WO2009054369A9 - 磁気記録膜用スパッタリングターゲットおよびその製造方法 - Google Patents

磁気記録膜用スパッタリングターゲットおよびその製造方法 Download PDF

Info

Publication number
WO2009054369A9
WO2009054369A9 PCT/JP2008/069021 JP2008069021W WO2009054369A9 WO 2009054369 A9 WO2009054369 A9 WO 2009054369A9 JP 2008069021 W JP2008069021 W JP 2008069021W WO 2009054369 A9 WO2009054369 A9 WO 2009054369A9
Authority
WO
WIPO (PCT)
Prior art keywords
sputtering target
recording film
magnetic recording
sintering
metal oxide
Prior art date
Application number
PCT/JP2008/069021
Other languages
English (en)
French (fr)
Other versions
WO2009054369A1 (ja
Inventor
和照 加藤
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to US12/739,261 priority Critical patent/US20100243435A1/en
Priority to CN2008801124235A priority patent/CN101835920B/zh
Publication of WO2009054369A1 publication Critical patent/WO2009054369A1/ja
Publication of WO2009054369A9 publication Critical patent/WO2009054369A9/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0021Matrix based on noble metals, Cu or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0026Matrix based on Ni, Co, Cr or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/04Alloys based on a platinum group metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0688Cermets, e.g. mixtures of metal and one or more of carbides, nitrides, oxides or borides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering
    • H01F41/183Sputtering targets therefor

Definitions

  • the present invention relates to a sputtering target used for forming a magnetic recording film, and a method for manufacturing the sputtering target. More specifically, the present invention relates to a sputtering target for a magnetic recording film having a low magnetic permeability and a high density, and a method for producing the same.
  • Hard disk devices adopted as external recording devices are required to have high-density recording properties that can be used for high-performance computers and digital home appliances.
  • a perpendicular magnetic recording method satisfying such high-density recording properties and a Co-based alloy magnetic film is often used as a perpendicular magnetization film used in the method.
  • these magnetic films if the size and variation of the crystal grains of each phase are suppressed and the magnetic interaction between the grains is reduced, the medium noise can be reduced and the recording density can be improved. That is known.
  • Such a Co-based alloy magnetic film is currently obtained by sputtering a sputtering target.
  • various research and development have been conducted in order to improve the quality of the sputtering target used in order to achieve high density recording, high coercive force and the like of the obtained film.
  • Patent Document 1 discloses a sputtering target made of a Co-based alloy.
  • the target is obtained by uniformly dispersing an alloy phase and a ceramic phase in order to improve the coercive force of the Co-based alloy magnetic film and reduce noise.
  • the target has a mixed phase that is fine to some extent and exhibits a high relative density.
  • the sintering temperature in producing this target is relatively high, 1000 to 1300 ° C., The growth was not sufficiently suppressed, and it was necessary to further improve the magnetic permeability.
  • Patent Document 2 discloses a sputtering target having a metal phase containing at least Co and a ceramic phase.
  • the target has a high relative density of 99% or more, but the major axis particle size of the oxide phase remains at 10 ⁇ m or less. This is considered due to the fact that the sintering temperature is still as high as 1150 to 1250 ° C. Even in this target, it cannot be said that the growth of crystal grains is sufficiently suppressed.
  • Patent Document 3 discloses a sputtering target for a high-density in-plane magnetic recording medium composed of an alloy phase containing Co and a ceramic phase in order to improve coercive force and reduce medium noise.
  • the target is one in which the alloy phase and the ceramic phase are finely and homogeneously dispersed and can reduce particles, but the density of the target has not been specifically studied, and the magnetic permeability There was also room for improvement.
  • none of the above sputtering targets satisfy all the qualities of suppression of crystal grain growth, low magnetic permeability, and high density.
  • the present invention provides a sputtering target capable of maintaining these qualities in a balanced manner, that is, a magnetic recording film capable of improving film formation efficiency and film characteristics by suppressing the growth of crystal grains and achieving low magnetic permeability and high density. It is an object of the present invention to provide a sputtering target for use and a method for producing the same.
  • the sputtering target for a magnetic recording film of the present invention is a sputtering target composed of a matrix phase containing Co and Pt and a metal oxide phase, and has a magnetic permeability of 6 to 15 and a relative density of 90% or more. It is a feature.
  • the average particle diameter of the particles formed by the matrix phase and the average particle diameter of the particles formed by the metal oxide phase are both 0.05 ⁇ m.
  • the average particle size of the particles formed by the matrix phase may be larger than the average particle size of the particles formed by the metal oxide phase.
  • the X-ray diffraction peak intensity ratio represented by the formula (I) is preferably 0.7 to 1.0.
  • the metal oxide phase may contain an oxide of at least one element selected from Si, Ti, and Ta, and the matrix phase may further contain Cr.
  • the sputtering target for a magnetic recording film of the present invention is preferably obtained by sintering at a sintering temperature of 800 to 1050 ° C., and is preferably obtained by sintering by an electric current sintering method.
  • the method for producing a sputtering target for a magnetic recording film according to the present invention comprises a matrix phase containing Co and Pt and a metal oxide phase, and has a magnetic permeability of 6 to 15 and a relative density of 90% or more.
  • a method for producing a sputtering target comprising: It is characterized by comprising a step of powdering a metal containing Co and Pt and a metal oxide, sintering the powder at a sintering temperature of 800 to 1050 ° C., and then lowering the temperature at a rate of 300 to 1000 ° C./hr. .
  • the sputtering target for a magnetic recording film of the present invention is a sputtering target having a high density and sufficiently suppressing crystal grain growth, generation of particles and arcing can be reduced. Further, since the magnetic permeability is low, the sputtering rate can be improved, and when the magnetic recording film is formed by sputtering the sputtering target, it is possible to realize high-speed film formation.
  • the sputtering target can be obtained easily and at high speed, and the production process can be made more efficient.
  • FIG. 4 is a SEM image of a cut surface of the sputtering target obtained in Example 3.
  • FIG. 10 is a SEM image of a cut surface of the sputtering target obtained in Example 7.
  • 6 is a SEM image of a cut surface of a sputtering target obtained in Comparative Example 3.
  • 6 is a SEM image of a cut surface of a sputtering target obtained in Comparative Example 4.
  • the sputtering target for magnetic recording film of the present invention (hereinafter also referred to as “sputtering target of the present invention”) is a sputtering target composed of a matrix phase containing Co and Pt and a metal oxide phase, and has a magnetic permeability of 6 -15, characterized in that the relative density is 90% or more.
  • the matrix phase is composed of Co and Pt.
  • Co is added in an amount of 1 to 80 mol%, preferably 1 to 75 mol%, more preferably 1 to 70 mol%. It is included in an amount of 1 to 20 mol%, preferably 1 to 15 mol%, more preferably 5 to 15 mol%.
  • the metal may further contain Cr in an amount of 1 to 20 mol%, preferably 1 to 15 mol%, more preferably 5 to 15 mol%.
  • the metal oxide phase is composed of an oxide of a metal element, and is usually 0.01 to 20 mol%, preferably 0.01 to 15 mol%, more preferably 0.01 to 100 mol% in 100 mol% of the target. It is included in an amount of 10 mol%.
  • the metal oxide specifically, SiO, SiO 2, TiO 2 , Ta 2 O 5, Al 2 O 3, MgO, CaO, Cr 2 O 3, ZrO 2, B 2 O 3, Sm 2 O 3 , HfO 2 , and Gd 2 O 3.
  • an oxide of at least one element selected from Si, Ti, and Ta is preferable.
  • the remainder may contain other elements as long as the effects of the present invention are not impaired.
  • tantalum, niobium, copper, neodymium and the like can be mentioned.
  • the metal oxide phase may contain trace amounts of oxides produced by oxidation of the metal constituting the matrix phase in the air or during sintering.
  • a part thereof can be Cr 2 O 3 and exist in the metal oxide phase.
  • the magnetic permeability of the sputtering target of the present invention is generally 6 to 15, preferably 6 to 12, and more preferably 6 to 9.
  • the magnetic flux leakage increases, so that the sputtering rate can be improved and high-speed film formation is facilitated.
  • the life of the target itself can be extended and the mass productivity per target can be improved.
  • the relative density of the sputtering target of the present invention is a value measured based on the Archimedes method for the sputtering target after sintering, and is usually 90% or more, preferably 95% or more, more preferably 97% or more, and an upper limit value. Although it does not specifically limit about, Usually, it is 100% or less.
  • so-called high-density target cracking of the target due to thermal shock or temperature difference when sputtering the target is prevented and the target thickness is effectively used without waste. Can be used. Further, the generation of particles and arcing can be effectively reduced, and the effect of improving the sputtering rate is brought about. Accordingly, it is possible to suppress defects in continuous production, improve the number of film formations per target unit area, and realize high-speed film formation.
  • C1 to Ci indicate the content (% by weight) of the constituent material of the target sintered body, and ⁇ to ⁇ i are the densities (g / cm 3 ) of the constituent materials corresponding to C1 to Ci. Is shown.
  • a magnetic recording film having stable film characteristics can be formed by sputtering the sputtering target of the present invention. It becomes possible to do.
  • both the matrix phase and the metal oxide phase form particles.
  • the average particle diameter of particles formed by these matrix phase and metal oxide phase is usually 0.05 to less than 7.0 ⁇ m, preferably 0.05 to 6.0 ⁇ m, more preferably 0.5. ⁇ 6.0 ⁇ m.
  • the average particle diameter means that the cut surface of the sputtering target is observed with a scanning analytical electron microscope (SEM), a diagonal line is drawn on the SEM image 1000 times field, and a matrix phase and a metal oxide phase existing on this line are formed. The maximum particle size and the minimum particle size are measured for each of the particles to be averaged.
  • SEM scanning analytical electron microscope
  • the average particle diameter of the particles formed by the matrix phase is always larger than the average particle diameter of the particles formed by the metal oxide phase.
  • the average particle diameter of the fine particles formed by the matrix phase and the metal oxide phase is within the above range, and the average particle diameter of the particles formed by the matrix phase is the average particle diameter of the particles formed by the metal oxide phase.
  • these particles are sufficiently dispersed and the particle growth of the particles is effectively reduced, that is, the matrix phase and the metal oxide phase are uniformly dispersed.
  • the target is sputtered to form a film, it is possible to effectively reduce particles generated when the solid metal oxide phase forms a lump and adheres to the film.
  • the occurrence of arcing can be suppressed.
  • the homogeneity and denseness of the film obtained can also be improved.
  • the X-ray diffraction peak intensity ratio represented by the formula (I) is usually 0.7 to 1.0, preferably 0.8 to 1.0 in the X-ray diffraction analysis of the sputtering target for a magnetic recording film of the present invention. It is.
  • the X-ray diffraction peak intensity simply means a value obtained by multiplying these peak heights and half-value widths (peak height ⁇ half-value width).
  • the crystals existing in the matrix phase containing Co and Pt as in the present invention form an fcc structure (cubic close-packed structure) or an hcp structure (hexagonal close-packed structure). Can metastasize.
  • the sintering temperature of the sputtering target of the present invention can be influenced by the composition of the target as described later, but is usually 800 to 1050 ° C., preferably 900 to 1050 ° C., more preferably 950 to 1050 ° C.
  • sintering temperature is within the above range, sintering can be performed at a relatively low temperature, and the density of the target to be obtained does not have to be lowered more than necessary. By sintering at such a low temperature, it becomes possible to obtain a sputtering target in which the growth of fine particles formed by the matrix phase and the metal oxide phase is effectively suppressed.
  • the target sintered at the above sintering temperature is usually 300 to 1000 ° C./hr, preferably 500 to 1000 ° C./hr, more preferably 700 to 1000 ° C./hr, from the above sintering temperature to 200 ° C. It is desirable to lower the temperature. When the temperature lowering rate is within the above range, the temperature can be rapidly decreased, and the grain growth of fine particles formed by the matrix phase and the metal oxide phase can be effectively suppressed.
  • the fcc structure formed by the crystals existing in the matrix phase containing Co and Pt can exist more stably at a higher temperature than the hcp structure formed by the crystals, but once the temperature is lowered rapidly as described above, It is presumed that the crystal having the fcc structure can be contained, the phase transition to the hcp structure can be suppressed, and crystal grains having the fcc structure can be effectively retained. For this reason, it is considered that most of the crystals present in the matrix phase of the sputtering target of the present invention have an fcc structure and exhibit the above X-ray diffraction peak intensity ratio.
  • the sintering method is not particularly limited as long as the sintering method satisfies the above sintering temperature condition and temperature drop rate condition, but the electric current sintering method is preferable. With this method, low-temperature sintering is possible and high-speed temperature drop control is easy.
  • the electric current sintering method is a method of sintering by applying a large current under pressure and includes a discharge plasma sintering method, a discharge sintering method, or a plasma activated sintering method. .
  • This method utilizes the discharge phenomenon that occurs in the gaps between the raw material powders, and the activation of the particle surface by discharge plasma, etc., the electrolytic diffusion effect caused by the electric field, the thermal diffusion effect due to Joule heat, the plastic deformation pressure due to pressurization, etc. As a driving force for sintering, sintering is promoted.
  • this method is used, the molded body can be sufficiently sintered even in a low temperature range of about the above-mentioned sintering temperature, and high-speed temperature reduction can be easily realized.
  • the sputtering target of the present invention is suitably used for forming a magnetic recording film, particularly a perpendicular magnetization film.
  • the perpendicular magnetization film is a recording film based on a perpendicular magnetic recording system in which the easy axis of magnetization is mainly perpendicular to the nonmagnetic substrate to improve the recording density.
  • a DC magnetron sputtering method or an RF magnetron sputtering method is usually preferable.
  • the film thickness is not particularly limited, but is usually 5 to 100 nm, and preferably 5 to 20 nm.
  • the magnetic recording film thus obtained can contain Co and Pt at a composition ratio of about 95% or more of the target composition ratio. Further, the magnetic recording film maintains the relationship that the average particle size of the particles formed by the matrix phase is larger than the average particle size of the particles formed by the metal oxide phase, while maintaining the relationship between the matrix phase and the metal oxide phase. Since it is obtained from the sputtering target of the present invention in which the size of the particles formed is reduced, the homogeneity and the denseness are high. Furthermore, since this magnetic recording film is excellent not only in coercive force but also in magnetic characteristics such as perpendicular magnetic anisotropy and perpendicular coercive force, it can be suitably used particularly as a perpendicular magnetization film.
  • the method for producing a sputtering target for a magnetic recording film according to the present invention comprises a matrix phase containing Co and Pt and a metal oxide phase, and has a magnetic permeability of 6 to 15 and a relative density of 90% or more.
  • powder (B) obtained from powder (A) is used by the following method.
  • Powder (A) is obtained by mechanically alloying Co and metal oxide.
  • Cr is contained as a metal
  • the alloy used as a raw material has a Cr concentration of usually 5 to 95 atomic%, preferably 10 to 70 atomic%. By atomizing this alloy, a powder is obtained.
  • the atomizing method is not particularly limited and may be any of a water atomizing method, a gas atomizing method, a vacuum atomizing method, a centrifugal atomizing method, and the like, but a gas atomizing method is preferable.
  • the tapping temperature is usually from 1420 to 1800 ° C, preferably from 1420 to 1600 ° C.
  • N 2 gas or Ar gas is usually injected, but it is preferable to inject Ar gas because it can suppress oxidation and obtain a spherical powder.
  • Atomizing powder having an average particle size of 10 to 600 ⁇ m, preferably 10 to 200 ⁇ m, more preferably 10 to 80 ⁇ m can be obtained by atomizing the above alloy.
  • a metal containing Co or an alloy of Co and Cr, or these atomized powder and metal oxide are mechanically alloyed to obtain a powder (A).
  • the metal oxide used is composed of an oxide of a metal element, and specifically, SiO, SiO 2 , TiO 2 , Ta 2 O 5 , Al 2 O 3 , MgO, CaO, Cr 2 O 3 , ZrO 2 , B 2. Examples thereof include O 3 , Sm 2 O 3 , HfO 2 , and Gd 2 O 3 , and among these, an oxide of at least one element selected from Si, Ti, and Ta is preferable. The remainder may contain other elements as long as the effects of the present invention are not impaired. For example, tantalum, niobium, copper, neodymium and the like can be mentioned. Mechanical alloying is usually performed with a ball mill.
  • the pulverization rate of the powder (A) is usually 30 to 95%, preferably 50 to 95%, more preferably 80 to 90%.
  • the powder (A) can be sufficiently refined to uniformly disperse the matrix phase and the metal oxide phase in the target, and tends to increase as the pulverization rate increases. Mixing of impurities such as certain zirconium or carbon can be moderately suppressed.
  • the Cr-containing powder may be directly used to perform the subsequent processes.
  • the Cr-containing powder preferably contains a metal oxide or the like in addition to Co and Cr.
  • a powder (B) is preferably a single powder.
  • the mixing method is not particularly limited, but blender mill mixing is suitable.
  • the powder (B) may be sized before shifting to the subsequent sintering step.
  • a vibrating sieve is used for sizing. By homogenizing, the homogeneity of the powder (B) can be further enhanced.
  • the resulting powder (B) is sintered to obtain the sputtering target of the present invention.
  • the sintering temperature is usually 800 to 1050 ° C, preferably 900 to 1050 ° C, more preferably 950 to 1050 ° C.
  • the pressure during sintering is usually 10 to 100 MPa, preferably 20 to 80 MPa, more preferably 30 to 60 MPa.
  • the sintering atmosphere is preferably a non-oxygen atmosphere, and more preferably an Ar atmosphere.
  • the temperature is raised at a rate of usually 250 to 6000 ° C./h, preferably 1000 to 6000 ° C./h, usually 10 min to 4 h.
  • the maximum sintering temperature holding time is usually about 3 min to 5 h.
  • the maximum sintering temperature holding time is within the above range, it is possible to effectively suppress the grain growth of fine particles formed by the matrix phase and the metal oxide phase, and to improve the relative density of the obtained target. Can do.
  • the temperature is decreased from the sintering temperature to 200 to 400 ° C., usually 300 to 1000 ° C./hr, preferably 500 to 1000 ° C./hr, more preferably 700 to 1000 ° C./hr, usually 1 to 3 hours. To do.
  • the method for producing a sputtering target of the present invention is characterized in that the sintering temperature is within the above range and the temperature drop rate is within the above range, that is, sintering is performed at a relatively low temperature and the temperature is lowered at a high speed. is doing. Therefore, the grain growth of the particles formed by the matrix phase and the metal oxide phase can be effectively suppressed, and the fcc structure formed by the crystals present in the matrix phase can be effectively retained, so that the target obtained It becomes possible to improve the quality. Therefore, according to the production method of the present invention, a sputtering target having a magnetic permeability of 6 to 15 and a relative density of 90% or more can be easily obtained.
  • the suitable sintering temperature and the maximum sintering temperature holding time can vary depending on the composition of the target. Specifically, for example, when the composition of the sputtering target is 66 mol% Co, 15 mol% Pt, 10 mol% Cr, and 9 mol% TiO 2 , the sintering temperature is about 800 to 950 ° C., and the maximum sintering temperature holding time ( The sintering time is preferably 3 min to 5 h.
  • the composition is Co68 mole% of the sputtering target, Pt12 mol%, CR8 mol%, when made of SiO 2 12 mol%, the sintering temperature is 900 ⁇ 1050 ° C. approximately, maximum sintering temperature holding time (sintering time) It is preferably 5 min to 2 h.
  • the sintering temperature is about 980 to 1050 ° C.
  • the maximum sintering temperature holding time (sintering time) ) Is preferably 5 min to 2 h.
  • the sintering method to be used is not particularly limited, but it is preferable to use an electric current sintering method.
  • this electric current sintering method when this electric current sintering method is used, after a raw material powder is filled in a jig having a predetermined shape, when the sintering temperature is 800 to 1050 ° C., the pressure is 20 to 50 Pa and the sintering time is 3 min to 5 h. Can be adopted. Therefore, if sintering is performed at a low temperature using a hot press (HP) method that has been widely employed, the growth of particles formed by the matrix phase and the metal oxide phase can be suppressed to some extent, but a high-density target is obtained. Although it tends to be difficult to control, if an electric current sintering method is used, it is easy to control various sintering temperature conditions. Target can be easily obtained.
  • HP hot press
  • the magnetic permeability was measured using a BH tracer (manufactured by Toei Industry Co., Ltd., output magnetic field 1 kOe).
  • Average particle diameter of particles composed of matrix phase and metal oxide phase >> The target cut surface is observed with a scanning analytical electron microscope (manufactured by JEOL Datum Co., Ltd.), and particles composed of a matrix phase and a metal oxide phase present in an SEM image (acceleration voltage 20 kV) 1200 ⁇ m ⁇ 1600 ⁇ m are displayed on the image. The maximum particle size and the minimum particle size were measured for all the particles present on the line drawn diagonally, and the averaged values were used as the average particle sizes of the matrix phase and the metal oxide phase, respectively.
  • X-ray source Cu Power: 40kV, 30mA Measurement method: 2 ⁇ / ⁇ , continuous scan Scan speed: 4.0 deg / min ⁇ Number of particles>
  • Sputtering treatment was performed using the obtained sputtering target. Glass was used as a substrate, and this was placed in a sputtering apparatus (model: MSL-464, manufactured by Tokki Co., Ltd.). The above sputtering target was sputtered under the following conditions, and was generated in a ⁇ 2.5 inch sputtering target. The number of particles was measured.
  • Process gas Ar Process pressure: 10 mTorr Input power: 3.1 W / cm 2 Sputtering time: 15 sec [Example 1] Powder is obtained by gas atomizing 2 kg of CoCr alloy by jetting 50 kg / cm 2 of Ar gas at a hot water temperature of 1650 ° C. (measured with a radiation thermometer) using a micro gas atomizer (Nisshin Giken Co., Ltd.). Obtained. The obtained powder was a spherical powder having an average particle size of 150 ⁇ m or less.
  • the obtained powder (A) is further charged with a Pt powder (average particle diameter of about 0.5 ⁇ m) and a powder similar to the Co powder, and the composition ratio of Co 66 Cr 10 Pt 15 (TiO 2 ) 9 is obtained.
  • a powder (B) A ball mill was used for mixing.
  • the obtained powder (B) was further sized using a vibration sieve.
  • the powder (B) was placed in a mold and sintered under the following conditions using an electric current sintering apparatus.
  • Examples 2 to 4 Reference Examples 1 and 2
  • Table 1 shows each measurement result using these sintered bodies.
  • Example 1 A powder (B) was obtained by using the same powder as in Example 1 to obtain a composition ratio shown in Table 1, and then sintered under the following conditions using a hot press device. In the same manner as in Example 1, a ⁇ 4 inch sputtering target was obtained. Table 1 shows the measurement results using this sintered body.
  • Examples 5 to 7, Reference Examples 3 to 4 In place of TiO 2 powder, SiO 2 powder (average particle size of about 0.5 ⁇ m) is used and mixed to obtain the composition ratio shown in Table 1 to obtain powder (B). According to the sintering conditions shown in Table 1, Except for the above, a ⁇ 4 inch sputtering target was obtained in the same manner as in Example 1. Table 1 shows each measurement result using these sintered bodies.
  • Example 8 to 9 A Ta 2 O 5 powder (average particle size of about 0.5 ⁇ m) is used instead of the TiO 2 powder and mixed so as to have the composition ratio shown in Table 1 to obtain a powder (B).
  • the sintering conditions shown in Table 1 A ⁇ 4 inch sputtering target was obtained in the same manner as in Example 1 except that this was followed. Table 1 shows each measurement result using these sintered bodies.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Powder Metallurgy (AREA)

Abstract

 本発明は、結晶粒の成長を抑制し、低透磁率かつ高密度とすることにより、成膜効率化および膜特性の向上が実現できる磁気記録膜用スパッタリングターゲット、およびその製造方法を提供することを目的とする。本発明は、CoおよびPtを含むマトリックス相と、金属酸化物相とからなるスパッタリングターゲットであって、透磁率が6~15、相対密度が90%以上であることを特徴とする磁気記録膜用スパッタリングターゲットである。

Description

磁気記録膜用スパッタリングターゲットおよびその製造方法
 本発明は、磁気記録膜を形成する際に用いられるスパッタリングターゲット、およびその製造方法に関する。より詳しくは、低透磁率かつ高密度である磁気記録膜用スパッタリングターゲットおよびその製造方法に関する。
 外部記録装置として採用されるハードディスク装置には、高性能なコンピュータおよびデジタル家電等に対応し得る高密度記録性が要求される。近年、このような高密度記録性を充足する垂直磁気記録方式が注目されており、該方式に用いられる垂直磁化膜としては、Co系合金磁性膜が多く採用されている。これら磁性膜においては、各相の結晶粒子の大きさおよびバラツキを抑制して、各粒子間の磁気的相互作用を低減すれば、媒体ノイズを低減し、記録密度を向上させることが可能となること等が知られている。
 こうしたCo系合金磁性膜は、現在スパッタリングターゲットをスパッタリングすることにより得られる。この方法に関して、得られる膜の高密度記録化、高保磁力化等を実現するため、用いるスパッタリングターゲットの品質向上を目指すべく様々な研究開発が行われている。
 たとえば、特許文献1にはCo系合金からなるスパッタリングターゲットが開示されている。該ターゲットは、Co系合金磁性膜の保磁力の向上およびノイズの低減を実現するため、合金相とセラミックス相を均質に分散させたものである。該ターゲットは、ある程度微細な混合相を有しており、高い相対密度を示しているが、このターゲットを製造する際における焼結温度が1000~1300℃と比較的高温であるため、結晶粒の成長が充分には抑制されておらず、透磁率についてもさらに改善する必要があった。
 また、特許文献2には、少なくともCoを含有する金属相と、セラミックス相とを有するスパッタリングターゲットが開示されている。該ターゲットは相対密度99%以上と高密度ではあるが、酸化物相の長軸粒径は10μm以下に留まっている。これは焼結温度が1150~1250℃と依然として高温であることに起因するものと考えられる。このターゲットにおいても、結晶粒の成長が充分に抑制されているとはいえなかった。
[規則91に基づく訂正 01.06.2009] 
 一方、特許文献3には、保磁力の向上を図り、また媒体ノイズを低減するための、Coを含む合金相とセラミックス相からなる高密度面内磁気記録媒体用スパッタリングターゲットが開示されている。該ターゲットは、合金相とセラミックス相とが微細かつ均質に分散したものであり、パーティクルを低減し得るものではあるが、該ターゲットの密度については具体的に検討されておらず、また透磁率についても改善の余地があった。
特開平10-88333号公報 特開2006-45587号公報 特開2006-313584号公報
 このように、上記いずれのスパッタリングターゲットも、結晶粒子の粒成長の抑制、低透磁率、および高密度という品質をすべて満足し得る程度に充足するものではなかった。
 本発明は、これらの品質をバランスよく保持できるスパッタリングターゲット、すなわち結晶粒の成長を抑制し、低透磁率かつ高密度とすることにより、成膜効率化および膜特性の向上が実現できる磁気記録膜用スパッタリングターゲット、およびその製造方法を提供することを目的としている。
 本発明の磁気記録膜用スパッタリングターゲットは、CoおよびPtを含むマトリックス相と、金属酸化物相とからなるスパッタリングターゲットであって、透磁率が6~15、相対密度が90%以上であることを特徴としている。
 また、前記スパッタリングターゲットの表面を走査型分析電子顕微鏡で観察した際における、前記マトリックス相が形成する粒子の平均粒径、および前記金属酸化物相が形成する粒子の平均粒径がともに0.05μm以上7.0μm未満であり、かつ前記マトリックス相が形成する粒子の平均粒径が、前記金属酸化物相が形成する粒子の平均粒径よりも大きいものであってもよい。
 さらに、X線回折分析において、式(I)で表されるX線回折ピーク強度比が0.7~1.0であるのが望ましい。
Figure JPOXMLDOC01-appb-M000003
 また、前記金属酸化物相が、Si、Ti、Taより選ばれる少なくとも1種の元素の酸化物を含むものでもよく、前記マトリックス相がさらにCrを含んでいてもよい。
 さらに、本発明の磁気記録膜用スパッタリングターゲットは、焼結温度800~1050℃で焼結することにより得られるのが好ましく、通電焼結法により焼結して得られるのが好ましい。
 本発明の磁気記録膜用スパッタリングターゲットの製造方法は、CoおよびPtを含むマトリックス相と、金属酸化物相とからなり、透磁率が6~15、相対密度が90%以上である磁気記録膜用スパッタリングターゲットの製造方法であって、
 CoおよびPtを含む金属と金属酸化物とを粉末にし、該粉末を焼結温度800~1050℃で焼結した後、300~1000℃/hrの速度で降温する工程を含むことを特徴としている。
 本発明の磁気記録膜用スパッタリングターゲットは、高密度であり、かつ結晶粒子の粒成長を充分に抑制したスパッタリングターゲットであるので、パーティクルおよびアーキングの発生を低減することができる。また、低透磁率であるので、スパッタ速度を向上させることができ、該スパッタリングターゲットをスパッタリングして磁気記録膜を形成する際、高速成膜化を実現することが可能となる。
 さらに本発明の製造方法によれば、上記スパッタリングターゲットを容易かつ高速に得ることができ、製造工程の効率化を図ることができる。
実施例3で得られたスパッタリングターゲットの切断面のSEM像である。 実施例7で得られたスパッタリングターゲットの切断面のSEM像である。 比較例3で得られたスパッタリングターゲットの切断面のSEM像である。 比較例4で得られたスパッタリングターゲットの切断面のSEM像である。
 次に本発明の磁気記録膜用スパッタリングターゲット、およびその製造方法について具体的に説明する。
 <磁気記録膜用スパッタリングターゲット>
 本発明の磁気記録膜用スパッタリングターゲット(以下、「本発明のスパッタリングターゲット」ともいう)は、CoおよびPtを含むマトリックス相と、金属酸化物相とからなるスパッタリングターゲットであって、透磁率が6~15、相対密度が90%以上であることを特徴としている。
 前記マトリックス相はCoおよびPtとからなり、通常、該ターゲット100モル%中、Coを1~80モル%、好ましくは1~75モル%、より好ましくは1~70モル%の量で、Ptを1~20モル%、好ましくは1~15モル%、より好ましくは5~15モル%の量で含まれる。なお、前記金属として、さらにCrを1~20モル%、好ましくは1~15モル%、より好ましくは5~15モル%の量で含有してもよい。
 また、前記金属酸化物相は金属元素の酸化物からなり、通常、該ターゲット100モル%中、0.01~20モル%、好ましくは0.01~15モル%、より好ましくは0.01~10モル%の量で含まれる。
 金属酸化物としては、具体的には、SiO、SiO2、TiO2、Ta25、Al23、MgO、CaO、Cr23、ZrO2、B23、Sm23、HfO2、Gd23が挙げられ、なかでもSi、Ti、Taより選ばれる少なくとも1種の元素の酸化物であるのが好ましい。残部には、本発明の効果を損なわない範囲で他の元素を含有してもよい。例えば、タンタル、ニオブ、銅、ネオジムなどが挙げられる。
 なお、金属酸化物相には、上記金属酸化物のほか、マトリックス相を構成する金属が大気中で、あるいは焼結時に酸化されることにより生成された酸化物も微量に含まれる場合がある。たとえば、金属としてCrを含む場合、その一部がCr23となって金属酸化物相に存在し得る。
 前記マトリックス相に含まれるCoは磁性状態または非磁性状態のどちらをもとり得る性質を有するが、該金属相が均質に分散することでこのCoが非磁性状態を呈しやすくなるため、ターゲットにおける重要な物性の一つでもある透磁率を低下させることが可能となる。本発明のスパッタリングターゲットの透磁率は、通常6~15、好ましくは6~12、より好ましくは6~9である。このように低い透磁率を有するターゲットであると、漏磁束が高くなるため、スパッタリング速度を向上させることができ、高速成膜化が容易となる。また、ターゲット自体の寿命を伸ばし、ターゲット1枚あたりの量産性を向上させることもできる。
 本発明のスパッタリングターゲットの相対密度は、焼結後の該スパッタリングターゲットについてアルキメデス法に基づき測定した値であり、通常90%以上、好ましくは95%以上、より好ましくは97%以上であり、上限値については特に限定されないが、通常100%以下である。上記相対密度の値を有するターゲット、いわゆる高密度のターゲットとすることにより、該ターゲットをスパッタリングした際における熱衝撃や温度差などに起因するターゲットの割れを防止するとともに、ターゲット厚を無駄なく有効に活用することができる。また、パーティクルおよびアーキングの発生を有効に低減することもできるとともに、スパッタリング速度を向上させる効果をもたらす。したがって、連続生産における欠損を抑制し、ターゲット単位面積あたりの成膜数を向上させ、かつ高速成膜化を実現することが可能となる。
 なお、アルキメデス法とは、ターゲット焼結体の空中重量を、体積(=ターゲット焼結体の水中重量/計測温度における水比重)で除し、下記式で表される理論密度ρ(g/cm3)に対する百分率で定義される相対密度(%)を求める方法である;
Figure JPOXMLDOC01-appb-M000004
 (式(X)中、C1~Ciはそれぞれターゲット焼結体の構成物質の含有量(重量%)を示し、ρ~ρiはC1~Ciに対応する各構成物質の密度(g/cm3)を示す。)。
 また、このような高密度のスパッタリングターゲットは、成膜された膜の抵抗率を低下させることができるので、本発明のスパッタリングターゲットをスパッタリングすることにより、安定した膜特性を有する磁気記録膜を形成することが可能となる。
 このような成分からなるスパッタリングターゲットにおいては、マトリックス相および金属酸化物相の双方ともに粒子を形成している。たとえば図1に示されるように、ターゲット表面を走査型分析電子顕微鏡(SEM)で観察すると、上記金属酸化物相からなる粒子は黒色で表示され、それ以外の粒子がマトリックス相である。本発明のスパッタリングターゲットはこれらマトリックス相および金属酸化物相が形成する粒子の平均粒径が、通常0.05~7.0μm未満、好ましくは0.05~6.0μm、より好ましくは0.5~6.0μmである。なお、平均粒径とは、スパッタリングターゲットの切断面を走査型分析電子顕微鏡(SEM)で観察し、SEM像1000倍視野に対角線を引き、この線上に存在するマトリックス相および金属酸化物相が形成する粒子それぞれについて最大粒径および最小粒径を測定し、これらを平均した値を意味する。
 また、マトリックス相が形成する粒子の平均粒径は、金属酸化物相が形成する粒子の平均粒径よりも常に大きい値を示す。
 マトリックス相および金属酸化物相が形成する微細な粒子の平均粒径が上記範囲内であり、かつマトリックス相が形成する粒子の平均粒径が、前記金属酸化物相が形成する粒子の平均粒径よりも大きい値を示した状態であると、これらの粒子が充分に分散され、かつ該粒子の粒成長が効果的に低減された状態、すなわちマトリックス相と金属酸化物相とが均質に分散している状態を維持することができ、該ターゲットをスパッタリングして成膜する際、特に固溶した金属酸化物相が塊状となって膜に付着することにより生じるパーティクルを有効に低減することができるとともに、アーキングの発生をも抑制することができる。また、得られる膜の均質性および緻密性も向上させることができる。
 本発明の磁気記録膜用スパッタリングターゲットは、X線回折分析において、式(I)で表されるX線回折ピーク強度比が通常0.7~1.0、好ましくは0.8~1.0である。
Figure JPOXMLDOC01-appb-M000005
 なお、本明細書においてCo-fcc[002]面のX線回折ピークとは、X線源にCuを用いた場合に、2θ=51°付近に現れるピークを意味する。また、Co-hcp[103]面のX線回折ピークとは、X線源にCuを用いた場合に、2θ=82°付近に現れるピークを意味する。さらに、X線回折ピーク強度とは、単純にこれらピーク高さと半値幅を乗じた値(ピーク高さ×半値幅)を意味する。
 本発明のようなCoおよびPtを含むマトリックス相に存在する結晶は、fcc構造(立方最密充填構造)、またはhcp構造(六方最密充填構造)を形成するが、これらの結晶構造は互いに相転移し得る。マトリックス相に存在する結晶がfcc構造を形成している場合には、2θ=51°付近にCo-fcc[002]面のX線回折ピークが発現し、同結晶がhcp構造を形成している場合には、2θ=82°付近にCo-hcp[103]面のX線回折ピークが発現する。したがって、式(I)で表されるX線回折ピーク強度比の値が上記範囲内であると、マトリックス相においてhcp構造よりもfcc構造が多く形成されていることとなる。このように、本発明のスパッタリングターゲットのマトリックス相において、fcc構造を形成する結晶が多く存在することが、得られるターゲットの透磁率を低下させる一因になっているものと推定される。
[規則91に基づく訂正 01.06.2009] 
 本発明のスパッタリングターゲットの焼結温度は、後述するように該ターゲットの組成にも影響され得るが、通常800~1050℃、好ましくは900~1050℃、より好ましくは950~1050℃である。焼結温度が上記範囲内であると、比較的低温で焼結できるとともに、得られるターゲットの密度が必要以上に低下するおそれがない。このような低温で焼結することで、上記マトリックス相および金属酸化物相が形成する微細な粒子の粒成長を有効に抑制したスパッタリングターゲットを得ることが可能となる。
[規則91に基づく訂正 01.06.2009] 
 さらに、上記焼結温度で焼結したターゲットは、通常300~1000℃/hr、好ましくは500~1000℃/hr、より好ましくは700~1000℃/hrの速度で、上記焼結温度から200℃まで降温するのが望ましい。降温速度が上記範囲内であると、急激に降温することが可能となり、上記マトリックス相および金属酸化物相が形成する微細な粒子の粒成長を有効に抑制することができる。
 こうしたCoおよびPtを含むマトリックス相に存在する結晶が形成するfcc構造は、同結晶が形成するhcp構造よりも高温域で安定に存在し得るが、上記のように急激に降温することで、一度fcc構造を形成した結晶を封じ込め、hcp構造へ相転移するのを抑制し、fcc構造を有する結晶粒子を有効に保持することができるものと推定される。このため、本発明のスパッタリングターゲットのマトリックス相に存在する結晶の多くがfcc構造を有し、上述のようなX線回折ピーク強度比を示すものと考えられる。
 焼結方法としては、上記焼結温度条件、降温速度条件を充足する焼結方法であれば特に制限されないが、通電焼結法が好ましい。この方法であると、低温焼結が可能であるとともに高速降温の制御が容易である。
 通電焼結法とは、加圧加電下において大電流を印加することにより焼結をする方法であり、放電プラズマ焼結法、放電焼結法、またはプラズマ活性化焼結法をも含むものである。この方法は、原料粉末の間隙に生じる放電現象を利用して、放電プラズマ等による粒子表面における活性化作用および電場により生じる電解拡散効果やジュール熱による熱拡散効果、加圧による塑性変形圧力などが焼結の駆動力となって焼結が促進される。該方法を用いると、上記焼結温度程度の低温度域であっても成形体を充分に焼結することができ、また高速降温を容易に実現することができる。
 <磁気記録膜>
 本発明のスパッタリングターゲットは、磁気記録膜、特に垂直磁化膜の形成に好適に用いられる。垂直磁化膜とは、その磁化容易軸が非磁性基板に対して主に垂直方向に向け、記録密度の向上を図る垂直磁気記録方式による記録膜である。本発明のスパッタリングターゲットをスパッタリングすることにより、高品質な磁気記録膜を高速成膜することが可能となる。
 成膜の際に採用されるスパッタリング方式としては、通常、DCマグネトロンスパッタリング方式またはRFマグネトロンスパッタリング方式が好適である。膜厚は特に限定されるものではないが、通常5~100nmであり、5~20nmが好適である。
 こうして得られる磁気記録膜は、CoおよびPtを、目標とする組成比の約95%以上の組成比で含有することが可能である。また、該磁気記録膜は、マトリックス相が形成する粒子の平均粒径が、前記金属酸化物相が形成する粒子の平均粒径よりも大きいという関係を保持しつつ、マトリックス相および金属酸化物相が形成する粒子の大きさを低減した本発明のスパッタリングターゲットから得られることから、均質性および緻密性が高い。さらに、この磁気記録膜は保磁力だけでなく、垂直磁気異方性および垂直抗磁力のような磁気特性にも優れることから、特に垂直磁化膜として好適に用いることができる。
 <磁気記録膜用スパッタリングターゲットの製造方法>
 本発明の磁気記録膜用スパッタリングターゲットの製造方法は、CoおよびPtを含むマトリックス相と、金属酸化物相とからなり、透磁率が6~15、相対密度が90%以上である磁気記録膜用スパッタリングターゲットの製造方法であって、CoおよびPtを含む金属と、金属酸化物とからなる粉末を成形し、次いで焼結温度800~1050℃で焼結した後、300~1000℃/hrの速度で降温する工程を含むことを特徴としている。
 本発明のスパッタリングターゲットを得るには、CoおよびPtを含む金属と、金属酸化物とからなる粉末を用いる。該粉末は、以下の方法により、粉末(A)から得られる粉末(B)を用いる。
 粉末(A)は、Coと金属酸化物とをメカニカルアロイングすることにより得る。金属としてCrを含有させる場合には、まずCoとCrとの合金をアトマイズするのが好ましい。この場合に原料として用いる合金は、Cr濃度が、通常5~95原子%、好ましくは10~70原子%である。この合金をアトマイズすることにより、粉末を得る。
 アトマイズ法としては、特に限定されず、水アトマイズ法、ガスアトマイズ法、真空アトマイズ法、遠心アトマイズ法等のいずれであってもよいが、ガスアトマイズ法が好ましい。出湯温度は、通常1420~1800℃、好ましくは1420~1600℃である。ガスアトマイズ法を用いる場合、通常N2ガスまたはArガスを噴射するが、Arガスを噴射すると、酸化を抑制することができるとともに球状の粉末が得られるので好ましい。上記合金をアトマイズすることで、平均粒径が10~600μm、好ましくは10~200μm、より好ましくは10~80μmのアトマイズ粉が得られる。
 そして、Coを含む金属またはCoとCrとの合金、あるいはこれらのアトマイズ粉と金属酸化物とをメカニカルアロイングして粉末(A)を得る。用いる金属酸化物は金属元素の酸化物からなり、具体的には、SiO、SiO2、TiO2、Ta25、Al23、MgO、CaO、Cr23、ZrO2、B23、Sm23、HfO2、Gd23が挙げられ、なかでもSi、Ti、Taより選ばれる少なくとも1種の元素の酸化物であるのが好ましい。残部には、本発明の効果を損なわない範囲で他の元素を含有してもよい。例えば、タンタル、ニオブ、銅、ネオジムなどが挙げられる。メカニカルアロイングは、通常ボールミルにて行う。
 この粉末(A)の粉砕率は、通常30~95%、好ましくは50~95%、より好ましくは80~90%である。粉砕率が上記範囲であると、粉末(A)を充分に微細化してターゲット内におけるマトリックス相と金属酸化物相とを均質に分散させることができるとともに、粉砕率の上昇に伴い増加する傾向にあるジルコニウムまたは炭素などの不純物の混入を適度に抑制することができる。
 さらに、金属としてCrを含有させる場合、上記のような粉末(A)を得る代わりに、Cr含有粉末を直接用いて、次工程以降の処理を行ってもよい。また、該Cr含有粉末は、CoとCrのほか、金属酸化物等を含有しているのが好ましい。
 次に、前記粉末(A)とPtとを混合し、粉末(B)を得る。Ptは、単体粉末を用いるのが好ましい。混合方法は、特に限定されないが、ブレンダーミル混合が好適である。
 なお、次工程である焼結工程に移行する前に粉末(B)を整粒してもよい。整粒には、振動ふるいを用いる。整粒することにより、粉末(B)の均質性をさらに高めることができる。
 得られた粉末(B)を焼結することにより、本発明のスパッタリングターゲットを得る。焼結温度は、通常800~1050℃、好ましくは900~1050℃、より好ましくは950~1050℃である。焼結時の圧力は、通常10~100MPa、好ましくは20~80MPa、より好ましくは30~60MPaである。焼結雰囲気は、通常、非酸素雰囲気であるのが望ましく、なかでもAr雰囲気であるのが好ましい。
 焼結開始時から最高焼結温度に到達するまでは、通常250~6000℃/h、好ましくは1000~6000℃/hの速度で、通常10min~4hかけて昇温する。
[規則91に基づく訂正 01.06.2009] 
 最高焼結温度保持時間(焼結時間)は、通常3min~5h程度である。最高焼結温度保持時間が上記範囲内であると、マトリックス相および金属酸化物相が形成する微細な粒子の粒成長を有効に抑制することができるとともに、得られるターゲットの相対密度を向上させることができる。
 さらに、上記焼結温度から200~400℃まで、通常300~1000℃/hr、好ましくは500~1000℃/hr、より好ましくは700~1000℃/hrの速度で、通常1~3hかけて降温する。
 本発明のスパッタリングターゲットの製造方法は、焼結温度を上記範囲内とし、かつ降温速度を上記範囲内とすること、すなわち比較的低温下で焼結し、かつ高速で降温することに特徴を有している。そのため、マトリックス相および金属酸化物相が形成する粒子の粒成長を有効に抑制することができるとともに、マトリックス相に存在する結晶が形成するfcc構造を有効に保持することができるので、得られるターゲットの品質を向上させることが可能となる。したがって、本発明の製造方法によれば、透磁率が6~15、相対密度が90%以上のスパッタリングターゲットを容易に得ることができる。
 特に、好適な焼結温度および最高焼結温度保持時間は、ターゲットの組成により変動し得る。具体的には、たとえば、スパッタリングターゲットの組成がCo66モル%、Pt15モル%、Cr10モル%、TiO29モル%からなる場合、焼結温度は800~950℃程度、最高焼結温度保持時間(焼結時間)は3min~5hであるのが好ましい。
 また、スパッタリングターゲットの組成がCo68モル%、Pt12モル%、Cr8モル%、SiO212モル%からなる場合、焼結温度は900~1050℃程度、最高焼結温度保持時間(焼結時間)は5min~2hであるのが好ましい。
 さらに、スパッタリングターゲットの組成がCo64モル%、Pt16モル%、Cr16モル%、Ta255モル%からなる場合、焼結温度は980~1050℃程度、最高焼結温度保持時間(焼結時間)は5min~2hであるのが好ましい。
 上記のような焼結条件を充足すれば、用いる焼結方法に特に制限はないが、通電焼結法によるのが好ましい。たとえば、この通電焼結法を用いた場合、所定の形状の治具に原料粉末を充填した後、焼結温度800~1050℃の場合、圧力20~50Pa、焼結時間3min~5hの条件を採用することができる。したがって、従来多く採用されているホットプレス(HP)法を用いて低温域で焼結すると、マトリックス相および金属酸化物相が形成する粒子の粒成長はある程度抑制できるものの、高密度のターゲットが得られにくい傾向にあるが、通電焼結法を用いれば、種々の焼結温度条件を制御しやすいため、低温域で焼結しても上記粒子の粒成長が抑制されるとともに、高密度化されたターゲットが容易に得られる。
 以下、本発明を実施例に基づき具体的に説明するが、本発明はこれらによって限定されるものではない。なお、各評価は以下の手順に従って行った。
 《相対密度》
 相対密度は、アルキメデス法に基づき測定した。具体的には、スパッタリングターゲット焼結体の空中重量を、体積(=スパッタリングターゲット焼結体の水中重量/計測温度における水比重)で除し、上記式(X)に基づく理論密度ρ(g/cm3)に対する百分率の値を相対密度(単位:%)とした。
 《透磁率》
 透磁率は、BHトレーサ(東英工業(株)製、出力磁場1kOe)を用いて測定した。
 《マトリックス相および金属酸化物相からなる粒子の平均粒径》
 ターゲット切断面を走査型分析電子顕微鏡(日本電子データム(株)製)で観察し、SEM像(加速電圧20kV)1200μm×1600μm中に存在するマトリックス相および金属酸化物相からなる粒子を、画像上に対角線引いた線分上に存在する全ての粒子について、最大粒径および最小粒径を測定し、これを平均した値をマトリックス相および金属酸化物相それぞれの平均粒径とした。
 《X線回折ピーク強度比》
 X線回折分析装置(型式:MXP3、(株)マックサイエンス製)を用い、以下の測定条件に従って、得られたスパッタリングターゲットにおけるCo-fcc[002]面のX線回折ピーク強度およびCo-hcp[103]面のX線回折ピーク強度を測定し、上記式(I)に基づきX線回折ピーク強度比を算出した。
  X線源:Cu
  パワー:40kV、30mA
  測定法:2θ/θ、連続スキャン
  スキャンスピード:4.0deg/min
 《パーティクル数》
 得られたスパッタリングターゲットを用いてスパッタリング処理を施した。基板としてガラスを用い、これをスパッタリング装置(型式:MSL-464、トッキ(株)製)に設置し、以下の条件下で上記スパッタリングターゲットをスパッタリングし、φ2.5インチのスパッタリングターゲット中に発生したパーティクルの数を測定した。
   プロセスガス:Ar
   プロセス圧力:10mTorr
   投入電力:3.1W/cm2
   スパッタ時間:15sec
 [実施例1]
 CoCrの合金2kgを超小型ガスアトマイズ装置(日新技研社製)を用いて、出湯温度1650℃(放射温度計で測定)下、50kg/cm2のArガスを噴射してガスアトマイズすることにより粉末を得た。得られた粉末は平均粒径150μm以下の球状粉末であった。
 次いで、得られた粉末と、TiO2粉末(平均粒径約0.5μm)とを用い、ボールミルにてメカニカルアロイングを施し、粉末(A)を得た。
 得られた粉末(A)に、さらにPt粉末(平均粒径約0.5μm)およびCo粉末と同様の粉末をそれぞれ投入して、Co66Cr10Pt15(TiO2)9の組成比となるように混合し、粉末(B)を得た。混合にはボールミルを用いた。
 得られた粉末(B)は、さらに振動ふるいを用いて整粒した。
 次いで、粉末(B)を成形型に入れ、通電焼結装置を用い、以下の条件下で焼結した。
[規則91に基づく訂正 01.06.2009] 
  [焼結条件]
  焼結雰囲気:Ar雰囲気
  昇温速度:800℃/hr、昇温時間:1h
  焼結温度:800℃
  最高焼結温度保持時間:10min
  圧力:50MPa
  降温速度:400℃/hr(最高焼結温度から200℃まで)、降温時間:1.5h 得られた焼結体を切削加工することにより、φ4インチのスパッタリングターゲットを得た。この焼結体を用いた各測定結果を表1に示す。
 [実施例2~4、参考例1~2]
 実施例1と同様の粉末を用い、表1に示す組成比となるように混合して粉末(B)を得、表1に示す焼結条件に従った以外は実施例1と同様にして、φ4インチのスパッタリングターゲットを得た。これらの焼結体を用いた各測定結果を表1に示す。
 [比較例1]
 実施例1と同様の粉末を用い、表1に示す組成比となるように混合して粉末(B)を得た後、ホットプレス装置を用い、以下の条件下で焼結した以外は実施例1と同様にして、φ4インチのスパッタリングターゲットを得た。この焼結体を用いた各測定結果を表1に示す。
   焼結雰囲気:Ar雰囲気
   昇温速度:450℃/hr、昇温時間:2h
   焼結温度:900℃
   最高焼結温度保持時間:1h
   圧力:30MPa
   降温速度:150℃/hr(最高焼結温度から300℃まで)、降温時間:4h
 [比較例2~4]
 比較例1と同様の粉末を用い、表1に示す組成比となるように混合して粉末(B)を得、表1に示す焼結条件に従った以外は比較例1と同様にして、φ4インチのスパッタリングターゲットを得た。これらの焼結体を用いた各測定結果を表1に示す。
 [実施例5~7、参考例3~4]
 TiO2粉末の代わりにSiO2粉末(平均粒径約0.5μm)を用い、表1に示す組成比となるように混合して粉末(B)を得、表1に示す焼結条件に従った以外は実施例1と同様にして、φ4インチのスパッタリングターゲットを得た。これらの焼結体を用いた各測定結果を表1に示す。
 [実施例8~9]
 TiO2粉末の代わりにTa25粉末(平均粒径約0.5μm)を用い、表1に示す組成比となるように混合して粉末(B)を得、表1に示す焼結条件に従った以外は実施例1と同様にして、φ4インチのスパッタリングターゲットを得た。これらの焼結体を用いた各測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000006
 

Claims (13)

  1.  CoおよびPtを含むマトリックス相と、金属酸化物相とからなるスパッタリングターゲットであって、透磁率が6~15、相対密度が90%以上であることを特徴とする磁気記録膜用スパッタリングターゲット。
  2.  前記スパッタリングターゲットの表面を走査型分析電子顕微鏡で観察した際における、前記マトリックス相が形成する粒子の平均粒径、および前記金属酸化物相が形成する粒子の平均粒径がともに0.05μm以上7.0μm未満であり、
    かつ前記マトリックス相が形成する粒子の平均粒径が、前記金属酸化物相が形成する粒子の平均粒径よりも大きいことを特徴とする請求項1に記載の磁気記録膜用スパッタリングターゲット。
  3.  X線回折分析において、式(I)で表されるX線回折ピーク強度比が0.7~1.0であることを特徴とする請求項1または2に記載の磁気記録膜用スパッタリングターゲット。
    Figure JPOXMLDOC01-appb-M000001
  4.  前記金属酸化物相が、Si、Ti、Taより選ばれる少なくとも1種の元素の酸化物を含むことを特徴とする請求項1~3のいずれかに記載の磁気記録膜用スパッタリングターゲット。
  5.  前記マトリックス相がさらにCrを含むことを特徴とする請求項1~4のいずれかに記載の磁気記録膜用スパッタリングターゲット。
  6.  焼結温度800~1050℃で焼結することにより得られることを特徴とする請求項1~5のいずれかに記載の磁気記録膜用スパッタリングターゲット。
  7.  通電焼結法により焼結して得られることを特徴とする請求項1~6のいずれかに記載の磁気記録膜用スパッタリングターゲット。
  8.  CoおよびPtを含むマトリックス相と、金属酸化物相とからなり、透磁率が6~15、相対密度が90%以上である磁気記録膜用スパッタリングターゲットの製造方法であって、
     CoおよびPtを含む金属と金属酸化物とを粉末にし、該粉末を焼結温度800~1050℃で焼結した後、300~1000℃/hrの速度で降温する工程を含むことを特徴とする磁気記録膜用スパッタリングターゲットの製造方法。
  9.  前記スパッタリングターゲットの表面を走査型分析電子顕微鏡で観察した際における、前記マトリックス相が形成する粒子の平均粒径、および前記金属酸化物相が形成する粒子の平均粒径がともに0.05μm以上7.0μm未満であり、
    かつ前記マトリックス相が形成する粒子の平均粒径が、前記金属酸化物相が形成する粒子の平均粒径よりも大きい磁気記録膜用スパッタリングターゲットを得ることを特徴とする請求項8に記載の磁気記録膜用スパッタリングターゲットの製造方法。
  10.  X線回折分析において、式(I)で表されるX線回折ピーク強度比が0.7~1.0である磁気記録膜用スパッタリングターゲットを得ることを特徴とする請求項8または9に記載の磁気記録膜用スパッタリングターゲットの製造方法。
    Figure JPOXMLDOC01-appb-M000002
  11.  前記金属酸化物相が、Si、Ti、Taより選ばれる少なくとも1種の元素の酸化物を含む磁気記録膜用スパッタリングターゲットを得ることを特徴とする請求項8~10のいずれかに記載の磁気記録膜用スパッタリングターゲットの製造方法。
  12.  前記マトリックス相がさらにCrを含む磁気記録膜用スパッタリングターゲットを得ることを特徴とする請求項8~11のいずれかに記載の磁気記録膜用スパッタリングターゲットの製造方法。
  13.  通電焼結法により焼結することを特徴とする請求項8~12のいずれかに記載の磁気記録膜用スパッタリングターゲットの製造方法。
     
     
PCT/JP2008/069021 2007-10-24 2008-10-21 磁気記録膜用スパッタリングターゲットおよびその製造方法 WO2009054369A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/739,261 US20100243435A1 (en) 2007-10-24 2008-10-21 Sputtering Target for Magnetic Recording Film and Method for Manufacturing the Same
CN2008801124235A CN101835920B (zh) 2007-10-24 2008-10-21 磁记录膜用溅射靶及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007276570A JP5204460B2 (ja) 2007-10-24 2007-10-24 磁気記録膜用スパッタリングターゲットおよびその製造方法
JP2007-276570 2007-10-24

Publications (2)

Publication Number Publication Date
WO2009054369A1 WO2009054369A1 (ja) 2009-04-30
WO2009054369A9 true WO2009054369A9 (ja) 2010-02-04

Family

ID=40579474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/069021 WO2009054369A1 (ja) 2007-10-24 2008-10-21 磁気記録膜用スパッタリングターゲットおよびその製造方法

Country Status (5)

Country Link
US (1) US20100243435A1 (ja)
JP (1) JP5204460B2 (ja)
CN (1) CN101835920B (ja)
TW (1) TW200930825A (ja)
WO (1) WO2009054369A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9103023B2 (en) 2009-03-27 2015-08-11 Jx Nippon Mining & Metals Corporation Nonmagnetic material particle-dispersed ferromagnetic material sputtering target
DE102009037894A1 (de) * 2009-08-18 2011-02-24 Mtu Aero Engines Gmbh Dünnwandiges Strukturbauteil und Verfahren zu seiner Herstellung
JP2011084804A (ja) * 2009-09-18 2011-04-28 Kobelco Kaken:Kk 金属酸化物−金属複合スパッタリングターゲット
MY149437A (en) * 2010-01-21 2013-08-30 Jx Nippon Mining & Metals Corp Ferromagnetic material sputtering target
JP5337331B2 (ja) * 2010-03-30 2013-11-06 山陽特殊製鋼株式会社 スパッタリングターゲット材の製造方法
WO2012011294A1 (ja) * 2010-07-20 2012-01-26 Jx日鉱日石金属株式会社 パーティクル発生の少ない強磁性材スパッタリングターゲット
WO2012077665A1 (ja) * 2010-12-09 2012-06-14 Jx日鉱日石金属株式会社 強磁性材スパッタリングターゲット
JP5290468B2 (ja) * 2010-12-20 2013-09-18 Jx日鉱日石金属株式会社 C粒子が分散したFe−Pt系スパッタリングターゲット
JP5725610B2 (ja) 2011-04-29 2015-05-27 三菱マテリアル株式会社 スパッタリングターゲット及びその製造方法
US9761422B2 (en) * 2012-02-22 2017-09-12 Jx Nippon Mining & Metals Corporation Magnetic material sputtering target and manufacturing method for same
SG11201401542YA (en) 2012-03-15 2014-11-27 Jx Nippon Mining & Metals Corp Magnetic material sputtering target and manufacturing method thereof
JP2014034730A (ja) * 2012-08-10 2014-02-24 Mitsui Mining & Smelting Co Ltd 焼結体およびスパッタリングターゲット
JP2012246574A (ja) * 2012-09-18 2012-12-13 Mitsubishi Materials Corp スパッタリングターゲット及びその製造方法
MY185389A (en) * 2013-02-15 2021-05-17 Jx Nippon Mining & Metals Corp Sputtering target containing co or fe
CN104060229A (zh) * 2014-06-20 2014-09-24 贵研铂业股份有限公司 一种CoCrPt-氧化物磁记录靶材、薄膜及其制备方法
JP6504605B2 (ja) * 2015-11-27 2019-04-24 田中貴金属工業株式会社 スパッタリングターゲット
WO2018083951A1 (ja) * 2016-11-01 2018-05-11 田中貴金属工業株式会社 磁気記録媒体用スパッタリングターゲット
KR102330578B1 (ko) 2018-07-27 2021-11-24 가부시키가이샤 아루박 스퍼터링 타겟 및 스퍼터링 타겟의 제조 방법

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314864A (ja) * 1986-07-08 1988-01-22 Ulvac Corp Co基合金スパツタタ−ゲツトおよびその製造法
EP0535314A1 (en) * 1991-08-30 1993-04-07 Mitsubishi Materials Corporation Platinum-cobalt alloy sputtering target and method for manufacturing same
JP2806228B2 (ja) * 1993-10-25 1998-09-30 株式会社神戸製鋼所 難加工性Co合金の低透磁率化方法
JPH11222671A (ja) * 1998-02-02 1999-08-17 Hitachi Metals Ltd スパッタリング用ターゲットおよびその製造方法
JP2000282229A (ja) * 1999-03-29 2000-10-10 Hitachi Metals Ltd CoPt系スパッタリングターゲットおよびその製造方法ならびにこれを用いた磁気記録膜およびCoPt系磁気記録媒体
US6176944B1 (en) * 1999-11-01 2001-01-23 Praxair S.T. Technology, Inc. Method of making low magnetic permeability cobalt sputter targets
JP2001236643A (ja) * 2000-02-23 2001-08-31 Fuji Electric Co Ltd 磁気記録媒体製造用スパッタリングターゲット、それを用いた磁気記録媒体の製造方法および磁気記録媒体
JP2004339586A (ja) * 2003-05-19 2004-12-02 Mitsubishi Materials Corp 磁気記録膜形成用スパッタリングターゲットおよびその製造方法
JP2006313584A (ja) * 2005-05-06 2006-11-16 Hitachi Global Storage Technologies Netherlands Bv 磁気記録媒体の製造方法
WO2007080781A1 (ja) * 2006-01-13 2007-07-19 Nippon Mining & Metals Co., Ltd. 非磁性材粒子分散型強磁性材スパッタリングターゲット
WO2007114356A1 (ja) * 2006-03-31 2007-10-11 Mitsubishi Materials Corporation 垂直磁気記録媒体膜形成用スパッタリングターゲット及びその製造方法

Also Published As

Publication number Publication date
CN101835920B (zh) 2012-07-18
JP5204460B2 (ja) 2013-06-05
TW200930825A (en) 2009-07-16
US20100243435A1 (en) 2010-09-30
WO2009054369A1 (ja) 2009-04-30
JP2009102707A (ja) 2009-05-14
CN101835920A (zh) 2010-09-15

Similar Documents

Publication Publication Date Title
JP5204460B2 (ja) 磁気記録膜用スパッタリングターゲットおよびその製造方法
JP2009215617A (ja) コバルト、クロム、および白金からなるマトリックス相と酸化物相とを含有するスパッタリングターゲット材およびその製造方法
JP5155565B2 (ja) CoCrPt系スパッタリングターゲットおよびその製造方法
JP4837801B2 (ja) Co若しくはCo合金相に酸化物相を分散させたスパッタリングターゲット
WO2012105201A1 (ja) 磁気記録媒体膜形成用スパッタリングターゲットおよびその製造方法
TWI558834B (zh) Target for magnetron sputtering
JP5705993B2 (ja) C粒子が分散したFe−Pt−Ag−C系スパッタリングターゲット及びその製造方法
WO2013027443A1 (ja) パーティクル発生の少ない強磁性材スパッタリングターゲット
JP6692724B2 (ja) 非磁性材料分散型Fe−Pt系スパッタリングターゲット
WO2013108520A1 (ja) Co-Cr-Pt系スパッタリングターゲット及びその製造方法
WO2010074171A1 (ja) スパッタリングターゲットおよび膜の形成方法
WO2014024519A1 (ja) 焼結体およびスパッタリングターゲット
WO2016129449A1 (ja) Cr-Ti合金スパッタリングターゲット材およびその製造方法
JP2011175725A (ja) 磁気記録媒体膜形成用スパッタリングターゲットおよびその製造方法
JP5801496B2 (ja) スパッタリングターゲット
JP2024020341A (ja) 異方性希土類焼結磁石及びその製造方法
JP2011174174A (ja) 磁気記録媒体膜形成用スパッタリングターゲットおよびその製造方法
JP2019062155A (ja) R−t−b系焼結磁石の製造方法
JP6734399B2 (ja) 磁性材スパッタリングターゲット及びその製造方法
JP5505844B2 (ja) 酸化コバルト及び非磁性酸化物を有するCoCrPtに基づく合金スパッタリングターゲット及びその製造法
WO2021014760A1 (ja) 非磁性層形成用スパッタリングターゲット部材
JP6728094B2 (ja) 強磁性材スパッタリングターゲット
WO2020053973A1 (ja) 強磁性材スパッタリングターゲット
WO2016157922A1 (ja) 軟磁性膜および軟磁性膜形成用スパッタリングターゲット
JP7317741B2 (ja) スパッタリングターゲット、磁性膜、及びスパッタリングターゲット作製用の原料混合粉末

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880112423.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08842025

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12739261

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08842025

Country of ref document: EP

Kind code of ref document: A1