WO2016157922A1 - 軟磁性膜および軟磁性膜形成用スパッタリングターゲット - Google Patents

軟磁性膜および軟磁性膜形成用スパッタリングターゲット Download PDF

Info

Publication number
WO2016157922A1
WO2016157922A1 PCT/JP2016/050288 JP2016050288W WO2016157922A1 WO 2016157922 A1 WO2016157922 A1 WO 2016157922A1 JP 2016050288 W JP2016050288 W JP 2016050288W WO 2016157922 A1 WO2016157922 A1 WO 2016157922A1
Authority
WO
WIPO (PCT)
Prior art keywords
soft magnetic
magnetic film
sputtering target
present
forming
Prior art date
Application number
PCT/JP2016/050288
Other languages
English (en)
French (fr)
Inventor
俊介 上田
福岡 淳
斉藤 和也
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to JP2017509306A priority Critical patent/JP6575775B2/ja
Publication of WO2016157922A1 publication Critical patent/WO2016157922A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73911Inorganic substrates
    • G11B5/73921Glass or ceramic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/851Coating a support with a magnetic layer by sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/16Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering

Definitions

  • the present invention relates to a soft magnetic film used for a perpendicular magnetic recording type magnetic medium or the like and a sputtering target used to form the soft magnetic film.
  • Perpendicular magnetic recording is a method in which the magnetic film of a perpendicular magnetic recording medium is formed so that the axis of easy magnetization is oriented perpendicular to the medium surface, and the demagnetizing field in the bit is small even when the recording density is increased. This is a method suitable for high recording density with little deterioration in recording / reproducing characteristics.
  • a recording medium having a magnetic recording film layer and a soft magnetic film layer with improved recording sensitivity has been developed.
  • an amorphous soft magnetic alloy is adopted because excellent soft magnetic properties are required.
  • the amorphous alloy for the soft magnetic film include Fe, Co, or an alloy containing various additive elements in the FeCo alloy. (For example, refer to Patent Document 1.)
  • the soft magnetic film using the Fe-rich FeCo alloy described above has a large decrease in Bs as the temperature rises, and a temperature environment higher than room temperature (25 ° C.), for example, about 50 to 100 ° C. Then, it was confirmed that the function as the soft magnetic film of the perpendicular magnetic recording medium may not be sufficiently performed, that is, there is a problem in the high temperature characteristics of Bs.
  • An object of the present invention is to provide a soft magnetic film in which a decrease in Bs is small even at a high temperature, and a sputtering target used for forming the soft magnetic film.
  • the present inventor has examined problems related to the high temperature characteristics of Bs.
  • the present inventors have found that the high temperature characteristics of Bs can be greatly improved by adopting a CoFeNb-based alloy as the amorphous alloy constituting the soft magnetic film and by making the atomic ratio of Co and Fe constant. .
  • the composition formula in atomic ratio is (Co a Fe 1-a ) 100- bc Nb b M c , 0.50 ⁇ a ⁇ 0.90, 3 ⁇ b ⁇ 14, 3 ⁇ c ⁇ 19, 16 ⁇ b + c ⁇ 24, M is one or more elements selected from the group consisting of Mo, Cr and W, the balance is made of inevitable impurities, and the saturation magnetic flux density at 100 ° C. is 0.50 T or more It is a soft magnetic film.
  • the present invention also provides a sputtering target material used for forming the soft magnetic film, wherein the composition formula in terms of atomic ratio is (Co a Fe 1-a ) 100- bc Nb b M c , 0. 50 ⁇ a ⁇ 0.90, 3 ⁇ b ⁇ 14, 3 ⁇ c ⁇ 19, 16 ⁇ b + c ⁇ 24, M is one or more elements selected from the group consisting of Mo, Cr and W, and the remainder is inevitable
  • M is one or more elements selected from the group consisting of Mo, Cr and W, and the remainder is inevitable
  • a sputtering target for forming a soft magnetic film made of impurities.
  • the present invention even in a temperature environment higher than room temperature (25 ° C.), since the decrease in Bs is small and the high temperature characteristics are excellent, the performance of the soft magnetic film can be sufficiently enhanced under the usage environment of the perpendicular magnetic recording medium.
  • the technique is useful for manufacturing a perpendicular magnetic recording medium.
  • the composition formula in terms of atomic ratio is (Co a Fe 1-a ) 100- bc Nb b M c , 0.50 ⁇ a ⁇ 0.90, 3 ⁇ b ⁇ 14, 3 ⁇ c ⁇ 19, 16 ⁇ b + c ⁇ 24, M is one or more elements selected from the group consisting of Mo, Cr and W, the balance is unavoidable impurities, and Bs at 100 ° C. is 0.50 T or more It has a special feature.
  • the soft magnetic film of the present invention suppresses the decrease in Bs at a temperature of 100 ° C., which is higher than room temperature (25 ° C.), which is the usage environment of the perpendicular magnetic recording medium, and sets Bs to 0.50 T or more.
  • the function as a soft magnetic film of the perpendicular magnetic recording medium can be sufficiently achieved.
  • the reason why the content ratio of a in the composition formula in the above-described atomic ratio of the present invention, that is, Co, is 0.50 or more is to suppress the decrease of Bs at 100 ° C. and to make Bs 0.50 T or more.
  • the fall of a soft magnetic characteristic can be suppressed by making a in a composition formula into 0.90 or less.
  • a in the composition formula is in the range of 0.50 ⁇ a ⁇ 0.90.
  • a range of 0.55 ⁇ a ⁇ 0.70 is preferable.
  • the soft magnetic film of the present invention contains Nb.
  • the reason why Nb was selected as the additive element is to improve the corrosion resistance of the soft magnetic film because it is shown in the potential-pH diagram that a dense passive film is formed over a wide range of pH. .
  • the soft magnetic film of the present invention by setting b in the composition formula to 3 or more, the soft magnetic film can have an amorphous structure and corrosion resistance can be improved.
  • the soft magnetic film of this invention can suppress formation of a brittle intermetallic compound phase by making b in a composition formula 14 or less. Therefore, in the soft magnetic film of the present invention, b in the composition formula is in the range of 3 ⁇ b ⁇ 14.
  • the soft magnetic film of the present invention becomes an amorphous film at the time of film formation, and at the same time, the soft magnetic film can be maintained in an amorphous structure even under a high temperature environment, and crystallization can be suppressed.
  • b is preferably 5 or more, and more preferably 8 or more. Further, b is preferably 12 or less, and more preferably 11 or less.
  • the soft magnetic film of the present invention contains at least one element selected from the group consisting of Mo, Cr and W as the M element, and the content thereof is in the range of 3-19. It may be difficult to obtain a sufficiently stable amorphous structure and high corrosion resistance only by adding the above Nb. Therefore, the soft magnetic film of the present invention can improve soft magnetic properties and corrosion resistance while forming a sufficiently stable amorphous structure by adding M element in combination with Nb. And among the group of M elements, W is preferable for the same reason as described above. In the soft magnetic film of the present invention, by setting c in the composition formula to 3 or more, a sufficiently stable amorphous structure can be obtained and the corrosion resistance can be improved.
  • the soft magnetic film of the present invention can improve the soft magnetic properties of the soft magnetic film by setting c in the composition formula to 19 or less. Therefore, in the soft magnetic film of the present invention, the amount of M element added, that is, c in the composition formula is in the range of 3 ⁇ c ⁇ 19. Among these, for the same reason as above, c is preferably 4 or more, and more preferably 8 or more. Further, c is preferably 18 or less, and more preferably 11 or less.
  • the content, that is, b + c in the composition formula is in the range of 16 ⁇ b + c ⁇ 24. This is to obtain good soft magnetic characteristics while maintaining the amorphous structure.
  • b + c in the composition formula By setting b + c in the composition formula to 16 or more, a stable amorphous structure can be obtained in the soft magnetic film, and the corrosion resistance can be improved.
  • the soft magnetic film of the present invention can improve the soft magnetic properties of the soft magnetic film by setting b + c in the composition formula to 24 or less.
  • b + c is preferably 16 or more, and more preferably 17 or more. Further, b + c is preferably 22 or less, and more preferably 21 or less.
  • the balance other than containing Nb and M elements in the above range is Fe, Co, and inevitable impurities.
  • the content of impurities is preferably as small as possible.
  • oxygen and nitrogen as gas components are 1000 mass ppm or less, and impurity elements such as Ni and Si other than gas components inevitably contained are 1000 mass ppm in total. The following is preferable.
  • a sputtering method using a sputtering target having the same composition as that of the soft magnetic film is optimal for forming the soft magnetic film having the above characteristics of the present invention.
  • the composition formula in atomic ratio is (Co a Fe 1-a ) 100- bc Nb b M c , 0.50 ⁇ a ⁇ 0.90, 3 ⁇ b ⁇ 14 3 ⁇ c ⁇ 19, 16 ⁇ b + c ⁇ 24, M is a sputtering target for forming a soft magnetic film, wherein one or more elements selected from the group consisting of Mo, Cr, and W, and the balance is unavoidable impurities.
  • a melting method or a powder sintering method can be applied.
  • the melting method in order to reduce the casting defects existing in the casting ingot or the casting ingot and to make the structure uniform, plastic processing and pressure processing are applied to form a bulk body, which is then manufactured by machining. it can.
  • the powder sintering method the raw material powder can be manufactured by pressure sintering such as hot isostatic pressing, hot pressing, discharge plasma sintering, extrusion press sintering, and the like.
  • the hot isostatic press is preferable because it can stably realize the pressure sintering conditions described below.
  • a mixed powder obtained by mixing a plurality of alloy powders or pure metal powders to have a final composition, or an alloy powder adjusted to the final composition can be applied as a raw material powder.
  • the method of pressure sintering the powder adjusted to the final composition has an effect of stably finely and uniformly dispersing the intermetallic compound phase containing Nb.
  • the raw material powder used for the above-mentioned pressure sintering can be produced by a method of pulverizing an ingot obtained by casting a molten alloy whose components are adjusted to a desired composition, or a gas atomizing method in which the molten alloy is sprayed with an inert gas.
  • the gas atomization method is preferred, in which a spherical powder suitable for sintering having a low filling rate and a high filling rate is obtained.
  • Ar gas or nitrogen gas which is an inert gas, as the atomizing gas.
  • the sintering temperature in the above-mentioned pressure sintering is preferably set to 800 to 1400 ° C. It is more preferable to sinter at a temperature of 900 to 1300 ° C. in order to suppress the formation of voids and minimize the growth of the intermetallic compound phase containing Nb.
  • the pressurization pressure in the above-mentioned pressure sintering can be set to 100 MPa or more to promote the progress of sintering and suppress the generation of pores.
  • the pressurizing pressure is preferably 100 to 200 MPa.
  • the sintering time in the above-described pressure sintering is preferably 1 to 10 hours.
  • the soft magnetic film forming sputtering target prepared above is placed in the chamber of a DC magnetron sputtering apparatus (C-3010) manufactured by Canon Anelva, and the vacuum reach in the chamber is 2 ⁇ 10 ⁇ 5 Pa or less. After evacuation, a 300 nm thick soft magnetic film was formed by sputtering on a glass substrate having dimensions of 75 mm ⁇ 25 mm under conditions of Ar gas pressure of 0.6 Pa and input power of 1000 W.
  • C-3010 DC magnetron sputtering apparatus manufactured by Canon Anelva
  • Each soft magnetic film sample formed above is further processed into a size of 6 mm ⁇ 7 mm, and then a vibrating sample magnetometer (VSM-5-20) manufactured by Toei Kogyo Co., Ltd. is used. While applying the maximum magnetic field of 80 kA / m, the sample was heated from room temperature (25 ° C.) to 410 ° C. at a heating rate of 0.2 ° C./sec, and Bs was measured. As a representative example, the measurement results of Invention Example 1 and Comparative Example 2 are shown in FIG. Table 1 shows the measurement results of Bs at 25 ° C. and 100 ° C. of each soft magnetic film, and the rate of decrease of Bs at 100 ° C. from Bs at 25 ° C.
  • the Bs at 100 ° C. of the soft magnetic film serving as a comparative example outside the scope of the present invention was less than 0.50T.
  • the soft magnetic film of the present invention has a Bs at 100 ° C. of 0.50 T or more, and was confirmed to be a soft magnetic film excellent in the high temperature characteristics of Bs.
  • all of the soft magnetic films as comparative examples outside the scope of the present invention had a Bs decrease value of 0.10 T from 25 ° C. to 100 ° C. and a decrease rate of 26% or more, which was a significant decrease. It was.
  • the soft magnetic film of the present invention is a soft magnetic film excellent in the high temperature characteristics of Bs with a decrease value of Bs of less than 0.10 T and a decrease rate of 11% or less at 25 ° C. to 100 ° C. Was confirmed. And it was confirmed that the soft magnetic film of this invention can be formed with the sputtering target for soft magnetic film formation of this invention, and the effectiveness of this invention was confirmed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

 高温でもBsの低下が小さい軟磁性膜、および、この軟磁性膜を形成するために用いるスパッタリングターゲットを提供する。 原子比における組成式が、(CoFe1-a100-b-cNb、0.50≦a≦0.90、3≦b≦14、3≦c≦19、16≦b+c≦24、Mは、Mo、CrおよびWからなる群から選ばれる1種以上の元素、残部が不可避的不純物からなり、100℃における飽和磁束密度が0.50T以上である軟磁性膜、および、この軟磁性膜を形成するために用いるスパッタリングターゲット。

Description

軟磁性膜および軟磁性膜形成用スパッタリングターゲット
 本発明は、垂直磁気記録方式の磁気媒体等に用いられる軟磁性膜およびこの軟磁性膜を形成するために用いるスパッタリングターゲットに関するものである。
 近年の磁気記録媒体には記録密度の高密度化のため、従来の面内磁気記録に替わり、垂直磁気記録方式が実用化されている。垂直磁気記録方式とは、垂直磁気記録媒体の磁性膜を媒体面に対して磁化容易軸が垂直方向に配向するように形成したものであり、記録密度を上げてもビット内の反磁界が小さく、記録再生特性の低下が少ない高記録密度に適した方法である。この垂直磁気記録方式において、記録感度を高めた磁気記録膜層と軟磁性膜層とを有する記録媒体が開発されている。
 このような磁気記録媒体の軟磁性膜としては、優れた軟磁気特性が要求されることから、アモルファス軟磁性合金が採用されている。この軟磁性膜用のアモルファス合金としては、Fe、CoあるいはFeCo合金に種々の添加元素を含む合金が挙げられる。(例えば、特許文献1参照。)
 従来の軟磁性膜には、高い飽和磁束密度(以下、Bsと記す。)と非晶質性が要求されていた。そして、近年では、ドライブ中の読書き用ヘッドの改良や、軟磁性合金の磁束密度を調整し、軟磁性膜とRu膜との交換結合磁界を最適化することにより、従来よりも低い磁束での書込みが可能となってきている。
 このように、アモルファス合金を垂直磁気記録媒体の軟磁性膜として用いると、軟磁性膜中の記録磁化が周囲に磁気的な影響を与えることなく、小さなスペースに記録可能となる。そして、このような高いBsが要求される軟磁性膜には、FeリッチのFeCo合金が利用されている。
国際公開WO09/104509号
 本発明者の検討によると、上述したFeリッチのFeCo合金を用いた軟磁性膜は、温度の上昇に伴うBsの低下が大きく、室温(25℃)より高い温度環境、例えば50~100℃程度では、垂直磁気記録媒体の軟磁性膜としての機能を十分に果たせなくなってしまう場合がある、すなわち、Bsの高温特性に問題があることを確認した。
 本発明の目的は、高温でもBsの低下が小さい軟磁性膜、および、この軟磁性膜を形成するために用いるスパッタリングターゲットを提供することである。
 本発明者は、Bsの高温特性に関する問題を検討した。そして、軟磁性膜を構成するアモルファス合金にCoFeNb系合金を採用し、CoとFeとの原子比を一定の比率とすることで、Bsの高温特性を大きく改善できることを見出し、本発明に到達した。
 すなわち、本発明は、原子比における組成式が、(CoFe1-a100-b-cNb、0.50≦a≦0.90、3≦b≦14、3≦c≦19、16≦b+c≦24、Mは、Mo、CrおよびWからなる群から選ばれる1種以上の元素、残部が不可避的不純物からなり、100℃における飽和磁束密度が0.50T以上である軟磁性膜である。
 また、本発明は、前記軟磁性膜を形成するために用いるスパッタリングターゲット材であって、原子比における組成式が、(CoFe1-a100-b-cNb、0.50≦a≦0.90、3≦b≦14、3≦c≦19、16≦b+c≦24、Mは、Mo、CrおよびWからなる群から選ばれる1種以上の元素、残部が不可避的不純物からなる軟磁性膜形成用のスパッタリングターゲットである。
 本発明によれば、室温(25℃)より高い温度環境でも、Bsの低下が小さく、高温特性に優れるため、垂直磁気記録媒体の使用環境下で軟磁性膜の性能を十分に高めることができるようになり、垂直磁気記録媒体の製造に有用な技術となる。
本発明例1および比較例2の軟磁性膜の温度推移に対するBsの測定結果。
 本発明の軟磁性膜は、原子比における組成式が、(CoFe1-a100-b-cNb、0.50≦a≦0.90、3≦b≦14、3≦c≦19、16≦b+c≦24、Mは、Mo、CrおよびWからなる群から選ばれる1種以上の元素、残部が不可避的不純物からなり、100℃におけるBsが0.50T以上であることに特徴を有する。
 そして、本発明の軟磁性膜は、垂直磁気記録媒体の使用環境である、室温(25℃)より高い、100℃という温度で、Bsの低下を抑制して、Bsを0.50T以上とすることにより、垂直磁気記録媒体の軟磁性膜としての機能を十分に果たすことができる。
 本発明の上記原子比における組成式中のa、即ちCoの含有比率を0.50以上とするのは、100℃におけるBsの低下を抑制し、Bsを0.50T以上にするためである。また、組成式中のaを0.90以下にすることで、軟磁気特性の低下を抑制することができる。このため、本発明では、組成式中のaを0.50≦a≦0.90の範囲にする。中でも、上記と同様の理由から、0.55≦a≦0.70の範囲が好ましい。
 本発明の軟磁性膜は、Nbを含有する。Nbを添加元素として選定したのは、電位-pH図において、pHの広範囲に亘って緻密な不動態被膜を形成することが示されていることから、軟磁性膜の耐食性を向上させるためである。
 本発明の軟磁性膜は、組成式中のbを3以上にすることにより、軟磁性膜をアモルファス構造にすることができる上、耐食性を向上させることができる。また、本発明の軟磁性膜は、組成式中のbを14以下にすることにより、脆い金属間化合物相の形成を抑制できる。このため、本発明の軟磁性膜は、組成式中のbを3≦b≦14の範囲とする。これにより、本発明の軟磁性膜は、成膜時にアモルファス膜となると同時に、高温環境下であっても軟磁性膜をアモルファス構造に維持でき、結晶化の抑制が可能となる。中でも、上記と同様の理由から、bは5以上が好ましく、8以上がより好ましい。また、bは12以下が好ましく、11以下がより好ましい。
 本発明の軟磁性膜は、M元素としてMo、CrおよびWからなる群から選ばれる1種以上の元素を含有し、その含有量を3~19の範囲とする。
 上記のNbを添加するのみでは、十分に安定なアモルファス構造と高い耐食性を得ることが困難な場合がある。そこで、本発明の軟磁性膜は、M元素をNbと複合添加することにより、十分に安定なアモルファス構造を形成した上で、軟磁気特性や耐食性を向上させることができる。そして、M元素の群の中でも、上記と同様の理由から、Wが好ましい。
 本発明の軟磁性膜は、組成式中のcを3以上にすることにより、十分に安定なアモルファス構造が得られるとともに、耐食性を向上できる。また、本発明の軟磁性膜は、組成式中のcを19以下にすることで、軟磁性膜の軟磁気特性を向上できる。このため、本発明の軟磁性膜は、M元素の添加量、即ち組成式中のcを、3≦c≦19の範囲とする。中でも、上記と同様の理由から、cは4以上が好ましく、8以上がより好ましい。また、cは18以下が好ましく、11以下がより好ましい。
 本発明の軟磁性膜は、上記Nbと上記M元素を複合添加する際に、その含有量、即ち組成式中のb+cを、16≦b+c≦24の範囲とする。これは、アモルファス構造を維持したまま、良好な軟磁気特性を得るためである。組成式中のb+cを16以上にすることで、軟磁性膜において安定なアモルファス構造が得られるとともに、耐食性を向上させることができる。また、本発明の軟磁性膜は、組成式中のb+cを24以下にすることにより、軟磁性膜の軟磁気特性を向上できる。中でも、上記と同様の理由から、b+cは16以上が好ましく、17以上がより好ましい。また、b+cは22以下が好ましく、21以下がより好ましい。
 本発明の軟磁性膜は、NbおよびM元素を上記の範囲で含有する以外の残部は、FeとCoと不可避的不純物である。不純物の含有量は、できるだけ少ないことが好ましく、例えば、ガス成分である酸素、窒素は1000質量ppm以下、不可避的に含まれるガス成分以外のNi、Si等の不純物元素は、合計で1000質量ppm以下であることが好ましい。
 本発明の上記特性を具備する軟磁性膜の形成には、軟磁性膜の組成と同一組成のスパッタリングターゲットを用いたスパッタリング法が最適である。そして、本発明の別の発明は、原子比における組成式が、(CoFe1-a100-b-cNb、0.50≦a≦0.90、3≦b≦14、3≦c≦19、16≦b+c≦24、Mは、Mo、CrおよびWからなる群から選ばれる1種以上の元素、残部が不可避的不純物からなる軟磁性膜形成用スパッタリングターゲットである。
 本発明のスパッタリングターゲットの製造方法としては、例えば溶製法や粉末焼結法が適用可能である。溶製法では、鋳造インゴット、もしくは鋳造インゴット中に存在する鋳造欠陥の低減や組織の均一化を図るために、塑性加工や加圧加工を加えてバルク体とし、これに機械加工を施すことで製造できる。
 また、粉末焼結法では、原料粉末を例えば熱間静水圧プレス、ホットプレス、放電プラズマ焼結、押し出しプレス焼結等の加圧焼結することにより製造できる。中でも、熱間静水圧プレスは、以下に述べる加圧焼結条件を安定して実現できるため、好適である。
 本発明で粉末焼結法を適用する場合は、原料粉末として、複数の合金粉末や純金属粉末を最終組成になるように混合した混合粉末や、最終組成に調整した合金粉末が適用できる。
 また、最終組成に調整した粉末を加圧焼結する方法では、Nbを含有する金属間化合物相を安定的に微細で均一分散できる効果を有する。本発明では、最終組成の合金粉末の紛体組成物を加圧焼結することが好ましい。
 また、上述の加圧焼結に用いる原料粉末は、所望の組成に成分調整した合金溶湯を鋳造したインゴットを粉砕する方法や、上記合金溶湯を不活性ガスにより噴霧するガスアトマイズ法によって作製することが可能である。中でも、不純物の混入が少なく、充填率の高い、焼結に適した球状粉末が得られるガスアトマイズ法が好ましい。尚、球状粉末の酸化を抑制するためには、アトマイズガスとして不活性ガスであるArガスもしくは窒素ガスを用いることが好ましい。
 また、上述の加圧焼結における焼結温度は、800℃以上にすることで、高融点金属であるNbやM元素を含有する粉末の焼結を進行させることができ、空孔の発生を抑制することができる。また、焼結温度を1400℃以下にすることで、合金粉末の溶解を防止できる。このため、本発明では、焼結温度を800~1400℃とすることが好ましい。尚、空孔の形成を最小限に低減した上で、Nbを含有する金属間化合物相の成長を抑制するためには、900~1300℃の温度で焼結することがより好ましい。
 また、上述の加圧焼結における加圧圧力は、100MPa以上にすることで、焼結の進行を助長し、空孔の発生を抑制することができる。また、加圧圧力を200MPa以下にすることで、焼結時にスパッタリングターゲットへの残留応力の導入が抑制され、焼結後の割れの発生を抑制することができる。このため、本発明では、加圧圧力を100~200MPaとすることが好ましい。尚、より空孔の形成を最小限に低減し、残留応力の導入をさらに抑制するためには、120~160MPaの加圧圧力で焼結することがより好ましい。
 また、上述の加圧焼結における焼結時間は、1時間以上にすることで、焼結の進行を助長し、空孔の発生を抑制することができる。また、焼結時間を10時間以下とすることで、製造効率を悪化させないで、Nbを含有する金属間化合物相の成長を抑制して製造できる。このため、本発明では、焼結時間を1~10時間とすることが好ましい。尚、空孔の形成を最小限に低減し、Nbを含有する金属間化合物相の成長をさらに抑制するためには、1~3時間の焼結時間で焼結することがより好ましい。
(本発明例1)
 まず、純度99.9%以上の原料を用いて、原子比における組成式で、(Co0.70Fe0.3082Nbの合金組成となる合金溶湯を真空溶解し、Arガスによるガスアトマイズ法によってガスアトマイズ粉末を作製し、250μmの篩で分級し、粗粒を除去した。
 そして、得られたガスアトマイズ粉末を軟鋼製のカプセルに充填し、脱気封止した後、温度950℃、圧力122MPa、保持時間1時間の条件で熱間静水圧プレスによって加圧焼結し、焼結体を作製した。得られた焼結体に機械加工を施し、直径180mm×厚さ5mmの軟磁性膜形成用のスパッタリングターゲットを得た。
 上記で作製した軟磁性膜形成用スパッタリングターゲットを、キヤノンアネルバ製のDCマグネトロンスパッタ装置(C-3010)のチャンバー内に配置し、チャンバ内の真空到達度が2×10-5Pa以下となるまで排気を行なった後、寸法75mm×25mmのガラス基板上に、Arガス圧0.6Pa、投入電力1000Wの条件で、膜厚300nmの軟磁性膜をスパッタリング成膜した。
(本発明例2)
 まず、純度99.9%以上の原料を用いて、原子比における組成式で、(Co0.55Fe0.4582NbMoの合金組成となる合金溶湯を真空溶解し、Arガスによるガスアトマイズ法によってガスアトマイズ粉末を作製する以外は、本発明例1と同様の条件で軟磁性膜形成用のスパッタリングターゲットを作製した。
 そして、上記で作製した軟磁性膜形成用スパッタリングターゲットを用いて、実施例1と同様の条件で軟磁性膜をスパッタリング成膜した。
(本発明例3)
 まず、純度99.9%以上の原料を用いて、原子比における組成式で、(Co0.70Fe0.3082NbCrの合金組成となる合金溶湯を真空溶解し、Arガスによるガスアトマイズ法によってガスアトマイズ粉末を作製する以外は、本発明例1と同様の条件で軟磁性膜形成用のスパッタリングターゲットを作製した。
 そして、上記で作製した軟磁性膜形成用スパッタリングターゲットを用いて、実施例1と同様の条件で軟磁性膜をスパッタリング成膜した。
(本発明例4)
 まず、純度99.9%以上の原料を用いて、原子比における組成式で、(Co0.70Fe0.3083Nb14の合金組成となる合金溶湯を真空溶解し、Arガスによるガスアトマイズ法によってガスアトマイズ粉末を作製する以外は、本発明例1と同様の条件で軟磁性膜形成用のスパッタリングターゲットを作製した。
 そして、上記で作製した軟磁性膜形成用スパッタリングターゲットを用いて、実施例1と同様の条件で軟磁性膜をスパッタリング成膜した。
(比較例1)
 まず、純度99.9%以上の原料を用いて、原子比における組成式で、(Co0.35Fe0.6581.5Ta18.5の合金組成となる合金溶湯を真空溶解し、Arガスによるガスアトマイズ法によってガスアトマイズ粉末を作製する以外は、本発明例1と同様の条件で軟磁性膜形成用のスパッタリングターゲットを作製した。
 そして、上記で作製した軟磁性膜形成用スパッタリングターゲットを用いて、実施例1と同様の条件で軟磁性膜をスパッタリング成膜した。
(比較例2)
 まず、純度99.9%以上の原料を用いて、原子比における組成式で、(Co0.35Fe0.6582Nbの合金組成となる合金溶湯を真空溶解し、Arガスによるガスアトマイズ法によってガスアトマイズ粉末を作製する以外は、本発明例1と同様の条件で軟磁性膜形成用のスパッタリングターゲットを作製した。
 そして、上記で作製した軟磁性膜形成用スパッタリングターゲットを用いて、実施例1と同様の条件で軟磁性膜をスパッタリング成膜した。
(比較例3)
 まず、純度99.9%以上の原料を用いて、原子比における組成式で、(Co0.34Fe0.6667Cr2013の合金組成となる合金溶湯を真空溶解し、Arガスによるガスアトマイズ法によってガスアトマイズ粉末を作製する以外は、本発明例1と同様の条件で軟磁性膜形成用のスパッタリングターゲットを作製した。
 そして、上記で作製した軟磁性膜形成用のスパッタリングターゲットを用いて、実施例1と同様の条件で軟磁性膜をスパッタリング成膜した。
 上記で成膜した各軟磁性膜の試料を、さらに寸法6mm×7mmに加工した後、東英工業株式会社製の振動試料型磁力計(VSM-5-20)を使用し、面内方向に最大磁場80kA/mを印加したまま、昇温速度0.2℃/secで、室温(25℃)から410℃まで加熱し、Bsを測定した。
 代表例として、本発明例1および比較例2の測定結果を図1に示す。また、各軟磁性膜の25℃および100℃におけるBsの測定結果と、100℃におけるBsの25℃におけるBsからの低下率を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1より、本発明の範囲外の比較例となる軟磁性膜は、100℃におけるBsが0.50T未満であった。これに対し、本発明の軟磁性膜は、100℃におけるBsが0.50T以上であり、Bsの高温特性に優れた軟磁性膜であることが確認できた。
 また、本発明の範囲外の比較例となる軟磁性膜は、いずれも25℃から100℃におけるBsの低下値が0.10Tを超え、低下率は26%以上であり、大幅な低下であった。これに対し、本発明の軟磁性膜は、25℃から100℃におけるBsの低下値は0.10T未満、低下率は11%以下であり、Bsの高温特性に優れた軟磁性膜であることが確認できた。
 そして、本発明の軟磁性膜は、本発明の軟磁性膜形成用のスパッタリングターゲットにより形成可能であることが確認され、本発明の有効性が確認できた。

Claims (2)

  1.  原子比における組成式が、(CoFe1-a100-b-cNb、0.50≦a≦0.90、3≦b≦14、3≦c≦19、16≦b+c≦24、Mは、Mo、CrおよびWからなる群から選ばれる1種以上の元素、残部が不可避的不純物からなり、100℃における飽和磁束密度が0.50T以上であることを特徴とする軟磁性膜。
  2.  請求項1に記載の軟磁性膜を形成するために用いるスパッタリングターゲット材であって、原子比における組成式が、(CoFe1-a100-b-cNb、0.50≦a≦0.90、3≦b≦14、3≦c≦19、16≦b+c≦24、Mは、Mo、CrおよびWからなる群から選ばれる1種以上の元素、残部が不可避的不純物からなることを特徴とする軟磁性膜形成用スパッタリングターゲット。
PCT/JP2016/050288 2015-03-27 2016-01-07 軟磁性膜および軟磁性膜形成用スパッタリングターゲット WO2016157922A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017509306A JP6575775B2 (ja) 2015-03-27 2016-01-07 軟磁性膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015066603 2015-03-27
JP2015-066603 2015-03-27

Publications (1)

Publication Number Publication Date
WO2016157922A1 true WO2016157922A1 (ja) 2016-10-06

Family

ID=57006967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050288 WO2016157922A1 (ja) 2015-03-27 2016-01-07 軟磁性膜および軟磁性膜形成用スパッタリングターゲット

Country Status (3)

Country Link
JP (1) JP6575775B2 (ja)
TW (1) TWI567206B (ja)
WO (1) WO2016157922A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020096482A (ja) * 2018-12-14 2020-06-18 トヨタ自動車株式会社 モータ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008260969A (ja) * 2007-04-10 2008-10-30 Hitachi Metals Ltd Fe−Co系合金スパッタリングターゲット材およびFe−Co系合金スパッタリングターゲット材の製造方法
WO2009104509A1 (ja) * 2008-02-18 2009-08-27 日立金属株式会社 軟磁性膜形成用Fe-Co系合金スパッタリングターゲット材
JP2012169021A (ja) * 2011-02-16 2012-09-06 Sanyo Special Steel Co Ltd 磁気記録用軟磁性合金及びスパッタリングターゲット材ならびに磁気記録媒体
WO2013183546A1 (ja) * 2012-06-06 2013-12-12 日立金属株式会社 Fe-Co系合金スパッタリングターゲット材およびその製造方法
JP2014037569A (ja) * 2012-08-14 2014-02-27 Sanyo Special Steel Co Ltd Fe−Co系合金スパッタリングターゲット材およびその製造方法並びに軟磁性薄膜層とそれを使用した垂直磁気記録媒体
WO2015022963A1 (ja) * 2013-08-15 2015-02-19 山陽特殊製鋼株式会社 Fe-Co系合金スパッタリングターゲット材および軟磁性薄膜層とそれを使用した垂直磁気記録媒体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008260969A (ja) * 2007-04-10 2008-10-30 Hitachi Metals Ltd Fe−Co系合金スパッタリングターゲット材およびFe−Co系合金スパッタリングターゲット材の製造方法
WO2009104509A1 (ja) * 2008-02-18 2009-08-27 日立金属株式会社 軟磁性膜形成用Fe-Co系合金スパッタリングターゲット材
JP2012169021A (ja) * 2011-02-16 2012-09-06 Sanyo Special Steel Co Ltd 磁気記録用軟磁性合金及びスパッタリングターゲット材ならびに磁気記録媒体
WO2013183546A1 (ja) * 2012-06-06 2013-12-12 日立金属株式会社 Fe-Co系合金スパッタリングターゲット材およびその製造方法
JP2014037569A (ja) * 2012-08-14 2014-02-27 Sanyo Special Steel Co Ltd Fe−Co系合金スパッタリングターゲット材およびその製造方法並びに軟磁性薄膜層とそれを使用した垂直磁気記録媒体
WO2015022963A1 (ja) * 2013-08-15 2015-02-19 山陽特殊製鋼株式会社 Fe-Co系合金スパッタリングターゲット材および軟磁性薄膜層とそれを使用した垂直磁気記録媒体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020096482A (ja) * 2018-12-14 2020-06-18 トヨタ自動車株式会社 モータ

Also Published As

Publication number Publication date
TWI567206B (zh) 2017-01-21
TW201638351A (zh) 2016-11-01
JPWO2016157922A1 (ja) 2018-02-22
JP6575775B2 (ja) 2019-09-18

Similar Documents

Publication Publication Date Title
JP4016399B2 (ja) Fe−Co−B合金ターゲット材の製造方法
JP5705993B2 (ja) C粒子が分散したFe−Pt−Ag−C系スパッタリングターゲット及びその製造方法
JP2005320627A (ja) Co合金ターゲット材の製造方法、Co合金ターゲット材および垂直磁気記録用軟磁性膜ならびに垂直磁気記録媒体
JP5359890B2 (ja) 軟磁性膜形成用Fe−Co系合金スパッタリングターゲット材
WO2015166762A1 (ja) 磁気記録用軟磁性合金及びスパッタリングターゲット材並びに磁気記録媒体
JP2010018869A (ja) 垂直磁気記録媒体における軟磁性膜層用合金およびスパッタリングターゲット材並びにその製造方法
JP5370917B2 (ja) Fe−Co−Ni系合金スパッタリングターゲット材の製造方法
JP6312009B2 (ja) Cr−Ti合金スパッタリングターゲット材およびその製造方法
JP5305137B2 (ja) 垂直磁気記録媒体のNi合金中間層を形成するためのNi−W系焼結ターゲット材
WO2017179466A1 (ja) 磁気記録媒体のシード層用合金、スパッタリングターゲット材および磁気記録媒体
JP6094848B2 (ja) 垂直磁気記録媒体用Fe−Co系合金軟磁性膜の製造方法
JPWO2014141737A1 (ja) スパッタリングターゲット
JP2008260970A (ja) Co−Zr系合金焼結スパッタリングターゲット材およびその製造方法
JP5403418B2 (ja) Co−Fe−Ni系合金スパッタリングターゲット材の製造方法
JP6575775B2 (ja) 軟磁性膜
JP2016149170A (ja) Fe−Co−Nb系合金スパッタリングターゲット材および軟磁性膜
JP2011068985A (ja) 軟磁性膜用Co−Fe系合金および軟磁性膜形成用Co−Fe系合金スパッタリングターゲット材
JP7157573B2 (ja) 磁気記録媒体のシード層用Ni系合金
JP2018085156A (ja) 軟磁性膜形成用スパッタリングターゲット
JP5787274B2 (ja) Fe−Co−Ta系スパッタリングターゲット材の製造方法およびFe−Co−Ta系スパッタリングターゲット材
JP2020027677A (ja) 熱アシスト磁気記録媒体の軟磁性膜および熱アシスト磁気記録媒体の軟磁性膜形成用スパッタリングターゲット
JP6156734B2 (ja) Fe−Co系合金スパッタリングターゲット材およびその製造方法
JP2011181140A (ja) 磁気記録媒体用Fe−Co系合金軟磁性膜
WO2020188987A1 (ja) スパッタリングターゲット及び、スパッタリングターゲットの製造方法
WO2020040082A1 (ja) 磁気記録媒体の軟磁性層用Co系合金

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16771808

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017509306

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16771808

Country of ref document: EP

Kind code of ref document: A1