WO2008075601A1 - ホスホニウム塩、アルキレンオキシド化合物重合触媒およびポリアルキレンオキシドの製造方法 - Google Patents

ホスホニウム塩、アルキレンオキシド化合物重合触媒およびポリアルキレンオキシドの製造方法 Download PDF

Info

Publication number
WO2008075601A1
WO2008075601A1 PCT/JP2007/073971 JP2007073971W WO2008075601A1 WO 2008075601 A1 WO2008075601 A1 WO 2008075601A1 JP 2007073971 W JP2007073971 W JP 2007073971W WO 2008075601 A1 WO2008075601 A1 WO 2008075601A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
active hydrogen
general formula
compound
acid
Prior art date
Application number
PCT/JP2007/073971
Other languages
English (en)
French (fr)
Inventor
Takaomi Hayashi
Isao Hara
Yoshihisa Inoue
Original Assignee
Mitsui Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals, Inc. filed Critical Mitsui Chemicals, Inc.
Priority to CN2007800451057A priority Critical patent/CN101547929B/zh
Priority to JP2008550116A priority patent/JP4980369B2/ja
Priority to KR1020097014742A priority patent/KR101106798B1/ko
Publication of WO2008075601A1 publication Critical patent/WO2008075601A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/535Organo-phosphoranes
    • C07F9/5355Phosphoranes containing the structure P=N-
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/54Quaternary phosphonium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • B01J31/146Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron of boron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • B01J31/2409Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring with more than one complexing phosphine-P atom
    • B01J31/2414Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring with more than one complexing phosphine-P atom comprising aliphatic or saturated rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/22Amides of acids of phosphorus
    • C07F9/24Esteramides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/06Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
    • C08G65/08Saturated oxiranes
    • C08G65/10Saturated oxiranes characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/06Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
    • C08G65/08Saturated oxiranes
    • C08G65/10Saturated oxiranes characterised by the catalysts used
    • C08G65/105Onium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2642Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the catalyst used
    • C08G65/2669Non-metals or compounds thereof
    • C08G65/2675Phosphorus or compounds thereof

Definitions

  • Phosphonium salt alkylene oxide compound polymerization catalyst, and method for producing polyalkylene oxide
  • the present invention relates to a novel salt of anion in which protons are derived from an active hydrogen compound. More specifically, the present invention relates to a novel salt of a phosphonium cation and an anion of an active hydrogen compound, and further relates to a polymerization catalyst for an alkylene oxide compound and a method for producing a polyalkylene oxide using the polymerization catalyst. The present invention also relates to a polyalkylene oxide useful as a raw material or surfactant for polyurethane foam and elastomer. Background art
  • Salts of active hydrogen compounds that are obtained by extracting protons from active hydrogen compounds and counter cations have long been well known. When obtaining such salts, they are usually made of alkali metals or alkaline earth metals. Since a simple substance, hydroxide, carbonate, hydride compound, amide compound or alkyl compound is used, the above-mentioned salt becomes a salt of an active hydrogen compound cation with an alkali metal or an alkaline earth metal as a counter cation. . In order to effectively react the anion of the active hydrogen compound, it is necessary to dissolve the active hydrogen compound in the solvent. A solvent that can sufficiently dissolve such a salt having an alkali metal cation or alkaline earth metal cation is available. Very limited. Furthermore, the reactivity of the anion may be greatly influenced by the size of the cation as a pair, but if the cation is limited to an alkali metal cation or an alkaline earth metal cation, the size is also limited.
  • a coordinating compound such as crown ether or cryptant is used. Therefore, it has been devised to stabilize the alkali metal cation of the counter cation and to exchange the counter cation with an ammonium salt. S. It is not effective in terms of both the solubility of the salt and the reactivity of the anion. ! /, Less cases.
  • Patent Document 1 discloses a solution of an anion derived from an active hydrogen compound and a counter cation.
  • a phosphazenium salt is described as a highly desolvable salt.
  • the phosphazenium salt can change the size of the cation moiety as required, and it is also disclosed that anion can be reacted effectively.
  • the synthesis is relatively complicated because four substituents are bonded to the phosphorus atom represented as cation, which is a phosphorayridenamino group and an amino group. is there.
  • Patent Document 2 discloses a process for producing tetrakis [tris (dimethylamino) phosphoryuridenamino] phosphonium chloride, which is one of the phosphazenium salts. Phosphorus and iminotris (dimethylamino) phosphorane must be heated at 170 ° C for 9 hours. Therefore, development of a salt that can be synthesized more easily and has the same function is desired.
  • Non-Patent Document 1 describes tris [tris (dimethylamino) phosphoryuridenamino] phosphonium hydroxide, which is one of the polymerization catalysts of the present invention. Only the use of the phosphonium hydroxide as a synthetic intermediate is described, and there is no description that the phosphonium hydroxide can serve as a polymerization catalyst according to the present invention.
  • an active hydrogen compound such as a polyhydric alcohol and a basic alkali metal such as potassium hydroxide are used. It is most common to use a combination with a compound, and it has been put into practical use industrially. However, more efficient initiators are desired from the standpoint of polymerization activity and physical properties of the produced polymer. For other initiators, for example, a method using a metal compound is known.
  • Patent Document 3 uses an active hydrogen compound and a compound represented by, for example, Zn [Fe (CN)] ⁇ ⁇ ⁇ ⁇ dioxane.
  • Patent Document 5 a method of obtaining a polymer of alkylene oxide using alcohols and aminophenol
  • Patent Document 6 a method of polymerizing propylene oxide using sorbitol and tetramethylammonium hydroxide.
  • Patent Document 5 a method of obtaining a polymer of alkylene oxide using alcohols and aminophenol
  • Patent Document 6 a method of polymerizing propylene oxide using sorbitol and tetramethylammonium hydroxide.
  • Patent Document 6 a method of polymerizing propylene oxide using sorbitol and tetramethylammonium hydroxide.
  • Patent Document 1 Japanese Patent No. 3497054
  • Patent Document 2 Japanese Patent Laid-Open No. 11 152294
  • Patent Document 3 U.S. Pat.No. 3,829,505
  • Patent Document 4 JP-A-50 159595
  • Patent Document 5 Japanese Unexamined Patent Publication No. 57-12026
  • Patent Document 6 Japanese Patent Laid-Open No. 56-38323
  • Non-Patent Literature 1 Journal of General Chemistry of the USSR, 1984, 54, 1581
  • the first problem of the present invention is a salt composed of an anion derived from an active hydrogen compound and a counter cation, and the cation is not an alkali metal cation or an alkaline earth metal cation, but as required.
  • An object of the present invention is to provide a salt that can be easily produced while having the property that it can be changed in size and easily dissolved in an organic solvent.
  • the second problem of the present invention is that, when a polyalkylene oxide is produced by polymerizing an alkylene oxide compound, a special metal component is not contained, no odor remains, and polyalkylene oxide production efficiency is good.
  • An object of the present invention is to provide a polyalkylene oxide polymerization catalyst.
  • a third object of the present invention is to provide a method for easily and efficiently producing a polyalkylene oxide using the polymerization catalyst.
  • the fourth problem of the present invention is that the production method provides high purity! / '
  • the present inventors have found novel phosphonium salts and found that they are extremely effective for the polymerization of alkylene oxide compounds, thereby completing the present invention. It came to. That is, the present invention is as follows.
  • a first invention is a phosphonium salt represented by a general formula.
  • Q n — is a compound in which n protons are removed from an active hydrogen compound having at least one carbon atom and having up to 8 active hydrogen atoms on the oxygen atom or nitrogen atom).
  • R is the same or different carbon number 1 to 10 hydrocarbon groups, and two Rs on the same nitrogen atom may be bonded to each other to form a ring structure.
  • the active hydrogen compound that leads to Q n — is an alcohol having 1 to 20 carbon atoms, a polyhydric alcohol having 2 to 20 carbon atoms having 2 to 8 hydroxyl groups, and a carbon number of 5. ! /, 20 saccharides or derivatives thereof, 2! /, And 8 polyoxyalkylene oxides having a molecular weight of 100 to 50,000 having 1 to 8 hydroxyl groups at the terminals, carbon 1 to 20 carboxylic acids, 2 to 20 polyvalent carboxylic acids having 2 to 8 carboxyl groups, 1 to 20 primary or secondary amines, 2 to 3 carbon atoms Multivalent amines having 2 to 20 carbon atoms having primary or secondary amino groups, 4!
  • n in the phosphonium salt represented by the general formula (1) is an integer of 1 to 3.
  • a, b and c in the phosphonium salt represented by the general formula (1) are not all 0 at the same time but are each a positive integer of 2 or less or 0.
  • the R force in the phosphonium salt represented by the general formula (1) is preferably an alkyl group having 1 to 10 carbon atoms.
  • a second invention is a polymerization catalyst for an alkylene oxide compound comprising a phosphonium salt represented by the general formula (2).
  • Z n is an n-valent active hydrogen compound in which n protons are released from an active hydrogen compound having a maximum of 8 active hydrogen atoms on an oxygen atom or a nitrogen atom.
  • A, b and c are each a positive integer of 3 or less or a force that is 0, all of which are not simultaneously 0.
  • R is the same or different hydrocarbon group having 1 to 10 carbon atoms. in some cases, two R on the same nitrogen atom are combined to form a ring structure) the polymerization catalyst, a phosphine compound represented by the following general formula (3) and Z n -.
  • the lead active hydrogen It is also preferable to be derived from a compound.
  • a, b and c are each a positive integer of 3 or less or a force S which is 0, and all are not 0 at the same time.
  • R is the same or different hydrocarbon having 1 to 10 carbon atoms. In some cases, two Rs on the same nitrogen atom may be bonded to each other to form a ring structure.
  • the polymerization catalyst is Hosuhoniumu salt and Z n represented by the following general formula (4) - also preferably derived from an alkali metal or alkaline earth metal salt of the active hydrogen compound guiding.
  • Y m — represents an m-valent inorganic anion.
  • A, b, and c are each a positive integer of 3 or less or a force that is 0. All are not 0 at the same time.
  • R is the same or different. Or a hydrocarbon group having 1 to 10 carbon atoms, and two Rs on the same nitrogen atom may be bonded to each other to form a ring structure.
  • the inorganic anion in the general formula (4) is an anion of an inorganic acid selected from the group consisting of boric acid, tetrafluoroboric acid, hydrohalic acid, phosphoric acid, hexafluorophosphoric acid and perchloric acid. ! /
  • Z n - the leading active hydrogen compound to water C 1 -C 20 alcohols, polyhydric alcohols 2 -C 20 having 2 to 8 hydroxyl groups, having 5 to 20 carbon Saccharides or derivatives thereof, polyalkyleneoxides having a molecular weight of 100 to 50,000 having 2 to 8 termini and 1 to 8 hydroxyl groups at the termini, 1 to 20 carbon atoms Number of carbonalbobonic acids, 22 nana ! //, and N, 22 carbon atoms with 88 carbonloxyl groups.
  • nn may be 11 or 33 and an integer of 33. .
  • aa, bb and cc are all in the same time but are not 00 at the same time. Each of them is a positive integer number less than 22 or less, or it is 00, so you can leave it as you like ! //. .
  • RR in the general formula (22) is an aralkyloxyl group having 11 to 1100 carbon atoms. You can leave it as you like. .
  • the 22 RRs on the same nitrogenous nitrogen atom are bonded to each other.
  • a 22-valent substitutional group for the nitrogen-nitrogen primary atom is a tettotrarameme. You can leave it as it is with Chichirenren or Pepentamemechi Chirenren. .
  • Shi 2200 multivalent aralkyl cocools Carbon number of 55 carbon fiber 2200 saccharides or its induction conductor, 22 carbon fiber 88 end terminals At the terminal end of shishiso, there are 11 or 88 hydric acid groups having molecular weight of 110,000 or 5500,00 0000 Lilyaralkylkilenlenoxyxides, carbon number 11 2200 calcalbobonic acids, 22 or 88 carbon atoms having 88 carboxylyl groups 22 to 2200 carbons Multivalent Cakarrubobonic Acids, Carbon Carbon Prime Numbers 11 or 2 22 1st Class or 2nd Class Aamimins, 22 or 22 33 1st grade or 2nd grade Aamiminono group with carbon number of 22 carbon atoms!
  • the thirty-third invention is disclosed in the presence of the polypolymerized catalytic catalyst medium represented by the general formula ((22)).
  • two or more kinds of alkylene oxide compounds are sequentially polymerized to produce a block copolymer containing two or more kinds of polyalkylene oxide blocks. I also like that.
  • the phosphonium salt of the present invention is a novel phosphonium salt, the cation portion of which can be changed in size as required, and has the property of being easily soluble in an organic solvent.
  • the phosphonium salt can be produced in a short time without requiring heating at a high temperature in the production process, and has an advantage that it can be produced more easily than conventional salts.
  • the polymerization catalyst of the present invention it is possible to provide a method for easily and efficiently producing a polyalkylene oxide by polymerizing an alkylene oxide compound, and to provide a high-purity polyalkylene oxide. There is.
  • the phosphonium cation in the phosphonium salt represented by the general formula (1), the general formula (2), the general formula (4) and the general formula (6) has a specific charge of a specific phosphorus.
  • Force S which is represented by the ultimate structural formula localized on the atom, and many other extreme structural formulas can be drawn. In fact, the positive charge is delocalized throughout the phosphonium cation. It is understood that
  • a first invention is a phosphonium salt represented by the general formula (1).
  • Q n- represents n number of active hydrogen compounds having at least one carbon atom and having up to 8 active hydrogen atoms on the oxygen atom or nitrogen atom. It represents an anion of n-valent active hydride in a form in which the proton is released.
  • the compounds having an active hydrogen atom on the oxygen atom are specifically exemplified by, for example, methanol, ethanol, normal propanol, isoprono nore, and noremano.
  • Reb Tino Reno no Conorole sec Butino Reno Re Con Nore, tert Butino Reno Re Con Nore, Isopentyl Alcohol, tert Pentyl Alcohol, Normal Ota Tino Reino Reconole, Laurino Reino Reconole, Cetino Reno Reconole, Cyclopentanol Monore 1 to 30 carbon atoms such as hexanol, vinylenoreconole, clothinoleanoreconole, methinorevininorecanenobinole, benzyl alcohol, 1 phenylethyl alcohol, triphenylcarbinol or cinnamyl alcohol Alcohol
  • ethylene glycol, propylene glycol diethylene glycol, dipropylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4 butanediol, 1,6 monohexanediol
  • Polyalkyleneoxy having one hydroxyl group For example, formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, lauric acid, stearic acid, oleic acid, phenylbutyric acid, dihydrocinnamic acid, cyclohexanecarboxylic acid, benzoic acid, normethylbenzoic acid or 2-Carboxylic acid carboxylic acids such as 2-carboxynaphthalene such as oxalic acid, malonic acid, succinic acid, maleic acid, fumaric acid, adipic acid, itaconic acid, butanetetracarboxylic acid, phthalic acid, isophthalic acid C2-C30 polycarboxylic acids having 2 to 8 carboxyl groups such as acid, terephthalic acid, trimellitic acid or pyromellitic acid, such as N, N jetylcarbamic acid, N carboxypyrrolidone N-carboxycarbonyl,
  • Q n - of the leading active hydrogen compound as the active hydrogen compound having an active hydrogen atom on the nitrogen atom, specifically, for example, Mechiruamin, Echiruamin, normal chromatography prop Ruamin, isopropyl ⁇ Min, Norma Rubutylamine, isobutylamine, sec butylamine, tert butylamine, cyclohexylamine, benzylamine, ⁇ -phenethylamine, aniline, ⁇ toluidine, m toluidine or ⁇ toluidine, dimethylamine, methylethylamine, jetylamine, Primary or secondary amines having 1 to 30 carbon atoms such as ginnormaloop piramine, ethyl normal-butylamine, methyl-sec butyramine, dipentylamine, dicyclohexylamine, N-methylaniline or diphenylamine; For example, ethylenediamine, di (2-aminoethy
  • cyclic polyamines such as acetoamide, propionamide, N Methylpropion C2-C20 unsubstituted or N-monosubstituted acid amides such as amide, N-methylbenzoic acid amide or N-ethylstearic acid amide, such as 2-pyrrolidone or ⁇ -force prolactam 5- to 7-membered cyclic amides such as succinimides, maleic acid imides or imides of 4 to 10 carbon dicarboxylic acids such as 3-pyrroline, pyrrole, Unsaturated cyclic secondary amines having 4 to 20 carbon atoms such as indole, carbazole, imidazole, pyrazole or purine.
  • cyclic polyamines such as acetoamide, propionamide, N Methylpropion C2-C20 unsubstituted or N-monosubstituted acid amides such as amide, N-methylbenzoic acid amide or N-
  • n represents the number of phosphonium cations and the number of protons desorbed from the active hydrogen compound that leads to Q n —.
  • n is an integer of 1 to 8, preferably 1! /, and an integer of 3.
  • the active hydrogen compound that leads Q n — has a plurality of active hydrogens, all of these active hydrogens may be released and led to anions, or only some of them may be released and led to anions. is there.
  • a, b and c are each a positive integer of 3 or less or 0, but they are not all 0 at the same time.
  • a, b and c are all positive integers of 2 or less or 0 each other than 0 at the same time. More preferably, a, b and c are all 2 or 1 at the same time, and more preferably all are 1 at the same time.
  • R is a hydrocarbon group having 1 to 10 carbon atoms, and two Rs on the same nitrogen atom may be bonded to each other to form a ring structure. Furthermore, all Rs in the phosphonium salt may be the same or different.
  • R for example, an alkyl group having 1 to 10 carbon atoms such as a methyl group, an ethyl group, a 2-butyl group, an n-pentyl group, and a 2-ethylhexyl group
  • a cycloalkyl group having 3 to 10 carbon atoms such as a cyclohexyl group
  • an alkenyl group having 2 to 10 carbon atoms such as a bur group or a propenyl group
  • 3 carbon atoms such as a cyclohexenyl group
  • a substituted or unsubstituted aryl group having 6 to 10 carbon atoms such as a phenyl group, a naphthyl group, and an ethenyl phenyl group.
  • examples of the divalent substituent bonded to the nitrogen atom include an ethylene group, a tetramethylene group, and a pentamethylene group.
  • An alkylene group having 2 to 10 carbon atoms such as a cycloalkylene group having 3 to 10 carbon atoms such as a cyclohexylene group, for example, an alkenylene group having 2 to 10 carbon atoms such as a vinylene group, for example, Examples thereof include a cycloalkenylene group having 3 to 10 carbon atoms such as a cyclohexenylene group, for example, an aralkylene group having 8 to 10 carbon atoms such as a phenylethylene group.
  • an aliphatic hydrocarbon group having 1 to 10 carbon atoms is preferable, and 1 to 1 carbon atoms is more preferable.
  • 10 alkyl groups particularly preferably a methyl group or an ethyl group.
  • an alkylene group having 2 to 8 carbon atoms More preferably a tetramethylene group or a pentamethylene group.
  • the method for synthesizing the phosphonium salt represented by the general formula (1) of the present invention is not particularly limited! /, But general examples thereof include the following methods.
  • R has the same meaning as R in formula (1).
  • reaction (ii) a force for adding 3 equivalents of the compound of the general formula (5) to phosphorus trichloride
  • hydrogen chloride is generated simultaneously with the progress of the reaction. Since the hydrogen chloride reacts with the compound of general formula (5) to form a hydrogen chloride adduct of the compound of general formula (5), in order to obtain the desired phosphonium salt of general formula (6) with high yield, Usually, the power of using 3 equivalents or more of the compound of general formula (5) with respect to phosphorus trichloride and the method of coexisting other basic substances are employed.
  • the reaction temperature is not uniform depending on the type, amount and concentration of the compound of the general formula (5) to be used, but is usually 150 ° C.
  • reaction time is not uniform depending on the type, amount and concentration of the compound of the general formula (5) used, but is usually 24 hours or less, preferably 1 minute to 12 hours, more preferably 5 minutes to 6 hours. Range.
  • the solvent may be any solvent as long as it does not inhibit the reaction.
  • it is water, for example, alcohols such as methanol, ethanol or propanol, ketones such as acetone or methyl ethyl ketone, for example, norma.
  • Aliphatic or aromatic such as loupentane, normal hexane, cyclohexane, benzene, toluene or xylene Hydrocarbons, such as halogenated hydrocarbons such as dichloromethane, chloroform, bromoform, carbon tetrachloride, dichloromethane, orthodichlorobenzene, fluorobenzene or benzotrifluoride, such as ethyl acetate, methyl propionate or Esters such as methyl benzoate such as jetyl ether, tetrahydrofuran, 1,4 dioxane, ethylene glycol dimethyl ether or triethylene glycol dimethyl ether, such as tributylamine, N, N dimethylaniline, pyridine or quinoline Tertiary amines such as nitroalkanes such as nitromethane or nitroethane, nitriles such as acetonitrile or propionitryl, such as
  • the solvents are selected according to the chemical stability of the starting salt used in the reaction.
  • the solvents may be used alone or in combination of two or more.
  • the raw material salt is preferably dissolved, but it may be suspended.
  • the reaction temperature is not uniform depending on the type, amount and concentration of the salt used, but is usually 150 ° C or lower, preferably in the range of 78 ° C to 80 ° C, more preferably 0 to 50 ° C. is there.
  • the reaction pressure is a force that can be carried out under reduced pressure, normal pressure or increased pressure, preferably 0.01 to IMPa / cm 2 (absolute pressure, the same shall apply hereinafter), more preferably 0.1 to 0.3 MPa / it is in the range of cm 2.
  • the reaction time is not uniform depending on the reaction temperature, the state of the reaction system, etc., but is usually in the range of 1 minute to 24 hours, preferably 1 minute to 10 hours, more preferably 5 minutes to 6 hours. .
  • An on-exchange resin can also be used.
  • a conventional method combining conventional means is used.
  • the method is not uniform depending on the type of the target salt, the type and excess of the two raw material salts used, the type and amount of the solvent used, etc., but usually the by-product alkali metal cation and chlorine anion are used. Since the salt is precipitated as a solid, it is concentrated as it is or after slight concentration, followed by solid-liquid separation by filtration, centrifugation, etc. to remove this, and the solution is concentrated to dryness to obtain the desired phosphonium salt. Obtainable . If the by-product salt is still dissolved even after concentration, it is poor as is or after concentration.
  • the phosphonium salt represented by the general formula (1) thus obtained is a readily soluble salt in an organic solvent capable of changing the size of its cation moiety, and is involved in the active hydrogen compound cation. Very useful as an active species in organic synthesis reactions.
  • the second invention is a polymerization catalyst for an alkylene oxide compound comprising a phosphonium salt represented by the general formula (2).
  • Z n in the general formula (2) is an n-valent active hydrogen derived from n protons released from an active hydrogen compound having a maximum of 8 active hydrogen atoms on oxygen or nitrogen atoms. Represents an anion of a compound.
  • Z n - of the leading active hydrogen compound as the active hydrogen compound having an active hydrogen atom on an oxygen atom, specifically, a water, such as methanol, ethanol, Norumaru propanol, isopropanol, normal Rubutyl alcohol, sec-Butyl alcohol monole, tert-Butanolenoreconole, isopentinoleanoreconole, tert-pentenoreanoreconole, nonoremanoleo tachinoreanoreconole, laurinorenoreconole, cet Noreano Recenore, Cyclopentanol Monore, Cyclohexanol Nore, Arinoreano Reconore, Clothino Leno Reconore, Methino Levi Nino Recanolinore, Penzino Leno Recenore, 1-Fuenole Ethino Lenore Nore, Triphenylcarbinol or Cinnamy
  • the active hydrogen compound having an active hydrogen atom on the nitrogen atom is specifically ammonia, such as methylamine, ethylamine, normaloop mouth pyramamine, isopropylamine, norma.
  • Rubutylamine isobutynoleamine, sec-butylamine, tert-butylamine, cyclohexylamine, benzylamine, / 3-phenylethylamine, aniline, o-toluidine, m-toluidine, p-toluidine, dimethylamine, 1 to 30 carbon atoms such as methylethylamine, jetylamine, dinomer loop, pyramine, ethyl-normal-butylamine, methyl-sec-butylamine, dipentylamine, dicyclohexylamine, N-methylaniline or diphenylamine.
  • First or second An amine for example, Echirenjiamin, di (2- ⁇ Minoechiru) Amin, hexamethylene di ⁇ Min, 4, 4 'over-diamino-diphenylmethane, tri (2 C 2 having 2 to 3 primary or secondary amino groups such as aminoethyleno) amine, N, N'-dimethylenoethylenediamine, N, N'-jetinoethylenediamine or di (2methylaminoethyl) amine
  • polyvalent amines such as saturated cyclic secondary amines having 4 to 30 carbon atoms such as pyrrolidine, piperidine, morpholine or 1,2,3,4 tetrahydroquinoline, such as Perazin, pyrazine or 1,4,7 triazacyclononane, etc., 2!
  • cyclic polyamines for example , Acetoamide, propionamide, N-methylpropionamide, N-methylbenzoic acid amide or N-ethylstearic acid amide, etc., an unsubstituted or N-monosubstituted acid amide having 2 to 20 carbon atoms
  • 5- to 7-membered cyclic amides such as 2-pyrrolidone or ⁇ -strength prolatatam
  • dicarboxylic acids having 4 to 10 carbon atoms such as succinimide, maleic imide or phthalimide
  • the imides include unsaturated cyclic secondary amines having 4 to 20 carbon atoms such as 3-pyrroline, pyrrole, indole, carbazole, imidazole, pyrazole, and purine.
  • Water with 20 cyclic polyamines is preferred.
  • represents the number of phosphonium cations and the number of protons desorbed from the active hydrogen compound leading to ⁇ ⁇ —.
  • is an integer from 1 to 8, preferably Is an integer of 1! / And 3
  • the active hydrogen compound that leads Z n — has a plurality of active hydrogens, all of these active hydrogens may be released and led to anions, or only some of them may be released and led to anions. is there.
  • a, b and c are each a positive integer of 3 or less or 0, but they are not all 0 at the same time.
  • a, b and c are all positive integers of 2 or less or 0 each other than 0 at the same time. More preferably, a, b and c are all 2 or 1 at the same time, and more preferably all are 1 at the same time.
  • R in the general formula (2) is a hydrocarbon group having 1 to 10 carbon atoms, and two Rs on the same nitrogen atom may be bonded to each other to form a ring structure. Furthermore, all R in the phosphonium salt may be the same or different.
  • R for example, an alkyl group having 1 to 10 carbon atoms such as a methyl group, an ethyl group, a 2-butyl group, an n-pentyl group, and a 2-ethylhexyl group, for example,
  • a cycloalkyl group having 3 to 10 carbon atoms such as a cyclohexenole group, for example, an alkenyl group having 2 to 10 carbon atoms such as a bur group and a propenyl group, for example, 3 carbon atoms such as a cyclohexenyl group.
  • Examples thereof include 10 or 10 cycloalkenyl groups, such as substituted or unsubstituted aryl groups having 6 to 10 carbon atoms such as phenyl, naphthyl and ethenylphenyl groups.
  • examples of the divalent substituent bonded to the nitrogen atom include an ethylene group, a tetramethylene group, and a pentamethylene group.
  • An alkylene group having 2 to 10 carbon atoms such as a cycloalkylene group having 3 to 10 carbon atoms such as a cyclohexylene group, for example, an alkenylene group having 2 to 10 carbon atoms such as a vinylene group, for example, Examples thereof include a cycloalkenylene group having 3 to 10 carbon atoms such as a cyclohexenylene group, for example, an aralkylene group having 8 to 10 carbon atoms such as a phenylethylene group.
  • an aliphatic hydrocarbon group having 1 to 10 carbon atoms is preferable, and more preferably 1 to 10 carbon atoms. And particularly preferably a methyl group or an ethyl group.
  • the divalent substituent bonded to the nitrogen atom is preferably an alkylene group having 2 to 8 carbon atoms. And more A tetramethylene group or a pentamethylene group is preferred.
  • the method for obtaining the polymerization catalyst represented by the general formula (2) of the present invention is not particularly limited,
  • R is the same or different hydrocarbon group having 1 to 10 carbon atoms. In some cases, two Rs on the same nitrogen atom may be bonded to each other to form a ring structure.
  • Y m — represents an m-valent inorganic anion.
  • A, b, and c are each a positive integer of 3 or less or a force that is 0. All are not 0 at the same time.
  • R is the same or different. Or a hydrocarbon group having 1 to 10 carbon atoms, and two Rs on the same nitrogen atom may be bonded to each other to form a ring structure.
  • A, b, c and R in the general formula (3) and the general formula (4) are all synonymous with a, b, c and R in the general formula (2).
  • Y m — is an m-valent inorganic anion
  • m represents the number of phosphate cations in general formula (4) and the valence of the inorganic anion.
  • m is an integer from 1 to 3.
  • examples of such inorganic anions include hydrohalic acid such as hydrochloric acid or hydrobromic acid, boric acid, tetrafluoroboric acid, hydrocyanic acid, thiocyanic acid, hydrofluoric acid, nitric acid, sulfuric acid, phosphoric acid.
  • chlorine anions are preferred, which are preferably anions derived from boric acid, tetrafluoroboric acid, hydrohalic acid, phosphoric acid, hexafluorophosphoric acid and perchloric acid.
  • the general formula is reacted with Hosuhoyuumu salt represented by (4), Z n -
  • the alkali metal or alkaline earth metal salt of the active hydrogen compound for guiding, Z n - active hydrogen compound guiding A compound in which a part or all of the active hydrogen is replaced by ions of an alkali metal such as lithium, sodium or potassium or an alkaline earth metal such as magnesium or barium.
  • an alkali metal such as lithium, sodium or potassium or an alkaline earth metal such as magnesium or barium.
  • the phosphine compound represented by the general formula (3) has sufficient basicity to release the active hydrogen from the active hydrogen compound leading to Z n-, the phosphination represented by the general formula (3) Compound with Z n - can be obtained polymerization catalyst represented by the general formula (2) by simply contacting the active hydrogen compound guiding.
  • the formula (3) phosphine compound represented by the Z n is a raw material -
  • the use amount ratio of the active hydrogen compound to guide, as long as the polymerization catalyst represented by the general formula of interest (2) is produced Although particularly either the Nag is no problem especially even excessive restriction, usually, Z n - amount of the leading active hydrogen compound, relative to the phosphine compound 1 equivalent of general formula (3),
  • the range is 0.2 to 5 equivalents, preferably 0.5 to 3 equivalents, and more preferably 0.7 to 1.5 equivalents.
  • a solvent can also be used to make the contact between the two effective. As the solvent to be used, as long as the reaction is not hindered! /, Any solvent can be used! /.
  • the reaction temperature is not uniform depending on the type, amount and concentration of the phosphine compound and active hydrogen compound represented by the chemical formula (3) to be used, but is usually 150 ° C or less, preferably from 50 ° C to 80 ° C. More preferably, it is in the range of 0 to 50 ° C.
  • the reaction pressure is a force that can be carried out under reduced pressure, normal pressure or increased pressure, preferably 0.01 to IMPa / cm 2 (absolute pressure, the same shall apply hereinafter), and more preferably 0.1 to 0.3 MPa / cm 2. Range.
  • the reaction time is not uniform depending on the reaction temperature, the state of the reaction system, etc., but is usually in the range of 1 minute to 24 hours, preferably 1 minute to 10 hours, more preferably 5 minutes to 6 hours.
  • reaction catalyst of this reaction is used as it is, or when a reaction solvent is used, an almost pure polymerization catalyst represented by the general formula (2) can be obtained simply by removing the reaction solvent.
  • a polymerization catalyst represented by the general formula (2) can be obtained.
  • the amount ratio of the alkali metal or alkaline earth metal salt of the active hydrogen compound for guiding, in the general formula of interest (2) As long as the polymerization catalyst shown is produced, there is no particular problem if any of the limitations is excessive, but it is usually active hydrogen that leads to Z n —
  • the amount of the alkali metal or alkaline earth metal salt of the compound used is 0.2 to 5 equivalents, preferably 0.5 to 3 equivalents per 1 equivalent of the phosphonium salt represented by the general formula (4).
  • a solvent can also be used to make the contact between the two effective.
  • the reaction temperature is not uniform depending on the type, amount and concentration of the phosphonium salt represented by the chemical formula (4) and the salt of the active hydrogen compound, but is usually 150 ° C or lower, preferably from 50 ° C to 80 ° C. ° C, more preferably in the range of 0 to 50 ° C.
  • the reaction pressure is a force that can be carried out under reduced pressure, normal pressure or increased pressure, preferably 0.01 to IMPa / cm 2 (absolute pressure, the same shall apply hereinafter), and more preferably 0.1 to 0.3 MPa / cm 2. Range.
  • the reaction time is not uniform depending on the reaction temperature, the state of the reaction system, etc., but is usually in the range of 1 minute to 24 hours, preferably 1 minute to 10 hours, more preferably 5 minutes to 6 hours.
  • the polymerization catalyst Hosuhoniumu salt represented by the general formula (2) of the present invention, Z n -!! Comprise an electrically rather active hydrogen compound /, be good /,.
  • the active hydrogen compound leading to Z n — acts as a chain transfer agent in the polymerization reaction of alkylene oxide, and controls the molecular weight of the polyalkylene oxide obtained by its abundance, or the number of functional groups of the polyalkylene oxide obtained by the number of active hydrogens. Can be controlled.
  • Z n included with Hosuhoniumu salt represented by the general formula (2) - the amount of the leading active hydrogen compound, to Hosuhoniumu salt 1 mole of the general formula (2) is generally 0 - 01 In the range of 10,000 moles, preferably in the range of 0.;
  • a polyalkylene oxide having a desired molecular weight and the number of functional groups can be obtained by arbitrarily changing the kind and amount of the active hydrogen compound leading to Z n — and the ratio to the alkylene oxide compound.
  • a third invention is a method for producing a polyalkylene oxide, in which an alkylene oxide compound is polymerized in the presence of the polymerization catalyst of the present invention. More specifically, in the presence of the phosphonium salt represented by the general formula (2) or in the presence of the phosphonium salt represented by the general formula (2) and an active hydrogen compound that leads to Z n _, the alkylene oxide compound This is a method for producing polyalkylene oxide by polymerizing.
  • alkylene oxide compound used in the method of the present invention examples include aliphatic alkylene oxides such as ethylene oxide, propylene oxide, 1,2-butylene oxide, 2,3-butylene oxide, and cyclohexene oxide. , Styrene oxide, trans stilbene oxide, 2-phenylpropylene oxide, 2- (p-fluorophenylenole) oxylan, 2- (p-chlorophenenole) oxylan or 2- (p-bromophenenole) Aromatic alkylene oxides such as oxosilanes can be mentioned. Of these, ethylene oxide, propylene oxide, 1,2-butylene oxide or styrene oxide is preferable. is there. More preferred is ethylene oxide or propylene oxide.
  • two or more alkylene oxide compounds may be used in combination.
  • a copolymer with relatively high randomness can be obtained due to the difference in reactivity of these compounds, and two or more types of alkylene oxide compounds are sequentially added.
  • a block copolymer containing a block of two or more kinds of polyalkylene oxide compounds is obtained.
  • the second alkylene oxide compound is polymerized as it is after completion of the polymerization reaction of the first alkylene oxide compound, a block copolymer containing two types of blocks is obtained.
  • the original first alkylene oxide compound is polymerized again, or this is repeated to obtain an alternating block copolymer.
  • a block copolymer containing polypropylene oxide and polyethylene oxide blocks obtained by sequentially polymerizing these copolymers is preferred.
  • a polymerization catalyst represented by the general formula (2) derived from a phosphoyuum salt represented by the general formula (4) and an alkali metal or alkaline earth metal salt of an active hydrogen compound is used. If used, the force of symbiosis between the cation of the Al-strength metal or the ar-strength earth metal and the inorganic cation salt S. If the salt is unfavorable for the polymerization reaction, it is filtered prior to the polymerization. It may be used for the polymerization reaction after being removed in step (b).
  • the amount of the polymerization catalyst represented by the general formula (2) used for the polymerization reaction of the alkylene oxide compound is not particularly limited, but usually IX 10-15 to 5 X with respect to 1 mole of the alkylene oxide compound.
  • a 10-1 mol is preferably from 1 X 10 7 to 1 X 10- 2 mols
  • the polymerization catalyst of the present invention When the polymerization catalyst of the present invention is supplied as a solution to the polymerization reaction, if the solvent is inconvenient for the polymerization reaction, it can be removed in advance, for example, by heating under reduced pressure. .
  • the type of the polymerization reaction is not particularly limited. Usually, a method in which a necessary amount of an alkylene oxide compound is collectively supplied to a reactor charged with the polymerization catalyst of the present invention together with a solvent in the presence of the polymerization catalyst, or intermittently or continuously. The method of supplying automatically is used.
  • the reaction temperature of the polymerization reaction is not uniform depending on the type and amount of the alkylene oxide compound and other components to be used, but is usually 150 ° C or lower, preferably 10 to 130 ° C, more preferably Is in the range of 50 to 120 ° C.
  • the pressure during the reaction is not uniform depending on the type or amount of the alkylene oxide compound and other components used or the polymerization temperature, but the pressure during the polymerization reaction is usually 3 MPa / cm 2 (absolute pressure, the same shall apply hereinafter). ), Preferably in the range of 0.01 to 1.5 MPa / cm 2 , more preferably 0.1 to IMPa / cm 2 .
  • the reaction time is not uniform depending on the type or amount of the substance used or the polymerization temperature or pressure, but is usually 70 hours or less, preferably 0.1 to 30 hours, more preferably 0.5 to 24. It's time.
  • a solvent may be used if necessary.
  • Solvents for use include, for example, aliphatic hydrocarbons such as pentane, hexane, heptane or cyclohexane, aromatic hydrocarbons such as benzene or toluene, such as jetyl ether, tetrahydrofuran, 1, 4 Ethers such as dioxane or anisole or aprotic polar solvents such as dimethyl sulfoxide, N, N dimethylformamide, hexamethylphosphoric triamide and N, N'-dimethylimidazolidinone. Any solvent can be used as long as it does not inhibit the polymerization reaction of the method of the present invention.
  • the polymerization reaction in the method of the present invention is usually carried out in the presence of an inert gas such as nitrogen or argon.
  • the polyalkylene oxide obtained by the method of the present invention is used as it is when the solvent is not used in the polymerization reaction, and when the solvent is used, the solvent can be removed by simply removing the solvent.
  • it may be used as a raw material or a surfactant, it is usually treated with mineral acids such as hydrochloric acid, phosphoric acid or sulfuric acid, organic carboxylic acids such as formic acid, acetic acid or propionic acid, carbon dioxide or acid type ion exchange resins.
  • mineral acids such as hydrochloric acid, phosphoric acid or sulfuric acid, organic carboxylic acids such as formic acid, acetic acid or propionic acid, carbon dioxide or acid type ion exchange resins.
  • the catalyst is removed or deactivated, it is used for the above applications. Further, conventional purification such as washing with water, an organic solvent or a mixture thereof can be performed.
  • the polyalkylene oxide of the present invention is a polyalkylene oxide obtained by the production method of the present invention, and is obtained by using a conventional potassium hydroxide catalyst or the like. Compared to lenoxide, there are few by-products and the purity is high. For example, when a polyhydric alcohol such as glycerin is used as a chain transfer agent, in addition to a polyalkylene oxide having a plurality of hydroxyl groups at the terminal, which is the main product, there is only one at the terminal, usually called a monool. It is known that polyalkylene oxide having no hydroxyl group is by-produced.
  • the polyalkylene oxide of the present invention can be suitably used as a urethane foam raw material having a small amount of by-products of monool compared to a polyalkylene oxide produced with a hydroxylating power catalyst.
  • the number average molecular weight and molecular weight distribution of polyalkylene glycol were measured by gel permeation chromatography using polyethylene glycol as a standard substance. Total unsaturation, which is an indicator of monool production, was measured by the method described in JIS K-1557.
  • the resulting precipitate was filtered off, washed with benzene and combined with the filtrate.
  • the product was then extracted from the filtrate with 90 mL of water into the aqueous phase, and then the product was extracted from this aqueous solution with 600 mL of methylene chloride into the organic phase.
  • the organic phase was washed with water, and then the solvent was concentrated to dryness to obtain 109.7 g of a white solid.
  • THF Tetrahydrofuran of this white solid
  • HMPA hexamethylphosphoramide
  • Tris [tris (dimethylamino) phosphoryuridenamino] phosphonium chloride 3 ⁇ 0 g (50. Ommol) was weighed in an lOOmL eggplant flask, and 50 mL of pure water was added thereto. To this was added 60.4 g of a 10 wt% NaBF aqueous solution (55 mmol as NaBF), and the mixture was stirred at room temperature for 1 hour. The resulting white solid was filtered off, washed with pure water (lOOmL) and dried under reduced pressure to give tris [tris (dimethylamino) phosphoryuridenamino] phosphonium tetrafluoroborate as a white solid. lg (49.4 mmol) was obtained. The yield was 98.7%.
  • Tetrakis [tris (dimethylolamino) phosphoryuridenamino] phosphonium chloride (b) was synthesized according to the method described in Example 1 of JP-A-11-152294.
  • reaction solution contained 0 ⁇ 284 mol of tetrakis [tris (dimethylamino) phosphoranylideneamino] phosphonium chloride (b). I understood that. The yield based on phosphorus pentachloride was 98.2%.
  • iminotris (dimethylamino) phosphorane In addition, 8.5 moles of iminotris (dimethylamino) phosphorane must be used relative to phosphorus pentachloride, and synthesis of tris [tris (dimethylamino) phosphoryuridenamamino] phosphonium chloride (phosphorus trichloride) In contrast, a large amount of iminotris (dimethylamino) phosphorane was required as compared with 5.0 mol times.
  • Example 2 the amount of phosphorus trichloride used was 367 mg (2.67 mmol).
  • the resulting tris [tris (di-n-hexylamino) phosphoryuridenamino] phosphonium mucolide was prepared by the same ion exchange method as in Example 1, but tris [tris (di-n-hexylamino) phosphoryuridenamino. Derived to phosphonium methoxide (d).
  • the elemental analysis values of phosphonium salt (d) are C: 70.80%, H: 13.01%, N: 8.83%, P: 6.88%, calculated values (C: 70.50%, H: 12.92%, N: 9.05%, P: 6.67%).
  • Example 5 in place of tris [tris (dimethylamino) phosphoryuridenamamino] phosphine and methanol, all of the various phosphine compounds and active hydrogen compounds shown in Table 1 were used. In the same manner as in Example 5, the following various phosphonium salts were obtained. However, in Example 13, the amount of glycerin used was 0.82 g (8.9 mmol). As the polyoxypropylene triol in Example 14, MN1000 manufactured by Mitsui Chemicals Polyurethane was used. Table 1 shows the analysis results.
  • the tris [tris (dimethylamino) phosphoryuridenamamino] phosphonium methoxide (a) 72.8 mg (0.122 mmol) and glycerin 921 mg (10.Ommol) obtained in Example 1 were measured with a temperature measuring tube, a pressure gauge, and stirring.
  • the mixture was weighed into a 100 ml autoclave equipped with an apparatus, and then 49.3 g (849 mmol) of propylene oxide was charged all at once.
  • the system was pressurized with nitrogen and the initial pressure was adjusted to 0.07 MPa. Thereafter, the reaction system was heated to an internal temperature of 80 ° C for reaction. It was confirmed that the reaction was almost complete 22 hours after the reaction pressure dropped.
  • the unit weight of the polypropylene oxide catalyst which is an index of the polymerization activity, and the production amount per unit time (hereinafter simply referred to as polymerization activity) was 30.6 g—PPG / g—catalyst 1.
  • polymerization activity 30.6 g—PPG / g—catalyst 1.
  • a high-purity polypropylene oxide having a low value of total unsaturation was obtained.
  • Example 16 instead of tris [tris (dimethylamino) phosphoryuridenamino] phosphonium methoxide, the tetrakis [tris (dimethylamino) phosphoranirideneamino] phosphonium methoxide obtained in Comparative Example 1 was used.
  • a polymerization reaction of propylene oxide was carried out in the same manner as in Example 16 except that 94.4 mg (0.122 mmol) was used. The reaction was almost complete after 22 hours. After cooling, the remaining unreacted propylene oxide was removed under reduced pressure. 49.2 g of colorless and odorless oily polypropylene oxide was obtained.
  • the yield was 98.0%, the number average molecular weight of the produced polymer was 4.58 ⁇ 10 3 (calculated molecular weight 4.92 ⁇ 10 3 ), and the molecular weight distribution was 1.03.
  • the total degree of unsaturation was 0 ⁇ 021 meq / g.
  • Example 16 was the same as Example 16 except that 8.6 mg (0.122 mmol) of potassium methoxide was used instead of tris [tris (dimethylamino) phosphoryuridenamino] phosphonium methoxide.
  • a polymerization reaction of propylene oxide was performed. After 22 hours, the reaction solution was cooled to room temperature, and the remaining unreacted propylene oxide was removed under reduced pressure. The obtained polypropylene oxide was 2.23 g, and the yield was as low as 4.4%.
  • the catalytic activity was as low as 11.8 g-PPG / g-catalyst 'h.
  • 29.0 g (500 mmol) of propylene oxide was intermittently supplied so as to maintain a reaction pressure around 0.3 MPa (gauge pressure). The supply was terminated after 10 hours, and the reaction was continued for 10 hours while maintaining the external temperature at 80 ° C.
  • Example 16 the reaction and post-treatment were performed in the same manner as in Example 16 except that various phosphonium salts shown in Table 2 were used instead of the phosphonium salt (a). The results are shown in Table 2.
  • Example 16 instead of the phosphonium salt (a) and glycerin, the tris [tris (dimethylamino) phosphoranylideneamino] phosphonium chloride synthesized in Example 1 as an intermediate for the synthesis of the phosphonium salt (a) was obtained.
  • the reaction was conducted in the same manner as in Example 16 except that lmg (0.122 mmol) and 926 mg of a glycerin solution containing 0.15 wt% of potassium ions (0.122 mmol as potassium ions and 10. Ommol as glycerin) were used. The reaction was almost complete after 22 hours. After cooling, the remaining unreacted propylene oxide was removed under reduced pressure.
  • Example 16 instead of the phosphonium salt (a) and glycerin, a glycerin solution of the tris [tris (dimethylamino) phosphoryuridenamino] phosphonium salt (m) of glycerin obtained in Example 15 The reaction was carried out in the same manner as in Example 16 except that 999 mg (0 ⁇ 122 mmol as the phosphonium salt (m) and 10 Ommol as the glycerin) was used. The reaction was almost complete after 22 hours. After cooling, the remaining unreacted propylene oxide was removed under reduced pressure. Colorless, odorless and oily polypropylene oxide 49. Og was obtained. The yield was 97.5%, the number average molecular weight of the produced polymer was 4.55 ⁇ 10 3 , the molecular weight distribution was 1.03, and the total degree of unsaturation was 0.021 meq / g.
  • Example 16 is the same as Example 16 except that 130 mg (0.122 mmol) of tris [tris (di-n-propylamino) phosphoryuridenamino] phosphine was used instead of the phosphonium salt (a). The reaction was performed. The reaction was almost complete after 22 hours. After cooling, the remaining unreacted propylene oxide was removed under reduced pressure. A colorless and odorless oily polypropylene oxide (50.0 g) was obtained. The yield was 98.1%, the number average molecular weight of the produced polymer was 4.56 ⁇ 10 3 , the molecular weight distribution was 1.07, and the total degree of unsaturation was 0.021 meq / g.
  • Example 15 water was distilled off from an aqueous solution of tris [tris (dimethylamino) phosphorylideneamino] phosphonium hydroxide obtained as an intermediate raw material to obtain tris [tris (dimethylamino) phosphoryuridenamino].
  • the phosphonium hydroxide was obtained as a white solid.
  • Example 16 tris [tris (dimethylamino) phosphoryuridenamino] phosphonium hydroxide was used in place of phosphonium salt (a) except that 60.8 mg (0.122 mmol) was used. The reaction was carried out in the same manner as above. The reaction was almost complete after 22 hours. After cooling, the remaining unreacted propylene oxide was removed under reduced pressure. 49.8 g of colorless, odorless and oily polypropylene was obtained. Yield 97.7%, number average molecular weight of the resulting polymer is 4.53 X 10 3 , molecular weight distribution is 1.06, total unsaturation is 0.021 meq / g
  • Example 16 The reaction and post-treatment were performed in the same manner as in Example 16 except that the compound shown in Table 3 was used as a chain transfer agent instead of glycerin in Example 16. The results are shown in Table 3.
  • the phosphonium salt (a) obtained in the same manner as described in Example 1 (8) was charged with 138. lg (l. 50 mol) of glycerin and 80 (133 Pa) under reduced pressure (80). By removing the methanol with C for 5 days and removing methanol, 144.8 g of a glycerin solution of tris [tris (dimethylamino) phosphoryuridenamamino] phosphonium salt of glycerin was obtained as a colorless oil.
  • the number average molecular weight of the produced polymer was 5.23 X 10 3 (calculated molecular weight 5.26 X 10 3 ), the molecular weight distribution was 1.03, and the total degree of unsaturation was 0.019 meq / g.
  • the polymerization activity of propylene oxide is 68.0 g—polymer / g—catalyst 'h. The total activity was 50.9 g polymer / g catalyst ⁇ h.
  • Example 33 tetrakis [tris (dimethylamino) phosphoryuridenamamino] phosphonium methoxide 10 ⁇ 4 g (13.5 mmol) synthesized by the method described in Comparative Example 1 instead of the phosphonium salt (a) To the glycerol solution of tetrakis [tris (dimethylenoreamino) phosphoryuridenamino] phosphonium salt of glycerin, and instead of the glycerol solution of tris [tris (dimethylamino) phosphoryuridenamino] phosphonium salt of glycerol, A block copolymer of polypropylene oxide-polyethylene oxide was obtained in exactly the same manner as in Example 33, except that 36.8 g of a glycerin solution of tetrakis [tris (dimethinoreamino) phosphoryuridenamino] phosphonium salt was used.
  • a novel phosphoyuum salt is provided which is an effective base catalyst for various organic reactions.
  • an alkylene oxide compound is polymerized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Polyethers (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 合成容易で塩基触媒として有用なホスホニウム塩化合物を提供する。ホスホニウム塩化合物は、一般式(1)で表わされる。 (式中、Qn-は少なくとも1個の炭素原子を有し、かつ最大8個の活性水素原子を酸素原子または窒素原子上に有する活性水素化合物からn個のプロトンが離脱して導かれる形のn価の活性水素化合物のアニオンを表わす。a、bおよびcはそれぞれ3以下の正の整数または0であるが、全てが同時に0ではない。Rは同種または異種の、炭素数1ないし10個の炭化水素基であり、同一窒素原子上の2個のRが互いに結合して環構造を形成する場合もある。)

Description

明 細 書
ホスホニゥム塩、アルキレンォキシド化合物重合触媒およびポリアルキレ ンォキシドの製造方法
技術分野
[0001] 本発明は、活性水素化合物からプロトンが脱離して導かれる形のァニオンの新規な 塩に関する。より詳しくは、ホスホニゥムカチオンと活性水素化合物のァニオンとの新 規な塩に関し、さらにアルキレンォキシド化合物の重合触媒およびこの重合触媒を用 いたポリアルキレンォキシドの製造方法に関する。また、ポリウレタンフォームやエラス トマ一の原料または界面活性剤等として有用なポリアルキレンォキシドに関する。 背景技術
[0002] 活性水素化合物からプロトンを引き抜いて得られる活性水素化合物のァユオンと対 カチオンとの塩は古くからよく知られている力 そのような塩を得る場合、通常アルカリ 金属もしくはアルカリ土類金属の単体、水酸化物、炭酸塩、ヒドリド化合物、アミド化 合物またはアルキル化合物を用いるため、上記の塩は、アルカリ金属もしくはアル力 リ土類金属を対カチオンとする活性水素化合物ァユオンの塩となる。活性水素化合 物のァニオンを効果的に反応させるためには、活性水素化合物を溶媒に溶解させる 必要がある力 このようなアルカリ金属カチオンもしくはアルカリ土類金属カチオンを 有する塩を充分に溶解できる溶媒は極めて限られている。さらにはァニオンの反応 性はその対であるカチオンの大きさによって大きく影響される場合があるが、このカチ オンがアルカリ金属カチオンもしくはアルカリ土類金属カチオンに限られるとその大き さも限られてしまう。
[0003] そのため、活性水素化合物のァニオンと対カチオンの塩の溶解性を高めたり、該ァ 二オンの反応性を高めたりする目的で、クラウンエーテルやクリプタントのような配位 性の化合物を用いて対カチオンのアルカリ金属カチオンを安定化したり、対カチオン をアンモニゥム塩に交換したりする工夫がされている力 S、塩の溶解性の面でもァニォ ンの反応性の面でも効果が充分でな!/、場合が少なくなレ、。
[0004] 一方、特許文献 1には、活性水素化合物から導かれるァニオンと対カチオンとの溶 解性の高い塩としてホスファゼニゥム塩が記載されている。また、該ホスファゼニゥム 塩はカチオン部分の大きさを必要に応じて変更し得るものであり、ァニオンを効果的 に反応させることも開示されている。し力もながら、上記ホスファゼニゥム塩ではカチ オンとして表わされているりん原子にホスホラユリデンァミノ基とアミノ基とを合わせて 4 つの置換基が結合しているため、合成が比較的煩雑である。特に 4つのホスホラユリ デンァミノ基で置換する場合には比較的高温で長時間反応させる必要があることが 知られている。例えば、特許文献 2には該ホスファゼニゥム塩の 1つであるテトラキス [ トリス(ジメチルァミノ)ホスホラユリデンァミノ]ホスホニゥムクロリドの製造方法が開示さ れてレ、る力 その製造に際しては五塩化りんとイミノトリス(ジメチルァミノ)ホスホランと を 170°Cで 9時間の加熱反応させる必要がある。そのため、より簡便に合成が可能で 、かつ同様の機能を有する塩の開発が望まれている。
[0005] また、非特許文献 1には本発明の重合触媒の 1つである、トリス [トリス(ジメチルアミ ノ)ホスホラユリデンァミノ]ホスホニゥムヒドロキシドが記載されている力 該文献では 単に該ホスホニゥムヒドロキシドを合成中間体として用いたことのみが記載されており 、該ホスホニゥムヒドロキシドが本発明に記載の重合触媒となり得るとの記載は全く見 当たらない。
[0006] また、アルキレンォキシド化合物の重合によりポリアルキレンォキシドを製造するに 際しては、開始剤として、例えば多価アルコール等の活性水素化合物と例えば水酸 化カリウム等の塩基性アルカリ金属化合物との組み合わせを用いるのが最も一般的 であり、工業的にも実用化されてはいる。し力もながら、重合活性や生成ポリマーの 物性等の面から、より効率的な開始剤が望まれている。これ以外の開始剤について は、例えば金属化合物を用いる方法が知られており、例えば特許文献 3では活性水 素化合物と例えば Zn [Fe (CN) ] ·Η Ο ·ジォキサンで表わされる化合物とを用いて
3 6 2 2
、プロピレンォキシドからその重合体を得る方法を開示している。し力もながら、これら の方法では生成したポリアルキレンォキシド中に金属成分が残存するとポリウレタン 製造の際の反応またはポリウレタンの物性に悪影響を与える場合があるため、ポリア ルキレンォキシドの製造にあたってはこれらの金属成分を充分に除去する特別の方 法や煩雑な工程が必要となってレ、る。 [0007] 一方、金属を含まない開始剤として、特許文献 4では、活性水素化合物であるアル カンポリオールと三ふつ化ほう素のエーテル付加物との組み合わせを用いてェチレ ンォキシドからその重合体を得ている。しかし、この開始剤についても重合体中の特 異な不純物がポリウレタンの物性に悪影響を及ぼすことが知られており、充分に除去 するには煩雑な工程が必要となっている。また、特許文献 5では、アルコール類とアミ ノフエノールを用いてアルキレンォキシドの重合体を得る方法、特許文献 6ではソル ビトールとテトラメチルアンモニゥムヒドロキシドを用いてプロピレンォキシドを重合させ る方法が開示されているが、何れも重合活性が充分でない上、ァミン系の臭気が残 留する等の問題を抱えて!/、る。
特許文献 1:特許 3497054号公報
特許文献 2:特開平 11 152294号公報
特許文献 3 :米国特許 3829505号
特許文献 4 :特開昭 50 159595号公報
特許文献 5:特開昭 57— 12026号公報
特許文献 6:特開昭 56— 38323号公報
非特許文献 1 Journal of General Chemistry of the USSR, 1984年, 54 巻, 1581頁
発明の開示
発明が解決しょうとする課題
[0008] 本発明の第 1の課題は、活性水素化合物から導かれるァニオンと対カチオンからな る塩であって、そのカチオンがアルカリ金属カチオンもしくはアルカリ土類金属カチォ ンではなく、必要に応じて大きさを変え得るものであり、かつ有機溶媒にも溶解し易い という性質を持ちながら、簡便に製造できる塩を提供することにある。
[0009] 本発明の第 2の課題は、アルキレンォキシド化合物を重合させてポリアルキレンォ キシドを製造する際に、特別な金属成分は含まず、臭気を残留させず、ポリアルキレ ンォキシド製造効率の良いポリアルキレンォキシド重合触媒を提供することにある。
[0010] 本発明の第 3の課題は、該重合触媒を用いてポリアルキレンォキシドを簡便かつ効 率的に製造する方法を提供することにある。 [0011] 本発明の第 4の課題は、該製造方法により純度の高!/ '
供することにある。
課題を解決するための手段
[0012] 本発明者らは上記課題を解決するために鋭意検討した結果、新規なホスホニゥム 塩を見出し、さらにそれらがアルキレンォキシド化合物の重合に極めて効果であるこ とを見出し、本発明を完成するに至った。すなわち、本発明は以下の通りである。
[0013] 第 1の発明は、一般式 表わされるホスホニゥム塩である。
[0014] [化 1]
Figure imgf000005_0001
[0015] (式中、 Qn—は少なくとも 1個の炭素原子を有し、かつ最大 8個の活性水素原子を酸素 原子または窒素原子上に有する活性水素化合物から n個のプロトンが離脱して導か れる形の n価の活性水素化合物のァニオンを表わす。 a、 bおよび cはそれぞれ 3以下 の正の整数または 0であるが、全てが同時に 0ではない。 Rは同種または異種の、炭 素数 1ないし 10個の炭化水素基であり、同一窒素原子上の 2個の Rが互いに結合し て環構造を形成する場合もある。 )
前記ホスホニゥム塩は、 Qn—を導く活性水素化合物が、炭素数 1ないし 20個のアル コール類、 2ないし 8個の水酸基を有する炭素数 2ないし 20個の多価アルコール類、 炭素数 5な!/、し 20個の糖類またはその誘導体、 2な!/、し 8個の末端を有しその末端に 1ないし 8個の水酸基を有する分子量 100ないし 50, 000のポリアルキレンォキシド 類、炭素数 1ないし 20個のカルボン酸類、 2ないし 8個のカルボキシル基を有する炭 素数 2ないし 20個の多価カルボン酸類、炭素数 1ないし 20個の一級もしくは二級アミ ン類、 2ないし 3個の一級もしくは二級アミノ基を有する炭素数 2ないし 20個の多価ァ ミン類、炭素数 4な!/、し 20個の飽和環状二級アミン類および 2な!/、し 3個の二級アミノ 基を含む炭素数 4ないし 20個の環状の多価アミン類よりなる群から選ばれる活性水 素化合物であることも好ましレ、。
[0016] 前記一般式(1)で表わされるホスホニゥム塩中の nが 1ないし 3の整数であることも 好ましい。
[0017] 前記一般 (1)で表わされるホスホニゥム塩中の a、 bおよび cが、全て同時には 0で はなぐそれぞれ 2以下の正の整数または 0であることも好ましい。
[0018] 前記一般式(1)で表わされるホスホニゥム塩中の R力、炭素数 1ないし 10個のアル キル基であることも好ましい。
[0019] 前記一般式(1)で表わされるホスホニゥム塩中の同一窒素原子上の 2個の Rが互 いに結合して環構造を形成する場合の該窒素原子に対する 2価の置換基がテトラメ チレンまたはペンタメチレンであることも好まし!/、。
[0020] 第 2の発明は、一般式(2)で表わされるホスホニゥム塩からなる、アルキレンォキシ ド化合物の重合触媒である。
[0021] [化 2]
(2)
Figure imgf000006_0001
[0022] (式中、 Zn—は最大 8個の活性水素原子を酸素原子または窒素原子上に有する活性 水素化合物から n個のプロトンが離脱して導かれる形の n価の活性水素化合物のァ 二オンを表わす。 a、 bおよび cはそれぞれ 3以下の正の整数または 0である力 全て が同時に 0ではない。 Rは同種または異種の、炭素数 1ないし 10個の炭化水素基で あり、同一窒素原子上の 2個の Rが互いに結合して環構造を形成する場合もある。 ) 前記重合触媒は、下記一般式 (3)で表わされるホスフィン化合物および Zn—を導く活 性水素化合物から導かれることも好ましレ、。
[0023] [化 3]
Figure imgf000007_0001
[0024] (式中、 a、 bおよび cはそれぞれ 3以下の正の整数または 0である力 S、全てが同時に 0 ではない。 Rは同種または異種の、炭素数 1ないし 10個の炭化水素基であり、同一 窒素原子上の 2個の Rが互いに結合して環構造を形成する場合もある。 )
前記重合触媒は、下記一般式 (4)で表わされるホスホニゥム塩と Zn—を導く活性水素 化合物のアルカリ金属もしくはアルカリ土類金属の塩から導かれることも好ましい。
[0025] [化 4]
Figure imgf000007_0002
[0026] (式中、 Ym—は m価の無機ァニオンを表わす。 a、 bおよび cはそれぞれ 3以下の正の整 数または 0である力 全てが同時に 0ではない。 Rは同種または異種の、炭素数 1ない し 10個の炭化水素基であり、同一窒素原子上の 2個の Rが互いに結合して環構造を 形成する場合もある。 )
前記一般式(4)中の無機ァニオンが、ほう酸、テトラフルォロほう酸、ハロゲン化水 素酸、りん酸、へキサフルォロりん酸および過塩素酸よりなる群から選ばれる無機酸 のァニオンであることも好まし!/、。
[0027] Zn—を導く活性水素化合物が水、炭素数 1ないし 20個のアルコール類、 2ないし 8個 の水酸基を有する炭素数 2ないし 20個の多価アルコール類、炭素数 5ないし 20個の 糖類またはその誘導体、 2ないし 8個の末端を有しその末端に 1ないし 8個の水酸基 を有する分子量 100ないし 50, 000のポリアルキレンォキシド類、炭素数 1ないし 20 個個ののカカルルボボンン酸酸類類、、 22なな!!//、、しし 88個個ののカカルルボボキキシシルル基基をを有有すするる炭炭素素数数 22なな!!//、、しし 2200個個のの多多 価価カカルルボボンン酸酸類類、、炭炭素素数数 11なないいしし 2200個個のの一一級級ももししくくはは二二級級アアミミンン類類、、 22なないいしし 33個個のの一一 級級ももししくくはは二二級級アアミミノノ基基をを有有すするる炭炭素素数数 22なないいしし 2200個個のの多多価価アアミミンン類類、、炭炭素素数数 44なないいしし 2200個個のの飽飽和和環環状状二二級級アアミミンン類類おおよよびび 22ななレレ、、しし 33個個のの二二級級アアミミノノ基基をを含含むむ炭炭素素数数 44ななレレヽヽ しし 2200個個のの環環状状のの多多価価アアミミンン類類よよりりななるる群群かからら選選ばばれれるる活活性性水水素素化化合合物物ででああるるこことともも好好 ままししいい。。
[0028] 前前記記一一般般式式((22))中中のの nnがが 11なないいしし 33のの整整数数ででああるるこことともも好好ままししいい。。
[0029] 前前記記一一般般式式((22))中中のの aa、、 bbおおよよびび ccがが、、全全てて同同時時ににはは 00ででははななぐぐそそれれぞぞれれ 22以以下下のの正正 のの整整数数ままたたはは 00ででああるるこことともも好好まましし!!//、、。。
[0030] 前前記記一一般般式式((22))中中のの RRがが、、炭炭素素数数 11なないいしし 1100個個ののアアルルキキルル基基ででああるるこことともも好好ままししいい。。
[0031] 前前記記一一般般式式((22))中中のの同同一一窒窒素素原原子子上上のの 22個個のの RRがが互互いいにに結結合合ししてて環環構構造造をを形形成成すす るる場場合合のの該該窒窒素素原原子子にに対対すするる 22価価のの置置換換基基ががテテトトララメメチチレレンンままたたははペペンンタタメメチチレレンンでで ああるるこことともも好好ままししいい。。
[0032] ZZnn——をを導導くく活活性性水水素素化化合合物物ををささららにに含含有有すするるこことともも好好ままししいい。。
[0033] 前前記記一一般般式式 ((22))でで表表さされれるる重重合合触触媒媒とと共共存存ささせせるる ZZnn——をを導導くく活活性性水水素素化化合合物物がが水水、、 炭炭素素数数 11ななレレ、、しし 2200個個ののアアルルココーールル類類、、 22なな!!//、、しし 88個個のの水水酸酸基基をを有有すするる炭炭素素数数 22なな!!//、、しし 2200個個のの多多価価アアルルココーールル類類、、炭炭素素数数 55なないいしし 2200個個のの糖糖類類ままたたははそそのの誘誘導導体体、、 22なないいしし 88個個のの末末端端をを有有ししそそのの末末端端にに 11なないいしし 88個個のの水水酸酸基基をを有有すするる分分子子量量 110000なないいしし 5500,, 00 0000ののポポリリアアルルキキレレンンォォキキシシドド類類、、炭炭素素数数 11なないいしし 2200個個ののカカルルボボンン酸酸類類、、 22なないいしし 88個個のの カカルルボボキキシシルル基基をを有有すするる炭炭素素数数 22なないいしし 2200個個のの多多価価カカルルボボンン酸酸類類、、炭炭素素数数 11なないいしし 22 00個個のの一一級級ももししくくはは二二級級アアミミンン類類、、 22なないいしし 33個個のの一一級級ももししくくはは二二級級アアミミノノ基基をを有有すするる炭炭 素素数数 22なな!!//、、しし 2200個個のの多多価価アアミミンン類類、、炭炭素素数数 44なな!!//、、しし 2200個個のの飽飽和和環環状状二二級級アアミミンン類類おお よよびび 22ななレレ、、しし 33個個のの二二級級アアミミノノ基基をを含含むむ炭炭素素数数 44なな!!//、、しし 2200個個のの環環状状のの多多価価アアミミンン類類よよりり ななるる群群かからら選選ばばれれるる活活性性水水素素化化合合物物ででああるるこことともも好好ままししいい。。
[0034] 第第 33のの発発明明はは、、一一般般式式((22))でで表表わわさされれるる重重合合触触媒媒のの存存在在下下ににアアルルキキレレンンォォキキシシドド化化 合合物物をを重重合合ささせせるるここととをを特特徴徴ととすするるポポリリアアルルキキレレンンォォキキシシドドのの製製造造方方法法おおよよびびここのの製製
Figure imgf000008_0001
[0035] 前前記記ポポリリアアルルキキレレンンォォキキシシドドのの製製造造方方法法ににおお!!//、、てて、、前前記記アアルルキキレレンンォォキキシシドド化化合合物物 力 S、エチレンォキシド、プロピレンォキシド、 1 , 2—プチレンォキシドおよびスチレンォ キシドよりなる群から選ばれる少なくとも 1種であることも好ましい。
[0036] 前記ポリアルキレンォキシドの製造方法において、 2種以上のアルキレンォキシド化 合物を順次に重合させて、 2種以上のポリアルキレンォキシドのブロックを含むブロッ ク共重合体を製造することも好ましレヽ。
発明の効果
[0037] 本発明のホスホニゥム塩は、新規なホスホニゥム塩であり、そのカチオン部は必要 に応じて大きさを変え得るものであり、かつ有機溶媒にも溶解し易いという性質を持 つ。また、該ホスホニゥム塩はその製造工程において、高温での加熱を要さず短時 間に製造することができ、従来の塩に比べ簡便に製造することができるという利点を もつ。
[0038] また、本発明の重合触媒を用いることによりアルキレンォキシド化合物を重合させて ポリアルキレンォキシドを簡便かつ効率的に製造する方法を提供でき、高純度のポリ アルキレンォキシドを提供できる利点がある。
発明を実施するための最良の形態
[0039] 以下、本発明について詳細に説明する。
[0040] 本発明において、一般式(1)、一般式(2)、一般式 (4)および一般式(6)で表わさ れるホスホニゥム塩中のホスホニゥムカチオンは、その正電荷が特定のりん原子上に 局在する極限構造式で代表している力 S、これ以外にも多くの極限構造式を描くことが でき、実際にはその正電荷は該ホスホニゥムカチオン全体に非局在化していると解さ れる。
[0041] 第 1の発明は、一般式(1 )で表わされるホスホニゥム塩である。
[0042] [化 5]
Figure imgf000009_0001
[0043] 一般式(1)において、 Qn—は、少なくとも 1個の炭素原子を有し、かつ最大 8個の活 性水素原子を酸素原子または窒素原子上に有する活性水素化合物から n個のプロト ンが離脱して導かれる形の n価の活性水素化物のァニオンを表わす。
[0044] Qn—を導く活性水素化合物のうち、酸素原子上に活性水素原子を有する化合物とし ては、具体的には、例えば、メタノール、エタノール、ノルマループロパノール、イソプ ロノ ノーノレ、ノノレマノレーブチノレアノレコーノレ、 sec ブチノレアノレコーノレ、 tert ブチノレ ァノレコーノレ、イソペンチルアルコール、 tert ペンチルアルコール、ノルマルーオタ チノレアノレコーノレ、ラウリノレアノレコーノレ、セチノレアノレコーノレ、シクロペンタノ一ノレ、シクロ へキサノーノレ、 ァリノレアノレコーノレ、クロチノレアノレコーノレ、メチノレビニノレカノレビノーノレ、 ベンジルアルコール、 1 フエニルエチルアルコール、トリフエ二ルカルビノールまた はシンナミルアルコール等の炭素数 1ないし 30個のアルコール類であり、例えば、ェ チレングリコーノレ、プロピレングリコーノレ、ジエチレングリコーノレ、ジプロピレングリコー ノレ、 1 , 3—プロパンジオール、 1 , 3—ブタンジオール、 1 , 4 ブタンジオール、 1 , 6 一へキサンジォ一ノレ、 1 , 4ーシクロへキサンジォーノレ、トリメチローノレプロパン、グリ セリン、ジグリセリン、ペンタエリスリトールまたはジペンタエリスリトール等の 2ないし 10 個の水酸基を有する炭素数 2ないし 30個の多価アルコール類であり、例えば、ダル コース、ソルビトール、デキストロース、フラクトースまたはシュクロース等の糖類または その誘導体であり、例えば、ポリエチレンォキシド、ポリプロピレンォキシド等の 2ない し 8個の末端を有し、その末端に 1ないし 8個の水酸基を有するポリアルキレンォキシ ド類であり、例えば、蟻酸、酢酸、プロピオン酸、酪酸、イソ酪酸、ラウリン酸、ステアリ ン酸、ォレイン酸、フエニル酪酸、ジヒドロ桂皮酸、シクロへキサンカルボン酸、安息香 酸、ノ ラメチル安息香酸または 2—カルボキシナフタレン等の炭素数 1ないし 30個の カルボン酸類であり、例えば、蓚酸、マロン酸、こはく酸、マレイン酸、フマル酸、アジ ピン酸、ィタコン酸、ブタンテトラカルボン酸、フタル酸、イソフタル酸、テレフタル酸、 トリメリット酸またはピロメリット酸等の 2ないし 8個のカルボキシル基を有する炭素数 2 ないし 30個の多価カルボン酸類であり、例えば、 N, N ジェチルカルバミン酸、 N カルボキシピロリドン、 N—カルボキシァ二リンまたは N, N'—ジカルボキシ 2, 4 トルエンジァミン等の力ルバミン酸類であり、例えば、フエノール、 2—ナフトール、 2 , 6 ジヒドロキシナフタレンまたはビスフエノーノレ A等の炭素数 6ないし 20個の 1ない し 3個の水酸基を有するフエノール性化合物類である。
[0045] Qn—を導く活性水素化合物のうち、窒素原子上に活性水素原子を有する活性水素 化合物としては、具体的には、例えば、メチルァミン、ェチルァミン、ノルマループロピ ルァミン、イソプロピルァミン、ノルマルーブチルァミン、イソブチルァミン、 sec ブチ ノレアミン、 tert ブチルァミン、シクロへキシルァミン、ベンジルァミン、 β フエ二ノレ ェチルァミン、ァニリン、 ο トルイジン、 m トルイジンまたは ρ トルイジン、ジメチル ァミン、メチルェチルァミン、ジェチルァミン、ジーノルマループ口ピルァミン、ェチル ノルマルーブチルァミン、メチルー sec ブチルァミン、ジペンチルァミン、ジシクロ へキシルァミン、 N メチルァニリンまたはジフエニルァミン等の炭素数 1ないし 30個 の一級もしくは二級アミン類であり、例えば、エチレンジァミン、ジ(2—アミノエチル) ァミン、へキサメチレンジァミン、 4, 4 'ージアミノジフエニルメタン、トリ(2 アミノエチ ノレ)ァミン、 N, N'—ジメチルエチレンジァミン、 N, N'—ジェチルエチレンジァミンま たはジ(2 メチルアミノエチル)ァミン等の 2ないし 3個の一級もしくは二級アミノ基を 有する炭素数 2ないし 30個の多価アミン類であり、例えば、ピロリジン、ピぺリジン、モ ルホリンまたは 1 , 2, 3, 4—テトラヒドロキノリン等の炭素数 4ないし 30個の飽和環状 二級アミン類であり、例えば、ピぺラジン、ピラジンまたは 1 , 4, 7 トリァザシクロノナ ン等の 2なレ、し 3個の二級アミノ基を含む炭素数 4な!/、し 30個の環状の多価アミン類 であり、例えば、ァセトアミド、プロピオンアミド、 N メチルプロピオンアミド、 N メチ ル安息香酸アミドまたは N ェチルステアリン酸アミド等の炭素数 2ないし 20個の無 置換または N—一置換の酸アミド類であり、例えば、 2—ピロリドンまたは ε—力プロラ クタム等の 5ないし 7員環の環状アミド類であり、例えば、こはく酸イミド、マレイン酸ィ ミドまたはフタルイミド等の炭素数 4ないし 10個のジカルボン酸のイミド類であり、例え ば 3—ピロリン、ピロール、インドール、カルバゾール、イミダゾール、ピラゾールまたは プリン等の炭素数 4ないし 20個の不飽和環状二級アミン類である。
[0046] これらの Qn—を導く活性水素化合物のうち、炭素数 1ないし 20個のアルコール類、 2 な!/、し 8個の水酸基を有する炭素数 2な!/、し 20個の多価アルコール類、炭素数 5な いし 20個の糖類またはその誘導体、 2ないし 8個の末端を有しその末端に 1ないし 8 個の水酸基を有する分子量 100ないし 50, 000のポリアルキレンォキシド類、炭素数 1な!/、し 20個のカルボン酸類、 2な!/、し 8個のカルボキシル基を有する炭素数 2な!/ヽ し 20個の多価カルボン酸類、炭素数 1ないし 20個の一級もしくは二級アミン類、 2な いし 3個の一級もしくは二級アミノ基を有する炭素数 2ないし 20個の多価アミン類、炭 素数 4な!/、し 20個の飽和環状二級アミン類および 2な!/、し 3個の二級アミノ基を含む 炭素数 4ないし 20個の環状の多価アミン類が好ましぐ炭素数 1ないし 20個のアルコ ール類、 2ないし 8個の水酸基を有する炭素数 2ないし 20個の多価アルコール類、炭 素数 5ないし 20個の糖類またはその誘導体、 2ないし 8個の末端を有しその末端に 1 ないし 8個の水酸基を有する分子量 100ないし 50, 000のポリアルキレンォキシド類 、炭素数 1なレ、し 20個の一級もしくは二級アミン類がより好まし!/、。
[0047] 一般式(1)において、 nはホスホニゥムカチオンの数を表すとともに、 Qn—を導く活性 水素化合物から脱離するプロトンの個数を表す。 nは 1ないし 8の整数であり、好ましく は 1な!/、し 3の整数である。 Qn—を導く活性水素化合物が複数個の活性水素を有する 場合、それらの活性水素が全て離脱してァニオンに導かれる場合もあるし、その一部 だけが離脱してァニオンに導かれる場合もある。
[0048] 一般式(1)において、 a、 bおよび cはそれぞれ 3以下の正の整数または 0であるが、 全てが同時に 0ではない。好ましくは、 a、 bおよび cが、全て同時に 0ではなぐそれぞ れ 2以下の正の整数または 0である。より好ましくは a、 bおよび cが全て同時に 2または 1であり、さらに好ましくは全てが同時に 1である。
[0049] 一般式(1)において、 Rは炭素数 1ないし 10個の炭化水素基であり、同一窒素原 子上の 2個の Rが互いに結合して環構造を形成する場合もある。さらには、ホスホニゥ ム塩中の全ての Rが同一であっても良いし、異なっていても良い。このような Rとして は、より具体的には、例えば、メチル基、ェチル基、 2—ブチル基、 n—ペンチル基、 2 ェチルへキシル基等の炭素数 1ないし 10個のアルキル基、例えば、シクロへキシ ル基等の炭素数 3ないし 10個のシクロアルキル基、例えば、ビュル基、プロぺニル基 等の炭素数 2ないし 10個のアルケニル基、例えば、シクロへキセニル基等の炭素数 3ないし 10個のシクロアルケニル基、例えば、フエニル基、ナフチル基、ェチルフエ二 ル基等の炭素数 6ないし 10個の置換または無置換のァリール基等が挙げられる。ま た、同一窒素原子上の 2個の Rが互いに結合して環構造を形成する場合の該窒素原 子に結合する 2価の置換基としては、例えば、エチレン基、テトラメチレン基、ペンタメ チレン基等の炭素数 2ないし 10個のアルキレン基、例えば、シクロへキシレン基等の 炭素数 3ないし 10個のシクロアルキレン基、例えば、ビニレン基等の炭素数 2ないし 1 0個のアルケニレン基、例えば、シクロへキセニレン基等の炭素数 3ないし 10個のシ クロアルケニレン基、例えば、フエニルエチレン基等の炭素数 8ないし 10個のァラル キレン基等が挙げられる。
[0050] 同一窒素原子上の 2個の Rが環構造を形成しない場合、これらの Rのうち、好ましく は炭素数 1ないし 10個の脂肪族炭化水素基であり、より好ましくは炭素数 1ないし 10 個のアルキル基であり、特に好ましくはメチル基またはェチル基である。また、同一窒 素原子上の 2個の Rが互いに結合して環構造を形成する場合、該窒素原子に結合 する 2価の置換基のうち、好ましくは炭素数 2ないし 8個のアルキレン基であり、より好 ましくはテトラメチレン基またはペンタメチレン基である。
[0051] 本発明の一般式(1)で表わされるホスホニゥム塩の合成法については、特に制限 はな!/、が、その一般的な例として次のような方法が挙げられる。
[0052] (I)特許 3497054号公報に記載の方法に従って得られる、一般式(5)で表わされ る化合物を用い、
[0053] [化 6]
Figure imgf000013_0001
[0054] (式中、 qは 0ないし 3の整数を表わす。 Rは一般式(1)における Rと同義である。 )
(Π)異なる qおよび/または Rの一般式(5)の化合物を順次に、または同一の qおよ び Rの一般式(5)の化合物を同時に三塩化りんに 3当量付加させることにより、一般 式(6)のホスホニゥム塩を得て、
[0055] [化 7]
Figure imgf000014_0001
[0056] (式中、 a、 b、 cおよび Rは一般式(1)における a、 b、 cおよび Rと同義である。 )
(III)得られた一般式(6)のホスホニゥム塩と M+ Qn— (M+は n個のアルカリ金属カチ
n n
オンを表す)で表される活性水素化合物のアルカリ金属塩とを反応させることによつ て、一般式(1)で表わされるホスホニゥム塩が製造される。
[0057] (Π)の反応に際して、一般式(5)の化合物を三塩化りんに 3当量付加させる力 該 付加反応では、反応の進行と同時に塩化水素が発生する。その塩化水素は一般式( 5)の化合物と反応して一般式(5)の化合物の塩化水素付加物を形成するため、収 率よく目的の一般式(6)のホスホニゥム塩を得るためには通常一般式(5)の化合物を 三塩化りんに対して 3当量以上用いる力、、他の塩基性物質を共存させる方法が採ら れる。反応温度は、用いる一般式(5)の化合物の種類、量及び濃度等により一様で はないが、通常 150°C以下であり、好ましくは一 50ないし 100°C、より好ましくは 0な いし 60°Cの範囲である。反応時間は、用いる一般式(5)の化合物の種類、量及び濃 度等により一様ではないが、通常 24時間以下であり、好ましくは 1分ないし 12時間、 より好ましくは 5分ないし 6時間の範囲である。
[0058] (III)の反応に際して、原料である 2種の塩の使用量比については、 目的の塩が生 成する限り特に制限はなぐ何れかの塩が過剰であっても特に問題はないが、通常、 M+ Qn—の使用量力 一般式(6)で表わされるホスホニゥム塩の 1当量に対して、 0. 2 n
ないし 5当量であり、好ましくは 0. 5ないし 3当量であり、より好ましくは 0. 7ないし 1. 5当量の範囲である。両者の接触を効果的にするために通常溶媒を用いる。この溶 媒としては、反応を阻害しなければいかなる溶媒でも構わないが、例えば、水であり、 例えばメタノール、エタノールまたはプロパノール等のアルコール類、例えばアセトン またはメチルェチルケトン等のケトン類、例えばノルマルーペンタン、ノルマルーへキ サン、シクロへキサン、ベンゼン、トルエンまたはキシレン等の脂肪族または芳香族の 炭化水素類、例えばジクロロメタン、クロ口ホルム、ブロモホルム、四塩化炭素、ジクロ ロェタン、クロ口ベンゼン、オルトジクロロベンゼン、フルォロベンゼンまたはべンゾトリ フルオリド等のハロゲン化炭化水素類、例えば酢酸ェチル、プロピオン酸メチルまた は安息香酸メチル等のエステル類、例えばジェチルエーテル、テトラヒドロフラン、 1 , 4 ジォキサン、エチレングリコールジメチルエーテルまたはトリエチレングリコールジ メチルエーテル等のエーテル類、例えばトリブチルァミン、 N, N ジメチルァニリン、 ピリジンまたはキノリン等の三級アミン類、例えばニトロメタンまたはニトロェタン等の二 トロアルカン類、例えばァセトニトリルまたはプロピオ二トリル等の二トリル類、例えば N , N ジメチルホルムアミド、ジメチルスルホキシド、スルホラン、へキサメチルりん酸ト リアミドまたは 1 , 3 ジメチルー 2 イミダゾリジノン等の極性非プロトン溶媒等が挙げ られる。これらの溶媒は、反応に用いる原料の塩の化学的安定性に応じて選ばれる。 溶媒は、単独でも 2種以上を混合して用いてもよい。原料の塩が溶解していることが 好ましいが、懸濁状態でも構わない。反応温度は、用いる塩の種類、量及び濃度等 により一様ではないが、通常 150°C以下であり、好ましくは一 78°Cないし 80°C、より 好ましくは 0ないし 50°Cの範囲である。反応圧力は減圧、常圧および加圧の何れで も実施し得る力 好ましくは 0. 01ないし IMPa/cm2 (絶対圧、以下同様)であり、よ り好ましくは 0. 1ないし 0. 3MPa/cm2の範囲である。反応時間は反応温度や反応 系の状態等によって一様ではないが、通常、 1分ないし 24時間の範囲であり、好まし くは 1分ないし 10時間、より好ましくは 5分ないし 6時間である。またアルカリ金属塩 M+ Qn—の代わりに、 Qn—を対ァニオンに持つアルカリ土類金属塩、アンモニゥム塩、陰ィ n
オン交換樹脂などを用いることもできる。
この反応の反応液から、一般式(1)で表わされるホスホニゥム塩を分離するには、 常套の手段を組み合わせた常用の方法が用いられる。その方法は、 目的の塩の種 類、用いた 2原料の塩の種類や過剰率、用いた溶媒の種類や量等により一様ではな いが、通常、副生するアルカリ金属カチオンと塩素ァニオンとの塩が固体として析出 しているので、そのままあるいは若干の濃縮をした後、濾過や遠心分離等の方法で 固液分離してこれを除き、液を濃縮乾固して目的のホスホニゥム塩を得ることができる 。副生する塩が濃縮してもなお溶解している場合には、そのままあるいは濃縮後に貧 溶媒を加え、副生塩または目的の塩の何れかを析出させたり、また濃縮乾固後、一 方を抽出する等の方法で分離することができる。過剰に使用した方の原料の塩が目 的の塩に多量混入している場合には、そのままあるいは再溶解後に適した他の溶媒 で抽出しこれらを分離すること力 Sできる。さらに、必要であれば再結晶またはカラムク 口マトグラフィ一等で精製することもできる。このようにして得られた一般式(1 )で表わ されるホスホニゥム塩は、そのカチオン部の大きさを変えることができる有機溶媒に易 溶の塩であり、活性水素化合物のァユオンの関与する有機合成反応の活性種として 極めて有用である。
[0060] 第 2の発明は、一般式(2)で表わされるホスホニゥム塩からなるアルキレンォキシド 化合物の重合触媒である。
[0061] [化 8]
Figure imgf000016_0001
[0062] 一般式(2)中の Zn—は最大 8個の活性水素原子を酸素原子または窒素原子上に有 する活性水素化合物から n個のプロトンが離脱して導かれる n価の活性水素化合物 のァニオンを表わす。
[0063] Zn—を導く活性水素化合物のうち、酸素原子上に活性水素原子を有する活性水素 化合物としては、具体的には、水であり、例えば、メタノール、エタノール、ノルマルー プロパノール、イソプロパノール、ノルマルーブチルアルコール、 sec—ブチルアルコ 一ノレ、 tert—ブチノレアノレコーノレ、イソペンチノレアノレコーノレ、 tert—ペンチノレアノレコー ノレ、ノノレマノレーオタチノレアノレコーノレ、ラウリノレアノレコーノレ、セチノレアノレコーノレ、シクロ ペンタノ一ノレ、シクロへキサノーノレ、ァリノレアノレコーノレ、クロチノレアノレコーノレ、メチノレビ ニノレカノレビノーノレ、ペンジノレアノレコーノレ、 1—フエニノレエチノレアノレコーノレ、 トリフエ二 ルカルビノールまたはシンナミルアルコール等の炭素数 1ないし 30個のアルコール 類であり、例えば、エチレングリコール、プロピレングリコール、ジエチレングリコーノレ、 ジプロピレングリコール、 1 , 3—プロパンジオール、 1 , 3—ブタンジオール、 1 , 4ーブ タンジオール、 1 , 6—へキサンジオール、 1 , 4ーシクロへキサンジオール、トリメチロ ールプロパン、グリセリン、ジグリセリン、ペンタエリスリトールまたはジペンタエリスリト ール等の 2ないし 10個の水酸基を有する炭素数 2ないし 30個の多価アルコール類 であり、例えば、グルコース、ソノレビトーノレ、デキストロース、フラクトースまたはシュクロ ース等の糖類またはその誘導体であり、例えば、ポリエチレンォキシド、ポリプロピレ ンォキシド等の 2ないし 8個の末端を有し、その末端に 1ないし 8個の水酸基を有する ポリアルキレンォキシド類であり、例えば、蟻酸、酢酸、プロピオン酸、酪酸、イソ酪酸 、ラウリン酸、ステアリン酸、ォレイン酸、フエニル酪酸、ジヒドロ桂皮酸シクロへキサン カルボン酸、安息香酸、ノ ラメチル安息香酸または 2—カルボキシナフタレン等の炭 素数 1ないし 30個のカルボン酸類であり、例えば、蓚酸、マロン酸、こはく酸、マレイ ン酸、フマル酸、アジピン酸、ィタコン酸、ブタンテトラカルボン酸、フタル酸、イソフタ ル酸、テレフタル酸、トリメリット酸またはピロメリット酸等の 2ないし 8個のカルボキシル 基を有する炭素数 2ないし 30個の多価カルボン酸類であり、例えば、 N, N—ジェチ ノレカノレノ ミン酸、 N—カルボキシピロリドン、 N—カルボキシァ二リンまたは N, N'—ジ カルボキシ—2, 4—トルエンジァミン等の力ルバミン酸類であり、例えば、フエノール 、 2—ナフトール、 2, 6—ジヒドロキシナフタレンまたはビスフエノーノレ A等の炭素数 6 ないし 20個の 1ないし 3個の水酸基を有するフエノール性化合物類である。
Zn—を導く活性水素化合物のうち、窒素原子上に活性水素原子を有する活性水素 化合物としては、具体的には、アンモニアであり、例えばメチルァミン、ェチルァミン、 ノルマループ口ピルァミン、イソプロピルァミン、ノルマルーブチルァミン、イソブチノレ ァミン、 sec—ブチルァミン、 tert—ブチルァミン、シクロへキシルァミン、ベンジルアミ ン、 /3—フエニルェチルァミン、ァニリン、 o—トルイジン、 m—トルィジン、 p—トルイジ ン、ジメチルァミン、メチルェチルァミン、ジェチルァミン、ジーノルマループ口ピルアミ ン、ェチルーノルマルーブチルァミン、メチルー sec—ブチルァミン、ジペンチルアミ ン、ジシクロへキシルァミン、 N—メチルァニリンまたはジフエニルァミン等の炭素数 1 ないし 30個の一級もしくは二級アミン類であり、例えば、エチレンジァミン、ジ(2—ァ ミノェチル)ァミン、へキサメチレンジァミン、 4, 4 'ージアミノジフエニルメタン、トリ(2 アミノエチノレ)ァミン、 N, N'—ジメチノレエチレンジァミン、 N, N'—ジェチノレエチレ ンジァミンまたはジ(2 メチルアミノエチル)ァミン等の 2ないし 3個の一級もしくは二 級アミノ基を有する炭素数 2ないし 30個の多価アミン類であり、例えば、ピロリジン、ピ ペリジン、モルホリンまたは 1 , 2, 3, 4 テトラヒドロキノリン等の炭素数 4ないし 30個 の飽和環状二級アミン類であり、例えば、ピぺラジン、ピラジンまたは 1 , 4, 7 トリア ザシクロノナン等の 2な!/、し 3個の二級アミノ基を含む炭素数 4な!/、し 30個の環状の 多価アミン類であり、例えば、ァセトアミド、プロピオンアミド、 N メチルプロピオンアミ ド、 N メチル安息香酸アミドまたは N ェチルステアリン酸アミド等の炭素数 2ないし 20個の無置換または N—一置換の酸アミド類であり、例えば、 2—ピロリドンまたは ε 一力プロラタタム等の 5ないし 7員環の環状アミド類であり、例えば、こはく酸イミド、マ レイン酸イミドまたはフタルイミド等の炭素数 4ないし 10個のジカルボン酸のイミド類で あり、例えば 3—ピロリン、ピロール、インドール、カルバゾール、イミダゾール、ピラゾ ールまたはプリン等の炭素数 4ないし 20個の不飽和環状二級アミン類である。
[0065] これらの Ζη—を導く活性水素化合物のうち、水、炭素数 1ないし 20個のアルコール類 、 2ないし 8個の水酸基を有する炭素数 2ないし 20個の多価アルコール類、炭素数 5 ないし 20個の糖類またはその誘導体、 2ないし 8個の末端を有しその末端に 1ないし 8個の水酸基を有する分子量 100ないし 50, 000のポリアルキレンォキシド類、炭素 数 1ないし 20個のカルボン酸類、 2ないし 8個のカルボキシル基を有する炭素数 2な いし 20個の多価カルボン酸類、炭素数 1ないし 20個の一級もしくは二級アミン類、 2 ないし 3個の一級もしくは二級アミノ基を有する炭素数 2ないし 20個の多価アミン類、 炭素数 4な!/、し 20個の飽和環状二級アミン類、 2な!/、し 3個の二級アミノ基を含む炭 素数 4ないし 20個の環状の多価アミン類が好ましぐ水、炭素数 1ないし 20個のアル コール類、 2ないし 8個の水酸基を有する炭素数 2ないし 20個の多価アルコール類、 炭素数 5な!/、し 20個の糖類またはその誘導体、 2な!/、し 8個の末端を有しその末端に 1ないし 8個の水酸基を有する分子量 100ないし 50, 000のポリアルキレンォキシド 類、炭素数 1ないし 20個の一級もしくは二級アミン類がより好ましい。
[0066] 一般式(2)において、 ηはホスホニゥムカチオンの数を表すとともに、 Ζη—を導く活性 水素化合物から脱離するプロトンの個数を表す。 ηは 1ないし 8の整数であり、好ましく は 1な!/、し 3の整数である。 Zn—を導く活性水素化合物が複数個の活性水素を有する 場合、それらの活性水素が全て離脱してァニオンに導かれる場合もあるし、その一部 だけが離脱してァニオンに導かれる場合もある。
[0067] 一般式(2)における a、 bおよび cは、それぞれ 3以下の正の整数または 0であるが、 全てが同時に 0ではない。好ましくは、 a、 bおよび cが、全て同時に 0ではなぐそれぞ れ 2以下の正の整数または 0である。より好ましくは a、 bおよび cが全て同時に 2または 1であり、さらに好ましくは全てが同時に 1である。
[0068] 一般式(2)における Rは、炭素数 1ないし 10個の炭化水素基であり、同一窒素原子 上の 2個の Rが互いに結合して環構造を形成する場合もある。さらには、ホスホニゥム 塩中の全ての Rが同一であっても良いし、異なっていても良い。このような Rとしては、 より具体的には、例えば、メチル基、ェチル基、 2—ブチル基、 n—ペンチル基、 2— ェチルへキシル基等の炭素数 1ないし 10個のアルキル基、例えば、シクロへキシノレ 基等の炭素数 3ないし 10個のシクロアルキル基、例えば、ビュル基、プロぺニル基等 の炭素数 2ないし 10個のアルケニル基、例えば、シクロへキセニル基等の炭素数 3な いし 10個のシクロアルケニル基、例えば、フエニル基、ナフチル基、ェチルフエニル 基等の炭素数 6ないし 10個の置換または無置換のァリール基等が挙げられる。また 、同一窒素原子上の 2個の Rが互いに結合して環構造を形成する場合の該窒素原 子に結合する 2価の置換基としては、例えば、エチレン基、テトラメチレン基、ペンタメ チレン基等の炭素数 2ないし 10個のアルキレン基、例えば、シクロへキシレン基等の 炭素数 3ないし 10個のシクロアルキレン基、例えば、ビニレン基等の炭素数 2ないし 1 0個のアルケニレン基、例えば、シクロへキセニレン基等の炭素数 3ないし 10個のシ クロアルケニレン基、例えば、フエニルエチレン基等の炭素数 8ないし 10個のァラル キレン基等が挙げられる。
[0069] 同一窒素原子上の 2個の Rが環構造を形成しない場合、これらの Rのうち、好ましく は炭素数 1ないし 10の脂肪族炭化水素基であり、より好ましくは炭素数 1ないし 10個 のアルキル基であり、特に好ましくはメチル基またはェチル基である。また、同一窒素 原子上の 2個の Rが互いに結合して環構造を形成する場合の該窒素原子に結合す る 2価の置換基としては、好ましくは、炭素数 2ないし 8個のアルキレン基であり、より 好ましくはテトラメチレン基またはペンタメチレン基である。
[0070] 本発明の一般式 (2)で表わされる重合触媒を得る方法に特に制限はないが、
(I)一般式(3)で表わされるホスフィン化合物および Zn—を導く活性水素化合物を反 応させて一般式 (2)で表わされる重合触媒を導く方法、
[0071] [化 9]
Figure imgf000020_0001
[0072] (式中、 a、 bおよび cはそれぞれ 3以下の正の整数または 0である力 全てが同時に 0 ではない。 Rは同種または異種の、炭素数 1ないし 10個の炭化水素基であり、同一 窒素原子上の 2個の Rが互いに結合して環構造を形成する場合もある。 ) または
(Π)—般式 (4)で表わされるホスホニゥム塩と Zn—を導く活性水素化合物のアルカリ 金属もしくはアルカリ土類金属の塩を反応させて導く方法、
[0073] [化 10]
Figure imgf000020_0002
[0074] (式中、 Ym—は m価の無機ァニオンを表わす。 a、 bおよび cはそれぞれ 3以下の正の整 数または 0である力 全てが同時に 0ではない。 Rは同種または異種の、炭素数 1ない し 10個の炭化水素基であり、同一窒素原子上の 2個の Rが互いに結合して環構造を 形成する場合もある。 )
が好ましい。一般式(3)および一般式(4)における a、 b、 cおよび Rは、すべて一般式 (2)における a、 b、 cおよび Rと同義である。 [0075] 一般式(4)において、 Ym—は m価の無機ァニオンであり、 mは一般式(4)におけるホ スホユウムカチオンの数を表すとともに、無機ァニオンの価数を表わす。 mは 1ないし 3の整数である。そのような無機ァニオンとしては、例えば、塩酸または臭化水素酸等 のハロゲン化水素酸をはじめとし、ほう酸、テトラフルォロほう酸、シアン化水素酸、チ オシアン酸、フッ化水素酸、、硝酸、硫酸、りん酸、亜りん酸、へキサフルォロりん酸、 炭酸、へキサフルォロアンチモン酸、へキサフルォロタリウム酸、過塩素酸、塩素酸、 亜塩素酸および次亜塩素酸等の無機酸のァニオンや、 HSO—や HCO—が挙げられ
4 3
る。これらの無機ァニオンのうち、ほう酸、テトラフルォロほう酸、ハロゲン化水素酸、り ん酸、へキサフルォロりん酸および過塩素酸から導かれるァニオンが好ましぐ塩素 ァニオンがより好ましい。
[0076] また、一般式 (4)で表わされるホスホユウム塩と反応させる、 Zn—を導く活性水素化合 物のアルカリ金属もしくはアルカリ土類金属の塩とは、 Zn—を導く活性水素化合物の活 性水素の一部または全部力 例えばリチウム、ナトリウム、カリウムなどのアルカリ金属 または例えばマグネシウム、バリウムなどのアルカリ土類金属のイオンに置き換わった 化合物である。例えば Zn—を導く活性水素化合物がメタノールであった場合、ナトリウ
[0077] 一般式(3)で表わされるホスフィン化合物および Zn—を導く活性水素化合物から一 般式 (2)で表わされる重合触媒を導く方法の例として、以下のような手順を例示する こと力 Sでさる。
[0078] (I)上述した方法と同様の方法で、一般式(6)で表わされるホスホニゥム塩を得た後
(Π)既出の非特許文献 1 (Journal of general chemistry of the USSR, 1984, 54, 1581)に記載の方法に従って、一般式(3)で表わされるホスフィン化合 物を得て、
(III)次いで該ホスフィン化合物と zn—を導く活性水素化合物を接触せしめて一般式 ( 2)の重合触媒を得る。
[0079] 一般式(3)で表わされるホスフィン化合物は Zn—を導く活性水素化合物から活性水 素を離脱させるのに充分な塩基性を持っため、一般式(3)で表わされるホスフィン化 合物と Zn—を導く活性水素化合物を単に接触するだけで一般式(2)で表わされる重合 触媒を得ることができる。この反応に際して、原料である一般式(3)で表わされるホス フィン化合物と Zn—を導く活性水素化合物の使用量比については、 目的の一般式(2) で表わされる重合触媒が生成する限り特に制限はなぐ何れかが過剰であっても特 に問題はないが、通常、 Zn—を導く活性水素化合物の使用量が、一般式 (3)で表わさ れるホスフィン化合物 1当量に対して、 0. 2ないし 5当量であり、好ましくは 0. 5ないし 3当量であり、より好ましくは 0. 7ないし 1. 5当量の範囲である。両者の接触を効果的 にするために溶媒を用いることもできる。用いる場合の溶媒としては、反応を阻害しな ければ!/、かなる溶媒でも構わな!/、。反応温度は用いる化学式(3)で表わされるホス フィン化合物および活性水素化合物の種類、量及び濃度等により一様ではないが、 通常 150°C以下であり、好ましくは一 50°Cないし 80°C、より好ましくは 0ないし 50°C の範囲である。反応圧力は減圧、常圧および加圧の何れでも実施し得る力 好ましく は 0. 01ないし IMPa/cm2 (絶対圧、以下同様)であり、より好ましくは 0. 1ないし 0. 3MPa/cm2の範囲である。反応時間は反応温度や反応系の状態等によって一様 ではないが、通常、 1分ないし 24時間の範囲であり、好ましくは 1分ないし 10時間、よ り好ましくは 5分ないし 6時間である。
[0080] 通常、この反応の反応液そのままで、または反応溶媒を用いた場合はこの反応溶 媒を除去するだけで、ほぼ純粋な一般式(2)で表わされる重合触媒を得ることができ
[0081] 一般式 (4)で表わされるホスホニゥム塩および Zn—を導く活性水素化合物のアルカリ 金属もしくはアルカリ土類金属の塩力 一般式 (2)で表わされる重合触媒を導く場合 は、一般式(6)で表されるホスホニゥム塩から一般式(1)で表わされるホスホニゥム塩 を製造する際に用いた M+ Qn—で表されるアルカリ金属塩などの代わりに、 Zn—を対ァ
n
二オンに持つアルカリ金属塩またはアルカリ土類金属塩を用いることで一般式(2)で 表わされる重合触媒を得ることができる。原料である一般式 (4)で表わされるホスホニ ゥム塩と Zn—を導く活性水素化合物のアルカリ金属もしくはアルカリ土類金属の塩との 使用量比については、 目的の一般式(2)で表わされる重合触媒が生成する限り特に 制限はなぐ何れかが過剰であっても特に問題はないが、通常、 Zn—を導く活性水素 化合物のアルカリ金属もしくはアルカリ土類金属の塩の使用量力 一般式 (4)で表わ されるホスホニゥム塩 1当量に対して、 0. 2ないし 5当量であり、好ましくは 0. 5ないし 3当量であり、より好ましくは 0. 7ないし 1. 5当量の範囲である。両者の接触を効果的 にするために溶媒を用いることもできる。用いる場合の溶媒としては、反応を阻害しな ければ!/、かなる溶媒でも構わな!/、。反応温度は用いる化学式 (4)で表わされるホス ホニゥム塩および活性水素化合物の塩の種類、量及び濃度等により一様ではないが 、通常 150°C以下であり、好ましくは一 50°Cないし 80°C、より好ましくは 0ないし 50°C の範囲である。反応圧力は減圧、常圧および加圧の何れでも実施し得る力 好ましく は 0. 01ないし IMPa/cm2 (絶対圧、以下同様)であり、より好ましくは 0. 1ないし 0. 3MPa/cm2の範囲である。反応時間は反応温度や反応系の状態等によって一様 ではないが、通常、 1分ないし 24時間の範囲であり、好ましくは 1分ないし 10時間、よ り好ましくは 5分ないし 6時間である。
[0082] さらに、本発明の重合触媒は一般式(2)で表されるホスホニゥム塩と共に、 Zn—を導 く活性水素化合物を含んで!/、ても良!/、。 Zn—を導く活性水素化合物はアルキレンォキ シドの重合反応において連鎖移動剤として働き、その存在量によって得られるポリア ルキレンォキシドの分子量を制御したり、その活性水素の数によって得られるポリア ルキレンォキシドの官能基数を制御することができる。
[0083] 一般式(2)で表されるホスホニゥム塩と共に含まれる Zn—を導く活性水素化合物の具 体例としては、一般式(2)における Zn—を導く活性水素化合物として例示された化合 物と同様の化合物が例示される。これらの活性水素化合物は単一のものを用いても 、また 2種以上を混合して用いても構わない。
[0084] これらの一般式(2)で表されるホスホニゥム塩と共に含まれる Zn—を導く活性水素化 合物のうち、水、炭素数 1ないし 20個のアルコール類、 2ないし 8個の水酸基を有す る炭素数 2な!/、し 20個の多価アルコール類、炭素数 5な!/、し 20の糖類またはその誘 導体、 2ないし 8個の末端を有しその末端に 1ないし 8個の水酸基を有する分子量 10 0ないし 50, 000のポリアルキレンォキシド類、炭素数 1ないし 20個のカルボン酸類、 2な!/、し 8個のカルボキシル基を有する炭素数 2な!/、し 20個の多価カルボン酸類、炭 素数 1ないし 20個の一級もしくは二級アミン類、 2ないし 3個の一級もしくは二級アミノ 基を有する炭素数 2な!/、し 20個の多価アミン類、炭素数 4な!/、し 20個の飽和環状二 級ァミン類、 2な!/、し 3個の二級アミノ基を含む炭素数 4な!/、し 20個の環状の多価アミ ン類が好ましぐ水、炭素数 1ないし 20個のアルコール類、 2ないし 8個の水酸基を有 する炭素数 2な!/、し 20個の多価アルコール類、炭素数 5なレ、し 20の糖類またはその 誘導体、 2ないし 8個の末端を有しその末端に 1ないし 8個の水酸基を有する分子量 100ないし 50, 000のポリアルキレンォキシド類、炭素数 1ないし 20個の一級もしくは 二級アミン類がより好ましい。
[0085] 一般式(2)で表されるホスホニゥム塩と共に含まれる Zn—を導く活性水素化合物の量 は、一般式(2)で表されるホスホニゥム塩 1モルに対し、通常 0· 01〜; 10000モルの 範囲であり、好ましくは 0. ;!〜 5000の範囲である。 Zn—を導く活性水素化合物の種類 と量、およびアルキレンォキシド化合物との比を任意に変えることにより、所望の分子 量および官能基数のポリアルキレンォキシドを得ることができる。
[0086] 第 3の発明は、本発明の重合触媒の存在下にアルキレンォキシド化合物を重合さ せるポリアルキレンォキシドの製造方法である。より具体的には、一般式 (2)で表わさ れるホスホニゥム塩の存在下に、もしくは一般式(2)で表わされるホスホニゥム塩と Zn_ を導く活性水素化合物の存在下に、アルキレンォキシド化合物を重合させるポリアル キレンォキシドの製造方法である。このとき、一般式 (2)で表わされる重合触媒の製 造方法に特に制限はないが、一般式(3)で表わされるホスフィン化合物と Zn—を導く活 性水素化合物から導かれる一般式(2)で表わされる重合触媒、または一般式 (4)で 表わされるホスホニゥム塩と Zn—を導く活性水素化合物のアルカリ金属もしくはアルカリ 土類金属の塩から導かれる一般式(2)で表わされる重合触媒が好まし!/、。
[0087] 本発明の方法に用いるアルキレンォキシド化合物としては、例えば、エチレンォキ シド、プロピレンォキシド、 1 , 2—ブチレンォキシド、 2, 3—ブチレンォキシド、シクロ へキセンォキシド等の脂肪族アルキレンォキシド類、例えば、スチレンォキシド、トラ ンススチルベンォキシド、 2—フエニルプロピレンォキシド、 2— (p—フルオロフェニノレ )ォキシラン、 2— (p—クロ口フエ二ノレ)ォキシランまたは 2— (p—ブロモフエ二ノレ)ォキ シラン等の芳香族アルキレンォキシド類が挙げられる。これらのうち、好ましくは、ェチ レンォキシド、プロピレンォキシド、 1 , 2—ブチレンォキシドまたはスチレンォキシドで ある。さらに好ましくはエチレンォキシドまたはプロピレンォキシドである。
[0088] 本発明の方法では、 2種以上のアルキレンォキシド化合物を併用することもできる。
複数のアルキレンォキシド化合物を同時に併用して重合させると、それらの化合物の 反応性の差にもよる力 比較的ランダム性の高い共重合体が得られ、 2種以上のアル キレンォキシド化合物を順次に重合させると、 2種以上のポリアルキレンォキシド化合 物のブロックを含むブロック共重合体が得られる。例えば、第 1のアルキレンォキシド 化合物の重合反応の終了後にそのまま第 2のアルキレンォキシド化合物を重合させ ると 2種類のブロックを含むブロック共重合体が得られる。また、この第 2のアルキレン ォキシド化合物の重合終了後、再び元の第 1のアルキレンォキシド化合物を重合さ せたり、これを繰り返すことにより交互性のブロック共重合体が得られる。これらの共 キシドを順次に重合させて得られる、ポリプロピレンォキシドとポリエチレンォキシドの ブロックを含むブロック共重合体が好ましレ、。
[0089] 本発明の方法において、一般式 (4)で表わされるホスホユウム塩と活性水素化合 物のアルカリ金属もしくはアルカリ土類金属の塩から導かれる一般式(2)で表わされ る重合触媒を用いる場合、アル力リ金属もしくはアル力リ土類金属のカチオンと無機 ァユオンの塩が共生する力 S、当該塩が重合反応に不都合な場合には、重合に先立 ちこれを濾過等の方法で除去した後に重合反応に用いてもよい。
[0090] アルキレンォキシド化合物の重合反応に供する一般式 (2)で表わされる重合触媒 の使用量は特に制限はないが、通常、アルキレンォキシド化合物 1モルに対して I X 10— 15ないし 5 X 10— 1モルであり、好ましくは 1 X 10— 7ないし 1 X 10— 2モルの範囲である
[0091] 本発明の重合触媒が溶液として重合反応に供給される場合に、その溶媒が重合反 応に不都合であれば事前に、例えば減圧下に過熱する等の方法で除去することもで きる。
[0092] 本発明の方法において、重合反応の形式は特に制限されるものではない。通常、 本発明の重合触媒を、さらに存在させる場合の溶媒と共に仕込んだ反応器に、必要 量のアルキレンォキシド化合物を一括して供給する方法または間欠的もしくは連続 的に供給する方法が用いられる。
[0093] 重合反応の反応温度は、使用するアルキレンォキシド化合物やその他の成分の種 類や量により一様ではないが、通常 150°C以下であり、好ましくは 10ないし 130°C、 より好ましくは 50ないし 120°Cの範囲である。反応時の圧力は、使用するアルキレン ォキシド化合物やその他の成分の種類もしくは量または重合温度に依存して一様で はないが、通常重合反応時の圧力として 3MPa/cm2 (絶対圧、以下同様)以下であ り、好ましくは 0. 01ないし 1. 5MPa/cm2、より好ましくは 0. 1ないし IMPa/cm2の 範囲である。反応時間は、用いる物質の種類もしくは量または重合温度や圧力に依 存して一様ではないが、通常 70時間以下であり、好ましくは 0. 1ないし 30時間、より 好ましくは 0. 5ないし 24時間である。
[0094] 重合反応に際しては、必要ならば溶媒を使用することもできる。使用する場合の溶 媒としては、例えば、ペンタン、へキサン、ヘプタンもしくはシクロへキサン等の脂肪族 炭化水素類、ベンゼンもしくはトルエン等の芳香族炭化水素類、例えばジェチルェ 一テル、テトラヒドロフラン、 1 , 4 ジォキサンもしくはァニソール等のエーテル類また は例えばジメチルスルホキシド、 N, N ジメチルホルムアミド、へキサメチルりん酸トリ アミドおよび N, N'—ジメチルイミダゾリジノン等の非プロトン性極性溶媒等である。こ の他本発明の方法の重合反応を阻害しなければ、いかなる溶媒でも用いられる。本 発明の方法における重合反応は、通常窒素またはアルゴン等の不活性ガスの存在 下に実施する。
[0095] 本発明の方法により得られたポリアルキレンォキシドは重合反応に溶媒を用いなか つた場合はそのまま、また溶媒を用いた場合には溶媒を除去するだけで、ポリウレタ ンフォームやエラストマ一の原料または界面活性剤として使用し得る場合もあるが、 通常、塩酸、りん酸もしくは硫酸等の鉱酸または蟻酸、酢酸もしくはプロピオン酸等の 有機カルボン酸または二酸化炭素または酸型イオン交換樹脂等で処理し、触媒を除 去または失活処理した後に上記用途等に用いられる。さらに、水、有機溶媒またはそ れらの混合物で洗浄する等の常用の精製を行うこともできる。
[0096] 本発明のポリアルキレンォキシドは、本発明の製造方法により得られるポリアルキレ ンォキシドであり、従来の触媒である水酸化カリウム触媒等により得られるポリアルキ レンォキシドと比較し副生物が少なく純度が高い。例えば、連鎖移動剤としてグリセリ ンのような多価アルコールを用いた場合、主生成物である末端に複数の水酸基をも つたポリアルキレンォキシドの他に、通常モノオールと呼ばれる末端に 1個しか水酸 基を持たないポリアルキレンォキシドが副生することが知られている。モノオールは分 子末端に不飽和二重結合基(c=c基)を有しており、その含有量はポリアルキレン ォキシドの総不飽和度に対応する。本発明のポリアルキレンォキシドは水酸化力リウ ム触媒などで製造されるポリアルキレンォキシドに比べ、モノオールの副生量が少な ぐウレタンフォーム原料などとして好適に使用できる。
[0097] [実施例]
次に、本発明を実施例によりさらに詳しく説明するが、これらは限定的でなぐ単に 説明のためと解されるべきである。
[0098] 以下の実施例において、ポリアルキレングリコールの数平均分子量、分子量分布は ポリエチレングリコールを標準物質としたゲルパーミエーシヨンクロマトグラフィーによ り測定した。モノオール生成量の指標である総不飽和度は JIS K— 1557に記載の 方法により測定した。また、本発明のホスホニゥム塩の原料となるイミノトリス(ジアルキ ルァミノ)ホスホラン化合物((R N) P = NH、 Rはアルキル基を表す)は特許 34970
54号公報に記載の方法により合成した。
[0099] [実施例 1]
〔トリス [トリス(ジメチルァミノ)ホスホラユリデンァミノ]ホスホニゥムメトキシド(a)の合成 ]
[0100] [化 11]
MeO (a)
Figure imgf000027_0001
窒素雰囲気下、 1Lのフラスコに三塩化りん 25. 5g (185. 6mmol)を秤取り、ベン ゼン 360mLに溶解した。ここにイミノトリス(ジメチルァミノ)ホスホラン 165· 5g (928. 9mmol)のベンゼン 60mL溶液を 20°Cでゆっくり滴下し、その後 20°Cで 2時間反応 させた。使用したイミノトリス(ジメチルァミノ)ホスホランは三塩化りんに対して 5· 0モ ノレ倍であった。反応終了後、生じた沈殿を濾別し、沈殿をベンゼンで洗浄して、濾液 と合わせた。次いで、このろ洗液から生成物を水 90mLで水相に抽出し、次いでこの 水溶液から塩化メチレン 600mLで生成物を有機相に抽出した。有機相を水洗した 後、溶媒を濃縮乾固することにより白色固体 109.7gを得た。
[0102] 以下に述べるように、この白色固体の31 P— NMRおよび元素分析の結果から、この 化合物はトリス [トリス(ジアミノアミノ)ホスホラユリデンァミノ]ホスホニゥムクロリド( [ [ ( Me N) P = N] PH+][C1—])であることが解った。三塩化りん基準の収率は 98· 7% であった。
[0103] この白色固体のテトラヒドロフラン(以下、 THFと略記する) d中のへキサメチルホ スホラミド(以下、 HMPAと略記する)を内部標準とした31 P— NMRの化学シフトは 23 • Oppmおよび— 27· 4ppmであり、それぞれトリス [トリス(ジメチルァミノ)ホスホラユリ デンァミノ]ホスホニゥムカチオン([(Me N) P = N] PH+)中の P = N中のりん原子と
PH+中のりん原子として帰属された。また元素分析値は C:35.80%, H:9.21%, N:28.25%, P:20.70%, Cl:6.08%であり [[(Me N) P = N] PH+] [CI—]に対 する計算値(C:36.09%, H:9.25%, N:28.06%, P:20.68%, CI :5.92%) とよく一致した。
[0104] 得られたトリス [トリス(ジメチルァミノ)ホスホラユリデンァミノ]ホスホニゥムクロリドを次 の手順でイオン交換し、トリス [トリス(ジメチルァミノ)ホスホラユリデンァミノ]ホスホニゥ ムメトキシド(a)を得た。
[0105] lOOmLのナスフラスコに合成したトリス [トリス(ジメチルァミノ)ホスホラユリデンァミノ ]ホスホニゥムクロリド 30· 0g(50. Ommol)を秤取り、 50mLの純水を加えた。ここに 、 10wt%の NaBF水溶液 60.4g(NaBFとして 55mmol)を加え、室温で 1時間撹 拌した。生じた白色固体を濾別し、純水 lOOmLで固体を洗浄後減圧乾燥して、トリス [トリス(ジメチルァミノ)ホスホラユリデンァミノ]ホスホニゥムテトラフルォロボレートを白 色固体として 32. lg(49.4mmol)得た。収率は 98.7%であった。
[0106] 次いで窒素雰囲気下、トリス [トリス(ジメチルァミノ)ホスホラユリデンァミノ]ホスホニ ゥムテトラフルォロボレート 25· 4g(39. lmmol)を秤取り、 200mLのメタノールに溶 解させた。ここに、カリウムメトキシド 2· 74g (39. lmmol)のメタノール 70mL溶液を 室温で徐々に加えていったところ、滴下と同時に溶液が白濁を始めた。さらに室温で 2時間撹拌させた後、生じた沈殿 (KBF )を濾別し、濾物を 30mLのメタノールで洗
4
浄しろ洗液を合わせた。濾洗液からメタノールを減圧下に除去したところ、やや黄色 味を帯びた油状物 22. 8gが得られた。後述するように、31 P— NMRおよび元素分析 の測定の結果、この化合物はトリス [トリス(ジメチルァミノ)ホスホラユリデンァミノ]ホス ホニゥムメトキシド(a)であった。収率は 98. 1 %であった。
[0107] THF-d中の HMPAを内部標準とした31 P— NMRの化学シフトは 20· lppmおよ
8
び 30· 6ppmであり、それぞれトリス [トリス(ジメチルァミノ)ホスホラユリデンァミノ] ホスホニゥムカチオン([ (Me N) P = N] PH+)中の P = N中のりん原子および PH+
2 3 3
中のりん原子として帰属された。元素分析値は C : 38. 33%, H : 9. 97%, N : 26. 9 8%, P : 19. 96%であり、トリス [トリス(ジメチルァミノ)ホスホラユリデンァミノ]ホスホニ ゥムメトキシド(a)に対する計算ィ直(C : 38. 38%, H : 9. 83%, N : 28. 27%, P : 20 • 84%)とよく一致した。
[0108] [比較例 1]
〔テトラキス [トリス(ジメチルァミノ)ホスホラユリデンァミノ]ホスホニゥムクロリド(b)の合 成〕
[0109] [化 12]
Figure imgf000029_0001
[0110] 特開平 11— 152294号公報の実施例 1に記載の方法に従いテトラキス [トリス(ジメ チノレアミノ)ホスホラユリデンァミノ]ホスホニゥムクロリド (b)を合成した。
[0111] 窒素雰囲気下、 2Lのガラス反応器に五塩化りん 60· 20g (0. 289mol)および o— ジクロロベンゼン 585. lgを仕込んだ。攪拌しながら 40°Cまで昇温し、その温度に制 御しながらこれに 439· 3g (2. 465mol)のイミノトリス(ジメチルァミノ)ホスホランを 1 時間かけて滴下した。イミノトリス(ジメチルァミノ)ホスホランの使用量は五塩化りんに 対して 8. 5モル倍であった。滴下終了後さらに 40°Cに 1時間保った。その後約 1時間 かけて 170°Cに昇温し、 9時間反応させた。この反応液の一部を採取し、 31P -NMR により定量分析を行ったところ、反応液中にはテトラキス [トリス(ジメチルァミノ)ホスホ ラニリデンァミノ]ホスホニゥムクロリド(b)が 0· 284mol含まれていることが解った。五 塩化りんに対する収率は 98· 2%であった。得られたテトラキス [トリス(ジメチルァミノ) ホスホラユリデンァミノ]ホスホニゥムクロリド (b)は実施例 1と同様のイオン交換の方法 によりテトラキス [トリス(ジメチルァミノ)ホスホラユリデンァミノ]メトキシドに誘導した。
[0112] このように、テトラキス [トリス(ジメチルァミノ)ホスホラユリデンァミノ]ホスホニゥムメト キシドの中間体であるテトラキス [トリス(ジメチルァミノ)ホスホラユリデンァミノ]ホスホ ユウムクロリド (b)を収率良く得るには、五塩化りんとイミノトリス(ジメチルァミノ)ホスホ ランを高温で長時間反応させる必要があった。また、五塩化りんに対し 8. 5モル倍の イミノトリス(ジメチルァミノ)ホスホランを使用する必要があり、トリス [トリス(ジメチルアミ ノ)ホスホラユリデンァミノ]ホスホニゥムクロリドの合成(三塩化りんに対して 5· 0モル 倍)に比べ大量のイミノトリス(ジメチルァミノ)ホスホランが必要であった。
[0113] [実施例 2]
〔トリス [トリス(ジ一 n—プロピルァミノ)ホスホラユリデンァミノ]ホスホニゥムメトキシド(c )の合成〕
[0114] [化 13]
Figure imgf000030_0001
[0115] 室素雰囲気下、 lOOmLのフラスコに三塩ィ匕りん 253mg (l . 84mmol)を禾平取り、 ペンタン 25mLに溶解した。ここにイミノトリス(ジ一 n—プロピルァミノ)ホスホラン 4· 4 6g (12. 9mmol)をペンタン 25mLに溶解した液を 0°Cでゆっくり滴下した。その後、 50°Cで 6時間反応させ、生じた沈殿を濾別した。乾燥後の白色固体は 3. 42gであつ た。この白色固体の質量分析を行ったところ、ホスホニゥム塩(c)のメトキシァニオン が塩素ァニオンに置き換わったトリス [トリス(ジー n—プロピルァミノ)ホスホラ二リデン ァミノ]ホスホニゥムクロリドと、イミノトリス(ジ一 n—プロピルァミノ)ホスホランと塩化水 素との塩であるアミノトリス(ジ一 n—プロピルァミノ)ホスホニゥムクロリドのカチオン部 の分子量に相当する分子イオンピークが観察された。
[0116] 次いで、この混合物中のアミノトリス(ジ一 n—プロピルァミノ)ホスホニゥムクロリドを カリウムメトキシドと反応させ、イミノトリス(ジ一 n—プロピルァミノ)ホスホランとした後に 除く操作を行った。得られた白色固体の全量をメタノール 10mLに溶解し、ここに別 途調整した 10. Owt%のカリウムメトキサイドのメタノール溶液 2.67g (カリウムメトキ シドとして 3.81mmol)を室温で加え 15時間撹拌し、生じた塩化カリウムの固体を濾 別した。濾液カもメタノールを除去し、得られた白色固体をペンタン 100mlで洗浄し て生成したイミノトリス(ジ一 n—プロピルァミノ)ホスホランを除去することにより 1· 80g の白色固体を得た。
[0117] この白色固体の31 P— NMRおよび元素分析の結果から、この化合物はトリス [トリス( ジ一 n—プロピルァミノ)ホスホラユリデンァミノ]ホスホニゥムクロリドであることが解つ た。すなわち、 THF— d中の HMPAを内部標準とした31 P— NMRの化学シフトは 2
2. Oppmおよび— 27· 9ppmであり、それぞれトリス [トリス(ジ—n—プロピルァミノ)ホ スホラユリデンァミノ]ホスホニゥムカチオン([(nPr N) P = N] PH+)中の P = N中のり ん原子と PH+中のりん原子として帰属された。また元素分析値は C: 58.81%, H:l
I.80%, N:15.11%, P:ll. 10%, Cl:3.18%であり計算値(C: 58.75%, H:
II.59%, N:15.22%, P:ll.22%, CI :3.21%)とよく一致した。三塩ィ匕りん基 準の収率は 88.6%であった。
[0118] 得られたトリス [トリス(ジ一 n—プロピルァミノ)ホスホラユリデンァミノ]ホスホニゥムク 口リドは実施例 1と同様のイオン交換の方法によりトリス [トリス(ジ—n—プロピルアミノ )ホスホラユリデンァミノ]ホスホニゥムメトキシド(c)に誘導した。ホスホニゥム塩(c)の 元素分析値は C:60.41%, H:ll.88%, N:15.20%, P:ll.57%であり、計算 値(C:60.08%, H:ll.92%, N:15.29%, P:ll.27%)と良く一致した。
[0119] [実施例 3] -n- :ノ]ホスホニゥムメトキシド(d
)の合成〕
[0120] [化 14]
Figure imgf000032_0001
[0121] 実施例 2において、三塩化りんの使用量を 367mg(2.67mmol)に、ィ
—η—プロピルァミノ)ホスホランの代わりにイミノトリス(ジ η へキシルァミノ)ホスホ ラン 8.01g(13.4mmol)を使用し、反応時間を 8時間に代えた以外は、実施例 2と 同様に反応及び後処理を行いトリス [トリス(ジ—n へキシルァミノ)ホスホラ二リデン ァミノ]ホスホニゥムクロリド 1· 60g(0.860mmol)を得た。三塩化りん基準の収率は 32.2%であった。
[0122] トリス [トリス(ジ一 n へキシルァミノ)ホスホラユリデンァミノ]ホスホニゥムクロリドの T HF-d中の HMPAを内部標準とした31 P— NMRの化学シフトは 20.4ppmおよび
8
-29.5ppmであり、それぞれトリス [トリス(ジ一 n へキシルァミノ)ホスホラ二リデン ァミノ]ホスホニゥムカチオン([(nHexN) P = N] PH+)中の P = N中のりん原子およ
2 3 3
び PH+中のりん原子でとして帰属された。また元素分析値は C:69.97%, H:13.0 1%, N:8.91%, P:6.59%, CI: 2.02%であり、 [[(nHexN) P = N] PH+] [CI—
2 3 3
]に対する計算値(C: 69.69%, H:12.72%, N:9.03%, P:6.66%, Cl:l.9
0%)と良く一致した。
得られたトリス [トリス(ジ一 n へキシルァミノ)ホスホラユリデンァミノ]ホスホニゥムク 口リドは実施例 1と同様のイオン交換の方法によりトリス [トリス(ジ n へキシルァミノ )ホスホラユリデンァミノ]ホスホニゥムメトキシド(d)に誘導した。ホスホニゥム塩(d)の 元素分析値は C:70.80%, H:13.01%, N:8.83%, P:6.88%であり、計算値 (C:70.50%, H:12.92%, N:9.05%, P:6.67%)と良く一致した。
[0124] [実施例 4]
:ノ]ホスホニゥムメトキシド(e) の合成〕
[0125] [化 15]
Figure imgf000033_0001
[0126] 実施例 2においてイミノトリス(ジ一 n プロピルァミノ)ホスホランの代わりにイミノトリ ス(ピロリジン 1 ィル)ホスホラン 3· 31g(12.9mmol)を用いた以外は実施例 2と 同様に反応および後処理を行って、トリス [トリス(ピロリジン 1 ィル)ホスホラニリデ ンァミノ]ホスホニゥムクロリド 1. llg(l.33mmol)を白色固体として得た。三塩化り ん基準の収率は 72.3%であった。
[0127] トリス [トリス(ピロリジン 1 ィル)ホスホラユリデンァミノ]ホスホニゥムクロリドの TH F-d中の HMPAを内部標準とした31 P— NMRの化学シフトは 21.9ppmおよび
28. Oppmであり、それぞれトリス [トリス(ピロリジン一 1—ィル)ホスホラユリデンァミノ] ホスホニゥムカチオン([Py P = N] PH+(Pyはピロリジンー1 ィル基を表わす。以 下同様。))中の P = N中のりん原子および PH+中のりん原子と帰属された。また元素 分析値は C:51.96%, H:9.01%, N:20.03%, P:14.67%, Cl:4.13%であ り、 [[PyP = N] PH+][C1—]に対する計算値(C:51.88%, H:8.83%, N:20.1
7%, P:14.87%, CI :4.25%)と良く一致した。
[0128] 得られたトリス [トリス(ピロリジン一 1—ィル)ホスホラユリデンァミノ]ホスホニゥムクロ リドは実施例 1と同様のイオン交換の方法によりトリス [トリス(ピロリジン 1 ィル)ホ スホラユリデンァミノ]ホスホニゥムメトキシド(e)に誘導した。ホスホニゥム塩(e)の元素 分析値は C:54.02%, H:9.35%, N:20.10%, P:14.72%であり、計算値(C: 53.61%, H:9.24%, N:20.28%, P:14.95%)と良く一致した。
[0129] [実施例 5]
〔トリス [トリス(ジメチルァミノ)ホスホラユリデンァミノ]ホスホニゥムメトキシド(a)の合成 (別法)〕
実施例 1で合成したトリス [トリス(ジメチルァミノ)ホスホラユリデンァミノ]ホスホニゥム クロリドを用いて、 Journal of General Chemistry of USSR, 1984年, 54巻 , 1581頁記載の方法に従って、トリス [トリス(ジメチルァミノ)ホスホラユリデンァミノ] ホスフィン(f)を合成した。
[0130] [化 16]
Figure imgf000034_0001
[0131] 窒素雰囲気下、 100mlのナスフラスコに合成したトリス [トリス(ジメチルァミノ)ホスホ ラニリデンァミノ]ホスフィン 10· 0g(17. 8mmol)を秤取り、 50mLの THFを加えた。 ここにメタノーノレ 570mg(17. 8mmol)をマイクロシリンジで正確に加え、撹拌した。 5 分後室温で溶媒の THFを濃縮したところ、トリス [トリス(ジメチルァミノ)ホスホラニリデ ンァミノ]ホスホニゥムメトキシド(a)をわずかに黄色味を帯びた油状物として 10. 6g( 17. 8mmol)得た。
[0132] 本実施例で得られたホスホニゥム塩(a)の THF— d中の31 P— NMRの化学シフト
8
は実施例 1の値と一致した。元素分析値も C: 38. 25%, H:9. 54%, N:28. 10% , Ρ:20. 53%であり、計算値(C:38. 38%, H:9. 83%, N:28. 27%, P:20. 84
%)と良く一致した。
[0133] [実施例 6— 14]
〔各種ホスホユウム塩の合成〕
実施例 2— 4で合成したそれぞれのホスホニゥムクロライドを用いて、 Journal of General Chemistry of USSR, 1984年, 54巻, 1581頁記載の方法に従って 、トリス [トリス(ジ一イソプロピルァミノ)ホスホラユリデンァミノ]ホスフィン、トリス [トリス( ジ一 n—へキシルァミノ)ホスホラユリデンァミノ]ホスフィン、トリス [トリス(ピロリジン一 1 —ィル)ホスホラユリデンァミノ]ホスフィンを合成した。
[0134] 実施例 5においてトリス [トリス(ジメチルァミノ)ホスホラユリデンァミノ]ホスフィンおよ びメタノールの代わりに、表 1に示した各種のホスフィン化合物および活性水素化合 物を用いた以外は全て実施例 5と同様に行って、下記の各種ホスホニゥム塩を得た。 但し、実施例 13においては用いるグリセリン量を 0. 82g (8. 9mmol)とした。実施例 14におけるポリオキシプロピレントリオールは三井化学ポリウレタン製、 MN1000を 用いた。分析結果を表 1に示す。
[表 1]
Figure imgf000036_0001
Figure imgf000036_0002
[0136] [化 17]
Figure imgf000037_0001
[0137] [化 18]
Figure imgf000038_0001
[実施例 15]
〔グリセリンのトリス [トリス(ジメチルァミノ)ホスホラユリデンァミノ]ホスホニゥム塩 (m) のグリセリン溶液の合成〕
実施例 1で合成したトリス [トリス(ジメチルァミノ)ホスホラユリデンァミノ]ホスホニゥム クロライド 2. 03g (3. 4011111101)を651111の純水に溶解した液を、 25mlの水酸基型ィ オン交換樹脂(バイエル社製、レバチット MP— 500)を充填したカラム(内径 20mm 、高さ 10cm)に室温で、 SV= 3の流速で流通させた。その後、さらに純水 75mlを流 通させた液を全て回収し、約半分の重量になるまで濃縮した。この水溶液を 0. 01N — HC1水溶液で滴定したところ、トリス [トリス(ジメチルァミノ)ホスホラユリデンァミノ] ホスホニゥムヒドロキシドの 0. 0350mmol/gの水溶液であることが分かった。この水 溶液 38 · 8g (トリス [トリス(ジメチルァミノ)ホスホラユリデンァミノ]ホスホニゥムヒドロキ シドとして 1. 36mmol)に、グリセリン 10. 4g (113mmol)をカロえ、減圧下(133Pa)、 80°Cで 5時間かけて水を留去したところ、グリセリンのトリス [トリス(ジメチルァミノ)ホス ホラユリデンァミノ]ホスホニゥム塩 (m)のグリセリン溶液を無色の油状物として 11. lg 得た。
[0139] [実施例 16]
実施例 1で得られたトリス [トリス(ジメチルァミノ)ホスホラユリデンァミノ]ホスホニゥム メトキシド(a) 72. 8mg (0. 122mmol)、グリセリン 921mg (10. Ommol)を温度測定 管、圧力計および撹拌装置を備えた 100mlのオートクレープに秤取り、次いでプロピ レンォキシド 49. 3g (849mmol)を一括して揷入した。窒素にて系内を加圧し、初期 圧を 0. 07MPaに調節した。その後、反応系内を内温 80°Cになるように加温し反応 させた。反応圧力の降下から 22時間後に反応がほぼ完結したことを確認した。冷却 後、残留する未反応のプロピレンォキシドを減圧下で除去した。無色無臭で油状の ポリプロピレンォキシド(以下、 PPGと略記することがある) 49. Ogを得た。収率 97. 6 %、生成ポリマーの数平均分子量は 4. 55 X 103 (計算分子量 4. 90 X 103)、分子量 分布は 1. 03であった。総不飽和度は 0. 022meq/gであった。
[0140] 重合活性の指標であるポリプロピレンォキシドの触媒の単位重量および単位時間 当たりの生成量 (以下、単に重合活性と標記する)は 30. 6g— PPG/g—触媒 ·1で あった。また総不飽和度の値が低ぐ高純度のポリプロピレンォキシドが得られた。
[0141] [比較例 2]
実施例 16にお!/、て、トリス [トリス(ジメチルァミノ)ホスホラユリデンァミノ]ホスホニゥ ムメトキシドの代わりに比較例 1で得られたテトラキス [トリス(ジメチルァミノ)ホスホラ二 リデンァミノ]ホスホニゥムメトキシド 94· 4mg (0. 122mmol)を用いた以外は実施例 16と同様にプロピレンォキシドの重合反応を行った。反応は 22時間後にほぼ完結し 、冷却後、残留する未反応のプロピレンォキシドを減圧下で除去した。無色無臭で油 状のポリプロピレンォキシド 49. 2gを得た。収率 98. 0%、生成ポリマーの数平均分 子量は 4. 58 X 103 (計算分子量 4. 92 X 103)、分子量分布は 1. 03であった。総不 飽和度は 0· 021meq/gであった。
[0142] テトラキス [トリス(ジメチルァミノ)ホスホラユリデンァミノ]ホスホニゥムメトキシドの重 合活性は、 23. 7g— PPG/g—触媒 'hであり、ホスホニゥム塩 (a)の触媒活性と比 較し低かった。
[0143] [比較例 3]
実施例 16にお!/、て、トリス [トリス(ジメチルァミノ)ホスホラユリデンァミノ]ホスホニゥ ムメトキシドの代わりにカリウムメトキシド 8. 6mg (0. 122mmol)を用いた以外は実施 例 16と同様にプロピレンォキシドの重合反応を行った。 22時間後に反応液を室温ま で冷却し、残留する未反応のプロピレンォキシドを減圧下で除去した。得られたポリ プロピレンォキシドは 2. 23gであり、収率は 4. 4%と低力、つた。また触媒活性も 11. 8 g— PPG/g—触媒 'hと低力、つた。
[0144] [実施例 17]
温度測定管、圧力計、撹拌装置、およびアルキレンォキシド導入管を備えた 100m 1のオートクレーブに、実施例 1に記載の方法で合成したトリス [トリス(ジメチルァミノ) ホスホラユリデンァミノ]ホスホニゥムメトキシド 5· 95g (10mmol)を秤取り、撹拌しな 力 ¾昇温し、外温を 80°Cにした。次いで、プロピレンォキシド 29. 0g (500mmol)を 反応時圧力 0. 3MPa (ゲージ圧)前後を保つように間欠的に供給した。 10時間後に 供給を終了し、さらに外温 80°Cを保ち、 10時間反応させた。その後、室温まで冷却 し、残留する未反応のプロピレンォキシドを減圧下で除去した。無色無臭で油状のポ リプロピレンォキシド 34. Ogが得られた。収率 97. 3%、生成ポリマーの数平均分子 量は 2. 88 X 103 (計算分子量 2. 94 X 103)、分子量分布(Mw/Mn)は 1. 03であ つた。
[0145] [実施例 18— 23]
実施例 16において、ホスホニゥム塩(a)の代わりに、表 2に示す各種ホスホニゥム塩 を用いた以外は、実施例 16と全く同様に反応および後処理を行った。結果を表 2に 示す。
[0146] [表 2] 表 2
Figure imgf000041_0001
[0147] [実施例 24]
実施例 16において、ホスホニゥム塩(a)とグリセリンの代わりに実施例 1でホスホニ ゥム塩 (a)の合成中間体として合成したトリス [トリス(ジメチルァミノ)ホスホラ二リデン ァミノ]ホスホニゥムクロリド 73· lmg (0. 122mmol)と、 0. 515wt%のカリウムイオン を含むグリセリン溶液 926mg (カリウムイオンとして 0. 122mmol、グリセリンとして 10 . Ommol)を用いた以外は実施例 16と同様に反応を行った。反応は 22時間後にほ ぼ完結した。冷却後、残留する未反応のプロピレンォキシドを減圧下で除去した。無 色無臭で油状のポリプロピレンォキシド 48. 5gを得た。収率 96. 4%、生成ポリマー の数平均分子量は 4. 53 X 103、分子量分布は 1. 05、総不飽和度は 0. 020meq/ gであった。
[0148] [実施例 25]
実施例 16にお!/、て、ホスホニゥム塩 (a)とグリセリンの代わりに実施例 15で得られ たグリセリンのトリス [トリス(ジメチルァミノ)ホスホラユリデンァミノ]ホスホニゥム塩 (m) のグリセリン溶液 999mg (ホスホニゥム塩(m)として 0· 122mmol、グリセリンとして 1 0. Ommol)を用いた以外は実施例 16と同様に反応を行った。反応は 22時間後に ほぼ完結した。冷却後、残留する未反応のプロピレンォキシドを減圧下で除去した。 無色無臭で油状のポリプロピレンォキシド 49. Ogを得た。収率 97. 5%、生成ポリマ 一の数平均分子量は 4. 55 X 103、分子量分布は 1. 03、総不飽和度は 0. 021meq /gであった。
[0149] [実施例 26] 実施例 16において、ホスホニゥム塩(a)の代わりにトリス [トリス(ジ一 n—プロピルァ ミノ)ホスホラユリデンァミノ]ホスフィン 130mg (0. 122mmol)を用レ、た以外は実施 例 16と同様に反応を行った。反応は 22時間後にほぼ完結した。冷却後、残留する 未反応のプロピレンォキシドを減圧下で除去した。無色無臭で油状のポリプロピレン ォキシド 50. 0gを得た。収率 98. 1 %、生成ポリマーの数平均分子量は 4. 56 X 103 、分子量分布は 1. 07、総不飽和度は 0. 021meq/gであった。
[0150] [実施例 27]
実施例 15において、中間原料として得られたトリス [トリス(ジメチルァミノ)ホスホラ二 リデンァミノ]ホスホニゥムヒドロキシドの水溶液から水を留去して、トリス [トリス(ジメチ ルァミノ)ホスホラユリデンァミノ]ホスホニゥムヒドロキシドを白色固体として得た。
[0151] 実施例 16において、ホスホニゥム塩(a)の代わりにトリス [トリス(ジメチルァミノ)ホス ホラユリデンァミノ]ホスホニゥムヒドロキシド 70. 8mg (0. 122mmol)を用いた以外は 実施例 16と同様に反応を行った。反応は 22時間後にほぼ完結した。冷却後、残留 する未反応のプロピレンォキシドを減圧下で除去した。無色無臭で油状のポリプロピ レンォキシド 49. 8gを得た。収率 97. 7%、生成ポリマーの数平均分子量は 4. 53 X 103、分子量分布は 1. 06、総不飽和度は 0. 021meq/gで
あった。
[0152] [実施例 28— 31 ]
実施例 16においてグリセリンの代わりに、表 3に示す化合物を連鎖移動剤として用 いた以外は実施例 16と同様に反応および後処理を行った。結果を表 3に示す。
[0153] [表 3]
Figure imgf000042_0001
実施例 連鎖移動剤 収率 Mn Mw/Mn
28 グルコース 97.8 4.62 X 1 03 1 ,02
29 水 97.2 4.55 1 03 1 .04
30 エチレングリコール 97.3 4.59 X 1 03 1 ,05
31 エチレンジァミン 98.0 4.57 X 103 1 .07 [0154] [実施例 32]
実施例 16と全く同様にして、プロピレンォキシドの重合を行った。オートクレープを 大気下に開放することなぐ引き続きエチレンォキシド 3. 74g (85mmol)を約 1時間 力、けてゆっくりと揷入し、内温 80°Cを保ったまま 5時間反応させた。冷却後、残留する 未反応のプロピレンォキシド、エチレンォキシドを減圧下で除去した。無色無臭で油 状のポリプロピレンォキシドーポリエチレンォキシドのブロックコポリマー 52. 5gを得 た。収率 97. 3%、生成ポリマーの数平均分子量は 4. 85 X 103 (計算分子量 5. 32 X 103)、分子量分布は 1. 04、総不飽和度は 0. 022meq/gであった。
[0155] [実施例 33— 35]
実施例 1に記載の方法と同様にして得られたホスホニゥム塩(a) 8. 03g (13. 5mm ol)にグリセリン 138. lg (l . 50mol)をカロえ、減圧下(133Pa)、 80。Cで 5日寺間力、けて メタノールを除去して、グリセリンのトリス [トリス(ジメチルァミノ)ホスホラユリデンァミノ] ホスホニゥム塩のグリセリン溶液 144. 8gを無色の油状物として得た。次いで、温度 測定管、圧力計、撹拌装置、およびアルキレンォキシド導入管を備えた 3リットルのォ 一トクレーブに、上記グリセリンのトリス [トリス(ジメチルァミノ)ホスホラユリデンァミノ] ホスホニゥム塩のグリセリン溶液 36. 2g秤取り、撹拌しながら昇温し、内温を 90°Cに した。次いで、プロピレンォキシド 1650g (28. 4mol)を反応時圧力 0· 4MPa (ゲー ジ圧)を超えないように間欠的に供給した。 13時間後に供給を終了し、さらに内温 90 °Cを保ち、 7時間反応させた。その後、室温まで冷却し、残留する未反応のプロピレ ンォキシドを減圧下で除去した。反応容器内に窒素を OMPa (ゲージ圧)まで導入し た後、再度撹拌しながら昇温し、内温を 110°Cとした。ここにエチレンォキシド 285g ( 6. 5mol)を反応時圧力 0. 4MPa (ゲージ圧)を超えないように間欠的に供給した。 3 . 5時間後に供給を終了し、さらに内温 110°Cを保ち 1. 5時間反応させた。その後、 室温まで冷却し残留する未反応のエチレンォキシドを減圧下で除去した。無色無臭 で油状のポリプロピレンォキシド一ポリエチレンォキシドのブロックコポリマー 1961g を得た。収率 99. 5%。生成ポリマーの数平均分子量は 5. 23 X 103 (計算分子量 5. 26 X 103)、分子量分布は 1. 03、総不飽和度は 0. 019meq/gであった。プロピレ ンォキシドの重合活性は 68. 0g—ポリマー/ g—触媒 'hでり、エチレンォキシドの重 合活性は 50. 9g ポリマー /g 触媒 · hであった。
[0156] 上記実施例と全く同様の反応を 2回行い、上記結果と共にこれらの結果を表 4に示 した。
[0157] [表 4]
表 4
Figure imgf000044_0001
[0158] [比較例 4 6]
実施例 33において、ホスホニゥム塩(a)の代わりに比較例 1に記載の方法で合成し たテトラキス [トリス(ジメチルァミノ)ホスホラユリデンァミノ]ホスホニゥムメトキシド 10· 4g (13. 5mmol)を用いて、グリセリンのテトラキス [トリス(ジメチノレアミノ)ホスホラユリ デンァミノ]ホスホニゥム塩のグリセリン溶液とし、グリセリンのトリス [トリス(ジメチルアミ ノ)ホスホラユリデンァミノ]ホスホニゥム塩のグリセリン溶液の代わりに、上記グリセリン のテトラキス [トリス(ジメチノレアミノ)ホスホラユリデンァミノ]ホスホニゥム塩のグリセリン 溶液 36. 8gを用いた以外は実施例 33と全く同様にしてポリプロピレンォキシド—ポリ エチレンォキシドのブロックコポリマーを得た。
[0159] 上記比較例と全く同様の反応を 2回行い、上記結果と共にこれらの結果を表 5に示 した。
[0160] [表 5]
表 5
Figure imgf000044_0002
産業上の利用可能性
[0161] 種々の有機反応にお!/、て効果的な塩基触媒となる新規なホスホユウム塩が提供さ れる。
[0162] また、本発明の重合触媒を用いることにより、アルキレンォキシド化合物を重合させ てボリアルキレンォキシドを簡便かつ効率的に製造する方法が提供でき、高純度の

Claims

請求の範囲
一般式(1)で表わされるホスホニゥム塩。
Figure imgf000046_0001
(式中、 Qn—は少なくとも 1個の炭素原子を有し、かつ最大 8個の活性水素原子を酸素 原子または窒素原子上に有する活性水素化合物から n個のプロトンが離脱して導か れる形の n価の活性水素化合物のァニオンを表わす。 a、 bおよび cはそれぞれ 3以下 の正の整数または 0であるが、全てが同時に 0ではない。 Rは同種または異種の、炭 素数 1ないし 10個の炭化水素基であり、同一窒素原子上の 2個の Rが互いに結合し て環構造を形成する場合もある。 )
[2] Qn—を導く活性水素化合物が、炭素数 1ないし 20個のアルコール類、 2ないし 8個の 水酸基を有する炭素数 2ないし 20個の多価アルコール類、炭素数 5ないし 20個の糖 類またはその誘導体、 2ないし 8個の末端を有しその末端に 1ないし 8個の水酸基を 有する分子量 100ないし 50, 000のポリアルキレンォキシド類、炭素数 1ないし 20個 のカルボン酸類、 2な!/、し 8個のカルボキシル基を有する炭素数 2な!/、し 20個の多価 カルボン酸類、炭素数 1ないし 20個の一級もしくは二級アミン類、 2ないし 3個の一級 もしくは二級アミノ基を有する炭素数 2ないし 20個の多価アミン類、炭素数 4ないし 20 個の飽和環状二級アミン類および 2なレ、し 3個の二級アミノ基を含む炭素数 4な!/、し 2 0個の環状の多価アミン類よりなる群から選ばれる活性水素化合物である請求項 1に 記載のホスホニゥム塩。
[3] 一般式(1)で表わされるホスホニゥム塩中の nが 1ないし 3の整数である請求項 1ま たは 2に記載のホスホニゥム塩。
[4] 一般式(1)で表わされるホスホニゥム塩中の a、 bおよび cが、全て同時には 0ではな く、それぞれ 2以下の正の整数または 0である請求項 1ないし 3のいずれかに記載の ホスホニゥム塩。
[5] 一般式(1 )で表わされるホスホニゥム塩中の Rが、炭素数 1ないし 10個のアルキル 基である請求項 1な!/、し 4の!/、ずれかに記載のホスホニゥム塩。
[6] 一般式(1 )で表わされるホスホニゥム塩中の同一窒素原子上の 2個の Rが互いに結 合して環構造を形成する場合の該窒素原子に対する 2価の置換基がテトラメチレンま たはペンタメチレンである請求項 1ないし 5のいずれかに記載のホスホニゥム塩。
[7] 一般式(2)で表わされるホスホニゥム塩からなるアルキレンォキシド化合物の重合 触媒。
[化 2]
(2)
Figure imgf000047_0001
(式中、 Zn—は最大 8個の活性水素原子を酸素原子または窒素原子上に有する活性 水素化合物から n個のプロトンが離脱して導かれる形の n価の活性水素化合物のァ 二オンを表わす。 a、 bおよび cはそれぞれ 3以下の正の整数または 0である力 全て が同時に 0ではない。 Rは同種または異種の、炭素数 1ないし 10個の炭化水素基で あり、同一窒素原子上の 2個の Rが互いに結合して環構造を形成する場合もある。 )
[8] 一般式(3)で表わされるホスフィン化合物および Zn—を導く活性水素化合物から導 かれる請求項 7に記載の重合触媒。
[化 3]
Figure imgf000047_0002
(式中、 a、 bおよび cはそれぞれ 3以下の正の整数または 0である力 全てが同時に 0 ではない。 Rは同種または異種の、炭素数 1ないし 10個の炭化水素基であり、同一 窒素原子上の 2個の Rが互いに結合して環構造を形成する場合もある。 )
[9] 一般式 (4)で表わされるホスホニゥム塩と Zn—を導く活性水素化合物のアルカリ金属 もしくはアルカリ土類金属の塩から導かれる請求項 7に記載の重合触媒。
[化 4]
(4)
Figure imgf000048_0001
(式中、 Ym—は m価の無機ァニオンを表わす。 a、 bおよび cはそれぞれ 3以下の正の整 数または 0である力 全てが同時に 0ではない。 Rは同種または異種の、炭素数 1ない し 10個の炭化水素基であり、同一窒素原子上の 2個の Rが互いに結合して環構造を 形成する場合もある。 )
[10] 一般式(4)中の無機ァニオンが、ほう酸、テトラフルォロほう酸、ハロゲン化水素酸、 りん酸、へキサフルォロりん酸および過塩素酸よりなる群から選ばれる無機酸のァニ オンである請求項 9に記載の重合触媒。
[11] Zn—を導く活性水素化合物が水、炭素数 1ないし 20個のアルコール類、 2ないし 8個 の水酸基を有する炭素数 2ないし 20個の多価アルコール類、炭素数 5ないし 20個の 糖類またはその誘導体、 2ないし 8個の末端を有しその末端に 1ないし 8個の水酸基 を有する分子量 100ないし 50, 000のポリアルキレンォキシド類、炭素数 1ないし 20 個のカルボン酸類、 2な!/、し 8個のカルボキシル基を有する炭素数 2な!/、し 20個の多 価カルボン酸類、炭素数 1ないし 20個の一級もしくは二級アミン類、 2ないし 3個の一 級もしくは二級アミノ基を有する炭素数 2ないし 20個の多価アミン類、炭素数 4ないし 20個の飽和環状二級アミン類および 2なレ、し 3個の二級アミノ基を含む炭素数 4なレヽ し 20個の環状の多価アミン類よりなる群から選ばれる活性水素化合物である請求項 7な!/、し 10の!/、ずれかに記載の重合触媒。
[12] 一般式(2)中の nが 1な!/、し 3の整数である請求項 7な!/、し 11の!/、ずれかに記載の 重合触媒。
[13] 一般式(2)中の a、 bおよび cが、全て同時には 0ではなぐそれぞれ 2以下の正の整 数または 0である請求項 7ないし 12のいずれかに記載の重合触媒。
[14] 一般式(2)中の Rが、炭素数 1ないし 10個のアルキル基である請求項 7ないし 13の V、ずれかに記載の重合触媒。
[15] 一般式(2)中の同一窒素原子上の 2個の Rが互いに結合して環構造を形成する場 合の該窒素原子に対する 2価の置換基がテトラメチレンまたはペンタメチレンである 請求項 7な!/、し 14の!/、ずれかに記載の重合触媒。
[16] Zn—を導く活性水素化合物をさらに含有する請求項 7ないし 15のいずれかに記載の アルキレンォキシド化合物の重合触媒。
[17] 一般式 (2)で表される重合触媒と共存させる Zn—を導く活性水素化合物が水、炭素 数 1ないし 20個のアルコール類、 2ないし 8個の水酸基を有する炭素数 2ないし 20個 の多価アルコール類、炭素数 5ないし 20個の糖類またはその誘導体、 2ないし 8個の 末端を有しその末端に 1ないし 8個の水酸基を有する分子量 100ないし 50, 000の ポリアルキレンォキシド類、炭素数 1ないし 20個のカルボン酸類、 2ないし 8個のカル ボキシル基を有する炭素数 2ないし 20個の多価カルボン酸類、炭素数 1ないし 20個 の一級もしくは二級アミン類、 2ないし 3個の一級もしくは二級アミノ基を有する炭素数 2な!/、し 20個の多価アミン類、炭素数 4な!/、し 20個の飽和環状二級アミン類および 2 な!/、し 3個の二級アミノ基を含む炭素数 4な!/、し 20個の環状の多価アミン類よりなる 群から選ばれる活性水素化合物である請求項 16に記載の重合触媒。
[18] 請求項 7ないし 17のいずれかに記載の重合触媒の存在下にアルキレンォキシド化 合物を重合させることを特徴とするポリアルキレンォキシドの製造方法。
[19] アルキレンォキシド化合物力 エチレンォキシド、プロピレンォキシド、 1 , 2—ブチレ ンォキシドおよびスチレンォキシドよりなる群から選ばれる少なくとも 1種である請求項 18に記載のポリアルキレンォキシドの製造方法。
[20] 2種以上のアルキレンォキシド化合物を順次に重合させて、 2種以上のポリアルキレ ンォキシドのブロックを含むブロック共重合体を製造する請求項 18または 19に記載 [21] 請求項 18な!/、し 20の!/、ずれかに記載の方法により得 f
PCT/JP2007/073971 2006-12-18 2007-12-12 ホスホニウム塩、アルキレンオキシド化合物重合触媒およびポリアルキレンオキシドの製造方法 WO2008075601A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2007800451057A CN101547929B (zh) 2006-12-18 2007-12-12 鏻盐、环氧烷化合物聚合催化剂及聚环氧烷的制造方法
JP2008550116A JP4980369B2 (ja) 2006-12-18 2007-12-12 ホスホニウム塩、アルキレンオキシド化合物重合触媒およびポリアルキレンオキシドの製造方法
KR1020097014742A KR101106798B1 (ko) 2006-12-18 2007-12-12 포스포늄염, 알킬렌옥사이드 화합물 중합 촉매 및 폴리알킬렌옥사이드의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-340563 2006-12-18
JP2006340563 2006-12-18

Publications (1)

Publication Number Publication Date
WO2008075601A1 true WO2008075601A1 (ja) 2008-06-26

Family

ID=39536232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/073971 WO2008075601A1 (ja) 2006-12-18 2007-12-12 ホスホニウム塩、アルキレンオキシド化合物重合触媒およびポリアルキレンオキシドの製造方法

Country Status (5)

Country Link
JP (1) JP4980369B2 (ja)
KR (1) KR101106798B1 (ja)
CN (1) CN101547929B (ja)
TW (1) TW200838868A (ja)
WO (1) WO2008075601A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017141358A (ja) * 2016-02-10 2017-08-17 東ソー株式会社 ポリアルキレンオキシド
WO2020054761A1 (ja) * 2018-09-11 2020-03-19 株式会社ダイセル エーテル誘導体の製造方法
JP2020041139A (ja) * 2018-09-11 2020-03-19 国立大学法人神戸大学 エーテル誘導体の製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104497298B (zh) * 2015-01-16 2017-02-22 江苏长华聚氨酯科技有限公司 制备低不饱和度、高分子量、高活性聚醚多元醇的方法
CN104876958A (zh) * 2015-04-30 2015-09-02 上海优合生物科技有限公司 膦胺类环氧化合物的聚合催化剂的合成方法
EP3495401B1 (en) * 2016-08-05 2021-10-13 Mitsui Chemicals&SKC Polyurethanes Inc. Method for reducing volatile organic compound, method for producing polyurethane foam and resin premix
EP3763721B1 (en) * 2018-03-07 2023-01-11 Tosoh Corporation Divalent phosphazenium salt and polyalkylene oxide composition containing same, and polyurethane-forming composition containing said polyalkylene oxide composition
CN109216768B (zh) * 2018-10-08 2020-06-26 河南师范大学 一种锂离子电池添加剂及含有该添加剂的锂离子电池非水电解液和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000239288A (ja) * 1998-07-15 2000-09-05 Mitsui Chemicals Inc ホスフィンスルフィド、その製造方法、およびその用途
JP2000281771A (ja) * 1999-03-31 2000-10-10 Mitsui Chemicals Inc ポリアルキレンオキシドの製造方法
JP2000355595A (ja) * 1999-04-13 2000-12-26 Mitsui Chemicals Inc ホスフィンオキシド類の製造方法およびその精製方法
JP2001302683A (ja) * 2000-04-21 2001-10-31 Mitsui Chemicals Inc トリス[トリス(ジメチルアミノ)ホスホラニリデンアミノ]ホスフィンオキシドの製造方法
JP2004285010A (ja) * 2003-03-24 2004-10-14 Mitsui Takeda Chemicals Inc テトラキス[トリス(ジメチルアミノ)ホスホラニリデンアミノ]ホスホニウムクロリドの製造方法
WO2006003902A1 (ja) * 2004-07-01 2006-01-12 Mitsui Chemicals, Inc. 新規ホスファゼン担持触媒、そのための新規化合物および用途

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3829505A (en) * 1970-02-24 1974-08-13 Gen Tire & Rubber Co Polyethers and method for making the same
JP3703259B2 (ja) * 1997-07-23 2005-10-05 三井化学株式会社 ポリウレタン分散体の製造方法
JP3703263B2 (ja) * 1997-08-19 2005-10-05 三井化学株式会社 ポリオキシアルキレンポリオールの製造方法
JPH11302352A (ja) * 1998-04-20 1999-11-02 Mitsui Chem Inc イソシアネート基末端プレポリマー及びそれを用いたポリウレタンエラストマー
US6153794A (en) * 1998-07-15 2000-11-28 Mitsui Chemicals, Inc. Phosphine sulfide, a manufacturing process therefor and use thereof
KR100363493B1 (ko) * 1999-04-13 2002-12-05 미쯔이카가쿠 가부시기가이샤 포스핀옥사이드의 제조방법 및 해당 포스핀옥사이드의정제방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000239288A (ja) * 1998-07-15 2000-09-05 Mitsui Chemicals Inc ホスフィンスルフィド、その製造方法、およびその用途
JP2000281771A (ja) * 1999-03-31 2000-10-10 Mitsui Chemicals Inc ポリアルキレンオキシドの製造方法
JP2000355595A (ja) * 1999-04-13 2000-12-26 Mitsui Chemicals Inc ホスフィンオキシド類の製造方法およびその精製方法
JP2001302683A (ja) * 2000-04-21 2001-10-31 Mitsui Chemicals Inc トリス[トリス(ジメチルアミノ)ホスホラニリデンアミノ]ホスフィンオキシドの製造方法
JP2004285010A (ja) * 2003-03-24 2004-10-14 Mitsui Takeda Chemicals Inc テトラキス[トリス(ジメチルアミノ)ホスホラニリデンアミノ]ホスホニウムクロリドの製造方法
WO2006003902A1 (ja) * 2004-07-01 2006-01-12 Mitsui Chemicals, Inc. 新規ホスファゼン担持触媒、そのための新規化合物および用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KOLOMEITSEV A.A. ET AL.: "Guanidinophosphanezes: Design, Synthesis, and Basicity in THF and in the Gas Phase", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 127, no. 50, 2005, pages 17656 - 17666 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017141358A (ja) * 2016-02-10 2017-08-17 東ソー株式会社 ポリアルキレンオキシド
WO2020054761A1 (ja) * 2018-09-11 2020-03-19 株式会社ダイセル エーテル誘導体の製造方法
JP2020041139A (ja) * 2018-09-11 2020-03-19 国立大学法人神戸大学 エーテル誘導体の製造方法

Also Published As

Publication number Publication date
CN101547929A (zh) 2009-09-30
CN101547929B (zh) 2013-04-10
KR101106798B1 (ko) 2012-01-19
JP4980369B2 (ja) 2012-07-18
JPWO2008075601A1 (ja) 2010-04-08
KR20090089910A (ko) 2009-08-24
TW200838868A (en) 2008-10-01

Similar Documents

Publication Publication Date Title
WO2008075601A1 (ja) ホスホニウム塩、アルキレンオキシド化合物重合触媒およびポリアルキレンオキシドの製造方法
KR101611590B1 (ko) 폴리알킬렌글라이콜 제조 촉매 및 그것을 이용한 폴리알킬렌글라이콜의 제조방법
JP3504103B2 (ja) ポリアルキレンオキシドの製造方法
KR100246087B1 (ko) 포스파제늄염 및 그 제조방법
JP3497054B2 (ja) ホスファゼニウム塩およびその製造方法ならびにポリアルキレンオキシドの製造方法
RU2340396C2 (ru) Новый фосфазеновый нанесенный на носитель катализатор, новое соединение и его применение
KR100323125B1 (ko) 폴리(알킬렌옥사이드)의 제조방법
JP3739178B2 (ja) ポリオキシアルキレンポリオールの製造方法
JP3731909B2 (ja) ヒドロキシオキサアルキルメラミンの製造法
JP3739175B2 (ja) ポリオキシアルキレンポリオールの製造方法
JPH07505440A (ja) ポリオキシアルキル化アミンの製造方法
KR20160067752A (ko) 말단에 아미노기를 갖는 폴리알킬렌글리콜 유도체의 제조 방법
JP4036566B2 (ja) ポリアルキレンオキシドの製造方法
JP2005232377A (ja) アルキレンオキシド開環重合用触媒及びこれを用いたポリエーテル類の製造方法
CN115141368B (zh) 有机磷醇盐催化剂及其制备方法
KR0133628B1 (ko) 비닐피롤리돈의 제조방법
CN115838385A (zh) 一种氯代环磷腈的制备方法
CN117603156A (zh) 一种唑啉草酯中间体n-乙酰基-[1,4,5]-氧二氮杂庚烷的合成方法
JPS58219190A (ja) ホスホニトリル酸エステル類及びその製造法
KR100245974B1 (ko) 폴리알킬렌옥시드의 제조방법
KR100530921B1 (ko) 고순도 알콕시실란의 제조방법
WO2024053350A1 (ja) アミノアジド化合物、ジアミン化合物、及びエドキサバンの製造方法
JP2000239374A (ja) ポリアルキレンオキシドの製造方法
JP2000281771A (ja) ポリアルキレンオキシドの製造方法
CN116969997A (zh) 一种六取代氧基环三磷腈化合物的合成方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780045105.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07859791

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008550116

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 3821/DELNP/2009

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020097014742

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 07859791

Country of ref document: EP

Kind code of ref document: A1