JP6801833B1 - 熱間圧延鋼帯の蛇行制御方法、蛇行制御装置及び熱間圧延設備 - Google Patents
熱間圧延鋼帯の蛇行制御方法、蛇行制御装置及び熱間圧延設備 Download PDFInfo
- Publication number
- JP6801833B1 JP6801833B1 JP2020550187A JP2020550187A JP6801833B1 JP 6801833 B1 JP6801833 B1 JP 6801833B1 JP 2020550187 A JP2020550187 A JP 2020550187A JP 2020550187 A JP2020550187 A JP 2020550187A JP 6801833 B1 JP6801833 B1 JP 6801833B1
- Authority
- JP
- Japan
- Prior art keywords
- meandering
- steel strip
- rolling mill
- hot
- rolled steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 520
- 239000010959 steel Substances 0.000 title claims abstract description 520
- 238000000034 method Methods 0.000 title claims abstract description 102
- 238000005098 hot rolling Methods 0.000 title claims abstract description 11
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 title abstract description 13
- 238000005096 rolling process Methods 0.000 claims abstract description 657
- 238000003384 imaging method Methods 0.000 claims abstract description 69
- 238000009826 distribution Methods 0.000 claims abstract description 55
- 230000009467 reduction Effects 0.000 claims description 34
- 230000000052 comparative effect Effects 0.000 description 23
- 239000000463 material Substances 0.000 description 22
- 230000008859 change Effects 0.000 description 16
- 238000012546 transfer Methods 0.000 description 15
- 238000012545 processing Methods 0.000 description 14
- 238000005259 measurement Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 238000001514 detection method Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/58—Roll-force control; Roll-gap control
- B21B37/66—Roll eccentricity compensation systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/68—Camber or steering control for strip, sheets or plates, e.g. preventing meandering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/58—Roll-force control; Roll-gap control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B38/00—Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B38/00—Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
- B21B38/04—Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring thickness, width, diameter or other transverse dimensions of the product
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Control Of Metal Rolling (AREA)
Abstract
Description
仕上圧延工程では、図14に示すように、複数台(例えば7台)の圧延機F1〜F7からなる仕上圧延設備1で熱間圧延鋼帯(以下、単に鋼帯という)10が同時に仕上圧延されるタンデム圧延を行い、所定の板厚の鋼板を製造する。
例えば、圧延中に圧延機のレベリング量を+側に変更すると、操作側より駆動側の圧下量が相対的に大きくなるため、操作側よりも駆動側の鋼帯が長くなり、圧延機出側では鋼帯は操作側に蛇行する。逆に、圧延中に圧延機のレベリング量を−側に変更すると、駆動側より操作側の圧下量が相対的に大きくなるため、駆動側よりも操作側の鋼帯が長くなり、圧延機出側では鋼帯は駆動側に蛇行する。
特許文献1に示す熱間仕上圧延における鋼板尾端蛇行制御方法は、タンデム圧延において、蛇行検出装置をスタンド間ほぼ中央に設置し、蛇行制御を行い、圧延材尾端が蛇行検出装置通過後は、差荷重方式にて蛇行制御を行うことにより高応答かつ安定した制御を達成すると共に、低温材でもセンサ方式蛇行制御を可能とするものである。
図1には、本発明の第1実施形態に係る蛇行制御装置を備えた仕上圧延設備の概略構成が示されている。
熱間圧延鋼帯の熱間圧延設備では、加熱炉(図示せず)で加熱されたスラブが粗圧延工程、仕上圧延工程及び冷却工程を経て、所定の板幅及び板厚の鋼板が製造され、巻き取られる。つまり、熱間圧延設備は、加熱炉と、粗圧延機(図示せず)と、仕上圧延設備1(図1参照)と、冷却設備(図示せず)と、巻取設備(図示せず)とを備えている。
また、荷重検出器3は、各圧延機F1〜F7の操作側と駆動側との双方に取り付けられて操作側及び駆動側のそれぞれの圧延荷重を検出する。
また、仕上圧延設備1には、鋼帯10の蛇行を制御する蛇行制御装置4が設けられている。蛇行制御装置4は、走行する鋼帯10の尾端部10a(図11参照)が圧延機F6を抜けてからラインセンサカメラ5を抜けるまでの制御区間Aにおいて、「蛇行計方式の蛇行制御」によって鋼帯10の蛇行を制御するものである。
また、蛇行量の検出に際し、一次元撮像装置であるラインセンサカメラ5を使用することで2次元カメラよりも設備を安価にすることができる。
S=αAC(δ−δ6)+S6 …(1)
そして、圧延機F7に設けられたレベリング装置2は、制御対象の圧延機F7のロール開度差がレベリング制御演算装置7から送出されたロール開度差となるように、制御対象の圧延機F7の操作側に取り付けられた圧下装置による圧下量と、圧延機F7の駆動側に取り付けられた圧下装置による圧下量とを調整する。これにより、制御対象の圧延機F7のレベリング量が鋼帯10の蛇行量に比例して変更され、鋼帯10の蛇行量が抑制される。
先ず、鋼帯10の仕上圧延が開始され、鋼帯10の先端部が制御対象の圧延機F7を通過したら、ステップS1において、隣り合う圧延機F6、F7間に設置されたラインセンサカメラ5によって走行する鋼帯10の表面を撮像する(撮像ステップ)。
これにより、制御対象の圧延機F7のレベリング量が鋼帯10の蛇行量に比例して変更され、鋼帯10の蛇行量が抑制される。
レベリング量(ロール開度差)を変更する周期は、小さければ小さいほどよい。絞りが発生しやすい板厚の薄い条件において、鋼帯10の尾端部10aが圧延機F6と圧延機F7との間を通過する時間は1秒にも満たない。そのため、わずかな時間に蛇行を抑制するためのレベリング量に制御する必要がある。
次に、本発明の第2実施形態に係る蛇行制御装置について図3及び図4を参照して説明する。図3には、本発明の第2実施形態に係る蛇行制御装置を備えた仕上圧延設備の概略構成が示されている。図4には、本発明の第2実施形態に係る蛇行制御装置による処理の流れを示すフローチャートが示されている。
そして、蛇行量算出装置6は、その検出された鋼帯10の幅方向両端部の位置に基づいて鋼帯10の蛇行量を算出する。具体的に述べると、蛇行量算出装置6は、その検出された鋼帯10の幅方向両端部の位置から鋼帯10の幅方向中央の位置を算出し、各圧延機F1〜F7の幅方向の中心から、算出された鋼帯10の幅方向中央の位置までの距離を鋼帯10の蛇行量として算出する。
これにより、鋼帯10の蛇行量の演算処理にかける時間を短くして蛇行量の算出周期を小さくすることができる。ラインセンサカメラ5と異なり、従来のように、2次元カメラを用いた場合、2次元データは情報量が多く、画像データの転送、画像データからの蛇行量の演算に時間がかかり、測定周期が大きくなってしまって時々刻々と変化する蛇行量に対して適切にレベリング量を変更できずに鋼帯の蛇行を適切に制御できない。
また、蛇行制御装置4は、第1実施形態に係る蛇行制御装置4と同様に、レベリング制御演算装置7を備えている。レベリング制御演算装置7は、制御区間Aにおいて、「蛇行計方式の蛇行制御」及び「差荷重方式の蛇行制御」を併用し、制御区間Bにおいて、「差荷重方式の蛇行制御」のみによって鋼帯10の蛇行を制御する。
S=αAC(δ−δ6)+βAD(ΔP−ΔP6)+S6 …(2)
S=βBD(ΔP−ΔP6)+SB …(3)
先ず、ステップS11において、鋼帯10の仕上圧延が開始され、鋼帯10の先端部が制御対象の圧延機F7を通過したら、隣り合う圧延機F6、F7間に設置されたラインセンサカメラ5で走行する鋼帯10の表面を撮像する(撮像ステップ)。
次いで、ステップS12に移行し、ラインセンサカメラ5は撮像画像のデータを蛇行量算出装置6に転送し、蛇行量算出装置6は、撮像画像に基づく1次元の輝度分布から鋼帯10の幅方向両端部の位置を検出する。そして、蛇行量算出装置6は、その検出された鋼帯10の幅方向両端部の位置から鋼帯10の幅方向中央の位置を算出し、各圧延機F1〜F7の幅方向の中心から、算出された鋼帯10の幅方向中央の位置までの距離を鋼帯10の蛇行量として算出する(蛇行量算出ステップ)。
次いで、ステップS14に移行し、レベリング制御演算装置7は、走行する鋼帯10の尾端部10aが圧延機F6を抜けてからラインセンサカメラ5を抜けるまでの制御区間Aにおいて、圧延機F7に設けられた荷重検出器3により検出された操作側及び駆動側の圧延荷重から求まる操作側及び駆動側の差荷重と、蛇行量算出装置6によって算出された鋼帯10の蛇行量とに基づいて、圧延機F7における操作側及び駆動側のロール開度差を前述の(2)式により演算し、演算されたロール開度差を圧延機F7に設けられたレベリング装置2に送出する(レベリング制御演算ステップ)。
これにより、鋼帯10の蛇行量が抑制される。
また、第2実施形態の場合も、前述したように、ラインセンサカメラ5を用いて、データ転送、蛇行量の算出を高速で行えるため、2次元カメラを用いた場合よりも早い周期でレベリング量(ロール開度差)を変化させることができ、時々刻々と変化している蛇行量に合わせてレベリング変更することができる。
次に、本発明の第3実施形態に係る蛇行制御装置について図6及び図7を参照して説明する。図6には、本発明の第3実施形態に係る蛇行制御装置を備えた仕上圧延設備の概略構成が示されている。図7には、本発明の第3実施形態に係る蛇行制御装置による処理の流れを示すフローチャートが示されている。
第3実施形態に係る蛇行制御装置4は、第1実施形態に係る蛇行制御装置4と基本構成は同様であり、制御区間Aにおいて、「蛇行計方式の蛇行制御」によって鋼帯10の蛇行を制御する。
また、赤外線の強度分布は、鋼帯10の温度分布に対応している。仕上圧延設備1での鋼帯10の温度は前述したように600℃〜1000℃であり、例えば、400℃以上の場所が鋼帯10の存在する場所と定義した場合、赤外線カメラ20の撮像画像におけるその400℃以上に対応する赤外線の強度のところが鋼帯10が存在する場所となる。
赤外線カメラ20の設置台数は単数でも複数であってもよい。但し、所定の赤外線カメラ20の視野範囲内に圧延機F6,F7の幅方向の中心CL1(図15参照)が入るように設置する。
このように、第3実施形態に係る蛇行制御装置4によれば、赤外線カメラ20で走行する鋼帯10の表面から発せられる赤外線の強度分布を撮像し、蛇行量算出装置21で赤外線カメラ20で撮像された赤外線の強度分布から鋼帯10の幅方向両端部のエッジ位置を検出する。
これにより、蒸気で鋼帯10の幅方向両端部のエッジが完全に覆われる場合であっても、赤外線の強度分布を適切にかつ迅速に撮像し、赤外線の強度分布から鋼帯10の幅方向両端部のエッジ位置を適切かつ迅速に検出することができる。
これにより、蒸気で鋼帯10の幅方向両端部のエッジが完全に覆われる場合であっても、適切かつ迅速に検出された鋼帯10の幅方向両端部のエッジ位置に基づいて鋼帯10の蛇行量を適切かつ迅速に算出することができる。
そして、この蛇行量の算出、即ち、鋼帯10の蛇行量の測定に際しては、測定周期が1msec程度の高周期での測定が可能となり、圧延機F6と圧延機F7との間を鋼帯10が通過する時間が1秒に満たない場合であっても、自動でレベリング制御を行えることになる。
そして、レベリング制御演算装置7は、演算されたロール開度差を制御対象となる圧延機F7に設けられたレベリング装置2に送出する。
なお、赤外線カメラ20による撮像を1msec以下の周期で行って、レベリング制御演算装置7による制御対象の圧延機F7における操作側及び駆動側のロール開度差の演算及びレベリング装置2による操作側及び駆動側の圧下量の調整を1msec以下の周期で行う。これにより、鋼帯10の蛇行量を30mm以下にすることができ、蛇行発生のリスクを更に低減することができる。
先ず、鋼帯10の仕上圧延が開始され、鋼帯10の先端部が制御対象の圧延機F7を通過したら、ステップS21において、隣り合う圧延機F6、F7間に設置された赤外線カメラ20によって走行する鋼帯10の表面から発せられる赤外線の強度分布を撮像する(撮像ステップ)。
これにより、制御対象の圧延機F7のレベリング量が鋼帯10の蛇行量に比例して変更され、鋼帯10の蛇行量が抑制される。
これにより、蒸気で鋼帯10の幅方向両端部のエッジが完全に覆われる場合であっても、赤外線の強度分布を適切にかつ迅速に撮像し、赤外線の強度分布から鋼帯10の幅方向両端部のエッジ位置を適切かつ迅速に検出することができる。
そして、この蛇行量の算出、即ち、鋼帯10の蛇行量の測定に際しては、測定周期が1msec程度の高周期での測定が可能となり、圧延機F6と圧延機F7との間を鋼帯10が通過する時間が1秒に満たない場合であっても、自動でレベリング制御を行えることになる。
次に、本発明の第4実施形態に係る蛇行制御装置について図8及び図9を参照して説明する。図8には、本発明の第4実施形態に係る蛇行制御装置を備えた仕上圧延設備の概略構成が示されている。図9には、本発明の第4実施形態に係る蛇行制御装置による処理の流れを示すフローチャートが示されている。
第4実施形態に係る蛇行制御装置4は、第2実施形態に係る蛇行制御装置4と基本構成は同様であり、制御区間Aにおいて、「蛇行計方式の蛇行制御」及び「差荷重方式の蛇行制御」を併用し、制御区間Bにおいて、「差荷重方式の蛇行制御」のみによって鋼帯10の蛇行を制御する。
なお、赤外線カメラ20に用いられる波長は、第3実施形態に係る赤外線カメラ20と同様の理由により、1.5μm超1000μm以下であることが好ましい。そして、赤外線カメラ20に用いられる波長は、3.0μm以上1000μm以下であることがより好ましい。
赤外線カメラ20の設置台数は単数でも複数であってもよい。但し、所定の赤外線カメラ20の視野範囲内に圧延機F6,F7の幅方向の中心CL1(図15参照)が入るように設置する。
これにより、蒸気で鋼帯10の幅方向両端部のエッジが完全に覆われる場合であっても、赤外線の強度分布を適切にかつ迅速に撮像し、赤外線の強度分布から鋼帯10の幅方向両端部のエッジ位置を適切かつ迅速に検出することができる。
これにより、蒸気で鋼帯10の幅方向両端部のエッジが完全に覆われる場合であっても、適切かつ迅速に検出された鋼帯10の幅方向両端部のエッジ位置に基づいて鋼帯10の蛇行量を適切かつ迅速に算出することができる。
また、蛇行制御装置4は、第2実施形態に係る蛇行制御装置4と同様に、レベリング制御演算装置7を備えている。レベリング制御演算装置7は、制御区間Aにおいて、「蛇行計方式の蛇行制御」及び「差荷重方式の蛇行制御」を併用し、制御区間Bにおいて、「差荷重方式の蛇行制御」のみによって鋼帯10の蛇行を制御する。
先ず、ステップS31において、鋼帯10の仕上圧延が開始され、鋼帯10の先端部が制御対象の圧延機F7を通過したら、隣り合う圧延機F6、F7間に設置された赤外線カメラ20で走行する鋼帯10の表面から発せられる赤外線の強度分布を撮像する(撮像ステップ)。
次いで、ステップS32に移行し、赤外線カメラ20は撮像した赤外線の強度分布のデータを蛇行量算出装置21に転送し、蛇行量算出装置21は、赤外線の強度分布から鋼帯10の幅方向両端部のエッジ位置を検出する。そして、蛇行量算出装置21は、その検出された鋼帯10の幅方向両端部のエッジ位置から鋼帯10の幅方向中央の位置を算出し、各圧延機F1〜F7の幅方向の中心から、算出された鋼帯10の幅方向中央の位置までの距離を鋼帯10の蛇行量として算出する(蛇行量算出ステップ)。
次いで、ステップS34に移行し、レベリング制御演算装置7は、走行する鋼帯10の尾端部10aが圧延機F6を抜けてから赤外線カメラ20を抜けるまでの制御区間Aにおいて、圧延機F7に設けられた荷重検出器3により検出された操作側及び駆動側の圧延荷重から求まる操作側及び駆動側の差荷重と、蛇行量算出装置21によって算出された鋼帯10の蛇行量とに基づいて、圧延機F7における操作側及び駆動側のロール開度差を前述の(2)式により演算し、演算されたロール開度差を圧延機F7に設けられたレベリング装置2に送出する(レベリング制御演算ステップ)。
これにより、鋼帯10の蛇行量が抑制される。
これにより、蒸気で鋼帯10の幅方向両端部のエッジが完全に覆われる場合であっても、赤外線の強度分布を適切にかつ迅速に撮像し、赤外線の強度分布から鋼帯10の幅方向両端部のエッジ位置を適切かつ迅速に検出することができる。
また、蒸気で鋼帯10の幅方向両端部のエッジが完全に覆われる場合であっても、適切かつ迅速に検出された鋼帯10の幅方向両端部のエッジ位置に基づいて鋼帯10の蛇行量を適切かつ迅速に算出することができる。
このため、赤外線カメラ20による撮像を1msec以下の周期で行って、レベリング制御演算装置7による制御対象の圧延機F7における操作側及び駆動側のロール開度差の演算及びレベリング装置2による操作側及び駆動側の圧下量の調整を1msec以下の周期で行う。これにより、鋼帯10の蛇行量を30mm以下にすることができ、蛇行発生のリスクを低減することができる。
先ず、第1実施形態乃至第4実施形態に係る蛇行制御装置4において、制御対象となる圧延機は上流側から数えて7番目の圧延機F7としてあるが、ラインセンサカメラ5あるいは赤外線カメラ20が設置されている位置の下流側直近にある圧延機であれば、圧延機F7以外の圧延機F6、圧延機F5、圧延機F4などであってもよい。
また、第1実施形態乃至第4実施形態に係る蛇行制御装置4において、圧延機の数が7つであるが、この圧延機の数は7つ以外であってもよい。この場合であっても、制御対象となる圧延機は、ラインセンサカメラ5あるいは赤外線カメラ20が設置されている位置の下流側直近にある圧延機であればよい。
S=αA−1C(δ−δ5)+βA−1D(ΔP−ΔP5)+S5 …(4)
S=βB−1D(ΔP−ΔP5)+SB−1 …(5)
また、圧延機F7に設けられたレベリング装置2も、レベリング制御演算装置7から送出されたロール開度差に基づいて、制御対象の圧延機F7の操作側に取り付けられた圧下装置による圧下量と、圧延機F7の駆動側に取り付けられた圧下装置による圧下量とを調整する。これにより、制御対象の圧延機F7のレベリング量も鋼帯10の蛇行量に比例して変更され、鋼帯10の蛇行量が抑制される。
また、圧延機F6と圧延機F7との間に設置されたラインセンサカメラ5による撮像も5msec以下の周期で行って、レベリング制御演算装置7による制御対象の圧延機F7における操作側及び駆動側のロール開度差の演算及びレベリング装置2による操作側及び駆動側の圧下量の調整を5msec以下の周期で行う。
比較例1に係る蛇行制御装置は、図10に示されており、この蛇行制御装置4は、走行する鋼帯10の尾端部が圧延機F6を抜けてから2次元カメラ8を抜けるまでの制御区間Aにおいて、「蛇行計方式の蛇行制御」によって圧延機F7のレベリング量を調整して鋼帯10の蛇行を制御した。
そして、比較例1に係る蛇行制御装置4の2次元カメラ8による撮像周期は、20msecとした。
そして、比較例2に係る蛇行制御装置4の2次元カメラ8による撮像周期は、20msecとした。
そして、比較例3に係る蛇行制御装置4のラインセンサカメラ5による撮像周期は、20msecとした。
つまり、実施例1に係る蛇行制御装置4のレベリング制御演算装置7は、走行する鋼帯10の尾端部が圧延機F6を抜けてからラインセンサカメラ5を抜けるまでの制御区間Aにおいて、蛇行量算出装置6で算出された鋼帯10の蛇行量に基づいて、ラインセンサカメラ5が設置されている位置の下流側直近にある圧延機F7における操作側及び駆動側のロールギャップの開度差であるロール開度差を前述の(1)式により演算し、演算されたロール開度差を制御対象となる圧延機F7に設けられたレベリング装置2に送出した。
そして、実施例1に係る蛇行制御装置4のラインセンサカメラ5による撮像周期は、5msecとした。
そして、実施例2に係る蛇行制御装置4のラインセンサカメラ5による撮像周期は、5msecとした。
そして、実施例3に係る蛇行制御装置4のラインセンサカメラ5による撮像周期は、1msecとした。
そして、実施例4に係る蛇行制御装置4のラインセンサカメラ5による撮像周期は、2台とも1msecとした。
つまり、実施例5に係る蛇行制御装置4のレベリング制御演算装置7は、走行する鋼帯10の尾端部が圧延機F6を抜けてから赤外線カメラ20を抜けるまでの制御区間Aにおいて、蛇行量算出装置21で算出された鋼帯10の蛇行量に基づいて、赤外線カメラ20が設置されている位置の下流側直近にある圧延機F7における操作側及び駆動側のロールギャップの開度差であるロール開度差を前述の(1)式により演算し、演算されたロール開度差を制御対象となる圧延機F7に設けられたレベリング装置2に送出した。
そして、実施例5に係る蛇行制御装置4の赤外線カメラ20による撮像周期は、1msecとした。また、赤外線カメラ20に用いられる赤外線の波長帯は、8〜14μmであった。
そして、実施例6に係る蛇行制御装置4の赤外線カメラ20による撮像周期は、1msecとした。また、赤外線カメラ20に用いられる赤外線の波長帯は、8〜14μmであった。
比較例2では、圧延機F6と圧延機F7との間に設置した2次元カメラでの鋼帯10の尾端部の蛇行量は80mmであった。
また、比較例3では、圧延機F6と圧延機F7との間に設置したラインセンサカメラでの鋼帯10の尾端部の蛇行量は76mmであった。
また、実施例2では、圧延機F6と圧延機F7との間に設置したラインセンサカメラでの鋼帯10の尾端部の蛇行量は32mmであった。
また、実施例3では、圧延機F6と圧延機F7との間に設置したラインセンサカメラでの鋼帯10の尾端部の蛇行量は25mmであった。
また、実施例5では、圧延機F6と圧延機F7との間に設置した赤外線カメラでの鋼帯10の尾端部の蛇行量は20mmであった。
また、実施例6では、圧延機F6と圧延機F7との間に設置した赤外線カメラでの鋼帯10の尾端部の蛇行量は10mmであった。
また、実施例1と実施例2とを比較すると、制御区間Aにおいて、「蛇行計方式の蛇行制御」及び「差荷重方式の蛇行制御」を併用した方が、「蛇行計方式の蛇行制御」のみを行った場合よりも鋼帯10の尾端部の蛇行量が減少していることが確認された。
更に、実施例2と実施例3とを比較すると、ラインセンサカメラ5の撮像周期を5msecから1msecに早めた方が鋼帯10の尾端部の蛇行量が減少していることが確認された。
また、実施例3と実施例4とを比較すると、制御区間A及びBで圧延機Fのレベリング量を制御するのみならず、制御区間A−1及びB−1においても圧延機F6のレベリングの制御を行う方が鋼帯10の尾端部の蛇行量が減少していることが確認された。
なお、比較例1〜3及び実施例1〜6において、蒸気で鋼帯10の幅方向両端部のエッジが完全に覆われた場合、可視光カメラの2次元カメラを用いた比較例1、2及びラインセンサカメラを用いた比較例3及び実施例1〜4にあっては、鋼帯10の幅方向両端部のエッジ位置の検出が困難で蛇行量の測定データにノイズあることが分かった。これに対し、赤外線カメラ20を用いた実施例5、6にあっては、鋼帯10の幅方向両端部のエッジ位置の検出が適切かつ迅速に行え、蛇行量の測定データにノイズは少なく、蛇行量が明確に測定できた。
2 レベリング装置
3 荷重検出器
4 蛇行制御装置
5 ラインセンサカメラ
6 蛇行量算出装置
7 レベリング制御演算装置
8 2次元カメラ
10 熱間圧延鋼帯
10a 尾端部
20 赤外線カメラ
21 蛇行量算出装置
22 レベリング制御装置
F1〜Fn 圧延機
Claims (11)
- 操作側及び駆動側の圧下量を調整するレベリング装置をそれぞれが有する複数の圧延機を備えた仕上圧延設備で圧延される熱間圧延鋼帯の蛇行を制御する熱間圧延鋼帯の蛇行制御方法であって、
隣り合う圧延機間に設置されたラインセンサカメラで走行する熱間圧延鋼帯の表面を撮像する撮像ステップと、
蛇行量算出装置により、該撮像ステップで撮像された撮像画像に基づく1次元の輝度分布から前記熱間圧延鋼帯の幅方向両端部の位置を検出し、その検出された前記熱間圧延鋼帯の幅方向両端部の位置に基づいて前記熱間圧延鋼帯の蛇行量を算出する蛇行量算出ステップと、
レベル制御演算装置により、走行する前記熱間圧延鋼帯の尾端部が前記ラインセンサカメラを抜けるまで、前記蛇行量算出ステップで算出された前記熱間圧延鋼帯の蛇行量に基づいて、前記ラインセンサカメラが設置されている位置の下流側直近にある圧延機における操作側及び駆動側のロールギャップの開度差であるロール開度差を演算し、演算されたロール開度差を前記下流側直近にある圧延機に設けられた前記レベリング装置に送出するレベリング制御演算ステップとを含み、
前記撮像ステップにおける前記ラインセンサカメラによる撮像を5msec以下の周期で行って、前記レベリング制御演算ステップによる前記下流側直近にある圧延機における操作側及び駆動側のロール開度差の演算及び前記レベリング装置による操作側及び駆動側の圧下量の調整を5msec以下の周期で行うことを特徴とする熱間圧延鋼帯の蛇行制御方法。 - 前記ラインセンサカメラが設置されている位置の下流側直近にある圧延機に設けられた荷重検出器により検出された操作側及び駆動側の圧延荷重から操作側及び駆動側の差荷重を求める差荷重算出ステップを含み、
前記レベリング制御演算ステップでは、走行する前記熱間圧延鋼帯の尾端部が前記ラインセンサカメラを抜けるまで、前記差荷重算出ステップで検出された操作側及び駆動側の差荷重と、前記蛇行量算出ステップによって算出された前記熱間圧延鋼帯の蛇行量とに基づいて、前記下流側直近にある圧延機における操作側及び駆動側のロール開度差を演算し、走行する前記熱間圧延鋼帯の尾端部が前記ラインセンサカメラを抜けてから前記下流側直近にある圧延機を抜けるまで、前記差荷重算出ステップで検出された操作側及び駆動側の差荷重に基づいて、前記下流側直近にある圧延機における操作側及び駆動側のロール開度差を演算し、演算されたロール開度差を前記下流側直近にある圧延機に設けられた前記レベリング装置に送出することを特徴とする請求項1に記載の熱間圧延鋼帯の蛇行制御方法。 - 操作側及び駆動側の圧下量を調整するレベリング装置をそれぞれが有する複数の圧延機を備えた仕上圧延設備で圧延される熱間圧延鋼帯の蛇行を制御する熱間圧延鋼帯の蛇行制御方法であって、
隣り合う圧延機間に設置された赤外線カメラで走行する熱間圧延鋼帯の表面から発せられる赤外線の強度分布を撮像する撮像ステップと、
蛇行量算出装置により、該撮像ステップで撮像された赤外線の強度分布から前記熱間圧延鋼帯の幅方向両端部のエッジ位置を検出し、その検出された前記熱間圧延鋼帯の幅方向両端部のエッジ位置に基づいて前記熱間圧延鋼帯の蛇行量を算出する蛇行量算出ステップと、
レベル制御演算装置により、走行する前記熱間圧延鋼帯の尾端部が前記赤外線カメラを抜けるまで、前記蛇行量算出ステップで算出された前記熱間圧延鋼帯の蛇行量に基づいて、前記赤外線カメラが設置されている位置の下流側直近にある圧延機における操作側及び駆動側のロールギャップの開度差であるロール開度差を演算し、演算されたロール開度差を前記下流側直近にある圧延機に設けられた前記レベリング装置に送出するレベリング制御演算ステップとを含み、
前記撮像ステップにおける前記赤外線カメラによる撮像を1msec以下の周期で行って、前記レベリング制御演算ステップによる前記下流側直近にある圧延機における操作側及び駆動側のロール開度差の演算及び前記レベリング装置による操作側及び駆動側の圧下量の調整を1msec以下の周期で行うことを特徴とする熱間圧延鋼帯の蛇行制御方法。 - 前記赤外線カメラが設置されている位置の下流側直近にある圧延機に設けられた荷重検出器により検出された操作側及び駆動側の圧延荷重から操作側及び駆動側の差荷重を求める差荷重算出ステップを含み、
前記レベリング制御演算ステップでは、走行する前記熱間圧延鋼帯の尾端部が前記赤外線カメラを抜けるまで、前記差荷重算出ステップで検出された操作側及び駆動側の差荷重と、前記蛇行量算出ステップによって算出された前記熱間圧延鋼帯の蛇行量とに基づいて、前記下流側直近にある圧延機における操作側及び駆動側のロール開度差を演算し、走行する前記熱間圧延鋼帯の尾端部が前記赤外線カメラを抜けてから前記下流側直近にある圧延機を抜けるまで、前記差荷重算出ステップで検出された操作側及び駆動側の差荷重に基づいて、前記下流側直近にある圧延機における操作側及び駆動側のロール開度差を演算し、演算されたロール開度差を前記下流側直近にある圧延機に設けられた前記レベリング装置に送出することを特徴とする請求項3に記載の熱間圧延鋼帯の蛇行制御方法。 - 前記赤外線カメラに用いられる赤外線の波長は、1.5μm超1000μm以下であることを特徴とする請求項3又は4に記載の熱間圧延鋼帯の蛇行制御方法。
- 操作側及び駆動側の圧下量を調整するレベリング装置をそれぞれが有する複数の圧延機を備えた仕上圧延設備で圧延される熱間圧延鋼帯の蛇行を制御する熱間圧延鋼帯の蛇行制御装置であって、
隣り合う圧延機間に設置された、走行する熱間圧延鋼帯の表面を撮像するラインセンサカメラと、
該ラインセンサカメラで得られた撮像画像に基づく1次元の輝度分布から前記熱間圧延鋼帯の幅方向両端部の位置を検出し、その検出された前記熱間圧延鋼帯の幅方向両端部の位置に基づいて前記熱間圧延鋼帯の蛇行量を算出する蛇行量算出装置と、
走行する前記熱間圧延鋼帯の尾端部が前記ラインセンサカメラを抜けるまで、前記蛇行量算出装置によって算出された前記熱間圧延鋼帯の蛇行量に基づいて、前記ラインセンサカメラが設置されている位置の下流側直近にある圧延機における操作側及び駆動側のロールギャップの開度差であるロール開度差を演算し、演算されたロール開度差を前記下流側直近にある圧延機に設けられた前記レベリング装置に送出するレベリング制御演算装置とを備え、
前記ラインセンサカメラによる撮像を5msec以下の周期で行って、前記レベリング制御演算装置による前記下流側直近にある圧延機における操作側及び駆動側のロール開度差の演算及び前記レベリング装置による操作側及び駆動側の圧下量の調整を5msec以下の周期で行うことを特徴とする熱間圧延鋼帯の蛇行制御装置。 - 前記複数の圧延機の各々は、操作側及び駆動側の圧延荷重を検出する荷重検出器を備え、
前記レベリング制御演算装置は、走行する前記熱間圧延鋼帯の尾端部が前記ラインセンサカメラを抜けるまで、前記ラインセンサカメラが設置されている位置の下流側直近にある圧延機に設けられた前記荷重検出器により検出された操作側及び駆動側の圧延荷重から求まる操作側及び駆動側の差荷重と、前記蛇行量算出装置によって算出された前記熱間圧延鋼帯の蛇行量とに基づいて、前記下流側直近にある圧延機における操作側及び駆動側のロール開度差を演算し、走行する前記熱間圧延鋼帯の尾端部が前記ラインセンサカメラを抜けてから前記下流側直近にある圧延機を抜けるまで、前記荷重検出器により検出された操作側及び駆動側の圧延荷重から求まる差荷重に基づいて、前記下流側直近にある圧延機における操作側及び駆動側のロール開度差を演算し、演算されたロール開度差を前記下流側直近にある圧延機に設けられた前記レベリング装置に送出することを特徴とする請求項6に熱間圧延鋼帯の蛇行制御装置。 - 操作側及び駆動側の圧下量を調整するレベリング装置をそれぞれが有する複数の圧延機を備えた仕上圧延設備で圧延される熱間圧延鋼帯の蛇行を制御する熱間圧延鋼帯の蛇行制御装置であって、
隣り合う圧延機間に設置された、走行する熱間圧延鋼帯の表面から発せられる赤外線の強度分布を撮像する赤外線カメラと、
該赤外線カメラで得られた赤外線の強度部分から前記熱間圧延鋼帯の幅方向両端部のエッジ位置を検出し、その検出された前記熱間圧延鋼帯の幅方向両端部のエッジ位置に基づいて前記熱間圧延鋼帯の蛇行量を算出する蛇行量算出装置と、
走行する前記熱間圧延鋼帯の尾端部が前記赤外線カメラを抜けるまで、前記蛇行量算出装置によって算出された前記熱間圧延鋼帯の蛇行量に基づいて、前記赤外線カメラが設置されている位置の下流側直近にある圧延機における操作側及び駆動側のロールギャップの開度差であるロール開度差を演算し、演算されたロール開度差を前記下流側直近にある圧延機に設けられた前記レベリング装置に送出するレベリング制御演算装置とを備え、
前記赤外線カメラによる撮像を1msec以下の周期で行って、前記レベリング制御演算装置による前記下流側直近にある圧延機における操作側及び駆動側のロール開度差の演算及び前記レベリング装置による操作側及び駆動側の圧下量の調整を1msec以下の周期で行うことを特徴とする熱間圧延鋼帯の蛇行制御装置。 - 前記複数の圧延機の各々は、操作側及び駆動側の圧延荷重を検出する荷重検出器を備え、
前記レベリング制御演算装置は、走行する前記熱間圧延鋼帯の尾端部が前記赤外線カメラを抜けるまで、前記赤外線カメラが設置されている位置の下流側直近にある圧延機に設けられた前記荷重検出器により検出された操作側及び駆動側の圧延荷重から求まる操作側及び駆動側の差荷重と、前記蛇行量算出装置によって算出された前記熱間圧延鋼帯の蛇行量とに基づいて、前記下流側直近にある圧延機における操作側及び駆動側のロール開度差を演算し、走行する前記熱間圧延鋼帯の尾端部が前記赤外線カメラを抜けてから前記下流側直近にある圧延機を抜けるまで、前記荷重検出器により検出された操作側及び駆動側の圧延荷重から求まる差荷重に基づいて、前記下流側直近にある圧延機における操作側及び駆動側のロール開度差を演算し、演算されたロール開度差を前記下流側直近にある圧延機に設けられた前記レベリング装置に送出することを特徴とする請求項8に熱間圧延鋼帯の蛇行制御装置。 - 前記赤外線カメラに用いられる赤外線の波長は、1.5μm超1000μm以下であることを特徴とする請求項8又は9に記載の熱間圧延鋼帯の蛇行制御装置。
- 請求項6乃至10のうちいずれか一項に記載の熱間圧延鋼帯の蛇行制御装置を有することを特徴とする熱間圧延設備。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019134680 | 2019-07-22 | ||
JP2019134680 | 2019-07-22 | ||
JP2020085279 | 2020-05-14 | ||
JP2020085279 | 2020-05-14 | ||
PCT/JP2020/023099 WO2021014811A1 (ja) | 2019-07-22 | 2020-06-11 | 熱間圧延鋼帯の蛇行制御方法、蛇行制御装置及び熱間圧延設備 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6801833B1 true JP6801833B1 (ja) | 2020-12-16 |
JPWO2021014811A1 JPWO2021014811A1 (ja) | 2021-09-13 |
Family
ID=73741007
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020550187A Active JP6801833B1 (ja) | 2019-07-22 | 2020-06-11 | 熱間圧延鋼帯の蛇行制御方法、蛇行制御装置及び熱間圧延設備 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11833560B2 (ja) |
EP (1) | EP4005693B1 (ja) |
JP (1) | JP6801833B1 (ja) |
KR (1) | KR102615075B1 (ja) |
CN (1) | CN114126776A (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7047995B1 (ja) * | 2021-01-28 | 2022-04-05 | Jfeスチール株式会社 | 鋼板の蛇行量測定装置、鋼板の蛇行量測定方法、熱間圧延鋼帯の熱間圧延設備、及び熱間圧延鋼帯の熱間圧延方法 |
JP2022096790A (ja) * | 2020-12-18 | 2022-06-30 | Jfeスチール株式会社 | 熱間圧延鋼帯の蛇行制御方法、蛇行制御装置及び熱間圧延設備 |
WO2022163177A1 (ja) * | 2021-01-28 | 2022-08-04 | Jfeスチール株式会社 | 鋼板の蛇行量測定装置、鋼板の蛇行量測定方法、熱間圧延鋼帯の熱間圧延設備、及び熱間圧延鋼帯の熱間圧延方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3714999B1 (de) * | 2019-03-28 | 2022-09-28 | Primetals Technologies Germany GmbH | Ermittlung einer anstellung eines walzgerüsts |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0617779B2 (ja) | 1987-03-16 | 1994-03-09 | 三菱重工業株式会社 | 圧延材の蛇行量検出装置 |
DE3837101A1 (de) * | 1988-11-01 | 1990-05-03 | Thyssen Stahl Ag | Verfahren zum steuern des bandlaufs beim walzen, in einer walzstrasse |
JPH06167327A (ja) | 1992-11-30 | 1994-06-14 | Kobe Steel Ltd | キャンバ測定方法 |
JPH07144211A (ja) * | 1993-11-24 | 1995-06-06 | Kawasaki Steel Corp | 熱間仕上圧延における鋼板尾端蛇行制御方法 |
JP2001343223A (ja) * | 1999-11-08 | 2001-12-14 | Sumitomo Metal Ind Ltd | 帯状体の品質測定方法、キャンバ抑制方法、帯状体の品質測定装置、圧延装置及びトリム装置 |
DE10205132A1 (de) * | 2002-02-07 | 2003-08-28 | Bfi Vdeh Inst Angewandte Forschung Gmbh | Verfahren und Vorrichtung zum optischen Messen der Oberflächenform und zur optischen Oberflächeninspektion von bewegten Bändern in Walz- und Weiterbearbeitungsanlagen |
KR100925599B1 (ko) * | 2002-10-11 | 2009-11-06 | 주식회사 포스코 | 연속 압연공정에서의 롤표면 소손방지를 위한 압연롤 갭제어장치 및 방법 |
JP3885955B2 (ja) | 2002-10-28 | 2007-02-28 | 住友金属工業株式会社 | 板材の蛇行測定方法及び蛇行測定装置並びにこの蛇行測定方法を用いた板材の製造方法 |
JP2005156420A (ja) * | 2003-11-27 | 2005-06-16 | Nippon Steel Corp | 表面凹凸の検査方法及び検査装置 |
CN100529653C (zh) * | 2007-02-12 | 2009-08-19 | 西安理工大学 | 基于ccd的带材自动对中cpc检测系统及检测方法 |
CN101622082B (zh) * | 2007-02-28 | 2013-01-30 | 杰富意钢铁株式会社 | 利用近红外线照相机的金属带的热轧方法和装置 |
DE102008007247A1 (de) * | 2007-09-13 | 2009-03-19 | Siemens Aktiengesellschaft | Betriebsverfahren für eine Walzstraße mit Krümmungserkennung |
KR100993855B1 (ko) * | 2008-10-01 | 2010-11-11 | 주식회사 포스코 | 핀치롤 제어장치 및 제어방법 |
JP5780196B2 (ja) | 2012-04-02 | 2015-09-16 | 新日鐵住金株式会社 | 被圧延材の蛇行制御方法および被圧延材の蛇行制御システム |
WO2013161780A1 (ja) * | 2012-04-24 | 2013-10-31 | 新日鐵住金株式会社 | 圧延装置および圧延監視方法 |
CN102728625A (zh) * | 2012-06-19 | 2012-10-17 | 江苏省沙钢钢铁研究院有限公司 | 热轧带钢可逆粗轧机两侧轧制力平衡控制方法 |
CN103252358B (zh) * | 2013-05-21 | 2014-12-31 | 东北大学 | 一种宽厚板镰刀弯矫正方法 |
JP6677344B2 (ja) * | 2017-03-14 | 2020-04-08 | Jfeスチール株式会社 | 帯状体の蛇行量測定方法および装置並びに帯状体の蛇行異常検出方法および装置 |
-
2020
- 2020-06-11 EP EP20844736.7A patent/EP4005693B1/en active Active
- 2020-06-11 US US17/624,996 patent/US11833560B2/en active Active
- 2020-06-11 CN CN202080052053.1A patent/CN114126776A/zh active Pending
- 2020-06-11 KR KR1020227001580A patent/KR102615075B1/ko active IP Right Grant
- 2020-06-11 JP JP2020550187A patent/JP6801833B1/ja active Active
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022096790A (ja) * | 2020-12-18 | 2022-06-30 | Jfeスチール株式会社 | 熱間圧延鋼帯の蛇行制御方法、蛇行制御装置及び熱間圧延設備 |
JP7314921B2 (ja) | 2020-12-18 | 2023-07-26 | Jfeスチール株式会社 | 熱間圧延鋼帯の蛇行制御方法、蛇行制御装置及び熱間圧延設備 |
JP7047995B1 (ja) * | 2021-01-28 | 2022-04-05 | Jfeスチール株式会社 | 鋼板の蛇行量測定装置、鋼板の蛇行量測定方法、熱間圧延鋼帯の熱間圧延設備、及び熱間圧延鋼帯の熱間圧延方法 |
WO2022163177A1 (ja) * | 2021-01-28 | 2022-08-04 | Jfeスチール株式会社 | 鋼板の蛇行量測定装置、鋼板の蛇行量測定方法、熱間圧延鋼帯の熱間圧延設備、及び熱間圧延鋼帯の熱間圧延方法 |
Also Published As
Publication number | Publication date |
---|---|
EP4005693B1 (en) | 2024-09-18 |
US11833560B2 (en) | 2023-12-05 |
KR20220020967A (ko) | 2022-02-21 |
KR102615075B1 (ko) | 2023-12-15 |
EP4005693A1 (en) | 2022-06-01 |
US20220280989A1 (en) | 2022-09-08 |
CN114126776A (zh) | 2022-03-01 |
EP4005693A4 (en) | 2022-08-24 |
JPWO2021014811A1 (ja) | 2021-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6801833B1 (ja) | 熱間圧延鋼帯の蛇行制御方法、蛇行制御装置及び熱間圧延設備 | |
JP4862771B2 (ja) | 圧延中鋼板のキャンバー量の算出方法及び鋼板の製造方法 | |
US10730088B2 (en) | Method for manufacturing hot-rolled steel sheet, steel sheet cutting location setting device, steel sheet cutting location setting method, and steel sheet manufacturing method | |
JP4837095B2 (ja) | ロールギャップを制御する方法と装置 | |
KR101767783B1 (ko) | 압연 소재의 평탄 유지 장치 및 방법 | |
JP7036241B2 (ja) | 熱間圧延鋼帯の蛇行制御方法、蛇行制御装置及び熱間圧延設備 | |
WO2021014811A1 (ja) | 熱間圧延鋼帯の蛇行制御方法、蛇行制御装置及び熱間圧延設備 | |
CN105229413A (zh) | 板材的平面度测定方法、板材的平面度测定装置以及钢板的制造方法 | |
KR101819307B1 (ko) | 판쏠림 제어 장치 | |
JP7222415B2 (ja) | 熱間圧延鋼帯の蛇行量測定装置及び熱間圧延鋼帯の蛇行量測定方法 | |
JP7078020B2 (ja) | 熱間圧延鋼帯の蛇行制御方法、蛇行制御装置及び熱間圧延設備 | |
JP7047995B1 (ja) | 鋼板の蛇行量測定装置、鋼板の蛇行量測定方法、熱間圧延鋼帯の熱間圧延設備、及び熱間圧延鋼帯の熱間圧延方法 | |
JP2021016888A (ja) | 熱間圧延鋼帯の蛇行制御方法、蛇行制御装置及び熱間圧延設備 | |
JP6795008B2 (ja) | 鋼矢板の製造装置及び製造方法 | |
KR101879092B1 (ko) | 열연 공정에서의 캠버 제어 장치 및 방법 | |
JP6103158B1 (ja) | 幅圧下方法及び幅圧下装置 | |
WO2022163177A1 (ja) | 鋼板の蛇行量測定装置、鋼板の蛇行量測定方法、熱間圧延鋼帯の熱間圧延設備、及び熱間圧延鋼帯の熱間圧延方法 | |
JP7314921B2 (ja) | 熱間圧延鋼帯の蛇行制御方法、蛇行制御装置及び熱間圧延設備 | |
JP5459599B2 (ja) | 熱延板の製造方法 | |
TW202436832A (zh) | 帶狀物體的形狀的測定方法、帶狀物體的形狀的控制方法、帶狀物體的製造方法、帶狀物體的品質管理方法、帶狀物體的形狀的測定裝置以及帶狀物體的製造設備 | |
KR101696042B1 (ko) | 열화상을 이용한 캠버 측정 장치 및 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200917 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20200917 |
|
TRDD | Decision of grant or rejection written | ||
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20201019 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201027 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201109 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6801833 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |