WO2021129760A1 - 一种dlm-1分子筛及其制造方法和应用 - Google Patents

一种dlm-1分子筛及其制造方法和应用 Download PDF

Info

Publication number
WO2021129760A1
WO2021129760A1 PCT/CN2020/139112 CN2020139112W WO2021129760A1 WO 2021129760 A1 WO2021129760 A1 WO 2021129760A1 CN 2020139112 W CN2020139112 W CN 2020139112W WO 2021129760 A1 WO2021129760 A1 WO 2021129760A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular sieve
dlm
less
triblock copolymer
alumina
Prior art date
Application number
PCT/CN2020/139112
Other languages
English (en)
French (fr)
Inventor
唐兆吉
樊宏飞
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司大连石油化工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司大连石油化工研究院 filed Critical 中国石油化工股份有限公司
Priority to US17/757,998 priority Critical patent/US20230025198A1/en
Priority to JP2022539342A priority patent/JP2023509606A/ja
Priority to EP20906336.1A priority patent/EP4082661A4/en
Priority to CA3163055A priority patent/CA3163055A1/en
Priority to KR1020227025813A priority patent/KR20220113825A/ko
Publication of WO2021129760A1 publication Critical patent/WO2021129760A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/041Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/0308Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/041Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41
    • B01J29/042Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41 containing iron group metals, noble metals or copper
    • B01J29/044Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/041Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41
    • B01J29/045Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/005Silicates, i.e. so-called metallosilicalites or metallozeosilites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/02Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with ion-exchange material
    • C10G25/03Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with ion-exchange material with crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/12Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • C10G47/20Crystalline alumino-silicate carriers the catalyst containing other metals or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/20Sulfiding
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/90Other properties not specified above

Definitions

  • the invention relates to a mesoporous molecular sieve, particularly a DLM-1 molecular sieve, belonging to Al-SBA-15 molecular sieve.
  • the present invention also relates to the manufacturing method of the molecular sieve and its application in organic matter processing.
  • SiO 2 mesoporous material namely SBA-15 molecular sieve
  • ethyl orthosilicate, methyl orthosilicate, and butyl orthosilicate are used as silicon sources to synthesize a new ordered SiO 2 mesoporous material, namely SBA-15 molecular sieve, in an acidic environment.
  • SiO 2 mesoporous material namely SBA-15 molecular sieve
  • It is a highly ordered planar hexagonal phase structure, with two-dimensional hexagonal pores, the pore diameter is between 5 and 30nm, the thickness of the pore wall is between 3 and 6nm, and there are mesoporous materials with micropores connected between the channels. There are a lot of silanol on the surface.
  • SBA-15 molecular sieve is a pure silicon ordered mesoporous zeolite material with almost no acidity and poor stability, which limits its industrial application in the petrochemical industry.
  • the method of introducing heteroatoms is usually used to modify SBA-15 molecular sieve, and the introduction of aluminum atoms into SBA-15 molecular sieve to synthesize Al-SBA-15 molecular sieve is one of the most commonly used modification methods.
  • the post-treatment grafting method can introduce a larger amount of Al atoms
  • the synthesis method is more cumbersome, and it is easy to produce some by-products of alumina on the inner or outer surface of the material pores, thereby causing the material pores Blockage, the specific surface area and pore volume are significantly reduced, which becomes an unfavorable factor in the catalytic reaction.
  • CN104016369A discloses a method for preparing Al-SBA-15 molecular sieve using kaolin as a raw material.
  • CN108946754A discloses a method for preparing aluminum-containing SBA-15 by using fly ash acid extraction aluminum residue as a raw material. The above two methods first extract the silicon source and aluminum source from kaolin or fly ash, and then use them as the raw material for the synthesis of SBA-15 molecular sieve. This way, on the one hand, it is easy to introduce other impurities, on the other hand, there are still conventional direct synthesis of aluminum supplements. The shortcomings of the law.
  • the inventors of the present invention found that in Al-SBA-15 molecular sieves manufactured in the prior art, it is difficult for aluminum to enter the framework of the molecular sieve in a significant amount, or in order for aluminum to enter the framework of the molecular sieve in a certain amount, a larger amount must be used.
  • the aluminum is attached to the periphery of the molecular sieve framework (usually dispersed on the inner surface of the pores of the molecular sieve) as a price.
  • the Al-SBA-15 molecular sieve manufactured according to the prior art has a low aluminum content (for example, the mass percentage of alumina in the chemical composition of the molecular sieve is less than 7% by weight).
  • Aluminum can still achieve a high degree of dispersion in the pores of the molecular sieve so that the molecular sieve exhibits a regular mesoporous structure as a whole, but as the aluminum content increases (for example, higher than 7 wt%, especially higher than 15 wt%), This type of aluminum begins to accumulate locally or completely on the pores of the molecular sieve, causing the pores of the molecular sieve to shrink rapidly (generally manifested as a rapid increase in the proportion of small pores with a pore diameter of less than 4nm) or even block up.
  • the regularity of the mesoporous structure of the molecular sieve is corresponding Decrease or even disappear completely. For this reason, the inventors of the present invention have discovered DLM-1 molecular sieve through diligent research, and completed the present invention based on this discovery.
  • the inventors of the present invention have discovered through research that the DLM-1 molecular sieve exhibits an XRD spectrum of the Al-SBA-15 molecular sieve, and belongs to the Al-SBA-15 molecular sieve.
  • the inventor of the present invention believes that in the DLM-1 molecular sieve of the present invention, aluminum basically enters the framework structure of the molecular sieve, so that even when the aluminum content is very high (such as alumina In the case where the molecular sieve chemical composition accounts for a mass percentage higher than 7% by weight, or even up to 85% by weight), the molecular sieve still shows regularity of the mesoporous structure.
  • the regularity can generally be characterized by the pore distribution of the molecular sieve (especially the pore volume ratio of pores with a pore diameter of ⁇ 4 nm).
  • the DLM-1 molecular sieve of the present invention is a novel structure of Al-SBA-15 molecular sieve.
  • the present invention relates to the following aspects.
  • An Al-SBA-15 molecular sieve wherein the pore distribution includes: the pore volume occupied by pores with a pore diameter of less than 4nm is less than 20% of the total pore volume, preferably less than 15%; in the molecular sieve, B acid and The ratio of L acid is less than 1.
  • the molecular sieve according to any one of the foregoing or the following aspects, characterized in that, in the molecular sieve, the ratio of B acid to L acid is below 0.8, further below 0.5, still further below 0.4; in the molecular sieve The ratio of B acid to L acid is above 0.1, and further above 0.2.
  • the molecular sieve according to any one of the preceding or following aspects characterized in that the amount of medium strong acid in the molecular sieve is 0.6-1.0 mL/g, preferably 0.7-0.9 mL/g.
  • the pore distribution of the molecular sieve further includes: the pore volume occupied by pores with a pore diameter of 4-15 nm is 40%-70 of the total pore volume %, preferably 45%-65%, more preferably 50%-60%.
  • the preparation method of the molecular sieve described in any one of the foregoing or the following includes: using amorphous silica-alumina dry glue as a raw material and using P123 triblock copolymer as a template to synthesize Al-SBA-15 molecular sieve.
  • the properties of the amorphous silica-alumina dry glue are as follows: the specific surface area is 400-650m 2 /g, and the pore volume is 0.52-1.8 mL/g
  • the pore distribution is as follows: the pore volume with a pore diameter of 4-15 nm accounts for 85%-95% of the total pore volume, and the pore volume with a pore diameter> 15 nm accounts for less than 5% of the total pore volume.
  • step (3) The slurry prepared in step (1) is mixed with the acidic solution containing the P123 triblock copolymer prepared in step (2), and after crystallization, Al-SBA-15 molecular sieve is prepared.
  • step (1) 10. The method according to any one of the preceding or following, characterized in that the mass ratio of the amorphous silica-alumina dry glue to water in step (1) is 10:90-30:70, preferably 15: 85-25: 75.
  • step (2) characterized in that the pH of the acidic aqueous solution in step (2) is 1-5, preferably 1.2-2.3, and the P123 triblock copolymerization in the acidic aqueous solution
  • the mass content of the substance is 0.5%-5.0%, preferably 0.8%-2.8%.
  • step (2) the concentration of the dilute acid solution is 0.05 as H+ -0.3mol/L, preferably 0.1-0.2mol/L; in step (2), the temperature system is controlled at 10-60°C, preferably 20-40°C.
  • step (3) the slurry prepared in step (1) is mixed with the acidic aqueous solution containing P123 triblock copolymer prepared in step (2) .
  • the amount of the slurry prepared in step (1) and the acidic aqueous solution containing the P123 triblock copolymer prepared in step (2) is based on the mass ratio of the P123 triblock copolymer and the amorphous silicon-aluminum in the mixed system: 0.5: 1-5:1, preferably 1:1-5:1.
  • step (3) is 80-120°C, preferably 90-110°C; the crystallization time is 10-35h, It is preferably 16-24 hours; the pH during the crystallization process is controlled to be 2.0-5.0, preferably 3.2-4.8.
  • a catalyst composition comprising the Al-SBA-15 molecular sieve described in any one of the foregoing or following aspects, or the Al-SBA-15 molecular sieve prepared by the method described in any one of the foregoing or following aspects.
  • the present invention also relates to the following aspects.
  • a DLM-1 molecular sieve which is Al-SBA-15 molecular sieve, has a schematic chemical composition as shown in the formula "first oxide ⁇ second oxide", wherein the first oxide is silica , The second oxide is alumina, and the mass percentage content of alumina in the schematic chemical composition is 10% or more (preferably 15% or more, 17% or more, 20% or more, 25% or more or 30%). % Or more) and 85% or less (preferably 82% or less, 75% or less, 65% or less, or 55% or less).
  • the amount of B acid in the molecular sieve is 0.01-0.50 mL/g (preferably 0.05-0.20 mL/g or 0.09-0.16 mL/g), and /Or, the amount of L acid is 0.10-0.90mL/g (preferably 0.30-0.60mL/g or 0.39-0.46mL/g), and/or the ratio of B acid to L acid is below 1, preferably below 0.8, It is more preferably 0.5 or less, still more preferably 0.4 or less, and the ratio of B acid to L acid is 0.1 or more, preferably 0.2 or more.
  • the pore distribution of the molecular sieve includes: the pore volume occupied by pores with a pore diameter of ⁇ 4 nm is 20% or less of the total pore volume, preferably 15% or less, preferably The pore distribution of the molecular sieve also includes: the pore volume occupied by pores with a pore diameter of 4-15 nm is 40% to 70% of the total pore volume, preferably 45% to 65%, and more preferably 50% to 60%.
  • the molecular sieve wherein a specific surface area of 550 to 850m 2 / g, preferably 650 to 750m 2 / g, and / or a total pore volume of the molecular sieve It is 0.7 to 1.3 mL/g, preferably 0.9 to 1.2 mL/g, and/or, the average pore size of the molecular sieve is 9 to 15 nm, preferably 10 to 12 nm.
  • a method of manufacturing DLM-1 molecular sieve including the step of contacting amorphous silica alumina (preferably amorphous silica alumina dry glue) (powder), P123 triblock copolymer and water under crystallization conditions to obtain a molecular sieve And optionally, the step of calcining the obtained molecular sieve.
  • amorphous silica alumina preferably amorphous silica alumina dry glue
  • the crystallization conditions at least include: a crystallization temperature of 80 to 120°C, preferably 90 to 110°C; and a crystallization time of 10 to 35h, preferably 16 to 24h; during the crystallization process, the pH is controlled to be 2.0 to 5.0, preferably 3.2 to 4.8.
  • the alumina mass content of the amorphous silicon-aluminum (dry basis) is more than 10% (preferably more than 15%, more than 17%, more than 20%, more than 25% or more than 30%) , And 85% or less (preferably 82% or less, 75% or less, 65% or less or 55% or less), and/or, the specific surface area of the amorphous silicon aluminum is 400 to 650 m 2 /g, preferably 450 to 600 m 2 /g, and/or, the pore volume of the amorphous silicon aluminum is 0.52 to 1.8 mL/g, preferably 0.85 to 1.5 mL/g, and/or, the average pore size of the amorphous silicon aluminum is 6 nm to 12 nm , Preferably 7nm to 10nm, and/or, the average particle size of the amorphous silicon aluminum is 15 ⁇ m to 150 ⁇ m, preferably 25 ⁇ m to 75 ⁇ m, preferably 40 ⁇ m to 60
  • the slurry is contacted (for example, mixed) with the acidic solution containing the P123 triblock copolymer to prepare DLM-1 molecular sieve.
  • step (1) the mass ratio of the amorphous silicon-aluminum (dry basis) to water is 10:90 to 30:70, preferably 15: 85 to 25:75, and/or, in step (2), the pH of the acidic solution is 1 to 5, preferably 1.2 to 2.3, and the mass content of the P123 triblock copolymer in the acidic solution is 0.5% to 5.0%, preferably 0.8% to 2.8%, and/or, in step (3), the slurry (based on the dry basis of the amorphous silicon aluminum) and the acid solution (based on the P123 The mass ratio based on the triblock copolymer is 0.5:1 to 5:1, preferably 1:1 to 5:1.
  • a molecular sieve composition comprising the DLM-1 molecular sieve according to any one of the foregoing or the following or the DLM-1 molecular sieve manufactured by the manufacturing method of any one of the foregoing or the following, and optionally a binder Agent.
  • the present invention also relates to the following aspects.
  • a method for treating organic matter which comprises combining the organic matter (preferably hydrocarbon oil) with the DLM-1 molecular sieve described in any one of the foregoing or the following, manufactured by the manufacturing method described in any one of the foregoing or the following DLM-1 molecular sieve, or the step of contacting the molecular sieve composition according to any one of the foregoing or following aspects.
  • organic matter preferably hydrocarbon oil
  • the present invention can achieve at least one of the following technical effects, preferably all of them.
  • the DLM-1 molecular sieve according to the present invention has suitable acidity, large pore volume, large specific surface area, and concentrated pore distribution, which is beneficial to the diffusion of macromolecular reactants and increases the carbon deposition resistance.
  • the DLM-1 molecular sieve according to the present invention is particularly suitable for the hydrodenitrogenation reaction of heavy distillate oil, and is beneficial to improve the activity of hydrodenitrogenation.
  • the DLM-1 molecular sieve according to the present invention belongs to the silica-alumina molecular sieve, and its Al content can reach 85%. It is evenly distributed in the form of Si-O-Al bonds, which basically eliminates the agglomeration of Al on the surface of the molecular sieve, and the pores Unblocked. This is an Al-SBA-15 molecular sieve with a new structure that has not been manufactured in the prior art.
  • the amorphous silica-alumina dry glue is directly used as the raw material, and the new structure can not only be synthesized in situ (also called in-situ crystallization) Al-SBA-15 molecular sieve, with adjustable aluminum content, adjustable acid content, and reasonable pore distribution.
  • the amorphous silica-alumina dry glue is directly used as the raw material, which can reduce the discharge of ammonia nitrogen wastewater and the amount of hydrochloric acid, shorten the process flow and reduce the production cost.
  • Figure 1 is the XRD pattern of the DLM-1 molecular sieve obtained in Example 1 of the present invention.
  • alumina and silica content uses elemental analysis methods.
  • L acid and B acid are by infrared spectroscopy
  • the instrument is Nicot Fourier Infrared Spectrometer-6700 from the United States.
  • the measurement method is as follows: Weigh 20 mg of a sample with a particle size of less than 200 meshes and press it into a diameter of 20 mm sheet, mounted in the sample holder of the absorption cell, the cup hanging 200mg sample was placed in the instrument, and connected adsorption cuvette tube, vacuuming, a vacuum degree of 4 ⁇ 10 - when 2 Pa, heated to 500 °C, maintained Take 1 hour to remove the adsorbed material on the sample surface.
  • the amount of medium strong acid is measured by the NH 3 -TPD method.
  • the instrument used is the Auto-Chem II 2920 chemical adsorption instrument from Mike Instruments.
  • ammonia gas as the absorption and desorption medium
  • helium gas as the carrier gas
  • Acid unit: mL/g is the amount of ammonia adsorbed per gram of molecular sieve.
  • the specific surface area, pore volume, and pore distribution are measured using an ASAP2405 physical adsorption instrument.
  • the measurement method is as follows: After the sample is processed, liquid N 2 is used as the adsorbate, and the adsorption temperature is -196°C for analysis and testing.
  • the specific surface area is calculated by the BET method, and the pore volume and pore distribution are calculated by the BJH method.
  • the average pore diameter is measured using the ASAP2405 physical adsorption instrument from Mike Instruments Inc. to determine the specific surface area and pore volume of the sample, and the pore diameter is calculated by the specific surface area and pore volume.
  • Liquid N2 is used as adsorbate, and the adsorption temperature is -196°C.
  • the average particle size is measured using a Mastersizer2000 laser particle size analyzer, with a measurement range of 0.02-2000 ⁇ m and a scanning speed of 1000 times/sec.
  • the XRD measurement is performed using the D/max2500 X-ray diffractometer produced by Rigaku Corporation, under the following test conditions: voltage 40KV, current 80mA, CuKa target selected, incident wavelength 0.15405nm.
  • any two or more embodiments of the present invention can be combined arbitrarily, and the technical solutions formed thereby belong to a part of the original disclosure of this specification and also fall into the protection scope of the present invention.
  • a DLM-1 molecular sieve is provided.
  • the DLM-1 molecular sieve is an SBA-15 molecular sieve with silica-alumina as the framework, and therefore belongs to the Al-SBA-15 molecular sieve.
  • the DLM-1 molecular sieve has a schematic chemical composition as shown in the formula "first oxide ⁇ second oxide", wherein the first oxide is silica, and the The second oxide is alumina.
  • first oxide is silica
  • second oxide is alumina.
  • the schematic chemical composition actually represents the anhydrous chemical composition of the molecular sieve.
  • the schematic chemical composition represents the framework chemical composition of the molecular sieve.
  • the mass percentage content of alumina in the schematic chemical composition is generally more than 10%, preferably more than 15%, more than 17%, more than 20%, 25%. % Or more or 30% or more.
  • the mass percentage content of alumina in the schematic chemical composition is generally 85% or less, preferably 82% or less, 75% or less, 65% or less or 55% or less.
  • the content of alumina can be adjusted within a wide range, for example, it can be 10%, 15%, 16%, 18%, 20%, 25%, 30%, 32%, 35%, 40%. %, 45%, 50%, 55%, 60%, 70%, 75%, etc.
  • the X-ray diffraction spectrum of the DLM-1 molecular sieve reflects the characteristic peaks of the Al-SBA-15 molecular sieve.
  • the pore distribution of the DLM-1 molecular sieve includes: the pore volume occupied by pores with a pore diameter of ⁇ 4 nm is less than 20% of the total pore volume, preferably less than 15%.
  • the pore distribution of the molecular sieve further includes: the pore volume occupied by pores with a pore diameter of 4-15 nm is 40% to 70% of the total pore volume, preferably 45% to 65%, further preferably 50% to 60%.
  • the ratio of the amount of B acid to the amount of L acid is generally less than 1, preferably less than 0.8, more preferably less than 0.5, and still more preferably less than 0.4.
  • the ratio of the amount of B acid to the amount of L acid is generally above 0.1, preferably above 0.2.
  • the amount of B acid of the DLM-1 molecular sieve is generally 0.01-0.50 mL/g, preferably 0.05-0.20 mL/g, preferably 0.09-0.16 mL/g.
  • the amount of L acid of the DLM-1 molecular sieve is generally 0.10-0.90 mL/g, preferably 0.30-0.60 mL/g, preferably 0.39-0.46 mL/g.
  • the amount of medium strong acid of the DLM-1 molecular sieve is generally 0.6 to 1.0 mL/g, preferably 0.7 to 0.9 mL/g.
  • the DLM-1 molecular sieve is generally a specific surface area of 550 to 850m 2 / g, preferably 650 to 750m 2 / g.
  • the total pore volume of the DLM-1 molecular sieve is generally 0.7 to 1.3 mL/g, preferably 0.9 to 1.2 mL/g.
  • the average pore size of the DLM-1 molecular sieve is generally 9 to 15 nm, preferably 10 to 12 nm.
  • the aforementioned DLM-1 molecular sieve of the present invention can be produced by the production method described below in this specification.
  • the method for manufacturing DLM-1 molecular sieve includes the step of contacting amorphous silica alumina (powder), P123 triblock copolymer and water under crystallization conditions to obtain a molecular sieve.
  • the amorphous silicon-aluminum is a mixed oxide powder of silicon and aluminum, and is in an amorphous form.
  • the amorphous silicon-aluminum powder can also be mixed with any desired ratio of liquid such as water to form a slurry form.
  • the amorphous silica alumina (a source of silica alumina) is directly used in powder form (covering the form of particles), and the powder is converted in situ (in situ crystallization) into the DLM-1 molecular sieve, which is completely different from the prior art providing silicon source/aluminum source (especially aluminum source) as a raw material for molecular sieves in the form of a solution (or after being converted into a solution form).
  • the P123 triblock copolymer is a polyoxyethylene-polyoxypropylene-polyoxyethylene copolymer (commercially available from Aldrich, Ma is about 5800).
  • the schematic molecular formula of the P123 triblock copolymer is generally EO 20 PO 70 EO 20 or a similar structure, which functions as a template in the present invention.
  • the crystallization temperature is generally 80 to 120°C, preferably 90 to 110°C.
  • the crystallization time is generally 10 to 35 hours, preferably 16 to 24 hours.
  • the pH control during the crystallization process is generally 2.0 to 5.0, preferably 3.2 to 4.8.
  • the alumina mass content of the amorphous silica alumina is generally 10% or more, preferably 15% or more, 17% or more, 20% or more, 25% or more, or 30% or more.
  • the alumina mass content of the amorphous silicon aluminum (dry basis) is generally 85% or less, preferably 82% or less, 75% or less, 65% or less, or 55% or less.
  • the mass content of alumina can be adjusted within a wide range, such as 10%, 15%, 16%, 18%, 20%, 25%, 30%, 32%, 35%, 40%, 45%, 50%, 55%, 60%, 70%, 75%, etc.
  • the specific surface area of amorphous silica-alumina typically from 400 to 650m 2 / g, preferably from 450 to 600m 2 / g.
  • the pore volume of the amorphous silica alumina is generally 0.52 to 1.8 mL/g, preferably 0.85 to 1.5 mL/g.
  • the average pore diameter of the amorphous silicon aluminum is generally 6 nm to 12 nm, preferably 7 nm to 10 nm.
  • the average particle size of the amorphous silica alumina is generally 15 ⁇ m to 150 ⁇ m, preferably 25 ⁇ m to 75 ⁇ m, preferably 40 ⁇ m to 60 ⁇ m.
  • the pore distribution of the amorphous silica aluminum generally includes: pore volume with a pore diameter of 4-15 nm accounts for 85% to 95% of the total pore volume. %, the pore volume with a pore diameter> 15nm accounts for less than 5% of the total pore volume.
  • the mass ratio of the amorphous silica alumina (dry basis) to the P123 triblock copolymer is generally 0.5:1 to 5: 1, preferably 1:1 to 5:1.
  • the method for manufacturing DLM-1 molecular sieve specifically includes the following steps:
  • the slurry is contacted (for example, mixed) with the acidic solution containing the P123 triblock copolymer to prepare DLM-1 molecular sieve.
  • the mass ratio of the amorphous silicon aluminum (dry basis) to water is generally 10:90 to 30:70, preferably 15:85 to 25:75.
  • the pH of the acidic solution is generally 1 to 5, preferably 1.2 to 2.3.
  • the acidic solution an acidic aqueous solution is particularly exemplified.
  • the mass content of the P123 triblock copolymer in the acidic solution or the acidic aqueous solution is generally 0.5% to 5.0%, preferably 0.8% to 2.8% .
  • the P123 triblock copolymer is added to dilute acid (such as dilute hydrochloric acid).
  • concentration of the dilute acid solution in terms of H + is generally 0.05 to 0.3 mol/L, preferably 0.1 to 0.2 mol/L, and more preferably 0.13 to 0.18 mol/L.
  • step (3) the slurry is mixed with the acidic aqueous solution containing the P123 triblock copolymer, and the slurry and the acidic aqueous solution containing the P123 triblock copolymer are mixed
  • the mass ratio of P123 triblock copolymer and amorphous silicon aluminum in the mixed system is 0.5:1 to 5:1, preferably 1:1 to 5:1, and more preferably 1:1 to 3:1.
  • the mass ratio of the slurry (calculated on the dry basis of the amorphous silica-alumina) to the acid solution (calculated on the P123 triblock copolymer) is generally 0.5 :1 to 5:1, preferably 1:1 to 5:1, more preferably 1:1 to 3:1.
  • DLM-1 molecular sieve can be separated from the obtained mixture by any conventionally known means, such as at least one of filtration, washing and drying.
  • the filtration may be suction filtration
  • the washing may be performed by using deionized water as the washing liquid
  • the drying may be 80 to 150°C, preferably 90 to 130°C
  • the drying time is 2 to 12 hours. , Preferably 3 to 6h. This drying can be performed under normal pressure.
  • the method for manufacturing DLM-1 molecular sieve may further include a step of calcining the obtained molecular sieve to remove the template and possible moisture.
  • the firing can be carried out in any manner conventionally known in the art, for example, the firing temperature is generally 450 to 600°C, preferably 480 to 580°C, and more preferably 500 to 560°C, and the firing time is 2 to 10 hours, Preferably 3 to 6 hours.
  • the firing is generally performed in an oxygen-containing atmosphere, such as air or oxygen atmosphere.
  • amorphous silica alumina dry glue is preferred.
  • dry glue refers to amorphous silica alumina with a water content of 50% by weight or less.
  • the water content of the amorphous silica-alumina dry glue is generally 20-45% by weight, preferably 25-32% by weight.
  • the average particle size of the amorphous silica-alumina dry glue is generally 15 ⁇ m to 150 ⁇ m, preferably 25 ⁇ m to 75 ⁇ m, preferably 40 ⁇ m to 60 ⁇ m.
  • the amorphous silicon-aluminum dry glue can be manufactured by a carbonization method.
  • the carbonization method the following steps may be included in particular.
  • Step a Prepare sodium aluminate solution and sodium silicate solution separately.
  • Step b Add part or all of the sodium silicate solution to the sodium aluminate solution, and then pass CO 2 gas, control the reaction temperature to be 10 to 40°C, preferably 15 to 35°C, and control the pH of the gel to be 8 to 11; Wherein when the amount of CO 2 gas introduced accounts for 40% to 100% of the total amount of gas introduced, preferably 50% to 80%, add the remaining sodium silicate solution.
  • Step c Under the controlled temperature and pH value of step b, the above mixture is ventilated and stabilized for 10 to 30 minutes.
  • Step d filter the solid-liquid mixture obtained in step c, and wash the filter cake.
  • Step e beating the filter cake obtained in step d, then performing hydrothermal treatment, filtering and drying to obtain the amorphous silica-alumina dry glue.
  • the hydrothermal treatment conditions include, for example, treatment at 120 to 150° C. and a water vapor pressure of 0.5 to 4.0 MPa for 2 to 10 hours.
  • the concentration of the sodium aluminate solution is 15 to 55 gAl 2 O 3 /L, and may further be 15 to 35 gAl 2 O 3 /L, and the concentration of the sodium silicate solution is 50 to 200 g SiO 2 /L, and further 50 to 150 g SiO 2 /L.
  • step b part or all of the sodium silicate solution is added, that is, 5 wt% to 100 wt% of the total sodium silicate solution added.
  • concentration of the CO 2 gas is 30% to 60%. Ventilate and stir during the gel forming process in step b.
  • the step b can be carried out in one of the following ways or a combination: (1) After adding all the sodium silicate to the sodium aluminate, the CO 2 gas is introduced; (2) After adding part of the sodium silicate to the sodium aluminate, let in all the CO 2 gas, and then add the remaining sodium silicate solution to the mixture; (3) After adding part of the sodium silicate to the sodium aluminate, let in part of the CO 2 Add the remaining sodium silicate solution while passing CO 2 gas.
  • the slurry obtained in step d is filtered and washed with deionized water at 50 to 95° C. to near neutrality.
  • the filter cake obtained in step e has a solid-liquid volume ratio of 8:1 to 12:1, and water is added for beating.
  • the drying described in step e can be carried out by a conventional method, and can be dried at 110 to 130°C for 6 to 8 hours.
  • the DLM-1 molecular sieve provided by the present invention can be applied in any physical form, such as powder, granular or molded product (such as strips, clover, etc.). These physical forms can be obtained in any manner conventionally known in the art, and are not particularly limited.
  • the present invention also relates to a molecular sieve composition
  • a molecular sieve composition comprising the aforementioned DLM-1 molecular sieve or the DLM-1 molecular sieve manufactured according to the aforementioned DLM-1 molecular sieve manufacturing method.
  • the molecular sieve composition may also contain other materials, such as at least one selected from active materials and inactive materials, especially inactive materials.
  • the active material it can be other molecular sieves, amorphous silica alumina, macroporous alumina, etc., or it can be an active metal component.
  • the inactive material generally referred to as a binder
  • clay, alumina, silica gel, etc. may be used as the dosage of the other materials.
  • the present invention also relates to a method for treating organic matter, which includes combining the organic matter with the aforementioned DLM-1 molecular sieve, the DLM-1 molecular sieve produced by the aforementioned manufacturing method, or The aforementioned step of contacting the molecular sieve composition.
  • adsorption separation and conversion reaction can be cited.
  • organic matter hydrocarbon oils, particularly heavy distillate oils, can be particularly cited.
  • the molecular sieve or molecular sieve composition of the present invention is particularly suitable for use as an adsorbent for the adsorption separation, for example, to separate at least one component from a mixture of multiple components in the gas or liquid phase. Species of components.
  • the molecular sieve or molecular sieve composition of the present invention is particularly suitable for use as a catalyst or an active component of the catalyst in the conversion reaction of hydrocarbon oil.
  • the conversion reaction of the hydrocarbon oil include hydrotreating and hydrocracking.
  • the hydrocarbon oil it is particularly heavy distillate oil.
  • the hydrotreating reaction conditions such as may include: total reactor pressure 3.0MPa-18.0MPa, when the volume of the liquid space velocity of 0.2h -1 -4.0h -1, the hydrogen oil volume The ratio is 200:1-2000:1, and the reaction temperature is 230°C-430°C.
  • the total reaction pressure is 8.0 MPa to 18.0 MPa
  • the liquid hourly volumetric space velocity is 0.2 h -1 to 4.0 h -1
  • the volume of hydrogen oil is 8.0 MPa to 18.0 MPa.
  • the ratio is 500:1-2000:1
  • the reaction temperature is 280°C-440°C.
  • the molecular sieve or molecular sieve composition of the present invention is particularly suitable for use as a carrier or carrier component of a catalyst, and the active component is loaded thereon according to any method conventionally known in the art (such as a solution impregnation method). Minute.
  • active components include but are not limited to active metal components (including Ni, Co, Mo, W or Cu, etc.), active inorganic additives (such as F, P, etc.) and organic compounds (such as organic acids, organic amines, etc.), etc. .
  • active ingredients can be used alone or in combination of multiple in any ratio.
  • the amount of the active component you can directly refer to the conventional amount in this field, and there is no particular limitation.
  • amorphous silicon-aluminum dry glue A1 and its slurry the concentration of sodium aluminate solution is 20gAl 2 O 3 /L, the concentration of sodium silicate solution is 100g SiO 2 /L, and 0.25L of sodium aluminate solution is put into the gel tank Then add 0.35L of sodium silicate solution, control the reaction temperature to 20°C, and pass in CO 2 gas with a concentration of 40v%. When the CO 2 gas accounts for 50% of the total inflow, add 0.50L of silicon while ventilating Sodium solution, control the gel pH to 9.5, then ventilate and stabilize for 20 minutes, filter the slurry and wash it with 65°C deionized water until it is neutral.
  • the filter cake is made into a slurry with water at a solid-liquid volume ratio of 10:1, at 130°C, Treated under 3.5MPa water vapor pressure for 2 hours, dried at 120°C for 6 hours, crushed and sieved to obtain amorphous silicon-alumina product A1.
  • amorphous silicon-aluminum dry adhesive A1 are shown in Table 1. Mix the manufactured amorphous silica-alumina A1 with deionized water and beating to form a slurry; wherein the mass ratio of the amorphous silica-alumina dry glue to water is 20:80;
  • step (3) Mix the slurry produced in step (1) with the acidic aqueous solution containing P123 triblock copolymer prepared in step (2); after crystallization, filtration, drying and roasting, DLM-1 molecular sieve is prepared, numbered AS -1.
  • the mass ratio of P123 triblock copolymer and amorphous silicon-aluminum in the mixed system is 1.2:1, the crystallization temperature is 90°C, and the crystallization time is 20h; the pH during the crystallization process is controlled as 3.3.
  • the drying temperature is controlled at 100°C, the drying time is 3h, the calcination temperature is controlled at 550°C, and the calcination time is 3h.
  • the XRD pattern of the DLM-1 molecular sieve manufactured in Example 1 is shown in Figure 1, showing the characteristic peaks of the Al-SBA-15 molecular sieve.
  • amorphous silicon-aluminum dry glue A2 and slurry sodium aluminate solution concentration 25gAl 2 O 3 /L, sodium silicate solution concentration 50gSiO 2 /L, take 0.4L sodium aluminate solution and put it in the gel tank Then add 0.6L of sodium silicate solution, control the reaction temperature to 22°C, and pass in CO 2 gas with a concentration of 35v%.
  • CO 2 gas accounts for 50% of the total inflow, add 0.2L of silicon while ventilating Sodium solution, control the gel pH to 9.5, then ventilate and stabilize for 20 minutes, filter the slurry and wash it with 75°C deionized water until it is neutral.
  • the filter cake is made into a slurry with water at a solid-liquid volume ratio of 8:1, at 120°C, Treated under 3.0MPa water vapor pressure for 2 hours, dried at 120°C for 8 hours, crushed and sieved to obtain amorphous silica-alumina product A2.
  • amorphous silica-alumina dry glue A2 are shown in Table 1. Mix the manufactured amorphous silica-alumina A2 with deionized water and beating to form a slurry; wherein the mass ratio of the amorphous silica-alumina dry glue to water is 22:78;
  • step (3) Mix the slurry produced in step (1) with the acidic aqueous solution containing P123 triblock copolymer prepared in step (2); after crystallization, filtration, drying and roasting, DLM-1 molecular sieve is prepared, numbered AS -2.
  • the mass ratio of P123 triblock copolymer and amorphous silicon-aluminum in the mixed system is 1.7:1, the crystallization temperature is 100°C, and the crystallization time is 22h; the pH control during the crystallization process is 3.5.
  • the drying temperature is controlled at 110°C, the drying time is 4 hours, the calcination temperature is controlled at 520°C, and the calcination time is 3.5 hours.
  • amorphous silicon-aluminum dry glue A3 and slurry sodium aluminate solution concentration 20gAl 2 O 3 /L, sodium silicate working solution concentration 75gSiO 2 /L, take 1.25L sodium aluminate solution and put it in the gel tank Then add 0.5L sodium silicate solution, control the reaction temperature to 32°C, and pass in CO 2 gas with a concentration of 52v%.
  • amorphous silica-alumina dry adhesive A3 are shown in Table 1. Mix the manufactured amorphous silica-alumina A3 with deionized water and beating to form a slurry; wherein the mass ratio of the amorphous silica-alumina dry glue to water is 25:75;
  • step (3) Mix the slurry produced in step (1) with the acidic aqueous solution containing P123 triblock copolymer prepared in step (2); after crystallization, filtration, drying and roasting, DLM-1 molecular sieve is prepared, numbered AS -3.
  • the mass ratio of P123 triblock copolymer and amorphous silicon-aluminum in the mixed system is 2:1, the crystallization temperature is 93°C, and the crystallization time is 18h; the pH during the crystallization process is controlled as 4.1.
  • the drying temperature is controlled at 120°C, the drying time is 4 hours, the calcination temperature is controlled at 530°C, and the calcination time is 5 hours.
  • amorphous silicon-aluminum dry glue A4 Manufacture of amorphous silicon-aluminum dry glue A4 and manufacture of slurry: sodium aluminate solution concentration 28gAl 2 O 3 /L, sodium silicate solution concentration 90gSiO 2 /L, take 0.85L sodium aluminate solution and put it into gel Then add 0.58L sodium silicate solution to the tank, control the reaction temperature to 35°C, and pass in the CO 2 gas with a concentration of 60v%, stop when the pH value reaches 9.5, and then ventilate and stabilize for 20 minutes, wash to neutral, filter cake The solid-liquid volume ratio is 8:1 and water is added to make slurry, treated at 130°C and 3.2MPa steam pressure for 2.5 hours, dried at 130°C for 8 hours, crushed and sieved to obtain amorphous silicon-alumina product A4.
  • amorphous silica-alumina dry adhesive A4 The properties of amorphous silica-alumina dry adhesive A4 are shown in Table 1. Mix the manufactured amorphous silica-alumina A4 with deionized water and beating to form a slurry; wherein the mass ratio of the amorphous silica-alumina dry glue to water is 18:82;
  • step (3) Mix the slurry prepared in step (1) with the acidic aqueous solution containing P123 triblock copolymer prepared in step (2); after crystallization, filtration, drying and roasting, DLM-1 molecular sieve is prepared, numbered AS -4.
  • the mass ratio of P123 triblock copolymer and amorphous silicon-aluminum in the mixed system is 2.5:1, the crystallization temperature is 98°C, and the crystallization time is 20h; the pH control during the crystallization process is 4.3.
  • the drying temperature is controlled at 120°C, the drying time is 5h, the calcination temperature is controlled at 540°C, and the calcination time is 5h.
  • the filter cake is made into slurry with water at a volume ratio of 10:1, treated at 130°C and 3.5MPa water vapor pressure for 2 hours, dried at 120°C for 6 hours, crushed and sieved to obtain an amorphous shape.
  • Silicon aluminum product A5. The properties of amorphous silica-alumina dry adhesive A5 are shown in Table 1. Mix the manufactured amorphous silica-alumina A5 with deionized water and beating to form a slurry; wherein the mass ratio of the amorphous silica-alumina dry glue to water is 22:78;
  • step (3) Mix the slurry produced in step (1) with the acidic aqueous solution containing P123 triblock copolymer prepared in step (2); after crystallization, filtration, drying and roasting, DLM-1 molecular sieve is prepared, numbered AS -5.
  • the mass ratio of P123 triblock copolymer and amorphous silicon-aluminum in the mixed system is 1.5:1, the crystallization temperature is 95°C, and the crystallization time is 22h; the pH during the crystallization process is controlled to be 3.4.
  • the drying temperature is controlled at 110°C, the drying time is 4h, the calcination temperature is controlled at 550°C, and the calcination time is 3h.
  • the filter cake is made into slurry with water at a volume ratio of 11:1, treated at 120°C and 3.5MPa water vapor pressure for 2 hours, dried at 120°C for 6 hours, crushed and sieved to obtain an amorphous shape.
  • Silicon aluminum product A6 The properties of amorphous silica-alumina dry adhesive A6 are shown in Table 1. Mix the manufactured amorphous silica-alumina A6 with deionized water and beating to form a slurry; wherein the mass ratio of the amorphous silica-alumina dry glue to water is 24:76;
  • step (3) Mix the slurry produced in step (1) with the acidic aqueous solution containing P123 triblock copolymer prepared in step (2); after crystallization, filtration, drying and roasting, DLM-1 molecular sieve is prepared, numbered AS -6.
  • the mass ratio of P123 triblock copolymer and amorphous silicon-aluminum in the mixed system is 2.2:1, the crystallization temperature is 100°C, and the crystallization time is 19h; the pH control during the crystallization process is 3.3.
  • the drying temperature is controlled at 110°C, the drying time is 5 hours, the calcination temperature is controlled at 550°C, and the calcination time is 4 hours.
  • the kaolin was roasted and activated at 700°C for 4h, 12g of roasted kaolin was weighed and treated with 6mol/L hydrochloric acid for 4h, then deionized water was filtered and washed to neutrality and dried; the dried sample was at 900°C Calcined for 2h; then put it into 5mol/L NaOH alkali solution, react for 3h under high temperature and high pressure (temperature is 160°C, pressure is 0.5MPa), after the reaction is completed, adjust its pH value to 14.0.
  • the mass of template P123 is 5.5g and the mass of ethyl orthosilicate is 10.2g; the template and silicon source are added to HCl with a pH of 2.8 In the solution, fully stirred at 28°C for 30h; the stirred mixture was allowed to stand at 120°C for 20h to crystallize, washed with deionized water, and dried to obtain SBA-15.
  • the obtained SBA-15 molecular sieve was beaten to a solid-liquid ratio of 1:10, and then added to a hydrochloric acid solution containing 23g aluminum isopropoxide, heated to 100°C, stirred for 20h, filtered and washed, dried at 60°C overnight, After calcining for 5 hours, the mesoporous material AS-11 was obtained.
  • the properties are shown in Table 2.
  • the A-S-1 manufactured in Example 1 is used to manufacture the hydroprocessing catalyst carrier and catalyst:
  • alumina dry rubber powder (specific surface area is 313m 2 /g, pore volume is 1.12mL/g, average pore diameter is 14nm), 9.5g molecular sieve AS-1, 4g sesbania powder, add nitric acid and citric acid 115mL of the aqueous solution (the amount of nitric acid is 8.3g, the amount of citric acid is 3.5g), kneaded, rolled and extruded, dried at 120°C for 4 hours, and calcined at 550°C for 4 hours to obtain the final alumina carrier containing molecular sieve , Number Z1.
  • Impregnate Z1 with an equal volume of impregnation solution containing Mo, Ni, and P, dry at 140°C for 3 hours, and calcinate at 450°C for 2 hours.
  • the finally obtained catalyst is denoted as C-1.
  • the content of molybdenum oxide was 22.0% by weight
  • the content of nickel oxide was 3.57% by weight
  • the content of phosphorus oxide was 1.20% by weight.
  • the catalyst activity evaluation experiment for catalyst C-1 was specifically carried out on a 100mL small hydrogenation unit, and the catalyst was presulfided before evaluation.
  • the catalyst evaluation conditions were as follows: the total reaction pressure was 14.5 MPa, the liquid hourly volumetric space velocity was 1.1 h -1 , the hydrogen-to-oil volume ratio was 750:1, and the reaction temperature was 375°C.
  • the properties of the raw oil are shown in 3, and the results of the activity evaluation are shown in Table 4.
  • the A-S-3 manufactured in Example 3 is used to manufacture the hydroprocessing catalyst carrier and catalyst:
  • alumina dry rubber powder (specific surface area is 328m 2 /g, pore volume is 1.11mL/g, average pore diameter is 13.5nm), 7.5g AS-3 molecular sieve, 4g sesbania powder, add nitric acid and lemon 120mL of acid aqueous solution (the amount of nitric acid is 7.8g, the amount of citric acid is 3.8g), kneaded, rolled and extruded, dried at 120°C for 3 hours, and calcined at 550°C for 4 hours to obtain the final molecular sieve-containing alumina Carrier, number Z2.
  • Z2 was impregnated with an impregnating solution containing Mo, Ni, and P in an equal volume, dried at 130°C for 3 hours, and calcined at 460°C for 3 hours.
  • the finally obtained catalyst was denoted as C-2.
  • the content of molybdenum oxide was 22.1 wt%
  • the content of nickel oxide was 3.45 wt%
  • the content of phosphorus oxide was 1.19 wt%.
  • the preparation of the support and the catalyst is the same as in Example 7, except that AS-7 to AS-11 manufactured in Comparative Example 1 to Comparative Example 5 are used to replace AS-1 in Example 7 to obtain the support Z3-Z7, respectively. C-3 to C-7.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)
  • Nanotechnology (AREA)

Abstract

一种DLM-1分子筛、所述分子筛的制造方法及其在有机物处理中的应用。所述DLM-1分子筛是Al-SBA-15分子筛,具有如式"第一氧化物·第二氧化物"所示的示意性化学组成,其中所述第一氧化物为二氧化硅,所述第二氧化物为氧化铝,氧化铝在所述示意性化学组成中所占的质量百分比含量为2%至85%。所述的DLM-1分子筛特别适用于重质馏分油加氢脱氮反应,有利于提高加氢脱氮的活性。

Description

一种DLM-1分子筛及其制造方法和应用 技术领域
本发明涉及一种介孔分子筛,特别是一种DLM-1分子筛,属于Al-SBA-15分子筛。本发明还涉及所述分子筛的制造方法及其在有机物处理中的应用。
背景技术
根据国际纯粹和应用化学联合会(IUPAC)定义,孔径位于2至50nm的材料为介孔材料。1992年Mobil公司的科研人员首次使用烷基季铵盐为模板剂合成出M41S系列氧化硅基介孔材料。20世纪末,赵东元等(Zhao DongYuan,et al.Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrompores[J].Science,1998,279(5350):548-552.)首次提出采用三嵌段共聚物(P123)为模板剂,以正硅酸乙酯、正硅酸甲酯、正硅酸丁酯为硅源,在酸性环境中合成新型有序SiO 2介孔材料即SBA-15分子筛。它是一种高度有序平面六方相结构,具有二维六方孔道,孔径在5至30nm之间,孔壁厚度在3至6nm之间,孔道间有微孔相连的介孔材料,在其内表面存在大量的硅羟基。
SBA-15分子筛是纯硅型有序介孔沸石材料,几乎没有酸性,稳定性较差,这限制了其在石油化工领域的工业应用。目前通常采用引入杂原子的方法对SBA-15分子筛进行改性,其中SBA-15分子筛中引入铝原子以合成Al-SBA-15分子筛是最常用的改性方法之一。
通常,合成Al-SBA-15分子筛的方法主要有两种,即直接合成补铝和后处理嫁接法。在直接合成法中,在强酸性合成介质中,Al原子主要以阳离子形式存在,很难与SBA-15孔壁中的硅羟基物种直接聚合而以显著量进入其骨架中,Al原子不能很好分散在SBA-15中,多数以团聚形式存在,致使通过直接法合成的SBA-15中Al原子的引入效率很低。与直接合成法相比,后处理嫁接的方法虽可引入更多量的Al原子,但该合成方法过程较繁琐,且容易在材料孔道内部或外表面产生一些氧化铝的副产物,从而造成材料孔道堵塞,比表面积和孔体积显著降低,成为催化反应的不利因素。
CN104016369A公开了一种以高岭土为原料制备Al-SBA-15分子筛的方法。CN108946754A公开了一种以粉煤灰酸法提铝残渣作为原料制备含铝的SBA-15的方法。上述两种方法先是将高岭土或粉煤灰中的硅源和铝源提取出来,然后再作为SBA-15分子筛的合成原料,这样一方面容易引入其他杂质,另一方面仍存在常规直接合成补铝法的缺点。
发明内容
本发明的发明人发现,在现有技术所制造的Al-SBA-15分子筛中,铝很难以显著量进入分子筛的骨架结构,或者为了使铝以一定量进入分子筛骨架,则必须以更多量的铝附着在分子筛骨架外围(通常是分散在分子筛的孔道内表面)作为代价。具体而言,根据现有技术所制造的Al-SBA-15分子筛,在铝含量较低(比如氧化铝在分子筛化学组成中所占的质量百分比含量低于7重量%)的情况下,这类铝尚且能够实现在分子筛孔道内的高度分散而使得分子筛在整体上表现出规整的介孔结构,但是随着铝含量的增加(比如高于7重量%,特别是高于15重量%时),这类铝开始在分子筛的孔道上局部或全面堆积,导致分子筛的孔道迅速缩小(一般表现为孔直径<4nm的小孔所占的比例迅速增加)甚至堵塞,分子筛的介孔结构的规整性相应降低甚至完全消失。为此,本发明的发明人通过刻苦的研究,发现了DLM-1分子筛,并基于该发现而完成了本发明。
本发明的发明人通过研究发现,所述DLM-1分子筛表现出Al-SBA-15分子筛的XRD谱图,属于Al-SBA-15分子筛。在不受任何理论限制的情况下,本发明的发明人认为,在本发明的DLM-1分子筛中,铝基本上进入了分子筛的骨架结构,由此即使是在铝含量非常高(比如氧化铝在分子筛化学组成中所占的质量百分比含量高于7重量%、甚至比如达到85重量%)的情况下,分子筛仍然显示出介孔结构的规整性。该规整性一般可以用分子筛的孔分布(特别是孔直径<4nm的孔的孔容比例)进行表征。作为佐证,根据本发明的DLM-1分子筛,即使氧化铝在分子筛化学组成中所占的质量百分比含量在2%至85%之间广泛变化,孔直径<4nm的孔所占的孔容仍然为总孔容的20%以下,保持了介孔结构的完整性和规整性,这是现有技术所制造的Al-SBA-15分子筛所不具备的。因此,本发明的DLM-1分子筛是一种新型结构的Al-SBA-15分子 筛。
具体而言,本发明涉及以下方面的内容。
1.一种Al-SBA-15分子筛,其中,孔分布包括:孔直径<4nm的孔所占的孔容为总孔容的20%以下,优选15%以下;所述分子筛中,B酸与L酸的比值在1以下。
2.根据前述或后述任一方面所述的分子筛,其特征在于,所述分子筛中,B酸与L酸的比值在0.8以下,进一步在0.5以下,还进一步在0.4以下;所述分子筛中B酸与L酸的比值在0.1以上,进一步在0.2以上。
3.根据前述或后述任一方面所述的分子筛,其特征在于,所述分子筛中,中强酸酸量为0.6-1.0mL/g,优选0.7-0.9mL/g。
4.根据前述或后述任一方面所述的分子筛,其特征在于,所述分子筛中,氧化铝的质量含量为2%-85%,优选5%-82%。
5.根据前述或后述任一方面所述的分子筛,其特征在于,所述分子筛的孔分布还包括:孔直径为4-15nm的孔所占的孔容为总孔容的40%-70%,优选45%-65%,进一步优选为50%-60%。
6.根据前述或后述任一方面所述的分子筛,其特征在于,所述分子筛的性质如下:比表面积为550-850m 2/g,优选为650-750m 2/g,总孔容为0.7-1.3mL/g,优选为0.9-1.2mL/g。
7.前述或后述任一方面所述的分子筛的制备方法,包括:以无定形硅铝干胶为原料,采用P123三嵌段共聚物为模板剂合成Al-SBA-15分子筛。
8.根据前述或后述任一方面所述的方法,其特征在于,所述无定形硅铝干胶的性质如下:比表面积为400-650m 2/g,孔容为0.52-1.8mL/g,孔分布如下:孔直径为4-15nm的孔容占总孔容的85%-95%,孔直径>15nm的孔容占总孔容的5%以下。
9.根据前述或后述任一方面所述的方法,其特征在于,所述Al-SBA-15分子筛的制备方法,包括:
(1)将无定形硅铝干胶和水混合形成浆液;
(2)配制含有P123三嵌段共聚物的酸性溶液;
(3)将步骤(1)制备的浆液与步骤(2)配制的含有P123三嵌段共聚物的酸性溶液混合,经过晶化,制得Al-SBA-15分子筛。
10.根据前述或后述任一方面所述的方法,其特征在于,步骤(1)中所述的无定形硅铝干胶与水的质量比为10:90-30:70,优选15:85-25:75。
11.根据前述或后述任一方面所述的方法,其特征在于,步骤(2)中所述酸性水溶液的pH为1-5,优选1.2-2.3,所述酸性水溶液中P123三嵌段共聚物的质量含量为0.5%-5.0%,优选0.8%-2.8%。
12.根据前述或后述任一方面所述的方法,其特征在于,步骤(2)中将P123三嵌段共聚物加入到稀酸中,所述的稀酸溶液的浓度以H+计为0.05-0.3mol/L,优选0.1-0.2mol/L;步骤(2)中,温度体系控制为10-60℃,优选20-40℃。
13.根据前述或后述任一方面所述的方法,其特征在于,步骤(3)中将步骤(1)制备的浆液同步骤(2)配制的含有P123三嵌段共聚物的酸性水溶液混合,步骤(1)制备的浆液和步骤(2)配制的含有P123三嵌段共聚物的酸性水溶液的量以混合后的体系中P123三嵌段共聚物和无定形硅铝的质量比为0.5:1-5:1,优选1:1-5:1。
14.根据前述或后述任一方面所述的方法,其特征在于,步骤(3)中所述的晶化温度为80-120℃,优选90-110℃;晶化时间为10-35h,优选16-24h;晶化过程中pH控制为2.0-5.0,优选3.2-4.8。
15.一种催化剂组合物,包括前述或后述任一方面所述的Al-SBA-15分子筛,或者为前述或后述任一方面所述方法制备的Al-SBA-15分子筛。
另外,本发明还涉及以下方面的内容。
1.一种DLM-1分子筛,是Al-SBA-15分子筛,具有如式“第一氧化物·第二氧化物”所示的示意性化学组成,其中所述第一氧化物为二氧化硅,所述第二氧化物为氧化铝,氧化铝在所述示意性化学组成中所占的质量百分比含量为10%以上(优选15%以上、17%以上、20%以上、25%以上或者30%以上),并且为85%以下(优选82%以下、75%以下、65%以下或者55%以下)。
2.根据前述或后述任一方面所述的分子筛,其中在所述分子筛中,B酸量为0.01-0.50mL/g(优选0.05-0.20mL/g或0.09-0.16mL/g),和/或,L酸量为0.10-0.90mL/g(优选0.30-0.60mL/g或0.39-0.46mL/g),和/或,B酸与L酸的比值在1以下,优选在0.8以下,进一步优选在0.5以下,还进一步优选在0.4以下,并且B酸与L酸的比值在0.1以上,优选在0.2以上。
3.根据前述或后述任一方面所述的分子筛,其中所述分子筛的孔分布包括:孔直径<4nm的孔所占的孔容为总孔容的20%以下,优选15%以下,优选所述分子筛的孔分布还包括:孔直径为4-15nm的孔所占的孔容为总孔容的40%至70%,优选45%至65%,进一步优选为50%至60%。
4.根据前述或后述任一方面所述的分子筛,其中所述分子筛的中强酸酸量为0.6至1.0mL/g,优选0.7至0.9mL/g。
5.根据前述或后述任一方面所述的分子筛,其中所述分子筛的比表面积为550至850m 2/g,优选为650至750m 2/g,和/或,所述分子筛的总孔容为0.7至1.3mL/g,优选为0.9至1.2mL/g,和/或,所述分子筛的平均孔径为9至15nm,优选10至12nm。
6.一种制造DLM-1分子筛的方法,包括在晶化条件下使无定形硅铝(优选无定形硅铝干胶)(粉末)、P123三嵌段共聚物和水接触而获得分子筛的步骤;和任选地,焙烧所述获得的分子筛的步骤。
7.根据前述或后述任一方面所述的方法,其中所述晶化条件至少包括:晶化温度为80至120℃,优选90至110℃;晶化时间为10至35h,优选16至24h;晶化过程中pH控制为2.0至5.0,优选3.2至4.8。
8.根据所述的方法,其中所述无定形硅铝(干基)的氧化铝质量含量为10%以上(优选15%以上、17%以上、20%以上、25%以上或者30%以上),并且为85%以下(优选82%以下、75%以下、65%以下或者55%以下),和/或,所述无定形硅铝的比表面积为400至650m 2/g,优选450至600m 2/g,和/或,所述无定形硅铝的孔容为0.52至1.8mL/g,优选0.85至1.5mL/g,和/或,所述无定形硅铝的平均孔径为6nm至12nm,优选7nm至10nm,和/或,所述无定形硅铝的平均粒度为15μm至150μm,优选25μm至75μm,优选40μm至60μm,和/或,所述无定形硅铝的孔分布包括:孔直径为4-15nm的孔容占总孔容的85%至95%,孔直径>15nm的孔容占总孔容的5%以下,和/或,所述无定形硅铝的含水量为20-45重量%,优选25-32重量%,和/或,所述无定形硅铝(干基)与所述P123三嵌段共聚物的质量比为0.5:1至5:1,优选1:1至5:1。
9.根据前述或后述任一方面所述的方法,包括:
(1)将所述无定形硅铝(粉末)和水混合形成浆液,
(2)配制含有P123三嵌段共聚物的酸性溶液(优选酸性水溶液),和
(3)在所述晶化条件下,使所述浆液与所述含有P123三嵌段共聚物的酸性溶液接触(比如混合),制得DLM-1分子筛。
10.根据前述或后述任一方面所述的方法,其中在步骤(1)中,所述无定形硅铝(干基)与水的质量比为10:90至30:70,优选15:85至25:75,和/或,在步骤(2)中,所述酸性溶液的pH为1至5,优选1.2至2.3,所述酸性溶液中所述P123三嵌段共聚物的质量含量为0.5%至5.0%,优选0.8%至2.8%,和/或,在步骤(3)中,所述浆液(以所述无定形硅铝的干基计)与所述酸性溶液(以所述P123三嵌段共聚物计)的质量比为0.5:1至5:1,优选1:1至5:1。
11.一种分子筛组合物,包括前述或后述任一方面所述的DLM-1分子筛或通过前述或后述任一方面所述的制造方法制造的DLM-1分子筛、以及任选的粘结剂。
再者,本发明还涉及以下方面的内容。
1.一种有机物的处理方法,包括使所述有机物(优选烃油)与前述或后述任一方面所述的DLM-1分子筛、通过前述或后述任一方面所述的制造方法制造的DLM-1分子筛、或者前述或后述任一方面所述的分子筛组合物接触的步骤。
2.根据前述或后述任一方面所述的处理方法,其中所述处理选自吸附分离、加氢处理和加氢裂化。
3.前述或后述任一方面所述的Al-SBA-15分子筛,或者为前述或后述任一方面所述方法制备的Al-SBA-15分子筛,或者前述或后述任一方面所述的催化剂组合物在加氢催化剂中的应用。
技术效果
同现有技术相比,本发明能够实现如下技术效果中的至少一个,优选全部实现。
(1)根据本发明的DLM-1分子筛,酸性适宜,孔容、比表面积大,并且孔分布集中,有利于大分子反应物的扩散,抗积碳能力增加。
(2)根据本发明的DLM-1分子筛,特别适用于重质馏分油加氢脱氮反应,有利于提高加氢脱氮的活性。
(3)根据本发明的DLM-1分子筛,属于硅铝分子筛,其Al量最高可达85%, 以Si-O-Al键的形式均匀分布,基本上消除了Al在分子筛表面的团聚,孔道畅通。这是现有技术未曾制造过的新型结构的Al-SBA-15分子筛。
(4)根据本发明的DLM-1分子筛制造方法,在优选的情况下,直接以无定形硅铝干胶为原材料,不仅可以原位合成(也称为原位晶化)出该新型结构的Al-SBA-15分子筛,而且铝量可调、酸量可调、孔分布合理。
(5)根据本发明的DLM-1分子筛制造方法,在优选的情况下,直接以无定形硅铝干胶为原材料,能够减少氨氮废水排放和盐酸用量,缩短工艺流程、降低生产成本。
附图说明
图1为本发明实施例1得到的DLM-1分子筛的XRD图谱。
具体实施方式
下面对本发明的具体实施方式进行详细说明,但是需要指出的是,本发明的保护范围并不受这些具体实施方式的限制,而是由附录的权利要求书来确定。
本说明书提到的所有出版物、专利申请、专利和其它参考文献全都引于此供参考。除非另有定义,本说明书所用的所有技术和科学术语都具有本领域技术人员常规理解的含义。在有冲突的情况下,以本说明书的定义为准。
当本说明书以词头“本领域技术人员公知”、“现有技术”或其类似用语来导出材料、物质、方法、步骤、装置或部件等时,该词头导出的对象涵盖本申请提出时本领域常规使用的那些,但也包括目前还不常用,却将变成本领域公认为适用于类似目的的那些。
本说明书的上下文中,氧化铝和二氧化硅含量的测定采用元素分析方法。
本说明书的上下文中,L酸和B酸的测定是采用红外光谱法,仪器是采用美国Nicot傅里叶红外光谱仪-6700,测定方法如下:称取粒度小于200目的样品20mg压成直径为20mm的薄片,装在吸收池的样品架上,将200mg样品放入仪器吊杯中,连接好吸收池和吸附管,抽真空处理,真空度达到4×10 - 2Pa时,升温至500℃,保持1小时,以除去样品表面吸附物,降至室温后, 吸附吡啶至饱和,继续升温至160℃,平衡1小时,脱附物理吸附的吡啶,进而可得到红外总酸、B酸和L酸的含量(酸量)。这些酸量的单位为mmol/L。
本说明书的上下文中,中强酸酸量是采用NH 3-TPD方法测得。采用仪器为麦克仪器公司Auto-Chem II 2920型化学吸附仪。采用氨气作为吸脱附介质,氦气作为载气,采用程序升温脱附和色谱分析得到不同脱附温度区的酸量,其中中强酸的酸量对应的氨气脱附温度为250至400℃,酸量单位:mL/g即每克分子筛吸附的氨气量。
本说明书的上下文中,比表面积、孔容和孔分布是采用ASAP2405物理吸附仪测定,测定方法如下:样品经过处理后,液态N 2作吸附质,吸附温度为-196℃,进行分析测试。比表面积按BET法计算而得,孔容和孔分布是根据BJH法计算而得。
本说明书的上下文中,平均孔径的测量采用美国麦克仪器公司ASAP2405型物理吸附仪测定试样的比表面积及孔体积,通过比表面积和孔容计算孔径。液态N2作吸附质,吸附温度为-196℃。
本说明书的上下文中,平均粒度的测量是采用Mastersizer2000激光粒度分析仪进行测量,测量范围在0.02-2000μm,扫描速度1000次/秒。
本说明书的上下文中,XRD的测量是采用日本理学公司生产的D/max2500型X光衍射仪,测试条件如下:电压40KV,电流80mA,选用CuKa靶,入射波长0.15405nm。
在没有明确指明的情况下,本说明书内所提到的所有百分数、份数、比率等都是以重量为基准的,而且压力是表压。
在本说明书的上下文中,本发明的任何两个或多个实施方式都可以任意组合,由此而形成的技术方案属于本说明书原始公开内容的一部分,同时也落入本发明的保护范围。
(一)DLM-1分子筛
根据本发明的一个实施方式,提供了一种DLM-1分子筛。所述DLM-1分子筛是以硅铝为骨架的SBA-15分子筛,因此属于Al-SBA-15分子筛。
根据本发明的一个实施方式,所述DLM-1分子筛具有如式“第一氧化物·第二氧化物”所示的示意性化学组成,其中所述第一氧化物为二氧化硅,所述第二氧化物为氧化铝。已知的是,分子筛中有时会(尤其是在刚合成之后) 含有一定量的水分,但本发明认为并没有必要对该水分的量进行特定,因为该水分的存在与否并不会实质上影响该分子筛的XRD谱图。鉴于此,该示意性化学组成实际上代表的是该分子筛的无水化学组成。而且,显然的是,该示意性化学组成代表的是所述分子筛的骨架化学组成。
根据本发明的一个实施方式,在所述分子筛中,氧化铝在所述示意性化学组成中所占的质量百分比含量一般为10%以上,优选15%以上、17%以上、20%以上、25%以上或者30%以上。另外,在所述分子筛中,氧化铝在所述示意性化学组成中所占的质量百分比含量一般为85%以下,优选82%以下、75%以下、65%以下或者55%以下。或者,在所述分子筛中,氧化铝的含量可以在宽范围内调整,比如可以为10%,15%,16%,18%,20%,25%,30%,32%,35%,40%,45%,50%,55%,60%,70%,75%等。
根据本发明的一个实施方式,所述DLM-1分子筛的X射线衍射谱图反映出Al-SBA-15分子筛的特征峰。
根据本发明的一个实施方式,所述DLM-1分子筛的孔分布包括:孔直径<4nm的孔所占的孔容为总孔容的20%以下,优选15%以下。优选的是,所述分子筛的孔分布还包括:孔直径为4-15nm的孔所占的孔容为总孔容的40%至70%,优选45%至65%,进一步优选为50%至60%。
根据本发明的一个实施方式,在所述DLM-1分子筛中,B酸量与L酸量的比值一般在1以下,优选在0.8以下,进一步优选在0.5以下,还进一步优选在0.4以下。
根据本发明的一个实施方式,在所述DLM-1分子筛中,B酸量与L酸量的比值一般在0.1以上,优选在0.2以上。
根据本发明的一个实施方式,所述DLM-1分子筛的B酸量一般为0.01-0.50mL/g,优选0.05-0.20mL/g,优选0.09-0.16mL/g。
根据本发明的一个实施方式,所述DLM-1分子筛的L酸量一般为0.10-0.90mL/g,优选0.30-0.60mL/g,优选0.39-0.46mL/g。
根据本发明的一个实施方式,所述DLM-1分子筛的中强酸酸量一般为0.6至1.0mL/g,优选0.7至0.9mL/g。
根据本发明的一个实施方式,所述DLM-1分子筛的比表面积一般为550至850m 2/g,优选为650至750m 2/g。
根据本发明的一个实施方式,所述DLM-1分子筛的总孔容一般为0.7至1.3mL/g,优选为0.9至1.2mL/g。
根据本发明的一个实施方式,所述DLM-1分子筛的平均孔径一般为9至15nm,优选10至12nm。
(二)DLM-1分子筛的制造方法
本发明前述的DLM-1分子筛可以通过本说明书如下所述的制造方法进行制造。
根据本发明的一个实施方式,所述制造DLM-1分子筛的方法包括在晶化条件下使无定形硅铝(粉末)、P123三嵌段共聚物和水接触而获得分子筛的步骤。
根据本发明的一个实施方式,所述无定形硅铝是硅和铝的混合氧化物粉末,呈现非晶态形式。另外,所述无定形硅铝粉末还可以与任意所需比例的液体比如水混合,制成浆液形式。
根据本发明,作为分子筛的制造原料,所述无定形硅铝(硅铝源)是以粉末形式(涵盖颗粒形式)直接使用的,并且将该粉末原位转化(原位晶化)成所述DLM-1分子筛,这与现有技术以溶液形式(或者转化为溶液形式之后)提供硅源/铝源(特别是铝源)作为分子筛的制造原料是完全不同的。
根据本发明的一个实施方式,所述P123三嵌段共聚物是一种聚氧乙烯-聚氧丙烯-聚氧乙烯共聚物(Aldrich市售,Ma约为5800)。P123三嵌段共聚物的示意性分子式一般为EO 20PO 70EO 20或其类似结构,在本发明中起到模板剂的功能。
根据本发明的一个实施方式,在所述制造DLM-1分子筛的方法中,作为所述晶化条件,晶化温度一般为80至120℃,优选90至110℃。
根据本发明的一个实施方式,在所述制造DLM-1分子筛的方法中,作为所述晶化条件,晶化时间一般为10至35h,优选16至24h。
根据本发明的一个实施方式,在所述制造DLM-1分子筛的方法中,晶化过程中pH控制一般为2.0至5.0,优选3.2至4.8。
根据本发明的一个实施方式,在所述制造DLM-1分子筛的方法中,所述无定形硅铝(干基)的氧化铝质量含量一般为10%以上,优选15%以上、17% 以上、20%以上、25%以上或者30%以上。另外,所述无定形硅铝(干基)的氧化铝质量含量一般为85%以下,优选82%以下、75%以下、65%以下或者55%以下。或者,氧化铝的质量含量可以在宽范围内调整,比如可以为10%,15%,16%,18%,20%,25%,30%,32%,35%,40%,45%,50%,55%,60%,70%,75%等。
根据本发明的一个实施方式,在所述制造DLM-1分子筛的方法中,所述无定形硅铝的比表面积一般为400至650m 2/g,优选450至600m 2/g。
根据本发明的一个实施方式,在所述制造DLM-1分子筛的方法中,所述无定形硅铝的孔容一般为0.52至1.8mL/g,优选0.85至1.5mL/g。
根据本发明的一个实施方式,在所述制造DLM-1分子筛的方法中,所述无定形硅铝的平均孔径一般为6nm至12nm,优选7nm至10nm。
根据本发明的一个实施方式,在所述制造DLM-1分子筛的方法中,所述无定形硅铝的平均粒度一般为15μm至150μm,优选25μm至75μm,优选40μm至60μm。
根据本发明的一个实施方式,在所述制造DLM-1分子筛的方法中,所述无定形硅铝的孔分布一般包括:孔直径为4-15nm的孔容占总孔容的85%至95%,孔直径>15nm的孔容占总孔容的5%以下。
根据本发明的一个实施方式,在所述制造DLM-1分子筛的方法中,所述无定形硅铝(干基)与所述P123三嵌段共聚物的质量比一般为0.5:1至5:1,优选1:1至5:1。
根据本发明的一个实施方式,所述制造DLM-1分子筛的方法具体包括以下步骤:
(1)将所述无定形硅铝(粉末)和水混合形成浆液,
(2)配制含有P123三嵌段共聚物的酸性溶液,和
(3)在所述晶化条件下,使所述浆液与所述含有P123三嵌段共聚物的酸性溶液接触(比如混合),制得DLM-1分子筛。
根据本发明的一个实施方式,在步骤(1)中,所述无定形硅铝(干基)与水的质量比一般为10:90至30:70,优选15:85至25:75。
根据本发明的一个实施方式,在步骤(2)中,所述酸性溶液的pH一般为1至5,优选1.2至2.3。在此,作为所述酸性溶液,特别可以举出酸性水溶液。
根据本发明的一个实施方式,在步骤(2)中,所述酸性溶液或所述酸性水溶液中所述P123三嵌段共聚物的质量含量一般为0.5%至5.0%,优选0.8%至2.8%。
根据本发明的一个实施方式,在步骤(2)中,将P123三嵌段共聚物加入到稀酸(比如稀盐酸)中。作为举例,所述稀酸溶液的浓度以H +计一般为0.05至0.3mol/L,优选0.1至0.2mol/L,进一步优选0.13至0.18mol/L。在此,为了使P123三嵌段共聚物充分溶解,优选的是,将反应体系的温度控制为10至60℃,优选20至40℃,进一步优选25至35℃。
根据本发明的一个实施方式,在步骤(3)中,将所述浆液同所述含有P123三嵌段共聚物的酸性水溶液混合,所述浆液和所述含有P123三嵌段共聚物的酸性水溶液的量以混合后的体系中P123三嵌段共聚物和无定形硅铝的质量比为0.5:1至5:1,优选1:1至5:1,进一步优选1:1至3:1。换句话说,在步骤(3)中,所述浆液(以所述无定形硅铝的干基计)与所述酸性溶液(以所述P123三嵌段共聚物计)的质量比一般为0.5:1至5:1,优选1:1至5:1,进一步优选1:1至3:1。
根据本发明的一个实施方式,在步骤(3)晶化步骤结束后,可以通过常规已知的任何方式从所获得的混合物中分离出DLM-1分子筛,比如采用过滤、洗涤和干燥等至少一个步骤。具体举例而言,所述过滤可以采用抽滤,所述洗涤可以采用去离子水为洗涤液来进行洗涤,所述干燥可以在80至150℃,优选90至130℃,干燥时间为2至12h,优选3至6h。该干燥可以在常压下进行。
根据本发明的一个实施方式,作为任选步骤,所述制造DLM-1分子筛的方法还可以包括焙烧所述获得的分子筛的步骤,以脱除模板剂和可能存在的水分等。为此,所述焙烧可以按照本领域常规已知的任何方式进行,比如焙烧温度一般为450至600℃,优选480至580℃,进一步优选500至560℃,所述焙烧时间为2至10h,优选3至6h。另外,所述焙烧一般在含氧气氛下进行,比如空气或者氧气气氛下。
根据本发明的一个实施方式,在所述制造DLM-1分子筛的方法中,作为所述无定形硅铝,优选无定形硅铝干胶。在此,所谓“干胶”,指的是含水量在50重量%以下的无定形硅铝。举例而言,所述无定形硅铝干胶的含水量一般为20-45重量%,优选25-32重量%。
根据本发明的一个实施方式,所述无定形硅铝干胶的平均粒度一般为15μm至150μm,优选25μm至75μm,优选40μm至60μm。
根据本发明的一个实施方式,所述无定形硅铝干胶可以采用碳化法制造。作为所述碳化法,特别可以包括如下步骤。
步骤a:分别配制铝酸钠溶液和硅酸钠溶液。
步骤b:向铝酸钠溶液中加入部分或全部硅酸钠溶液,然后通入CO 2气体,控制反应温度为10至40℃,优选为15至35℃,控制成胶的pH值为8至11;其中当通入的CO 2气体量占总通入量的40%至100%,优选为50%至80%时,加入剩余硅酸钠溶液。
步骤c:在步骤b的控制温度和pH值下,上述混合物通风稳定10至30分钟。
步骤d:将步骤c所得的固液混合物过滤,滤饼洗涤。
步骤e:将步骤d所得的滤饼打浆,然后进行水热处理,经过滤、干燥,得到所述的无定形硅铝干胶。在此,所述的水热处理条件比如包括:在120至150℃,0.5至4.0MPa水蒸汽压力下处理2至10小时。
根据本发明的一个实施方式,在所述步骤a中,铝酸钠溶液的浓度为15至55gAl 2O 3/L,进一步可以为15至35gAl 2O 3/L,硅酸钠溶液的浓度为50至200gSiO 2/L,进一步可以为50至150gSiO 2/L。
根据本发明的一个实施方式,在所述步骤b中,加入部分或全部的硅酸钠溶液,即为所加入的全部硅酸钠溶液的5wt%至100wt%。所述CO 2气体的浓度为30v%至60v%。在步骤b成胶过程中通风搅拌。
根据本发明的一个实施方式,所述步骤b可以按照下面几种方式之一或其组合方式进行:(1)向铝酸钠中加入全部硅酸钠后,通入CO 2气体;(2)向铝酸钠中加入部分硅酸钠后,通入全部CO 2气体,然后向混合物中加入剩余硅酸钠溶液;(3)向铝酸钠中加入部分硅酸钠后,通入部分CO 2气体,再一边通CO 2气体一边加入剩余硅酸钠溶液。
根据本发明的一个实施方式,将步骤d所得的浆液过滤并用50至95℃去离子水洗至接近中性。
根据本发明的一个实施方式,将步骤e所得滤饼按固液体积比为8:1至12:1,加水打浆。
根据本发明的一个实施方式,步骤e所述的干燥可采用常规方法进行,可 以在110至130℃下干燥6至8小时。
(三)DLM-1分子筛的应用
本发明提供的DLM-1分子筛可以以任何的物理形式应用,比如粉末状、颗粒状或者模制品状(比如条状、三叶草状等)。可以按照本领域常规已知的任何方式获得这些物理形式,并没有特别的限定。
根据本发明的一个实施方式,还涉及一种分子筛组合物,包含如前所述的DLM-1分子筛或者按照如前所述的DLM-1分子筛的制造方法制造的DLM-1分子筛。另外,所述分子筛组合物中还可以含有其他材料,比如选自活性材料和非活性材料中的至少一种,特别是非活性材料。为此,作为所述活性材料,可以为其他分子筛、无定形硅铝、大孔氧化铝等,也可以为活性金属组分。另外,作为所述非活性材料(一般称为粘结剂),可以为粘土、氧化铝、硅胶等。这些其他材料可以单独使用一种,或者以任意比例组合使用多种。作为所述其他材料的用量,可以参照本领域的常规用量,并没有特别的限制。
根据本发明的一个实施方式,还涉及一种有机物的处理方法,包括使所述有机物与如前所述的DLM-1分子筛、通过如前所述的制造方法制造的DLM-1分子筛、或者如前所述的分子筛组合物接触的步骤。在此,作为所述处理,比如可以举出吸附分离和转化反应。另外,作为所述有机物,特别可以举出烃油,特别是重质馏分油。
根据本发明的一个实施方式,本发明的分子筛或者分子筛组合物特别适合作为吸附剂使用以进行所述吸附分离,例如用来在气相或液相中从多种组分的混合物中分离出至少一种组分。
根据本发明的一个实施方式,本发明的分子筛或者分子筛组合物特别适合在烃油的转化反应中作为催化剂或催化剂的活性组分使用。作为所述烃油的转化反应,比如可以举出加氢处理和加氢裂化等。在此,作为所述烃油,特别是重质馏分油。
根据本发明的一个实施方式,作为所述加氢处理的反应条件,比如可以举出:反应总压3.0MPa-18.0MPa,液时体积空速0.2h -1-4.0h -1,氢油体积比200:1-2000:1,反应温度为230℃-430℃。
根据本发明的一个实施方式,作为所述加氢裂化的反应条件,比如可以 举出:反应总压8.0MPa-18.0MPa,液时体积空速0.2h -1-4.0h -1,氢油体积比500:1-2000:1,反应温度为280℃-440℃。
根据本发明的一个实施方式,本发明的分子筛或者分子筛组合物特别适合作为催化剂的载体或载体组分使用,并在其上按照本领域常规已知的任何方式(比如溶液浸渍法)负载活性组分。这些活性组分包括但不限于活性金属组分(包括Ni、Co、Mo、W或者Cu等)、活性无机助剂(比如F、P等)和有机化合物(比如有机酸、有机胺等)等。这些活性组分可以单独使用一种,或者以任意的比例组合使用多种。作为所述活性组分的用量,可以直接参照本领域的常规用量,并没有特别的限制。
实施例
以下采用实施例进一步详细地说明本发明,但本发明并不限于这些实施例。
在以下的实施例和比较例中,所有的药剂和原料既可以商购获得,也可以根据已有知识制造。
实施例1
(1)无定形硅铝干胶A1及浆液的制造:铝酸钠溶液浓度20gAl 2O 3/L,硅酸钠溶液浓度100gSiO 2/L,取0.25L铝酸钠溶液放入于成胶罐中,然后加入0.35L硅酸钠溶液,控制反应温度20℃,通入浓度为40v%的CO 2气体,通入CO 2气体占总通入量的50%时,一边通气一边加入0.50L硅酸钠溶液,控制成胶的pH值为9.5,然后通风稳定20分钟,浆液过滤并用65℃去离子水洗洗至中性,滤饼按固液体积比为10∶1加水打浆,在130℃,3.5MPa水蒸汽压力下处理2小时,在120℃干燥6小时后,粉碎过筛得无定形硅铝产品A1。无定形硅铝干胶A1的性质见表1。将所制造的无定形硅铝A1和去离子水混合、打浆形成浆液;其中,无定形硅铝干胶与水的质量比为20:80;
(2)配制含有P123三嵌段共聚物的酸性溶液;将P123三嵌段共聚物加入到稀盐酸中,所述的稀盐酸溶液的浓度为0.13mol/L,含有P123三嵌段共聚物的酸性水溶液的pH为1.2,含有P123三嵌段共聚物的酸性水溶液的温度为25℃,所述含有P123三嵌段共聚物的酸性水溶液中P123三嵌段共聚物的质量 含量为1.5wt%;
(3)将步骤(1)制造的浆液同步骤(2)配制的含有P123三嵌段共聚物的酸性水溶液混合;经过晶化、过滤、干燥和焙烧后制得DLM-1分子筛,编号为A-S-1,混合后的体系中P123三嵌段共聚物和无定形硅铝的质量比为1.2:1,所述的晶化温度为90℃,晶化时间为20h;晶化过程中pH控制为3.3,所述干燥温度控制在100℃,干燥时间为3h,所述焙烧温度控制在550℃,所述焙烧时间为3h。
实施例1制造的DLM-1分子筛的XRD图谱见图1,显示出Al-SBA-15分子筛的特征峰。
实施例2
(1)无定形硅铝干胶A2及浆液的制造:铝酸钠溶液浓度25gAl 2O 3/L,硅酸钠溶液浓度50gSiO 2/L,取0.4L铝酸钠溶液放入于成胶罐中,然后加入0.6L硅酸钠溶液,控制反应温度22℃,通入浓度为35v%的CO 2气体,通入CO 2气体占总通入量的50%时,一边通气一边加入0.2L硅酸钠溶液,控制成胶的pH值为9.5,然后通风稳定20分钟,浆液过滤并用75℃去离子水洗洗至中性,滤饼按固液体积比为8∶1加水打浆,在120℃,3.0MPa水蒸汽压力下处理2小时,在120℃干燥8小时后,粉碎过筛得无定形硅铝产品A2,无定形硅铝干胶A2的性质见表1。将所制造的无定形硅铝A2和去离子水混合、打浆形成浆液;其中,无定形硅铝干胶与水的质量比为22:78;
(2)配制含有P123三嵌段共聚物的酸性水溶液;将P123三嵌段共聚物加入到稀盐酸中,所述的稀盐酸溶液的浓度为0.15mol/L,含有P123三嵌段共聚物的酸性水溶液的pH为1.4,含有P123三嵌段共聚物的酸性水溶液的温度为28℃,所述含有P123三嵌段共聚物的酸性水溶液中P123三嵌段共聚物的含量为1.8wt%;
(3)将步骤(1)制造的浆液同步骤(2)配制的含有P123三嵌段共聚物的酸性水溶液混合;经过晶化、过滤、干燥和焙烧后制得DLM-1分子筛,编号为A-S-2,混合后的体系中P123三嵌段共聚物和无定形硅铝的质量比为1.7:1,所述的晶化温度为100℃,晶化时间为22h;晶化过程中pH控制为3.5,所述干燥温度控制在110℃,干燥时间为4h,所述焙烧温度控制在520℃,所述焙烧 时间为3.5h。
实施例3
(1)无定形硅铝干胶A3及浆液的制造:铝酸钠溶液浓度20gAl 2O 3/L,硅酸钠工作溶液浓度75gSiO 2/L,取1.25L铝酸钠溶液置于成胶罐中,然后加入0.5L硅酸钠溶液,控制反应温度32℃,通入浓度为52v%的CO 2气体,当pH值达到9.8时停止,然后通风稳定20分钟,洗至中性,滤饼按固液体积比为9∶1加水打浆,在130℃,3.9MPa水蒸汽压力下处理3小时,在130℃干燥8小时后,粉碎过筛得无定形硅铝产品A3。无定形硅铝干胶A3的性质见表1。将所制造的无定形硅铝A3和去离子水混合、打浆形成浆液;其中,无定形硅铝干胶与水的质量比为25:75;
(2)配制含有P123三嵌段共聚物的酸性水溶液;将P123三嵌段共聚物加入到稀盐酸中,所述的稀盐酸溶液的浓度为0.16mol/L,含有P123三嵌段共聚物的酸性水溶液的pH为1.8,含有P123三嵌段共聚物的酸性水溶液的温度为33℃,所述含有P123三嵌段共聚物的酸性水溶液中P123三嵌段共聚物的含量为2.0wt%;
(3)将步骤(1)制造的浆液同步骤(2)配制的含有P123三嵌段共聚物的酸性水溶液混合;经过晶化、过滤、干燥和焙烧后制得DLM-1分子筛,编号为A-S-3,混合后的体系中P123三嵌段共聚物和无定形硅铝的质量比为2:1,所述的晶化温度为93℃,晶化时间为18h;晶化过程中pH控制为4.1,所述干燥温度控制在120℃,干燥时间为4h,所述焙烧温度控制在530℃,所述焙烧时间为5h。
实施例4
(1)无定形硅铝干胶A4的制造及浆液的制造:铝酸钠溶液浓度28gAl 2O 3/L,硅酸钠溶液浓度90gSiO 2/L,取0.85L铝酸钠溶液置于成胶罐中,然后加入0.58L硅酸钠溶液,控制反应温度35℃,通入浓度为60v%的CO 2气体,当pH值达到9.5时停止,然后通风稳定20分钟,洗至中性,滤饼按固液体积比为8∶1加水打浆,在130℃,3.2MPa水蒸汽压力下处理2.5小时,在130℃干燥8小时后,粉碎过筛得无定形硅铝产品A4。无定形硅铝干胶A4的性质见表1。将所制造的无 定形硅铝A4和去离子水混合、打浆形成浆液;其中,无定形硅铝干胶与水的质量比为18:82;
(2)配制含有P123三嵌段共聚物的酸性水溶液;将P123三嵌段共聚物加入到稀盐酸中,所述的稀盐酸溶液的浓度为0.16mol/L,含有P123三嵌段共聚物的酸性水溶液的pH为1.8,含有P123三嵌段共聚物的酸性水溶液的温度为33℃,所述含有P123三嵌段共聚物的酸性水溶液中P123三嵌段共聚物的含量为2.2wt%;
(3)将步骤(1)制造的浆液同步骤(2)配制的含有P123三嵌段共聚物的酸性水溶液混合;经过晶化、过滤、干燥和焙烧后制得DLM-1分子筛,编号为A-S-4,混合后的体系中P123三嵌段共聚物和无定形硅铝的质量比为2.5:1,所述的晶化温度为98℃,晶化时间为20h;晶化过程中pH控制为4.3,所述干燥温度控制在120℃,干燥时间为5h,所述焙烧温度控制在540℃,所述焙烧时间为5h。
实施例5
(1)无定形硅铝干胶A5的制造及浆液的制造:铝酸钠溶液浓度20gAl 2O 3/L,硅酸钠溶液浓度85gSiO 2/L,取0.75L铝酸钠溶液放入于成胶罐中,然后加入0.15L硅酸钠溶液,控制反应温度23℃,通入浓度为45v%的CO 2气体,控制成胶的pH值为9.8,然后通风稳定20分钟,浆液过滤并用65℃去离子水洗洗至中性,滤饼按固液体积比为10∶1加水打浆,在130℃,3.5MPa水蒸汽压力下处理2小时,在120℃干燥6小时后,粉碎过筛得无定形硅铝产品A5。无定形硅铝干胶A5的性质见表1。将所制造的无定形硅铝A5和去离子水混合、打浆形成浆液;其中,无定形硅铝干胶与水的质量比为22:78;
(2)配制含有P123三嵌段共聚物的酸性溶液;将P123三嵌段共聚物加入到稀盐酸中,所述的稀盐酸溶液的浓度为0.14mol/L,含有P123三嵌段共聚物的酸性水溶液的pH为1.6,含有P123三嵌段共聚物的酸性水溶液的温度为25℃,所述含有P123三嵌段共聚物的酸性水溶液中P123三嵌段共聚物的质量含量为1.8wt%;
(3)将步骤(1)制造的浆液同步骤(2)配制的含有P123三嵌段共聚物的酸性水溶液混合;经过晶化、过滤、干燥和焙烧后制得DLM-1分子筛,编号 为A-S-5,混合后的体系中P123三嵌段共聚物和无定形硅铝的质量比为1.5:1,所述的晶化温度为95℃,晶化时间为22h;晶化过程中pH控制为3.4,所述干燥温度控制在110℃,干燥时间为4h,所述焙烧温度控制在550℃,所述焙烧时间为3h。
实施例6
(1)无定形硅铝干胶A6的制造及浆液的制造:铝酸钠溶液浓度20gAl 2O 3/L,硅酸钠溶液浓度55gSiO 2/L,取0.75L铝酸钠溶液放入于成胶罐中,然后加入0.15L硅酸钠溶液,控制反应温度23℃,通入浓度为48v%的CO 2气体,控制成胶的pH值为9.3,然后通风稳定20分钟,浆液过滤并用75℃去离子水洗洗至中性,滤饼按固液体积比为11∶1加水打浆,在120℃,3.5MPa水蒸汽压力下处理2小时,在120℃干燥6小时后,粉碎过筛得无定形硅铝产品A6。无定形硅铝干胶A6的性质见表1。将所制造的无定形硅铝A6和去离子水混合、打浆形成浆液;其中,无定形硅铝干胶与水的质量比为24:76;
(2)配制含有P123三嵌段共聚物的酸性溶液;将P123三嵌段共聚物加入到稀盐酸中,所述的稀盐酸溶液的浓度为0.16mol/L,含有P123三嵌段共聚物的酸性水溶液的pH为1.5,含有P123三嵌段共聚物的酸性水溶液的温度为28℃,所述含有P123三嵌段共聚物的酸性水溶液中P123三嵌段共聚物的质量含量为2.1wt%;
(3)将步骤(1)制造的浆液同步骤(2)配制的含有P123三嵌段共聚物的酸性水溶液混合;经过晶化、过滤、干燥和焙烧后制得DLM-1分子筛,编号为A-S-6,混合后的体系中P123三嵌段共聚物和无定形硅铝的质量比为2.2:1,所述的晶化温度为100℃,晶化时间为19h;晶化过程中pH控制为3.3,所述干燥温度控制在110℃,干燥时间为5h,所述焙烧温度控制在550℃,所述焙烧时间为4h。
比较例1
取6.2gP123加入到600mL0.18mol/L的盐酸溶液中,升温到26℃后恒温搅拌6小时,P123完全溶解后,溶液呈透明状态。加入5.2gY分子筛浆液,pH值控制在3.3,恒温搅拌反应6小时,升温至98℃水热晶化24小时。然后,过滤、洗 涤,在120℃干燥6小时,550℃焙烧6小时,得到分子筛,编号为A-S-7,性质见表2。
比较例2
取7.2gP123加入到600mL0.13mol/L的盐酸溶液中,升温到26℃后恒温搅拌6小时,P123完全溶解后,溶液呈透明状态。加入6gβ分子筛浆液,pH值控制在3.7,恒温搅拌反应6小时,升温至98℃水热晶化24小时。然后,过滤、洗涤,在120℃干燥6小时,550℃焙烧6小时,得到分子筛,编号为A-S-8,性质见表2。
比较例3
将高岭土在700℃下焙烧活化4h,称取焙烧后高岭土12g,采用6mol/L盐酸浸处理4h,之后去离子水抽滤洗涤至中性并烘干;将烘干后的样品在900℃下焙烧2h;之后放入5mol/L的NaOH碱溶液中,高温高压下反应3h(温度为160℃,压力为0.5MPa),反应完成后,调节其pH值在14.0。之后将其逐滴加入到表面活性剂和盐酸的混合溶液中(n(FSO-100)/n(P123)=5.5),盐酸浓度为7.5mol/L,40℃搅拌反应24h,160℃下水热反应48h,过滤、洗涤、干燥后在马弗炉550℃下焙烧6h,得到介孔材料A-S-9,性质见表2。
比较例4
将4gP123加入到2mol/L125mL的盐酸溶液中,40℃下搅拌,直至P123完全溶解;将8.5g正硅酸乙酯加入到含有P123的盐酸溶液中,搅拌4h,加入硝酸铝使硅铝摩尔比为35,继续搅拌20h,将上述溶液加入到250mL反应釜内,100℃条件下搅拌48h,冷却到室温后,用氨水溶液调整pH值到7.5,不断搅拌条件下,升温至100℃,搅拌72h,过滤、洗涤后60℃干燥过夜,550℃焙烧6h,得到介孔材料A-S-10,性质见表2。
比较例5
分别称取模板剂三嵌共聚物P123和硅源正硅酸乙酯,其中模板剂P123质量为5.5g,正硅酸乙酯质量为10.2g;将模板剂和硅源加入pH为2.8的HCl溶液 中,28℃下充分搅拌30h;将搅拌后的混合物120℃静置晶化20h,去离子水洗涤,干燥后得到SBA-15。将得到的SBA-15分子筛进行打浆,固液比为1:10,然后加入含有23g异丙醇铝的盐酸溶液中,升温至100℃,搅拌20h,过滤、洗涤后60℃干燥过夜,550℃焙烧5h,得到介孔材料A-S-11,性质见表2。
比较例6
取5.2gP123加入到500mL0.13mol/L的盐酸溶液中,升温到28℃后恒温搅拌8小时,P123完全溶解后,溶液呈透明状态。加入含有6g氧化铝和8g硅溶胶(二氧化硅含量30%)的浆液中,pH值控制在3.5,恒温搅拌反应8小时,升温至98℃水热晶化26小时。然后,过滤、洗涤,在120℃干燥6小时,550℃焙烧6小时,得到介孔材料A-S-12。经过实验分析,介孔材料A-S-12不具备Al-SBA-15的结构特征,无参比意义。
表1无定形硅铝干胶的理化性质
Figure PCTCN2020139112-appb-000001
表2分子筛的性质
项目 A-S-1 A-S-2 A-S-3 A-S-4 A-S-5
比表面积,m 2/g 745 747 742 750 735
氧化铝含量,wt% 12.5 25 40 31.31 54
孔容,mL/g 1.18 1.13 1.09 1.16 1.16
中强酸酸量,mL/g 0.75 0.78 0.82 0.85 0.77
B酸量,mL/g 0.095 0.115 0.103 0.120 0.100
L酸量,mL/g 0.404 0.434 0.427 0.399 0.415
B/L 0.235 0.265 0.243 0.301 0.243
孔分布,%          
<4nm 11.19 13.03 12.03 14.35 10.19
4至15nm 54.77 53.89 52.02 55.36 55.65.
>15nm 34.04 33.08 35.95 30.29 34.16
续表2
项目 A-S-6 A-S-7 A-S-8 A-S-9 A-S-10 A-S-11
比表面积,m 2/g 748 720 731 695 708 706
氧化铝含量,wt% 64.5 4 6 8 13 17.25
孔容,mL/g 1.15 0.85 0.91 0.78 1.05 1.04
中强酸酸量,mL/g 0.76 0.53 0.48 0.41 0.43 0.45
B酸量,mL/g 0.106 0.258 0.299 0.314 0.309 0.374
L酸量,mL/g 0.416 0.213 0.26 0.389 0.234 0.467
B/L 0.256 1.21 1.15 1.24 1.32 1.25
孔分布,%            
<4nm 12.07 42.69 48.32 46.28 45.36 43.05
4至15nm 57.25 38.25 30.67 35.69 36.45 37.56
>15nm 30.68 19.06 21.01 18.03 18.19 19.39
实施例7
采用实施例1制造的A-S-1制造加氢处理催化剂载体及催化剂:
称取氧化铝干胶粉(比表面积为313m 2/g、孔容为1.12mL/g,平均孔直径为14nm)135g,分子筛A-S-1 9.5g,田菁粉4g,加入含有硝酸和柠檬酸的水溶液115mL(硝酸的量为8.3g,柠檬酸量为3.5g),经混捏、碾压后挤条成型,120℃干燥4小时,550℃焙烧4小时,得到最终的含分子筛的氧化铝载体,编号Z1。
用含Mo、Ni、P的浸渍液等体积浸渍Z1,经140℃干燥3h,450℃焙烧2h,最终获得的催化剂记为C-1。催化剂C1中,氧化钼含量为22.0wt%,氧化镍含量为3.57wt%,氧化磷含量为1.20wt%。
催化剂C-1进行催化剂活性评价实验,具体为:在100mL小型加氢装置上进行,评价前对催化剂进行预硫化。催化剂评价条件为在反应总压14.5MPa,液时体积空速1.1h -1,氢油体积比750:1,反应温度为375℃。原料油性质见3,活性评价结果见表4。
实施例8
采用实施例3制造的A-S-3制造加氢处理催化剂载体及催化剂:
称取氧化铝干胶粉(比表面积为328m 2/g、孔容为1.11mL/g,平均孔直径为13.5nm)125g,A-S-3分子筛7.5g,田菁粉4g,加入含有硝酸和柠檬酸的水溶液120mL(硝酸的量为7.8g,柠檬酸量为3.8g),经混捏、碾压后挤条成型,120℃干燥3小时,550℃焙烧4小时,得到最终的含分子筛的氧化铝载体,编号Z2。
用含Mo、Ni、P的浸渍液等体积浸渍Z2,经130℃干燥3h,460℃焙烧3h,最终获得的催化剂记为C-2。催化剂C2中,氧化钼含量为22.1wt%,氧化镍含量为3.45wt%,氧化磷含量为1.19wt%。
催化剂C-2进行催化剂活性评价实验的方法同实施例7。原料油性质见3,活性评价结果见表4。
比较例6-10
载体和催化剂的制造同实施例7,仅在于分别采用比较例1-比较例5制造的A-S-7至A-S-11替换实施例7中的A-S-1,分别得到载体Z3-Z7,分别得到催化剂C-3至C-7。
分别采用催化剂C-3至C-7进行催化剂活性评价实验的方法同实施例7。原料油性质见3,活性评价结果见表4。
表3原料油性质
原料油  
密度(20℃),g·cm -3 0.916
氮含量,μg·g -1 1482
馏程,℃ 310-540
表4催化剂活性评价结果
催化剂 C-1 C-2 C-3 C-4 C-5 C-6 C-7
氮含量,μg·g -1 5.2 5.8 25.25 28.56 29.05 28.94 27.98
由表4可见,与比较例催化剂相比,采用本发明的DLM-1分子筛制造的加氢处理催化剂,脱氮活性明显较高。

Claims (13)

  1. 一种DLM-1分子筛,是Al-SBA-15分子筛,具有如式“第一氧化物·第二氧化物”所示的示意性化学组成,其中所述第一氧化物为二氧化硅,所述第二氧化物为氧化铝,氧化铝在所述示意性化学组成中所占的质量百分比含量为10%以上(优选15%以上、17%以上、20%以上、25%以上或者30%以上),并且为85%以下(优选82%以下、75%以下、65%以下或者55%以下)。
  2. 根据权利要求1所述的分子筛,其中在所述分子筛中,B酸量为0.01-0.50mL/g(优选0.05-0.20mL/g或0.09-0.16mL/g),和/或,L酸量为0.10-0.90mL/g(优选0.30-0.60mL/g或0.39-0.46mL/g),和/或,B酸与L酸的比值在1以下,优选在0.8以下,进一步优选在0.5以下,还进一步优选在0.4以下,并且B酸与L酸的比值在0.1以上,优选在0.2以上。
  3. 根据权利要求1所述的分子筛,其中所述分子筛的孔分布包括:孔直径<4nm的孔所占的孔容为总孔容的20%以下,优选15%以下,优选所述分子筛的孔分布还包括:孔直径为4-15nm的孔所占的孔容为总孔容的40%至70%,优选45%至65%,进一步优选为50%至60%。
  4. 根据权利要求1所述的分子筛,其中所述分子筛的中强酸酸量为0.6至1.0mL/g,优选0.7至0.9mL/g。
  5. 根据权利要求1所述的分子筛,其中所述分子筛的比表面积为550至850m 2/g,优选为650至750m 2/g,和/或,所述分子筛的总孔容为0.7至1.3mL/g,优选为0.9至1.2mL/g,和/或,所述分子筛的平均孔径为9至15nm,优选10至12nm。
  6. 一种制造DLM-1分子筛的方法,包括在晶化条件下使无定形硅铝(优选无定形硅铝干胶)(粉末)、P123三嵌段共聚物和水接触而获得分子筛的步骤;和任选地,焙烧所述获得的分子筛的步骤。
  7. 根据权利要求6所述的方法,其中所述晶化条件至少包括:晶化温度为80至120℃,优选90至110℃;晶化时间为10至35h,优选16至24h;晶化过程中pH控制为2.0至5.0,优选3.2至4.8。
  8. 根据权利要求6所述的方法,其中所述无定形硅铝(干基)的氧化铝 质量含量为10%以上(优选15%以上、17%以上、20%以上、25%以上或者30%以上),并且为85%以下(优选82%以下、75%以下、65%以下或者55%以下),和/或,所述无定形硅铝的比表面积为400至650m 2/g,优选450至600m 2/g,和/或,所述无定形硅铝的孔容为0.52至1.8mL/g,优选0.85至1.5mL/g,和/或,所述无定形硅铝的平均孔径为6nm至12nm,优选7nm至10nm,和/或,所述无定形硅铝的平均粒度为15μm至150μm,优选25μm至75μm,优选40μm至60μm,和/或,所述无定形硅铝的孔分布包括:孔直径为4-15nm的孔容占总孔容的85%至95%,孔直径>15nm的孔容占总孔容的5%以下,和/或,所述无定形硅铝的含水量为20-45重量%,优选25-32重量%,和/或,所述无定形硅铝(干基)与所述P123三嵌段共聚物的质量比为0.5:1至5:1,优选1:1至5:1。
  9. 根据权利要求6所述的方法,包括:
    (1)将所述无定形硅铝(粉末)和水混合形成浆液,
    (2)配制含有P123三嵌段共聚物的酸性溶液(优选酸性水溶液),和
    (3)在所述晶化条件下,使所述浆液与所述含有P123三嵌段共聚物的酸性溶液接触(比如混合),制得DLM-1分子筛。
  10. 根据权利要求9所述的方法,其中在步骤(1)中,所述无定形硅铝(干基)与水的质量比为10:90至30:70,优选15:85至25:75,和/或,在步骤(2)中,所述酸性溶液的pH为1至5,优选1.2至2.3,所述酸性溶液中所述P123三嵌段共聚物的质量含量为0.5%至5.0%,优选0.8%至2.8%,和/或,在步骤(3)中,所述浆液(以所述无定形硅铝的干基计)与所述酸性溶液(以所述P123三嵌段共聚物计)的质量比为0.5:1至5:1,优选1:1至5:1。
  11. 一种分子筛组合物,包括权利要求1所述的DLM-1分子筛或通过权利要求6所述的制造方法制造的DLM-1分子筛、以及任选的粘结剂。
  12. 一种有机物的处理方法,包括使所述有机物(优选烃油)与权利要求1所述的DLM-1分子筛、通过权利要求6所述的制造方法制造的DLM-1分子筛、或者权利要求11所述的分子筛组合物接触的步骤。
  13. 根据权利要求12所述的处理方法,其中所述处理选自吸附分离、加氢处理和加氢裂化。
PCT/CN2020/139112 2019-12-25 2020-12-24 一种dlm-1分子筛及其制造方法和应用 WO2021129760A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/757,998 US20230025198A1 (en) 2019-12-25 2020-12-24 DLM-1 Molecular Sieve, Process for Preparing the Same, and Use Thereof
JP2022539342A JP2023509606A (ja) 2019-12-25 2020-12-24 Dlm-1分子篩、その製造方法、およびその使用
EP20906336.1A EP4082661A4 (en) 2019-12-25 2020-12-24 DLM-1 MOLECULAR SIEVE, PRODUCTION PROCESS AND USE THEREOF
CA3163055A CA3163055A1 (en) 2019-12-25 2020-12-24 A dlm-1 molecular sieve, a process for preparing the same, and use thereof
KR1020227025813A KR20220113825A (ko) 2019-12-25 2020-12-24 Dlm-1 분자체, 이의 제조 방법 및 용도

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911355108.1A CN113023743B (zh) 2019-12-25 2019-12-25 一种Al-SBA-15分子筛及其制备方法和应用
CN201911355108.1 2019-12-25

Publications (1)

Publication Number Publication Date
WO2021129760A1 true WO2021129760A1 (zh) 2021-07-01

Family

ID=76458216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/139112 WO2021129760A1 (zh) 2019-12-25 2020-12-24 一种dlm-1分子筛及其制造方法和应用

Country Status (7)

Country Link
US (1) US20230025198A1 (zh)
EP (1) EP4082661A4 (zh)
JP (1) JP2023509606A (zh)
KR (1) KR20220113825A (zh)
CN (1) CN113023743B (zh)
CA (1) CA3163055A1 (zh)
WO (1) WO2021129760A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115739175B (zh) * 2022-12-02 2024-02-09 大唐南京环保科技有限责任公司 一种平板式高温脱硝催化剂及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101269817A (zh) * 2008-04-29 2008-09-24 江苏工业学院 用mcm-22沸石结构前驱体合成介孔材料的方法
CN103252256A (zh) * 2012-02-16 2013-08-21 中国石油天然气股份有限公司 一种复合分子筛加氢裂化催化剂载体
CN104016369A (zh) 2014-06-04 2014-09-03 内蒙古大学 一种利用高岭土合成高稳定性有序介孔材料a1-sba-15的方法
CN104607160A (zh) * 2015-01-22 2015-05-13 福州大学 具有阴阳离子共吸附特性的双功能水相吸附材料
KR101564404B1 (ko) * 2014-04-28 2015-10-30 한국과학기술연구원 백금/Al-SBA-15 촉매를 이용한 피셔-트롭쉬 왁스의 수소첨가 분해방법
CN108946754A (zh) 2017-05-24 2018-12-07 神华集团有限责任公司 Sba-15介孔分子筛及制法和应用以及粉煤灰产氧化铝和sba-15介孔分子筛之法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103787342B (zh) * 2012-11-03 2015-08-12 中国石油化工股份有限公司 碳化法制备高硅大孔无定形硅铝干胶的方法
CN102992348B (zh) * 2012-12-10 2014-04-09 中国地质大学(武汉) 一种以埃洛石为原料制备Al-SBA-15有序复合介孔材料的方法
CN108187726B (zh) * 2017-12-27 2021-01-29 江苏斯尔邦石化有限公司 Al-SBA-15介孔分子筛的制备与用途及脂肪醇乙氧基化反应方法
CN108421556B (zh) * 2018-03-28 2020-08-18 武汉理工大学 一种由FCC废催化剂合成Al-SBA-15高效蒽醌加氢催化剂的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101269817A (zh) * 2008-04-29 2008-09-24 江苏工业学院 用mcm-22沸石结构前驱体合成介孔材料的方法
CN103252256A (zh) * 2012-02-16 2013-08-21 中国石油天然气股份有限公司 一种复合分子筛加氢裂化催化剂载体
KR101564404B1 (ko) * 2014-04-28 2015-10-30 한국과학기술연구원 백금/Al-SBA-15 촉매를 이용한 피셔-트롭쉬 왁스의 수소첨가 분해방법
CN104016369A (zh) 2014-06-04 2014-09-03 内蒙古大学 一种利用高岭土合成高稳定性有序介孔材料a1-sba-15的方法
CN104607160A (zh) * 2015-01-22 2015-05-13 福州大学 具有阴阳离子共吸附特性的双功能水相吸附材料
CN108946754A (zh) 2017-05-24 2018-12-07 神华集团有限责任公司 Sba-15介孔分子筛及制法和应用以及粉煤灰产氧化铝和sba-15介孔分子筛之法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DAI YU, ZHOU YA-SONG, WEI QIANG, CUI QING-YAN, ZHEN QIN: "Influences of Al Modification on the Properties and Catalytic Performance of SBA-15 Molecular Sieves in Hydrocracking", RANLIAO HUAXUE XUEBAO - JOURNAL OF FUEL CHEMISTRY AND TECHNOLOGY, KEXUE CHUBANSHE, BEIJING, CN, vol. 41, no. 12, 1 December 2013 (2013-12-01), CN, pages 1502 - 1506, XP055824729, ISSN: 0253-2409 *
HAN YU, XIAO FENG-SHOU, WU SHUO, SUN YINYONG, MENG XIANGJU, LI DONGSHENG, LIN SEN, DENG FENG, AI XUANJUN: "A Novel Method for Incorporation of Heteroatoms into the Framework of Ordered Mesoporous Silica Materials Synthesized in Strong Acidic Media", JOURNAL OF PHYSICAL CHEMISTRY PART B, AMERICAN CHEMICAL SOCIETY, US, vol. 105, no. 33, 1 August 2001 (2001-08-01), US, pages 7963 - 7966, XP055823458, ISSN: 1520-6106, DOI: 10.1021/jp011204k *
See also references of EP4082661A4
XUAN HOAN VU, ECKELT REINHARD, ARMBRUSTER UDO, MARTIN ANDREAS: "High-Temperature Synthesis of Ordered Mesoporous Aluminosilicates from ZSM-5 Nanoseeds with Improved Acidic Properties", NANOMATERIALS, vol. 4, 1 January 2014 (2014-01-01), pages 712 - 725, XP055240663, DOI: 10.3390/nano4030712 *
ZHAO DONGYUAN ET AL.: "Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrompores", SCIENCE, vol. 279, no. 5350, 1998, pages 548 - 552, XP002397876, DOI: 10.1126/science.279.5350.548

Also Published As

Publication number Publication date
JP2023509606A (ja) 2023-03-09
KR20220113825A (ko) 2022-08-16
CN113023743A (zh) 2021-06-25
EP4082661A1 (en) 2022-11-02
EP4082661A4 (en) 2024-04-10
US20230025198A1 (en) 2023-01-26
CA3163055A1 (en) 2021-07-01
CN113023743B (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
CN111115651B (zh) 纳米分子筛、合成方法及其用途
CN105621445A (zh) 一种NaY型分子筛及其制备方法
WO2021129760A1 (zh) 一种dlm-1分子筛及其制造方法和应用
CN109289847B (zh) 催化丙烷脱氢反应的催化剂及其制备方法和丙烷脱氢制丙烯的方法
CN104646073B (zh) 一种加氢催化剂载体
CN113019432A (zh) 加氢裂化催化剂载体、加氢裂化催化剂及其制备方法
CN113019440A (zh) 一种加氢精制催化剂载体、加氢精制催化剂及其制备方法
TWI586429B (zh) Catalyst for the preparation of isobutene from methyl tertiary butyl ether and its preparation and application
CN107344102B (zh) 一种加氢裂化催化剂及其制法
CN110732342A (zh) 载体为具有三维立方和六方孔道结构的绿泥石复合材料的异丁烷脱氢催化剂及其制法和应用
CN114453011B (zh) 一种加氢裂化催化剂的制备方法及加氢裂化催化剂和应用
CN114453014B (zh) 一种加氢脱芳烃催化剂及其制备方法和应用
CN110732341A (zh) 载体为球形含铝双介孔分子筛硅胶复合材料的异丁烷脱氢催化剂及其制法和应用
CN108568310B (zh) 嵌入式微孔-介孔复合分子筛甲烷化催化剂及应用
CN110614108B (zh) 载体为具有三维立方笼状孔道分布结构的介孔分子筛的异丁烷脱氢催化剂及制法和应用
CN108786898B (zh) 负载型催化剂及其制备方法和应用和丙烷脱氢制丙烯的方法
CN113019437A (zh) 加氢处理催化剂载体、催化剂及其制法和应用
CN110614106A (zh) 载体为球形双介孔伊利石复合材料的异丁烷脱氢催化剂及制法和应用
CN110614107A (zh) 载体为空心球状介孔分子筛硅胶复合材料的异丁烷脱氢催化剂及其制备方法和应用
CN113019425B (zh) 一种加氢处理催化剂载体、加氢处理催化剂及其制备方法
CN114453012B (zh) 加氢裂化催化剂的制备方法及加氢裂化催化剂和应用
CN113019428B (zh) 一种加氢处理催化剂载体的制备方法
CN114433037B (zh) M41s介孔材料吸附剂的制备方法及m41s介孔材料吸附剂和应用
CN109647541B (zh) 一种三维介孔硅铝酸盐催化剂载体及其制备方法
WO2023072237A1 (zh) Zsm-5分子筛及其制备方法和应用和加氢处理催化剂和临氢降凝催化剂及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20906336

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3163055

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2022539342

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227025813

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022117651

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020906336

Country of ref document: EP

Effective date: 20220725