alumina carrier.
  • the alkaline earth metal content in the catalyst is 2 to 8 wt%, preferably 3 to 6 wt. %, too low effect is not obvious, too high influence catalyst activity, alkali
  • the earth metal may be Mg, Ba, Sr or the like, and may be one or more of them, preferably M g .
  • the catalyst of the present invention does not exclude other components, such as Ag, K, etc., in addition to the desired composition, and may be one or more of them, and the amount thereof is generally 0 to 2.0 wt%, preferably 0.4-1.7 wt%.
  • the carrier of the catalyst in the invention is a twin-crystal alumina or a ⁇ , ⁇ mixed crystal alumina mainly composed of ruthenium type, and the carrier has a suitable specific surface and a reasonable pore distribution, and has good activity and stability.
  • Other crystal alumina carriers When a 0, ⁇ mixed crystal alumina carrier mainly based on ruthenium type is used, it is preferable that the ⁇ crystal form is ⁇ 15%.
  • the specific surface is preferably 80 to 120 m 2 /g.
  • the A1 2 0 3 powder used in the catalyst carrier of the present invention may be a commercially available alumina powder such as A1 2 0 3 powder obtained by a nitric acid method or a carbon dioxide method.
  • the shape of the alumina carrier is not particularly limited in the present invention, and it may be a spherical shape, a extruded strip shape or the like.
  • Alumina powder Shandong Taiguang Co., Ltd.
  • Alumina carrier extruded strip
  • Comparative example 1 180ml of water, added to 300g of alumina powder, kneaded and extruded into strips, dried in air at 120 ° C, 54 (TC calcined for 4 hours, then 76.5g of magnesium nitrate dissolved in water, impregnated with the carrier, in the air The mixture was dried at 120 ° C and calcined at 1020 ° C for 4 hours to prepare an A1 2 0 3 carrier.
  • the catalyst preparation method was the same as in Example 1.
  • the catalyst preparation method was the same as in Example 1.
  • the catalyst preparation method was the same as in Example 1.
  • Comparative example 4 The granules of the granules of the granules of the granules of the granules of the granules of the granules of the granules of the granules of the granules of the granules of the granules of the granules of the granules of the granules of the granules of the granules of the granules of the granules of the granules of the granules of the granules of the granules of the granules of the granules of The immersion and the carrier were dried in air at 120 Torr and calcined at 850 ° C for 4 hours to obtain a ⁇ crystal form A1 2 0 3 carrier.
  • the catalyst preparation method was the same as in Example 2.
  • the product was selected from Shandong Taiguang Co., Ltd. for the medium and low enthalpy selective hydrogenation catalyst carrier, and calcined at 500 ° C for 4 hours, then 162.9 g of magnesium nitrate, 38.6 g of lanthanum nitrate, and 1.8 g of silver nitrate were dissolved in water.
  • the mixture was immersed in a carrier, dried at 120 C in air, and calcined at 1050 ° C for 4 hours to obtain a crystallization type A1 2 0 3 carrier.
  • Example 5 The 180ml of water, was added 300g of alumina powder, after forming the kneaded extruding, 120 ° C in air for drying, 560 ⁇ calcined for 4 hours and then 13. l g barium nitrate, 9. l g of strontium nitrate, 34. 5g The cerium nitrate was dissolved in water, immersed in a carrier, dried in air at 120 ° C, and calcined for 4 hours to obtain a crystallization type ⁇ 1 2 3 carrier.
  • cerium chloride powder having a palladium content of not less than 59%, and adding 200 ml of water, adding hydrochloric acid, dissolving and diluting to 590 ml with deionized water, adjusting the pH according to the required thickness of the shell; 0 kg of the finished carrier, the prepared palladium chloride solution was impregnated with the carrier, dried in air at 120 Torr, and calcined at 450 V for 4 hours to obtain a catalyst.
  • the catalyst preparation method was the same as in Example 6.
  • the diene malic anhydride method is used to determine the diene value of the oil.
  • the iodine value of the oil is determined by the iodine value iodine method with gram iodine/100 gram oil, and the physical properties of the catalyst sample are shown by the iodine/100 gram oil. Table 2.
  • the catalyst sample of Example 2 was subjected to a 1000-hour long period evaluation.
  • the catalyst evaluation was carried out on a 100 ml adiabatic bed hydrogenation reactor.
  • the catalyst was first reduced under hydrogen at 106 ° C for 10 hours, and then cooled to 45 ° C to feed the feedstock. .
  • Reaction conditions reaction pressure 2.8 MPa, inlet temperature from room temperature ⁇ 45 ° C, space velocity of the fresh feed oil 3.511- 1, hydrogen to oil volume ratio of 200: 1 (by volume ratio of fresh dipstick), the hydrogenation feed oil (C 5 ⁇
  • the properties of C 9 ) are shown in Table 1.
  • the product iodine value and diene were sampled every 12 hours, and the average analytical data was taken every 200 hours.
  • the evaluation results are shown in Table 4.
  • the iodine value and diene value of the hydrogenated product were kept at a low level, which fully demonstrates that the catalyst of Example 2 is suitable for diene values up to 33.7 g iodine/100 g oil, and the iodine value is as high as 171g iodine AOOg oil, water content 650PPm, arsenic content 36ppb, colloidal 13 mg/100ml poor hydrogenation feedstock, catalyst has certain anti-colloid, water, arsenic and other impurity properties, catalyst stability, hydrogenation activity good.
  • Table 4 1000 hours evaluation data of the catalyst sample of Example 2 and Comparative Example 4 catalyst sample
  • the hydrogenation catalyst of the invention has good hydrogenation performance, especially when the hydrogenation raw material contains trace water and colloid, and still has good hydrogenation activity and stability energy, and is suitable for selective hydrogenation of medium and low distillates, and is particularly suitable for use. Selective hydrogenation of pyrolysis gasoline.

Description

一种选择性加氢催化剂及其制备方法 技术领域
本发明涉及一种选择性加氢催化剂及其制备方法,该催化剂适用于中低 馏分油选择加氢, 特别适用于裂解汽油馏分一段选择性加氢工艺。
背景技术
裂解汽油是乙烯生产过程中的副产品 CS-200°C,其产量是乙烯生产能力 的 50%〜80%以上, 其中芳烃含量高达 50%以上, 是重要的芳烃资源, 其中含 有高度不饱和烃, 如: 双烯烃、 苯乙烯等, 经过选择性加氢使之变成相应的 单烯烃, 作为提取芳烃的原料。 近年来, 乙烯工业得到了前所未有的发展, 乙烯生产能力逐年提高, 作为乙烯重要副产的裂解汽油的产量必将有大幅度 的增加。 而以裂解汽油加氢催化剂为核心的加氢技术是加氢领域中的一个重 要分支, 在蒸汽裂解制乙烯技术的后处理中占据举足轻重的位置。
目前工业上裂解汽油一段加氢催化剂主要有钯系和镍系两种催化剂, 但 仍以钯基催化剂为主。 钯基催化剂具有启动温度低, 加氢活性高, 处理物料 量大, 催化剂寿命长等优点。 但近年来由于受乙烯原料多元化的影响, 部分 裂解汽油加氢装置的原料中水、 砷含量超标, 馏分偏重, 加氢负荷偏大, 致 使现有催化剂在工业运转中稳定性能差, 催化剂寿命短。
CN 200410061031报道了一种钯一氧化铝催化剂及其制备方法,它涉及一 种预先涂覆适宜量碱土金属氧化物,并经高温焙烧过的 A1203为载体,浸渍钯 含量为 0. 15%〜0. 24°/。制成催化剂。 CN1175931C报道了一种用于蒽醌法生产过 氧化氢负载型钯一氧化铝催化剂及其制备方法, 它涉及一种预先涂覆适宜量 稀土氧化物, 并经高温 900〜1000°C焙烧过的 A1A为载体, 浸渍钯含量为 0. 15%〜0. 25%制成催化剂。 CN85100761A公开了一种用于裂解汽油馏分双烯 烃选择性加氢的纤维载体催化剂, 发明的特征在于釆用比表面为 20〜 150m7g,孔容 0. 1〜0. 3ml/g的 n- A1203多孔纤维状载体,该催化剂初活性高, 但孔容太小, 当裂解汽油加氢装置的原料中胶质、 砷含量、 水含量超标时, 催化剂上孔容易结焦堵塞, 影响催化剂加氢稳定性能。
一种优良的选择性加氢催化剂不仅要有较高的加氢活性,较好的选择性, 更重要的是要具有良好的稳定性, 也就是说, 催化剂要有抗水、 抗胶质的能 力, 这样才能使催化剂寿命延长。
发明内容
本发明的目的旨在提供一种新的特别适用于裂解汽油的选择性加氢催化 剂及其制备方法, 该催化剂具有较强的抗水和抗胶质性能, 同时还具有一定 的抗高负荷和油品变化性能及较高的加氢稳定性能。
本发明所述选择性加氢催化剂, 以氧化铝为载体 ,在氧化铝载体上负载 活性组分金属钯, 活性组分在载体表面上呈蛋壳型分布, 其特征在于催化剂 以重量 100%计,含有活性组分 Pd 0.2〜0.5wt%、助剂 2〜8wt%镧和 /或铈, 2〜 8wt°/O 土金属元素, 催化剂壳层厚度 0.07〜0.15mm, 比表面 70〜150 m2/g, 孔容 0.3〜0.6ml/g,载体氧化铝的晶型为 Θ型或以 Θ型为主的 θ、 α混合晶型。 本发明的催化剂适用于中低馏分油双烯选择性加氢, 尤其适用于裂解汽油馏 分一段选择性加氢。
本发明氧化铝载体的制备过程可以为常用的制备方法, 如: 在载体制备 过程中, 将氧化铝粉、 水等捏合后, 挤条成型, 40〜120°C烘干, 300〜600 V焙烧 4〜6小时。
本发明的催化剂是采用最常用的浸渍方法制备的, 也就是活性组分的加 入采用浸渍法。本发明还提供了该催化剂的最佳制备方法:碱土金属、镧和 / 或铈最好早于钯之前加入,特别是在形成 Θ晶型氧化铝或 θ、 α混合晶型氧 化铝前加入更好, 这样会更好地改善载体的酸碱度及活性、 稳定性能。
本发明还提供了该催化剂的一种具体制备方法:将碱土金属元素、镧和 / 或铈的硝酸盐等可溶性盐, 加入水溶解后, 浸渍与载体上, 40〜120°C烘干, 900〜1100°C焙烧 4〜6小时,得到含有碱土金属元素、镧和 /或铈的 Θ晶型氧 化铝载体或 θ、 α混合晶型氧化铝载体;金属钯的浸渍负载与普通壳层催化 剂浸渍技术相同: 先用一种能与浸渍液互溶的液体预浸载体, 再用含有贵金 属钯的盐溶液浸渍经预浸的 Θ晶型氧化铝载体或 θ、 α 混合晶型氧化铝载 体, 浸渍后的载体经洗涤、 干燥, 在 350〜500°C焙烧 2〜4小时, 即得催化 剂成品。
用于预浸载体的能与浸渍液互溶的液体, 最常用的是脱离子水。
本发明的催化剂还可以使用另一种制备方法: 将碱土金属的可溶性盐、 镧和 /或铈的可溶性盐加水溶解后加入氧化铝粉中,捏合后挤条成型, 40〜120 °C烘干, 900〜1100°C焙烧 4〜6小时, 然后浸渍钯。钯的浸渍如上述, 可以 使用通用的浸渍方法。
本发明的催化剂并不仅限于由文中所举的制备方法获得的。 本发明的成 品催化剂只需要在反应器中通氢气还原即可使用。
本发明催化剂中活性组分 Pd 的含量为 0. 2〜0. 5wt%,最好为 0. 2〜0. 4 wt%, 过低催化剂加氢活性太低, 过高催化剂初活性太高。
本发明在催化剂中加入镧和 /或铈后,能够抑制高温焙烧时 A1203晶粒长 大, 提高 Pd 的分散度, 增强载体表面碱性, 提高催化剂加氢活性及稳定性 能, 其催化剂中镧和 /或铈的含量为 2〜8Wt°/Q, 最好为 2〜6wt%, 过低作用不 明显, 过高影响催化剂活性, 可以是其中一种或两种, 最好为铈。
本发明在催化剂中加入碱土金属后, 一方面, 经高温焙烧可调节催化剂 表面酸性, 提高催化剂加氢反应过程中的抗胶质性能, 另一方面, 碱土金属 的弓 I入可与镧和 /或铈共同与氧化铝发生协同效应,抑制氧化铝载体比表面的 损失、 提高氧化铝载体的热稳定性和化学稳定性, 催化剂中碱土金属含量为 2〜8wt%, 最好为 3〜6 wt%, 过低作用不明显, 过高影响催化剂活性, 碱 土金属可以是 Mg、 Ba、 Sr等, 可以是其中一种或多种, 最好为 M g 。 本发明催化剂中除了含所要求的组成之外并不排斥还含其它组份, 如 Ag、 K等, 可以是其中一种或多种, 其加入量一般为 0〜2.0 wt% , 最好是 0.4—1.7 wt% 。
本发明中催化剂的载体为 Θ晶型氧化铝或以 Θ型为主的 θ、 α混合晶型 氧化铝, 该载体具有适宜的比表面和合理的孔分布, 活性及稳定性能良好的 特点,优于其它晶型氧化铝载体。当使用以 Θ型为主的0、 α混合晶型氧化铝 载体时,最好其中 α晶型 < 15%。 比表面最好是 80〜120 m2/g。
本发明催化剂载体所用 A1203粉, 可以是市售的氧化铝粉, 如是由硝酸 法或是由二氧化碳法得到的 A1203粉。 本发明并不特别限定氧化铝载体的形 状, 它可以是球状、 挤条状等。
具体实施方式
原料来源及分析方法:
氧化铝粉: 山东泰光有限公司
氧化铝载体: 挤条
实施例 1、
将 180ml水,加入 300g氧化铝粉中,捏合后挤条成型,在空气中 120°C 烘干, 540°C焙烧 4小时。 然后将 76.5g硝酸镁、 28.7g硝酸镧溶入水中, 浸 渍与载体上, 在空气中 120°C烘干, 1020°C焙烧 4小时, 制得 A1203载体。
称取 5. 25g钯含量不少于 59%的氯化钯粉末, 加入 200ml水, 再加入盐 酸,溶解后用脱离子水稀释到 1. 2L,根据所需壳层厚度调节 PH值;称取 1. 0kg 成品载体, 加入脱离子水预浸载体, 然后滤干水分; 将配好的氯化钯溶液倒 入载体上, 边搅拌边加热煮沸, 20分钟后滤干溶液, 在空气中 120°C烘干, 480。C焙烧 4小时, 制得催化剂。
对比例 1、 将 180ml水, 加入 300g氧化铝粉中, 捏合后挤条成型, 在空气中 120°C 烘干, 54(TC焙烧 4小时, 然后将 76.5g硝酸镁溶入水中, 浸渍与载体上, 在 空气中 120°C烘干, 1020°C焙烧 4小时, 制得 A1203载体。
催化剂制备方法同实施例 1。
对比例 2
将 180ml水, 加入 300g氧化铝粉中, 捏合后挤条成型, 在空气中 120°C 烘干, 540°C焙烧 4小时, 然后将 28.7g硝酸镧溶入水中, 浸渍与载体上, 在 空气中 120°C烘干, 1020°C焙烧 4小时, 制得 A1203载体。
催化剂制备方法同实施例 1。
对比例 3
将 180ml水, 加入 300g氧化铝粉中, 捏合后挤条成型, 在空气中 120°C 烘干, 540°C焙烧 4小时, 然后将 45.2g硝酸铈溶入水中, 浸渍与载体上, 在 空气中 120°C烘干, 1020 °C焙烧 4小时, 制得 A1203载体。
催化剂制备方法同实施例 1。
实施例 2
将 180ml水, 加入 300g氧化铝粉中, 捏合后挤条成型, 在空气中 120 °C 烘干, 560°C焙烧 4小时, 然后将 100. 7g硝酸镁、 34. 5g硝酸铈溶入水中, 浸渍与载体上, 在空气中 120°C烘干, 1030°C焙烧 4小时, 制得 Θ晶型 A1203 载体。
称取 5. 6g钯含量不少于 59%的氯化钯粉末,加入 200ml水,再加入盐酸, 溶解后用脱离子水稀释到 1. 2L,根据所需壳层厚度调节 ϊ¾值;称取 1. 0kg成 品载体, 加入脱离子水预浸载体, 然后滤干水分; 将配好的氯化钯溶液倒入 载体上,边搅拌边加热煮沸, 20分钟后滤干溶液,在空气中 120Ό烘千, 450 °C 焙烧 4小时, 制得催化剂。
对比例 4 将 180ml水, 加入 300g氧化铝粉中, 捏合后挤条成型, 在空气中 120 °C 烘干, 560°C焙烧 4小时, 然后将 69. 7g硝酸镁、 34. 5g硝酸铈溶入水中, 浸 渍与载伴上, 在空气中 120Ό烘干, 850°C焙烧 4小时, 制得 δ晶型 A1203载 体。
催化剂制备方法同实施例 2。
实施例 3
将 102. 5 g硝酸镁、 20. lg硝酸铈, 19. 4g硝酸镧溶入 180ml水中配成溶 液,加入 300g氧化铝粉中,捏合后挤条成型,在空气中 120°C烘干, 1050°C 焙烧 4小时, 制得 Θ晶型 A1203载体。
称取 5. 07g钯含量不少于 59%的氯化钯粉末, 加入 200ml水, 再加入盐 酸,溶解后用脱离子水稀释到 1. 1L,根据所需壳层厚度调节 PH值;称取 1. 0kg 成品载体, 加入脱离子水预浸载体, 然后滤干水分; 将配好的氯化钯溶液倒 入载体上, 边搅拌边加热煮沸, 20分钟后滤干溶液, 在空气中 120°C烘干, 460 V焙烧 4小时, 制得催化剂。
实施例 4
选用山东泰光有限公司市售用于中低镏分选择加氢催化剂载体, 在 500°C焙烧 4小时, 然后将 162. 9g硝酸镁、 38. 6g硝酸铈、 1. 8g硝酸银溶入 水中, 浸渍与载体上, 在空气中 120 C烘干, 1050°C焙烧 4小时, 制得 Θ晶 型 A1203载体。
称取 5. 95g钯含量不少于 59%的氯化钯粉末, 加入 200ml水, 再加入盐 酸,溶解后用脱离子水稀释到 1. 2L,根据所需壳层厚度调节 PH值;称取 1. 0kg 成品载体, 加入脱离子水预浸载体, 然后滤干水分; 将配好的氯化钯溶液倒 入载体上, 边搅拌边加热煮沸, 20分钟后滤干溶液, 在空气中 120Ό烘干, 460 V焙烧 4小时, 制得催化剂。
实施例 5 将 180ml水, 加入 300g氧化铝粉中, 捏合后挤条成型, 在空气中 120°C 烘干, 560Ό焙烧 4小时, 然后将 13. lg硝酸钡、 9. lg硝酸锶、 34. 5g硝酸铈 溶入水中, 浸渍与载体上, 在空气中 120°C烘干, ΙΟΟΟΌ焙烧 4小时, 制得 Θ晶型 Α1203载体。
称取 4. 72g钯含量不少于 59%的氯化钯粉末, 加入 200ml水, 再加入盐 酸, 溶解后用脱离子水稀释到 580ml, 根据所需壳层厚度调节 PH值; 称取 1. 0kg成品载体, 加入脱离子水预浸载体, 然后滤干水分; 将配好的氯化钯 溶液倒入载体上, 边搅拌边加热煮沸, 20分钟后滤干溶液, 在空气中 120°C 烘干, 47CTC焙烧 4小时, 制得催化剂。
实施例 6
将 180ml水, 加入 300g氧化铝粉中, 捏合后挤条成型, 在空气中 120°C 烘干, 560°C焙烧 4小时。 然后将 30. 5g硝酸锶、 45. 52g硝酸镧溶入水中, 浸渍与载体上, 在空气中 120°C烘干, 105CTC焙烧 4小时, 制得 θ、 α混合晶 型 Α1203载体。
称取 5. 78g钯含量不少于 59%的氯化耙粉末, 加入 200ml水, 再加入盐 酸, 溶解后用脱离子水稀释到 590ml, 根据所需壳层厚度调节 PH值; 称取 1. 0kg成品载体, 将配好的氯化钯溶液浸渍与载体上, 在空气中 120Ό烘干, 450 V焙烧 4小时, 制得催化剂。
对比例 5
将 180ml水, 加入 300g氧化铝粉中, 捏合后挤条成型, 在空气中 120 C 烘干, 56CTC焙烧 4小时, 然后将 7. 6g硝酸钾、 2. lg硝酸银溶入水中, 浸渍 与载体上, 在空气中 120Ό烘干, 980°C焙烧 4小时, 制得 Θ晶型 A1203载体。
催化剂制备方法同实施例 6。
^jk实用性
评价用油: 采自兰州石化石油化工厂 表 1 】氢原料油 (c5〜c9)性质
Figure imgf000010_0001
评价用装置: 100ml绝热床加氢反应装置
分析方法: 比表面 BET法
'比孔容 BET法
双 烯 苹果酸酐法测定油品双烯值, 以克碘 /100克油表示 碘 价 氯化碘法测定油品碘价, 以克碘 /100克油表示 实施例及对比例催化剂样品物理性能见表 2。
表 2 实施例 1〜6、 对比例 1〜5中催化剂样品的物理性能
Figure imgf000010_0002
釆用 C5〜C9馏分裂解汽油为原料, 原料性质见表 1, 对实施例 1〜6、 对 比例 1〜5中催化剂样品进行评价, 催化剂评价是在 100ml绝热床加氢反应 装置上进行的,催化剂首先在 110Ό氢气下还原 10小时,然后降温到 40°C后 进原料油。 反应条件: 反应压力 2.8 MPa,入口温度 40°C, 新鲜原料油空速 3.5^, 氢与油体积比 200:1 (体积比以新鲜油计)。 分别评价 200小时, 每 6 小时取样分析产品碘价、 双烯。 每个催化剂在 200小时评价中产品碘价、 双 烯的平均数据见表 3。
实施例及对比例催化剂 200小时评价平均数据
Figure imgf000011_0001
将实施例 2的催化剂样品进行 1000小时长周期评价, 催化剂评价是在 100ml绝热床加氢反应装置上进行的, 催化剂首先在 106°C氢气下还原 10小 时, 然后降温到 45 °C后进原料油。 反应条件: 反应压力 2.8 MPa, 入口温度 室温〜 45°C, 新鲜原料油空速 3.511-1, 氢与油体积比 200:1 (体积比以新鲜油 计), 加氢原料油 (C5〜C9)性质见表 1。 每 12小时取样分析产品碘价、 双烯, 取每隔 200小时内的平均分析数据, 评价结果见表 4。在投入原料的 1000小 时运转过程中, 加氢产品的碘价和双烯值一直保持在较低的水平, 这充分说 明实施例 2催化剂适应双烯值高达 33.7g碘 /100g油、 碘价高达 171g碘 AOOg 油、 水含量 650PPm、 砷含量 36ppb、 胶质达 13 mg/100ml的较差加氢原料, 催化剂具有一定的抗胶质、 水、 砷等杂质性能, 催化剂稳定性好, 加氢活性 良好。 表 4 实施例 2的催化剂样品与对比例 4催化剂样品的 1000小时评价数据
Figure imgf000012_0001
本发明的加氢催化剂具有良好的加氢性能, 尤其当加氢原料中含有微量 水、 胶质时, 仍具有良好的加氢活性及稳定性能, 适用于中低馏分油选择加 氢, 特别适用于裂解汽油一段选择性加氢。

Claims

权利要求书
1 . 一种选择性加氢催化剂, 以氧化铝为载体, 以钯为活性组分, 活性 组分在载体表面上呈蛋壳型分布, 其特征在于: 所述催化剂以重量 100%计, 含有活性组分 Pd 0. 2〜0. 5 wt °/。、 助剂镧和 /或铈 2〜8 wt%, 碱土金属 2〜8 wt%, Ag和 /或 K 0〜2. 0 wt%, 其余为氧化铝重量; 催化剂壳层厚度 0. 07〜 0. 15mm, 催化剂比表面 70〜; 150 m2/g, 孔容 0. 3〜0· 6 ml/g, 载体氧化铝的 晶型为 Θ型或以 Θ型为主的 θ、 α混合晶型。
2. 根据权利要求 1所述的一种选择性加氢催化剂, 其特征在于: 所述 的碱土金属为钙、 镁、 锶、 钡中的一种或多种。
3. 根据权利要求 1所述的一种选择性加氢催化剂, 其特征在于: 碱土 金属含量为 3〜6 wt%。
4. 根据权利要求 1所述的一种选择性加氢催化剂, 其特征在于: 催化 剂比表面为 80〜120m7g。
5. 根据权利要求 1所述的一种选择性加氢催化剂, 其特征在于: 催化 剂 Pd的含量为 0. 2〜0. 4 wt
6. 根据权利要求 1 所述的一种选择性加氢催化剂, 其特征在于镧和 / 或铈的含量 2〜6wt%。
7. 根据权利要求 1所述的一种选择性加氢催化剂, 其特征在于: 载体 氧化铝的晶型 Θ型为主的 θ、 α混合晶型时, a晶型 < 15%。 '
8. 根据权利要求 1所述的催化剂, 其特征在于催化剂中 Ag和 /或 K加 入量为 0. 4〜1. 7 wt%。
9.根据权利要求 1所述的一种选择性加氢催化剂的制备方法,活性组分 的加入采用浸渍法, 其特征在于: 碱土金属、 镧和 /或铈早于钯之前加入。
10. 根据权利要求 1所述的一种选择性加氢催化剂的制备方法, 其特征 在于: 碱土金属、 镧和 /或铈是在形成 Θ晶型氧化铝或 θ、 a混合晶型氧化铝 前加入的。
11. 根据权利要求 1所述的一种选择性加氢催化剂的制备方法, 其特征 在于: 将碱土金属元素、镧和 /或铈的可溶性盐, 加入水溶解后, 浸渍与载体 上, 40〜120°C烘干, 900〜1100°C焙烧 4〜6小时, 得到含有碱土金属元素、 镧和 /或铈的 Θ晶型或 θ、 a混合晶型氧化铝载体; 用一种能与浸渍液互溶的 液体预浸载体,再用含有贵金属钯的盐溶液浸渍经预浸的 Θ晶型或 θ、 α混合 晶型氧化铝载体, 浸渍后的载体经洗涤、 干燥, 在 350〜500°C焙烧 2〜4小 时, 即得催化剂成品。
PCT/CN2008/001780 2007-12-13 2008-10-22 A selective hydrogenation catalyst and the preparation thereof WO2009079905A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020107014866A KR101521673B1 (ko) 2007-12-13 2008-10-22 선택적 수소화 촉매 및 그 제조 방법
JP2010537232A JP5298135B2 (ja) 2007-12-13 2008-10-22 選択的水素化触媒及びその製造
EP08863972.9A EP2233208B1 (en) 2007-12-13 2008-10-22 A selective hydrogenation catalyst and the preparation thereof
US12/747,865 US8211823B2 (en) 2007-12-13 2008-10-22 Selective hydrogenation catalyst and the preparation thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200710179443.1A CN101433841B (zh) 2007-12-13 2007-12-13 一种选择性加氢催化剂及其制备方法
CN200710179443.1 2007-12-13

Publications (2)

Publication Number Publication Date
WO2009079905A1 true WO2009079905A1 (en) 2009-07-02
WO2009079905A8 WO2009079905A8 (zh) 2010-07-08

Family

ID=40708570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/001780 WO2009079905A1 (en) 2007-12-13 2008-10-22 A selective hydrogenation catalyst and the preparation thereof

Country Status (7)

Country Link
US (1) US8211823B2 (zh)
EP (1) EP2233208B1 (zh)
JP (1) JP5298135B2 (zh)
KR (1) KR101521673B1 (zh)
CN (1) CN101433841B (zh)
MY (1) MY148501A (zh)
WO (1) WO2009079905A1 (zh)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101423775B (zh) 2007-11-01 2010-05-12 中国石油天然气股份有限公司 一种选择性镍系加氢催化剂及其制备方法
CN103111314B (zh) * 2011-11-17 2015-05-13 中国科学院宁波材料技术与工程研究所 油脂连续化完全加氢制备硬脂酸甘油酯的催化剂及其制备方法
WO2014057075A1 (en) * 2012-10-11 2014-04-17 Dsm Ip Assets B.V. Stepwise hydrogenation of specific isoprenoids
CN103706356A (zh) * 2014-01-10 2014-04-09 中国天辰工程有限公司 一种蛋壳型蒽醌加氢固定床催化剂的制备方法
CN103769094B (zh) * 2014-01-20 2015-09-23 中国科学院宁波材料技术与工程研究所 一种用于选择性加氢反应的蛋壳型催化剂、制备方法及应用
US9266095B2 (en) 2014-01-27 2016-02-23 Celanese International Corporation Hydrogenation catalysts with cobalt and alkaline-earth metal modified supports
CN105771983B (zh) * 2014-12-24 2018-12-07 大连凯特利催化工程技术有限公司 一种一氧化碳工业气体中不饱和烃加氢为饱和烃的催化剂及其制备方法和应用
US9670120B2 (en) 2015-01-27 2017-06-06 Celanese International Corporation Process for producing ethanol using a solid catalyst
WO2016122465A1 (en) 2015-01-27 2016-08-04 Celanese International Corporation Process for producing ethanol using solid catalysts
CN107159279B (zh) * 2017-06-02 2019-05-17 钦州学院 一种裂解汽油一段选择性加氢催化剂及其制备方法
CN107189811B (zh) * 2017-06-02 2019-01-25 钦州学院 一种全馏分裂解汽油一段选择性加氢方法
CN107185567B (zh) * 2017-06-02 2019-05-17 钦州学院 一种镍系选择性加氢催化剂及其制备方法
CN107096552B (zh) * 2017-06-02 2019-07-12 钦州学院 一种用于fcc汽油脱硫醇的催化剂及制备方法
CN107189812B (zh) * 2017-06-02 2019-01-25 钦州学院 一种裂解c6-c8馏分选择性加氢的方法
KR102504661B1 (ko) * 2017-08-18 2023-02-27 차이나 페트로리움 앤드 케미컬 코포레이션 중질 방향족 화합물로 경질 방향족 화합물을 제조하기 위한 촉매 및 이의 제조 방법과 용도
CN108043431B (zh) * 2017-12-15 2020-04-03 厦门大学 一种碳碳双键的选择性加氢用催化剂及其制备方法和应用
CN111229216B (zh) * 2018-11-29 2022-08-05 万华化学集团股份有限公司 一种蛋壳型银催化剂及其制备方法和应用
CN111375451B (zh) * 2018-12-29 2022-12-13 中国石油化工股份有限公司 氧化铝载体和碳二碳三馏分选择加氢催化剂
CN109939678A (zh) * 2019-02-14 2019-06-28 北京氦舶科技有限责任公司 一种单原子钯催化剂及其制备方法和应用
CZ308219B6 (cs) * 2019-02-18 2020-03-04 Unipetrol výzkumně vzdělávací centrum, a.s. Způsob výroby katalyticky aktivní vrstvy na zeolitové pěně
JP7450346B2 (ja) * 2019-06-20 2024-03-15 株式会社キャタラー メタン浄化用触媒材料
KR102220225B1 (ko) * 2019-06-21 2021-02-24 희성촉매 주식회사 과산화수소 합성 및 재생 촉매 및 이의 제조방법
CN112547069B (zh) * 2019-09-10 2023-05-30 中国石油化工股份有限公司 镍铜催化剂及其制备方法以及制备甲基异丁基醇的方法
EP4213971A4 (en) * 2020-09-21 2024-04-24 Unifrax I Llc HOMOGENEOUS CATALYTIC FIBER COATINGS AND METHODS FOR THEIR PRODUCTION
CN114471619B (zh) * 2020-10-26 2023-09-01 中国石油化工股份有限公司 一种重整生成油加氢脱烯烃催化剂及其制备方法
CN112916022A (zh) * 2021-01-21 2021-06-08 西南化工研究设计院有限公司 一种选择性加氢催化剂及其制备方法和应用
CN115155627A (zh) * 2022-07-26 2022-10-11 中化泉州能源科技有限责任公司 3-羟基丙酸甲酯加氢制备1,3-丙二醇的多元复合型催化剂及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85100761A (zh) 1985-04-01 1986-09-24 中国科学院山西煤炭化学研究所 纤维状双烯选择加氢催化剂及其制法
US5258558A (en) * 1991-10-21 1993-11-02 Uop Direct conversion of butyraldehyde to 2-ethylhexanol-1
JPH08229392A (ja) * 1995-01-09 1996-09-10 Basf Ag パラジウム−担体触媒
CN1443829A (zh) * 2002-03-13 2003-09-24 中国石油化工股份有限公司 用于裂解汽油一段选择性加氢的催化剂
CN1175931C (zh) 2003-02-21 2004-11-17 福州大学 一种用蒽醌法生产过氧化氢负载型钯催化剂及其制备方法
CN1623655A (zh) * 2004-10-26 2005-06-08 福州大学 钯—氧化铝催化剂及其制备方法
CN1958155A (zh) * 2005-10-31 2007-05-09 中国石油化工股份有限公司 一种炔烃及二烯烃选择加氢催化剂及其制备和应用

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
OA02047A (fr) 1965-02-13 1970-05-05 Inst Francais Du Petrole Procédé d'hydrogenation selective des diolefines.
US3615207A (en) * 1969-06-16 1971-10-26 Fmc Corp Production of hydrogen peroxide by anthraquinone process
US3635841A (en) * 1969-06-16 1972-01-18 Engelhard Min & Chem Novel anthraquinone hydrogenation catalyst
US3899444A (en) * 1972-02-07 1975-08-12 Ethyl Corp Exhaust gas catalyst support
JPS51104488A (en) * 1975-03-13 1976-09-16 Toyota Motor Co Ltd Shokubaitantai oyobi shokubai
US4000207A (en) * 1975-05-12 1976-12-28 Scm Corporation Isomerization of alpha-pinene to beta-pinene with neutralized alumina-supported mixed metal catalyst
GB1571910A (en) * 1975-12-18 1980-07-23 Nat Distillers Chem Corp Vinyl acetate process and catalyst therefor
US4220559A (en) * 1978-02-14 1980-09-02 Engelhard Minerals & Chemicals Corporation High temperature-stable catalyst composition
US4390456A (en) * 1979-08-08 1983-06-28 W. R. Grace & Co. Spheroidal alumina particles and catalysts employing the particles as a support
US4410455A (en) * 1980-10-22 1983-10-18 Imperial Chemical Industries Plc Process for producing a hydrogenation catalyst
JPS58177153A (ja) * 1982-04-12 1983-10-17 Nissan Motor Co Ltd メタノ−ル改質用触媒
US4469816A (en) * 1982-12-14 1984-09-04 Allied Corporation Palladium on alumina aerogel catalyst composition and process for making same
GB8620982D0 (en) * 1986-08-29 1986-10-08 Shell Int Research Catalyst preparation
US4919902A (en) * 1987-09-30 1990-04-24 Allied-Signal Inc. Catalyst for treatment of exhaust gases from internal combustion engines
FR2647365B1 (fr) * 1989-05-24 1991-08-30 Inst Francais Du Petrole Catalyseur multifonctionnel pour le traitement des gaz d'echappement des moteurs a combustion interne, contenant de l'uranium, au moins un promoteur de l'uranium et au moins un metal precieux et sa preparation
CN1026494C (zh) * 1991-10-04 1994-11-09 兰州化学工业公司化工研究院 一种用于裂解汽油一段选择性加氢的催化剂
DE69514283T3 (de) * 1994-06-09 2008-01-24 Institut Français du Pétrole Verfahren zur katalytischen Hydrierung und in diesem Verfahren zur verwendender Katalysator
GB2298194A (en) 1995-02-24 1996-08-28 Beeson & Sons Ltd Child resistant closures for containers
US6054409A (en) * 1995-06-06 2000-04-25 Institut Francais Du Petrole Selective hydrogenation catalyst and a process using that catalyst
DE19723591A1 (de) * 1997-06-05 1998-12-10 Hoechst Ag Katalysator, Verfahren zu seiner Herstellung und seine Verwendung zur Herstellung von Vinylacetat
JP3275015B2 (ja) * 1997-08-20 2002-04-15 独立行政法人産業技術総合研究所 芳香環水素化用触媒及び軽油の水素化処理方法
CN1055107C (zh) 1997-11-28 2000-08-02 中国石油化工总公司 一种选择性加氢催化剂
JP4255150B2 (ja) * 1998-09-18 2009-04-15 旭化成ケミカルズ株式会社 ポリマ−水素化方法
DE19840373A1 (de) * 1998-09-04 2000-03-09 Basf Ag Katalysator und Verfahren zur Selektivhydrierung ungesättigter Verbindungen in Kohlenwasserstoffströmen
DE19843693A1 (de) * 1998-09-24 2000-03-30 Degussa Trägerkatalysator für die Produktion von Vinylacetatmonomer
US6726672B1 (en) * 1998-09-28 2004-04-27 Icu Medical, Inc. Intravenous drug access system
JP3859940B2 (ja) * 1999-08-06 2006-12-20 日産自動車株式会社 排気ガス浄化用触媒及びその製造方法
CN1107704C (zh) * 2000-02-03 2003-05-07 中国石油天然气股份有限公司兰州石化分公司 裂解汽油选择性加氢催化剂
US6534438B1 (en) * 2000-07-26 2003-03-18 Bp Chemicals Limited Catalyst composition
RU2278731C2 (ru) * 2000-09-29 2006-06-27 Чайна Петролеум Энд Кемикал Корпорейшн Катализатор селективного гидрирования ненасыщенных олефинов, способ получения и применения катализатора
US6797669B2 (en) * 2000-12-29 2004-09-28 China Petroleum & Chemical Corporation Catalyst for selective hydrogenation, its preparation process and application
KR100419858B1 (ko) 2001-01-17 2004-02-25 한국화학연구원 디올레핀류 화합물의 선택적 수소화 반응을 위한 수식된니켈-알루미나계 촉매와 그 제조방법
US6509292B1 (en) * 2001-03-30 2003-01-21 Sud-Chemie Inc. Process for selective hydrogenation of acetylene in an ethylene purification process
US6936568B2 (en) * 2002-06-12 2005-08-30 Sud-Chemie Inc. Selective hydrogenation catalyst
MY137042A (en) * 2002-06-14 2008-12-31 Chevron Phillips Chemical Co Hydrogenation palladium-silver catalyst and methods
US7038097B2 (en) * 2003-03-04 2006-05-02 Exxonmobil Chemical Patents Inc. Dual bed process using two different catalysts for selective hydrogenation of acetylene and dienes
KR100971585B1 (ko) * 2003-03-26 2010-08-11 바스프 에스이 아세틸렌의 선택적 수소화를 위한 팔라듐계 촉매
GB0312769D0 (en) * 2003-06-04 2003-07-09 Johnson Matthey Plc Process for selective hydrogenation of acetylenic compounds and catalyst therefor
US7022645B2 (en) 2003-08-04 2006-04-04 Catalytic Distillation Technologies Ni hydrogenation catalysts, manufacture and use
CA2553962C (en) * 2004-01-20 2011-08-30 Abb Lummus Global Inc. Improved olefin plant recovery system employing a combination of catalytic distillation and fixed bed catalytic steps
US20060166816A1 (en) * 2004-06-23 2006-07-27 Catalytic Solutions, Inc. Catalysts and processes for selective hydrogenation of acetylene and dienes in light olefin feedstreams
FR2872061B1 (fr) * 2004-06-23 2007-04-27 Toulouse Inst Nat Polytech Composition solide divisee formee de grains a depot metallique atomique continu et son procede d'obtention
US7521393B2 (en) * 2004-07-27 2009-04-21 Süd-Chemie Inc Selective hydrogenation catalyst designed for raw gas feed streams
DE102004059282A1 (de) * 2004-10-13 2006-04-27 Basf Ag Selektivhydrierkatalysator
EP1899053A1 (en) * 2005-01-20 2008-03-19 Sud-Chemie Inc. Hydrogenation catalyst
CN100487086C (zh) 2006-01-06 2009-05-13 中国石油天然气股份有限公司 一种选择性镍系加氢催化剂及其制备方法、应用
CN100567461C (zh) 2006-03-17 2009-12-09 中国石油天然气股份有限公司 一种镍系加氢催化剂及其制备方法、应用
CN101623655B (zh) * 2009-08-13 2011-04-20 浙江国邦药业有限公司 一种克拉霉素合成过程中硅烷化反应的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85100761A (zh) 1985-04-01 1986-09-24 中国科学院山西煤炭化学研究所 纤维状双烯选择加氢催化剂及其制法
US5258558A (en) * 1991-10-21 1993-11-02 Uop Direct conversion of butyraldehyde to 2-ethylhexanol-1
JPH08229392A (ja) * 1995-01-09 1996-09-10 Basf Ag パラジウム−担体触媒
CN1443829A (zh) * 2002-03-13 2003-09-24 中国石油化工股份有限公司 用于裂解汽油一段选择性加氢的催化剂
CN1175931C (zh) 2003-02-21 2004-11-17 福州大学 一种用蒽醌法生产过氧化氢负载型钯催化剂及其制备方法
CN1623655A (zh) * 2004-10-26 2005-06-08 福州大学 钯—氧化铝催化剂及其制备方法
CN1958155A (zh) * 2005-10-31 2007-05-09 中国石油化工股份有限公司 一种炔烃及二烯烃选择加氢催化剂及其制备和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2233208A4

Also Published As

Publication number Publication date
MY148501A (en) 2013-04-30
KR101521673B1 (ko) 2015-05-19
JP5298135B2 (ja) 2013-09-25
WO2009079905A8 (zh) 2010-07-08
EP2233208A1 (en) 2010-09-29
EP2233208B1 (en) 2016-04-13
CN101433841A (zh) 2009-05-20
KR20100100942A (ko) 2010-09-15
US20100331175A1 (en) 2010-12-30
US8211823B2 (en) 2012-07-03
CN101433841B (zh) 2010-04-14
EP2233208A4 (en) 2013-01-09
JP2011506068A (ja) 2011-03-03

Similar Documents

Publication Publication Date Title
WO2009079905A1 (en) A selective hydrogenation catalyst and the preparation thereof
CN101940922B (zh) 一种低碳烷烃脱氢催化剂及其制备方法
KR101404770B1 (ko) 선택적 수소화를 위한 니켈 촉매
US6218335B1 (en) Spinel type compound oxide and method of manufacturing the same
CN101293208B (zh) 一种重整催化剂及其制备方法
WO2011147090A1 (zh) 负载型贵金属催化剂及其原位制备方法
CN101987298B (zh) 金属改性的含euo结构的共晶沸石催化剂及制备方法和应用
WO2017197980A1 (zh) 整体式铁钴双金属费托合成催化剂及其制备方法
JPWO2007052821A1 (ja) 触媒担体粒子、排ガス浄化触媒、及びそれらの製造方法
TW200906487A (en) Alumina having a complex pore structure, and catalyst and process for selective hydrogenation of cracking gasoline
JP5336235B2 (ja) 貴金属担持物及びそれを触媒として用いるカルボン酸エステルの製造方法
CN107824190A (zh) 一种高效的甲醇分解制氢铜基催化剂
WO2021063345A1 (zh) 一种脱砷吸附剂及其制备方法
JP5335505B2 (ja) 貴金属担持物及びそれを触媒として用いるカルボン酸エステルの製造方法
US20010056036A1 (en) Selective hydrogenation catalyst for pyrolysis gasoline
CN101992085B (zh) 用于氢气选择性燃烧反应的催化剂及其制备方法
TW201221213A (en) Attrition resistant supports for Fischer-Tropsch catalyst and process for making the same
CN110961124A (zh) 一种重整生成油加氢脱烯烃催化剂及制备方法与应用
CN113600125B (zh) 一种燃料电池氢源co及硫化物超深度净化剂及制备方法
CN108855128B (zh) 一种选择加氢催化剂及其制备方法
CN106732620B (zh) 一种镍系加氢催化剂及其制备方法
CN108452839B (zh) 一种介微孔复合分子筛、催化剂及其制备方法和应用
CN103785462B (zh) 一种环烷烃加氢催化剂及其制备方法和应用
WO2021129760A1 (zh) 一种dlm-1分子筛及其制造方法和应用
CN101264444A (zh) 一种二氧化钛负载钯选择性加氢催化剂的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08863972

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010537232

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: PI 2010002160

Country of ref document: MY

ENP Entry into the national phase

Ref document number: 20107014866

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2008863972

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12747865

Country of ref document: US