WO2008105479A1 - 近赤外線カメラを用いた金属帯の熱間圧延方法および装置 - Google Patents

近赤外線カメラを用いた金属帯の熱間圧延方法および装置 Download PDF

Info

Publication number
WO2008105479A1
WO2008105479A1 PCT/JP2008/053457 JP2008053457W WO2008105479A1 WO 2008105479 A1 WO2008105479 A1 WO 2008105479A1 JP 2008053457 W JP2008053457 W JP 2008053457W WO 2008105479 A1 WO2008105479 A1 WO 2008105479A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot
rolled
metal strip
rolled metal
temperature
Prior art date
Application number
PCT/JP2008/053457
Other languages
English (en)
French (fr)
Inventor
Nobuo Nishiura
Takayuki Murata
Koji Yanagino
Kazuhiro Nitta
Hiroshi Sawada
Original Assignee
Jfe Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2007145493A external-priority patent/JP5217253B2/ja
Priority claimed from JP2007145399A external-priority patent/JP2008296249A/ja
Application filed by Jfe Steel Corporation filed Critical Jfe Steel Corporation
Priority to CA2679667A priority Critical patent/CA2679667C/en
Priority to EP08720952.4A priority patent/EP2119513B1/en
Priority to KR1020127010133A priority patent/KR101503984B1/ko
Priority to KR1020147007064A priority patent/KR20140049072A/ko
Priority to KR1020097017863A priority patent/KR20090108103A/ko
Priority to AU2008220048A priority patent/AU2008220048B2/en
Priority to US12/528,520 priority patent/US9387527B2/en
Priority to CN2008800063696A priority patent/CN101622082B/zh
Publication of WO2008105479A1 publication Critical patent/WO2008105479A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • B21B1/26Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by hot-rolling, e.g. Steckel hot mill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B15/00Arrangements for performing additional metal-working operations specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/006Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C51/00Measuring, gauging, indicating, counting, or marking devices specially adapted for use in the production or manipulation of material in accordance with subclasses B21B - B21F
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/02Means for indicating or recording specially adapted for thermometers
    • G01K1/026Means for indicating or recording specially adapted for thermometers arrangements for monitoring a plurality of temperatures, e.g. by multiplexing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/72Investigating presence of flaws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/20Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/004Heating the product
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8914Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the material examined
    • G01N2021/8918Metal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/18Performing tests at high or low temperatures

Definitions

  • the present invention relates to a method and apparatus for hot rolling a metal strip using a near infrared camera.
  • the present invention includes the following contents. Install a near-infrared camera capable of photographing the entire width of the metal band on the hot rolling line of the metal band.
  • a near-infrared camera capable of photographing the entire width of the metal band on the hot rolling line of the metal band.
  • the hot rolling process is generally a slab-like metal material produced by continuous forging, ingot making, or ingot in a heating furnace. After heating to C, it is a process of thinly and longly rolling with a rough rolling mill and a finishing rolling mill and winding it into a coil.
  • FIG. 13 shows an example of a hot rolling line 100 that has been generally used. Several hundred to several hundreds depending on the heating furnace. Metal material heated to C with a thickness of 140 to 30 mm (hereinafter referred to as “rolled material”) 8 is rolled to a thickness of 0.8 to 25 mm by rough rolling mill 1 2 and finish rolling mill 1 8 Then it is thinly rolled into a metal strip.
  • rolled material Metal material heated to C with a thickness of 140 to 30 mm
  • the number of rolling mills (stands) constituting the finishing mill 18 is 7 in the example of Fig. 13 but there are also 6 rolling mills (stands). Finishing mill 1 8 has hundreds to thousands.
  • C hot rolled material 8 is continuously rolled by a plurality of rolling mills.
  • the rolling method in which the material to be rolled is rolled one by one with a finishing mill 18 is called batch rolling.
  • the method of joining and rolling materials to be rolled is called endless rolling. Batch rolling is more common.
  • the hot rolling line 100 there are many (more than one hundred) table rolls (not shown) between the other rolling mills (stands) except between the stands of the finishing mill 1 8.
  • the material to be rolled 8 is conveyed.
  • oxide layers (hereinafter referred to as scales) are formed on the front and back surfaces thereof. Since the material to be rolled 8 is exposed to the atmosphere at a high temperature, new scales are generated on the front and back surfaces. For this reason, a descaling device 16 that removes scale by spraying high pressure water outside the range of 10 to 3 OMPa on the front and back surfaces of the material to be rolled 8 is provided on the entry side of each of the rolling mills 1 2. Installed and removing scale.
  • each work roll 19 is in contact with a hot material to be rolled, and is cooled with cooling water.
  • Each backup roll 20 is also cooled with cooling water.
  • Fig. 13 14 is a crop shear. Before finish rolling, the crop at the leading edge of the material 8 (the irregular shape at the leading edge of the material 8) is cut off and finished. Shaping into a rolling mill 1 8 into a substantially rectangular planar shape that is easy to squeeze smoothly.
  • 50 is a control device
  • 70 is a process computer
  • 90 is a business computer.
  • the quality required for metal strips rolled in a hot rolling line 100 as shown in Fig. 13 has been increasingly sophisticated in recent years.
  • a typical example is a metal strip.
  • demand for high-strength steel is increasing and the required quality is becoming more sophisticated.
  • High-strength steel generally refers to steel sheets with a tensile strength of 40 0 ⁇ ⁇ a or more. In recent years, not only the tensile strength is high, but also high workability such as not cracking when pressing or hole expanding is required. Furthermore, it is required that the quality such as tensile strength and high workability be uniform in any part of the metal strip.
  • the chemical composition of the steel is adjusted. Hot rolling technology and manufacturing conditions are important for producing high-quality metal strips of any chemical composition. In particular, it is important to make the temperature of the metal strip just before scraping with a coiler 24 after finishing rolling, and to make the temperature uniform in both the longitudinal direction and the width direction of the metal strip.
  • the temperature immediately before the material to be rolled 8 measured by the coiler inlet side thermometer 25 is the most important for quality assurance. It is important to control the run-out tables 2 3 and the cooling-related equipment 2 6 installed there. Further, the temperature of the material 8 to be rolled immediately after rolling measured by the finishing mill outlet thermometer 21 is also important.
  • the finisher side thermometer 21 1 is the infrared ray thermometer for the coiler inlet side thermometer 25. These thermometers are fixedly installed at the center in the width direction of the material 8 to be rolled, and the field of view is 20 to 50 mm in diameter at most.
  • the temperature distribution in the width direction was not measured only by measuring the temperature over the entire length, with the center in the width direction of the rolled material 8 as a representative.
  • the temperature in the width direction of the rolled material 8 is within the acceptable range for quality assurance. There is no guarantee that it is within.
  • the effect of the flatness control in the finish rolling mill 18 does not yet appear, but a portion having a non-flat shape is generated at the tip of the rolled material 8 at several tens of meters. Further, between the last stand of the finish rolling mill 18 where tension is not applied and the coiler 24, there are portions where the tip of the material 8 is flat and the tail has a flat shape. Moreover, the shape of the mountain wave is irregular, and for example, as shown in FIG. 14, a pool of cooling water can be locally accumulated at the tip of the material 8 to be rolled. In such a case, the part is locally cooled, and the temperature distribution in the width direction is difficult to be uniform.
  • the phenomenon that occurs between the surface of the steel and the cooling water is that when the temperature of the steel material to be rolled is 55 ° C. or higher, the entire surface of the material to be rolled 8 is continuous as shown in FIG. It is in a state of film boiling covered with a water vapor film. As the temperature falls below 5500 ° C, the water vapor film disappears and the state of nucleate boiling where the cooling water and the material to be rolled 8 are in direct contact is transferred as shown in Fig. 15b. Further, when the temperature of the material to be rolled 8 is lowered as a whole, the entire state shifts to a nucleate boiling state.
  • the target temperature immediately before scraping is often V, which is less than 55 ° C. Since this corresponds to the temperature range from film boiling to nucleate boiling, film boiling and nucleate boiling coexist in one part of the material to be rolled 8 and other parts around it, and the cooling rate is fast and slow. However, it comes out.
  • a part having a low temperature is locally formed on the material 8 to be rolled.
  • the quality of the rolled material 8 as a whole is not uniform, and the quality may be locally out of the acceptable range.
  • thermometer that scans in the width direction of 8 and scanning the rolled material 8 being conveyed in the width direction, as a result, a trajectory runs diagonally on the rolled material 8. ⁇ (scanning) to measure temperature. For this reason, as shown in the view from the top of the hot rolling line in Fig. 16, the part called the black spot where the temperature is locally low was missed, and as a result, the part could not be detected. .
  • Patent Document 1 describes that the temperature distribution in the width direction of the steel sheet after controlled cooling is discretely measured over the entire length of the steel sheet. As shown in Fig. 17a and Fig. 17b, the timing when temperature deviation occurs in the width or longitudinal direction of the steel sheet, and the timing of starting or ending the use of cooling-related equipment such as cooling banks, nozzles and headers May match. Thereby determining the part of the cold area of the rolled material 8 full-length full-width as shown in the black frame in FIG. 1 7 a and abnormalities, you are described that also cooling device diagnoses it as abnormal. In Patent Document 1, as can be seen from Fig. 17a and Fig. 17b, it is presumed that discrete temperature measurement of the material to be rolled 8 is performed at a pitch of 20 O mm in the width direction. .
  • Patent Document 2 a steel plate is used in the case of a plate rolling line by using a near-infrared camera or a scanning type radiation thermometer on the downstream side (exit side) of a hot straightening device (hot leveler).
  • the purpose of this is to determine the residual stress distribution and adjust the conditions of heat treatment, which is a subsequent manufacturing process. It is to suppress as much as possible.
  • Near infrared cameras for example, square pixels are arranged two-dimensionally vertically and horizontally, and the temperature data measured at each pixel is linearly interpolated to attempt to measure the temperature distribution of the object in a quasi-continuous manner.
  • the vertical and horizontal dimensions per pixel are an example of the dissipative temperature measurement pitch in Patent Document 1 described above, which is smaller than 200 mm. For this reason, it is possible to measure a temperature distribution closer to continuous.
  • Patent Document 2 it is unclear where and how much temperature of the material to be rolled is to be measured, but it is certain that it is not full width.
  • a near infrared power mela that can cover the full width of a steel plate with a width of 300 mm is disclosed in Patent Document 2 Not yet developed at the time.
  • Patent Document 3 describes that the temperature of the flat surface of the steel sheet being transferred is measured upstream (on the inlet side) from the cooling-related equipment for the case of a hot rolling line for metal strips.
  • the purpose is to control cooling by water cooling when the minimum flat surface temperature is below a predetermined temperature and the flat surface temperature deviation is below a predetermined value. When the difference exceeds a predetermined value, cooling control by gas cooling is performed to reduce the temperature deviation and make the quality as uniform as possible.
  • Patent Document 3 does not describe a near-infrared force as a means for measuring the temperature of the flat surface of the steel sheet, and measures the temperature of the material to be rolled in which region and how much. It is also unknown.
  • Patent Document 1 Japanese Laid-Open Patent Publication No. 2 0 0 5-2 7 9 6 6 5
  • Patent Document 2 Japanese Patent Laid-Open No. 2 0 3-3 1 1 3 2 6
  • Patent Document 3 Japanese Patent Laid-Open No. 2 00 0-3 1 3 9 2 0 Disclosure of Invention
  • Patent Document 1 The technique of Patent Document 1 is based on measuring the temperature distribution of a discrete material to be rolled, such as a 20 O mm pitch in the width direction. For this reason, there is a case where a part called a black spot where the temperature is locally low may not be detected, as in the case where the temperature is measured by scanning the rolled material being conveyed in the width direction. There was o
  • Patent Document 2 is intended for a plate rolling line, and the measurement field of view does not cover the full width of the material to be rolled. For this reason, if there is a part called a black spot having a locally low temperature in the part of the material to be rolled out of the field of view, there is a problem that the part may not be detected in the same manner.
  • Patent Document 3 also has a problem that the shutter speed described in the best mode for carrying out the invention described later is not sufficiently short from the technical level at the time of filing, and the measurement field of view is also the material to be rolled. It is hard to think that it covers the full width of. In addition, it only describes the use of cooling-related equipment for the control of switching to feed-forward or the power to make water-cooled, empty or ⁇ , and as a result of the control, what kind of The surface of the material to be rolled (two-dimensional) is not subject to measurement until the temperature distribution is reached, and the measurement results are not recorded, and the quality of products delivered to customers The problem remains in that it cannot be guaranteed.
  • the present invention has been made to solve such problems of the prior art, and the quality of hot rolling lines and hot-rolled metal strips that can appropriately guarantee the quality of products delivered to consumers. It is intended to provide an electronic computer device for judgment result recording, manufacturing, quality performance management and pass process instruction, and management computer device. In particular, it is characterized by the ability to reliably detect the so-called black spots where the temperature is locally low.
  • the present invention is as follows.
  • a hot rolling line with a near infrared camera that can capture the entire width of the hot-rolled metal strip on the inlet side of the coil of the hot rolling line.
  • a near-infrared camera capable of photographing the entire width of the hot-rolled metal strip is installed at at least one of the inlet side of the hot rolling line, the runout table, and the finishing mill exit side. Then, when photographing the material to be rolled and measuring the temperature, the relationship between the brightness measured with the near-infrared camera and the temperature measured with the spot thermometer in advance for the same part of the same heat source is Is stored as a brightness-temperature conversion curve, and the near-infrared power mela is installed in the hot rolling line to store the material to be rolled.
  • a near-infrared camera capable of photographing the entire width of the hot-rolled metal strip is installed at at least one of the hot-rolling line coiler entry side, run-out table middle, and finishing mill exit side. And measure the temperature of the material to be rolled and measure the temperature.
  • the temperature of the material to be rolled was measured even with a spot thermometer at a location in the field of view of the near-infrared power mela at the location where the external force mela was installed, and the portion of the rolled material measured with the spot thermometer A method for photographing the full width of a hot-rolled metal strip, wherein the material to be rolled is photographed after calibrating the near-infrared force mela so that the temperature of the same part measured with the near-infrared force mela- cal matches the temperature.
  • the hot-rolled metal strip characterized in that the shutter speed is increased in order to ensure the resolution of the temperature measured by photographing the entire width of the hot-rolled metal strip using a near-infrared camera. Full width shooting method.
  • Special feature is to determine the quality of the hot-rolled metal strip using the result of photographing the entire width of the hot-rolled metal strip using a near-infrared camera installed on the inlet side of the hot rolling line. A method for judging the quality of a hot-rolled metal strip.
  • the quality of the hot-rolled metal strip using the result of photographing the entire width of the hot-rolled metal strip using a near-infrared camera installed on the inlet side of the coiler of the hot rolling line or the total length in 1 1 above.
  • Results of hot-rolled metal strip quality judgment that records the results of hot-rolled metal strip quality judgment using a near-infrared-powered mela that can capture the entire width of a hot-rolled metal strip rolled in a hot rolling line Electronic computer device for recording.
  • the hot-rolled metal strip manufacturing, quality results management and passing process instruction, and management computer equipment characterized in that the near-infrared camera shoots the entire length of the hot-rolled metal strip in 1-5.
  • a hot rolling line, a full width photographing method of a hot-rolled metal strip, a full width photographing result recording method, and a quality assurance can be appropriately performed so that quality assurance in product delivery to a customer can be properly performed.
  • a method and a method for producing a hot-rolled metal strip using the method can be provided.
  • an electronic computer device for recording the quality judgment result of the hot-rolled metal strip, a manufacturing / quality result management and a passing process instruction / management computer device can be provided.
  • Fig. 1 is a graph showing the relationship between the excision length and poor flatness (steepness) of the tip, such as ear extension and middle extension.
  • FIG. 2 is a diagram showing an installation example of the near-infrared camera according to the present invention.
  • Figure 3a is a normal image taken with a near-infrared camera.
  • Figure 3b shows a flow image taken with a near-infrared camera.
  • Fig. 3c shows the luminance-temperature conversion curve.
  • Fig. 4a shows the relationship between temperature and brightness when the shutter speed of the near-infrared camera is changed.
  • Figure 4b shows the relationship between shutter speed and measurable temperature range.
  • FIG. 5 is a diagram for explaining one embodiment of the present invention.
  • FIG. 6 is a diagram for explaining one embodiment of the present invention.
  • FIGS. 7 a, 7 b, 7 c, and 7 d are diagrams for explaining a defective portion of the material 8 that is out of the temperature tolerance when the material 8 is viewed from above.
  • FIGS. 8a and 8b are diagrams for explaining a defective portion of the material 8 to be rolled out of the temperature tolerance when the material 8 is viewed from above.
  • FIG. 9a, FIG. 9b, FIG. 9c, and FIG. 9d are diagrams for explaining one embodiment of the present invention.
  • FIG. 10 is a diagram for explaining another embodiment of the present invention.
  • FIG. 11 is a diagram showing the longitudinal distribution of the temperature at the center of the width of the material 8 to be rolled on the inlet side of the coiler.
  • Fig. 12 is a diagram showing a comparison of errors in the quality defect portion length between quality defect judgment using only the coiler inlet-side thermometer 25 and quality defect judgment when a near-infrared power mela is provided.
  • FIG. 13 is a diagram for explaining an example of a conventional hot rolling line.
  • FIG. 14 is a diagram for explaining the problems of the prior art.
  • Figures 15a and 15b are diagrams explaining the contrast between film boiling and nucleate boiling.
  • Fig. 16 is a diagram for explaining the problems of the prior art.
  • Figures 17a and 17b are diagrams for explaining the prior art.
  • the black spots are inferior in mechanical properties such as the elongation and hole expandability of the metal strip, so the part is cut out and only the insignificant parts of the black spot are removed.
  • parts of rolled material with black spots In order to prevent parts of rolled material with black spots from being delivered to customers by mistake and to ensure quality assurance, parts of rolled material with such black spots It is necessary to be able to make a quality assessment that accurately captures as a low temperature part locally.
  • a near infrared camera capable of photographing the entire width of the material 8 to be rolled on the inlet side of the coiler.
  • a near infrared camera capable of photographing the entire width of the material 8 to be rolled on the inlet side of the coiler.
  • it may be installed in the middle of the run-out table or on the exit side of the finishing mill, or it may be installed in multiple places among these as shown in Fig. 9b, Fig. 9c, and Fig. 9d.
  • the near-infrared camera installed on the inlet side of the coiler is used to improve the conveyance direction of the rolled material 8 from the center of the mandrel (not shown) of the coil 24 on the upstream side in the conveyance direction of the rolled material 8 It is preferable to install it at a position within 3 Om.
  • a near infrared camera installed on the exit side of the finishing mill is installed, and within 30 m from the center of the work roll of the final stand of the finishing mill 1 8 to the downstream side (outside) of the material to be rolled 8 It is preferable to install in the position.
  • a near-infrared camera installed in the middle of the run-out table is installed, it is preferable to install it in the middle position between them.
  • Figure 1 shows the relationship between the cutting length and the flatness (steepness) of the tip, such as a) ear elongation and b) medium elongation.
  • FIG. 1 shows a near-infrared camera temporarily installed on the hot rolling line 100, 1m upstream of the coiler inlet side thermometer 25, and overlooking the finishing mill 18 side. It was taken.
  • the target of tensile strength which is representative of mechanical properties, is 5 9 OMP a
  • the target of the scraping temperature at the position of the coiler inlet-side thermometer 25 is 4 70 ° C.
  • D indicates the drive side
  • O indicates the operator side (opposite the drive side)
  • C indicates the center
  • Q indicates the quota
  • E indicates the edge.
  • the value of the steepness is that at a position of 53 m in the longitudinal direction from the foremost part of the material 8 to be rolled.
  • the tip and tail of the material to be rolled 8 that may have poor flatness (the length corresponding to the distance from the final stand F 7 of the finishing mill 1 8 to the coiler 2 4) is at least the length It is recommended that continuous shot images be obtained over the entire length.
  • each near-infrared camera used here is 3 0 ⁇ ⁇ ⁇ 3 0 Aim, and the number of pixels is 3 2 0 x 2 2 5 6
  • the material to be rolled 8 is photographed from directly above, it is converted to the side of the material to be measured 8 that is the object to be measured instead of the near-infrared force.
  • Vertical 10 mm x horizontal 10 mm per pixel, total length (longitudinal direction) 3 2 0 0 mm x horizontal (width direction) 2 5 6 0 mm area can be captured in one field of view .
  • the vertical and horizontal dimensions per pixel are preferably 10 mm or less in terms of the material to be rolled 8 side to be measured. If it is larger than this, the captured image will be mosaic-like, and it will be difficult to see the outer edge and the planar shape of the black spot.
  • the lower limit of the same size need not be specified.
  • the above example given as an example can be 10 mm or more.
  • the width of a rolled material that is generally manufactured from the past is a maximum of 2300 mm, and the near-infrared camera field of view can cover the entire width of all the rolled material 8.
  • An image taken by a temporary near-infrared camera Figure 3a shows the case where the image was captured normally.
  • the conveying speed of the material to be rolled 8 ranges from 12 Om pm to 120 Ompm.
  • the field of view of this near-infrared camera is longitudinal (longitudinal) 320 Omm. For example, if the transport speed of the material to be rolled 8 is 120 Ompm, it takes 0.16 sec to transport 320 Omm. .
  • the image may be blurred and the black spot may appear large and blurry.
  • a near infrared camera having the specifications shown in Table 1 is used.
  • a near-infrared camera equipped with a high-speed shutter with a minimum speed of 10 jz sec (1 / 100,000th of a second) even if the transport speed of the material to be rolled 8 is high, shooting is performed so that the image does not blur and flow. Is possible.
  • Figure 4a shows the relationship between temperature and brightness when the shutter speed of the near-infrared camera is changed.
  • the horizontal axis represents the value obtained by converting the temperature of the material 8 to be radiated heat (WZmm 2 ), and the vertical axis represents the luminance value ([_]).
  • the near-infrared camera used has a noise value below 80 (0) ([-]), and it is difficult to obtain a clear image due to the effect of noise. It was.
  • the range between the upper limit and the lower limit described above is a measurable range, and the temperature range corresponding to that range is the measurable temperature range.
  • the relationship is shown below in an easy-to-understand manner.
  • Figure 4b shows the relationship between shutter speed and measurable temperature range. If the shirt speed is shortened, the temperature of the material to be rolled 8 that is less than 300 ° C becomes impossible to measure from around 40 ⁇ sec, and the shutter speed is made shorter than that. It turns out that the lower limit of the measurable temperature range goes up. If the material to be rolled 8 is high-strength steel, the target temperature immediately before scraping differs depending on the type, but the temperature of the material 8 after cooling by the cooling-related equipment 26 is at least 3 0 0 May reach ° C.
  • the shutter speed needs to be 40 ⁇ sec or more. It is preferable to adjust the shutter speed according to the temperature of the material 8 to be rolled.
  • the near-infrared camera is used as long as the image is not blurred.
  • the shutter speed is set to 40 / sec or more (for the near-infrared camera used in the present embodiment, the maximum length is 50 sec, compared to the specifications in Table 1). If the temperature just before firing is high, for example, 45 ° C to 75 ° C, the shutter speed of the near-infrared camera should be shortened to, for example, less than 40 ⁇ sec (10 sec at the shortest). It is good practice to ensure the measured temperature range.
  • the shutter speed must be adjusted to ensure the measured temperature range.
  • a longer length is preferable, and the closer the temperature of the rolled material 8 approaches the measurable upper limit, the shorter the shutter speed as much as possible, the faster the state of the rolled material flowing at high speed.
  • the shutter speed of the near-infrared camera is preferably determined in advance according to the temperature immediately before scraping, which is a target determined by the type of the material to be rolled 8. Furthermore, it is also preferable to adjust the shutter one speed according to the actual temperature of the tip of the material to be rolled 8 measured by the finish side thermometer 21.
  • Near-infrared cameras can measure brightness, not temperature.
  • the manufacturer of the near-infrared camera incorporates logic to convert brightness to temperature in some way, but an error of up to 20 ° C may occur.
  • the relationship between the brightness measured with the near-infrared camera and the temperature measured with the spot thermometer was previously obtained offline as a brightness-temperature conversion curve for the same part of the same heat source. Keep it. This is stored in the control device 50, the process computer 70, etc., and the brightness when the near-infrared power camera is installed in the hot rolling line and the material to be rolled is photographed is converted to the brightness-to-temperature conversion. Convert to temperature according to the curve.
  • Figure 3c shows the result.
  • the scale shown on the right side of Fig. 3a shows the relationship between color shade and temperature.
  • the temperature of the same part of the rolled material was measured with a near-infrared camera and a spot thermometer, and the temperature of the portion of the rolled material measured with a spot thermometer was measured with a near-infrared camera.
  • Another method is to calibrate the near-infrared camera so that the temperatures in the same part match, and then shoot the material to be rolled. It can also be said to be an online calibration.
  • Fig. 9a shows an example in which a coiler inlet thermometer 25 and a near infrared camera 25 A are provided. A certain point in the field of view of the near-infrared camera, a coiler inlet side thermometer so that the temperature of the material to be rolled can be measured even with a spot thermometer coiler inlet side thermometer 25
  • Figure 9b shows the finisher side thermometer 21 and the coiler inlet side thermometer.
  • Figure 9 shows an example of installing near-infrared cameras 2 1 A and 2 5 A together with both 2 and 5
  • Fig. 9c shows an example in which near infrared ray melas 2 7 A and 25 A are installed in both the intermediate thermometer 2 7 and the coiler inlet side thermometer 25, and
  • Fig. 9d shows the finish Near-infrared power, Mela 2 1 A, 2 7 A, 2 5 A were installed in the form of being attached to the three of the exit side thermometer 2 1, the intermediate thermometer 2 7 and the coiler inlet side thermometer 2 5. Examples are also shown. Similarly, the direction of the finishing thermometer 21 and the intermediate thermometer 27, which are spot thermometers, is also adjusted.
  • the spot thermometer is large relative to the size of the near-infrared camera pixel, and if multiple near-infrared camera pixels fall within the field of view of the spot thermometer, the spot is represented by a single pixel. It is preferable to obtain a luminance-temperature conversion curve or calibrate the near-infrared camera so that the temperature measured by the thermometer and the temperature measured by the pixel match, but the average value is Other methods, such as matching, may be used.
  • planar (two-dimensional) temperature distribution of the rolled material 8 measured with a near-infrared camera.
  • the temperature distribution data of the entire width of the rolled material 8 is attached to a computer or other computer because of the subsequent processing. Temporarily store it in a recording medium such as a memory, and re-edit it into temperature distribution data divided by a certain length in the longitudinal direction of the material 8 to be rolled, for example, every 4 m (4 0 0 0 mm) (Step 1 Ten ) .
  • the result is stored in a recording medium such as a hard disk attached to a computer such as a personal computer (step 120).
  • step 13 30 it is read out and temporarily stored in a recording medium such as a memory attached to the computer such as the personal computer (step 13 30). Then, it is determined whether or not the temperature tolerance is deviated from all the pixels in the single structural unit or in one screen, and the pixels exceeding the upper limit of the temperature tolerance (temperature upper limit threshold) are determined. For pixels that are below the lower limit of the temperature tolerance (temperature lower limit threshold), temporarily store them together with their plane (two-dimensional) coordinates (which may be representative values or vertical and horizontal ranges), and the plane (2 Create a (dimension) distribution (step 1 5 0). Furthermore, for each individual rolled material 8, various statistical values are calculated for defective parts of quality out of temperature tolerance for each fixed length, that is, for each structural unit described above (step). 1 6 0).
  • Judgment of a defective portion of the material 8 to be rolled out of the temperature tolerance is performed, for example, every 1 m from the various statistical values. Further, for example, it is set as a 16-hexadecimal display result of the quality judgment result as shown in FIG. 6, and is created as bit information over the entire length (step 1700).
  • step 180 determine the starting position from the tip of the rolled material 8 and its length for the poor quality part of the rolled material 8 that deviates from the temperature tolerance, and link it to each rolled material 8 with the same PC. It is stored in a recording medium such as a hard disk attached to the computer (step 180).
  • Step 1 6 0 The process of calculating the statistical value in (Step 1 6 0) is as follows. For example, the following statistics are calculated.
  • the ratio of the area of the poor quality part of the rolled material 8 out of the temperature tolerance to the area of the rolled material 8 seen from above is the out-of-tolerance area ratio (%).
  • the calculation formula is as follows.
  • Tolerance area ratio ⁇ Tolerance area S ; (Region length X Rolled material width) XI 0 0 (%) ⁇ ⁇ ⁇ (1)
  • the ratio of the length in the longitudinal direction of the defective part of the rolled material 8 out of the temperature tolerance, which occupies the length of the rolled material 8 viewed from above, is the out-of-tolerance length. rate
  • the calculation formula is as follows.
  • Tolerance length ratio ⁇ Tolerance length LiZ area length (2)
  • the calculation formula is as follows.
  • Average number of out-of-tolerance Number of out-of-tolerance Number of screens N (pieces / constant length 4 m pitch)
  • the total area of poor quality parts of the rolled material 8 out of the temperature tolerance divided by the number of parts is the average area Z of the out of tolerance parts.
  • the calculation formula is as follows. ,
  • Average area of out-of-tolerance locations ⁇ Area of out-of-tolerance S Number of out-of-tolerance locations
  • Step 170 the process of determining the defective part and determining the length in (Step 170) is as follows.
  • (1) to (3) are determined every 4 m pitch of the material to be rolled, and (4) and (5) are considered to require a particularly detailed determination, and every 1 m of material to be rolled. Judgment is made.
  • the quality judgment result is judged as rejected (NG) for each rolled material lm.
  • the tip part and the tail part of the material to be rolled 8 have uneven parts at tens to hundreds of tens of meters. Of these, dozens of meters will always be out of tolerance, so they should be cut out in a later process, and instead, the parts will not be subject to quality judgment. Measures such as avoiding the complexity of becoming may be taken.
  • the cooling water on the upper surface of the material to be rolled 8 flows down from both edges in the width direction, so that both edges in the width direction of the material 8 are cooled more strongly than the center in the width direction. Since some low-temperature parts are formed, these parts may be excluded from quality judgment.
  • the length of the rolled material for the tip is stored in 70 or the like and transmitted to a business computer 90 or a personal computer as necessary, or to a near-infrared camera via the control device 50.
  • the upper temperature limit threshold value, the lower temperature limit filter value, etc. are placed above the upper temperature limit threshold value and below the lower temperature limit threshold value.
  • upper Ne, the upper threshold value W Ne of the width dimension of the portion out tolerance, the filter value of the longitudinal dimension of the portion out tolerances, etc. filter value of the width dimension of the portion out tolerances, etc. process computer 7 in 0 You can store it and send it to a business computer 90 or a personal computer as needed, or send it to a near-infrared camera via the control device 50.
  • FIG. 9 a shows a part extracted from the finishing mill 18 on the hot rolling line 100 shown in FIG. 13 described above.
  • a near-infrared camera 25 A was installed in parallel with the thermometer 25 on the inlet side of the coiler. The distance between them is only lm.
  • the plane (two-dimensional) temperature data of the rolled material 8 measured with near infrared power mela 2 5 A is sent to the dedicated personal computer 2 5 1 and processed for image processing, and the quality of the rolled material 8 deviates from the temperature tolerance.
  • the open base position from the tip of the material to be rolled 8 and its length In addition to the flatness (two-dimensional) temperature data of the material 8 to be rolled, including the results of quality judgment for each fixed length (4 m) and lm described above, all data appearing above are also included.
  • the identification data called coil No that is linked to each rolled material 8 and similarly linked to each rolled material 8 is also keyed. If the coil No is entered, it will be via the in-house L AN 2 5 2 and in different locations, such as the office of the manufacturing department and the office of the quality control department.
  • the office computer 2 5 3 can remotely copy the temperature data after image processing (2D), and the temperature data after image processing can be copied to each office. On the computer's 2 5 3 screen, and the temperature data after image processing Analysis or, or it may be or processing. Of course, it can also be used for quality assurance when delivering products to consumers. This is because if there is a poor quality part, it is possible to take measures such as adding a refining process such as pickling or skin pass, and manually instructing to remove the poor quality part.
  • the data has a capacity of about 20 to 40 MB, so even the storage capacity of a personal computer hard disk is equivalent to several hundred pieces of rolled material. Any internal or external data can be recorded. If you focus on high-strength steel, you can practically record several months of data. As described above, even if it has a storage capacity similar to that of a personal computer, hot rolling is used to record the results of quality judgment using a near infrared camera capable of photographing the entire width of the hot rolled metal strip rolled in the hot rolling line. It is possible to construct an electronic computer device for recording metal strip quality judgment results.
  • Fig. 9b shows an example in which near-infrared cameras 2 1 A and 25 A are installed in the form of being attached to both the finisher-side thermometer 21 and the coiler inlet-side thermometer 25.
  • the plane (two-dimensional) temperature data of the material to be rolled 8 measured with near infrared power mela 2 1 A, 2 5 A is transmitted to the dedicated personal computer 2 5 1 and later. is there.
  • the near-infrared power attached to the finishing-side thermometer 2 1 as well as being used to analyze and process the temperature data after image processing for quality assurance in product delivery to customers Based on the temperature data measured by Mela 2 1 A, the feed spot control such as weakening the cooling method by the cooling related equipment 26 for the black spot of the material 8 to be rolled: ⁇
  • the temperature immediately before rolling of the rolled material 8 is made as uniform as possible, and as much as possible, the quality of the entire length of the rolled material 8 is attempted to pass.
  • Fig. 9c shows an example in which near-infrared cameras 27 A and 25 A are installed in the form of both the intermediate thermometer 27 and the coiler inlet-side thermometer 25.
  • the flat surface (two-dimensional) of the material to be rolled 8 measured with the near infrared camera 2 7 A and 25 A is the same as in Examples 1 and 2 after the route where the temperature data is transmitted to the dedicated personal computer 2 5 1 and later. .
  • the temperature data after image processing can be analyzed and added, and used for quality assurance in product delivery to customers.
  • the material to be rolled 8 The feed forward system can be cooled.
  • Intermediate thermometer 2 7 ⁇ Based on temperature data established by near-infrared camera 2 7 A, the intermediate thermometer of cooling related equipment 2 6 for the part with black spots on material 8 to be rolled Feedforward control such as weakening the cooling by the part downstream from 27 is possible.
  • thermometer 2 7 upstream portion cooling the weakening such feedback control even together in accordance than of In this way, the temperature immediately before the rolling of the material to be rolled 8 is made as uniform as possible, and the quality pass can be achieved for the entire length of the material to be rolled 8 as much as possible.
  • Fig. 9d shows an example in which a near-infrared camera 2 1 A, 2 7 A, and 25 A are attached to three of the finisher side thermometer 2 1, intermediate thermometer 2 7, and coiler inlet side thermometer 2 5. Show.
  • Example 3 it is the same as in Example 3 based on the temperature data measured by the near-infrared ray camera 21 A instead of the finishing-side thermometer 21 In By performing the control, the temperature immediately before scraping of the material to be rolled 8 can be made as uniform as possible, and the quality of the entire width of the material to be rolled 8 can be achieved as much as possible.
  • Example 5
  • the temperature data measured by the near-infrared camera is taken in via the control device 50.
  • Figure 9a, Figure 9b, Figure 9c, Figure 9d The role of the dedicated personal computer 2 5 1 in the first to fourth embodiments shown in Fig. 9d is played by the process computer 70 or the business computer 90 .
  • the temperature data is recorded with the identification data called the coil No associated with each rolled material 8 as a key.
  • the dedicated PC 2 51 (not shown) and send the temperature data after image processing on the dedicated PC 2 51 to the Business Computer 90.
  • temperature data after image processing may be recorded in the business computer 90 using identification data called a coil No associated with each rolled material 8 as a key.
  • remotely copy the plane (2D) temperature data after image processing can be able to.
  • the temperature data after image processing can be played back on the screen of each office terminal or personal computer, and the temperature data after image processing can be analyzed or processed. Of course, it can also be used for quality assurance when delivering products to consumers.
  • the pickling line 2 0 0 with the inline skin pass 3 0
  • Such a refining process is added as a subsequent process of the hot rolling process to eliminate defective parts.
  • the 30 to 4 O When the range of m and the range of 100 to 12 O m are cut, a healthy portion of 60 m is formed in the 40 to 10 O m portion, but welds may be mixed. If it is an order from a customer, or an order from a customer who can accept a small weight of 6 Om, or an order that will eventually become a cut plate, this part is not allowed.
  • the 60 m healthy portion is welded to the front and rear ends of the front and rear rolled materials with a welding machine 6 and continuously passed through pickling lines.
  • the tip of the material to be rolled 8 after cutting off the poor quality portion is welded by the welding machine 6 and continuously passed through the pickling line 200.
  • the cutting command When automatically instructing to cut the defective part with Sha 5, the cutting command, where in the longitudinal direction of the material to be rolled, the longitudinal position (cutting start position) and the cutting length are used as commands. Make output.
  • the business computer 90 includes attribute data such as the order material, order thickness, order width, etc. from the customer of each material 8 to be rolled, as well as the full-thickness plate thickness distribution and near infrared camera on the hot rolling line 100, for example.
  • attribute data such as the order material, order thickness, order width, etc. from the customer of each material 8 to be rolled, as well as the full-thickness plate thickness distribution and near infrared camera on the hot rolling line 100, for example.
  • Various production data such as the full-width temperature distribution measured in (1) is recorded and linked to each material 8 to be rolled.
  • the pickling line 200, and other manufacturing processes such as cold rolling (not shown) are also instructed to pass through the entire manufacturing process.
  • manufacturing and quality performance management is also performed.
  • Business computer 90 that fulfills these functions, its computer program, attached recording devices and recording media, and terminals connected to them and man-machine data interface functions such as its screen display function
  • An electronic computer device is called an electronic computer device.
  • Figure 10 shows an overview of the computer system 9 0 1 that provides manufacturing process and quality performance management as well as passing process instruction and management, including the hot rolling line 10 and other manufacturing processes.
  • business computers 90 are provided separately for hot rolling lines, cold rolling lines, pickling lines, and other lines. It is not limited to this, or it may be integrated into one computer.
  • Fig. 10 shows an example in which the configuration shown in Fig. 9a is followed as an example of installing a near-infrared camera in hot rolling line 100, but Fig. 9b and Fig. 9c An example can be given of following the various forms in Fig. 9d.
  • Figure 11 shows the distribution in the longitudinal direction of the temperature in the center of the width of the material 8 to be rolled on the coil entry side. Since this rolled material was moderately elongated, the longitudinal distribution of the flatness (steepness) at the width center of the rolled material and the longitudinal distribution of the temperature of the rolled material showed a correlation. It can be seen that locally low-temperature parts of the material to be rolled are formed in the parts with poor flatness that can be within 20 m from the cutting edge. Actually, the part surrounded by ⁇ was cut out, but when it was pressed under the same conditions as the customer as a trial, a crack occurred.
  • Figure 12 shows a comparison of the error in the quality defect part length between the quality defect judgment using only the coiler inlet-side thermometer 25 and the quality defect judgment when the near infrared power mela is used together.
  • the vertical axis in Fig. 1 2 is the length of the part judged to be a poor quality when temperature is measured with near infrared power mela, and the poor quality part when temperature is measured with the same inlet side thermometer 25
  • the near-infrared camera installed on the inlet side of the hot rolling line coiler is used to photograph the full width of the hot-rolled metal strip, its temperature distribution is measured, or further recorded, It will be possible to properly guarantee the quality of products delivered to customers. In particular, a portion called a black spot having a locally low temperature can be reliably detected.

Abstract

需要家に対する製品納入上の品質保証を適正に行えるような、熱間圧延ライン、熱延金属帯の全幅撮影方法、全幅撮影結果記録方法、品質保証を適正に行えるような方法と、それを用いた熱延金属帯の製造方法を提供する。特に温度の局部的に低いブラックスポットと呼ばれる部分も確実に検出できるところに特徴がある。熱間圧延ライン100のコイラー24入側に熱延金属帯8の全幅を撮影が可能な近赤外線カメラ25Aを設置した熱間圧延ライン100、熱間圧延ライン100のコイラー24入側に熱延金属帯8の全幅を撮影が可能な近赤外線カメラ25Aを設置して撮影すること、熱延金属帯8の全幅あるいはさらにその全長を撮影した結果を用いて熱延金属帯8の品質を判定すること。

Description

明細書 近赤外線カメラを用いた金属帯の熱間圧延方法および装置 技術分野
本発明は、 近赤外線カメラを用いた金属帯の熱間圧延方法および装置に関する。 本発明は以下の内容を含む。 金属帯の熱間圧延ラインに金属帯全幅の撮影が可能 な近赤外線カメラを設置すること。 金属材料を熱間圧延して熱延金属帯 (以下、 被圧延材とも呼ぶ) とするに際し、 熱延金属帯を卷き取る前に近赤外線カメラを 用いて熱延金属帯の全幅を撮影すること。 撮影した結果を記録すること。 記録し た結果から熱延金属帯の品質を判定すること。 この品質判定結果を用いて熱延金 属帯を製造すること。 背景技術
熱間圧延工程とは、 一般的に連続铸造または造塊、 分塊によって製造されたス ラブ状の金属材料を、 加熱炉にて数百〜千数百。 Cに加熱した後、 粗圧延機、 仕上 圧延機により薄く長く延ばしてコイル状に巻き取る工程をいう。
図 1 3は、 従来から一般的に用いられている熱間圧延ライン 1 0 0の一例を示 す。 加熱炉 1 0により数百〜千数百。 Cに加熱された厚み 1 4 0〜3 0 O mmの金 属材料 (以下、 被圧延材) 8は、 粗圧延機 1 2、 仕上圧延機 1 8により厚み 0 . 8〜2 5 mmまで圧延され薄く延ばされて金属帯となる。
粗圧延機 1 2は、 図 1 3の例では 2基であるが、 一般的なものは 4基であり、 6基のものもある。 被圧延材 8は、 粗圧延機で圧延された後、 仕上圧延機 1 8 に供給される。
仕上圧延機 1 8を構成する各圧延機 (スタンド) の数は、 図 1 3の例では 7基 であるが、 6基のものもある。 仕上圧延機 1 8は、 数百〜千数百。 Cの高温の被圧 延材 8を複数の圧延機で連続的に圧延する。 図 1 3に示したごとく、 仕上圧延機 1 8で被圧延材を一本毎に圧延する圧延方 法をバッチ圧延という。 これに対し、 被圧延材同士を接合して圧延する方法をェ ンドレス圧延という。 バッチ圧延の方が一般的である。
熱間圧延ライン 1 0 0には、 仕上圧延機 1 8の各スタンド間を除いて、 その他 の圧延機 (スタンド) 間には、 図示しない多数 (百以上) のテーブルロールが設 置されており、 被圧延材 8を搬送する。
また、 被圧延材 8には、 加熱炉 1 0から抽出されたとき、 その表裏面に酸化物 の層 (以下、 スケール) が生成している。 被圧延材 8は高温の状態で大気に曝さ れるため、 更に新たなスケールが表裏面に生成する。 このため、 粗圧延機 1 2の 中の各圧延機の入側には 1 0〜3 O M P a內外の高圧水を被圧延材 8の表裏面に 吹き付けてスケールを除去するデスケーリング装置 1 6が設置され、 スケールを 除去している。
また、 図示していないが、 各ワークロール 1 9は、 高温の被圧延材と接触する ので、 冷却水にて冷却されている。 各バックアップロール 2 0も、 冷却水にて冷 却されている。
図 1 3において、 1 4はクロップシヤーであり、 仕上圧延前に被圧延材 8の先 尾端のクロップ (被圧延材 8の先尾端の、 いびつな形状の部分) を切断除去し、 仕上圧延機 1 8にスムーズに嚙み込みやすい略矩形の平面形状に整形する。
5 0は制御装置、 7 0はプロセスコンピュータ、 9 0はビジネスコンピュータ である。
ところで、 図 1 3に示すような熱間圧延ライン 1 0 0にて圧延される金属帯に 要求される品質は、 近年、 ますます高度化してきている。 その代表的な例が金属 帯で、 中でも、 近年の自動車軽量化の指向に伴い、 高張力鋼の需要が高まり、 要 求される品質も高度化してきている。
高張力鋼とは、 一般に引張強さが 4 0 Ό Μ Ρ a以上の鋼板をいう。 近年では、 単に、 引張強さが高いだけではなく、 プレス加工や穴拡げ加工をしたときに割れ ない等の高い加工性が併せて求められる。 更に金属帯のどの部分でも引張強さや 高い加工性などの品質が均一であることが求められている。 高張力鋼板を製造するためには鋼の化学成分を調整する。 どのような化学成分 であっても高品質の金属帯を製造するためには熱間圧延の技術と製造条件が重要 である。 中でも、 仕上圧延後コイラ一 2 4で卷き取る直前の金属帯の温度と、 そ の温度を金属帯長手方向にも幅方向にも均一にすることが重要である。
図 1 3に示した熱間圧延ライン 1 0 0の例でいえば、 コィラー入側温度計 2 5 で測定する被圧延材 8の卷き取り直前の温度は、 品質保証上最も重要である。 ラ ンナウトテーブル 2 3およびそこに設置された冷却関連設備 2 6の制御が重要で ある。 さらに、 仕上圧延機出側温度計 2 1で測定される圧延直後の被圧延材 8の 温度も重要である。
卷き取り直前の温度を可及的に均一とするためには、 被圧延材 8を巻き取る直 前の温度を、 被圧延材 8の全幅にわたって測定する必要がある。 ランナウトテー ブル 2 3と冷却関連設備 2 6を制御するには、 被圧延材 8の仕上圧延直後の温度 を被圧延材 8の全幅にわたって測定することが好ましい。
従来一般的に仕上出側温度計 2 1ゃコイラ一入側温度計 2 5には赤外線式放射 温度計が使用されている。 これらの温度計は被圧延材 8の幅方向中央位置に固定 的に設置され、 視野は直径にしてせいぜい 2 0〜5 0 mmである。
すなわち、 被圧延材 8の幅方向中央を代表として、 全長にわたり温度測定する だけで、 幅方向の温度分布までは測定していなかった。
しかしながら、 被圧延材 8の幅方向中央のみを全長にわたり温度測定した結果 が、 品質保証上合格範囲内の温度になっていたとしても、 被圧延材 8の幅方向の 温度が品質保証上合格範囲内である保証はなレ、。
バッチ圧延においては仕上圧延機 1 8での平坦度制御の効果がまだ現れない被 圧延材 8の先端数十メートルには形状の平坦でない部分が発生する。 また、 張力 の作用しない仕上圧延機 1 8の最終スタンドからコィラー 2 4までの百数十メー トル間は被圧延材 8の先端ある 、は尾端の形状が平坦でなレ、部分がある。 しかも その山波の形状はいびつで、 例えば、 図 1 4に示すように、 被圧延材 8の先端部 にところどころ局部的に冷却水の水溜まりができる。 このような場合には、 同部 は局部的に冷却されてしまい、 幅方向温度分布が均一となりにくレ、。 ところで、 鋼の表面と冷却水との間で起こる現象は、 鋼の被圧延材の温度が 5 5 0 °C以上では、 図 1 5 aに示すように被圧延材 8の表面全体が連続した水蒸気 の膜で覆われた膜沸騰の状態にある。 5 5 0 °Cを下回るあたりから、 図 1 5 bに 示すように水蒸気の膜が消失して冷却水と被圧延材 8が直接接触する核沸騰の状 態に移行する。 さらに被圧延材 8の温度が全体的に降下すると、 全面的に核沸騰 の状態に移行する。
膜沸騰と核沸騰が混在する過程では、 膜沸騰部分よりも核沸騰部分の方が熱伝 達が促進されるため、 核沸騰部分の温度が局部的に周囲の他の部分の温度に比べ て低くなる場合がある。
高張力鋼は、 品質確保上、 卷き取り直前の目標温度が 5 5 0 °C以下のものが多 V、。 これは膜沸騰から核沸騰に移行する温度域に相当するため被圧延材 8のある 部分と周囲の他の部分とで膜沸騰と核沸騰が混在し、 冷却速度の早レ、ところと遅 いところがでてくる。
先述のような水溜まりのある部分では、 被圧延材 8に局部的に温度の低い部分 (ブラックスポット) ができるため、 水溜まりのある部分とそうでない部分とで、 巻き取り直前の被圧延材 8の温度にますます差ができるようになり、 それに伴つ て、 被圧延材 8全体として品質が均一でなくなり、 局部的に品質が許容範囲から 外れることがある。
被圧延材 8の幅方向温度分布を測定しょうとする努力は以前もなされてはいた が、 近年とくにその重要性は増してきたといえる。
古くは、 被圧延材 8の幅方向温度分布を測定するには、 被圧延材 8の幅方向中 央に相当する位置に固定的に設置された温度計に加え、 それとは別に、 被圧延材 8の幅方向に走査 (スキャン) する温度計を設置し、 搬送中の被圧延材 8を幅方 向にスキャンすることで、 結果的に被圧延材 8上に斜めに軌跡を描くように走查 (スキャン) して温度測定していた。 このため、 図 1 6に熱間圧延ライン上方か ら見た図に示すごとく、 温度の局部的に低いブラックスポットと呼ばれる部分を スキャンし損ない、 結果的に、 同部分を検出できない場合があった。 特許文献 1では、 制御冷却後の鋼板の幅方向温度分布を鋼板全長に渡って離散 的に測定することを記載している。 図 1 7 a、 図 1 7 bに示すごとく、 鋼板の幅 または長手方向に温度偏差が発生したタイミングと、 冷却バンク、 ノズル、 へッ ダ一のような冷却関連設備の使用開始または終了のタイミングとが一致する場合 がある。 図 1 7 aの黒枠で示すような被圧延材 8全長全幅のうちの一部の低温領 域を異常部位と判定するとともに、 冷却装置も異常と診断することを記載してい る。 同特許文献 1では、 図 1 7 a、 図 1 7 bを見てもわかる通り、 推測するに、 幅方向に 2 0 O mmピッチで、 被圧延材 8の離散的な温度測定をしている。
特許文献 2では、 厚板圧延ラインの場合を対象に、 熱間矯正装置 (ホットレべ ラ) の下流側 (出側) にて、 近赤外線カメラや走査 (スキャン) 型の放射温度計 により、 鋼板の温度分布を測定することを記載しており、 その目的は、 残留応力 分布を求め、 後の製造工程である熱処理の条件を調整することで、 鋼板を切断時 の残留応力解放による変形を、 極力抑制する、 というものである。
近赤外線カメラは、 例えば正方形状の画素を縦横に 2次元的に配列し、 各画素 で測定した温度データを線形補間して物体の温度分布を疑似連続的に測定しょう とするものであるが、 画素一つあたりの縦横の寸法は、 先述の特許文献 1での離 散的な温度測定ピッチの例である、 2 0 0 mmよりは小さレ、。 このため、 より連 続に近い温度分布を測定できる。
なお、 特許文献 2では、 温度測定の対象となる被圧延材のどこをどれだけの領 域について、 その温度を測定するかは不明であるが、 全幅でないことだけは確か である。 一例として、 幅 3 0 0 0 mmの鋼板についての言及があるが、 測定可能 な領域として、 幅 3 0 0 0 mmもの広幅の鋼板の全幅をカバーできる近赤外線力 メラは、 特許文献 2の出願当時はもとより、 現在もまだ開発されていない。
特許文献 3では、 金属帯の熱間圧延ラインの場合を対象に、 搬送中の鋼板の平 面の温度を、 冷却関連設備よりも上流側 (入側) で測定することを記載しており、 その目的は、 平面温度の最低温度が予め定めた温度以下で、 かつ平面温度の偏差 が予め定められた値以下のときは、 水冷却による冷却制御を行い、 平面温度の偏 差が予め定められた値を超えるときは、 ガス冷却による冷却制御を行うことで、 温度偏差を小さくし、 品質を可及的に均一とする、 というものである。
なお、 特許文献 3では、 鋼板の平面の温度を測定する手段として、 近赤外線力 メラとは記載しておらず、 また、 被圧延材のどこをどれだけの領域について、 そ の温度を測定するかも不明である。
特許文献 1 :特開 2 0 0 5— 2 7 9 6 6 5号公報
特許文献 2 :特開 2 0 0 3— 3 1 1 3 2 6号公報
特許文献 3 :特開 2 0 0 0— 3 1 3 9 2 0号公報 発明の開示
特許文献 1の技術は、 幅方向に 2 0 O mmピッチというような、 離散的な被圧 延材の温度分布測定によるものである。 このため、 古くから行われている、 搬送 中の被圧延材を幅方向にスキャンして温度測定する場合と同様、 温度の局部的に 低いブラックスポットと呼ばれる部分を検出できない場合がある、 という問題が あった o
特許文献 2の技術は、 厚板圧延ラインを対象としており、 しかも、 測定視野は 被圧延材の全幅をカバーするものではない。 このため、 視野から外れる被圧延材 の部分に、 温度の局部的に低いブラックスポットと呼ばれる部分があった場合、 同様に同部分を検出できない場合がある、 という問題があった。
特許文献 3の技術も、 出願当時の技術水準からいって、 後述の発明を実施する ための最良の形態で述べるシャッタースピードが十分に短くない問題があり、 ま た、 測定視野も、 被圧延材の全幅をカバーするものとは考えにくい。 しかも、 冷 却関連設備による冷却を、 水冷とする力、 空?^とするか、 をフィードフォワード 的に切り替える制御に用いることまでを記載しているにすぎず、 制御の結果、 ど のような被圧延材の平面 (2次元) 温度分布になったかまでは測定の対象として おらず、 また、 測定した結果の記録については、 これをしておらず、 需要家に対 する製品納入上の品質までは保証しえない、 という点で課題を残していた。 本発明は、 かような従来技術の問題を解決するべくなされたものであり、 需要 家に对する製品納入上の品質保証を適正に行えるような、 熱間圧延ライン、 熱延 金属帯の品質判定結果記録用電子計算機装置、 製造 ·品質実績管理および通過ェ 程指示 ·管理用電子計算機装置を提供しようとするものである。 特に温度の局部 的に低いブラックスポットと呼ばれる部分も確実に検出できるところに特徴があ る。
すなわち、 本発明は以下の通りである。
1 . 熱間圧延ラインのコィラー入側に熱延金属帯の全幅を撮影が可能な近赤外線 カメラを設置した熱間圧延ライン。
2 . 仕上圧延機出側にさらに熱延金属帯の全幅を撮影が可能な近赤外線カメラを 設置した前項 1の熱間圧 ライン。
3 . ランナウトテーブルの中間にさらに熱延金属帯の全幅を撮影が可能な近赤外 線カメラを設置した前項 1又は 2の熱間圧延ライン。
4 . 熱間圧延ラインのコイラ一入側、 ランナウトテーブルの中間、 仕上圧延機出 側、 の少なくとも 1箇所以上に熱延金属帯の全幅を撮影が可能な近赤外線カメラ を設置して撮影することを特徴とする熱延金属帯の全幅撮影方法。
5 . 前項 4において、 熱間圧延ラインのコイラ一入側、 ランナウトテーブルの中 間、 仕上圧延機出側、 の少なくとも 1箇所以上に熱延金属帯の全幅を撮影が可能 な近赤外線カメラを設置して被圧延材を撮影し温度測定するにあたり、 予め、 同 じ熱源の同じ箇所について、 前記近赤外線カメラにて測定した輝度と、 スポット 温度計にて測定した温度と、 の関係が、 前記熱源の温度を変化させたときにどの ように変化するか、 を輝度一温度変換曲線として求めたものを記憶しておき、 前 記熱間圧延ラインに前記近赤外線力メラを設置して被圧延材を撮影したときの輝 度を、 前記輝度一温度変換曲線に従って、 温度に変換することを特徴とする熱延 金属帯の全幅撮影方法。
6 . 前項 4において、 熱間圧延ラインのコイラ一入側、 ランナウトテーブルの中 間、 仕上圧延機出側、 の少なくとも 1箇所以上に熱延金属帯の全幅を撮影が可能 な近赤外線カメラを設置して被圧延材を撮影し温度測定するとともに、 前記近赤 外線力メラを設置した箇所での該近赤外線力メラの視野内のある箇所について、 スポット温度計にても被圧延材を温度測定し、 スポット温度計にて測定した被圧 延材の部分の温度に、 近赤外線力メラにて測定した同部分の温度が一致するよう、 近赤外線力メラを校正した上で、 被圧延材を撮影することを特徴とする熱延金属 帯の全幅撮影方法。
7 . 前項 4において、 熱間圧延ラインのコイラ一入側に設置した近赤外線カメラ を用いて熱延金属帯の全幅を撮影するに際し、 熱延金属帯の温度に応じて、 シャ ッタースピードを調整することを特徴とする熱延金属帯の全幅撮影方法。
8 . 前項 4において、 近赤外線カメラを用いて熱延金属帯の全幅を撮影すること で測定した温度の分解能を確保できるように、 シャッタースピードを長くするこ とを特徴とする熱延金属帯の全幅撮影方法。
9 . 前項 4から 8のいずれかにおいて、 熱延金属帯の全長を撮影することを特 徴とする熱延金属畚の全幅撮影方法。
1 0 . 前項 4から 9のいずれかにおいて、 撮影結果をデータとして記録するこ とを特徴とする熱延金属帯の全幅撮影結果記録方法。
1 1 . 熱間圧延ラインのコイラ一入側に設置した近赤外線カメラを用いた熱延 金属帯の全幅あるいはさらにその全長を撮影した結果を用いて熱延金属帯の品質 を判定することを特徵とする熱延金属帯の品質判定方法。
1 2 . 前項 1 1において、 熱間圧延ラインのコイラ一入側に設置した近赤外線 カメラを用いた熱延金属帯の全幅あるいはさちにその全長を撮影した結果を用い た熱延金属帯の品質判定の結果を記録することを特徴とする熱延金属帯の品質判 定方法。
1 3 . 前項 1 1又は 1 2を用いた熱延金属帯の製造方法。
1 4 . 熱間圧延ラインにて圧延する熱延金属帯の全幅を撮影可能な近赤外線力 メラを用いた、 熱延金属帯の品質判定の結果を記録する熱延金属帯の品質判定結 果記録用電子計算機装置。
1 5 . 熱間圧延ラインにて圧延する熱延金属帯の全幅を撮影可能な近赤外線力 メラを用いた、 熱延金属帯の品質判定の結果をもとに、 製造 ·品質実績管理およ び通過工程指示 ·管理を行う、 熱延金属帯の製造 ·品質実績管理および通過工程 指示 ·管理用電子計算機装置。
1 6 . 前項 1 4において、 近赤外線カメラは熱延金属帯の全長を撮影するもの であることを特徴とする熱延金属帯の品質判定結果記録用電子計算機装置。
1 7 . 前項 1 5において、 近赤外線カメラは熱延金属帯の全長を撮影するもの であることを特徴とする熱延金属帯の製造 ·品質実績管理および通過工程指示 · 管理用電子計算機装置。
1 8 . 前項 1 4から 1 7のいずれかを用いた後工程での熱延金属帯の品質不良 部切除方法。
本発明によれば、 需要家に対する製品納入上の品質保証を適正に行えるような、 熱間圧延ライン、 熱延金属帯の全幅撮影方法、 全幅撮影結果記録方法、 品質保証 を適正に行えるような方法と、 それを用いた熱延金属帯の製造方法を提供できる。 更に、 熱延金属帯の品質判定結果記録用電子計算機装置、 製造 ·品質実績管理お よび通過工程指示 ·管理用電子計算機装置を提供できる。 図面の簡単な説明
図 1は、 耳伸び、 中伸びなどの先端部の平坦度 (急峻度) の悪さと切除長さの関 係を示す図である。
図 2は、 本発明における近赤外線カメラの設置例を示す図である。
図 3 aは、 近赤外線カメラで撮影した正常な画像である。
図 3 bは、 近赤外線カメラで撮影した流れた画像である。
図 3 cは、 輝度—温度変換曲線を示す図である。
図 4 aは、 近赤外線カメラのシャッタースピードを変えた場合の温度と輝度の関 係を示す図である。
図 4 bは、 シャッタースピードと測定可能な温度域の関係を示す図である。
図 5は、 本発明の一つの実施の形態について説明する図である。
図 6は、 本発明の一つの実施の形態について説明する図である。 図 7 a、 図 7 b、 図 7 c、 図 7 dは、 被圧延材 8を上方から見た場合に温度公差 を外れた被圧延材 8の品質不良部分を説明する図である。
図 8 a、 図 8 bは、 被圧延材 8を上方から見た場合に温度公差を外れた被圧延材 8の品質不良部分を説明する図である。
図 9 a、 図 9 b、 図 9 c、 図 9 dは、 本発明の一つの実施の形態について説明す る図である。
図 1 0は、 本発明の別の実施の形態について説明する図である。
図 1 1は、 コイラ一入側における被圧延材 8の幅中央部温度の長手方向分布を示 す図である。
図 1 2は、 コイラ一入側温度計 25のみによる品質不良判定と近赤外線力メラを 併設した場合の品質不良判定の品質不良部長さの誤差の比較を示す図である。 図 1 3は、 従来の熱間圧延ラインの一例について説明する図である。
図 14は、 従来技術の問題点について説明する図である。
図 1 5 a、 図 1 5 bは、 膜沸騰と核沸騰を対比して説明する図である。
図 1 6は、 従来技術の問題点について説明する図である。
図 1 7 a、 図 1 7 bは、 従来技術について説明する図である。
図中の符号の意味は下記の通りである。
5 シヤー
6 溶接機
8 被圧延材
10 加熱炉
12 粗圧延機
135 エッジヤーローノレ
14 クロップシヤー
15 仕上入側温度計
18 仕上圧延機
19 ワークローノレ
20 ノ ックアップローノレ 21 仕上出側温度計
21 A 近赤外線力メラ
22 仕上出側板厚計
23 ランナウトテーブル
24 コィラー
25 コイラ一入側温度計
25 A 近赤外線カメラ
251 専用パソコン
252 所内 L A N
253 各事務所のパソコン
26 冷却関連設備
27 中間温度計
27A 近赤外線力メラ
30 ィンラインスキンノ ス
50 制御装置
70 プロセスコンピュータ
90 ビジネスコンピュータ
100 熱間圧延ライン
200 酸洗ライン
900 電子計算機装置
901 電子計算機装置
A 搬送方向 発明を実施するための最良の形態
ブラックスポットのできている部分は、 製品である金属帯の伸びや穴拡げ性な どの機械的性質が劣るため、 同部は切除し、 ブラックスポットの顕著でない部分 だけにした上で、 需要家に納入する、 という具合に対応せざるを得ない。 こめようなブラックスポットのある被圧延材の部分が、 間違って需要家に納入 されてしまうのを防ぎ、 品質保証を行えるようにするためには、 そのようなブラ ックスポットのある被圧延材の部分を、 局部的に温度の低い部分として正確に捕 捉する、 という品質判定を行える必要がある。
そのためには、 図 9 aのように、 被圧延材 8の全幅をカバーして撮影可能な近 赤外線カメラをコイラ一入側に設置するのがよい。 もちろん、 ランナウトテープ ルの中間や、 仕上圧延機出側に設置してもよいし、 図 9 b、 図 9 c、 図 9 dのよ うに、 これらのうち複数の箇所に併設してもよい。
ここで、 コイラ一入側に設置する近赤外線カメラは、 被圧延材 8の搬送方向上 流側のコィラー 2 4の、 図示しないマンドレルの中心から、 被圧延材 8の搬送方 向上流側 (入側) に 3 O m以内の位置に設置するのが好ましい。
仕上圧延機出側に設置する近赤外線カメラは、 設置するとしたち、 仕上圧延機 1 8の最終スタンドのワークロール中心から、 被圧延材 8の搬送方向下流側 (出 側) に 3 0 m以内の位置に設置するのが好ましい。
ランナウトテーブルの中間に設置する近赤外線カメラは、 設置するとしたら、 それらの中間の位置に設置するのが好ましい。
図 1に、 a ) 耳伸び、 b ) 中伸びなどの先端部の平坦度 (急峻度) の悪さと切 除長さの関係を示す。
被圧延材 8上、 ブラックスポッ トのできている部分が、 a ) 耳伸び、 b ) 中伸 ぴなどの先端部の平坦度 (急峻度) の悪さに起因して、 長手方向に長いと、 図 1 に示すように、 酸洗など後工程にて、 ブラックスポットの顕著な部分を含む領域 について、 その全長を切除する際の切除長さも長くする必要があることがわかる。 このため、 被圧延材 8の長手方向には、 仕上圧延機 1 8での平坦度制御の効果 がまだ現れない、 被圧延材 8の先端数十メートル、 ないしは、 張力の作用しない、 仕上圧延機 1 8の最終スタンドからコィラー 2 4までの距離に相当する、 被圧延 材 8の先端あるいは尾端の百数十メートルの、 被圧延材 8の形状の平坦でない部 分を、 カバーして撮影するのが好ましい。
もちろん、 被圧延材 8の全長を撮影するのも好ましい。 図 1中の各写真は、 近赤外線カメラを、 熱間圧延ライン 1 0 0上、 コイラ一入 側温度計 2 5の上流側 1 mの位置に仮設し、 仕上圧延機 1 8側を俯瞰して撮影し たものである。 機械的性質の代表である引張強さの目標は 5 9 O M P a、 コイラ 一入側温度計 2 5の位置にての卷き取り温度の目標は 4 7 0 °Cである。 図中の記 号は、 Dはドライブ (駆動) 側、 Oはオペレータ側 (ドライブ側と反対側) 、 C はセンター部、 Qはクォータ一部、 Eはエッジ部をそれぞれ示す。 急峻度の値は、 被圧延材 8の最先端から長手方向に 5 3 mの位置のものである。
被圧延材 8の平坦度の悪いことがある先端部と尾端部 (仕上圧延機 1 8の最終 スタンド F 7からコィラー 2 4までの距離に相当する長さ) については、 少なく とも、 その長手方向全長にわたり、 連続した撮影画像が得られるようにするのが よい。
もちろん、 被圧延材 8の可及的に全長にわたり、 連続した撮影画像が得られる ようにするのも好ましい。
ここで用いた近赤外線カメラの画素一つあたりの大きさは、 縦 3 0 μ πι Χ横 3 0 Ai mであり、 画素の縦横の配列数は、 縦 3 2 0 X横 2 5 6のものを用いており、 図 2に示した設置例のように、 被圧延材 8を真上から撮影した場合、 近赤外線力 メラ側ではなく、 測定対象である被庄延材 8側に換算して、 一画素あたり縦 1 0 mm X横 1 0 mm、 トータルで、 縦 (長手方向) 3 2 0 0 mm X横 (幅方向) 2 5 6 0 mmの領域を 1回の撮影で視野に捉えることができる。
一画素あたりの縦横の寸法は、 ともに、 測定対象である被圧延材 8側に換算し て、 1 0 mm以下とするのが好ましい。 これよりも大きいと、 撮影した画像はモ ザイク状のため、 ブラックスポットの外縁と平面形状がわかりにくくなるからで ある。
一方、 同寸法の下限はとくに規定する必要はない。 一例として挙げた上記の例 の 1 0 mmとかそれ以上で大丈夫である。
従来から一般的に製造される被圧延材の幅は、 最大 2 3 0 0 mmであり、 この 近赤外線カメラの視野は、 全ての被圧延材 8について、 その全幅をカバーできる。 仮設した近赤外線カメラの撮影した画像図 3 aは、 正常に撮影できた場合を示 している。 被圧延材 8の搬送速度は、 熱間圧延ライン 100の例では、 12 Om pmから 1 20 Ompmに及ぶ。 この近赤外線カメラの視野は、 縦 (長手方向) 320 Ommであるから、 例えば被圧延材 8の搬送速度が 120 Ompmであれ ば、 320 Ommを搬送するのに、 0. 16 s e cかかるため、 0. 16 s e c に 1回の撮影を行い、 被圧延材 8の先端が視野に入った瞬間以前から撮影を開始 し、 被圧延材 8の全長が擀送され、 尾端が視野から外れる瞬間以降に撮影を終了 する。 搬送速度がもっと遅ければ、 搬送速度に反比例するかたちで、 撮影の間隔 を長くすればよい。 '
ところで、 1回の撮影でのシャッタースピードが 1000分の 1秒台と、 十分 に短くない近赤外線カメラを用いた場合、 被圧延材 8の搬送速度が速いと、 図 3 bに示すように、 画像がぶれて流れてしまい、 ブラックスポットは大きく写り、 ぼやけてしまうことがある。
本実施の形態では、 表 1に示した仕様の近赤外線カメラを用いている。 最短 1 0 jz s e c (10万分の 1秒) の高速シャッターを搭載した近赤外線カメラを用 いることで、 被圧延材 8の搬送速度が速くても、 画像がぶれて流れてしまわない ような撮影が可能である。
表 1
Figure imgf000016_0001
図 4 aに、 近赤外線カメラのシャッタースピードを変えた場合の、 温度と輝度の 関係を示す。 横軸は、 被圧延材 8の温度を熱放射エネルギー (WZmm2) に換 算した値であり、 縦軸は、 輝度値 ([_]) を示している。 使用した近赤外線カメラは、 輝度値 8 0ひ 0 ( [-] ) を下回る領域では、 ノィ ズの影響が大きくて鮮明な画像が得にくくなるため、 8 0 0 0 ( [-] ) を下限と した。
また、 本近赤外線カメラの仕様上、 輝度値は 1 6ビット信号で測定するため、 最大で 2 1 6 = 6 5 5 3 6 ( [-] ) を上回る領域は、 飽和してしまって測定ができ 'なくなることから、 やや余裕をみて 6 0 0 0 0 ( [-] ) を上限とした。
以上説明した上限と下限の間が測定可能なレンジであり、 そのレンジに相当す る温度範囲が測定可能な温度レンジである。 以下にその関係をわかりやすく示す。 図 4 bに、 シャッタースピードと測定可能な温度レンジの関係を示す。 シャツ タースピードを短くしていくと、 4 0 μ s e cを下回るあたりから、 3 0 0 °C未 満の被圧延材 8の温度は測定不可能になり、 それよりもシャッタースピードを短 くしていくと、 測定可能な温度レンジの下限が、 上がってしまうことがわかる。 被圧延材 8が高張力鋼である場合、 その種類によって目標とする卷き取り直前 の温度も異なるが、 冷却関連設備 2 6による冷却後の被圧延材 8の温度は、 最低 で 3 0 0 °Cに達する場合がある。
したがって、 被圧延材 8の種類によらずに最低温度 3 0 0 °Cを測定可能なよう にしようとすると、 シャッタースピードを 4 0 μ s e c以上にする必要がある。 被圧延材 8の温度に応じて、 シャッタースピードを調整するのが好ましい。
すなわち、 例えば、 被圧延材 8の、 目標とする巻き取り直前の温度が、 測定可 能な 3 0 0 °Cに近い低い温度の場合は、 画像がぼやけない限度において、 近赤外 線カメラのシャッタースピードを、 例えば 4 0 / s e c以上 (本実施の形態に用 いている近赤外線カメラでは、 仕様上、 最長で 5 0 s e c :表 1の仕様より) に長くし、 被圧延材 8の目標とする卷き取り直前の温度が例えば 4 5 0 °C〜7 5 というように高い場合は、 近赤外線カメラのシャッタースピードを、 例えば 4 0 μ s e c未満 (同最短で 1 0 s e c :同) に短くし、 測定した温度のレン ジを確保するようにするのが好事しい。
だだ、 被圧延材 8の温度が測定可能な下限に近づくほど、 放射エネルギーが少 ないことから、 測定した温度のレンジを確保できるようにシャッタースピードを 長くした方が好ましいことはいうまでもなく、 被圧延材 8の温度が測定可能な上 限に近づくほど、 可及的にシャッタースピードを短くした方が、 高速で流れる被 圧延材の状態を瞬時に撮影できる結果、 画像がぼやけてしまうのを防止できるた め、 好ましい。
近赤外線カメラのシャッタースピードは、 被圧延材 8の種類によって決まる目 標とする卷き取り直前の温度に応じて予め決めておくことが好ましい。 さらに仕 上出側温度計 2 1にて測定した被圧延材 8の先端部の実績温度に応じてシャッタ 一スピードを調整することも好ましい。
近赤外線カメラが測定できるのは輝度であり温度ではない。 予め、 何らかの方 法により近赤外線カメラのメーカー側にて輝度を温度に変換するロジックを組み 込んでいる場合もあるが、 最大 2 0 °C内外の誤差が生じることがある。
そこで、 この問題を解決するため、 予めオフラインで、 同じ熱源の同じ箇所に ついて、 該近赤外線カメラにて測定した輝度とスポット温度計にて測定した温度 との関係を輝度—温度変換曲線として求めておく。 これを制御装置 5 0やプロセ スコンピュータ 7 0などに記憶しておき、 前記熱間圧延ラインに前記近赤外線力 メラを設置して被圧延材を撮影したときの輝度を、 該輝度一温度変換曲線に従つ て、 温度に変換する。
図 3 cがその結果である。 また、 図 3 aの右横に示したスケールは、 色の濃淡 と温度の関係を表示したものである。 他の方法として、 近赤外線カメラとスポッ ト温度計で被圧延材の同一箇所を温度測定し、' スポット温度計にて測定した被圧 延材の部分の温度に、 近赤外線カメラにて測定した同部分の温度が一致するよう、 近赤外線カメラを校正した上で、 被圧延材を撮影する、 という方法もある。 オン ラインでの校正ともいえる。
図 9 aに、 コィラー入側温度計 2 5と近赤外線カメラ 2 5 Aを併設した例を示 す。 近赤外線カメラの視野内のある箇所について、 スポット温度計であるコイラ 一入側温度計 2 5にても被圧延材を温度測定ができるよう、 コイラ一入側温度計
2 5の向きを調節する。 図 9 bには、 仕上出側温度計 2 1とコイラ一入側温度計
2 5の両者に併設する形で、 近赤外線カメラ 2 1 A, 2 5 Aを設置した例、 図 9 cには、 中間温度計 2 7とコイラ一入側温度計 2 5の両者に併設する形で、 近赤 外線力メラ 2 7 A, 2 5 Aを設置した例、 図 9 dには、 仕上出側温度計 2 1と中 間温度計 2 7とコイラ一入側温度計 2 5の三者に併設する形で、 近赤外線力,メラ 2 1 A, 2 7 A, 2 5 Aを設置した例、 をそれぞれ示すが、 同様に、 スポット温 度計である仕上出側温度計 2 1と中間温度計 2 7の向きも調節する。
近赤外線カメラの画素の大ぎさに対してスポット温度計の視野が大きく、 スポ ット温度計の視野の中に複数の近赤外線カメラの画素が入る場合は、 ある一つの 画素を代表させ、 スポット温度計にて測定した温度と、 その画素にて測定した温 度と、 がー致するよう、 輝度一温度変換曲線を求めたり、 近赤外線カメラを校正 したりするのが好ましいが、 平均値が一致するようにするなど、 その他の方法に よってもよい。
近赤外線カメラにて測定した被圧延材 8の平面 (2次元) 温度分布をもとに、 どのようにして品質判定を行うかを、 被圧延材 8の全幅全長を撮影して得た温度 分布の場合を例に、 以下、 説明する。
まずは、 図 5中の各ステップを参照しつつ、 その全体の流れについて説明する, 先に、 被圧延材 8の搬送速度が 1 2 0 0 m p mの場合、 0 . 1 6 s e cに 1回 の撮影を行うことで、 搬送方向すなわち被圧延材 8の長手方向に 3 2 0 O mmご とに全長全幅の温度分布データを測定していくことを述べた。
被圧延材 8を 1本、 その尾端まで撮影し終わると、 ここで、 後の処理のしゃす さのため、 被圧延材 8の全長全幅の温度分布データは、 パソコンなどのコンビュ ータに付随するメモリ一などの記録媒体に一時記憶し、 被圧延材 8の長手方向に 一定長さごと、 例えば、 4 m ( 4 0 0 0 mm) ごとに区分した温度分布データに 再編集する (ステップ 1 1 0 ) 。
その結果を、 パソコンなどのコンピュータに付随するハードディスクなどの記 録媒体に記憶する (ステップ 1 2 0 ) 。
再度、 同パソコンなどのコンピュータに付随するメモリーなどの記録媒体に、 読み出して一時記憶させる (ステップ 1 3 0 ) 。 そして、 その 1つの構成単位の中で、 あるいは、 1画面の中で、 全ての画素に ついて、 温度公差を外れたか否かを判定し、 温度公差の上限値 (温度上限閾値) を超えた画素、 温度公差の下限値 (温度下限閾値) を下回った画素、 について、 その画素の平面 (2次元) 座標 (代表値でも縦横範囲でもよい) とともに一時記 憶させ、 温度公差外れ部分の平面 (2次元) 分布を作成する (ステップ 1 5 0 ) 。 さらに、 個々の被圧延材 8ごとに、 その全長にわたり、 一定長さごと、 つまり、 前述の 1つの構成単位ごとに、 温度公差を外れた品質の不良部分の種々の統計値 を計算する (ステップ 1 6 0 ) 。
温度公差を外れた被圧延材 8の品質不良部分の判定を、 前記種々の統計値より、 例えば、 l mごとに行う。 そしてまた例えば、 図 6に示すような品質判定結果の 1 6進表示の関係でセットにして、 全長にわたりビット情報として作成する (ス テツプ 1 7 0 ) 。
最後に、 温度公差を外れた被圧延材 8の品質不良部分について、 その被圧延材 8の先端からの開始位置と、 その長さとを決定し、 各被圧延材 8ごとに紐付け、 同パソコンなどのコンピュータに付随するハードディスクなどの記録媒体に記憶 する (ステップ 1 8 0 ) 。
(ステップ 1 6 0 ) での、 統計値を計算する処理は、 次のようなものである。 計算する統計値には、 例えば、 次のようなものがある。
( 1 ) 公差外れ面積率
図 7 aに示すような、 被圧延材 8を上方から見た面積に占める、 温度公差を外 れた被圧延材 8の品質不良部分の面積の割合が、 公差外れ面積率 (%) である。 計算式としては、 以下のようになる。
公差外れ面積率 =∑公差外れ箇所の面積 S ; (領域長さ X被圧延材幅) X I 0 0 (%) · · · ( 1 )
( 2 ) 公差外れ長さ率
図 7 bに示すような、 被圧延材 8を上方から見た領域長さに占める、 温度公差 を外れた被圧延材 8の品質不良部分の長手方向の長さの割合が、 公差外れ長さ率
(%) である。 長手方向にラップする領域がある場合は、 ラップする領域を二重 にカウントせずに、 一つの領域と考えてその長さを求め、 計算する (図 7 b中の L3) 。
計算式としては、 以下のようになる。
公差外れ長さ率 =∑公差外れ長さ LiZ領域長さ · · · (2)
(3) 公差外れ平均個数
図 7 cに示すような、 画面数 N (本実施の形態では N= 4) の表示領域あたり の、 温度公差を外れた被圧延材 8の品質不良部分の個数が、 公差外れ平均個数で ある。
計算式としては、 以下のようになる。
公差外れ平均個数 =公差外れ箇所の個数 画面数 N (個/定長 4 mピッチ)
• · · (3) (4) 公差外れ箇所の平均面積 Z個
図 7 dに示すような、 温度公差を外れた被圧延材 8の品質不良部分の面積の合 計を、 同部分の個数で除したものが、 公差外れ箇所の平均面積 Z個である。 計算式としては、 以下のようになる。 、
公差外れ箇所の平均面積 個 =∑公差外れ箇所の面積 S 公差外れ箇所の個数
• · · (4)
一方、 (ステップ 1 70) での、 品質不良部分を判定し、 長さを決定する処理 は、 次のようなものである。 本実施の形態では、 (1) 〜 (3) は被圧延材の定 長 4mピッチごとに判定し、 (4) と (5) はとくに詳細な判定が必要と考え、 被圧延材 1 mごとに判定するようにしている。
(1) 公差外れ面積率による判定
先述の (1) 式による計算の結果 (本実施の形態では領域長さ = 4m) I あ る閾値 SNC1以上の場合に、 その被圧延材 4 mの構成単位について、 品質判定の 結果を不合格 (NG) と判定する。
(2) 公差外れ長さ率による判定
先述の (2) 式による計算の結果 (本実施の形態では領域長さ = 4m) が、 あ る閾値 LNe以上の場合に、 その被圧延材 4mの構成単位について、 品質判定の 結果を不合格 (NG) と判定する。 ( 3 ) 公差外れ平均個数による判定
先述の (3 ) 式による計算の結果.(本実施の形態では画面数 N = 4 ) 力 ある 閾値 NN e以上の場合に、 その被圧延材 4 mの構成単位について、 品質判定の結 果を不合格 (N G) と判定する。
( 4 ) 公差外れ箇所 1つあたりの面積による判定
公差外れ箇所の面積 S;が、 ある閾値 S N G 2以上のものが一つでもある場合に、 図 8 aに示すように、 その被圧延材 l mごとに、 品質判定の結果を不合格 (N G) と判定する。 (先述の (4 ) 式とは異なるので要注意。 ただ、 先述の (4 ) 式の計算過程で登場するものを判定に使うため、 さほど大変ではない)
( 5 ) 公差外れ箇所 1つあたりの長手方向、 幅方向寸法による判定
公差外れ箇所の長手方向寸法がある閾値 L NG以上のものが一つでもあるか、 公差外れ箇所の幅方向寸法がある閾値 WNG以上のものが一つでもある力 \ いず れかの場合に、 図 8 b中に示すように、 その被圧延材 l mごとに、 品質判定の結 果を不合格 (N G) と判定する。
ところで、 以上説明した本実施の形態中、 温度上限閾値、 温度下限閾値、 公差 外れ箇所の面積の閾値 S Ne i、 公差外れ箇所の長手方向寸法の閾値 L NC;、 公差外 れ箇所の幅方向寸法の閾値 WNG、 公差外れ箇所の個数の閾値 NNG、 公差外れ箇 所 1つあたりの面積の閾値 S NG 2、 などは、 被圧延材 8の種類や寸法ごとに、 プ ロセスコンピュータ 7 0内などに記憶させておき、 必要に応じて、 ビジネスコン ピュータ 9 0やパソコンに伝送し、 あるいは、 制御装置 5 0を介して近赤外線力 メラに伝送するなどすればよい。
さて、 ここで、 話は少し変わるが、 バッチ圧延の場合、 被圧延材 8の先端部と 尾端部数十 m〜百数十 mには、 平坦でない部分ができることは先にも述べたが、 その中でも何十 mかの部分は必ず公差外れになるので後工程で切除するようし、 その代わりに、 同部分は品質判定の対象としないようにすることで、 全被圧延材 が品質不良になる煩雑さを回避するなどの措置を講ずるなどしてもよい。
同じように、 被圧延材 8上面に乗った冷却水が、 幅方向両エッジから流れ落ち る関係で、 被圧延材 8の幅方向両エッジは、 幅方向中央に比べ強く冷却され、 局 部的に低温の部分ができるため、 これらの部分についても、 品質判定の対象とし ないようにするなどしてもよい。
以上のような場合のため、 先端部対象被圧延材長、 尾端部对象被圧延材長、 幅 エッジ対象被圧延材幅ノ片側などを、 被圧延材 8の種類や寸法ごとに、 プロセス コンピュータ 7 0内などに記憶させておき、 必要に応じて、 ビジネスコンビユー タ 9 0やパソコンに伝送し、 あるいは、 制御装置 5 0を介して近赤外線カメラに 伝送するなどするのも好ましい。
さらに、 異常値除去やノイズ除去のため、 温度上限閾値の上側、 温度下限閾値 の下側に、 温度上限フィルタ値、 温度下限フィルタ値などを、 また、 公差外れ箇 所の長手方向寸法の閾値 L Neの上側、 公差外れ箇所の幅方向寸法の閾値 WNeの 上側に、 公差外れ箇所の長手方向寸法のフィルタ値、 公差外れ箇所の幅方向寸法 のフィルタ値などを、 プロセスコンピュータ 7 0内などに記憶させておき、 必要 に応じて、 ビジネスコンピュータ 9 0やパソコンに伝送し、 あるいは、 制御装置 5 0を介して近赤外線カメラに伝送するなどしてもよレ、。
以上で、 近赤外線カメラにて測定した被圧延材 8の平面 (2次元) 温度分布を もとに、 どのようにして品質判定を行う力 \ の全体の流れ、 および、 一部ステツ プの処理についての、 本実施の形態における例の説明は終わりであるが、 以上説 明した本実施の形態は、 あくまで一例であり、 品質判定の具体的なロジックなど は、 以上説明した本実施の形態に限るものではない。 実施例
実施例 1
図 9 aに、 先述の図 1 3に示した熱間圧延ライン 1 0 0の仕上圧延機 1 8以降 の部分を抜き出して示した。 図 9 aに示した通り、 コイラ一入側温度計 2 5に併 設する形で、 近赤外線カメラ 2 5 Aを設置した。 両者の間隔は l mしかない。 近赤外線力メラ 2 5 Aで測定した被圧延材 8の平面 ( 2次元) 温度データは、 その専用パソコン 2 5 1に送られて画像処理され、 温度公差を外れた被圧延材 8 の品質不良部分については、 その被圧延材 8の先端からの開台位齄と、 その長さ とが決定された上で、 先述の定長 (4 m) ごとや l mごとの品質判定の結果も含 め、 被圧延材 8の平面 (2次元) 温度データのほか、 上記に登場するあらゆるデ 一タが、 その熱延金属帯の品質判定の結果として、 各被圧延材 8ごとに紐付けら れ、 同様に被圧延材 8ごとに紐付けされたコイル N oと呼ばれる識別データをキ 一に記録され、 さらに、 そのコイル N oを入力すれば、 所内 L AN 2 5 2を経由 し、 別の複数の場所にある、 例えば、 製造部門の事務所や、 品質管理部門の事務 所など、 各事務所のパソコン 2 5 3で、 遠隔にて、 その画像処理後の平面 (2次 元) 温度データを、 コピーしてくることができ、 画像処理後の温度データを、 そ れら各事務所のパソコン 2 5 3の画面上に再生したり、 また、 その画像処理後の 温度データを、 解析したり、 あるいは 加工したりすることもできる。 もちろん、 需要家に対する製品納入上の品質保証用にも使える。 品質不良部があれば、 酸洗 やスキンパスなど、 精製工程を追加して、 品質不良部を切除するよう人為指示す る、 などの対応をとることができるからである。
1本の被圧延材 8あたり、 長さにもよるが、 2 0〜4 0 MBほどの容量のデ一 タであるため、 パソコンのハードディスクのような記憶容量でも、 被圧延材数百 本分内外のデータであれば記録できる。 対象を高張力鋼に絞るなどすれば、 実用 的に数ケ月分のデータは記録できる。 以上のように、 パソコン程度の記憶容量の ものであっても、 熱間圧延ラインにて圧延する熱延金属帯の全幅を撮影可能な近 赤外線カメラを用いて品質判定した結果を記録する熱延金属帯の品質判定結果記 録用電子計算機装置 9 0 0を構築することができる。
実施例 2
図 9 bに、 仕上出側温度計 2 1とコイラ一入側温度計 2 5の両者に併設する形 で、 近赤外線カメラ 2 1 A, 2 5 Aを設置した例を示す。
近赤外線力メラ 2 1 A, 2 5 Aで測定した被圧延材 8の平面 ( 2次元) 温度デ ータが、 専用パソコン 2 5 1以降に伝送されるルート以降は、 実施例 1と共通で ある。
画像処理後の温度データを、 解析、 加工し、 需要家に対する製品納入上の品質 保証用にも使えることはもとより、 仕上出側温度計 2 1に併設された近赤外線力 メラ 2 1 Aにて測定した温度データをもとに、 被圧延材 8のブラックスポット ある部:^について、 冷却関連設備 2 6による冷却のしかたを弱めるなどのフィー ドフォヮード制御を行うことで、 被圧延材 8の卷き取り直前の温度は可及的均一 化を図り、 可及的に被圧延材 8の全長全幅について、 品質合格を図ろうとするも のである。
実施例 3
図 9 cに、 中間温度計 2 7とコイラ一入側温度計 2 5の両者に併設する形で、 近赤外線カメラ 2 7 A, 2 5 Aを設置した例を示す。 近赤外線カメラ 2 7 A, 2 5 Aで測定した被圧延材 8の平面 (2次元) 温度データが、 専用パソコン 2 5 1 以降に伝送されるルート以降は、 実施例 1, 2と共通である。
画像処理後の温度データを、 解析、 加ェし、 需要家に対する製品納入上の品質 保証に使える。 仕上出側温度計 2 1にて測定した温度データをもとに、 冷却関連 設備 2 6のうちの中間温度計 2 7よりも上流側の部分や下流側の部分にて、 被圧 延材 8を冷却するフィードフォヮ一ド制 できる。 中間温度計 2 7に併設された · 近赤外線カメラ 2 7 Aにて制定した温度データをもとに、 被圧延材 8のブラック スポットのある部分について、 冷却関連設備 2 6のうちの中間温度計 2 7よりも 下流側の部分による冷却を弱めるなどのフィードフォヮ一ド制御ができる。 また、 被圧延材 8のブラックスポットのある部分について、 冷却関連設備 2 6のうちの 中間温度計 2 7よりも上流側の部分による冷却を弱めるなどのフィードバック制 御も併せて行うことができる p このようにしてより確実に、 被圧延材 8の卷き取 り直前の温度を可及的に均一化し、 可及的に被圧延材 8の全長全幅について、 品 質合格を達成できる。
実施例 4
図 9 dに、 仕上出側温度計 2 1と中間温度計 2 7とコイラ一入側温度計 2 5の 3者に近赤外線カメラ 2 1 A, 2 7 A, 2 5 Aを併設した例を示す。
図 9 cに示した実施例 3の場合において、 仕上出側温度計 2 1に代え、 近赤外 線カメラ 2 1 Aにて測定した温度データをもとに、 実施例 3の場合と同じように 制御を行うことで、 より確実に、 被圧延材 8の卷き取り直前の温度は可及的均一 化を図り、 可及的に被圧延材 8の全長全幅について、 品質合格を達成できる。 実施例 5
図 1 0に示すように、 近赤外線カメラにて測定した温度データを制御装置 5 0 経由で取り込む。 図 9 a、 図 9 b、 図 9 c、 図 9 dに示した実施例 1〜 4におけ る専用パソコン 2 5 1の役割を,プロセスコンピュータ 7 0またはビジネスコンビ ユータ 9 0にて果たさせる。 ビジネスコンピュータ 9 0内に、 被圧延材 8ごとに 紐付けされたコイル N oと呼ばれる識別データをキーに瘟度データが記録される。 以上のような方法とは別に、 近赤外線カメラと制御装置 5 0の間、 あるいは、 制御装置 5 0とプロセスコンピュータ 7 0の間、 あるいは、 プロセスコンビユー タ 7 0とビジネスコンピュータ 9 0の間に、 図示しない専用パソコン 2 5 1を間 挿し、 専用パソコン 2 5 1にて画像処理した後の温度データを、 ビジネスコンビ ユータ 9 0に送る。 さらに、 ビジネスコンピュータ 9 0内に、 被圧延材 8ごとに 紐付けされたコイル N oと呼ばれる識別データをキーに、 画像処理した後の温度 データが記録されるようにしてもよい。
図 9 a中の所内 L AN 2 5 2に代え、 専用回線を経由して各ライン用のビジネ スコンピュータ 9 0を結ぶネットワークを形成しておき、 各ライン用のビジネス コンピュータ 9 0に接続する端末やパソコン、 あるいはそのネットワークに直接 接続する端末やパソコンから、 そめコイル N oを入力する。 例えば、 製造部門の 事務所や、 品質管理部門の事務所などの各事務所など、 離れた場所でも、 遠隔に て、 その画像処珲後の平面 (2次元) 温度データを、 コピーしてくることができ る。 画像処理後の温度データを、 それら各事務所の端末やパソコンの画面上に再 生したり、 また、 その画像処理後の温度データを、 解析したり、 あるいは、 加工 したりすることもできる。 もちろん、 需要家に対する製品納入上の品質保証用に も使える.。
品質不良部があることを自動で判定した場合、 ビジネスコンピュータ 9 0から の指令により、 例えば、 インラインスキンパス 3 0を有する酸洗ライン 2 0 0の ような精製工程を、 熱間圧延工程の後工程として追加して、 品質不良部をシヤー
5にて切除するよう自動で指示する、 などの対応をとることができるからである。 被圧延材 8の最先端から 3 O mの範囲に品質不良部が集中している場合は、 そ の 3 0 mを切除し、 一つ前の被圧延材の尾端に、 品質不良部を切除後の被圧延材 8の先端を溶接機 6にて溶接し、 連続的に酸洗ライン 2 0 0を通過させる。
しかし、 例えば、 被圧延材 8の最先端から 3 0〜4 O mの範囲と、 同 1 0 0〜 1 2 O mの範囲に品質不良部があるような場合は、 その 3 0〜4 O mの範囲と 1 0 0〜1 2 O mの範囲を切除したのでは、 4 0〜1 0 O mの部分に 6 0 m分の健 全部分ができるが、 溶接部が混在してもよい需要家からのオーダーか、 あるいは、 溶接部が混在してはいけないが 6 O m分の小さな重量でも大丈夫な需要家からの オーダーや、 最終的に切板になるようなオーダーであれば、 この 6 0 m分の健全 部分を、 前後の被圧延材の先端と尾端に、 溶接機 6にて溶接し、 連続的に酸洗ラ イン 2 0 0を通過させる。
もしも、 溶接部が混在してはいけなくて、 しかも、 6 0 m分の小さな重量では いけない需要家からのオーダーであれば、 3 0〜1 0 O mの範囲全体を切除し、 一つ前の被圧延材の尾端に、 品質不良部を切除後の被圧延材 8の先端を溶接機 6 にて溶接し、 連続的に酸洗ライン 2 0 0を通過させる。
被圧延材 8の尾端についても同様である。
品質不良部をシャ 5にて切除するよう自動で指示する際には、 切除指令、 被 圧延材の長手方向のどこを切除するのか、 長手方向位置 (切除開始位置) および 切除長を、 指令として出力するようにする。
ビジネスコンピュータ 9 0は、 各被圧延材 8の需要家からのオーダー材質、 ォ ーダー厚、 オーダー幅などの属性データのほか、 例えば熱間圧延ライン 1 0 0で の全長板厚分布や近赤外線カメラで測定した全幅温度分布など、 各種の膨大な製 造実績データを、 各被圧延材 8ごとに紐付けて記録している。 そして、 熱間圧延 ライン 1 0 0のほ力、 酸洗ライン 2 0 0をはじめ、 ここには図示しない冷間圧延 などの別の製造工程なども含め、 全製造工程を通しての通過工程指示も行うなど、 全製造工程を通しての通過工程指示 ·管理のほか、 製造 ·品質実績管理も行う。 これら一連の機能を果たす、 ビジネスコンピュータ 9 0、 そのコンピュータプ ログラム、 付属する記録装置と記録媒体、 および、 それらに接続する端末ゃパソ コンと、 その画面表示機能のようなマンマシンデータインターフェース機能も含 めた、 電子計算機装置のことを電子計算機装置と呼ぶ。
図 1 0.に、 熱間圧延ライン 1 0ひおよび他の製造工程も含め、 通過工程指示 · 管理のほか、 製造 ·品質実績管理も行う、 電子計算機装置 9 0 1の概要を示す。 図 1 0の例では、 熱間圧延ライン用、 冷間圧延ライン用、 酸洗ライン用、 他の ライン用、 などに分けてビジネスコンピュータ 9 0を設けているが、 分け方は上 記の例に限るものではなく、 あるいは 1台のコンピュータに集約してもよい。 また、 図 1 0では、 熱間圧延ライン 1 0 0に近赤外線カメラを設置する形態と して、 図 9 aの形態を踏襲する場合を例に挙げているが、 図 9 b、 図 9 c、 図 9 dの各種の形態を踏襲する場合も例として挙げることができる。
以下に、 本発明の実施による効果を説明する。
コィラー入側における被圧延材 8の幅中央部温度の長手方向分布を図 1 1に示 す。 この被圧延材は中伸びであったため、 被圧延材の幅中央の平坦 (急峻) 度の 長手方向分布と、 被圧延材の温度の長手方向分布とが、 相関を示すが、 被圧延材 の最先端から 2 0 m以内の範囲にできる平坦度の悪い部分に、 局部的に被圧延材 の温度の低い部分ができているようすがわかる。 実際、 〇で囲った部分は切除し たが、 試しに需要家と同じ条件でプレス加工してみると、 割れが発生した。
また、 コイラ一入側に近赤外線カメラを設置する前は、 コイラ一入側温度計 2
5による温度測定結果によって品質不良部分を判定せざるを得なかった。 図 1 2 にコイラ一入側温度計 2 5のみによる品質不良判定と近赤外線力メラを併設した 場合の品質不良判定の品質不良部長さの誤差の比較を示す。 図 1 2の縦軸は、 近 赤外線力メラにて温度測定した場合の品質不良部分と判定した部分の長さかち、 同コイラ一入側温度計 2 5にて温度測定した場合の品質不良部分と判定した部分 の長さを差し引いた値が 1 O m以上である被圧延材の本数の比率を示している。 コイラ一入側に近赤外線カメラを設置する前は、 2 5 . 5 %の被圧延材について、 温度上限閾値を超えるものや温度下限閾値を下回るものが少な目に判定していた ことになる。 (コイラ一入側に近赤外線カメラを設置した後は、 当然ながらその 比率は 0 %である。 ) 産業上の利用可能性
本発明を用いて、 熱間圧延ラインのコイラ一入側に設置した近赤外線カメラを 用いて熱延金属帯の全幅を撮影し、 その温度分布を測定し、 あるいはさらに記録 するようにすれば、 需要家に対する製品納入上の品質保証を適正に行えるように なる。 特に温度の局部的に低いブラックスポットと呼ばれる部分を確実に検出す ることができる。

Claims

請求の範囲
1 . 熱間圧延ラインのコイラ一入側に熱延金属帯の全幅を撮影が可能な近赤外線 カメラを設置した熱間圧延ライン。
2 . 仕上圧延機出側にさらに熱延金属帯の全幅を撮影が可能な近赤外線カメラを 設置した請求項 1の熱間圧延ライン。
3 . ランナウトテーブルの中間にさらに熱延金属帯の全幅を撮影が可能な近赤外 線カメラを設置した請求項 1又は 2の熱間圧延ライン。
4 . 熱間圧延ラインのコイラ一入側、 ランナウトテーブルの中間、 仕上圧延機出 側、 の少なくとも 1箇所以上に熱延金属帯の全幅を撮影が可能な近赤外線カメラ を設置して撮影することを特徴とする熱延金属帯の全幅撮影方法。
5 . 請求項 4において、 熱間圧延ラインのコイラ一入側、 ランナウトテーブルの 中間、 仕上圧延機出側、 の少なくとも 1箇所以上に熱延金属帯の全幅を撮影が可 能な近赤外線力メラを設置して被圧延材を撮影し温度測定するにあたり、 予め、 同じ熱源の同じ箇所について、 前記近赤外線カメラにて測定した輝度と、 スポッ ト温度計にて測定した温度と、 の関係が、 前記熱源の温度を変化させたときにど のように変化する力 \ を輝度一温度変換曲線として求めたものを記憶しておき、 前記熱間圧延ラインに前記近赤外線力メラを設置して被圧延材を撮影したときの 輝度を、 前記輝度一温度変換曲線に従って、 温度に変換することを特徴とする熱 延金属帯の全幅撮影方法。
6 . 請求項 4において、 熱間圧延ラインのコイラ一入側、 ランナウトテーブルの 中間、 仕上圧延機出側、 の少なくとも 1箇所以上に熱延金属帯の全幅を撮影が可 能な近赤外線カメラを設置して被圧延材を撮影し温度測定するとともに、 前記近 赤外線カメラを設置した箇所での該近赤外線カメラの視野内のある箇所について、 スポット温度計にても被圧延材を温度測定し、 スポット温度計にて測定した被圧 延材の部分の温度に、 近赤外線カメラにて測定した同部分の温度が一致するよう、 近赤外線カメラを校正した上で、 被圧延材を撮影することを特徴とする熱延金属 帯の全幅撮影方法。
7 . 請求項 4において、 熱間圧延ラインのコイラ一入側に設置した近赤外線カメ ラを用いて熱延金属帯の全幅を撮影するに際し、 熱延金属帯の温度に応じて、 シ ャッタースピードを調整することを特徴とする熱延金属帯の全幅撮影方法。
8 . 請求項 4において、 近赤外線カメラを用いて熱延金属帯の全幅を撮影するこ とで測定した温度の分解能を確保できるように、 シャッタースピードを長くする ことを特徴とする熱延金属帯の全幅撮影方法。
9 . 請求項 4から 8のいずれかにおいて、 熱延金属帯の全長を撮影することを特 徴とする熱延金属帯の全幅撮影方法。
1 0 . 請求項 4から 9のいずれかにおいて、 撮影結果をデータとして記録するこ とを特徴とする熱延金属帯の全幅撮影結果記録方法。
1 1 . 熱間圧延ラインのコイラ一入側に設置した近赤外線カメラを用いた熱延金 属帯の全幅あるいはさらにその全長を撮影した結果を用いて熱延金属帯の品質を 判定することを特徴とする熱延金属帯の品質判定方法。
1 2 . 請求項 1 1において、 熱間圧延ラインのコイラ一入側に設置した近赤外線 カメラを用いた熱延金属帯の全幅あるいはさらにその全長を撮影した結果を用い た熱延金属帯の品質判定の結果を記録することを特徴とする熱延金属帯の品質判 定方法。 '
1 3 . 請求項 1 1又は 1 2を用いた熱延金属帯の製造方法
1 4 . 熱間圧延ラインにて圧延する熱延金属帯の全幅を撮影可能な近赤外線カメ ラを用いた、 熱延金属帯の品質判定の結果を記録する熱延金属帯の品質判定結果 記録用電子計算機装置。
1 5 . 熱間圧延ラインにて圧延する熱延金属帯の全幅を撮影可能な近赤外線カメ ラを用いた、 熱延金属帯の品質判定の結果をもとに、 製造 ·品質実績管理および 通過工程指示 ·管理を行う、 熱延金属帯の製造 ·品質実績管理および通過工程指 示 .管理用電子計算機装置。
1 6 . 請求項 1 4において、 近赤外線カメラは熱延金属帯の全長を撮影するもの であることを特徴とする熱延金属帯の品質判定結果記録用電子計算機装置。
1 7 .. 請求項 1 5において、 近赤外線カメラは熱延金属帯の全長を撮影するも のであることを特徴とする熱延金属帯の製造 ·品質実績管理および通過工程指 示 ·管理用電子計算機装置。
1 8 . 請求項 1 4から 1 7のいずれかを用いた後工程での熱延金属帯の品質不 良部切除方法。
PCT/JP2008/053457 2007-02-28 2008-02-21 近赤外線カメラを用いた金属帯の熱間圧延方法および装置 WO2008105479A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CA2679667A CA2679667C (en) 2007-02-28 2008-02-21 Method and apparatus for hot-rolling metal strip using near-infrared camera
EP08720952.4A EP2119513B1 (en) 2007-02-28 2008-02-21 Metal-band hot-rolling method and apparatus using near infrared camera
KR1020127010133A KR101503984B1 (ko) 2007-02-28 2008-02-21 근적외선 카메라를 사용한 금속띠의 열간 압연 방법 및 장치
KR1020147007064A KR20140049072A (ko) 2007-02-28 2008-02-21 근적외선 카메라를 사용한 금속띠의 열간 압연 방법 및 장치
KR1020097017863A KR20090108103A (ko) 2007-02-28 2008-02-21 근적외선 카메라를 사용한 금속띠의 열간 압연 방법 및 장치
AU2008220048A AU2008220048B2 (en) 2007-02-28 2008-02-21 Method and apparatus for hot-rolling metal strip using near-infrared camera
US12/528,520 US9387527B2 (en) 2007-02-28 2008-02-21 Method and apparatus for hot-rolling metal strip using near-infrared camera
CN2008800063696A CN101622082B (zh) 2007-02-28 2008-02-21 利用近红外线照相机的金属带的热轧方法和装置

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2007050348 2007-02-28
JP2007050345 2007-02-28
JP2007-050348 2007-02-28
JP2007-050346 2007-02-28
JP2007-050345 2007-02-28
JP2007050346 2007-02-28
JP2007050347 2007-02-28
JP2007-050347 2007-02-28
JP2007-145493 2007-05-31
JP2007-145399 2007-05-31
JP2007145493A JP5217253B2 (ja) 2007-05-31 2007-05-31 熱延金属帯の品質判定結果記録用コンピュータシステム、製造・品質実績管理および通過工程指示・管理用ビジコンシステムと、それらを用いた後工程での熱延金属帯の品質不良部切除方法
JP2007145399A JP2008296249A (ja) 2007-05-31 2007-05-31 熱間圧延における近赤外線カメラを用いた熱延金属帯の全幅撮影方法、全幅撮影結果記録方法

Publications (1)

Publication Number Publication Date
WO2008105479A1 true WO2008105479A1 (ja) 2008-09-04

Family

ID=39721303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/053457 WO2008105479A1 (ja) 2007-02-28 2008-02-21 近赤外線カメラを用いた金属帯の熱間圧延方法および装置

Country Status (8)

Country Link
US (1) US9387527B2 (ja)
EP (1) EP2119513B1 (ja)
KR (3) KR101503984B1 (ja)
CN (1) CN101622082B (ja)
AU (1) AU2008220048B2 (ja)
CA (1) CA2679667C (ja)
TW (1) TW200914161A (ja)
WO (1) WO2008105479A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016093815A (ja) * 2014-11-12 2016-05-26 Jfeスチール株式会社 形状検出装置
US20160180269A1 (en) * 2013-08-02 2016-06-23 Toshiba Mitsubishi-Electric Industrial Systems Corporation Energy-saving-operation recommending system
CN114296407A (zh) * 2021-11-25 2022-04-08 烨辉(中国)科技材料有限公司 一种自动切除钢卷超差板头的工艺设备及工艺方法
WO2022176119A1 (ja) * 2021-02-18 2022-08-25 Primetals Technologies Japan 株式会社 異常判断装置、制御装置、および圧延設備、並びに異常判断方法、および制御方法
JP7440517B2 (ja) 2018-12-13 2024-02-28 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン 部材の表面特性の検出方法、部材の表面品質をモニタリングするための前記方法の使用、および部材の表面特性を調整するためのデバイス

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT510662B1 (de) * 2010-08-13 2014-01-15 Voestalpine Stahl Gmbh Vorrichtung und verfahren zum berührungslosen erkennen wenigstens einer fehlerstelle und/oder mindestens einer abmessung an einem warmen stranggegossenen material
CN102688902A (zh) * 2011-03-24 2012-09-26 上海宝钢工业检测公司 轧机平整机轧辊倾斜引起带钢缺陷位置的检测方法
RU2461142C1 (ru) * 2011-06-16 2012-09-10 Вячеслав Михайлович Смелков Телевизионная система для наблюдения за перемещением горячего проката
CN102836886B (zh) * 2011-06-24 2014-12-03 宝山钢铁股份有限公司 热轧轧件头尾位置及运动方向的检测方法
KR101376565B1 (ko) * 2011-12-15 2014-04-02 (주)포스코 연속 소둔라인 급냉대의 스트립 온도제어 방법 및 장치
CN103191918B (zh) * 2012-01-06 2015-12-09 宝山钢铁股份有限公司 热连轧带钢生产工艺
US9623466B2 (en) 2012-05-30 2017-04-18 Aggresive Tube Bending Inc. Bending assembly and method therefor
TWI496474B (zh) * 2012-12-12 2015-08-11 First Int Computer Inc 監視影像之應用方法及監視系統
BR112016019638B8 (pt) 2014-03-12 2022-11-16 Jfe Steel Corp Método de inspeção de superfície de tubo de aço, dispositivo de inspeção de superfície de tubo de aço, sistema de fabricação de tubo de aço, método de identificação de uma área formada de defeito em um tubo de aço e método de fabricação de tubo de aço
TWI504872B (zh) * 2014-09-26 2015-10-21 China Steel Corp 紅外線溫度計的校正方法與應用此方法之生產控制系統
CA2986525C (en) 2015-06-02 2021-08-17 Sapotech Oy Method and apparatus for determining features of hot surface
KR101746991B1 (ko) * 2015-12-24 2017-06-14 주식회사 포스코 소재 냉각영역 검출 장치 및 선재 냉각영역 검출 방법
EP3566790B1 (de) * 2018-05-08 2021-01-06 Muhr und Bender KG Verfahren zur dynamischen walzspaltregelung beim flexiblen walzen von metallbändern
CN109540918B (zh) * 2018-11-28 2021-04-16 鞍钢集团自动化有限公司 一种热轧卷边部缺陷检测装置及方法
CN110260991B (zh) * 2019-06-06 2020-09-08 武汉高德智感科技有限公司 一种自适应采集温漂数据补偿量的方法及装置
EP3761017A1 (en) * 2019-07-05 2021-01-06 Aleris Rolled Products Germany GmbH Method and apparatus for thermographic inspection of the surfaces of a moving hot rolled metal strip article
JP6801833B1 (ja) * 2019-07-22 2020-12-16 Jfeスチール株式会社 熱間圧延鋼帯の蛇行制御方法、蛇行制御装置及び熱間圧延設備
CN110404985A (zh) * 2019-08-29 2019-11-05 福建三钢闽光股份有限公司 一种基于机器视觉的冷床智能控制系统及其使用方法
JP7375605B2 (ja) 2020-02-21 2023-11-08 Dic株式会社 複合材料の疲労強度評価方法
RU2727527C1 (ru) * 2020-03-10 2020-07-22 Вячеслав Михайлович Смелков Телевизионная система для наблюдения за перемещением горячего проката
CN111515258B (zh) * 2020-04-17 2021-11-02 马鞍山钢铁股份有限公司 一种热轧中间坯表面温度横向分布的测量方法
KR102386733B1 (ko) * 2020-10-13 2022-04-14 주식회사 포스코 강판 스케일 결함 검출 시스템 및 그 제어방법
CN112229328A (zh) * 2020-11-18 2021-01-15 上海商米科技集团股份有限公司 一种纸张黑标位置检测装置及纸张黑标位置检测方法
CN113063650B (zh) * 2021-03-16 2023-02-28 天津市新天钢钢铁集团有限公司 在20℃~-40℃温度条件下钢板扩孔试验方法
TWI766737B (zh) * 2021-06-24 2022-06-01 中國鋼鐵股份有限公司 絞乾輥品質檢測系統與其方法
TWI823707B (zh) * 2022-12-08 2023-11-21 中國鋼鐵股份有限公司 熱軋精軋機間之溫度檢測裝置及其檢測方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0530741U (ja) * 1991-09-30 1993-04-23 日新製鋼株式会社 鋼帯の表面温度分布測定装置
JPH067845A (ja) * 1992-06-26 1994-01-18 Kawasaki Steel Corp 連続熱間圧延における溶接接合部の検出方法
JPH11156424A (ja) * 1997-11-28 1999-06-15 Tokai Carbon Co Ltd 熱延鋼板のスケール検知方法および装置
JP2000313920A (ja) 1999-04-28 2000-11-14 Sumitomo Metal Ind Ltd 高温鋼板の冷却装置および冷却方法
JP2003311326A (ja) 2003-03-17 2003-11-05 Kobe Steel Ltd 鋼板の製造方法
JP2005279665A (ja) 2004-03-29 2005-10-13 Nippon Steel Corp 鋼板の冷却制御装置の異常診断および異常回避方法
JP2005288463A (ja) * 2004-03-31 2005-10-20 Jfe Steel Kk 鋼帯の冷却装置及び冷却方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1229392A (en) 1984-02-28 1987-11-17 Hirosato Yamane Method and apparatus for detection of surface defects of hot metal body
JPH0530741A (ja) 1991-07-17 1993-02-05 Matsushita Electric Ind Co Ltd 電源装置
DE19520541C2 (de) * 1995-06-03 1999-01-14 Bwg Bergwerk Walzwerk Verfahren und Vorrichtung zum Korrigieren eines gewalzten, in der Bandebene horizontal gebogenen Metallbandes, insbesondere eines Metallbandes mit einer Banddicke von 0,5 mm bis 2,0 mm
DE19709992C1 (de) * 1997-03-11 1998-10-01 Betr Forsch Inst Angew Forsch Verfahren zum Messen der Oberflächengeometrie von Warmband
JP3797064B2 (ja) * 2000-05-18 2006-07-12 住友金属工業株式会社 鋼板の製造装置
GB2376910B (en) * 2001-06-30 2004-06-30 Rolls Royce Plc A method and apparatus for superplastically forming a workpiece
US7284402B2 (en) * 2004-11-30 2007-10-23 Ford Global Technologies, L.L.C. System and process for superplastic forming

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0530741U (ja) * 1991-09-30 1993-04-23 日新製鋼株式会社 鋼帯の表面温度分布測定装置
JPH067845A (ja) * 1992-06-26 1994-01-18 Kawasaki Steel Corp 連続熱間圧延における溶接接合部の検出方法
JPH11156424A (ja) * 1997-11-28 1999-06-15 Tokai Carbon Co Ltd 熱延鋼板のスケール検知方法および装置
JP2000313920A (ja) 1999-04-28 2000-11-14 Sumitomo Metal Ind Ltd 高温鋼板の冷却装置および冷却方法
JP2003311326A (ja) 2003-03-17 2003-11-05 Kobe Steel Ltd 鋼板の製造方法
JP2005279665A (ja) 2004-03-29 2005-10-13 Nippon Steel Corp 鋼板の冷却制御装置の異常診断および異常回避方法
JP2005288463A (ja) * 2004-03-31 2005-10-20 Jfe Steel Kk 鋼帯の冷却装置及び冷却方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2119513A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160180269A1 (en) * 2013-08-02 2016-06-23 Toshiba Mitsubishi-Electric Industrial Systems Corporation Energy-saving-operation recommending system
US10482406B2 (en) * 2013-08-02 2019-11-19 Toshiba Mitsubishi-Electric Industrial Systems Corporation Energy-saving-operation recommending system
JP2016093815A (ja) * 2014-11-12 2016-05-26 Jfeスチール株式会社 形状検出装置
JP7440517B2 (ja) 2018-12-13 2024-02-28 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン 部材の表面特性の検出方法、部材の表面品質をモニタリングするための前記方法の使用、および部材の表面特性を調整するためのデバイス
WO2022176119A1 (ja) * 2021-02-18 2022-08-25 Primetals Technologies Japan 株式会社 異常判断装置、制御装置、および圧延設備、並びに異常判断方法、および制御方法
JP7440701B2 (ja) 2021-02-18 2024-02-28 Primetals Technologies Japan株式会社 異常判断装置、制御装置、および圧延設備、並びに異常判断方法、および制御方法
CN114296407A (zh) * 2021-11-25 2022-04-08 烨辉(中国)科技材料有限公司 一种自动切除钢卷超差板头的工艺设备及工艺方法
CN114296407B (zh) * 2021-11-25 2023-08-11 烨辉(中国)科技材料有限公司 一种自动切除钢卷超差板头的工艺设备及工艺方法

Also Published As

Publication number Publication date
AU2008220048B2 (en) 2011-03-03
KR101503984B1 (ko) 2015-03-18
EP2119513A4 (en) 2013-06-19
CA2679667A1 (en) 2008-09-04
TWI373383B (ja) 2012-10-01
CA2679667C (en) 2013-04-16
CN101622082B (zh) 2013-01-30
TW200914161A (en) 2009-04-01
AU2008220048A1 (en) 2008-09-04
CN101622082A (zh) 2010-01-06
US9387527B2 (en) 2016-07-12
KR20140049072A (ko) 2014-04-24
EP2119513A1 (en) 2009-11-18
US20100095722A1 (en) 2010-04-22
KR20120049412A (ko) 2012-05-16
EP2119513B1 (en) 2015-12-02
KR20090108103A (ko) 2009-10-14

Similar Documents

Publication Publication Date Title
WO2008105479A1 (ja) 近赤外線カメラを用いた金属帯の熱間圧延方法および装置
JP5217253B2 (ja) 熱延金属帯の品質判定結果記録用コンピュータシステム、製造・品質実績管理および通過工程指示・管理用ビジコンシステムと、それらを用いた後工程での熱延金属帯の品質不良部切除方法
WO2001036122A1 (fr) Procede et dispositif permettant de controler la planeite des toles metalliques
JP5322261B2 (ja) 熱間圧延における近赤外線カメラを用いた熱延金属帯の全幅撮影方法、全幅撮影結果記録方法
JP5206156B2 (ja) 熱間圧延における近赤外線カメラを用いた熱延金属帯の冷却制御方法および熱延金属帯の製造方法
JP6197676B2 (ja) 温度分布予測装置
JP6828730B2 (ja) 圧延材の反り量測定方法及び反り量測定装置
JP2009078289A (ja) 熱間圧延における近赤外線カメラを用いた熱延金属帯の欠陥検出方法およびそれを用いた熱延金属帯の製造方法
JP5430864B2 (ja) 熱間圧延における近赤外線カメラを用いた熱延金属帯の全幅撮影方法、全幅撮影結果記録方法
JP5304369B2 (ja) 熱延鋼帯幅方向端部の疵防止方法および装置
JP6269536B2 (ja) 圧延機の制御方法、圧延機の制御装置、及び鋼板の製造方法
JP5176596B2 (ja) 熱間圧延における近赤外線カメラを用いた熱延金属帯の品質判定方法、熱延金属帯の製造方法
JP2008296249A (ja) 熱間圧延における近赤外線カメラを用いた熱延金属帯の全幅撮影方法、全幅撮影結果記録方法
JP6311627B2 (ja) 圧延機の制御方法、圧延機の制御装置、及び鋼板の製造方法
JP5169377B2 (ja) 熱間圧延における熱延金属帯の冷却制御方法および熱延金属帯の製造方法
JP2008238272A (ja) 熱間圧延ライン
JP5369468B2 (ja) 熱間粗圧延における被圧延材の温度予測方法を用いた熱延金属帯の製造方法
JP2006281286A (ja) 熱間圧延ラインにおけるサイジングプレス出側での被圧延材形状判定方法
JP4609596B2 (ja) 厚鋼板の製造方法及び厚鋼板のリバース圧延機
JP3994965B2 (ja) 鋼板の製造方法
JP2004066318A (ja) 熱間圧延ラインの仕上サイドガイド設定方法および装置
JP2018158408A (ja) クロップカット制御システム
JP2005186111A (ja) 鋼板の製造ライン及び製造方法
JP2006205210A (ja) 熱間圧延における仕上圧延機のサイドガイド開度調整方法およびそれを用いた熱延金属板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880006369.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08720952

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008220048

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 3001/KOLNP/2009

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 12528520

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2679667

Country of ref document: CA

Ref document number: 2008720952

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020097017863

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2008220048

Country of ref document: AU

Date of ref document: 20080221

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020127010133

Country of ref document: KR