WO2021014811A1 - 熱間圧延鋼帯の蛇行制御方法、蛇行制御装置及び熱間圧延設備 - Google Patents

熱間圧延鋼帯の蛇行制御方法、蛇行制御装置及び熱間圧延設備 Download PDF

Info

Publication number
WO2021014811A1
WO2021014811A1 PCT/JP2020/023099 JP2020023099W WO2021014811A1 WO 2021014811 A1 WO2021014811 A1 WO 2021014811A1 JP 2020023099 W JP2020023099 W JP 2020023099W WO 2021014811 A1 WO2021014811 A1 WO 2021014811A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel strip
meandering
rolling mill
hot
rolled steel
Prior art date
Application number
PCT/JP2020/023099
Other languages
English (en)
French (fr)
Inventor
寛人 後藤
龍裕 須江
英仁 山口
高嶋 由紀雄
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to US17/624,996 priority Critical patent/US11833560B2/en
Priority to EP20844736.7A priority patent/EP4005693A4/en
Priority to CN202080052053.1A priority patent/CN114126776A/zh
Priority to JP2020550187A priority patent/JP6801833B1/ja
Priority to KR1020227001580A priority patent/KR102615075B1/ko
Publication of WO2021014811A1 publication Critical patent/WO2021014811A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/68Camber or steering control for strip, sheets or plates, e.g. preventing meandering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product

Definitions

  • the present invention relates to a meandering control method for hot rolled steel strips, a meandering control device, and hot rolling equipment.
  • hot-rolled steel strip manufacturing line a heated slab undergoes a manufacturing process such as a rough rolling step and a finish rolling step to manufacture a steel plate having a predetermined plate width and thickness.
  • finish rolling process as shown in FIG. 14, hot-rolled steel strips (hereinafter, simply referred to as steel strips) 10 are simultaneously finished rolled in a finish rolling facility 1 composed of a plurality of (for example, 7) rolling mills F1 to F7.
  • the tandem rolling is performed to produce a steel plate having a predetermined thickness.
  • the steel strip 10 is bent in the width direction due to the thickness distribution in the width direction of the steel strip 10, the temperature difference in the width direction of the steel strip 10, and the bending in the width direction of the steel strip 10.
  • a phenomenon called moving serpentine may occur.
  • the distance from the center CL1 in the width direction of the rolling mills F1 to F7 (the same direction as the width direction of the steel strip 10) to the center CL2 in the width direction of the steel strip 10 is called the meandering amount ⁇ .
  • the case where the steel strip 10 meanders to the operation side of each rolling mill F1 to F7 is defined as "+”
  • the steel strip 10 meanders to the driving side of each rolling mill F1 to F7 is defined as "-”. ..
  • each rolling mill F1 to F7 represents the side connected to the motor (not shown) of the transfer roll (not shown), and the operation side of each rolling mill F1 to F7 is the drive side. Represents the opposite side in the width direction.
  • the arrows in FIGS. 14 and 15 indicate the traveling direction of the steel strip 10 during rolling.
  • the leveling amount is the difference in the opening degree of the roll gap between the operation side and the drive side of the rolling mill.
  • the case where the opening degree of the roll gap on the operation side is large is "+”
  • the case where the opening degree of the roll gap on the driving side is large is "-”.
  • the leveling amount of the rolling mill is changed to the + side during rolling, the rolling reduction amount on the drive side is relatively larger than that on the operation side, so that the steel strip on the drive side is longer than that on the operation side, and the rolling mill exit side. Then the steel strip meanders to the operation side.
  • the rolling reduction amount on the operating side is relatively larger than that on the driving side, so that the steel strip on the operating side is longer than that on the driving side, and the rolling mill comes out.
  • the steel strip meanders to the drive side.
  • Patent Document 1 Conventionally, as a method for preventing meandering of a steel strip by changing the leveling amount, for example, those shown in Patent Document 1, Patent Document 2 and Patent Document 3 have been proposed.
  • the method for controlling meandering at the tail end of a steel plate in hot finish rolling shown in Patent Document 1 is that in tandem rolling, a meandering detection device is installed substantially in the center between stands to control meandering, and after the tail end of the rolled material passes through the meandering detection device.
  • a meandering detection device is installed substantially in the center between stands to control meandering, and after the tail end of the rolled material passes through the meandering detection device.
  • the "sensor type meandering control” is terminated, and the feedback control is performed with the third control gain to perform the "differential load type meandering control”. Further, when the tail end of the material to be rolled passes through the rolling stand F7, the "differential load method meandering control" is terminated.
  • the serpentine control method of the plate material shown in Patent Document 3 is a first method of imaging the surface of the plate material with a two-dimensional image pickup apparatus having an imaging field including the edge of the plate material from a direction inclined in the rolling direction with respect to the perpendicular line of the pass line. It includes a step and a second step of detecting the edge position of the plate material for each scanning line by detecting a change in the density value for each scanning line in the plate width direction of the captured image.
  • the meandering control method of the plate material is a third step of calculating an approximate straight line by applying the least squares method to each edge position detected for each scanning line, and an intersection of the approximate straight line and a predetermined scanning line. It includes a fourth step of calculating the position of the above and a fifth step of calculating the amount of meandering based on the position of the intersection.
  • Patent Document 1 the conventional method for controlling meandering of the tail end of a steel sheet in hot finish rolling shown in Patent Document 1
  • the method for controlling meandering of a material to be rolled shown in Patent Document 2 the method for controlling meandering of a plate material shown in Patent Document 3.
  • the meandering detection device for detecting the meandering of the steel strip includes a light source and a camera, but the type of the camera is described. There is no description in Patent Document 1. Therefore, depending on the type of the camera, the meandering detection may take a long time and the measurement cycle may become long. In this case, the meandering amount of the steel strip may not be appropriately controlled because the leveling amount cannot be appropriately changed with respect to the meandering amount that changes from moment to moment.
  • the meandering amount detection sensor is provided with a camera, but the type of the camera is not described in Patent Document 2. Therefore, depending on the type of the camera, the meandering detection may take a long time and the measurement cycle may become long. In this case, the meandering amount of the steel strip may not be appropriately controlled because the leveling amount cannot be appropriately changed with respect to the meandering amount that changes from moment to moment.
  • the meandering amount of the plate material is measured by the two-dimensional imaging device, but the two-dimensional data has a large amount of information, and the image data is transferred.
  • the measurement cycle becomes large, and the leveling amount cannot be changed appropriately for the meandering amount that changes from moment to moment, and the meandering of the steel strip cannot be controlled appropriately. There is.
  • an object of the present invention is to shorten the time required for the calculation process of the meandering amount of the hot-rolled steel strip and reduce the calculation cycle of the meandering amount.
  • An object of the present invention is to provide a meandering control method, a meandering control device, and a hot rolling facility for a hot-rolled steel strip capable of appropriately adjusting a leveling amount with respect to a meandering amount that changes from moment to moment.
  • the method for controlling the meandering of a hot-rolled steel strip includes a plurality of rolling mills each having a leveling device for adjusting a reduction amount on the operation side and the drive side.
  • a method for controlling the meandering of a hot-rolled steel strip that is rolled by a finishing rolling facility is a method of controlling the meandering of a hot-rolled steel strip that is run by a line sensor camera installed between adjacent rolling mills. The positions of both ends in the width direction of the hot-rolled steel strip are detected from the one-dimensional brightness distribution based on the image captured in the imaging step by the imaging step of imaging the surface of the hot-rolled steel strip and the meandering amount calculation device.
  • the meandering amount calculation step for calculating the meandering amount of the hot rolled steel strip based on the detected positions of both ends in the width direction of the hot rolled steel strip, and the hot rolling running by the level control calculation device. Downstream of the position where the line sensor camera is installed, based on the meandering amount of the hot-rolled steel strip calculated in the meandering amount calculation step until the tail end of the steel strip passes through the line sensor camera.
  • the roll opening difference which is the opening difference between the roll gaps on the operation side and the drive side in the nearest rolling mill, is calculated, and the calculated roll opening difference is calculated as the leveling provided in the rolling mill located closest to the downstream side.
  • imaging by the line sensor camera in the imaging step is performed at a cycle of 5 msec or less, and the operation side and drive of the rolling mill located closest to the downstream side by the leveling control calculation step.
  • the gist is that the calculation of the difference in roll opening on the side and the adjustment of the rolling amount on the operating side and the driving side by the leveling device are performed in a cycle of 5 msec or less.
  • rolling is performed by a finishing rolling facility equipped with a plurality of rolling mills, each of which has a leveling device for adjusting a reduction amount on the operation side and the drive side.
  • This is a method for controlling the meandering of a hot-rolled steel strip, which controls the meandering of the hot-rolled steel strip, and is an infrared ray emitted from the surface of the hot-rolled steel strip traveling by an infrared camera installed between adjacent rolling mills.
  • the edge positions of both ends in the width direction of the hot-rolled steel strip were detected from the intensity distribution of the infrared rays imaged in the imaging step by the imaging step for imaging the intensity distribution of the hot-rolled steel strip and the meandering amount calculation device.
  • a meandering amount calculation step for calculating the meandering amount of the hot rolled steel strip based on the edge positions of both ends in the width direction of the hot rolled steel strip, and a level control calculation device for traveling the hot rolled steel strip.
  • the roll opening difference which is the opening difference between the roll gaps on the operation side and the drive side, is calculated, and the calculated roll opening difference is sent to the leveling device provided in the rolling mill located closest to the downstream side.
  • imaging by the infrared camera in the imaging step is performed at a cycle of 1 msec or less, and the roll opening difference between the operation side and the drive side in the rolling mill closest to the downstream side by the leveling control calculation step.
  • the gist is that the calculation of the above and the adjustment of the rolling amount on the operation side and the drive side by the leveling device are performed in a cycle of 1 msec or less.
  • the meandering control device for a hot-rolled steel strip is rolled by a finishing rolling facility equipped with a plurality of rolling machines, each of which has a leveling device for adjusting a reduction amount on the operation side and the drive side.
  • a line sensor camera that captures the surface of a running hot-rolled steel strip installed between adjacent rolling mills, which is a hot-rolled steel strip meandering control device that controls the meandering of the hot-rolled steel strip.
  • the positions of both ends in the width direction of the hot-rolled steel strip are detected from the one-dimensional brightness distribution based on the captured image obtained by the line sensor camera, and the detected width direction of the hot-rolled steel strip is detected.
  • a meandering amount calculation device that calculates the meandering amount of the hot-rolled steel strip based on the positions of both ends, and the meandering amount calculation until the tail end of the running hot-rolled steel strip passes through the line sensor camera. Based on the meandering amount of the hot-rolled steel strip calculated by the apparatus, the difference in opening of the roll gap between the operation side and the drive side in the rolling mill located immediately downstream of the position where the line sensor camera is installed. It is equipped with a leveling control calculation device that calculates a certain roll opening difference and sends the calculated roll opening difference to the leveling device provided in the rolling mill located closest to the downstream side, and images are taken by the line sensor camera.
  • the leveling control calculation device is used to calculate the difference in roll opening between the operation side and the drive side of the rolling mill located closest to the downstream side, and the leveling device is used to adjust the rolling amount on the operation side and the drive side by performing the cycle of 5 msec or less.
  • the gist is to perform this in a cycle of 5 msec or less.
  • the meandering control device for a hot-rolled steel strip is rolled by a finishing rolling facility equipped with a plurality of rolling machines, each of which has a leveling device for adjusting a reduction amount on the operation side and the drive side.
  • a meandering control device for hot-rolled steel strips that controls the meandering of hot-rolled steel strips, and the intensity of infrared rays emitted from the surface of the traveling hot-rolled steel strips installed between adjacent rolling mills.
  • the width of the hot-rolled steel strip is detected by detecting the edge positions of both ends in the width direction of the hot-rolled steel strip from the infrared camera that captures the distribution and the intensity portion of the infrared rays obtained by the infrared camera.
  • a meandering amount calculation device that calculates the meandering amount of the hot-rolled steel strip based on the edge positions at both ends in the direction, and the meandering amount until the tail end of the running hot-rolled steel strip passes through the infrared camera. Based on the meandering amount of the hot-rolled steel strip calculated by the calculation device, it is the difference in the opening degree of the roll gap between the operation side and the drive side in the rolling mill located immediately downstream of the position where the infrared camera is installed. It is equipped with a leveling control calculation device that calculates the roll opening difference and sends the calculated roll opening difference to the leveling device provided in the rolling mill located closest to the downstream side, and captures images with the infrared camera for 1 msec or less.
  • the leveling control calculation device calculates the difference in roll opening between the operation side and the drive side in the rolling mill closest to the downstream side, and the leveling device adjusts the rolling amount on the operation side and the drive side in 1 msec.
  • the gist is to do it in the following cycle.
  • the hot rolling equipment according to another aspect of the present invention has the above-mentioned meandering control device for hot rolled steel strips.
  • the meandering control method, the meandering control device, and the hot rolling equipment of the hot-rolled steel strip According to the meandering control method, the meandering control device, and the hot rolling equipment of the hot-rolled steel strip according to the present invention, the time required for the calculation processing of the meandering amount of the hot-rolled steel strip is shortened to calculate the meandering amount. It is possible to provide a meandering control method, a meandering control device, and a hot rolling facility for a hot-rolled steel strip, which can be made smaller and can appropriately adjust the leveling amount with respect to the meandering amount that changes from moment to moment.
  • FIG. 5 is a schematic configuration diagram of a finishing rolling equipment provided with a modified example of the meandering control device according to the second embodiment shown in FIG.
  • FIG. 5 is a schematic configuration diagram of a finishing rolling equipment provided with a meandering control device according to Comparative Example 1.
  • FIG. 5 is a schematic configuration diagram of a finishing rolling equipment provided with a meandering control device according to Comparative Example 2. It is a graph which shows the time change of the meandering amount in a rolling mill F7 when meandering control is performed by the meandering control device which concerns on Comparative Examples 1 to 3. It is a graph which shows the time change of the meandering amount in the rolling mill F7 when the meandering control is performed by the meandering control device which concerns on Examples 1 to 4. It is a schematic block diagram of a general finishing rolling equipment. It is a schematic diagram for demonstrating the meandering phenomenon of a steel strip.
  • FIG. 1 shows a schematic configuration of a finishing rolling equipment provided with a meandering control device according to the first embodiment of the present invention.
  • the hot rolling equipment for hot rolled steel strips, slabs heated in a heating furnace (not shown) undergo a rough rolling process, a finish rolling process, and a cooling process to produce steel sheets with a predetermined plate width and thickness. , Rolled up. That is, the hot rolling equipment includes a heating furnace, a rough rolling machine (not shown), a finishing rolling equipment 1 (see FIG. 1), a cooling equipment (not shown), and a winding equipment (not shown). And have.
  • the finish rolling equipment 1 includes a plurality of rolling mills F1 to F7 (7 in the present embodiment) for finish rolling the steel strip 10.
  • Each of the rolling mills F1 to F7 is provided with a leveling device 2 for adjusting the reduction amount on the operation side and the drive side, and a load detector 3 for detecting the rolling load on the operation side and the drive side.
  • the steel strip 10 travels (is conveyed) in the direction indicated by the arrow in FIG.
  • the drive side of each rolling mill F1 to F7 means the side where the drive motor of the transfer roll (not shown) is located, and the side opposite to the operation side.
  • Each leveling device 2 includes the amount of rolling by the rolling mills (not shown) attached to the operation side of the rolling mills F1 to F7 and the rolling mills (not shown) mounted on the drive side of the rolling mills F1 to F7. ) Adjust the amount of rolling.
  • the load detector 3 is attached to both the operation side and the drive side of the rolling mills F1 to F7 to detect the rolling load of each of the operation side and the drive side.
  • the finishing rolling equipment 1 is provided with a meandering control device 4 for controlling the meandering of the steel strip 10.
  • the meandering control device 4 is described as "meandering meter type meandering control" in the control section A from the time when the tail end portion 10a (see FIG. 11) of the traveling steel strip 10 passes through the rolling mill F6 to the time when the meandering control device 4 passes through the line sensor camera 5. Controls the meandering of the steel strip 10.
  • the "meandering control of the meandering meter method” refers to the leveling amount of the rolling mill F7 to be controlled (the operating side and the driving side of the rolling mill F7), which is located near the downstream side of the position where the line sensor camera 5 is installed, which will be described later.
  • the roll opening difference which is the difference in opening of the roll gap, is changed so as to be proportional to the meandering amount calculated based on the captured image captured by the line sensor camera 5. If the meandering of the steel strip 10 occurs on the operating side, change the leveling amount so that the operating side closes (to the "-" side), and if the meandering of the steel strip 10 occurs on the driving side, the driving side closes. Change the leveling amount (to the "+" side).
  • the meandering control device 4 is provided with a line sensor camera 5 installed between the rolling mill F6 and the rolling mill F7.
  • the line sensor camera 5 is a one-dimensional imaging device, which is composed of a CCD imaging sensor element or the like, and images the surface of a traveling steel strip S so as to scan in the width direction.
  • the line sensor camera 5 is installed so that the center CL1 (see FIG. 11) of each rolling mill F1 to F7 in the width direction (the same direction as the width direction of the steel strip 10) is within the field of view.
  • the line sensor camera 5 may be singular or plural.
  • the meandering control device 4 includes a meandering amount calculation device 6.
  • the meandering amount calculation device 6 detects the positions of both ends in the width direction of the steel strip 10 from the one-dimensional luminance distribution based on the captured image obtained by the line sensor camera 5.
  • the method for detecting the positions of both ends of the steel strip 10 in the width direction may be any method as long as it is obtained from the one-dimensional luminance distribution based on the captured image obtained by the line sensor camera 5.
  • the luminance value When it is larger than a certain threshold value, it is regarded as a portion where the steel strip 10 exists, and when the brightness value is smaller than a certain threshold value, it is regarded as a portion where the steel strip 10 does not exist.
  • the brightness value distributed in the width direction of the steel strip 10 is the threshold value.
  • the position beyond is the end.
  • the meandering amount calculation device 6 calculates the meandering amount of the steel strip 10 based on the detected positions of both ends of the steel strip 10 in the width direction. Specifically, the meandering amount calculation device 6 calculates the position of the center of the steel strip 10 in the width direction from the positions of both ends in the width direction of the detected steel strip 10, and in the width direction of each rolling mill F1 to F7. The distance from the center of the steel strip 10 to the calculated center position in the width direction of the steel strip 10 is calculated as the meandering amount of the steel strip 10.
  • the surface of the steel strip 10 traveling is imaged by the line sensor camera 5 installed between the adjacent rolling mills F6 and F7. Then, the positions of both ends in the width direction of the steel strip 10 are detected from the brightness distribution in the direction orthogonal to the traveling direction of the steel strip based on the captured image captured by the line sensor camera 5, and both ends in the width direction of the detected steel strip 10 are detected. The amount of meandering of the steel strip 10 is calculated based on the position of the portion.
  • the time required for the calculation process of the meandering amount of the steel strip 10 can be shortened, and the calculation cycle of the meandering amount can be shortened.
  • the two-dimensional data has a large amount of information, it takes time to transfer the image data and calculate the meandering amount from the image data, and the measurement cycle is long.
  • the leveling amount cannot be changed appropriately for the amount of meandering that becomes large and changes from moment to moment, and the meandering of the steel strip cannot be controlled appropriately. Therefore, by using the line sensor camera 5, it is possible to control the cycle of 5 msec or less, which is intended in the present invention.
  • the control cycle is preferably shorter than 5 msec or less.
  • the equipment can be made cheaper than the two-dimensional camera by using the line sensor camera 5 which is a one-dimensional imaging device.
  • the meandering control device 4 includes a leveling control calculation device 7.
  • the leveling control arithmetic unit 7 is calculated by the meandering amount calculation device 6 in the control section A from the tail end portion 10a (see FIG. 11) of the traveling steel strip 10 passing through the rolling mill F6 to passing through the line sensor camera 5.
  • the roll opening difference which is the opening difference between the roll gaps on the operation side and the drive side in the rolling mill F7 located immediately downstream of the position where the line sensor camera 5 is installed. Is calculated by the following equation (1).
  • S ⁇ A C ( ⁇ - ⁇ 6) + S 6 ... (1)
  • S difference in roll opening between the operating side and the driving side in the rolling mill F7
  • S 6 operating side and the driving side in the rolling mill F7 when the tail end portion 10a of the steel strip 10 passes through the rolling mill F6.
  • Roll opening difference ⁇ A : Control gain for the meandering amount measured by the meandering amount calculating device 6 in the control section A
  • ⁇ 6 When the tail end portion 10a of the steel strip 10 passes through the rolling mill F6.
  • C the amount of change in the leveling amount with respect to the meandering amount.
  • the leveling control calculation device 7 sends the calculated roll opening difference to the leveling device 2 provided in the rolling mill F7 to be controlled. Then, the leveling device 2 provided in the rolling mill F7 controls the rolling mill F7 to be controlled so that the roll opening difference of the rolling mill F7 to be controlled becomes the roll opening difference sent from the leveling control calculation device 7. The amount of reduction by the reduction device attached to the operation side of the rolling mill F7 and the amount of reduction by the reduction device attached to the drive side of the rolling mill F7 are adjusted. As a result, the leveling amount of the rolling mill F7 to be controlled is changed in proportion to the meandering amount of the steel strip 10, and the meandering amount of the steel strip 10 is suppressed.
  • imaging by the line sensor camera 5 is performed at a cycle of 5 msec or less, calculation of the roll opening difference between the operation side and the drive side of the rolling mill F7 to be controlled by the leveling control calculation device 7, and the operation side and the operation side by the leveling device 2
  • the rolling reduction amount on the drive side is adjusted in a cycle of 5 msec or less.
  • the meandering amount of the steel strip 10 can be reduced to 50 mm or less, and the occurrence of drawing of the steel strip 10 can be prevented.
  • the meandering amount of the steel strip 10 can be reduced to 30 mm or less, and the risk of meandering can be further reduced.
  • step S1 the finish rolling of the steel strip 10 is started, and when the tip of the steel strip 10 passes through the rolling mill F7 to be controlled, in step S1, the line sensor camera 5 installed between the adjacent rolling mills F6 and F7 The surface of the traveling steel strip 10 is imaged (imaging step).
  • step S2 the line sensor camera 5 transfers the captured image data to the meandering amount calculation device 6, and the meandering amount calculation device 6 obtains the steel strip 10 from the one-dimensional brightness distribution based on the captured image. Detects the position of both ends in the width direction of. Then, the meandering amount calculation device 6 calculates the meandering amount of the steel strip 10 based on the detected positions of both ends of the steel strip 10 in the width direction (meandering amount calculation step). Specifically, the meandering amount calculation device 6 calculates the position of the center of the steel strip 10 in the width direction from the positions of both ends in the width direction of the detected steel strip 10, and is the center of each rolling mill F1 to F7 in the width direction. From the above, the calculated distance to the center position in the width direction of the steel strip 10 is calculated as the meandering amount of the steel strip 10.
  • step S3 the leveling control calculation device 7 performs a meandering amount calculation step in the control section A from the time when the tail end portion 10a of the traveling steel strip 10 passes through the rolling mill F6 to the time when it passes through the line sensor camera 5.
  • Roll opening which is the difference in the opening degree of the roll gap between the operation side and the drive side in the rolling mill F7 located immediately downstream of the position where the line sensor camera 5 is installed, based on the meandering amount of the steel strip 10 calculated in The degree difference is calculated by the above-mentioned equation (1), and the calculated roll opening difference is sent to the leveling device 2 provided in the rolling mill F7 to be controlled (leveling control calculation step).
  • step S4 in the leveling device 2 provided in the rolling mill F7, the roll opening difference of the rolling mill F7 to be controlled is controlled by leveling based on the roll opening difference sent from the leveling control calculation device 7.
  • the amount of rolling by the rolling mill attached to the operating side of the rolling mill F7 and the amount of rolling by the rolling mill attached to the driving side of the rolling mill F7 so as to be the difference in roll opening sent from the arithmetic unit 7. Adjust (rolling amount adjustment step).
  • the leveling amount of the rolling mill F7 to be controlled is changed in proportion to the meandering amount of the steel strip 10, and the meandering amount of the steel strip 10 is suppressed.
  • step S2 when the data of the captured image captured by the line sensor camera 5 is transferred to the meandering amount calculation device 6, the data transfer cycle can be reduced. Further, since the image data captured by the line sensor camera 5 is small, the processing time can be shortened when calculating the meandering amount of the steel strip 10 in step S2.
  • step S2 when the captured image data is transferred to the meandering amount calculation device 6, the captured image data is large, so that the data transfer is slow, and in step S2, when calculating the meandering amount of the steel strip 10.
  • the calculation takes time.
  • the two-dimensional camera having a large number of pixels becomes more expensive.
  • the line sensor camera 5 can be introduced at a lower cost when trying to obtain the same accuracy.
  • the leveling control calculation device 7 calculates the roll opening difference, which is the opening difference between the roll gaps on the operation side and the drive side in the rolling mill F7. Then, in step S4, the leveling device 2 provided in the rolling mill F7 rolls so that the roll opening difference of the rolling mill F7 to be controlled becomes the roll opening difference sent from the leveling control calculation device 7. The amount of reduction by the reduction device attached to the operation side of the machine F7 and the amount of reduction by the reduction device attached to the drive side of the rolling mill F7 are adjusted. At this time, until the roll opening difference between the operation side and the drive side in the next rolling mill F7 is calculated, the roll opening difference is not changed and is sent to the leveling device 2.
  • the meandering amount of the steel strip 10 changes from moment to moment, it is possible to reduce the imaging cycle of the camera and constantly change the leveling amount (roll opening difference) with respect to the meandering amount of the steel strip 10. preferable.
  • it is difficult to constantly change the leveling amount because there is a limit to the cycle of camera imaging, data transfer, and meandering amount calculation, but it is possible to perform camera imaging, data transfer, and meandering amount calculation. It is preferable to perform the operation at an early cycle and change the leveling according to the amount of meandering.
  • the line sensor camera 5 When the line sensor camera 5 is used as in the present embodiment, data transfer and meandering amount calculation can be performed at high speed, so that the leveling amount (roll opening difference) can be measured at a faster cycle than when the two-dimensional camera is used. Can be changed. The smaller the cycle for changing the leveling amount (difference in roll opening), the better. Under the condition of thin plate thickness where drawing is likely to occur, the time for the tail end portion 10a of the steel strip 10 to pass between the rolling mill F6 and the rolling mill F7 is less than 1 second. Therefore, it is necessary to control the leveling amount for suppressing meandering in a short time.
  • the meandering amount of the steel strip 10 In order to prevent drawing, it is necessary to reduce the meandering amount of the steel strip 10 to 50 mm or less.
  • the meandering amount When the imaging cycle of the line sensor camera 5 is set to 5 msec or less, the meandering amount can be set to 50 mm or less, and the occurrence of an aperture can be prevented. Further, when the imaging cycle of the line sensor camera 5 is 1 msec, the amount of meandering can be reduced to 30 mm or less, so that the risk of meandering is further reduced.
  • FIG. 3 shows a schematic configuration of a finishing rolling equipment provided with a meandering control device according to a second embodiment of the present invention.
  • FIG. 4 shows a flowchart showing the flow of processing by the meandering control device according to the second embodiment of the present invention.
  • the meandering control device 4 according to the second embodiment has the same basic configuration as the meandering control device 4 according to the first embodiment, but the meandering control device 4 according to the first embodiment has a tail of a steel strip 10 on which it travels.
  • the meandering of the steel strip 10 is controlled by "meandering control of the meandering meter method".
  • the meandering control device 4 according to the second embodiment in the control section A from when the tail end portion 10a of the traveling steel strip 10 passes through the rolling mill F6 to when it passes through the line sensor camera 5, "meandering".
  • the “difference load method meandering control” sets the leveling amount of the rolling mill F7 to be controlled (roll opening difference, which is the opening difference between the roll gaps on the operation side and the drive side in the rolling mill F7).
  • the load is changed so as to be proportional to the difference load between the operation side and the drive side detected from the rolling load on the operation side and the drive side detected by the load detector 3 provided in F7.
  • the line sensor camera 5 of the meandering control device 4 is installed between the rolling mill F6 and the rolling mill F7, and is a one-dimensional imaging device, similarly to the line sensor camera 5 of the meandering control device 4 according to the first embodiment. It is composed of a CCD imaging sensor element or the like, and images are taken so as to scan the surface of the traveling steel strip S in the width direction.
  • the line sensor camera 5 is installed so that the center CL1 (see FIG. 11) of each rolling mill F1 to F7 in the width direction (the same direction as the width direction of the steel strip 10) is within the field of view.
  • the line sensor camera 5 may be singular or plural.
  • the meandering amount calculating device 6 of the meandering control device 4 has a one-dimensional brightness based on the captured image obtained by the line sensor camera 5, similarly to the meandering amount calculating device 6 of the meandering control device 4 according to the first embodiment.
  • the positions of both ends of the steel strip 10 in the width direction are detected from the distribution.
  • the meandering amount calculation device 6 calculates the meandering amount of the steel strip 10 based on the detected positions of both ends of the steel strip 10 in the width direction.
  • the meandering amount calculation device 6 calculates the position of the center of the steel strip 10 in the width direction from the positions of both ends in the width direction of the detected steel strip 10, and in the width direction of each rolling mill F1 to F7.
  • the distance from the center of the steel strip 10 to the calculated center position in the width direction of the steel strip 10 is calculated as the meandering amount of the steel strip 10.
  • the surface of the steel strip 10 traveling by the line sensor camera 5 installed between the adjacent rolling mills F6 and F7 is imaged. Then, the positions of both ends in the width direction of the steel strip 10 are detected from the one-dimensional brightness distribution based on the captured image captured by the line sensor camera 5, and the positions of both ends in the width direction of the detected steel strip 10 are used.
  • the meandering amount of the steel strip 10 is calculated by calculating the position at the center of the steel strip 10 in the width direction. As a result, the time required for the calculation process of the meandering amount of the steel strip 10 can be shortened, and the calculation cycle of the meandering amount can be shortened.
  • the two-dimensional data has a large amount of information, it takes time to transfer the image data and calculate the meandering amount from the image data, and the measurement cycle is long.
  • the leveling amount cannot be changed appropriately for the amount of meandering that becomes large and changes from moment to moment, and the meandering of the steel strip cannot be controlled appropriately.
  • the equipment when detecting the meandering amount, the equipment can be made cheaper than the two-dimensional camera by using the line sensor camera 5 which is a one-dimensional imaging device.
  • the meandering control device 4 includes a leveling control calculation device 7 as in the meandering control device 4 according to the first embodiment.
  • the leveling control arithmetic unit 7 uses both "meandering control of the meandering meter method" and “meandering control of the differential load method" in the control section A, and in the control section B, the steel strip is made only by "meandering control of the differential load method".
  • Control 10 meanders.
  • the leveling control calculation device 7 detects the load provided on the rolling mill F7 in the control section A from the time when the tail end portion 10a of the traveling steel strip 10 passes through the rolling mill F6 to the time when it passes through the line sensor camera 5.
  • the rolling mill F7 based on the difference load on the operation side and the drive side obtained from the rolling load on the operation side and the drive side detected by the vessel 3 and the meandering amount of the steel strip 10 calculated by the meandering amount calculation device 6.
  • the roll opening difference between the operation side and the drive side is calculated by the following equation (2), and the calculated roll opening difference is sent to the leveling device 2 provided in the rolling mill F7.
  • S ⁇ A C ( ⁇ - ⁇ 6) + ⁇ A D ( ⁇ P- ⁇ P 6) + S 6 ...
  • S difference in roll opening between the operating side and the driving side in the rolling mill F7
  • S 6 operating side and the driving side in the rolling mill F7 when the tail end portion 10a of the steel strip 10 passes through the rolling mill F6.
  • Roll opening difference, ⁇ A Control gain for the meandering amount calculated by the meandering amount calculation device 6 in the control section A
  • ⁇ A Detected from the load detector 3 provided on the rolling mill F7 in the control section A.
  • Control gain for the differential load ⁇ 6 : Serpentine amount calculated by the meandering amount calculation device 6 when the tail end portion 10a of the steel strip 10 passes through the rolling mill F6,
  • ⁇ P 6 Tail end of the steel strip 10.
  • Difference load detected from the load detector 3 provided on the rolling mill F7 when the portion 10a passes through the rolling mill F6 ⁇ : Serpentine amount calculated by the meandering amount calculating device 6 in the control section A, ⁇ P : Difference load detected from the load detector 3 provided in the rolling mill F7 in the control section A, C: Change in leveling amount with respect to meandering amount, D: Roll diameter, roll length, number of rolls, width of rolled material It is a constant determined by.
  • S roll opening difference of the operation side and drive side of the rolling mill F7
  • S B tail portion 10a of the strip 10 when the exit the line sensor camera 5, the operating side and the driving of the rolling mill F7 Roll opening difference on the side
  • ⁇ B Control gain for the difference load detected from the load detector 3 provided on the rolling mill F7 in the control section B
  • ⁇ P 6 The tail end 10a of the steel strip 10 is the rolling mill.
  • ⁇ P differential load detected from the load detector 3 provided on the rolling mill F7 in the control section B
  • D A constant determined by the roll diameter, roll length, number of rolls, width of rolled material, and the like.
  • the roll opening difference of the rolling mill F7 to be controlled is changed from the leveling control calculation device 7 based on the roll opening difference sent from the leveling control calculation device 7.
  • the amount of rolling by the rolling mill attached to the operation side of the rolling mill F7 to be controlled and the amount of rolling by the rolling mill attached to the driving side of the rolling mill F7 are adjusted so as to be the difference in the delivered roll opening degree. To do.
  • the leveling amount of the rolling mill F7 to be controlled is changed in proportion to the meandering amount of the steel strip 10, and the meandering amount of the steel strip 10 is suppressed.
  • imaging by the line sensor camera 5 is performed at a cycle of 5 msec or less, calculation of the roll opening difference between the operation side and the drive side of the rolling mill F7 to be controlled by the leveling control calculation device 7, and the operation side and the operation side by the leveling device 2
  • the rolling reduction amount on the drive side is adjusted in a cycle of 5 msec or less.
  • the meandering amount of the steel strip 10 can be reduced to 50 mm or less, and the occurrence of drawing of the steel strip 10 can be prevented.
  • the meandering amount of the steel strip 10 can be reduced to 30 mm or less, and the risk of meandering can be further reduced.
  • step S11 the finish rolling of the steel strip 10 is started, and when the tip of the steel strip 10 passes through the rolling mill F7 to be controlled, the line sensor camera 5 installed between the adjacent rolling mills F6 and F7 The surface of the traveling steel strip 10 is imaged (imaging step).
  • step S12 the line sensor camera 5 transfers the captured image data to the meandering amount calculation device 6, and the meandering amount calculation device 6 starts from the one-dimensional brightness distribution based on the captured image in the width direction of the steel strip 10. Detect the position of both ends.
  • the meandering amount calculation device 6 calculates the position of the center of the steel strip 10 in the width direction from the positions of both ends in the width direction of the detected steel strip 10, and from the center of each rolling mill F1 to F7 in the width direction, The calculated distance to the center position in the width direction of the steel strip 10 is calculated as the meandering amount of the steel strip 10 (serpentine amount calculation step).
  • step S13 the leveling control arithmetic unit 7 is the difference between the operating side and the driving side from the rolling load on the operating side and the driving side detected by the load detector 3 provided in the rolling mill F7 which is the controlled object.
  • step S14 the leveling control calculation device 7 shifts to the rolling mill F7 in the control section A from when the tail end portion 10a of the traveling steel strip 10 passes through the rolling mill F6 to when it passes through the line sensor camera 5.
  • the meandering amount of the steel strip 10 calculated by the meandering amount calculation device 6.
  • the roll opening difference between the operation side and the drive side in the rolling mill F7 is calculated by the above equation (2), and the calculated roll opening difference is sent to the leveling device 2 provided in the rolling mill F7 (leveling control). Calculation step).
  • the leveling control calculation device 7 is a load detector provided on the rolling mill F7 in the control section B from the tail end portion 10a of the traveling steel strip 10 passing through the line sensor camera 5 to passing through the rolling mill F7. Based on the difference load between the operation side and the drive side obtained from the rolling load on the operation side and the drive side detected by 3, the roll opening difference between the operation side and the drive side in the rolling mill F7 is calculated by the above equation (3). Then, the calculated roll opening difference is sent to the leveling device 2 provided in the rolling mill F7 (leveling control calculation step).
  • step S15 the leveling device 2 provided in the rolling mill F7 has a roll opening difference of the rolling mill F7 to be controlled based on the roll opening difference sent from the leveling control arithmetic unit 7.
  • adjust rolling amount adjustment step
  • the roll opening degree of the rolling mill F7 to be controlled is in the control section A from the tail end portion 10a of the traveling steel strip 10 passing through the rolling mill F6 to passing through the line sensor camera 5.
  • the amount of rolling by the rolling mill attached to the operation side of the rolling mill F7 and the rolling mill attached to the driving side of the rolling mill F7 so that the difference is the roll opening difference calculated by Eq. (2). Adjust the amount of rolling.
  • the leveling device 2 has a roll opening degree of the rolling mill F7 to be controlled in the control section B from the tail end portion 10a of the traveling steel strip 10 passing through the line sensor camera 5 to passing through the rolling mill F7.
  • step S12 when the data of the captured image captured by the line sensor camera 5 is transferred to the meandering amount calculation device 6, the data transfer cycle can be reduced. Further, since the image data captured by the line sensor camera 5 is small, the processing time can be shortened in step S12 when calculating the meandering amount of the steel strip 10 as in step S2.
  • the line sensor camera 5 and the two-dimensional camera try to measure the meandering amount with the same accuracy
  • the two-dimensional camera having a large number of pixels becomes more expensive.
  • the line sensor camera 5 can be introduced at a lower cost when trying to obtain the same accuracy.
  • the leveling amount has a faster cycle than when the two-dimensional camera is used. The (roll opening difference) can be changed, and the leveling can be changed according to the meandering amount that is changing from moment to moment.
  • the meandering control device 4 has a "meandering meter method" in the control section A from the time when the tail end portion 10a of the traveling steel strip 10 passes through the rolling mill F6 to the time when it passes through the line sensor camera 5.
  • "meandering meter type meandering control” and “difference load type meandering control” are used in combination with the meandering control device 4 according to the first embodiment in which the meandering of the steel strip 10 is controlled only by "meandering control".
  • the meandering control device 4 according to the second embodiment can further suppress the meandering amount of the steel strip 10 as compared with the meandering control device 4 according to the first embodiment.
  • FIG. 6 shows a schematic configuration of a finishing rolling equipment provided with a meandering control device according to a third embodiment of the present invention.
  • FIG. 7 shows a flowchart showing the flow of processing by the meandering control device according to the third embodiment of the present invention.
  • the meandering control device 4 according to the third embodiment has the same basic configuration as the meandering control device 4 according to the first embodiment, and in the control section A, the meandering of the steel strip 10 is performed by "meandering control of the meandering meter method". Control.
  • the meandering control device 4 according to the first embodiment uses a line sensor camera 5 installed between the adjacent rolling mills F6 and F7 to image the surface of the traveling steel strip 10.
  • the meandering control device 4 according to the third embodiment is an infrared camera 20 installed between the adjacent rolling mills F6 and F7, and images the intensity distribution of infrared rays emitted from the surface of the traveling steel strip 10. It differs in that.
  • the meandering control device 4 uses the meandering amount calculation device 6 to determine the positions of both ends of the steel strip 10 in the width direction from the one-dimensional brightness distribution based on the captured image obtained by the line sensor camera 5. It is detected, and the meandering amount of the steel strip 10 is calculated based on the positions of both ends of the detected steel strip 10 in the width direction.
  • the meandering amount calculation device 21 detects the edge positions of both ends in the width direction of the steel strip 10 from the infrared intensity portion obtained by the infrared camera 20. The device is used to calculate the meandering amount of the steel strip 10 based on the detected edge positions of both ends of the steel strip 10 in the width direction.
  • the infrared camera 20 in the meandering control device 4 images the intensity distribution of infrared rays emitted from the surface of the traveling steel strip 10.
  • the steel strip 10 has a high temperature (600 ° C. to 1000 ° C.) because it is heated in a heating furnace (not shown) in the finishing rolling equipment 1, and is a self-luminous measurement object having a predetermined calorific value. It has become.
  • infrared rays are less likely to be scattered by steam, and even when there is steam between the steel strip 10 and the infrared camera 20, the intensity distribution of infrared rays emitted from the surface of the steel strip 10 can be imaged.
  • the intensity distribution of infrared rays corresponds to the temperature distribution of the steel strip 10.
  • the temperature of the steel strip 10 in the finishing rolling equipment 1 is 600 ° C. to 1000 ° C. as described above.
  • a place of 400 ° C. or higher is defined as a place where the steel strip 10 exists, an image captured by the infrared camera 20.
  • the place where the steel strip 10 exists is the place where the intensity of infrared rays corresponding to 400 ° C. or higher is present.
  • the wavelength used in the infrared camera 20 is preferably more than 1.5 ⁇ m and 1000 ⁇ m or less.
  • the wavelength of infrared rays is 1.5 ⁇ m or less or more than 1000 ⁇ m, the high measurement accuracy intended by the present invention cannot be obtained, and the edge positions of both ends in the width direction of the steel strip 10 cannot be detected appropriately and quickly.
  • the wavelength of infrared rays used in the infrared camera 20 is more than 1.5 ⁇ m and 1000 ⁇ m or less, the measurement accuracy can be further increased as in the examples described later.
  • the wavelength used in the infrared camera 20 is more preferably 3.0 ⁇ m or more and 1000 ⁇ m or less.
  • the number of infrared cameras 20 installed may be one or more. However, the rolling mills F6 and F7 are installed so that the center CL1 (see FIG. 15) in the width direction is within the field of view of the predetermined infrared camera 20.
  • the meandering amount calculation device 21 detects the edge positions of both ends in the width direction of the steel strip 10 from the intensity distribution of infrared rays captured by the infrared camera 20. That is, the meandering amount calculation device 21 detects the end portion on the operation side and the end portion on the drive side of the steel strip 10 in the width direction from the intensity distribution of infrared rays.
  • a predetermined threshold value the value of the strength corresponding to the above-mentioned 400 ° C.
  • the steel strip 10 When the intensity of infrared rays is smaller than a predetermined threshold value, the steel strip 10 is regarded as a non-existent portion, and the portion where the intensity of infrared rays is a predetermined threshold value is driven to the edge position, that is, the end portion of the steel strip 10 on the operating side in the width direction. Identify as the side edge.
  • the meandering amount calculation device 21 calculates the position of the center of the steel strip 10 in the width direction from the edge positions of both ends of the detected steel strip 10 in the width direction, and from the center of the rolling mills F1 to F7 in the width direction.
  • the calculated distance to the center position in the width direction of the steel strip 10 is calculated as the meandering amount of the steel strip 10.
  • the meandering control device 4 according to the third embodiment, the intensity distribution of infrared rays emitted from the surface of the steel strip 10 traveling by the infrared camera 20 is imaged, and the meandering amount calculation device 21 is used by the infrared camera 20.
  • the edge positions of both ends of the steel strip 10 in the width direction are detected from the imaged infrared intensity distribution. As a result, even when the edges of both ends of the steel strip 10 in the width direction are completely covered with steam, the infrared intensity distribution is appropriately and quickly imaged, and the infrared intensity distribution is used to determine the width direction of the steel strip 10. The edge positions at both ends can be detected appropriately and quickly.
  • the meandering amount calculation device 21 calculates the position of the center of the steel strip 10 in the width direction from the edge positions of both ends in the width direction of the detected steel strip 10. , The distance from the center of the rolling mills F6 to F7 in the width direction to the calculated center position of the steel strip 10 in the width direction is calculated as the meandering amount of the steel strip 10. As a result, even when the edges of both ends of the steel strip 10 in the width direction are completely covered with steam, the steel strip 10 is appropriately and quickly detected based on the edge positions of both ends of the steel strip 10 in the width direction. The amount of meandering can be calculated appropriately and quickly.
  • the meandering amount that is, when measuring the meandering amount of the steel strip 10
  • the meandering control device 4 includes a leveling control calculation device 7 as in the meandering control device 4 according to the first embodiment.
  • the leveling control arithmetic unit 7 is calculated by the meandering amount calculation device 21 in the control section A from the tail end portion 10a (see FIG. 15) of the traveling steel strip 10 passing through the rolling mill F6 to passing through the infrared camera 20.
  • the roll opening difference which is the opening difference between the roll gaps on the operation side and the drive side in the rolling mill F7 located immediately downstream of the position where the infrared camera 20 is installed, is described above.
  • the calculation is performed by the same equation (1) as in.
  • the leveling control calculation device 7 sends the calculated roll opening difference to the leveling device 2 provided in the rolling mill F7 to be controlled.
  • the leveling device 2 provided in the rolling mill F7 controls the rolling mill F7 to be controlled so that the roll opening difference of the rolling mill F7 to be controlled becomes the roll opening difference sent from the leveling control calculation device 7.
  • the amount of reduction by the reduction device attached to the operation side of the rolling mill F7 and the amount of reduction by the reduction device attached to the drive side of the rolling mill F7 are adjusted.
  • the leveling amount of the rolling mill F7 to be controlled is changed in proportion to the meandering amount of the steel strip 10, and the meandering amount of the steel strip 10 is suppressed.
  • imaging by the infrared camera 20 is performed at a cycle of 1 msec or less, calculation of the roll opening difference between the operation side and the drive side in the rolling mill F7 to be controlled by the leveling control calculation device 7, and operation side and drive by the leveling device 2.
  • the rolling reduction amount on the side is adjusted in a cycle of 1 msec or less.
  • the finish rolling of the steel strip 10 is started, and when the tip of the steel strip 10 passes through the rolling mill F7 to be controlled, the product is traveled by the infrared camera 20 installed between the adjacent rolling mills F6 and F7 in step S21.
  • the intensity distribution of infrared rays emitted from the surface of the steel strip 10 is imaged (imaging step).
  • step S22 the infrared camera 20 transfers the imaged infrared intensity distribution data to the meandering amount calculation device 21, and the meandering amount calculation device 21 uses the infrared intensity distribution at both ends of the steel strip 10 in the width direction. Detects the edge position of. Then, the meandering amount calculation device 21 calculates the meandering amount of the steel strip 10 based on the detected edge positions of both ends in the width direction of the steel strip 10 (meandering amount calculation step). Specifically, the meandering amount calculation device 21 calculates the position of the center of the steel strip 10 in the width direction from the edge positions of both ends of the detected steel strip 10 in the width direction, and in the width direction of each rolling mill F1 to F7. The distance from the center to the calculated center position in the width direction of the steel strip 10 is calculated as the meandering amount of the steel strip 10.
  • step S23 the leveling control calculation device 7 performs a meandering amount calculation step in the control section A from the time when the tail end portion 10a of the traveling steel strip 10 passes through the rolling mill F6 to the time when it passes through the infrared camera 20.
  • the roll opening difference which is the opening difference between the roll gaps on the operation side and the drive side in the rolling mill F7 located immediately downstream of the position where the infrared camera 20 is installed. Is calculated by the above equation (1), and the calculated roll opening difference is sent to the leveling device 2 provided in the rolling mill F7 to be controlled (leveling control calculation step).
  • step S24 in the leveling device 2 provided in the rolling mill F7, the roll opening difference of the rolling mill F7 to be controlled is controlled by leveling based on the roll opening difference sent from the leveling control calculation device 7.
  • the amount of rolling by the rolling mill attached to the operating side of the rolling mill F7 and the amount of rolling by the rolling mill attached to the driving side of the rolling mill F7 so as to be the difference in roll opening sent from the arithmetic unit 7. Adjust (rolling amount adjustment step).
  • the leveling amount of the rolling mill F7 to be controlled is changed in proportion to the meandering amount of the steel strip 10, and the meandering amount of the steel strip 10 is suppressed.
  • the imaging step the intensity distribution of infrared rays emitted from the surface of the steel strip 10 traveling by the infrared cameras 20 installed between the adjacent rolling mills F6 and F7 is imaged, and in the meandering amount calculation step, the meandering amount calculation device 21 , The edge positions of both ends of the steel strip 10 in the width direction are detected from the intensity distribution of infrared rays, and the meandering amount of the steel strip 10 is calculated based on the detected edge positions of both ends of the steel strip 10 in the width direction.
  • the infrared intensity distribution is appropriately and quickly imaged, and the infrared intensity distribution is used to determine the width direction of the steel strip 10.
  • the edge positions at both ends can be detected appropriately and quickly.
  • the steel strip 10 is appropriately and quickly detected based on the edge positions of both ends of the steel strip 10 in the width direction.
  • the amount of meandering can be calculated appropriately and quickly.
  • the meandering amount that is, when measuring the meandering amount of the steel strip 10
  • imaging by the infrared camera 20 is performed at a cycle of 1 msec or less, calculation of the roll opening difference between the operation side and the drive side in the rolling mill F7 to be controlled by the leveling control calculation device 7, and the operation side and the operation side by the leveling device 2
  • the rolling reduction amount on the drive side is adjusted in a cycle of 1 msec or less.
  • the meandering amount of the steel strip 10 can be reduced to 30 mm or less, and the risk of meandering can be reduced.
  • FIG. 8 shows a schematic configuration of a finishing rolling equipment provided with a meandering control device according to a fourth embodiment of the present invention.
  • FIG. 9 shows a flowchart showing the flow of processing by the meandering control device according to the fourth embodiment of the present invention.
  • the meandering control device 4 according to the fourth embodiment has the same basic configuration as the meandering control device 4 according to the second embodiment, and in the control section A, "meandering control of the meandering meter method" and “meandering of the differential load method". "Control” is also used, and in the control section B, the meandering of the steel strip 10 is controlled only by "the meandering control of the differential load method".
  • the meandering control device 4 according to the second embodiment uses the line sensor camera 5 installed between the adjacent rolling mills F6 and F7 to image the surface of the traveling steel strip 10.
  • the meandering control device 4 according to the fourth embodiment is an infrared camera 20 installed between the adjacent rolling mills F6 and F7, and images the intensity distribution of infrared rays emitted from the surface of the traveling steel strip 10. It differs in that.
  • the meandering control device 4 uses the meandering amount calculation device 6 to determine the positions of both ends of the steel strip 10 in the width direction from the one-dimensional brightness distribution based on the captured image obtained by the line sensor camera 5. It is detected, and the meandering amount of the steel strip 10 is calculated based on the positions of both ends of the detected steel strip 10 in the width direction.
  • the meandering amount calculation device 21 detects the edge positions of both ends in the width direction of the steel strip 10 from the infrared intensity portion obtained by the infrared camera 20. The device is used to calculate the meandering amount of the steel strip 10 based on the detected edge positions of both ends of the steel strip 10 in the width direction.
  • the infrared camera 20 in the meandering control device 4 according to the fourth embodiment captures an image of the intensity distribution of infrared rays emitted from the surface of the traveling steel strip 10. Therefore, even when the edges of both ends of the steel strip 10 in the width direction are completely covered with steam, the intensity distribution of infrared rays can be appropriately and quickly imaged.
  • the wavelength used in the infrared camera 20 is preferably more than 1.5 ⁇ m and 1000 ⁇ m or less for the same reason as the infrared camera 20 according to the third embodiment.
  • the wavelength used in the infrared camera 20 is more preferably 3.0 ⁇ m or more and 1000 ⁇ m or less.
  • the number of infrared cameras 20 installed may be one or more. However, the rolling mills F6 and F7 are installed so that the center CL1 (see FIG. 15) in the width direction is within the field of view of the predetermined infrared camera 20.
  • the intensity distribution of infrared rays emitted from the surface of the steel strip 10 traveling by the infrared camera 20 is imaged, and the infrared rays imaged by the infrared camera 20 by the meandering amount calculation device 21.
  • the edge positions of both ends of the steel strip 10 in the width direction are detected from the strength distribution of. As a result, even when the edges of both ends of the steel strip 10 in the width direction are completely covered with steam, the infrared intensity distribution is appropriately and quickly imaged, and the infrared intensity distribution is used to determine the width direction of the steel strip 10.
  • the edge positions at both ends can be detected appropriately and quickly.
  • the meandering amount calculation device 21 calculates the position of the center of the steel strip 10 in the width direction from the edge positions of both ends in the width direction of the detected steel strip 10. , The distance from the center of the rolling mills F6 to F7 in the width direction to the calculated center position of the steel strip 10 in the width direction is calculated as the meandering amount of the steel strip 10. As a result, even when the edges of both ends of the steel strip 10 in the width direction are completely covered with steam, the steel strip 10 is appropriately and quickly detected based on the edge positions of both ends of the steel strip 10 in the width direction. The amount of meandering can be calculated appropriately and quickly.
  • the meandering control device 4 includes a leveling control calculation device 7 as in the meandering control device 4 according to the second embodiment.
  • the leveling control arithmetic unit 7 uses both "meandering control of the meandering meter method" and “meandering control of the differential load method" in the control section A, and in the control section B, the steel strip is made only by "meandering control of the differential load method". Control 10 meanders.
  • the leveling control calculation device 7 is a load detector provided on the rolling mill F7 in the control section A from the tail end portion 10a of the traveling steel strip 10 passing through the rolling mill F6 to passing through the infrared camera 20. Operation in the rolling mill F7 based on the difference load on the operation side and the drive side obtained from the rolling load on the operation side and the drive side detected by 3 and the meandering amount of the steel strip 10 calculated by the meandering amount calculation device 21. The roll opening difference between the side and the drive side is calculated by the above equation (2), and the calculated roll opening difference is sent to the leveling device 2 provided in the rolling mill F7.
  • the leveling control calculation device 7 is a load detector 3 provided on the rolling mill F7 in the control section B from the tail end portion 10a of the traveling steel strip 10 passing through the infrared camera 20 to passing through the rolling mill F7. Based on the difference load between the operation side and the drive side obtained from the rolling load on the operation side and the drive side detected by the above method, the roll opening difference between the operation side and the drive side in the rolling mill F7 is calculated by the above equation (3). , The calculated roll opening difference is sent to the leveling device 2 provided in the rolling mill F7.
  • the roll opening difference of the rolling mill F7 to be controlled is changed from the leveling control calculation device 7 based on the roll opening difference sent from the leveling control calculation device 7.
  • the amount of rolling by the rolling mill attached to the operation side of the rolling mill F7 to be controlled and the amount of rolling by the rolling mill attached to the driving side of the rolling mill F7 are adjusted so as to be the difference in the delivered roll opening degree. To do.
  • the leveling amount of the rolling mill F7 to be controlled is changed in proportion to the meandering amount of the steel strip 10, and the meandering amount of the steel strip 10 is suppressed.
  • imaging by the infrared camera 20 is performed at a cycle of 1 msec or less, calculation of the roll opening difference between the operation side and the drive side in the rolling mill F7 to be controlled by the leveling control calculation device 7, and operation side and drive by the leveling device 2.
  • the rolling reduction amount on the side is adjusted in a cycle of 1 msec or less.
  • step S31 the finish rolling of the steel strip 10 is started, and when the tip of the steel strip 10 passes through the rolling mill F7 to be controlled, the infrared camera 20 installed between the adjacent rolling mills F6 and F7 travels.
  • the intensity distribution of infrared rays emitted from the surface of the steel strip 10 is imaged (imaging step).
  • step S32 the infrared camera 20 transfers the imaged infrared intensity distribution data to the meandering amount calculation device 21, and the meandering amount calculation device 21 uses the infrared intensity distribution at both ends of the steel strip 10 in the width direction.
  • the meandering amount calculation device 21 calculates the position of the center of the steel strip 10 in the width direction from the edge positions of both ends of the detected steel strip 10 in the width direction, and starts from the center of each rolling mill F1 to F7 in the width direction. , The calculated distance to the center position in the width direction of the steel strip 10 is calculated as the meandering amount of the steel strip 10 (serpentine amount calculation step).
  • step S33 the leveling control arithmetic unit 7 is the difference between the operating side and the driving side from the rolling load on the operating side and the driving side detected by the load detector 3 provided in the rolling mill F7 which is the controlled object.
  • the process proceeds to step S34, and the leveling control calculation device 7 is provided in the rolling mill F7 in the control section A from the tail end portion 10a of the traveling steel strip 10 passing through the rolling mill F6 to passing through the infrared camera 20.
  • the meandering amount of the steel strip 10 calculated by the meandering amount calculation device 21.
  • the roll opening difference between the operation side and the drive side in the rolling mill F7 is calculated by the above equation (2), and the calculated roll opening difference is sent to the leveling device 2 provided in the rolling mill F7 (leveling control calculation). Step).
  • the leveling control calculation device 7 is a load detector 3 provided on the rolling mill F7 in the control section B from the tail end portion 10a of the traveling steel strip 10 passing through the infrared camera 20 to passing through the rolling mill F7. Based on the difference load between the operation side and the drive side obtained from the rolling load on the operation side and the drive side detected by the above method, the roll opening difference between the operation side and the drive side in the rolling mill F7 is calculated by the above equation (3). , The calculated roll opening difference is sent to the leveling device 2 provided in the rolling mill F7 (leveling control calculation step).
  • step S35 the leveling device 2 provided in the rolling mill F7 has a roll opening difference of the rolling mill F7 to be controlled based on the roll opening difference sent from the leveling control arithmetic unit 7.
  • adjust rolling amount adjustment step
  • the roll opening difference of the rolling mill F7 to be controlled is different.
  • the amount of rolling by the rolling down device attached to the operation side of the rolling mill F7 and the rolling down by the rolling mill attached to the driving side of the rolling mill F7 so that the roll opening difference calculated by the equation (2) is obtained. Adjust the amount.
  • the roll opening difference of the rolling mill F7 to be controlled is different.
  • the imaging step the intensity distribution of infrared rays emitted from the surface of the steel strip 10 traveling by the infrared cameras 20 installed between the adjacent rolling mills F6 and F7 is imaged, and in the meandering amount calculation step, the meandering amount calculation device 21 , The edge positions of both ends of the steel strip 10 in the width direction are detected from the intensity distribution of infrared rays, and the meandering amount of the steel strip 10 is calculated based on the detected edge positions of both ends of the steel strip 10 in the width direction.
  • the infrared intensity distribution is appropriately and quickly imaged, and the infrared intensity distribution is used to determine the width direction of the steel strip 10.
  • the edge positions at both ends can be detected appropriately and quickly.
  • the steel strip 10 is appropriately and quickly detected based on the edge positions of both ends of the steel strip 10 in the width direction. The amount of meandering can be calculated appropriately and quickly.
  • the meandering amount that is, when measuring the meandering amount of the steel strip 10
  • the meandering control device 4 according to the fourth embodiment has "meandering meter type meandering" in the control section A from the time when the tail end portion 10a of the traveling steel strip 10 passes through the rolling mill F6 to the time when the meandering control device 4 passes through the infrared camera 20.
  • meandering control device 4 according to the third embodiment which controls the meandering of the steel strip 10 only by "control”
  • meandering control of the meandering meter method and “meandering control of the differential load method” are used together in the control section A.
  • the meandering control device 4 according to the fourth embodiment can further suppress the meandering amount of the steel strip 10 as compared with the meandering control device 4 according to the third embodiment.
  • the rolling mill to be controlled is the seventh rolling mill F7 counting from the upstream side, but the line sensor camera 5 or the infrared camera 20 is used.
  • a rolling mill F6, a rolling mill F5, a rolling mill F4, or the like other than the rolling mill F7 may be used as long as the rolling mill is located closest to the downstream side of the installed position.
  • the number of rolling mills is seven, but the number of rolling mills may be other than seven. Even in this case, the rolling mill to be controlled may be a rolling mill located closest to the downstream side of the position where the line sensor camera 5 or the infrared camera 20 is installed.
  • the control section A uses the rolling mill F6, which is one before the rolling mill F7 whose tail end portion 10a of the traveling steel strip 10 is controlled. It starts when it comes out, but it is not limited to the case where it starts when it comes out of the rolling mill F6, which is one before the rolling mill F7. For example, when it comes out of the rolling mill F5, which is two before the rolling mill F7, or rolling. It may be when the rolling mill F4, which is three before the machine F7, is passed. Further, the control section A may be started when the tail end portion 10a of the traveling steel strip 10 passes a specific point between arbitrary rolling mills.
  • the meandering control device 4 according to the second embodiment may be modified as shown in FIG. More specifically, the meandering control device 4 shown in FIG. 5 has the same basic configuration as the meandering control device 4 according to the second embodiment.
  • the meandering meter method is used in the control section A from the time when the tail end portion 10a of the traveling steel strip 10 passes through the rolling mill F6 to the time when the meandering control device 4 according to the second embodiment passes through the line sensor camera 5, "the meandering meter method is used.
  • the meandering control and “the meandering control of the differential load method” are used together.
  • the meandering amount of the rolling mill F7 is adjusted only by "meandering control” to control the meandering of the steel strip 10.
  • the meandering control device 4 shown in FIG. 5 is a combination of "meandering meter type meandering control” and “difference load type meandering control” in the control section A by the meandering control device 4 according to the second embodiment.
  • the tail end portion 10a of the traveling steel strip 10 passes through the rolling mill F5 and then the line sensor camera 5.
  • the meandering control device 4 shown in FIG. 5 is a rolling mill in addition to the line sensor camera 5 installed between the rolling mill F6 and the rolling mill F7.
  • a line sensor camera 5 is also installed between the F5 and the rolling mill F6.
  • the line sensor camera 5 installed between the rolling mill F5 and the rolling mill F6 has the same performance as the line sensor camera 5 installed between the rolling mill F6 and the rolling mill F7, and is a one-dimensional imaging device. The image is taken so as to scan the surface of the traveling steel strip S in the width direction, which is composed of a CCD imaging sensor element or the like.
  • the line sensor camera 5 is installed so that the center CL1 (see FIG. 15) of each rolling mill F1 to F7 in the width direction (the same direction as the width direction of the steel strip 10) is within the field of view.
  • the line sensor camera 5 may be singular or plural.
  • the meandering control device 4 shown in FIG. 5 is different from the meandering control device 4 according to the second embodiment in the captured image obtained by the line sensor camera 5 installed between the rolling mill F6 and the rolling mill F7. Based on the captured image obtained by the line sensor camera 5 installed between the rolling mill F5 and the rolling mill F6, in addition to the meandering amount calculating device 6 that detects the positions of both ends of the steel strip 10 in the width direction.
  • the meandering amount calculation device 6 for detecting the positions of both ends of the steel strip 10 in the width direction from the one-dimensional brightness distribution is provided.
  • the added meandering amount calculation device 6 calculates the position of the center of the steel strip 10 in the width direction from the positions of both ends in the width direction of the detected steel strip 10, and is the center of each rolling mill F1 to F7 in the width direction. From the above, the calculated distance to the center position in the width direction of the steel strip 10 is calculated as the meandering amount of the steel strip 10.
  • the meandering control device 4 shown in FIG. 5 sets the difference in roll opening degree between the operation side and the drive side of the rolling mill F7 in the control section A as described in (2) above.
  • the leveling control calculation device 7 which calculates by the formula and calculates the roll opening difference between the operation side and the drive side in the rolling mill F7 by the above formula (3) in the control section B, in the control section A-1.
  • the roll opening difference between the operation side and the drive side in the rolling mill F6 is calculated by the equation (4) described later, and the roll opening difference between the operation side and the drive side in the rolling mill F6 in the control section B-1 is described later (
  • the leveling control arithmetic unit 7 which calculates by the equation 5) is provided.
  • S difference in roll opening between the operating side and the driving side in the rolling mill F6, S 5 : the operating side and the driving side in the rolling mill F6 when the tail end portion 10a of the steel strip 10 passes through the rolling mill F5.
  • Roll opening difference ⁇ A-1 : Control gain for the meandering amount calculated by the meandering amount calculation device 6 in the control section A-1
  • ⁇ A-1 Provided in the rolling mill F6 in the control section A-1.
  • ⁇ 5 Serpentine amount calculated by the meandering amount calculating device 6 when the tail end portion 10a of the steel strip 10 passes through the rolling mill F5, ⁇ P.
  • S the difference in roll opening between the operation side and the drive side in the rolling mill F6, SB -1 : the operation side in the rolling mill F6 when the tail end portion 10a of the steel strip 10 passes through the line sensor camera 5.
  • ⁇ B -1 Control gain for the difference load detected from the load detector 3 provided on the rolling mill F6 in the control section B-1
  • ⁇ P 5 Tail of the steel strip 10.
  • ⁇ P Load detector provided on the rolling mill F6 in the control section B-1. It is a constant determined by the differential load detected from 3 and D: roll diameter, roll length, number of rolls, width of rolled material, and the like.
  • the leveling device 2 provided in the rolling mill F6 is based on the difference in roll opening degree sent from the leveling control arithmetic unit 7, and the rolling amount by the rolling mill attached to the operation side of the rolling mill F6 to be controlled. , Adjust the amount of rolling by the rolling mill attached to the drive side of the rolling mill F6. As a result, the leveling amount of the rolling mill F6 to be controlled is changed in proportion to the meandering amount of the steel strip 10, and the meandering amount of the steel strip 10 is suppressed. Further, the leveling device 2 provided in the rolling mill F7 also has a rolling reduction amount by the rolling mill attached to the operation side of the rolling mill F7 to be controlled based on the roll opening difference sent from the leveling control arithmetic unit 7.
  • the line sensor camera 5 installed between the rolling mill F5 and the rolling mill F6 performs imaging with a cycle of 5 msec or less, and the operating side and the driving side of the rolling mill F6 to be controlled by the leveling control arithmetic unit 7.
  • the roll opening difference is calculated and the rolling amount on the operation side and the drive side is adjusted by the leveling device 2 in a cycle of 5 msec or less.
  • the meandering amount of the steel strip 10 can be reduced to 50 mm or less, and the occurrence of drawing of the steel strip 10 can be prevented.
  • the meandering amount of the steel strip 10 can be reduced to 30 mm or less, and the risk of meandering can be further reduced.
  • imaging by the line sensor camera 5 installed between the rolling mill F6 and the rolling mill F7 is also performed at a cycle of 5 msec or less, and the operation side and the drive side of the rolling mill F7 to be controlled by the leveling control arithmetic unit 7 are performed.
  • the roll opening difference is calculated and the rolling amount on the operating side and the driving side is adjusted by the leveling device 2 in a cycle of 5 msec or less.
  • control section B In addition to adjusting the leveling amount of the rolling mill F7 only by the “difference load method meandering control” in the above, control from the tail end portion 10a of the traveling steel strip 10 passing through the rolling mill F5 to passing through the line sensor camera 5.
  • section A-1 "meandering control of the meandering meter method” and “meandering control of the differential load method” are used together.
  • the leveling amount of the rolling mill F6 is determined only by the "difference load method meandering control". Adjust to control the meandering of the steel strip 10. Therefore, the meandering control device 4 shown in FIG. 5 can further suppress the meandering amount of the steel strip 10 as compared with the meandering control device 4 according to the second embodiment.
  • the meandering control device 4 according to the fourth embodiment may be modified for the same purpose as the meandering control device 4 shown in FIG. That is, the meandering control device 4 according to the modified example of the fourth embodiment is the "meandering control of the meandering meter type" and the “meandering control of the differential load type” in the control section A by the meandering control device 4 according to the fourth embodiment.
  • the infrared camera 20 is moved after the tail end portion 10a of the traveling steel strip 10 passes through the rolling mill F5.
  • the present inventors finish-roll the steel strip 10 using the finish rolling equipment 1 provided with the meandering control device according to Comparative Examples 1 to 3 and Examples 1 to 6, and measure the meandering amount of the steel strip 10 for each of them. did.
  • the width of the steel strip 10 was 1200 mm
  • the plate thickness of the steel strip 10 on the entry side of the finish rolling equipment 1 was 21 mm
  • the plate thickness of the steel strip 10 on the exit side of the finish rolling equipment 1 was 1.7 mm.
  • the rolling speed of the steel strip 10 on the exit side of the finishing rolling equipment 1 was set to 1000 mpm.
  • the meandering control device according to Comparative Example 1 is shown in FIG.
  • the meandering control device 4 is used from the time when the tail end of the traveling steel strip 10 passes through the rolling mill F6 to the time when the two-dimensional camera 8 passes through.
  • the meandering amount of the rolling mill F7 was adjusted by "meandering control of the meandering meter method" to control the meandering of the steel strip 10.
  • the leveling control arithmetic unit 7 of the meandering control device 4 according to Comparative Example 1 meanders in the control section A from the tail end portion of the traveling steel strip 10 passing through the rolling mill F6 to passing through the two-dimensional camera 8. Based on the meandering amount of the steel strip 10 calculated by the amount calculation device 6, the difference in the opening degree of the roll gap between the operation side and the drive side in the rolling mill F7 located immediately downstream of the position where the two-dimensional camera 8 is installed. The roll opening difference is calculated by the above equation (1), and the calculated roll opening difference is sent to the leveling device 2 provided in the rolling mill F7 to be controlled.
  • the imaging cycle of the meandering control device 4 according to Comparative Example 1 by the two-dimensional camera 8 was set to 20 msec.
  • the meandering control device according to Comparative Example 2 is shown in FIG. 11, and the meandering control device 4 passes through the two-dimensional camera 8 after the tail end of the traveling steel strip 10 passes through the rolling mill F6.
  • the control section A up to "meandering control of the meandering meter method” and “meandering control of the differential load method” are used together, from the time when the tail end of the steel strip 10 passes through the two-dimensional camera 8 until it passes through the rolling mill F7.
  • the meandering amount of the rolling mill F7 was adjusted and the meandering of the steel strip 10 was controlled only by the "difference load type meandering control".
  • the leveling control calculation device 7 of the meandering control device 4 according to Comparative Example 2 rolls in the control section A from the tail end portion of the traveling steel strip 10 passing through the rolling mill F6 to passing through the two-dimensional camera 8.
  • the difference load between the operation side and the drive side obtained from the rolling load on the operation side and the drive side detected by the load detector 3 provided on the machine F7, and the meandering amount of the steel strip 10 calculated by the meandering amount calculation device 6.
  • the roll opening difference between the operation side and the drive side in the rolling mill F7 was calculated by the above equation (2), and the calculated roll opening difference was sent to the leveling device 2 provided in the rolling mill F7. ..
  • the leveling control calculation device 7 is a load detector provided on the rolling mill F7 in the control section B from the tail end portion of the traveling steel strip 10 passing through the two-dimensional camera 8 to passing through the rolling mill F7. Based on the difference load between the operation side and the drive side obtained from the rolling load on the operation side and the drive side detected by 3, the roll opening difference between the operation side and the drive side in the rolling mill F7 is calculated by the above equation (3). Then, the calculated roll opening difference was sent to the leveling device 2 provided in the rolling mill F7.
  • the imaging cycle of the meandering control device 4 according to Comparative Example 2 by the two-dimensional camera 8 was set to 20 msec.
  • the meandering control device according to Comparative Example 3 is shown in FIG. 3, and the meandering control device 4 passes through the line sensor camera 5 after the tail end of the traveling steel strip 10 passes through the rolling mill F6.
  • the meandering control device 4 passes through the line sensor camera 5 after the tail end of the traveling steel strip 10 passes through the rolling mill F6.
  • “meandering control of the meandering meter method” and “meandering control of the differential load method” are used together, from the time when the tail end of the steel strip 10 passes through the line sensor camera 5 to the time when it passes through the rolling mill F7.
  • the meandering amount of the rolling mill F7 was adjusted only by the "difference load type meandering control" to control the meandering of the steel strip 10.
  • the leveling control calculation device 7 of the meandering control device 4 according to Comparative Example 3 rolls in the control section A from the tail end portion of the traveling steel strip 10 passing through the rolling mill F6 to passing through the line sensor camera 5.
  • the difference load between the operation side and the drive side obtained from the rolling load on the operation side and the drive side detected by the load detector 3 provided on the machine F7, and the meandering amount of the steel strip 10 calculated by the meandering amount calculation device 6.
  • the roll opening difference between the operation side and the drive side in the rolling mill F7 was calculated by the above equation (2), and the calculated roll opening difference was sent to the leveling device 2 provided in the rolling mill F7. ..
  • the leveling control calculation device 7 is a load detector provided on the rolling mill F7 in the control section B from the tail end portion of the traveling steel strip 10 passing through the line sensor camera 5 to passing through the rolling mill F7. Based on the difference load between the operation side and the drive side obtained from the rolling load on the operation side and the drive side detected by 3, the roll opening difference between the operation side and the drive side in the rolling mill F7 is calculated by the above equation (3). Then, the calculated roll opening difference was sent to the leveling device 2 provided in the rolling mill F7.
  • the imaging cycle of the meandering control device 4 according to Comparative Example 3 by the line sensor camera 5 was set to 20 msec.
  • the meandering control device uses the line sensor camera 5 after the tail end of the traveling steel strip 10 passes through the rolling mill F6.
  • the meandering amount of the rolling mill F7 was adjusted by the "meandering meter type meandering control" to control the meandering of the steel strip 10. That is, the leveling control calculation device 7 of the meandering control device 4 according to the first embodiment meanders in the control section A from the tail end portion of the traveling steel strip 10 passing through the rolling mill F6 to passing through the line sensor camera 5.
  • the difference in the opening degree of the roll gap between the operation side and the drive side in the rolling mill F7 located immediately downstream of the position where the line sensor camera 5 is installed is calculated by the above equation (1), and the calculated roll opening difference is sent to the leveling device 2 provided in the rolling mill F7 to be controlled.
  • the imaging cycle of the meandering control device 4 according to the first embodiment by the line sensor camera 5 was set to 5 msec.
  • the meandering control device passes through the line sensor camera 5 after the tail end portion of the traveling steel strip 10 passes through the rolling mill F6.
  • the meandering control device 4 passes through the line sensor camera 5 after the tail end portion of the traveling steel strip 10 passes through the rolling mill F6.
  • “meandering control of the meandering meter method” and “meandering control of the differential load method” are used together, from the time when the tail end of the steel strip 10 passes through the line sensor camera 5 to the time when it passes through the rolling mill F7.
  • the meandering amount of the rolling mill F7 was adjusted only by the "difference load type meandering control" to control the meandering of the steel strip 10.
  • the leveling control calculation device 7 of the meandering control device 4 rolls in the control section A from the tail end portion of the traveling steel strip 10 passing through the rolling mill F6 to passing through the line sensor camera 5.
  • the difference load between the operation side and the drive side obtained from the rolling load on the operation side and the drive side detected by the load detector 3 provided on the machine F7, and the meandering amount of the steel strip 10 calculated by the meandering amount calculation device 6.
  • the roll opening difference between the operation side and the drive side in the rolling mill F7 was calculated by the above equation (2), and the calculated roll opening difference was sent to the leveling device 2 provided in the rolling mill F7. ..
  • the leveling control calculation device 7 is a load detector provided on the rolling mill F7 in the control section B from the tail end portion of the traveling steel strip 10 passing through the line sensor camera 5 to passing through the rolling mill F7. Based on the difference load between the operation side and the drive side obtained from the rolling load on the operation side and the drive side detected by 3, the roll opening difference between the operation side and the drive side in the rolling mill F7 is calculated by the above equation (3). Then, the calculated roll opening difference was sent to the leveling device 2 provided in the rolling mill F7.
  • the imaging cycle of the meandering control device 4 according to the second embodiment by the line sensor camera 5 was set to 5 msec.
  • the meandering control device passes through the line sensor camera 5 after the tail end portion of the traveling steel strip 10 passes through the rolling mill F6.
  • the meandering control device 4 passes through the line sensor camera 5 after the tail end portion of the traveling steel strip 10 passes through the rolling mill F6.
  • “meandering control of the meandering meter method” and “meandering control of the differential load method” are used together, from the time when the tail end of the steel strip 10 passes through the line sensor camera 5 to the time when it passes through the rolling mill F7.
  • the meandering amount of the rolling mill F7 was adjusted only by the "difference load type meandering control" to control the meandering of the steel strip 10.
  • the leveling control calculation device 7 of the meandering control device 4 rolls in the control section A from the tail end portion of the traveling steel strip 10 passing through the rolling mill F6 to passing through the line sensor camera 5.
  • the difference load between the operation side and the drive side obtained from the rolling load on the operation side and the drive side detected by the load detector 3 provided on the machine F7, and the meandering amount of the steel strip 10 calculated by the meandering amount calculation device 6.
  • the roll opening difference between the operation side and the drive side in the rolling mill F7 was calculated by the above equation (2), and the calculated roll opening difference was sent to the leveling device 2 provided in the rolling mill F7. ..
  • the leveling control calculation device 7 is a load detector provided on the rolling mill F7 in the control section B from the tail end portion of the traveling steel strip 10 passing through the line sensor camera 5 to passing through the rolling mill F7. Based on the difference load between the operation side and the drive side obtained from the rolling load on the operation side and the drive side detected by 3, the roll opening difference between the operation side and the drive side in the rolling mill F7 is calculated by the above equation (3). Then, the calculated roll opening difference was sent to the leveling device 2 provided in the rolling mill F7.
  • the imaging cycle of the meandering control device 4 according to the third embodiment by the line sensor camera 5 was set to 1 msec.
  • the meandering control device uses the line sensor camera 5 after the tail end of the traveling steel strip 10 passes through the rolling mill F5.
  • “meandering control of the meandering meter method” and “meandering control of the differential load method” are used together, and after the tail end of the steel strip 10 has passed through the line sensor camera 5, the rolling mill F6 In the control section B-1 until passing through, the meandering amount of the rolling mill F6 was adjusted only by the "difference load type meandering control" to control the meandering of the steel strip 10.
  • the meandering control device is "meandering control of the meandering meter type" in the control section A from the tail end of the traveling steel strip 10 passing through the rolling mill F6 to passing through the line sensor camera 5. And “difference load method meander control” is used together, and only “difference load method meander control” is used in the control section B from the tail end of the steel strip 10 passing through the line sensor camera 5 to the rolling mill F7. The leveling amount of the rolling mill F7 was adjusted to control the meandering of the steel strip 10.
  • the leveling control calculation device 7 of the meandering control device 4 in the control section A-1 from the tail end portion of the traveling steel strip 10 passing through the rolling mill F5 to passing through the line sensor camera 5. , The difference load on the operation side and the drive side obtained from the rolling load on the operation side and the drive side detected by the load detector 3 provided in the rolling mill F6, and the meandering of the steel strip 10 calculated by the meandering amount calculation device 6. Based on the amount, the roll opening difference between the operation side and the drive side in the rolling mill F6 is calculated by the above equation (4), and the calculated roll opening difference is applied to the leveling device 2 provided in the rolling mill F6. It was sent.
  • the difference in roll opening degree between the operation side and the drive side in the rolling mill F6 is calculated by the above equation (5).
  • the calculated roll opening difference was sent to the leveling device 2 provided in the rolling mill F6.
  • the leveling control calculation device 7 is a load detector provided on the rolling mill F7 in the control section A from the tail end portion of the traveling steel strip 10 passing through the rolling mill F6 to passing through the line sensor camera 5. Operation in the rolling mill F7 based on the difference load on the operation side and the drive side obtained from the rolling load on the operation side and the drive side detected by 3 and the meandering amount of the steel strip 10 calculated by the meandering amount calculation device 6. The roll opening difference between the side and the drive side was calculated by the above equation (2), and the calculated roll opening difference was sent to the leveling device 2 provided in the rolling mill F7.
  • the leveling control calculation device 7 is a load detector provided on the rolling mill F7 in the control section B from the tail end portion of the traveling steel strip 10 passing through the line sensor camera 5 to passing through the rolling mill F7. Based on the difference load between the operation side and the drive side obtained from the rolling load on the operation side and the drive side detected by 3, the roll opening difference between the operation side and the drive side in the rolling mill F7 is calculated by the above equation (3). Then, the calculated roll opening difference was sent to the leveling device 2 provided in the rolling mill F7.
  • the imaging cycle of the meandering control device 4 according to the fourth embodiment by the line sensor camera 5 was set to 1 msec for both of them.
  • the meandering control device passes through the infrared camera 20 after the tail end of the traveling steel strip 10 passes through the rolling mill F6.
  • the meandering amount of the rolling mill F7 was adjusted by the "meandering control of the meandering meter method" to control the meandering of the steel strip 10. That is, the leveling control calculation device 7 of the meandering control device 4 according to the fifth embodiment has a meandering amount in the control section A from the tail end portion of the traveling steel strip 10 passing through the rolling mill F6 to passing through the infrared camera 20.
  • the meandering amount of the steel strip 10 calculated by the calculation device 21, it is the difference in opening degree of the roll gap between the operation side and the drive side in the rolling mill F7 located immediately downstream of the position where the infrared camera 20 is installed.
  • the roll opening difference was calculated by the above equation (1), and the calculated roll opening difference was sent to the leveling device 2 provided in the rolling mill F7 to be controlled.
  • the imaging cycle of the meandering control device 4 according to the fifth embodiment by the infrared camera 20 was set to 1 msec.
  • the infrared wavelength band used in the infrared camera 20 was 8 to 14 ⁇ m.
  • the meandering control device is shown in FIG. 8, and the meandering control device 4 is used from the time when the tail end of the traveling steel strip 10 passes through the rolling mill F6 until it passes through the infrared camera 20.
  • “meandering control of the meandering meter method” and “meandering control of the differential load method” are used in combination to control the tail end of the steel strip 10 from passing through the infrared camera 20 to passing through the rolling mill F7.
  • the meandering amount of the rolling mill F7 was adjusted to control the meandering of the steel strip 10 only by the "difference load type meandering control".
  • the leveling control arithmetic unit 7 of the meandering control device 4 is a rolling mill in the control section A from the tail end portion of the traveling steel strip 10 passing through the rolling mill F6 to passing through the infrared camera 20.
  • the difference load on the operation side and the drive side obtained from the rolling load on the operation side and the drive side detected by the load detector 3 provided in F7 and the meandering amount of the steel strip 10 calculated by the meandering amount calculation device 21. Based on this, the roll opening difference between the operation side and the drive side in the rolling mill F7 was calculated by the above equation (2), and the calculated roll opening difference was sent to the leveling device 2 provided in the rolling mill F7.
  • the leveling control calculation device 7 is a load detector 3 provided on the rolling mill F7 in the control section B from the tail end of the traveling steel strip 10 passing through the infrared camera 20 to passing through the rolling mill F7. Based on the difference load between the operation side and the drive side obtained from the rolling load on the operation side and the drive side detected by the above method, the roll opening difference between the operation side and the drive side in the rolling mill F7 is calculated by the above equation (3). , The calculated roll opening difference was sent to the leveling device 2 provided in the rolling mill F7.
  • the imaging cycle of the meandering control device 4 according to the sixth embodiment by the infrared camera 20 was set to 1 msec.
  • the infrared wavelength band used in the infrared camera 20 was 8 to 14 ⁇ m.
  • Table 1 shows the meandering control conditions and the meandering control results of Comparative Examples 1 to 3 and Examples 1 to 6.
  • Comparative Example 1 the amount of meandering at the tail end of the steel strip 10 in the two-dimensional camera installed between the rolling mill F6 and the rolling mill F7 was 96 mm. In Comparative Example 2, the amount of meandering at the tail end of the steel strip 10 in the two-dimensional camera installed between the rolling mill F6 and the rolling mill F7 was 80 mm. Further, in Comparative Example 3, the meandering amount of the tail end portion of the steel strip 10 in the line sensor camera installed between the rolling mill F6 and the rolling mill F7 was 76 mm.
  • the meandering amount of the tail end portion of the steel strip 10 in the line sensor camera installed between the rolling mill F6 and the rolling mill F7 was 40 mm. Further, in the second embodiment, the meandering amount of the tail end portion of the steel strip 10 in the line sensor camera installed between the rolling mill F6 and the rolling mill F7 was 32 mm. Further, in Example 3, the meandering amount of the tail end portion of the steel strip 10 in the line sensor camera installed between the rolling mill F6 and the rolling mill F7 was 25 mm.
  • Example 4 the amount of meandering at the tail end of the steel strip 10 in the line sensor camera installed between the rolling mill F6 and the rolling mill F7 was 12 mm. Further, in Example 5, the amount of meandering at the tail end of the steel strip 10 in the infrared camera installed between the rolling mill F6 and the rolling mill F7 was 20 mm. Further, in Example 6, the amount of meandering at the tail end of the steel strip 10 in the infrared camera installed between the rolling mill F6 and the rolling mill F7 was 10 mm.
  • the meandering amount of the tail end of the steel strip 10 in the line sensor camera installed between the rolling mills F6 and F7 is 40 mm at the maximum
  • Comparative Examples 1 to 3 It was confirmed that the amount of meandering at the tail end of the steel strip 10 was reduced as compared with the above. Further, comparing Example 1 and Example 2, in the control section A, the combined use of "meandering control of the meandering meter method” and “meandering control of the differential load method” is "meandering control of the meandering meter method". It was confirmed that the amount of meandering at the tail end of the steel strip 10 was reduced as compared with the case where only the method was performed.
  • Example 2 and Example 3 it was confirmed that the amount of meandering at the tail end of the steel strip 10 was reduced when the imaging cycle of the line sensor camera 5 was shortened from 5 msec to 1 msec. .. Further, comparing Example 3 and Example 4, not only the leveling amount of the rolling mill F is controlled in the control sections A and B, but also the leveling of the rolling mill F6 is controlled in the control sections A-1 and B-1. It was confirmed that the amount of meandering at the tail end of the steel strip 10 was reduced by controlling the steel strip 10.
  • FIG. 12 shows the time change of the meandering amount in the rolling mill F7 when the meandering control is performed by the meandering control device according to Comparative Examples 1 to 3.
  • FIG. 13 shows a time change of the meandering amount in the rolling mill F7 when the meandering control is performed by the meandering control device according to the first to fourth embodiments.
  • T1 is the time when the tail end of the steel strip 10 passes through the rolling mill F5
  • T2 is the time when the tail end of the steel strip 10 passes through the rolling mill F6, and T3.
  • T4 is the time when the tail end of the steel strip 10 points the rolling mill F7. Indicates the time.
  • the time change of the meandering amount in the rolling mill F7 when the meandering control is performed by the meandering control device according to Examples 1 to 4 is the meandering control according to Comparative Examples 1 to 3. It was confirmed that it was smaller than the time change of the meandering amount in the rolling mill F7 when the meandering control was performed by the apparatus.
  • Comparative Examples 1 to 3 and Examples 1 to 6 when the edges of both ends of the steel strip 10 in the width direction were completely covered with steam, Comparative Examples 1 and 2 using a two-dimensional visible light camera were used.
  • Leveling control equipment 1 Finishing rolling equipment 2 Leveling device 3 Load detector 4 Serpentine control device 5 Line sensor camera 6 Serpentine amount calculation device 7 Leveling control calculation device 8 Two-dimensional camera 10 Hot-rolled steel strip 10a Tail end 20 Infrared camera 21 Serpentine amount calculation Equipment 22 Leveling control equipment F1 to Fn rolling mill

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

熱間圧延鋼帯の蛇行量の演算処理にかける時間を短くして蛇行量の算出周期を小さくし、時々刻々と変化する蛇行量に対して適切にレベリング量を調整できる熱間圧延鋼帯の蛇行制御方法、蛇行制御装置及び熱間圧延設備を提供する。鋼帯の蛇行制御方法は、隣り合う圧延機(F6),(F7)間に設置されたラインセンサカメラ(5)で走行する鋼帯(10)の表面を撮像する撮像ステップ(ステップS1)と、撮像画像に基づく1次元の輝度分布から鋼帯(10)の幅方向両端部の位置を検出して鋼帯(10)の蛇行量を算出する蛇行量算出ステップ(ステップS2)と、算出された鋼帯(10)の蛇行量に基づいて、ラインセンサカメラ(5)の下流側直近にある圧延機(F7)における操作側及び駆動側のロール開度差を演算するベリング制御演算ステップ(ステップS3)とを含む。撮像ステップにおけるラインセンサカメラ(5)による撮像を5msec以下の周期で行う。

Description

熱間圧延鋼帯の蛇行制御方法、蛇行制御装置及び熱間圧延設備
 本発明は、熱間圧延鋼帯の蛇行制御方法、蛇行制御装置及び熱間圧延設備に関する。
 一般に、熱間圧延鋼帯の製造ライン(ホットストリップミル)では、加熱されたスラブが粗圧延工程や仕上圧延工程などの製造工程を経て、所定の板幅及び板厚の鋼板が製造される。
 仕上圧延工程では、図14に示すように、複数台(例えば7台)の圧延機F1~F7からなる仕上圧延設備1で熱間圧延鋼帯(以下、単に鋼帯という)10が同時に仕上圧延されるタンデム圧延を行い、所定の板厚の鋼板を製造する。
 タンデム圧延では、図15に示すように、鋼帯10の幅方向の板厚分布、鋼帯10の幅方向の温度差、及び鋼帯10の幅方向の曲がりによって、鋼帯10が幅方向に移動する蛇行と呼ばれる現象が生じることがある。各圧延機F1~F7の幅方向(鋼帯10の幅方向と同じ方向)の中心CL1から鋼帯10の幅方向の中心CL2までの距離を蛇行量δと呼ぶ。ここでは、鋼帯10が、各圧延機F1~F7の操作側に蛇行している場合を「+」とし、各圧延機F1~F7の駆動側に蛇行している場合を「-」とする。各圧延機F1~F7の駆動側とは、搬送ロール(図示せず)のモータ(図示せず)に接続されている側を表し、各圧延機F1~F7の操作側とは、駆動側と幅方向の反対側を表す。なお、図14及び図15における矢印は、圧延時における鋼帯10の進行方向を示している。
 ここで、鋼帯10の尾端部10aの蛇行が大きくなった場合、鋼帯10を幅方向に拘束するためのガイドと接触して、鋼帯10が折れ込み、その状態で圧延されることで絞りと呼ばれるトラブルが生じることがある。絞りが発生すると、鋼帯10を圧延する各圧延機F1~F7のワークロール1a(図14参照)に疵が入りロール交換が必要になる。ロール交換のために一時的に操業を停止する必要があり、絞りが頻繁に発生する場合には、大きなダウンタイムとなる。そのため、鋼帯10の蛇行を低減し、絞りの発生を抑制することは熱間圧延鋼帯のタンデム圧延では重要な課題となっている。
 鋼帯の蛇行を防止する方法の一つとして、圧延機のレベリング量を変更する方法がある。レベリング量とは、圧延機の操作側と駆動側のロールギャップの開度差のことである。ここでは、操作側のロールギャップの開度が大きい場合を「+」、駆動側のロールギャップの開度が大きい場合を「-」とする。
 例えば、圧延中に圧延機のレベリング量を+側に変更すると、操作側より駆動側の圧下量が相対的に大きくなるため、操作側よりも駆動側の鋼帯が長くなり、圧延機出側では鋼帯は操作側に蛇行する。逆に、圧延中に圧延機のレベリング量を-側に変更すると、駆動側より操作側の圧下量が相対的に大きくなるため、駆動側よりも操作側の鋼帯が長くなり、圧延機出側では鋼帯は駆動側に蛇行する。
 従来にあっては、このレベリング量を変更することにより鋼帯の蛇行を防止するものとして、例えば、特許文献1、特許文献2及び特許文献3に示すものが提案されている。
 特許文献1に示す熱間仕上圧延における鋼板尾端蛇行制御方法は、タンデム圧延において、蛇行検出装置をスタンド間ほぼ中央に設置し、蛇行制御を行い、圧延材尾端が蛇行検出装置通過後は、差荷重方式にて蛇行制御を行うことにより高応答かつ安定した制御を達成すると共に、低温材でもセンサ方式蛇行制御を可能とするものである。
 また、特許文献2に示す被圧延材の蛇行制御方法は、圧延スタンドF5を被圧延材の尾端が通過すると、第1の制御ゲインよりも低い第2の制御ゲインでフィードバック制御を行って「センサ方式蛇行制御」を実施する。また、圧延スタンドF6を被圧延材の尾端が通過すると、第1の制御ゲインでフィードバック制御を行って「センサ方式蛇行制御」を実施すると共に、第3の制御ゲインよりも低い第4の制御ゲインでフィードバック制御を行って「差荷重方式蛇行制御」を実施する。更に、蛇行量検出センサを被圧延材の尾端が通過すると、「センサ方式蛇行制御」を終了すると共に、第3の制御ゲインでフィードバック制御を行って「差荷重方式蛇行制御」を実施する。また、圧延スタンドF7を被圧延材の尾端が通過すると、「差荷重方式蛇行制御」を終了するものである。
 更に、特許文献3に示す板材の蛇行制御方法は、パスラインの垂線に対して圧延方向に傾斜した方向から、板材のエッジを含む撮像視野を有する2次元撮像装置で板材表面を撮像する第1ステップと、撮像画像について、板幅方向の走査線毎に濃度値の変化を検出することにより、板材のエッジ位置を走査線毎に検出する第2ステップとを含む。また、板材の蛇行制御方法は、当該走査線毎に検出した各エッジ位置に対して最小自乗法を適用することにより近似直線を算出する第3ステップと、近似直線と所定の走査線との交点の位置を算出する第4ステップと、交点の位置に基づき、蛇行量を算出する第5ステップとを含んでいる。
特開平7-144211号公報 特開2013-212523号公報 特開2004-141956号公報
 しかしながら、これら従来の特許文献1に示す熱間仕上圧延における鋼板尾端蛇行制御方法、特許文献2に示す被圧延材の蛇行制御方法及び特許文献3に示す板材の蛇行制御方法にあっては、以下の問題点があった。
 即ち、特許文献1に示す熱間仕上圧延における鋼板尾端蛇行制御方法の場合、鋼帯の蛇行を検出する蛇行検出装置は、光源とカメラとから構成されているが、そのカメラの種類については特許文献1には記載がない。従って、そのカメラの種類によっては蛇行検出に処理時間が長くかかり、測定周期が大きくなってしまうことがある。この場合、時々刻々と変化する蛇行量に対して、適切にレベリング量を変更できずに鋼帯の蛇行を適切に制御できない場合がある。
 また、特許文献2に示す被圧延材の蛇行制御方法の場合にあっても、蛇行量検出センサはカメラを備えているが、そのカメラの種類については特許文献2には記載がない。従って、そのカメラの種類によっては蛇行検出に処理時間が長くかかり、測定周期が大きくなってしまうことがある。この場合、時々刻々と変化する蛇行量に対して、適切にレベリング量を変更できずに鋼帯の蛇行を適切に制御できない場合がある。
 また、特許文献3に示す特許文献3に示す板材の蛇行制御方法の場合、2次元撮像装置で板材の蛇行量を測定しているが、2次元データは情報量が多く、画像データの転送、画像データからの蛇行量の演算に時間がかかり、測定周期が大きくなってしまって時々刻々と変化する蛇行量に対して適切にレベリング量を変更できずに鋼帯の蛇行を適切に制御できない場合がある。
 従って、本発明はこの従来の問題点を解決するためになされたものであり、その目的は、熱間圧延鋼帯の蛇行量の演算処理にかける時間を短くして蛇行量の算出周期を小さくし、時々刻々と変化する蛇行量に対して適切にレベリング量を調整できる熱間圧延鋼帯の蛇行制御方法、蛇行制御装置及び熱間圧延設備を提供することにある。
 上記課題を解決するために、本発明の一態様に係る熱間圧延鋼帯の蛇行制御方法は、操作側及び駆動側の圧下量を調整するレベリング装置をそれぞれが有する複数の圧延機を備えた仕上圧延設備で圧延される熱間圧延鋼帯の蛇行を制御する熱間圧延鋼帯の蛇行制御方法であって、隣り合う圧延機間に設置されたラインセンサカメラで走行する熱間圧延鋼帯の表面を撮像する撮像ステップと、蛇行量算出装置により、該撮像ステップで撮像された撮像画像に基づく1次元の輝度分布から前記前記熱間圧延鋼帯の幅方向両端部の位置を検出し、その検出された前記熱間圧延鋼帯の幅方向両端部の位置に基づいて前記熱間圧延鋼帯の蛇行量を算出する蛇行量算出ステップと、レベル制御演算装置により、走行する前記熱間圧延鋼帯の尾端部が前記ラインセンサカメラを抜けるまで、前記蛇行量算出ステップで算出された前記熱間圧延鋼帯の蛇行量に基づいて、前記ラインセンサカメラが設置されている位置の下流側直近にある圧延機における操作側及び駆動側のロールギャップの開度差であるロール開度差を演算し、演算されたロール開度差を前記下流側直近にある圧延機に設けられた前記レベリング装置に送出するレベリング制御演算ステップとを含み、前記撮像ステップにおける前記ラインセンサカメラによる撮像を5msec以下の周期で行って、前記レベリング制御演算ステップによる前記下流側直近にある圧延機における操作側及び駆動側のロール開度差の演算及び前記レベリング装置による操作側及び駆動側の圧下量の調整を5msec以下の周期で行うことを要旨とする。
 また、本発明の別の態様に係る熱間圧延鋼帯の蛇行制御方法は、操作側及び駆動側の圧下量を調整するレベリング装置をそれぞれが有する複数の圧延機を備えた仕上圧延設備で圧延される熱間圧延鋼帯の蛇行を制御する熱間圧延鋼帯の蛇行制御方法であって、隣り合う圧延機間に設置された赤外線カメラで走行する熱間圧延鋼帯の表面から発せられる赤外線の強度分布を撮像する撮像ステップと、蛇行量算出装置により、該撮像ステップで撮像された赤外線の強度分布から前記熱間圧延鋼帯の幅方向両端部のエッジ位置を検出し、その検出された前記熱間圧延鋼帯の幅方向両端部のエッジ位置に基づいて前記熱間圧延鋼帯の蛇行量を算出する蛇行量算出ステップと、レベル制御演算装置により、走行する前記熱間圧延鋼帯の尾端部が前記赤外線カメラを抜けるまで、前記蛇行量算出ステップで算出された前記熱間圧延鋼帯の蛇行量に基づいて、前記赤外線カメラが設置されている位置の下流側直近にある圧延機における操作側及び駆動側のロールギャップの開度差であるロール開度差を演算し、演算されたロール開度差を前記下流側直近にある圧延機に設けられた前記レベリング装置に送出するレベリング制御演算ステップとを含み、前記撮像ステップにおける前記赤外線カメラによる撮像を1msec以下の周期で行って、前記レベリング制御演算ステップによる前記下流側直近にある圧延機における操作側及び駆動側のロール開度差の演算及び前記レベリング装置による操作側及び駆動側の圧下量の調整を1msec以下の周期で行うことを要旨とする。
 また、本発明の別の態様に係る熱間圧延鋼帯の蛇行制御装置は、操作側及び駆動側の圧下量を調整するレベリング装置をそれぞれが有する複数の圧延機を備えた仕上圧延設備で圧延される熱間圧延鋼帯の蛇行を制御する熱間圧延鋼帯の蛇行制御装置であって、隣り合う圧延機間に設置された、走行する熱間圧延鋼帯の表面を撮像するラインセンサカメラと、該ラインセンサカメラで得られた撮像画像に基づく1次元の輝度分布から前記熱間圧延鋼帯の幅方向両端部の位置を検出し、その検出された前記熱間圧延鋼帯の幅方向両端部の位置に基づいて前記熱間圧延鋼帯の蛇行量を算出する蛇行量算出装置と、走行する前記熱間圧延鋼帯の尾端部が前記ラインセンサカメラを抜けるまで、前記蛇行量算出装置によって算出された前記熱間圧延鋼帯の蛇行量に基づいて、前記ラインセンサカメラが設置されている位置の下流側直近にある圧延機における操作側及び駆動側のロールギャップの開度差であるロール開度差を演算し、演算されたロール開度差を前記下流側直近にある圧延機に設けられた前記レベリング装置に送出するレベリング制御演算装置とを備え、前記ラインセンサカメラによる撮像を5msec以下の周期で行って、前記レベリング制御演算装置による前記下流側直近にある圧延機における操作側及び駆動側のロール開度差の演算及び前記レベリング装置による操作側及び駆動側の圧下量の調整を5msec以下の周期で行うことを要旨とする。
 また、本発明の別の態様に係る熱間圧延鋼帯の蛇行制御装置は、操作側及び駆動側の圧下量を調整するレベリング装置をそれぞれが有する複数の圧延機を備えた仕上圧延設備で圧延される熱間圧延鋼帯の蛇行を制御する熱間圧延鋼帯の蛇行制御装置であって、隣り合う圧延機間に設置された、走行する熱間圧延鋼帯の表面から発せられる赤外線の強度分布を撮像する赤外線カメラと、該赤外線カメラで得られた赤外線の強度部分から前記熱間圧延鋼帯の幅方向両端部のエッジ位置を検出し、その検出された前記熱間圧延鋼帯の幅方向両端部のエッジ位置に基づいて前記熱間圧延鋼帯の蛇行量を算出する蛇行量算出装置と、走行する前記熱間圧延鋼帯の尾端部が前記赤外線カメラを抜けるまで、前記蛇行量算出装置によって算出された前記熱間圧延鋼帯の蛇行量に基づいて、前記赤外線カメラ設置されている位置の下流側直近にある圧延機における操作側及び駆動側のロールギャップの開度差であるロール開度差を演算し、演算されたロール開度差を前記下流側直近にある圧延機に設けられた前記レベリング装置に送出するレベリング制御演算装置とを備え、前記赤外線カメラによる撮像を1msec以下の周期で行って、前記レベリング制御演算装置による前記下流側直近にある圧延機における操作側及び駆動側のロール開度差の演算及び前記レベリング装置による操作側及び駆動側の圧下量の調整を1msec以下の周期で行うことを要旨とする。
 また、本発明の別の態様に係る熱間圧延設備は、前述の熱間圧延鋼帯の蛇行制御装置を有することを要旨とする。
 本発明に係る熱間圧延鋼帯の蛇行制御方法、蛇行制御装置及び熱間圧延設備によれば、熱間圧延鋼帯の蛇行量の演算処理にかける時間を短くして蛇行量の算出周期を小さくし、時々刻々と変化する蛇行量に対して適切にレベリング量を調整できる熱間圧延鋼帯の蛇行制御方法、蛇行制御装置及び熱間圧延設備を提供することができる。
本発明の第1実施形態に係る蛇行制御装置を備えた仕上圧延設備の概略構成図である。 本発明の第1実施形態に係る蛇行制御装置による処理の流れを示すフローチャートである。 本発明の第2実施形態に係る蛇行制御装置を備えた仕上圧延設備の概略構成図である。 本発明の第2実施形態に係る蛇行制御装置による処理の流れを示すフローチャートである。 図4に示す第2実施形態に係る蛇行制御装置の変形例を備えた仕上圧延設備の概略構成図である。 本発明の第3実施形態に係る蛇行制御装置を備えた仕上圧延設備の概略構成図である。 本発明の第3実施形態に係る蛇行制御装置による処理の流れを示すフローチャートである。 本発明の第4実施形態に係る蛇行制御装置を備えた仕上圧延設備の概略構成図である。 本発明の第4実施形態に係る蛇行制御装置による処理の流れを示すフローチャートである。 比較例1に係る蛇行制御装置を備えた仕上圧延設備の概略構成図である。 比較例2に係る蛇行制御装置を備えた仕上圧延設備の概略構成図である。 比較例1~3に係る蛇行制御装置で蛇行制御を行った場合の圧延機F7での蛇行量の時間変化を示すグラフである。 実施例1~4に係る蛇行制御装置で蛇行制御を行った場合の圧延機F7での蛇行量の時間変化を示すグラフである。 一般的な仕上圧延設備の概略構成図である。 鋼帯の蛇行現象を説明するための模式図である。
 以下、本発明の実施の形態を図面を参照して説明する。以下に示す実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記の実施形態に特定するものではない。また、図面は模式的なものである。そのため、厚みと平面寸法との関係、比率等は現実のものとは異なることに留意すべきであり、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている。
(第1実施形態)
 図1には、本発明の第1実施形態に係る蛇行制御装置を備えた仕上圧延設備の概略構成が示されている。
 熱間圧延鋼帯の熱間圧延設備では、加熱炉(図示せず)で加熱されたスラブが粗圧延工程、仕上圧延工程及び冷却工程を経て、所定の板幅及び板厚の鋼板が製造され、巻き取られる。つまり、熱間圧延設備は、加熱炉と、粗圧延機(図示せず)と、仕上圧延設備1(図1参照)と、冷却設備(図示せず)と、巻取設備(図示せず)とを備えている。
 仕上圧延工程では、図1に示す仕上圧延設備1で熱間圧延鋼帯(以下、単に鋼帯という)10が同時に仕上圧延されるタンデム圧延が行われる。仕上圧延設備1は、鋼帯10を仕上圧延する複数(本実施形態にあっては7台)の圧延機F1~F7を備えている。各圧延機F1~F7には、操作側及び駆動側の圧下量を調整するレベリング装置2と、操作側及び駆動側の圧延荷重を検出する荷重検出器3とが設けられている。鋼帯10は、図1における矢印で示す方向に走行する(搬送される)。なお、各圧延機F1~F7における駆動側とは、搬送ロール(図示せず)の駆動モータがある側を意味し、操作側とはその反対側を意味する。
 各レベリング装置2は、各圧延機F1~F7の操作側に取り付けられた圧下装置(図示せず)による圧下量と、各圧延機F1~F7の駆動側に取り付けられた圧下装置(図示せず)による圧下量とを調整する。
 また、荷重検出器3は、各圧延機F1~F7の操作側と駆動側との双方に取り付けられて操作側及び駆動側のそれぞれの圧延荷重を検出する。
 また、仕上圧延設備1には、鋼帯10の蛇行を制御する蛇行制御装置4が設けられている。蛇行制御装置4は、走行する鋼帯10の尾端部10a(図11参照)が圧延機F6を抜けてからラインセンサカメラ5を抜けるまでの制御区間Aにおいて、「蛇行計方式の蛇行制御」によって鋼帯10の蛇行を制御するものである。
 ここで、「蛇行計方式の蛇行制御」は、後に述べるラインセンサカメラ5が設置されている位置の下流側直近にある制御対象の圧延機F7のレベリング量(圧延機F7における操作側及び駆動側のロールギャップの開度差であるロール開度差)を、ラインセンサカメラ5で撮像された撮像画像に基づいて算出された蛇行量に比例するように変更するものである。鋼帯10の蛇行が操作側に生じていれば、操作側が閉まるように(「-」側に)レベリング量を変更し、鋼帯10の蛇行が駆動側に生じていれば、駆動側が閉まるように(「+」側に)レベリング量を変更する。
 そして、蛇行制御装置4は、圧延機F6と圧延機F7との間に設置されたラインセンサカメラ5を備えている。ラインセンサカメラ5は、一次元撮像装置で、CCDイメージングセンサ素子等で構成され、走行する鋼帯Sの表面を幅方向に走査するように撮像する。ラインセンサカメラ5は、その視野内に各圧延機F1~F7の幅方向(鋼帯10の幅方向と同じ方向)の中心CL1(図11参照)が入るように設置される。ラインセンサカメラ5は単数でも複数でもよい。
 また、蛇行制御装置4は、蛇行量算出装置6を備えている。蛇行量算出装置6は、ラインセンサカメラ5で得られた撮像画像に基づく1次元の輝度分布から鋼帯10の幅方向両端部の位置を検出する。鋼帯10の幅方向両端部の位置の検出方法は、ラインセンサカメラ5で得られた撮像画像に基づく1次元の輝度分布から求める方法であればどのような方法でもよいが、例えば、輝度値がある閾値よりも大きい場合には鋼帯10が存在する部分、輝度値がある閾値よりも小さい場合には鋼帯10が存在しない部分とし、鋼帯10の幅方向に分布する輝度値が閾値を超える位置を端部とする。そして、蛇行量算出装置6は、その検出された鋼帯10の幅方向両端部の位置に基づいて鋼帯10の蛇行量を算出する。具体的に述べると、蛇行量算出装置6は、その検出された鋼帯10の幅方向両端部の位置から鋼帯10の幅方向中央の位置を算出し、各圧延機F1~F7の幅方向の中心から、算出された鋼帯10の幅方向中央の位置までの距離を鋼帯10の蛇行量として算出する。
 このように、本実施形態に係る蛇行制御装置4にあっては、隣り合う圧延機F6、F7間に設置されたラインセンサカメラ5によって走行する鋼帯10の表面を撮像する。そして、ラインセンサカメラ5で撮像された撮像画像に基づく鋼帯走行方向と直交方向の輝度分布から鋼帯10の幅方向両端部の位置を検出し、その検出された鋼帯10の幅方向両端部の位置に基づいて鋼帯10の蛇行量を算出する。
 これにより、鋼帯10の蛇行量の演算処理にかける時間を短くして蛇行量の算出周期を小さくすることができる。ラインセンサカメラ5と異なり、従来のように、2次元カメラを用いた場合、2次元データは情報量が多く、画像データの転送、画像データからの蛇行量の演算に時間がかかり、測定周期が大きくなってしまって時々刻々と変化する蛇行量に対して適切にレベリング量を変更できずに鋼帯の蛇行を適切に制御できない。よって、ラインセンサカメラ5とすることで、本発明で意図する下記の5msec以下の周期の制御が可能となる。なお、制御の周期は、5msec以下でもより短時間にすることが好ましい。
 また、蛇行量の検出に際し、一次元撮像装置であるラインセンサカメラ5を使用することで2次元カメラよりも設備を安価にすることができる。
 更に、蛇行制御装置4は、レベリング制御演算装置7を備えている。レベリング制御演算装置7は、走行する鋼帯10の尾端部10a(図11参照)が圧延機F6を抜けてからラインセンサカメラ5を抜けるまでの制御区間Aにおいて、蛇行量算出装置6で算出された鋼帯10の蛇行量に基づいて、ラインセンサカメラ5が設置されている位置の下流側直近にある圧延機F7における操作側及び駆動側のロールギャップの開度差であるロール開度差を次の(1)式により演算する。
 S=αC(δ-δ)+S …(1)
 ここで、S:圧延機F7における操作側及び駆動側のロール開度差、S:鋼帯10の尾端部10aが圧延機F6を抜けたときの、圧延機F7における操作側及び駆動側のロール開度差、α:制御区間Aにおける、蛇行量算出装置6によって測定された蛇行量に対する制御ゲイン、δ:鋼帯10の尾端部10aが圧延機F6を抜けたときの、蛇行量算出装置6によって測定された蛇行量、δ:制御区間Aにおける、蛇行量算出装置6によって算出された蛇行量、C:蛇行量に対するレベリング量の変化量である。
 そして、レベリング制御演算装置7は、演算されたロール開度差を制御対象となる圧延機F7に設けられたレベリング装置2に送出する。
 そして、圧延機F7に設けられたレベリング装置2は、制御対象の圧延機F7のロール開度差がレベリング制御演算装置7から送出されたロール開度差となるように、制御対象の圧延機F7の操作側に取り付けられた圧下装置による圧下量と、圧延機F7の駆動側に取り付けられた圧下装置による圧下量とを調整する。これにより、制御対象の圧延機F7のレベリング量が鋼帯10の蛇行量に比例して変更され、鋼帯10の蛇行量が抑制される。
 なお、ラインセンサカメラ5による撮像を5msec以下の周期で行って、レベリング制御演算装置7による制御対象の圧延機F7における操作側及び駆動側のロール開度差の演算及びレベリング装置2による操作側及び駆動側の圧下量の調整を5msec以下の周期で行う。これにより、鋼帯10の蛇行量を50mm以下にすることができ、鋼帯10の絞りの発生を防止することができる。また、ラインセンサカメラ5による撮像を5msec以下の周期で行うことで、鋼帯10の蛇行量を30mm以下にすることができ、蛇行発生のリスクを更に低減することができる。
 次に、蛇行制御装置4による処理の流れを図2に示すフローチャートを参照して説明する。
 先ず、鋼帯10の仕上圧延が開始され、鋼帯10の先端部が制御対象の圧延機F7を通過したら、ステップS1において、隣り合う圧延機F6、F7間に設置されたラインセンサカメラ5によって走行する鋼帯10の表面を撮像する(撮像ステップ)。
 次いで、ステップS2に移行し、ラインセンサカメラ5は撮像された撮像画像のデータを蛇行量算出装置6に転送し、蛇行量算出装置6は、撮像画像に基づく1次元の輝度分布から鋼帯10の幅方向両端部の位置を検出する。そして、蛇行量算出装置6は、その検出された鋼帯10の幅方向両端部の位置に基づいて鋼帯10の蛇行量を算出する(蛇行量算出ステップ)。具体的には、蛇行量算出装置6は、検出された鋼帯10の幅方向両端部の位置から鋼帯10の幅方向中央の位置を算出し、各圧延機F1~F7の幅方向の中心から、算出された鋼帯10の幅方向中央の位置までの距離を鋼帯10の蛇行量として算出する。
 次いで、ステップS3に移行し、レベリング制御演算装置7は、走行する鋼帯10の尾端部10aが圧延機F6を抜けてからラインセンサカメラ5を抜けるまでの制御区間Aにおいて、蛇行量算出ステップで算出された鋼帯10の蛇行量に基づいて、ラインセンサカメラ5が設置されている位置の下流側直近にある圧延機F7における操作側及び駆動側のロールギャップの開度差であるロール開度差を前述の(1)式により演算し、演算されたロール開度差を制御対象となる圧延機F7に設けられたレベリング装置2に送出する(レベリング制御演算ステップ)。
 その後、ステップS4において、圧延機F7に設けられたレベリング装置2は、レベリング制御演算装置7から送出されたロール開度差に基づいて、当該制御対象の圧延機F7のロール開度差がレベリング制御演算装置7から送出されたロール開度差となるように、圧延機F7の操作側に取り付けられた圧下装置による圧下量と、圧延機F7の駆動側に取り付けられた圧下装置による圧下量とを調整する(圧下量調整ステップ)。
 これにより、制御対象の圧延機F7のレベリング量が鋼帯10の蛇行量に比例して変更され、鋼帯10の蛇行量が抑制される。
 ここで、2次元カメラを用いて撮像した撮像画像のデータの大きさと1次元撮像装置としてのラインセンサカメラ5で撮像した撮像画像データの大きさを比較すると、1次元の情報しか持たないラインセンサカメラ5の撮像画像データの方が小さい。このため、ステップS2において、ラインセンサカメラ5で撮像された撮像画像のデータを蛇行量算出装置6に転送するに際してデータの転送周期を小さくすることができる。また、ラインセンサカメラ5による撮像画像データが小さいため、ステップS2において、鋼帯10の蛇行量を算出するに際してその処理時間を短くすることができる。2次元カメラでは、ステップS2において、撮像画像のデータを蛇行量算出装置6に転送するに際して撮像画像データが大きいため、データの転送が遅く、ステップS2において、鋼帯10の蛇行量を算出するに際して演算に時間がかかってしまう。
 また、ラインセンサカメラ5と2次元カメラで同等の精度の蛇行量を測定しようとすると、画素数が大きくなる2次元カメラの方が高価になる。ラインセンサカメラ5の方が、同等の精度を得ようとしたときに安価に導入することができる。
 また、制御対象の圧延機F7のレベリング制御では、ステップS3において、レベリング制御演算装置7が圧延機F7における操作側及び駆動側のロールギャップの開度差であるロール開度差を算出する。そして、ステップS4において、圧延機F7に設けられたレベリング装置2は、当該制御対象の圧延機F7のロール開度差がレベリング制御演算装置7から送出されたロール開度差となるように、圧延機F7の操作側に取り付けられた圧下装置による圧下量と、圧延機F7の駆動側に取り付けられた圧下装置による圧下量とを調整する。このとき、次の圧延機F7における操作側及び駆動側のロール開度差が計算されるまでは、ロール開度差は変更されることなく、レベリング装置2に送出される。しかしながら、鋼帯10の蛇行量は時々刻々と変化しているため、カメラの撮像周期を小さくして、鋼帯10の蛇行量に対して常にレベリング量(ロール開度差)を変化させることが好ましい。実際には、カメラによる撮像、データ転送、蛇行量の演算の周期に限界があるので、常にレベリング量を変化させることは難しいが、カメラによる撮像、データの転送、蛇行量の演算を、できるたけ早い周期で行い蛇行量に合わせてレベリング変更することが好ましい。
 本実施形態のように、ラインセンサカメラ5を用いた場合、データ転送、蛇行量の演算を高速で行えるため、2次元カメラを用いた場合よりも早い周期でレベリング量(ロール開度差)を変化させることができる。
 レベリング量(ロール開度差)を変更する周期は、小さければ小さいほどよい。絞りが発生しやすい板厚の薄い条件において、鋼帯10の尾端部10aが圧延機F6と圧延機F7との間を通過する時間は1秒にも満たない。そのため、わずかな時間に蛇行を抑制するためのレベリング量に制御する必要がある。
 絞りを防止するためには、鋼帯10の蛇行量を50mm以下にする必要がある。ラインセンサカメラ5の撮像周期を5msec以下にすると、蛇行量を50mm以下にすることができ、絞りの発生を防止できる。また、ラインセンサカメラ5の撮像周期を1msecとすると、蛇行量を30mm以下にすることができるため、蛇行発生のリスクがさらに低減する。
(第2実施形態)
 次に、本発明の第2実施形態に係る蛇行制御装置について図3及び図4を参照して説明する。図3には、本発明の第2実施形態に係る蛇行制御装置を備えた仕上圧延設備の概略構成が示されている。図4には、本発明の第2実施形態に係る蛇行制御装置による処理の流れを示すフローチャートが示されている。
 第2実施形態に係る蛇行制御装置4は、第1実施形態に係る蛇行制御装置4と基本構成は同様であるが、第1実施形態に係る蛇行制御装置4が、走行する鋼帯10の尾端部10aが圧延機F6を抜けてからラインセンサカメラ5を抜けるまでの制御区間Aにおいて、「蛇行計方式の蛇行制御」によって鋼帯10の蛇行を制御する。これに対して、第2実施形態に係る蛇行制御装置4は、走行する鋼帯10の尾端部10aが圧延機F6を抜けてからラインセンサカメラ5を抜けるまでの制御区間Aにおいて、「蛇行計方式の蛇行制御」及び「差荷重方式の蛇行制御」を併用し、鋼帯10の尾端部10aがラインセンサカメラ5を抜けてから圧延機F7を抜けるまでの制御区間Bにおいて、「差荷重方式の蛇行制御」のみによって鋼帯10の蛇行を制御する点で相違する。
 ここで、「差荷重方式の蛇行制御」は、制御対象の圧延機F7のレベリング量(圧延機F7における操作側及び駆動側のロールギャップの開度差であるロール開度差)を、圧延機F7に設けられた荷重検出器3により検出された操作側及び駆動側の圧延荷重から検出された操作側及び駆動側の差荷重に比例するように変更するものである。操作側の圧延荷重が駆動側の圧延荷重よりも大きい場合、差荷重は「+」、駆動側の圧延荷重が操作側の圧延荷重よりも大きい場合、差荷重は「-」とする。そして、鋼帯10に幅方向の板厚偏差、幅方向の温度差がない場合、鋼帯10が圧延機F1~Fnの中心を通板されていれば、差荷重は生じない。そして、鋼帯10の蛇行が操作側に生じたときに差荷重は「+」となり、鋼帯10の蛇行が駆動側に生じたときに差荷重は「-」となる。この「差荷重方式の蛇行制御」では、差荷重が「+」であれば操作側が閉まるようにレベリング量を変更し、差荷重が「-」であれば駆動側が閉まるようにレベリング量を変更する。
 蛇行制御装置4のラインセンサカメラ5は、第1実施形態に係る蛇行制御装置4のラインセンサカメラ5と同様に、圧延機F6と圧延機F7との間に設置され、一次元撮像装置で、CCDイメージングセンサ素子等で構成され、走行する鋼帯Sの表面を幅方向に走査するように撮像する。ラインセンサカメラ5は、その視野内に各圧延機F1~F7の幅方向(鋼帯10の幅方向と同じ方向)の中心CL1(図11参照)が入るように設置される。ラインセンサカメラ5は単数でも複数でもよい。
 また、蛇行制御装置4の蛇行量算出装置6は、第1実施形態に係る蛇行制御装置4の蛇行量算出装置6と同様に、ラインセンサカメラ5で得られた撮像画像に基づく1次元の輝度分布から鋼帯10の幅方向両端部の位置を検出する。
 そして、蛇行量算出装置6は、その検出された鋼帯10の幅方向両端部の位置に基づいて鋼帯10の蛇行量を算出する。具体的に述べると、蛇行量算出装置6は、その検出された鋼帯10の幅方向両端部の位置から鋼帯10の幅方向中央の位置を算出し、各圧延機F1~F7の幅方向の中心から、算出された鋼帯10の幅方向中央の位置までの距離を鋼帯10の蛇行量として算出する。
 このように、本実施形態に係る蛇行制御装置4にあっても、隣り合う圧延機F6、F7間に設置されたラインセンサカメラ5で走行する鋼帯10の表面を撮像する。そして、ラインセンサカメラ5で撮像された撮像画像に基づく1次元の輝度分布から鋼帯10の幅方向両端部の位置を検出して、その検出された鋼帯10の幅方向両端部の位置から鋼帯10の幅方向中央の位置を算出することで鋼帯10の蛇行量を算出する。
 これにより、鋼帯10の蛇行量の演算処理にかける時間を短くして蛇行量の算出周期を小さくすることができる。ラインセンサカメラ5と異なり、従来のように、2次元カメラを用いた場合、2次元データは情報量が多く、画像データの転送、画像データからの蛇行量の演算に時間がかかり、測定周期が大きくなってしまって時々刻々と変化する蛇行量に対して適切にレベリング量を変更できずに鋼帯の蛇行を適切に制御できない。
 また、蛇行量の検出に際し、一次元撮像装置であるラインセンサカメラ5を使用することで2次元カメラよりも設備を安価にすることができる。
 また、蛇行制御装置4は、第1実施形態に係る蛇行制御装置4と同様に、レベリング制御演算装置7を備えている。レベリング制御演算装置7は、制御区間Aにおいて、「蛇行計方式の蛇行制御」及び「差荷重方式の蛇行制御」を併用し、制御区間Bにおいて、「差荷重方式の蛇行制御」のみによって鋼帯10の蛇行を制御する。
 このため、レベリング制御演算装置7は、走行する鋼帯10の尾端部10aが圧延機F6を抜けてからラインセンサカメラ5を抜けるまでの制御区間Aにおいて、圧延機F7に設けられた荷重検出器3により検出された操作側及び駆動側の圧延荷重から求まる操作側及び駆動側の差荷重と、蛇行量算出装置6によって算出された鋼帯10の蛇行量とに基づいて、圧延機F7における操作側及び駆動側のロール開度差を次の(2)式により演算し、演算されたロール開度差を圧延機F7に設けられたレベリング装置2に送出する。
 S=αC(δ-δ)+βD(ΔP-ΔP)+S …(2)
 ここで、S:圧延機F7における操作側及び駆動側のロール開度差、S:鋼帯10の尾端部10aが圧延機F6を抜けたときの、圧延機F7における操作側及び駆動側のロール開度差、α:制御区間Aにおける、蛇行量算出装置6によって算出された蛇行量に対する制御ゲイン、β:制御区間Aにおける、圧延機F7に設けられた荷重検出器3から検出された差荷重に対する制御ゲイン、δ:鋼帯10の尾端部10aが圧延機F6を抜けたときの、蛇行量算出装置6によって算出された蛇行量、ΔP:鋼帯10の尾端部10aが圧延機F6を抜けたときの、圧延機F7に設けられた荷重検出器3から検出された差荷重、δ:制御区間Aにおける、蛇行量算出装置6によって算出された蛇行量、ΔP:制御区間Aにおける、圧延機F7に設けられた荷重検出器3から検出された差荷重、C:蛇行量に対するレベリング量の変化量、D:ロール径、ロール長、ロール本数、圧延材の幅などで決まる定数である。
 また、レベリング制御演算装置7は、走行する鋼帯10の尾端部10aがラインセンサカメラ5を抜けてから圧延機F7を抜けるまでの制御区間Bにおいて、圧延機F7に設けられた荷重検出器3により検出された操作側及び駆動側の圧延荷重から求まる操作側及び駆動側の差荷重に基づいて、圧延機F7における操作側及び駆動側のロール開度差を次の(3)式により演算し、演算されたロール開度差を圧延機F7に設けられたレベリング装置2に送出する。
 S=βD(ΔP-ΔP)+S …(3)
 ここで、S:圧延機F7における操作側及び駆動側のロール開度差、S:鋼帯10の尾端部10aがラインセンサカメラ5を抜けたときの、圧延機F7における操作側及び駆動側のロール開度差、β:制御区間Bにおける、圧延機F7に設けられた荷重検出器3から検出された差荷重に対する制御ゲイン、ΔP:鋼帯10の尾端部10aが圧延機F6を抜けたときの、圧延機F7に設けられた荷重検出器3から検出された差荷重、ΔP:制御区間Bにおける、圧延機F7に設けられた荷重検出器3から検出された差荷重、D:ロール径、ロール長、ロール本数、圧延材の幅などで決まる定数である。
 そして、圧延機F7に設けられたレベリング装置2は、レベリング制御演算装置7から送出されたロール開度差に基づいて、当該制御対象の圧延機F7のロール開度差がレベリング制御演算装置7から送出されたロール開度差となるように、制御対象の圧延機F7の操作側に取り付けられた圧下装置による圧下量と、圧延機F7の駆動側に取り付けられた圧下装置による圧下量とを調整する。これにより、制御対象の圧延機F7のレベリング量が鋼帯10の蛇行量に比例して変更され、鋼帯10の蛇行量が抑制される。
 なお、ラインセンサカメラ5による撮像を5msec以下の周期で行って、レベリング制御演算装置7による制御対象の圧延機F7における操作側及び駆動側のロール開度差の演算及びレベリング装置2による操作側及び駆動側の圧下量の調整を5msec以下の周期で行う。これにより、鋼帯10の蛇行量を50mm以下にすることができ、鋼帯10の絞りの発生を防止することができる。また、ラインセンサカメラ5による撮像を5msec以下の周期で行うことで、鋼帯10の蛇行量を30mm以下にすることができ、蛇行発生のリスクを更に低減することができる。
 次に、蛇行制御装置4による処理の流れを図4に示すフローチャートを参照して説明する。
 先ず、ステップS11において、鋼帯10の仕上圧延が開始され、鋼帯10の先端部が制御対象の圧延機F7を通過したら、隣り合う圧延機F6、F7間に設置されたラインセンサカメラ5で走行する鋼帯10の表面を撮像する(撮像ステップ)。
 次いで、ステップS12に移行し、ラインセンサカメラ5は撮像画像のデータを蛇行量算出装置6に転送し、蛇行量算出装置6は、撮像画像に基づく1次元の輝度分布から鋼帯10の幅方向両端部の位置を検出する。そして、蛇行量算出装置6は、その検出された鋼帯10の幅方向両端部の位置から鋼帯10の幅方向中央の位置を算出し、各圧延機F1~F7の幅方向の中心から、算出された鋼帯10の幅方向中央の位置までの距離を鋼帯10の蛇行量として算出する(蛇行量算出ステップ)。
 次いで、ステップS13に移行し、レベリング制御演算装置7は、制御対象である圧延機F7に設けられた荷重検出器3により検出された操作側及び駆動側の圧延荷重から操作側及び駆動側の差荷重を求める(差荷重算出ステップ)。
 次いで、ステップS14に移行し、レベリング制御演算装置7は、走行する鋼帯10の尾端部10aが圧延機F6を抜けてからラインセンサカメラ5を抜けるまでの制御区間Aにおいて、圧延機F7に設けられた荷重検出器3により検出された操作側及び駆動側の圧延荷重から求まる操作側及び駆動側の差荷重と、蛇行量算出装置6によって算出された鋼帯10の蛇行量とに基づいて、圧延機F7における操作側及び駆動側のロール開度差を前述の(2)式により演算し、演算されたロール開度差を圧延機F7に設けられたレベリング装置2に送出する(レベリング制御演算ステップ)。
 また、レベリング制御演算装置7は、走行する鋼帯10の尾端部10aがラインセンサカメラ5を抜けてから圧延機F7を抜けるまでの制御区間Bにおいて、圧延機F7に設けられた荷重検出器3により検出された操作側及び駆動側の圧延荷重から求まる操作側及び駆動側の差荷重に基づいて、圧延機F7における操作側及び駆動側のロール開度差を前述の(3)式により演算し、演算されたロール開度差を圧延機F7に設けられたレベリング装置2に送出する(レベリング制御演算ステップ)。
 その後、ステップS15に移行し、圧延機F7に設けられたレベリング装置2は、レベリング制御演算装置7から送出されたロール開度差に基づいて、当該制御対象の圧延機F7のロール開度差がレベリング制御演算装置7から送出されたロール開度差となるように、圧延機F7の操作側に取り付けられた圧下装置による圧下量と、圧延機F7の駆動側に取り付けられた圧下装置による圧下量とを調整する(圧下量調整ステップ)。
 つまり、レベリング装置2は、走行する鋼帯10の尾端部10aが圧延機F6を抜けてからラインセンサカメラ5を抜けるまでの制御区間Aにおいては、当該制御対象の圧延機F7のロール開度差が、(2)式により演算されたロール開度差となるように、圧延機F7の操作側に取り付けられた圧下装置による圧下量と、圧延機F7の駆動側に取り付けられた圧下装置による圧下量とを調整する。また、レベリング装置2は、走行する鋼帯10の尾端部10aがラインセンサカメラ5を抜けてから圧延機F7を抜けるまでの制御区間Bにおいては、当該制御対象の圧延機F7のロール開度差が、(3)式により演算されたロール開度差となるように、圧延機F7の操作側に取り付けられた圧下装置による圧下量と、圧延機F7の駆動側に取り付けられた圧下装置による圧下量とを調整する。
 これにより、鋼帯10の蛇行量が抑制される。
 ここで、2次元カメラを用いて撮像した撮像画像のデータの大きさと1次元撮像装置としてのラインセンサカメラ5で撮像した撮像画像データの大きさを比較すると、1次元の情報しか持たないラインセンサカメラ5の撮像画像データの方が小さい。このため、ステップS12において、ラインセンサカメラ5で撮像された撮像画像のデータを蛇行量算出装置6に転送するに際してデータの転送周期を小さくすることができる。また、ラインセンサカメラ5による撮像画像データが小さいため、ステップS12において、ステップS2と同様に、鋼帯10の蛇行量を算出するに際してその処理時間を短くすることができる。
 また、ラインセンサカメラ5と2次元カメラで同等の精度の蛇行量を測定しようとすると、画素数が大きくなる2次元カメラの方が高価になる。ラインセンサカメラ5の方が、同等の精度を得ようとしたときに安価に導入することができる。
 また、第2実施形態の場合も、前述したように、ラインセンサカメラ5を用いて、データ転送、蛇行量の算出を高速で行えるため、2次元カメラを用いた場合よりも早い周期でレベリング量(ロール開度差)を変化させることができ、時々刻々と変化している蛇行量に合わせてレベリング変更することができる。
 また、第2実施形態に係る蛇行制御装置4は、走行する鋼帯10の尾端部10aが圧延機F6を抜けてからラインセンサカメラ5を抜けるまでの制御区間Aにおいて、「蛇行計方式の蛇行制御」のみによって鋼帯10の蛇行を制御する第1実施形態に係る蛇行制御装置4に対し、制御区間Aにおいて、「蛇行計方式の蛇行制御」及び「差荷重方式の蛇行制御」を併用し、鋼帯10の尾端部10aがラインセンサカメラ5を抜けてから圧延機F7を抜けるまでの制御区間Bにおいて、「差荷重方式の蛇行制御」によって鋼帯10の蛇行を制御する。このため、第2実施形態に係る蛇行制御装置4は、第1実施形態に係る蛇行制御装置4と比較して鋼帯10の蛇行量をより抑制することができる。
(第3実施形態)
 次に、本発明の第3実施形態に係る蛇行制御装置について図6及び図7を参照して説明する。図6には、本発明の第3実施形態に係る蛇行制御装置を備えた仕上圧延設備の概略構成が示されている。図7には、本発明の第3実施形態に係る蛇行制御装置による処理の流れを示すフローチャートが示されている。
 第3実施形態に係る蛇行制御装置4は、第1実施形態に係る蛇行制御装置4と基本構成は同様であり、制御区間Aにおいて、「蛇行計方式の蛇行制御」によって鋼帯10の蛇行を制御する。
 但し、第1実施形態に係る蛇行制御装置4が、隣り合う圧延機F6と圧延機F7との間に設置されたラインセンサカメラ5で、走行する鋼帯10の表面を撮像するのに対し、第3実施形態に係る蛇行制御装置4は、隣り合う圧延機F6と圧延機F7との間に設置された赤外線カメラ20で、走行する鋼帯10の表面から発せられる赤外線の強度分布を撮像する点で相違している。
 また、第1実施形態に係る蛇行制御装置4が、蛇行量算出装置6で、ラインセンサカメラ5で得られた撮像画像に基づく1次元の輝度分布から鋼帯10の幅方向両端部の位置を検出し、その検出された鋼帯10の幅方向両端部の位置に基づいて鋼帯10の蛇行量を算出する。これに対して、第2実施形態に係る蛇行制御装置4は、蛇行量算出装置21で、赤外線カメラ20で得られた赤外線の強度部分から鋼帯10の幅方向両端部のエッジ位置を検出し、その検出された鋼帯10の幅方向両端部のエッジ位置に基づいて鋼帯10の蛇行量を算出する点で装置している。
 第3実施形態に係る蛇行制御装置4における赤外線カメラ20は、走行する鋼帯10の表面から発せられる赤外線の強度分布を撮像する。鋼帯10は、仕上圧延設備1では、加熱炉(図示せず)で加熱されていることから高温(600℃~1000℃)になっており、所定の熱量を有する自発光型の測定対象物となっている。ここで、赤外線は、蒸気によって散乱されにくく、鋼帯10と赤外線カメラ20との間に蒸気が有る場合でも、鋼帯10の表面から発せられる赤外線の強度分布を撮像することができる。このため、蒸気で鋼帯10の幅方向両端部のエッジが完全に覆われる場合であっても、赤外線の強度分布を適切かつ迅速に撮像することができる。
 また、赤外線の強度分布は、鋼帯10の温度分布に対応している。仕上圧延設備1での鋼帯10の温度は前述したように600℃~1000℃であり、例えば、400℃以上の場所が鋼帯10の存在する場所と定義した場合、赤外線カメラ20の撮像画像におけるその400℃以上に対応する赤外線の強度のところが鋼帯10が存在する場所となる。
 なお、赤外線カメラ20に用いられる波長は、1.5μm超1000μm以下であることが好ましい。赤外線の波長が1.5μm以下、または1000μm超えでは、本発明の意図する高い測定精度が得られず、鋼帯10の幅方向両端部のエッジ位置を適切かつ迅速に検出することができない。赤外線カメラ20に用いられる赤外線の波長は、1.5μm超1000μm以下では、測定精度を後述する実施例のようにより高くすることができる。赤外線カメラ20に用いられる波長は、3.0μm以上1000μm以下であることがより好ましい。
 赤外線カメラ20の設置台数は単数でも複数であってもよい。但し、所定の赤外線カメラ20の視野範囲内に圧延機F6,F7の幅方向の中心CL1(図15参照)が入るように設置する。
 また、蛇行量算出装置21は、赤外線カメラ20で撮像された赤外線の強度分布から鋼帯10の幅方向両端部のエッジ位置を検出する。つまり、蛇行量算出装置21は、赤外線の強度分布から鋼帯10の幅方向の操作側の端部と駆動側の端部とを検出する。鋼帯10の幅方向両端部のエッジ位置の検出に際しては、例えば、赤外線の強度が所定の閾値(前述の400℃に対応する強度の値)以上の場合には鋼帯10が存在する部分、赤外線の強度が所定の閾値よりも小さい場合には鋼帯10が存在しない部分とし、赤外線の強度が所定の閾値のところをエッジ位置、即ち鋼帯10の幅方向の操作側の端部と駆動側の端部と特定する。
 また、蛇行量算出装置21は、その検出された鋼帯10の幅方向両端部のエッジ位置から鋼帯10の幅方向中央の位置を算出し、圧延機F1~F7の幅方向の中心から、算出された鋼帯10の幅方向中央の位置までの距離を鋼帯10の蛇行量として算出する。
 このように、第3実施形態に係る蛇行制御装置4によれば、赤外線カメラ20で走行する鋼帯10の表面から発せられる赤外線の強度分布を撮像し、蛇行量算出装置21で赤外線カメラ20で撮像された赤外線の強度分布から鋼帯10の幅方向両端部のエッジ位置を検出する。
 これにより、蒸気で鋼帯10の幅方向両端部のエッジが完全に覆われる場合であっても、赤外線の強度分布を適切にかつ迅速に撮像し、赤外線の強度分布から鋼帯10の幅方向両端部のエッジ位置を適切かつ迅速に検出することができる。
 また、第3実施形態に係る蛇行制御装置4によれば、蛇行量算出装置21により、検出された鋼帯10の幅方向両端部のエッジ位置から鋼帯10の幅方向中央の位置を算出し、圧延機F6~F7の幅方向の中心から、算出された鋼帯10の幅方向中央の位置までの距離を鋼帯10の蛇行量として算出する。
 これにより、蒸気で鋼帯10の幅方向両端部のエッジが完全に覆われる場合であっても、適切かつ迅速に検出された鋼帯10の幅方向両端部のエッジ位置に基づいて鋼帯10の蛇行量を適切かつ迅速に算出することができる。
 そして、この蛇行量の算出、即ち、鋼帯10の蛇行量の測定に際しては、測定周期が1msec程度の高周期での測定が可能となり、圧延機F6と圧延機F7との間を鋼帯10が通過する時間が1秒に満たない場合であっても、自動でレベリング制御を行えることになる。
 更に、蛇行制御装置4は、第1実施形態に係る蛇行制御装置4と同様に、レベリング制御演算装置7を備えている。レベリング制御演算装置7は、走行する鋼帯10の尾端部10a(図15参照)が圧延機F6を抜けてから赤外線カメラ20を抜けるまでの制御区間Aにおいて、蛇行量算出装置21で算出された鋼帯10の蛇行量に基づいて、赤外線カメラ20が設置されている位置の下流側直近にある圧延機F7における操作側及び駆動側のロールギャップの開度差であるロール開度差を前述と同様の(1)式により演算する。
 そして、レベリング制御演算装置7は、演算されたロール開度差を制御対象となる圧延機F7に設けられたレベリング装置2に送出する。
 そして、圧延機F7に設けられたレベリング装置2は、制御対象の圧延機F7のロール開度差がレベリング制御演算装置7から送出されたロール開度差となるように、制御対象の圧延機F7の操作側に取り付けられた圧下装置による圧下量と、圧延機F7の駆動側に取り付けられた圧下装置による圧下量とを調整する。これにより、制御対象の圧延機F7のレベリング量が鋼帯10の蛇行量に比例して変更され、鋼帯10の蛇行量が抑制される。
 なお、赤外線カメラ20による撮像を1msec以下の周期で行って、レベリング制御演算装置7による制御対象の圧延機F7における操作側及び駆動側のロール開度差の演算及びレベリング装置2による操作側及び駆動側の圧下量の調整を1msec以下の周期で行う。これにより、鋼帯10の蛇行量を30mm以下にすることができ、蛇行発生のリスクを更に低減することができる。
 次に、第3実施形態に係る蛇行制御装置4による処理の流れを図7に示すフローチャートを参照して説明する。
 先ず、鋼帯10の仕上圧延が開始され、鋼帯10の先端部が制御対象の圧延機F7を通過したら、ステップS21において、隣り合う圧延機F6、F7間に設置された赤外線カメラ20によって走行する鋼帯10の表面から発せられる赤外線の強度分布を撮像する(撮像ステップ)。
 次いで、ステップS22に移行し、赤外線カメラ20は撮像した赤外線の強度分布のデータを蛇行量算出装置21に転送し、蛇行量算出装置21は、赤外線の強度分布から鋼帯10の幅方向両端部のエッジ位置を検出する。そして、蛇行量算出装置21は、その検出された鋼帯10の幅方向両端部のエッジ位置に基づいて鋼帯10の蛇行量を算出する(蛇行量算出ステップ)。具体的には、蛇行量算出装置21は、検出された鋼帯10の幅方向両端部のエッジ位置から鋼帯10の幅方向中央の位置を算出し、各圧延機F1~F7の幅方向の中心から、算出された鋼帯10の幅方向中央の位置までの距離を鋼帯10の蛇行量として算出する。
 次いで、ステップS23に移行し、レベリング制御演算装置7は、走行する鋼帯10の尾端部10aが圧延機F6を抜けてから赤外線カメラ20を抜けるまでの制御区間Aにおいて、蛇行量算出ステップで算出された鋼帯10の蛇行量に基づいて、赤外線カメラ20が設置されている位置の下流側直近にある圧延機F7における操作側及び駆動側のロールギャップの開度差であるロール開度差を前述の(1)式により演算し、演算されたロール開度差を制御対象となる圧延機F7に設けられたレベリング装置2に送出する(レベリング制御演算ステップ)。
 その後、ステップS24において、圧延機F7に設けられたレベリング装置2は、レベリング制御演算装置7から送出されたロール開度差に基づいて、当該制御対象の圧延機F7のロール開度差がレベリング制御演算装置7から送出されたロール開度差となるように、圧延機F7の操作側に取り付けられた圧下装置による圧下量と、圧延機F7の駆動側に取り付けられた圧下装置による圧下量とを調整する(圧下量調整ステップ)。
 これにより、制御対象の圧延機F7のレベリング量が鋼帯10の蛇行量に比例して変更され、鋼帯10の蛇行量が抑制される。
 撮像ステップにおいて、隣り合う圧延機F6、F7間に設置された赤外線カメラ20によって走行する鋼帯10の表面から発せられる赤外線の強度分布を撮像し、蛇行量算出ステップにおいて、蛇行量算出装置21は、赤外線の強度分布から鋼帯10の幅方向両端部のエッジ位置を検出し、その検出された鋼帯10の幅方向両端部のエッジ位置に基づいて鋼帯10の蛇行量を算出する。
 これにより、蒸気で鋼帯10の幅方向両端部のエッジが完全に覆われる場合であっても、赤外線の強度分布を適切にかつ迅速に撮像し、赤外線の強度分布から鋼帯10の幅方向両端部のエッジ位置を適切かつ迅速に検出することができる。
 また、蒸気で鋼帯10の幅方向両端部のエッジが完全に覆われる場合であっても、適切かつ迅速に検出された鋼帯10の幅方向両端部のエッジ位置に基づいて鋼帯10の蛇行量を適切かつ迅速に算出することができる。
 そして、この蛇行量の算出、即ち、鋼帯10の蛇行量の測定に際しては、測定周期が1msec程度の高周期での測定が可能となり、圧延機F6と圧延機F7との間を鋼帯10が通過する時間が1秒に満たない場合であっても、自動でレベリング制御を行えることになる。
 このため、赤外線カメラ20による撮像を1msec以下の周期で行って、レベリング制御演算装置7による制御対象の圧延機F7における操作側及び駆動側のロール開度差の演算及びレベリング装置2による操作側及び駆動側の圧下量の調整を1msec以下の周期で行う。これにより、鋼帯10の蛇行量を30mm以下にすることができ、蛇行発生のリスクを低減することができる。
(第4実施形態)
 次に、本発明の第4実施形態に係る蛇行制御装置について図8及び図9を参照して説明する。図8には、本発明の第4実施形態に係る蛇行制御装置を備えた仕上圧延設備の概略構成が示されている。図9には、本発明の第4実施形態に係る蛇行制御装置による処理の流れを示すフローチャートが示されている。
 第4実施形態に係る蛇行制御装置4は、第2実施形態に係る蛇行制御装置4と基本構成は同様であり、制御区間Aにおいて、「蛇行計方式の蛇行制御」及び「差荷重方式の蛇行制御」を併用し、制御区間Bにおいて、「差荷重方式の蛇行制御」のみによって鋼帯10の蛇行を制御する。
 但し、第2実施形態に係る蛇行制御装置4が、隣り合う圧延機F6と圧延機F7との間に設置されたラインセンサカメラ5で、走行する鋼帯10の表面を撮像するのに対し、第4実施形態に係る蛇行制御装置4は、隣り合う圧延機F6と圧延機F7との間に設置された赤外線カメラ20で、走行する鋼帯10の表面から発せられる赤外線の強度分布を撮像する点で相違している。
 また、第2実施形態に係る蛇行制御装置4が、蛇行量算出装置6で、ラインセンサカメラ5で得られた撮像画像に基づく1次元の輝度分布から鋼帯10の幅方向両端部の位置を検出し、その検出された鋼帯10の幅方向両端部の位置に基づいて鋼帯10の蛇行量を算出する。これに対して、第4実施形態に係る蛇行制御装置4は、蛇行量算出装置21で、赤外線カメラ20で得られた赤外線の強度部分から鋼帯10の幅方向両端部のエッジ位置を検出し、その検出された鋼帯10の幅方向両端部のエッジ位置に基づいて鋼帯10の蛇行量を算出する点で装置している。
 第4実施形態に係る蛇行制御装置4における赤外線カメラ20は、第3実施形態に係る赤外線カメラ20と同様に、走行する鋼帯10の表面から発せられる赤外線の強度分布を撮像する。このため、蒸気で鋼帯10の幅方向両端部のエッジが完全に覆われる場合であっても、赤外線の強度分布を適切かつ迅速に撮像することができる。
 なお、赤外線カメラ20に用いられる波長は、第3実施形態に係る赤外線カメラ20と同様の理由により、1.5μm超1000μm以下であることが好ましい。そして、赤外線カメラ20に用いられる波長は、3.0μm以上1000μm以下であることがより好ましい。
 赤外線カメラ20の設置台数は単数でも複数であってもよい。但し、所定の赤外線カメラ20の視野範囲内に圧延機F6,F7の幅方向の中心CL1(図15参照)が入るように設置する。
 第4実施形態に係る蛇行制御装置4によれば、赤外線カメラ20で走行する鋼帯10の表面から発せられる赤外線の強度分布を撮像し、蛇行量算出装置21で赤外線カメラ20で撮像された赤外線の強度分布から鋼帯10の幅方向両端部のエッジ位置を検出する。
 これにより、蒸気で鋼帯10の幅方向両端部のエッジが完全に覆われる場合であっても、赤外線の強度分布を適切にかつ迅速に撮像し、赤外線の強度分布から鋼帯10の幅方向両端部のエッジ位置を適切かつ迅速に検出することができる。
 また、第4実施形態に係る蛇行制御装置4によれば、蛇行量算出装置21により、検出された鋼帯10の幅方向両端部のエッジ位置から鋼帯10の幅方向中央の位置を算出し、圧延機F6~F7の幅方向の中心から、算出された鋼帯10の幅方向中央の位置までの距離を鋼帯10の蛇行量として算出する。
 これにより、蒸気で鋼帯10の幅方向両端部のエッジが完全に覆われる場合であっても、適切かつ迅速に検出された鋼帯10の幅方向両端部のエッジ位置に基づいて鋼帯10の蛇行量を適切かつ迅速に算出することができる。
 そして、この蛇行量の算出、即ち、鋼帯10の蛇行量の測定に際しては、測定周期が1msec程度の高周期での測定が可能となり、圧延機F6と圧延機F7との間を鋼帯10が通過する時間が1秒に満たない場合であっても、自動でレベリング制御を行えることになる。
 また、蛇行制御装置4は、第2実施形態に係る蛇行制御装置4と同様に、レベリング制御演算装置7を備えている。レベリング制御演算装置7は、制御区間Aにおいて、「蛇行計方式の蛇行制御」及び「差荷重方式の蛇行制御」を併用し、制御区間Bにおいて、「差荷重方式の蛇行制御」のみによって鋼帯10の蛇行を制御する。
 このため、レベリング制御演算装置7は、走行する鋼帯10の尾端部10aが圧延機F6を抜けてから赤外線カメラ20を抜けるまでの制御区間Aにおいて、圧延機F7に設けられた荷重検出器3により検出された操作側及び駆動側の圧延荷重から求まる操作側及び駆動側の差荷重と、蛇行量算出装置21によって算出された鋼帯10の蛇行量とに基づいて、圧延機F7における操作側及び駆動側のロール開度差を前述の(2)式により演算し、演算されたロール開度差を圧延機F7に設けられたレベリング装置2に送出する。
 また、レベリング制御演算装置7は、走行する鋼帯10の尾端部10aが赤外線カメラ20を抜けてから圧延機F7を抜けるまでの制御区間Bにおいて、圧延機F7に設けられた荷重検出器3により検出された操作側及び駆動側の圧延荷重から求まる操作側及び駆動側の差荷重に基づいて、圧延機F7における操作側及び駆動側のロール開度差を前述の(3)式により演算し、演算されたロール開度差を圧延機F7に設けられたレベリング装置2に送出する。
 そして、圧延機F7に設けられたレベリング装置2は、レベリング制御演算装置7から送出されたロール開度差に基づいて、当該制御対象の圧延機F7のロール開度差がレベリング制御演算装置7から送出されたロール開度差となるように、制御対象の圧延機F7の操作側に取り付けられた圧下装置による圧下量と、圧延機F7の駆動側に取り付けられた圧下装置による圧下量とを調整する。これにより、制御対象の圧延機F7のレベリング量が鋼帯10の蛇行量に比例して変更され、鋼帯10の蛇行量が抑制される。
 なお、赤外線カメラ20による撮像を1msec以下の周期で行って、レベリング制御演算装置7による制御対象の圧延機F7における操作側及び駆動側のロール開度差の演算及びレベリング装置2による操作側及び駆動側の圧下量の調整を1msec以下の周期で行う。これにより、鋼帯10の蛇行量を30mm以下にすることができ、蛇行発生のリスクを低減することができる。
 次に、第4実施形態に係る蛇行制御装置4による処理の流れを図9に示すフローチャートを参照して説明する。
 先ず、ステップS31において、鋼帯10の仕上圧延が開始され、鋼帯10の先端部が制御対象の圧延機F7を通過したら、隣り合う圧延機F6、F7間に設置された赤外線カメラ20で走行する鋼帯10の表面から発せられる赤外線の強度分布を撮像する(撮像ステップ)。
 次いで、ステップS32に移行し、赤外線カメラ20は撮像した赤外線の強度分布のデータを蛇行量算出装置21に転送し、蛇行量算出装置21は、赤外線の強度分布から鋼帯10の幅方向両端部のエッジ位置を検出する。そして、蛇行量算出装置21は、その検出された鋼帯10の幅方向両端部のエッジ位置から鋼帯10の幅方向中央の位置を算出し、各圧延機F1~F7の幅方向の中心から、算出された鋼帯10の幅方向中央の位置までの距離を鋼帯10の蛇行量として算出する(蛇行量算出ステップ)。
 次いで、ステップS33に移行し、レベリング制御演算装置7は、制御対象である圧延機F7に設けられた荷重検出器3により検出された操作側及び駆動側の圧延荷重から操作側及び駆動側の差荷重を求める(差荷重算出ステップ)。
 次いで、ステップS34に移行し、レベリング制御演算装置7は、走行する鋼帯10の尾端部10aが圧延機F6を抜けてから赤外線カメラ20を抜けるまでの制御区間Aにおいて、圧延機F7に設けられた荷重検出器3により検出された操作側及び駆動側の圧延荷重から求まる操作側及び駆動側の差荷重と、蛇行量算出装置21によって算出された鋼帯10の蛇行量とに基づいて、圧延機F7における操作側及び駆動側のロール開度差を前述の(2)式により演算し、演算されたロール開度差を圧延機F7に設けられたレベリング装置2に送出する(レベリング制御演算ステップ)。
 また、レベリング制御演算装置7は、走行する鋼帯10の尾端部10aが赤外線カメラ20を抜けてから圧延機F7を抜けるまでの制御区間Bにおいて、圧延機F7に設けられた荷重検出器3により検出された操作側及び駆動側の圧延荷重から求まる操作側及び駆動側の差荷重に基づいて、圧延機F7における操作側及び駆動側のロール開度差を前述の(3)式により演算し、演算されたロール開度差を圧延機F7に設けられたレベリング装置2に送出する(レベリング制御演算ステップ)。
 その後、ステップS35に移行し、圧延機F7に設けられたレベリング装置2は、レベリング制御演算装置7から送出されたロール開度差に基づいて、当該制御対象の圧延機F7のロール開度差がレベリング制御演算装置7から送出されたロール開度差となるように、圧延機F7の操作側に取り付けられた圧下装置による圧下量と、圧延機F7の駆動側に取り付けられた圧下装置による圧下量とを調整する(圧下量調整ステップ)。
 つまり、レベリング装置2は、走行する鋼帯10の尾端部10aが圧延機F6を抜けてから赤外線カメラ20を抜けるまでの制御区間Aにおいては、当該制御対象の圧延機F7のロール開度差が、(2)式により演算されたロール開度差となるように、圧延機F7の操作側に取り付けられた圧下装置による圧下量と、圧延機F7の駆動側に取り付けられた圧下装置による圧下量とを調整する。また、レベリング装置2は、走行する鋼帯10の尾端部10aが赤外線カメラ20を抜けてから圧延機F7を抜けるまでの制御区間Bにおいては、当該制御対象の圧延機F7のロール開度差が、(3)式により演算されたロール開度差となるように、圧延機F7の操作側に取り付けられた圧下装置による圧下量と、圧延機F7の駆動側に取り付けられた圧下装置による圧下量とを調整する。
 これにより、鋼帯10の蛇行量が抑制される。
 撮像ステップにおいて、隣り合う圧延機F6、F7間に設置された赤外線カメラ20によって走行する鋼帯10の表面から発せられる赤外線の強度分布を撮像し、蛇行量算出ステップにおいて、蛇行量算出装置21は、赤外線の強度分布から鋼帯10の幅方向両端部のエッジ位置を検出し、その検出された鋼帯10の幅方向両端部のエッジ位置に基づいて鋼帯10の蛇行量を算出する。
 これにより、蒸気で鋼帯10の幅方向両端部のエッジが完全に覆われる場合であっても、赤外線の強度分布を適切にかつ迅速に撮像し、赤外線の強度分布から鋼帯10の幅方向両端部のエッジ位置を適切かつ迅速に検出することができる。
 また、蒸気で鋼帯10の幅方向両端部のエッジが完全に覆われる場合であっても、適切かつ迅速に検出された鋼帯10の幅方向両端部のエッジ位置に基づいて鋼帯10の蛇行量を適切かつ迅速に算出することができる。
 そして、この蛇行量の算出、即ち、鋼帯10の蛇行量の測定に際しては、測定周期が1msec程度の高周期での測定が可能となり、圧延機F6と圧延機F7との間を鋼帯10が通過する時間が1秒に満たない場合であっても、自動でレベリング制御を行えることになる。
 このため、赤外線カメラ20による撮像を1msec以下の周期で行って、レベリング制御演算装置7による制御対象の圧延機F7における操作側及び駆動側のロール開度差の演算及びレベリング装置2による操作側及び駆動側の圧下量の調整を1msec以下の周期で行う。これにより、鋼帯10の蛇行量を30mm以下にすることができ、蛇行発生のリスクを低減することができる。
 また、第4実施形態に係る蛇行制御装置4は、走行する鋼帯10の尾端部10aが圧延機F6を抜けてから赤外線カメラ20を抜けるまでの制御区間Aにおいて、「蛇行計方式の蛇行制御」のみによって鋼帯10の蛇行を制御する第3実施形態に係る蛇行制御装置4に対し、制御区間Aにおいて、「蛇行計方式の蛇行制御」及び「差荷重方式の蛇行制御」を併用し、鋼帯10の尾端部10aが赤外線カメラ20を抜けてから圧延機F7を抜けるまでの制御区間Bにおいて、「差荷重方式の蛇行制御」によって鋼帯10の蛇行を制御する。このため、第4実施形態に係る蛇行制御装置4は、第3実施形態に係る蛇行制御装置4と比較して鋼帯10の蛇行量をより抑制することができる。
 以上、本発明の実施形態について説明してきたが、本発明はこれに限定されずに種々の変更、改良を行うことができる。
 先ず、第1実施形態乃至第4実施形態に係る蛇行制御装置4において、制御対象となる圧延機は上流側から数えて7番目の圧延機F7としてあるが、ラインセンサカメラ5あるいは赤外線カメラ20が設置されている位置の下流側直近にある圧延機であれば、圧延機F7以外の圧延機F6、圧延機F5、圧延機F4などであってもよい。
 また、第1実施形態乃至第4実施形態に係る蛇行制御装置4において、圧延機の数が7つであるが、この圧延機の数は7つ以外であってもよい。この場合であっても、制御対象となる圧延機は、ラインセンサカメラ5あるいは赤外線カメラ20が設置されている位置の下流側直近にある圧延機であればよい。
 また、第1実施形態乃至第4実施形態に係る蛇行制御装置4において、制御区間Aは、走行する鋼帯10の尾端部10aが制御対象となる圧延機F7よりひとつ前の圧延機F6を抜けたときから開始しているが、圧延機F7よりひとつ前の圧延機F6を抜けたときから開始する場合に限らず、例えば、圧延機F7よりふたつ前の圧延機F5を抜けたときや圧延機F7より三つ前の圧延機F4を抜けたときなどとしてもよい。また、制御区間Aは、走行する鋼帯10の尾端部10aが任意の圧延機間の特定ポイントを通過した時から開始するようにしてもよい。
 また、第2実施形態に係る蛇行制御装置4を、図5に示すように変形してもよい。これについて具体的に述べると、図5に示す蛇行制御装置4は、第2実施形態に係る蛇行制御装置4と基本構成は同様である。しかし、第2実施形態に係る蛇行制御装置4が、走行する鋼帯10の尾端部10aが圧延機F6を抜けてからラインセンサカメラ5を抜けるまでの制御区間Aにおいて、「蛇行計方式の蛇行制御」及び「差荷重方式の蛇行制御」を併用し、鋼帯10の尾端部10aがラインセンサカメラ5を抜けてから圧延機F7を抜けるまでの制御区間Bにおいて、「差荷重方式の蛇行制御」のみによって圧延機F7のレベリング量を調整して鋼帯10の蛇行を制御する。これに対して、図5に示す蛇行制御装置4は、第2実施形態に係る蛇行制御装置4による制御区間Aにおける「蛇行計方式の蛇行制御」及び「差荷重方式の蛇行制御」の併用、制御区間Bにおける「差荷重方式の蛇行制御」のみによる圧延機F7のレベリング量の調整に加えて、走行する鋼帯10の尾端部10aが圧延機F5を抜けてからラインセンサカメラ5を抜けるまでの制御区間A-1において、「蛇行計方式の蛇行制御」及び「差荷重方式の蛇行制御」を併用する。また、鋼帯10の尾端部10aがラインセンサカメラ5を抜けてから圧延機F6を抜けるまでの制御区間B-1において、「差荷重方式の蛇行制御」のみによって圧延機F6のレベリング量を調整して鋼帯10の蛇行を制御する。
 このため、図5に示す蛇行制御装置4は、第2実施形態に係る蛇行制御装置4と異なり、圧延機F6と圧延機F7との間に設置されたラインセンサカメラ5に加えて、圧延機F5と圧延機F6との間にもラインセンサカメラ5を設置している。圧延機F5と圧延機F6との間に設置されたラインセンサカメラ5は、圧延機F6と圧延機F7との間に設置されたラインセンサカメラ5と同様の性能を有し、一次元撮像装置で、CCDイメージングセンサ素子等で構成され、走行する鋼帯Sの表面を幅方向に走査するように撮像する。ラインセンサカメラ5は、その視野内に各圧延機F1~F7の幅方向(鋼帯10の幅方向と同じ方向)の中心CL1(図15参照)が入るように設置される。このラインセンサカメラ5は単数でも複数でもよい。
 また、図5に示す蛇行制御装置4は、第2実施形態に係る蛇行制御装置4と異なり、圧延機F6と圧延機F7との間に設置されたラインセンサカメラ5で得られた撮像画像に基づいて鋼帯10の幅方向両端部の位置を検出する蛇行量算出装置6に加えて、圧延機F5と圧延機F6との間に設置されたラインセンサカメラ5で得られた撮像画像に基づく一次元輝度分布から鋼帯10の幅方向両端部の位置を検出する蛇行量算出装置6を備えている。この加えられた蛇行量算出装置6は、その検出された鋼帯10の幅方向両端部の位置から鋼帯10の幅方向中央の位置を算出し、各圧延機F1~F7の幅方向の中心から、算出された鋼帯10の幅方向中央の位置までの距離を鋼帯10の蛇行量として算出する。
 また、図5に示す蛇行制御装置4は、第2実施形態に係る蛇行制御装置4と異なり、制御区間Aにおいて、圧延機F7における操作側及び駆動側のロール開度差を前述の(2)式により演算し、制御区間Bにおいて、圧延機F7における操作側及び駆動側のロール開度差を前述の(3)式により演算するレベリング制御演算装置7に加えて、制御区間A-1において、圧延機F6における操作側及び駆動側のロール開度差を後述の(4)式により演算し、制御区間B-1において、圧延機F6における操作側及び駆動側のロール開度差を後述の(5)式により演算するレベリング制御演算装置7を備えている。
 つまり、この加えられたレベリング制御演算装置7は、走行する鋼帯10の尾端部10aが圧延機F5を抜けてからラインセンサカメラ5を抜けるまでの制御区間A-1において、圧延機F6に設けられた荷重検出器3により検出された操作側及び駆動側の圧延荷重から求まる操作側及び駆動側の差荷重と、蛇行量算出装置6によって算出された鋼帯10の蛇行量とに基づいて、圧延機F6における操作側及び駆動側のロール開度差を次の(4)式により演算し、演算されたロール開度差を圧延機F6に設けられたレベリング装置2に送出するレベリング制御演算装置7を備えている。
 S=αA-1C(δ-δ)+βA-1D(ΔP-ΔP)+S …(4)
 ここで、S:圧延機F6における操作側及び駆動側のロール開度差、S:鋼帯10の尾端部10aが圧延機F5を抜けたときの、圧延機F6における操作側及び駆動側のロール開度差、αA-1:制御区間A-1における、蛇行量算出装置6によって算出された蛇行量に対する制御ゲイン、βA-1:制御区間A-1における、圧延機F6に設けられた荷重検出器3から検出された差荷重に対する制御ゲイン、δ:鋼帯10の尾端部10aが圧延機F5を抜けたときの、蛇行量算出装置6によって算出された蛇行量、ΔP:鋼帯10の尾端部10aが圧延機F5を抜けたときの、圧延機F6に設けられた荷重検出器3から検出された差荷重、δ:制御区間A-1における、蛇行量算出装置6によって算出された蛇行量、ΔP:制御区間A-1における、圧延機F6に設けられた荷重検出器3から検出された差荷重、C:蛇行量に対するレベリング量の変化量、D:ロール径、ロール長、ロール本数、圧延材の幅などで決まる定数である。
 また、レベリング制御演算装置7は、走行する鋼帯10の尾端部10aがラインセンサカメラ5を抜けてから圧延機F6を抜けるまでの制御区間B-1において、圧延機F6に設けられた荷重検出器3により検出された操作側及び駆動側の圧延荷重から求まる操作側及び駆動側の差荷重に基づいて、圧延機F6における操作側及び駆動側のロール開度差を次の(5)式により演算し、演算されたロール開度差を圧延機F6に設けられたレベリング装置2に送出する。
 S=βB-1D(ΔP-ΔP)+SB-1 …(5)
 ここで、S:圧延機F6における操作側及び駆動側のロール開度差、SB-1:鋼帯10の尾端部10aがラインセンサカメラ5を抜けたときの、圧延機F6における操作側及び駆動側のロール開度差、β-1:制御区間B-1における、圧延機F6に設けられた荷重検出器3から検出された差荷重に対する制御ゲイン、ΔP:鋼帯10の尾端部10aが圧延機F5を抜けたときの、圧延機F6に設けられた荷重検出器3から検出された差荷重、ΔP:制御区間B-1における、圧延機F6に設けられた荷重検出器3から検出された差荷重、D:ロール径、ロール長、ロール本数、圧延材の幅などで決まる定数である。
 そして、圧延機F6に設けられたレベリング装置2は、レベリング制御演算装置7から送出されたロール開度差に基づいて、制御対象の圧延機F6の操作側に取り付けられた圧下装置による圧下量と、圧延機F6の駆動側に取り付けられた圧下装置による圧下量とを調整する。これにより、制御対象の圧延機F6のレベリング量が鋼帯10の蛇行量に比例して変更され、鋼帯10の蛇行量が抑制される。
 また、圧延機F7に設けられたレベリング装置2も、レベリング制御演算装置7から送出されたロール開度差に基づいて、制御対象の圧延機F7の操作側に取り付けられた圧下装置による圧下量と、圧延機F7の駆動側に取り付けられた圧下装置による圧下量とを調整する。これにより、制御対象の圧延機F7のレベリング量も鋼帯10の蛇行量に比例して変更され、鋼帯10の蛇行量が抑制される。
 なお、圧延機F5と圧延機F6との間に設置されたラインセンサカメラ5による撮像を5msec以下の周期で行って、レベリング制御演算装置7による制御対象の圧延機F6における操作側及び駆動側のロール開度差の演算及びレベリング装置2による操作側及び駆動側の圧下量の調整を5msec以下の周期で行う。これにより、鋼帯10の蛇行量を50mm以下にすることができ、鋼帯10の絞りの発生を防止することができる。また、ラインセンサカメラ5による撮像を5msec以下の周期で行うことで、鋼帯10の蛇行量を30mm以下にすることができ、蛇行発生のリスクを更に低減することができる。
 また、圧延機F6と圧延機F7との間に設置されたラインセンサカメラ5による撮像も5msec以下の周期で行って、レベリング制御演算装置7による制御対象の圧延機F7における操作側及び駆動側のロール開度差の演算及びレベリング装置2による操作側及び駆動側の圧下量の調整を5msec以下の周期で行う。
 この図5に示す蛇行制御装置4の場合、第2実施形態に係る蛇行制御装置4による制御区間Aにおける「蛇行計方式の蛇行制御」及び「差荷重方式の蛇行制御」の併用、制御区間Bにおける「差荷重方式の蛇行制御」のみによる圧延機F7のレベリング量の調整に加えて、走行する鋼帯10の尾端部10aが圧延機F5を抜けてからラインセンサカメラ5を抜けるまでの制御区間A-1において、「蛇行計方式の蛇行制御」及び「差荷重方式の蛇行制御」を併用する。また、鋼帯10の尾端部10aがラインセンサカメラ5を抜けてから圧延機F6を抜けるまでの制御区間B-1において、「差荷重方式の蛇行制御」のみによって圧延機F6のレベリング量を調整して鋼帯10の蛇行を制御する。このため、図5に示す蛇行制御装置4は、第2実施形態に係る蛇行制御装置4と比較して鋼帯10の蛇行量をより抑制することができる。
 また、第4実施形態に係る蛇行制御装置4も、図5に示す蛇行制御装置4と同様の趣旨で変形してもよい。つまり、第4実施形態の変形例に係る蛇行制御装置4は、第4実施形態に係る蛇行制御装置4による制御区間Aにおける「蛇行計方式の蛇行制御」及び「差荷重方式の蛇行制御」の併用、制御区間Bにおける「差荷重方式の蛇行制御」のみによる圧延機F7のレベリング量の調整に加えて、走行する鋼帯10の尾端部10aが圧延機F5を抜けてから赤外線カメラ20を抜けるまでの制御区間A-1において、「蛇行計方式の蛇行制御」及び「差荷重方式の蛇行制御」を併用する。また、鋼帯10の尾端部10aが赤外線カメラ20を抜けてから圧延機F6を抜けるまでの制御区間B-1において、「差荷重方式の蛇行制御」のみによって圧延機F6のレベリング量を調整して鋼帯10の蛇行を制御する。
 本発明者らは、比較例1~3及び実施例1~6に係る蛇行制御装置を備えた仕上圧延設備1を用いて鋼帯10を仕上圧延し、それぞれについて鋼帯10の蛇行量を測定した。鋼帯10の幅は1200mm、仕上圧延設備1の入側の鋼帯10の板厚は21mm、仕上圧延設備1の出側の鋼帯10の板厚は1.7mmとした。また、仕上圧延設備1の出側での鋼帯10の圧延速度を1000mpmとした。
 比較例1に係る蛇行制御装置は、図10に示されており、この蛇行制御装置4は、走行する鋼帯10の尾端部が圧延機F6を抜けてから2次元カメラ8を抜けるまでの制御区間Aにおいて、「蛇行計方式の蛇行制御」によって圧延機F7のレベリング量を調整して鋼帯10の蛇行を制御した。
 つまり、比較例1に係る蛇行制御装置4のレベリング制御演算装置7は、走行する鋼帯10の尾端部が圧延機F6を抜けてから2次元カメラ8を抜けるまでの制御区間Aにおいて、蛇行量算出装置6で算出された鋼帯10の蛇行量に基づいて、2次元カメラ8が設置されている位置の下流側直近にある圧延機F7における操作側及び駆動側のロールギャップの開度差であるロール開度差を前述の(1)式により演算し、演算されたロール開度差を制御対象となる圧延機F7に設けられたレベリング装置2に送出した。
 そして、比較例1に係る蛇行制御装置4の2次元カメラ8による撮像周期は、20msecとした。
 また、比較例2に係る蛇行制御装置は、図11に示されており、この蛇行制御装置4は、走行する鋼帯10の尾端部が圧延機F6を抜けてから2次元カメラ8を抜けるまでの制御区間Aにおいて、「蛇行計方式の蛇行制御」及び「差荷重方式の蛇行制御」を併用し、鋼帯10の尾端部が2次元カメラ8を抜けてから圧延機F7を抜けるまでの制御区間Bにおいて、「差荷重方式の蛇行制御」のみによって圧延機F7のレベリング量を調整して鋼帯10の蛇行を制御した。
 つまり、比較例2に係る蛇行制御装置4のレベリング制御演算装置7は、走行する鋼帯10の尾端部が圧延機F6を抜けてから2次元カメラ8を抜けるまでの制御区間Aにおいて、圧延機F7に設けられた荷重検出器3により検出された操作側及び駆動側の圧延荷重から求まる操作側及び駆動側の差荷重と、蛇行量算出装置6によって算出された鋼帯10の蛇行量とに基づいて、圧延機F7における操作側及び駆動側のロール開度差を前述の(2)式により演算し、演算されたロール開度差を圧延機F7に設けられたレベリング装置2に送出した。
 また、このレベリング制御演算装置7は、走行する鋼帯10の尾端部が2次元カメラ8を抜けてから圧延機F7を抜けるまでの制御区間Bにおいて、圧延機F7に設けられた荷重検出器3により検出された操作側及び駆動側の圧延荷重から求まる操作側及び駆動側の差荷重に基づいて、圧延機F7における操作側及び駆動側のロール開度差を前述の(3)式により演算し、演算されたロール開度差を圧延機F7に設けられたレベリング装置2に送出した。
 そして、比較例2に係る蛇行制御装置4の2次元カメラ8による撮像周期は、20msecとした。
 また、比較例3に係る蛇行制御装置は、図3に示されており、この蛇行制御装置4は、走行する鋼帯10の尾端部が圧延機F6を抜けてからラインセンサカメラ5を抜けるまでの制御区間Aにおいて、「蛇行計方式の蛇行制御」及び「差荷重方式の蛇行制御」を併用し、鋼帯10の尾端部がラインセンサカメラ5を抜けてから圧延機F7を抜けるまでの制御区間Bにおいて、「差荷重方式の蛇行制御」のみによって圧延機F7のレベリング量を調整して鋼帯10の蛇行を制御した。
 つまり、比較例3に係る蛇行制御装置4のレベリング制御演算装置7は、走行する鋼帯10の尾端部が圧延機F6を抜けてからラインセンサカメラ5を抜けるまでの制御区間Aにおいて、圧延機F7に設けられた荷重検出器3により検出された操作側及び駆動側の圧延荷重から求まる操作側及び駆動側の差荷重と、蛇行量算出装置6によって算出された鋼帯10の蛇行量とに基づいて、圧延機F7における操作側及び駆動側のロール開度差を前述の(2)式により演算し、演算されたロール開度差を圧延機F7に設けられたレベリング装置2に送出した。
 また、このレベリング制御演算装置7は、走行する鋼帯10の尾端部がラインセンサカメラ5を抜けてから圧延機F7を抜けるまでの制御区間Bにおいて、圧延機F7に設けられた荷重検出器3により検出された操作側及び駆動側の圧延荷重から求まる操作側及び駆動側の差荷重に基づいて、圧延機F7における操作側及び駆動側のロール開度差を前述の(3)式により演算し、演算されたロール開度差を圧延機F7に設けられたレベリング装置2に送出した。
 そして、比較例3に係る蛇行制御装置4のラインセンサカメラ5による撮像周期は、20msecとした。
 次に、実施例1に係る蛇行制御装置は、図1に示されており、この蛇行制御装置4は、走行する鋼帯10の尾端部が圧延機F6を抜けてからラインセンサカメラ5を抜けるまでの制御区間Aにおいて、「蛇行計方式の蛇行制御」によって圧延機F7のレベリング量を調整して鋼帯10の蛇行を制御した。
 つまり、実施例1に係る蛇行制御装置4のレベリング制御演算装置7は、走行する鋼帯10の尾端部が圧延機F6を抜けてからラインセンサカメラ5を抜けるまでの制御区間Aにおいて、蛇行量算出装置6で算出された鋼帯10の蛇行量に基づいて、ラインセンサカメラ5が設置されている位置の下流側直近にある圧延機F7における操作側及び駆動側のロールギャップの開度差であるロール開度差を前述の(1)式により演算し、演算されたロール開度差を制御対象となる圧延機F7に設けられたレベリング装置2に送出した。
 そして、実施例1に係る蛇行制御装置4のラインセンサカメラ5による撮像周期は、5msecとした。
 また、実施例2に係る蛇行制御装置は、図3に示されており、この蛇行制御装置4は、走行する鋼帯10の尾端部が圧延機F6を抜けてからラインセンサカメラ5を抜けるまでの制御区間Aにおいて、「蛇行計方式の蛇行制御」及び「差荷重方式の蛇行制御」を併用し、鋼帯10の尾端部がラインセンサカメラ5を抜けてから圧延機F7を抜けるまでの制御区間Bにおいて、「差荷重方式の蛇行制御」のみによって圧延機F7のレベリング量を調整して鋼帯10の蛇行を制御した。
 つまり、実施例2に係る蛇行制御装置4のレベリング制御演算装置7は、走行する鋼帯10の尾端部が圧延機F6を抜けてからラインセンサカメラ5を抜けるまでの制御区間Aにおいて、圧延機F7に設けられた荷重検出器3により検出された操作側及び駆動側の圧延荷重から求まる操作側及び駆動側の差荷重と、蛇行量算出装置6によって算出された鋼帯10の蛇行量とに基づいて、圧延機F7における操作側及び駆動側のロール開度差を前述の(2)式により演算し、演算されたロール開度差を圧延機F7に設けられたレベリング装置2に送出した。
 また、このレベリング制御演算装置7は、走行する鋼帯10の尾端部がラインセンサカメラ5を抜けてから圧延機F7を抜けるまでの制御区間Bにおいて、圧延機F7に設けられた荷重検出器3により検出された操作側及び駆動側の圧延荷重から求まる操作側及び駆動側の差荷重に基づいて、圧延機F7における操作側及び駆動側のロール開度差を前述の(3)式により演算し、演算されたロール開度差を圧延機F7に設けられたレベリング装置2に送出した。
 そして、実施例2に係る蛇行制御装置4のラインセンサカメラ5による撮像周期は、5msecとした。
 また、実施例3に係る蛇行制御装置は、図3に示されており、この蛇行制御装置4は、走行する鋼帯10の尾端部が圧延機F6を抜けてからラインセンサカメラ5を抜けるまでの制御区間Aにおいて、「蛇行計方式の蛇行制御」及び「差荷重方式の蛇行制御」を併用し、鋼帯10の尾端部がラインセンサカメラ5を抜けてから圧延機F7を抜けるまでの制御区間Bにおいて、「差荷重方式の蛇行制御」のみによって圧延機F7のレベリング量を調整して鋼帯10の蛇行を制御した。
 つまり、実施例3に係る蛇行制御装置4のレベリング制御演算装置7は、走行する鋼帯10の尾端部が圧延機F6を抜けてからラインセンサカメラ5を抜けるまでの制御区間Aにおいて、圧延機F7に設けられた荷重検出器3により検出された操作側及び駆動側の圧延荷重から求まる操作側及び駆動側の差荷重と、蛇行量算出装置6によって算出された鋼帯10の蛇行量とに基づいて、圧延機F7における操作側及び駆動側のロール開度差を前述の(2)式により演算し、演算されたロール開度差を圧延機F7に設けられたレベリング装置2に送出した。
 また、このレベリング制御演算装置7は、走行する鋼帯10の尾端部がラインセンサカメラ5を抜けてから圧延機F7を抜けるまでの制御区間Bにおいて、圧延機F7に設けられた荷重検出器3により検出された操作側及び駆動側の圧延荷重から求まる操作側及び駆動側の差荷重に基づいて、圧延機F7における操作側及び駆動側のロール開度差を前述の(3)式により演算し、演算されたロール開度差を圧延機F7に設けられたレベリング装置2に送出した。
 そして、実施例3に係る蛇行制御装置4のラインセンサカメラ5による撮像周期は、1msecとした。
 次に、実施例4に係る蛇行制御装置は、図5に示されており、この蛇行制御装置4は、走行する鋼帯10の尾端部が圧延機F5を抜けてからラインセンサカメラ5を抜けるまでの制御区間A-1において、「蛇行計方式の蛇行制御」及び「差荷重方式の蛇行制御」を併用し、鋼帯10の尾端部がラインセンサカメラ5を抜けてから圧延機F6を抜けるまでの制御区間B-1において、「差荷重方式の蛇行制御」のみによって圧延機F6のレベリング量を調整して鋼帯10の蛇行を制御した。
 また、実施例4に係る蛇行制御装置は、走行する鋼帯10の尾端部が圧延機F6を抜けてからラインセンサカメラ5を抜けるまでの制御区間Aにおいて、「蛇行計方式の蛇行制御」及び「差荷重方式の蛇行制御」を併用し、鋼帯10の尾端部がラインセンサカメラ5を抜けてから圧延機F7を抜けるまでの制御区間Bにおいて、「差荷重方式の蛇行制御」のみによって圧延機F7のレベリング量を調整して鋼帯10の蛇行を制御した。
 つまり、実施例4に係る蛇行制御装置4のレベリング制御演算装置7は、走行する鋼帯10の尾端部が圧延機F5を抜けてからラインセンサカメラ5を抜けるまでの制御区間A-1において、圧延機F6に設けられた荷重検出器3により検出された操作側及び駆動側の圧延荷重から求まる操作側及び駆動側の差荷重と、蛇行量算出装置6によって算出された鋼帯10の蛇行量とに基づいて、圧延機F6における操作側及び駆動側のロール開度差を前述の(4)式により演算し、演算されたロール開度差を圧延機F6に設けられたレベリング装置2に送出した。
 また、このレベリング制御演算装置7は、走行する鋼帯10の尾端部がラインセンサカメラ5を抜けてから圧延機F6を抜けるまでの制御区間B-1において、圧延機F6に設けられた荷重検出器3により検出された操作側及び駆動側の圧延荷重から求まる操作側及び駆動側の差荷重に基づいて、圧延機F6における操作側及び駆動側のロール開度差を前述の(5)式により演算し、演算されたロール開度差を圧延機F6に設けられたレベリング装置2に送出した。
 また、このレベリング制御演算装置7は、走行する鋼帯10の尾端部が圧延機F6を抜けてからラインセンサカメラ5を抜けるまでの制御区間Aにおいて、圧延機F7に設けられた荷重検出器3により検出された操作側及び駆動側の圧延荷重から求まる操作側及び駆動側の差荷重と、蛇行量算出装置6によって算出された鋼帯10の蛇行量とに基づいて、圧延機F7における操作側及び駆動側のロール開度差を前述の(2)式により演算し、演算されたロール開度差を圧延機F7に設けられたレベリング装置2に送出した。
 また、このレベリング制御演算装置7は、走行する鋼帯10の尾端部がラインセンサカメラ5を抜けてから圧延機F7を抜けるまでの制御区間Bにおいて、圧延機F7に設けられた荷重検出器3により検出された操作側及び駆動側の圧延荷重から求まる操作側及び駆動側の差荷重に基づいて、圧延機F7における操作側及び駆動側のロール開度差を前述の(3)式により演算し、演算されたロール開度差を圧延機F7に設けられたレベリング装置2に送出した。
 そして、実施例4に係る蛇行制御装置4のラインセンサカメラ5による撮像周期は、2台とも1msecとした。
 次に、実施例5に係る蛇行制御装置は、図6に示されており、この蛇行制御装置4は、走行する鋼帯10の尾端部が圧延機F6を抜けてから赤外線カメラ20を抜けるまでの制御区間Aにおいて、「蛇行計方式の蛇行制御」によって圧延機F7のレベリング量を調整して鋼帯10の蛇行を制御した。
 つまり、実施例5に係る蛇行制御装置4のレベリング制御演算装置7は、走行する鋼帯10の尾端部が圧延機F6を抜けてから赤外線カメラ20を抜けるまでの制御区間Aにおいて、蛇行量算出装置21で算出された鋼帯10の蛇行量に基づいて、赤外線カメラ20が設置されている位置の下流側直近にある圧延機F7における操作側及び駆動側のロールギャップの開度差であるロール開度差を前述の(1)式により演算し、演算されたロール開度差を制御対象となる圧延機F7に設けられたレベリング装置2に送出した。
 そして、実施例5に係る蛇行制御装置4の赤外線カメラ20による撮像周期は、1msecとした。また、赤外線カメラ20に用いられる赤外線の波長帯は、8~14μmであった。
 また、実施例6に係る蛇行制御装置は、図8に示されており、この蛇行制御装置4は、走行する鋼帯10の尾端部が圧延機F6を抜けてから赤外線カメラ20を抜けるまでの制御区間Aにおいて、「蛇行計方式の蛇行制御」及び「差荷重方式の蛇行制御」を併用し、鋼帯10の尾端部が赤外線カメラ20を抜けてから圧延機F7を抜けるまでの制御区間Bにおいて、「差荷重方式の蛇行制御」のみによって圧延機F7のレベリング量を調整して鋼帯10の蛇行を制御した。
 つまり、実施例6に係る蛇行制御装置4のレベリング制御演算装置7は、走行する鋼帯10の尾端部が圧延機F6を抜けてから赤外線カメラ20を抜けるまでの制御区間Aにおいて、圧延機F7に設けられた荷重検出器3により検出された操作側及び駆動側の圧延荷重から求まる操作側及び駆動側の差荷重と、蛇行量算出装置21によって算出された鋼帯10の蛇行量とに基づいて、圧延機F7における操作側及び駆動側のロール開度差を前述の(2)式により演算し、演算されたロール開度差を圧延機F7に設けられたレベリング装置2に送出した。
 また、このレベリング制御演算装置7は、走行する鋼帯10の尾端部が赤外線カメラ20を抜けてから圧延機F7を抜けるまでの制御区間Bにおいて、圧延機F7に設けられた荷重検出器3により検出された操作側及び駆動側の圧延荷重から求まる操作側及び駆動側の差荷重に基づいて、圧延機F7における操作側及び駆動側のロール開度差を前述の(3)式により演算し、演算されたロール開度差を圧延機F7に設けられたレベリング装置2に送出した。
 そして、実施例6に係る蛇行制御装置4の赤外線カメラ20による撮像周期は、1msecとした。また、赤外線カメラ20に用いられる赤外線の波長帯は、8~14μmであった。
 表1に、比較例1~3及び実施例1~6の蛇行制御条件と蛇行制御結果とを示す。
Figure JPOXMLDOC01-appb-T000001
 比較例1では、圧延機F6と圧延機F7との間に設置した2次元カメラでの鋼帯10の尾端部の蛇行量は96mmであった。
 比較例2では、圧延機F6と圧延機F7との間に設置した2次元カメラでの鋼帯10の尾端部の蛇行量は80mmであった。
 また、比較例3では、圧延機F6と圧延機F7との間に設置したラインセンサカメラでの鋼帯10の尾端部の蛇行量は76mmであった。
 また、実施例1では、圧延機F6と圧延機F7との間に設置したラインセンサカメラでの鋼帯10の尾端部の蛇行量は40mmであった。
 また、実施例2では、圧延機F6と圧延機F7との間に設置したラインセンサカメラでの鋼帯10の尾端部の蛇行量は32mmであった。
 また、実施例3では、圧延機F6と圧延機F7との間に設置したラインセンサカメラでの鋼帯10の尾端部の蛇行量は25mmであった。
 更に、実施例4では、圧延機F6と圧延機F7との間に設置したラインセンサカメラでの鋼帯10の尾端部の蛇行量は12mmであった。
 また、実施例5では、圧延機F6と圧延機F7との間に設置した赤外線カメラでの鋼帯10の尾端部の蛇行量は20mmであった。
 また、実施例6では、圧延機F6と圧延機F7との間に設置した赤外線カメラでの鋼帯10の尾端部の蛇行量は10mmであった。
 本実施例1~6の場合、圧延機F6と圧延機F7との間に設置したラインセンサカメラでの鋼帯10の尾端部の蛇行量は最も大きくて40mmであり、比較例1~3と比較して鋼帯10の尾端部の蛇行量が減少していることが確認された。
 また、実施例1と実施例2とを比較すると、制御区間Aにおいて、「蛇行計方式の蛇行制御」及び「差荷重方式の蛇行制御」を併用した方が、「蛇行計方式の蛇行制御」のみを行った場合よりも鋼帯10の尾端部の蛇行量が減少していることが確認された。
 更に、実施例2と実施例3とを比較すると、ラインセンサカメラ5の撮像周期を5msecから1msecに早めた方が鋼帯10の尾端部の蛇行量が減少していることが確認された。
 また、実施例3と実施例4とを比較すると、制御区間A及びBで圧延機Fのレベリング量を制御するのみならず、制御区間A-1及びB-1においても圧延機F6のレベリングの制御を行う方が鋼帯10の尾端部の蛇行量が減少していることが確認された。
 また、比較例1~3に係る蛇行制御装置で蛇行制御を行った場合の圧延機F7での蛇行量の時間変化を図12に示す。また、実施例1~4に係る蛇行制御装置で蛇行制御を行った場合の圧延機F7での蛇行量の時間変化を図13に示す。なお、図12及び図13において、T1は鋼帯10の尾端部が圧延機F5を抜けたときの時刻、T2は鋼帯10の尾端部が圧延機F6を抜けたときの時刻、T3は鋼帯10の尾端部が圧延機F6と圧延機F7との間(カメラのある位置)を抜けたときの時刻、T4は鋼帯10の尾端部が圧延機F7を向けたときの時刻を示す。
 図12及び図13から理解できるように、実施例1~4に係る蛇行制御装置で蛇行制御を行った場合の圧延機F7での蛇行量の時間変化は、比較例1~3に係る蛇行制御装置で蛇行制御を行った場合の圧延機F7での蛇行量の時間変化よりも小さいことが確認された。
 なお、比較例1~3及び実施例1~6において、蒸気で鋼帯10の幅方向両端部のエッジが完全に覆われた場合、可視光カメラの2次元カメラを用いた比較例1、2及びラインセンサカメラを用いた比較例3及び実施例1~4にあっては、鋼帯10の幅方向両端部のエッジ位置の検出が困難で蛇行量の測定データにノイズあることが分かった。これに対し、赤外線カメラ20を用いた実施例5、6にあっては、鋼帯10の幅方向両端部のエッジ位置の検出が適切かつ迅速に行え、蛇行量の測定データにノイズは少なく、蛇行量が明確に測定できた。
 1 仕上圧延設備
 2 レベリング装置
 3 荷重検出器
 4 蛇行制御装置
 5 ラインセンサカメラ
 6 蛇行量算出装置
 7 レベリング制御演算装置
 8 2次元カメラ
 10 熱間圧延鋼帯
 10a 尾端部
 20 赤外線カメラ
 21 蛇行量算出装置
 22 レベリング制御装置
 F1~Fn 圧延機

Claims (11)

  1.  操作側及び駆動側の圧下量を調整するレベリング装置をそれぞれが有する複数の圧延機を備えた仕上圧延設備で圧延される熱間圧延鋼帯の蛇行を制御する熱間圧延鋼帯の蛇行制御方法であって、
     隣り合う圧延機間に設置されたラインセンサカメラで走行する熱間圧延鋼帯の表面を撮像する撮像ステップと、
     蛇行量算出装置により、該撮像ステップで撮像された撮像画像に基づく1次元の輝度分布から前記熱間圧延鋼帯の幅方向両端部の位置を検出し、その検出された前記熱間圧延鋼帯の幅方向両端部の位置に基づいて前記熱間圧延鋼帯の蛇行量を算出する蛇行量算出ステップと、
     レベル制御演算装置により、走行する前記熱間圧延鋼帯の尾端部が前記ラインセンサカメラを抜けるまで、前記蛇行量算出ステップで算出された前記熱間圧延鋼帯の蛇行量に基づいて、前記ラインセンサカメラが設置されている位置の下流側直近にある圧延機における操作側及び駆動側のロールギャップの開度差であるロール開度差を演算し、演算されたロール開度差を前記下流側直近にある圧延機に設けられた前記レベリング装置に送出するレベリング制御演算ステップとを含み、
     前記撮像ステップにおける前記ラインセンサカメラによる撮像を5msec以下の周期で行って、前記レベリング制御演算ステップによる前記下流側直近にある圧延機における操作側及び駆動側のロール開度差の演算及び前記レベリング装置による操作側及び駆動側の圧下量の調整を5msec以下の周期で行うことを特徴とする熱間圧延鋼帯の蛇行制御方法。
  2.  前記ラインセンサカメラが設置されている位置の下流側直近にある圧延機に設けられた荷重検出器により検出された操作側及び駆動側の圧延荷重から操作側及び駆動側の差荷重を求める差荷重算出ステップを含み、
     前記レベリング制御演算ステップでは、走行する前記熱間圧延鋼帯の尾端部が前記ラインセンサカメラを抜けるまで、前記差荷重算出ステップで検出された操作側及び駆動側の差荷重と、前記蛇行量算出ステップによって算出された前記熱間圧延鋼帯の蛇行量とに基づいて、前記下流側直近にある圧延機における操作側及び駆動側のロール開度差を演算し、走行する前記熱間圧延鋼帯の尾端部が前記ラインセンサカメラを抜けてから前記下流側直近にある圧延機を抜けるまで、前記差荷重算出ステップで検出された操作側及び駆動側の差荷重に基づいて、前記下流側直近にある圧延機における操作側及び駆動側のロール開度差を演算し、演算されたロール開度差を前記下流側直近にある圧延機に設けられた前記レベリング装置に送出することを特徴とする請求項1に記載の熱間圧延鋼帯の蛇行制御方法。
  3.  操作側及び駆動側の圧下量を調整するレベリング装置をそれぞれが有する複数の圧延機を備えた仕上圧延設備で圧延される熱間圧延鋼帯の蛇行を制御する熱間圧延鋼帯の蛇行制御方法であって、
     隣り合う圧延機間に設置された赤外線カメラで走行する熱間圧延鋼帯の表面から発せられる赤外線の強度分布を撮像する撮像ステップと、
     蛇行量算出装置により、該撮像ステップで撮像された赤外線の強度分布から前記熱間圧延鋼帯の幅方向両端部のエッジ位置を検出し、その検出された前記熱間圧延鋼帯の幅方向両端部のエッジ位置に基づいて前記熱間圧延鋼帯の蛇行量を算出する蛇行量算出ステップと、
     レベル制御演算装置により、走行する前記熱間圧延鋼帯の尾端部が前記赤外線カメラを抜けるまで、前記蛇行量算出ステップで算出された前記熱間圧延鋼帯の蛇行量に基づいて、前記赤外線カメラが設置されている位置の下流側直近にある圧延機における操作側及び駆動側のロールギャップの開度差であるロール開度差を演算し、演算されたロール開度差を前記下流側直近にある圧延機に設けられた前記レベリング装置に送出するレベリング制御演算ステップとを含み、
     前記撮像ステップにおける前記赤外線カメラによる撮像を1msec以下の周期で行って、前記レベリング制御演算ステップによる前記下流側直近にある圧延機における操作側及び駆動側のロール開度差の演算及び前記レベリング装置による操作側及び駆動側の圧下量の調整を1msec以下の周期で行うことを特徴とする熱間圧延鋼帯の蛇行制御方法。
  4.  前記赤外線カメラが設置されている位置の下流側直近にある圧延機に設けられた荷重検出器により検出された操作側及び駆動側の圧延荷重から操作側及び駆動側の差荷重を求める差荷重算出ステップを含み、
     前記レベリング制御演算ステップでは、走行する前記熱間圧延鋼帯の尾端部が前記赤外線カメラを抜けるまで、前記差荷重算出ステップで検出された操作側及び駆動側の差荷重と、前記蛇行量算出ステップによって算出された前記熱間圧延鋼帯の蛇行量とに基づいて、前記下流側直近にある圧延機における操作側及び駆動側のロール開度差を演算し、走行する前記熱間圧延鋼帯の尾端部が前記赤外線カメラを抜けてから前記下流側直近にある圧延機を抜けるまで、前記差荷重算出ステップで検出された操作側及び駆動側の差荷重に基づいて、前記下流側直近にある圧延機における操作側及び駆動側のロール開度差を演算し、演算されたロール開度差を前記下流側直近にある圧延機に設けられた前記レベリング装置に送出することを特徴とする請求項3に記載の熱間圧延鋼帯の蛇行制御方法。
  5.  前記赤外線カメラに用いられる赤外線の波長は、1.5μm超1000μm以下であることを特徴とする請求項3又は4に記載の熱間圧延鋼帯の蛇行制御方法。
  6.  操作側及び駆動側の圧下量を調整するレベリング装置をそれぞれが有する複数の圧延機を備えた仕上圧延設備で圧延される熱間圧延鋼帯の蛇行を制御する熱間圧延鋼帯の蛇行制御装置であって、
     隣り合う圧延機間に設置された、走行する熱間圧延鋼帯の表面を撮像するラインセンサカメラと、
     該ラインセンサカメラで得られた撮像画像に基づく1次元の輝度分布から前記熱間圧延鋼帯の幅方向両端部の位置を検出し、その検出された前記熱間圧延鋼帯の幅方向両端部の位置に基づいて前記熱間圧延鋼帯の蛇行量を算出する蛇行量算出装置と、
     走行する前記熱間圧延鋼帯の尾端部が前記ラインセンサカメラを抜けるまで、前記蛇行量算出装置によって算出された前記熱間圧延鋼帯の蛇行量に基づいて、前記ラインセンサカメラが設置されている位置の下流側直近にある圧延機における操作側及び駆動側のロールギャップの開度差であるロール開度差を演算し、演算されたロール開度差を前記下流側直近にある圧延機に設けられた前記レベリング装置に送出するレベリング制御演算装置とを備え、
     前記ラインセンサカメラによる撮像を5msec以下の周期で行って、前記レベリング制御演算装置による前記下流側直近にある圧延機における操作側及び駆動側のロール開度差の演算及び前記レベリング装置による操作側及び駆動側の圧下量の調整を5msec以下の周期で行うことを特徴とする熱間圧延鋼帯の蛇行制御装置。
  7.  前記複数の圧延機の各々は、操作側及び駆動側の圧延荷重を検出する荷重検出器を備え、
     前記レベリング制御演算装置は、走行する前記熱間圧延鋼帯の尾端部が前記ラインセンサカメラを抜けるまで、前記ラインセンサカメラが設置されている位置の下流側直近にある圧延機に設けられた前記荷重検出器により検出された操作側及び駆動側の圧延荷重から求まる操作側及び駆動側の差荷重と、前記蛇行量算出装置によって算出された前記熱間圧延鋼帯の蛇行量とに基づいて、前記下流側直近にある圧延機における操作側及び駆動側のロール開度差を演算し、走行する前記熱間圧延鋼帯の尾端部が前記ラインセンサカメラを抜けてから前記下流側直近にある圧延機を抜けるまで、前記荷重検出器により検出された操作側及び駆動側の圧延荷重から求まる差荷重に基づいて、前記下流側直近にある圧延機における操作側及び駆動側のロール開度差を演算し、演算されたロール開度差を前記下流側直近にある圧延機に設けられた前記レベリング装置に送出することを特徴とする請求項6に熱間圧延鋼帯の蛇行制御装置。
  8.  操作側及び駆動側の圧下量を調整するレベリング装置をそれぞれが有する複数の圧延機を備えた仕上圧延設備で圧延される熱間圧延鋼帯の蛇行を制御する熱間圧延鋼帯の蛇行制御装置であって、
     隣り合う圧延機間に設置された、走行する熱間圧延鋼帯の表面から発せられる赤外線の強度分布を撮像する赤外線カメラと、
     該赤外線カメラで得られた赤外線の強度部分から前記熱間圧延鋼帯の幅方向両端部のエッジ位置を検出し、その検出された前記熱間圧延鋼帯の幅方向両端部のエッジ位置に基づいて前記熱間圧延鋼帯の蛇行量を算出する蛇行量算出装置と、
     走行する前記熱間圧延鋼帯の尾端部が前記赤外線カメラを抜けるまで、前記蛇行量算出装置によって算出された前記熱間圧延鋼帯の蛇行量に基づいて、前記赤外線カメラが設置されている位置の下流側直近にある圧延機における操作側及び駆動側のロールギャップの開度差であるロール開度差を演算し、演算されたロール開度差を前記下流側直近にある圧延機に設けられた前記レベリング装置に送出するレベリング制御演算装置とを備え、
     前記赤外線カメラによる撮像を1msec以下の周期で行って、前記レベリング制御演算装置による前記下流側直近にある圧延機における操作側及び駆動側のロール開度差の演算及び前記レベリング装置による操作側及び駆動側の圧下量の調整を1msec以下の周期で行うことを特徴とする熱間圧延鋼帯の蛇行制御装置。
  9.  前記複数の圧延機の各々は、操作側及び駆動側の圧延荷重を検出する荷重検出器を備え、
     前記レベリング制御演算装置は、走行する前記熱間圧延鋼帯の尾端部が前記赤外線カメラを抜けるまで、前記赤外線カメラが設置されている位置の下流側直近にある圧延機に設けられた前記荷重検出器により検出された操作側及び駆動側の圧延荷重から求まる操作側及び駆動側の差荷重と、前記蛇行量算出装置によって算出された前記熱間圧延鋼帯の蛇行量とに基づいて、前記下流側直近にある圧延機における操作側及び駆動側のロール開度差を演算し、走行する前記熱間圧延鋼帯の尾端部が前記赤外線カメラを抜けてから前記下流側直近にある圧延機を抜けるまで、前記荷重検出器により検出された操作側及び駆動側の圧延荷重から求まる差荷重に基づいて、前記下流側直近にある圧延機における操作側及び駆動側のロール開度差を演算し、演算されたロール開度差を前記下流側直近にある圧延機に設けられた前記レベリング装置に送出することを特徴とする請求項8に熱間圧延鋼帯の蛇行制御装置。
  10.  前記赤外線カメラに用いられる赤外線の波長は、1.5μm超1000μm以下であることを特徴とする請求項8又は9に記載の熱間圧延鋼帯の蛇行制御装置。
  11.  請求項6乃至10のうちいずれか一項に記載の熱間圧延鋼帯の蛇行制御装置を有することを特徴とする熱間圧延設備。
PCT/JP2020/023099 2019-07-22 2020-06-11 熱間圧延鋼帯の蛇行制御方法、蛇行制御装置及び熱間圧延設備 WO2021014811A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/624,996 US11833560B2 (en) 2019-07-22 2020-06-11 Meandering control method, meandering control device, and hot rolling equipment for hot rolled steel strip
EP20844736.7A EP4005693A4 (en) 2019-07-22 2020-06-11 METHOD OF TWIST CONTROL OF HOT ROLLED STEEL STRIP AND TWIST CONTROL DEVICE AND HOT ROLLING MILL
CN202080052053.1A CN114126776A (zh) 2019-07-22 2020-06-11 热轧钢带的蛇行控制方法、蛇行控制装置以及热轧设备
JP2020550187A JP6801833B1 (ja) 2019-07-22 2020-06-11 熱間圧延鋼帯の蛇行制御方法、蛇行制御装置及び熱間圧延設備
KR1020227001580A KR102615075B1 (ko) 2019-07-22 2020-06-11 열간 압연 강대의 사행 제어 방법, 사행 제어 장치 및 열간 압연 설비

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-134680 2019-07-22
JP2019134680 2019-07-22
JP2020085279 2020-05-14
JP2020-085279 2020-05-14

Publications (1)

Publication Number Publication Date
WO2021014811A1 true WO2021014811A1 (ja) 2021-01-28

Family

ID=74193372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023099 WO2021014811A1 (ja) 2019-07-22 2020-06-11 熱間圧延鋼帯の蛇行制御方法、蛇行制御装置及び熱間圧延設備

Country Status (1)

Country Link
WO (1) WO2021014811A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7314921B2 (ja) 2020-12-18 2023-07-26 Jfeスチール株式会社 熱間圧延鋼帯の蛇行制御方法、蛇行制御装置及び熱間圧延設備

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63225107A (ja) * 1987-03-16 1988-09-20 Mitsubishi Heavy Ind Ltd 圧延材の蛇行量検出装置
JPH06167327A (ja) * 1992-11-30 1994-06-14 Kobe Steel Ltd キャンバ測定方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63225107A (ja) * 1987-03-16 1988-09-20 Mitsubishi Heavy Ind Ltd 圧延材の蛇行量検出装置
JPH06167327A (ja) * 1992-11-30 1994-06-14 Kobe Steel Ltd キャンバ測定方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7314921B2 (ja) 2020-12-18 2023-07-26 Jfeスチール株式会社 熱間圧延鋼帯の蛇行制御方法、蛇行制御装置及び熱間圧延設備

Similar Documents

Publication Publication Date Title
JP6801833B1 (ja) 熱間圧延鋼帯の蛇行制御方法、蛇行制御装置及び熱間圧延設備
JP4862771B2 (ja) 圧延中鋼板のキャンバー量の算出方法及び鋼板の製造方法
JP4837095B2 (ja) ロールギャップを制御する方法と装置
JP2009208086A (ja) 熱延鋼板の製造方法、及び製造設備配列
US20170182534A1 (en) Method for manufacturing hot-rolled steel sheet, steel sheet cutting location setting device, steel sheet cutting location setting method, and steel sheet manufacturing method
CN105229413B (zh) 板材的平面度测定方法、板材的平面度测定装置以及钢板的制造方法
WO2021014811A1 (ja) 熱間圧延鋼帯の蛇行制御方法、蛇行制御装置及び熱間圧延設備
KR101767783B1 (ko) 압연 소재의 평탄 유지 장치 및 방법
KR101819307B1 (ko) 판쏠림 제어 장치
JP7036241B2 (ja) 熱間圧延鋼帯の蛇行制御方法、蛇行制御装置及び熱間圧延設備
JP7067534B2 (ja) 熱間圧延鋼帯の蛇行制御方法、蛇行制御装置及び熱間圧延設備
JP7078020B2 (ja) 熱間圧延鋼帯の蛇行制御方法、蛇行制御装置及び熱間圧延設備
JP7222415B2 (ja) 熱間圧延鋼帯の蛇行量測定装置及び熱間圧延鋼帯の蛇行量測定方法
JP7111142B2 (ja) 圧延材の入射角検出方法及び装置
JP6795008B2 (ja) 鋼矢板の製造装置及び製造方法
JP7314921B2 (ja) 熱間圧延鋼帯の蛇行制御方法、蛇行制御装置及び熱間圧延設備
JP6103158B1 (ja) 幅圧下方法及び幅圧下装置
JP7047995B1 (ja) 鋼板の蛇行量測定装置、鋼板の蛇行量測定方法、熱間圧延鋼帯の熱間圧延設備、及び熱間圧延鋼帯の熱間圧延方法
WO2022163177A1 (ja) 鋼板の蛇行量測定装置、鋼板の蛇行量測定方法、熱間圧延鋼帯の熱間圧延設備、及び熱間圧延鋼帯の熱間圧延方法
TWI664033B (zh) 修邊方法及修邊裝置
JP2003117604A (ja) 圧延金属帯のキャンバ形状測定方法、キャンバ形状測定装置及び圧延装置
JP5459599B2 (ja) 熱延板の製造方法
KR20220152393A (ko) 연속식 압연기의 사행 제어 장치
KR20180073387A (ko) 열연 공정에서의 캠버 제어 장치 및 방법
KR20160077258A (ko) 열화상을 이용한 캠버 측정 장치 및 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020550187

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20844736

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227001580

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020844736

Country of ref document: EP

Effective date: 20220222