WO2008072466A1 - 変倍光学系、撮像装置及びデジタル機器 - Google Patents

変倍光学系、撮像装置及びデジタル機器 Download PDF

Info

Publication number
WO2008072466A1
WO2008072466A1 PCT/JP2007/072823 JP2007072823W WO2008072466A1 WO 2008072466 A1 WO2008072466 A1 WO 2008072466A1 JP 2007072823 W JP2007072823 W JP 2007072823W WO 2008072466 A1 WO2008072466 A1 WO 2008072466A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
optical system
image
variable magnification
Prior art date
Application number
PCT/JP2007/072823
Other languages
English (en)
French (fr)
Inventor
Keiji Matsusaka
Yasunari Fukuta
Soh Ohzawa
Original Assignee
Konica Minolta Opto, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto, Inc. filed Critical Konica Minolta Opto, Inc.
Priority to JP2008549236A priority Critical patent/JPWO2008072466A1/ja
Priority to EP07832548A priority patent/EP2093599A4/en
Priority to US12/518,319 priority patent/US7982968B2/en
Publication of WO2008072466A1 publication Critical patent/WO2008072466A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/177Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a negative front lens or group of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/004Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having four lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/009Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras having zoom function
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/143Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only
    • G02B15/1435Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative
    • G02B15/143503Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative arranged -+-
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1445Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being negative
    • G02B15/144511Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being negative arranged -+-+

Definitions

  • Variable-magnification optical system imaging device, and digital device
  • the present invention includes a variable magnification optical system that includes a plurality of lens groups and performs magnification by changing the interval between the lens groups in the optical axis direction, an imaging apparatus including the variable magnification optical system, and the imaging apparatus.
  • the present invention relates to a variable magnification optical system suitable for miniaturization.
  • Patent Document 2 discloses a variable magnification optical system in which a first lens unit is fixed in a variable magnification optical system having negative, positive, and negative three components and is downsized.
  • the proposed optical system is not optimized for the power distribution in the first lens group and the glass material for the second lens group V, so correction of astigmatism and chromatic aberration is insufficient! /
  • Patent Document 3 discloses a so-called bending optical system, which is a so-called bending optical system in which an optical unit is thinned by bending the optical axis at a right angle in a negative / positive / negative / positive four-component variable power optical system.
  • An optical system is disclosed.
  • the number of lenses including the prism that bends the optical axis is 7-9.
  • the cost is much higher than the number of sheets, and the thickness is reduced, the total optical length is very long, and the size reduction is insufficient from the viewpoint of unit volume.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-318311
  • Patent Document 2 Japanese Patent Laid-Open No. 2005-55725
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-205796
  • variable magnification optical systems have not been sufficiently compact as a unit volume due to the large number of lenses and the amount of variable magnification movement.
  • aberration correction becomes insufficient when trying to achieve further compactness of the variable magnification optical system.
  • the present invention has been made in view of such technical problems, and sufficiently corrects various aberrations such as chromatic aberration and astigmatism while achieving super-contouring of the variable magnification optical system.
  • An object of the present invention is to provide a variable magnification optical system, an imaging device, and a digital device.
  • the present invention provides a variable magnification optical system, an imaging device, and a digital device having the following configuration. It should be noted that the terms used in the following description are defined as follows in this specification! /.
  • the refractive index is the refractive index with respect to the wavelength of the d-line (587.56 nm).
  • Abbe number is nd, nF, nC and Abbe number is v d for d-line, F-line (486 ⁇ 13nm), C-line (656.28nm), respectively.
  • the prism is counted as the number of lenses.
  • the distance between the first lens group and the second lens group is narrowed at the time of zooming from the wide angle end to the telephoto end.
  • the first lens group includes at least one negative lens and at least 1
  • the second lens group includes one positive lens and one negative lens
  • the second lens group includes at least one aspheric surface, and the following ( A variable magnification optical system characterized by satisfying the conditional expressions (1) to (4).
  • TLw, TLt Distance on the optical axis from the surface apex of the lens surface closest to the object side to the image plane at the wide-angle end (w) and telephoto end (t) when the object distance is infinite
  • Lb Distance on the optical axis from the apex of the lens surface having power closest to the image side to the image surface at the telephoto end (air equivalent length)
  • the first lens group located closest to the object side has negative optical power.
  • it is a so-called negative lead optical system.
  • the negative lead configuration can suppress an increase in error sensitivity even when the optical system is made compact. These points are particularly noticeable in zoom lenses with a zoom ratio of about 2 to 4 times.
  • the first lens group since the first lens group includes at least one negative lens and one positive lens, the lateral chromatic aberration can be corrected well.
  • the second lens group is composed of one lens each for the positive and negative minimums necessary for correcting the longitudinal chromatic aberration and the spherical aberration, the second lens group has a large moving amount at the time of zooming. This makes it possible to reduce the load on the drive unit and reduce the cost by reducing the number of lenses.
  • at least one aspherical surface is provided in the second lens group, it is possible to correct spherical aberration that increases as the optical power of the second lens group increases.
  • conditional expressions (1) to (4) it is required to satisfy the conditional expressions (1) to (4). If TLw / TLt exceeds the upper limit of conditional expression (1), it is necessary to increase the effective optical path diameter of the lens closest to the object side in order to secure the illuminance around the image plane at the wide-angle end. For this reason, it is difficult to reduce the size of the variable magnification optical system in the outer diameter direction.
  • ⁇ ⁇ 2 is below the lower limit of conditional expression (2), astigmatism accompanying an increase in Petzval sum becomes significant.
  • a v 2 is below the lower limit of conditional expression (3), the correction of axial chromatic aberration will be insufficient. If Lb / fw exceeds the upper limit of conditional expression (4), it is difficult to achieve both astigmatism correction at the wide-angle end and astigmatism correction at the telephoto end in good condition.
  • variable magnification optical system that satisfies the conditional expression (5), it is possible to obtain a variable magnification optical system that is superior in terms of optical performance and manufacturing difficulty. If f2 / fw exceeds the upper limit of conditional expression (5), the optical power of the second lens group is too weak, and a zoom ratio of about 2 to 4 times is obtained while maintaining the compactness of the variable power optical system. It becomes difficult. On the other hand, below the lower limit of conditional expression (5), The decentering error sensitivity of the two lens groups becomes very high, and the manufacturing difficulty increases.
  • conditional expression (6) By focusing with the third lens group, it is possible to obtain a clear image up to a short-distance object without causing an increase in the total optical length due to the extension or an increase in the front lens diameter. Further, by satisfying conditional expression (6), it is possible to obtain a variable magnification optical system that is further excellent in terms of optical performance and manufacturing difficulty of the third lens group.
  • f3 / fw exceeds the upper limit of conditional expression (6), the amount of focus movement of the third lens group increases. For this reason, when trying to maintain compactness, the movement amount of the zoom lens unit is restricted, and it becomes difficult to obtain a desired zoom ratio.
  • the lower limit of the conditional expression (1) if the lower limit of the conditional expression (1) is not reached, the optical power of the third lens group becomes too strong, and the decentration error sensitivity becomes high, making it difficult to assemble the lens.
  • the third lens group moves so as to draw a convex locus on the object side upon zooming from the wide-angle end to the telephoto end, and satisfies the following conditional expression (7):
  • the variable power optical system according to any one of claims 1 to 3, characterized in that:
  • D3 Amount of movement of the third lens group during zooming from the wide-angle end to the telephoto end
  • ft Composite focal length of all optical systems at the telephoto end
  • the third lens group When zooming from the wide-angle end to the telephoto end, the third lens group can be moved so as to draw a convex locus on the object side, thereby reducing the zooming burden on the third lens group. If the conditional expression (7) is satisfied, the decentering error sensitivity of the third lens group can be suppressed. If the upper limit of conditional expression (7) is exceeded, the decentering error sensitivity of the third lens group becomes too high. For this reason, the manufacturing difficulty of a lens becomes high.
  • the first lens group is fixed at the time of zooming from the wide-angle end to the telephoto end, and satisfies the following conditional expression (8): Variable magnification optical system.
  • the first lens group since the first lens group is fixed, it is possible to greatly reduce the load on the lens group driving device. Further, when the first lens group is movable at the time of zooming, a driving device must be disposed outside the first lens group, which leads to an increase in the size in the outer diameter direction. Therefore, fixing the first lens group is very effective for downsizing in the outer diameter direction. Also, by satisfying conditional expression (8), it is possible to optimize the optical performance of the first lens group. If hl / TLw falls below the lower limit of conditional expression (8), the optical power of the first lens group becomes too strong, and the eccentricity error sensitivity becomes high. For this reason, it is necessary to make adjustments during assembly, leading to an increase in manufacturing costs.
  • T1 Thickness on the optical axis from the front lens surface of the first lens group to the last lens surface of the first lens group
  • T12 Distance on the optical axis between the first lens group and the second lens group at the telephoto end
  • conditional expressions (9) and (10) the configuration of the first lens group and the distance between the first lens group and the second lens group can be further optimized. If the upper limit of conditional expression (9) is exceeded, the effective zooming movement of the second lens group will be small if the overall optical length is to be kept compact. For this reason, the optical power of the second lens group is increased and the manufacturing difficulty is increased. If the lower limit of conditional expression (9) is not reached, the optical power of the negative lens in the first lens group becomes weak, and the rear principal point moves away from the image plane. For this reason, if the same focal length is maintained, it is more difficult to ensure the back focus relatively, and the tendency to make it difficult to move the exit pupil away from the image plane becomes remarkable.
  • the front lens diameter of the first lens group can be made as small as possible.
  • the optical total length is increased by about 2 to 3 times, for example. Need to do. Therefore, by reducing the aperture diameter and simplifying the aperture member, it is possible to achieve thinning in the optical axis direction.
  • the light quantity adjusting mechanism When arranging the light quantity adjusting mechanism, it is preferable to arrange the light quantity adjusting mechanism at the stop position where all the light beams pass through the same position in order to avoid unevenness of the light quantity between the center and the periphery of the image plane.
  • the distance between the first lens group and the second lens group has a large effect on the optical total length, and if the distance is widened, the optical total length can be increased by about 2 to 3 times. For this reason, it is difficult to dispose a thick light quantity adjustment mechanism at the aperture position. Therefore, by providing a light amount adjustment mechanism on the image side of the second lens group, it is possible to suppress unevenness in the light amount to the same extent as the aperture position and maintain compactness.
  • the light amount adjusting mechanism for example, an ND filter or a mechanical shirter for suppressing the influence of diffraction by the diaphragm can be used.
  • the incident angle of off-axis rays on the image plane can be made close to telecentric.
  • the fourth lens group is fixed at the time of zooming from the wide-angle end to the telephoto end
  • EPw Distance from the exit pupil position of the chief ray at the maximum angle of view to the image plane at the wide-angle end
  • conditional expression (11) By fixing the fourth lens group during zooming, a mechanical mechanism (lens barrel mechanism) for zooming It can be simplified and the positional accuracy can be improved.
  • conditional expression (11) it is possible to improve the optical characteristics in the optical system in which the fourth lens unit is fixed at the time of zooming. If the upper limit of conditional expression (11) is exceeded, the optical power of the first lens group increases when the compact optical total length is maintained, and the increase in error sensitivity becomes significant. On the other hand, if the lower limit of conditional expression (11) is not reached, the telecentricity of the incident angle of light on the image plane will be lost, and even if a lens array corresponding to the pixel is placed in front of the imaging surface of the imaging device, the peripheral illumination will be reduced. It becomes difficult to prevent.
  • variable-power optical system power The variable-power optical system according to any one of 1 to 10! /, Characterized by comprising only four lens groups.
  • variable magnification optical system When miniaturization of the variable magnification optical system is attempted, the lens always occupies a certain space due to manufacturing limitations, so the lens space occupation ratio relative to the entire space of the lens unit is relatively high. . For this reason, it is necessary to reduce the number of lens groups and the number of lenses as much as possible even if priority is given to improving the accuracy of a single lens over manufacturing difficulty. Therefore, by using a four-component variable magnification optical system, it is possible to obtain a configuration advantageous for miniaturization. In particular, by using negative, positive, negative, and positive four components, the balance between compactness and higher performance than other zoom types, that is, balance between compactness and focus performance, manufacturing error sensitivity, and telecentricity of the image plane incident angle. Can be optimized.
  • the lens group movable at the time of zooming is only two lens groups of the zooming group and an image plane variation correction group accompanying zooming. Variable magnification optical system.
  • the movable group is one of the variable magnification groups, depending on the configuration, image plane variation correction due to zooming cannot be performed, and discontinuous variable magnification may occur.
  • continuous scaling can be achieved in any configuration.
  • the volume occupied by the lens group driving device can be reduced as compared with the case where there are three or more movable groups, and the variable magnification optical system unit can be miniaturized.
  • the first lens group is composed of one negative lens and one positive lens in order from the object side, and satisfies the following conditional expression (12): ! / Variable optical system as described in somewhere. [0035] 0. 15 ⁇ I fln / flp
  • the lens arrangement of the first lens group By making the lens arrangement of the first lens group negative and positive in order from the object side, it becomes easy to secure the back focus at the wide-angle end, and correct astigmatism and lateral chromatic aberration of off-axis light with a wide field angle. That power S. If I fln / flp I exceeds the upper limit of conditional expression (12), correction of astigmatism and distortion will be insufficient particularly at the wide-angle end. On the other hand, if the lower limit of conditional expression (12) is not reached, the power of each lens composing the first lens group becomes very strong, which increases the manufacturing difficulty.
  • the second lens group includes one positive lens and one negative lens in order from the object side, and satisfies the following conditional expression (13): ! / Variable optical system as described in somewhere.
  • the principal point position of the second lens group approaches the first lens group side.
  • the actual power of the second lens group can be reduced while maintaining the zooming effect, which contributes to the reduction of error sensitivity. If I f2n / f2p I exceeds the upper limit of conditional expression (13), it is difficult to sufficiently correct spherical aberration. On the other hand, if the lower limit of conditional expression (13) is not reached, the power of the negative lens of the second lens group becomes strong, so that the chromatic aberration of magnification increases and the deterioration of image quality becomes remarkable.
  • variable magnification optical system according to any one of 1 to 14, which has at least one lens made of a resin material.
  • the zoom lens according to 15, wherein the lens made of a resin material is a lens molded using a material in which particles having a maximum length of 30 nanometers or less are dispersed in a resin material.
  • Optical system [0041]
  • the size of the fine particles decreases, so that it is difficult to use as an optical material.
  • the refractive index of the resin material decreases as the temperature increases. For example, the refractive index of inorganic fine particles increases as the temperature increases.
  • the temperature dependence of the refractive index can be made extremely low and a resin material can be obtained.
  • niobium oxide Nb 2 O 3
  • the refractive index change can be reduced. Therefore, by using a resin material in which such particles are dispersed for at least one lens, it is possible to suppress back focus shift caused by the environmental temperature change of the entire variable magnification optical system according to the present invention. .
  • variable magnification optical system wherein the positive lens in the fourth lens group or a lens group located on the image side of the fourth lens group is a lens made of a resin material. system.
  • the positive lens is a resin material lens, it is possible to reduce the cost without impairing the compactness.
  • the positive lens affects the back focus when the temperature changes, this effect can be greatly reduced by using a material in which particles of 30 nanometers or less are dispersed.
  • variable magnification optical system according to any one of 1 to 17 and an imaging element that converts an optical image into an electrical signal, wherein the variable magnification optical system is disposed on a light receiving surface of the imaging element.
  • An imaging apparatus characterized by being able to form an optical image of a subject! /.
  • the image pickup apparatus according to 18.18, and a control unit that causes the image pickup apparatus and the image pickup device to take at least one of a still image shooting and a moving image shooting of a subject.
  • a digital apparatus wherein a doubling optical system is assembled so that an optical image of a subject can be formed on a light receiving surface of the image sensor.
  • the portable terminal is a digital device that is normally carried, such as a mobile phone or a portable information terminal.
  • variable magnification optical system in which aberration is satisfactorily corrected over the entire variable magnification range while achieving a sufficiently compact size.
  • the variable magnification ratio is 2 to 4 times. Therefore, it is possible to provide a variable magnification optical system and an imaging apparatus or digital device equipped with the variable magnification optical system at a low cost and in a mode in which miniaturization is sufficiently achieved.
  • FIG. 1 is a diagram schematically showing a configuration of a variable magnification optical system according to the present invention.
  • FIG. 2 is an external configuration diagram of a camera-equipped mobile phone equipped with a variable magnification optical system according to the present invention, in which (a) is an external configuration diagram showing its operation surface, and (b) is a back surface of the operation surface.
  • FIG. 2 is an external configuration diagram of a camera-equipped mobile phone equipped with a variable magnification optical system according to the present invention, in which (a) is an external configuration diagram showing its operation surface, and (b) is a back surface of the operation surface.
  • FIG. 3 is a functional block diagram showing a configuration of a functional unit related to imaging of a mobile phone as an example of a digital device including the variable magnification optical system according to the present invention.
  • FIG. 4 is a cross-sectional view showing a wide angle end optical path diagram of a variable magnification optical system according to Example 1 of the present invention.
  • FIG. 5 is a cross-sectional view showing a wide-angle optical path diagram of a variable magnification optical system according to Example 2.
  • FIG. 6 is a cross-sectional view showing a wide-angle optical path diagram of a variable magnification optical system according to Example 3.
  • FIG. 7 is a cross-sectional view showing a wide-angle optical path diagram of a variable magnification optical system according to Example 4.
  • FIG. 8 is a cross-sectional view showing a wide-angle optical path diagram of a variable magnification optical system according to Example 5.
  • FIG. 9 is a cross-sectional view showing a wide-angle optical path diagram of a variable magnification optical system according to Example 6.
  • FIG. 10 is an aberration diagram showing spherical aberration, astigmatism, and distortion of the lens group in Example 1.
  • FIG. 11 is an aberration diagram showing spherical aberration, astigmatism, and distortion of the lens group in Example 2.
  • FIG. 12 is an aberration diagram showing spherical aberration, astigmatism, and distortion of the lens group in Example 3.
  • FIG. 13 is an aberration diagram showing spherical aberration, astigmatism, and distortion of the lens group in Example 4.
  • FIG. 14 is an aberration diagram showing spherical aberration, astigmatism, and distortion of the lens group in Example 5.
  • FIG. 15 is an aberration diagram showing spherical aberration, astigmatism, and distortion of the lens group in Example 6.
  • FIG. 16 is a schematic diagram showing a moving direction of a lens group in an example.
  • FIG. 17 is a schematic diagram showing a moving direction of a lens group in an example.
  • FIG. 1 is an optical path diagram (optical path diagram at the wide angle end) showing a configuration example of the variable magnification optical system 1 according to the present invention.
  • This variable magnification optical system 1 forms an optical image of a subject on the light receiving surface (image surface) of an image sensor 16 that converts an optical image into an electrical signal.
  • the first lens group 11 and the second lens at the time of zooming from the wide-angle end to the telephoto end.
  • This is a variable magnification optical system in which the distance from the lens group 12 becomes narrow.
  • the variable magnification optical system 1 illustrated in FIG. 1 has the same configuration as the variable magnification optical system 1A (see FIG. 4) of Example 1 described later.
  • the first lens group 11 is composed of a biconcave negative lens 111, a positive meniscus lens 112 convex to the object side, and a force
  • the second lens group 12 forces biconvex positive lens 121.
  • the third lens group 13 is composed only of a negative meniscus lens 131 convex toward the object side
  • the fourth lens group 14 is composed only of a positive meniscus lens 141 convex toward the object side.
  • An optical aperture 15 is disposed on the object side of the second lens group 12.
  • An image sensor 16 is arranged on the image side of such a variable magnification optical system 1 via a low-pass filter 17 so that the object optical image on the object side is aligned along the optical axis AX by the variable magnification optical system 1. Accordingly, the light is guided to the light receiving surface of the image sensor 16 at an appropriate zoom ratio, and an optical image of the object is captured by the image sensor 16.
  • the variable magnification optical system 1 is a negative-positive-negative-positive four-component optical system, and is a negative-lead optical system in which the first lens group 11 located closest to the object side has negative optical power. is there. For this reason, light incident at a large angle from the object side can be quickly relaxed by the negative optical power of the first lens group 11, and the overall optical length and front lens diameter can be made compact. It is advantageous.
  • the negative lead configuration has the advantage of suppressing an increase in error sensitivity even when the optical system is made compact.
  • the first lens group 11 includes at least one negative lens (negative lens 111) and at least one positive lens ( Positive meniscus lens 112). Thereby, the lateral chromatic aberration can be corrected satisfactorily.
  • the first lens group 11 includes one negative lens and one positive lens, but a plurality of each may be included.
  • a prism that bends the optical axis AX at a right angle may be included. It is desirable that the first lens group 11 is composed of four or less lenses including the prism. As a result, it is possible to achieve cost reduction by reducing the number of lenses. It is one of preferred embodiments to use a negative meniscus lens convex on the object side instead of the biconcave negative lens 111.
  • the second lens group 12 includes one positive lens (biconvex positive lens 121) and one negative lens (biconcave negative lens 122). This minimizes the correction of axial chromatic aberration and spherical aberration. While having only one positive and negative lens as much as possible, the amount of movement during zooming increases. The load on the driving device of the second lens group 12 can be reduced, and the cost can be reduced by reducing the number of lenses.
  • the second lens group 12 is provided with at least one aspheric surface.
  • at least one of the four lens surfaces of the biconvex positive lens 121 and the biconcave negative lens 122 is an aspherical surface.
  • a plurality of surfaces may be aspherical surfaces, or all surfaces may be aspherical surfaces. Due to the presence of this aspherical surface, spherical aberration that increases as the optical power of the second lens group 12 increases can be corrected well.
  • the force S can be used to satisfactorily correct the spherical aberration and coma caused by the increase in power of the second lens unit due to the compactness.
  • the second lens group 12 is desirably provided with aspheric surfaces.
  • all lens surface forces facing the air are preferably aspheric. That is, the negative lens 111, the positive meniscus lens 112, the biconvex positive lens 121, the biconcave negative lens 122, the negative meniscus lens 131, and the positive meniscus lens 141 are all non-object-side and image-side lens surfaces.
  • a spherical surface is desirable. This makes it possible to achieve both ultra-compact and high image quality.
  • variable magnification optical system 1 has the surface apex force of the object side lens surface at the wide angle end (w) and the telephoto end (t) at the infinite object distance, and the optical axis AX up to the image plane.
  • TLw, TLt the refractive index difference between the biconvex positive lens 121 and the biconcave negative lens 122 in the second lens group 12 is ⁇ ⁇ 2, and the Abbe number difference is ⁇ V2, at the telephoto end.
  • the distance on the optical axis AX from the surface vertex of the positive meniscus lens 141, which is the lens located closest to the image side, to the image surface (air equivalent length) is Lb, and the combined focal length of all optical systems at the wide-angle end is When fw is satisfied, the following conditional expressions (1) to (4) are satisfied.
  • conditional expression (2) that is, the refractive index difference ⁇ N2 between the biconvex positive lens 121 and the biconcave negative lens 122 should satisfy the following conditional expression (2) ′. ! /
  • conditional expression (2) ′ Astigmatism correction in the second lens group 12 is sufficient, and the tendency for the performance variation due to the assembly error of the lens group to increase is moderated.
  • conditional expression (3) that is, the Abbe number difference between the biconvex positive lens 121 and the biconcave negative lens 122, ⁇ V 2 satisfies the following conditional expression (3) ′. .
  • conditional expression (3) ' the on-axis contrast at the telephoto end does not decrease compared to the diffraction limit. For this reason, coupled with the F value at the telephoto end, the difficulty of obtaining a clear image does not increase.
  • conditional expression (4) ′ the degree of telecentricity of off-axis light incident on the light receiving surface of the image sensor 16 does not increase at the telephoto end, and the decrease in ambient illuminance is suppressed.
  • variable magnification optical system 1 when the combined focal length of the second lens group 12 is f2, it is desirable that the second lens group 12 satisfies the following conditional expression (5).
  • the optical power of the second lens group 12 does not become weak. Therefore, the total optical length without increasing the amount of movement of the second lens group 12 necessary for zooming should be shortened. Power S can be. Further, since the adjustment between the lenses is not indispensable without the eccentric error sensitivity of the second lens group 12 becoming too high, the production cost can be suppressed.
  • focusing from an object at infinity to an object at a short distance may be performed by moving the third lens group 13 (negative meniscus lens 131) to the image side.
  • Focusing can also be performed, for example, by moving the first lens group 11.
  • the third lens group 13 it is possible to obtain a clear image up to a short distance object without causing an increase in the total optical length due to the extension or an increase in the front lens diameter.
  • conditional expression (6) it is possible to obtain a variable magnification optical system 1 that is further superior in terms of optical performance and manufacturing difficulty of the third lens group 13.
  • f3 / fw exceeds the upper limit of conditional expression (6), the amount of focus movement of the third lens group 13 increases. For this reason, when trying to maintain compactness, the amount of movement of the zoom lens unit is restricted, and it becomes difficult to obtain a desired zoom ratio.
  • the lower limit of conditional expression (6) is not reached, the optical noise of the third lens group 13 becomes too strong, and the decentration error sensitivity becomes high, making it difficult to assemble the lens.
  • the lens group to be moved to the variable magnification optical system 1 at the time of variable magnification can be appropriately set.
  • the third lens group 13 moves so as to draw a convex locus on the object side at the time of zooming from the wide angle end to the telephoto end, and the third lens group 13 at the time of zooming from the wide angle end to the telephoto end. 3
  • the moving distance of the lens group 13 is D3 and the combined focal length of the entire optical system at the telephoto end is ft. It is desirable to satisfy the following conditional expression (7).
  • the zooming burden on the third lens group 13 can be reduced.
  • the conditional expression (7) is satisfied, the decentering error sensitivity of the third lens group 13 can be suppressed. If the upper limit of conditional expression (7) is exceeded, the decentering error sensitivity of the third lens group 13 becomes too high. This increases the manufacturing difficulty of the lens.
  • conditional expression (7) preferably satisfies the following conditional expression (7) ′.
  • conditional expression (7) ' the variation in off-axis performance due to the increase in eccentricity error sensitivity does not increase, so the work of adjusting the variation becomes unnecessary and the production cost can be reduced with S.
  • the first lens group 11 is preferably fixed at the time of zooming from the wide-angle end to the telephoto end. If the first lens group 11 is fixed, it is possible to greatly reduce the load on the lens group driving device S. Further, when the first lens group 11 is movable during zooming, a driving device must be disposed outside the first lens group 11, which leads to an increase in the size in the outer diameter direction. Therefore, fixing the first lens group 11 is very effective for downsizing in the outer diameter direction.
  • the configuration of the first lens group 11 and the distance between the lens groups of the first lens group 11 and the second lens group 12 are preferably as follows. That is, the lens front surface of the first lens group 11 on the optical axis AX (the object side surface of the negative lens 111) and the lens front surface of the first lens group 11 (positive meniscus).
  • the thickness on the optical axis up to the image side of the cass lens 112 is Tl, and the distance on the optical axis between the first lens group 11 and the second lens group 12 at the telephoto end (the image side of the positive meniscus lens 112 and the biconvex positive lens 1 21 It is desirable that the following conditional expressions (9) and (10) be satisfied, where T12 is the distance between the object side and the telephoto end).
  • the effective zoom movement of the second lens group 12 will be small if the optical total length is to be kept compact. For this reason, the optical noise of the second lens group 12 is increased, and the manufacturing difficulty is increased.
  • the lower limit of conditional expression (9) is not reached, the optical power of the negative lens 111 in the first lens group 12 becomes weak, and the rear principal point moves away from the image plane. For this reason, when trying to maintain the same focal length, it is difficult to ensure the back focus relatively, and the tendency that it is difficult to move the exit pupil away from the image plane becomes remarkable.
  • the upper limit of conditional expression (10) is exceeded, the effective zooming movement of the second lens group 12 will be small if the optical total length is to be kept compact. For this reason, the optical noise of the second lens group 12 must be strengthened, and the manufacturing difficulty increases.
  • the lens group movable at the time of zooming includes a zooming group and an image plane fluctuation correction group that is accompanied by zooming.
  • variable magnification optical system 1 it is desirable to have a variable magnification configuration in which only the second lens group 12 and the third lens group 13 are moved during magnification.
  • the movable group is one of the variable magnification groups, depending on the configuration, the image plane variation correction due to zooming cannot be performed, resulting in discontinuous variable magnification.
  • continuous zooming is possible in any configuration. Further, the volume occupied by the lens group driving device can be reduced as compared with the case where there are three or more movable lens groups, and the variable magnification optical system 1 can be miniaturized.
  • the arrangement position of the optical diaphragm 15 is not particularly limited, but is desirably disposed on the object side of the second lens group 12 as shown in FIG. . Further, it is desirable that the optical diaphragm 15 has a fixed diaphragm diameter.
  • the optical aperture 15 By arranging the optical aperture 15 on the object side of the second lens group, it is possible to reduce the front lens diameter of the first lens group 11 as much as possible.
  • the distance between the first lens group 11 and the second lens group 12 is light. If it is configured to widen the distance in order to insert a variable aperture mechanism that has a large effect on the overall length, it will be necessary to increase the overall optical length by, for example, about 2 to 3 times. Therefore, by simplifying the aperture member with the aperture diameter fixed, it is not necessary to unnecessarily widen the distance between the first lens group 11 and the second lens group 12, so that a reduction in the thickness in the optical axis direction can be achieved. Become.
  • the light amount adjustment mechanism for example, an ND filter or a mechanical shirter for suppressing the influence of diffraction by the diaphragm can be used.
  • the light amount adjustment mechanism it is preferable to place it at the stop position where all the light beams pass through the same position in order to avoid unevenness of the light amount between the center and the periphery of the image plane. It can be said that it is preferable to dispose the light amount adjusting mechanism on the object side of the lens group 12.
  • the distance between the first lens group 11 and the second lens group 12 has a great influence on the optical total length.
  • the optical total length can be increased by about 2 to 3 times. For this reason, it is difficult to arrange a thick light amount adjusting mechanism at the aperture position. Therefore, by providing a light amount adjustment mechanism on the image side of the second lens group 12 close to the optical aperture 15, unevenness in the amount of light can be suppressed to the same extent as the aperture position, and compactness can be maintained.
  • variable magnification optical system only needs to have three negative and positive components.
  • the fourth lens group 14 positive meniscus lens 141 having positive optical power is provided on the image side of the third lens group 13.
  • the force S can be used to bring the incident angle of off-axis rays to the light receiving surface of the image sensor 16 close to telecentricity.
  • the fourth lens group 14 is provided, it is desirable that the fourth lens group 14 is fixed at the time of zooming from the wide-angle end to the telephoto end. As a result, the mechanical mechanism (lens barrel mechanism) for zooming can be simplified, and the positional accuracy can be improved.
  • conditional expression (11) If the upper limit of conditional expression (11) is exceeded, the optical power of the first lens group 11 increases when the compact optical total length is maintained, and the error sensitivity increases significantly. Meanwhile, condition If the lower limit of Equation (11) is not reached, the telecentricity of the light incident angle on the image plane will be lost, and even if a lens array corresponding to the pixel is placed in front of the light receiving surface of the imaging element 16, it will prevent a decrease in ambient illuminance. It becomes difficult.
  • conditional expression (11) preferably satisfies the following conditional expression (11) ′.
  • Satisfying conditional expression (11) 'suppresses the decrease in ambient illuminance during zooming when the difference between the off-axis light incident angles on the light receiving surface of the image sensor 16 at the wide-angle end and the telephoto end is not too large. It is done.
  • variable magnification optical system 1 having four components of negative positive negative positive is illustrated, but other lens groups can be added.
  • variable magnification optical system 1 composed of only four lens groups is advantageous for miniaturization.
  • the balance between compactness and higher performance than other zoom types that is, balance between compactness and focus performance, manufacturing error sensitivity, and telecentricity of the image plane incident angle. Optimize the power with S.
  • a first lens group consisting of a negative lens and a positive meniscus lens convex to the object side a biconvex lens
  • a second lens group consisting of a negative lens a third lens group consisting of a negative lens
  • a fourth lens group consisting of lenses The second lens group was set in the positive / negative order by moving the principal point position of the second lens group closer to the first lens group side, thereby reducing the substantial power of the second lens group while maintaining the zooming effect. This is to reduce the error sensitivity.
  • the reason for arranging a biconvex lens in the second lens group is to increase the power of the second lens group and reduce the amount of movement during zooming.
  • the reason why the third lens group is a negative lens is to achieve both shortening of the total optical length and correction of astigmatism.
  • the reason why the fourth lens group is a positive lens is that, as described above, the off-axis ray incident angle on the light receiving surface of the image sensor is made close to telecentric.
  • the variable power optical system 1 shown in Fig. 1 satisfies the power and requirements, and even if the meaning shown here is satisfied, the variable power optical system 1 is preferred! /, With a configuration! / .
  • the first lens group 11 in order from the first lens group 11 force object side, it consists of two lenses, one negative lens (negative lens 1 11) and one positive lens (positive meniscus lens 112). As well as positive menis It is desirable to satisfy the following conditional expression (1 2) when the focal length of the cus lens 112 is flp and the focal length of the negative lens 111 is fin!
  • the lens arrangement of the first lens group 12 By making the lens arrangement of the first lens group 12 negative and positive in order from the object side, it becomes easy to secure back focus at the wide-angle end, and astigmatism and lateral chromatic aberration of off-axis light with a wide field angle are favorable. Can be corrected. If I f ln / f lp I exceeds the upper limit of conditional expression (12), correction of astigmatism and distortion especially at the wide-angle end becomes insufficient. On the other hand, if the lower limit of conditional expression (12) is not reached, the number of negative lenses 111 and positive meniscus lens 112 constituting the first lens group becomes very strong, and the manufacturing difficulty increases.
  • the second lens group 12 is composed of one positive lens (biconvex positive lens 121) and one negative lens (biconcave negative lens 122) in order from the object side.
  • the focal length of f2p is f2p and the focal length of the biconcave negative lens 122 is f2n, it is desirable that the following conditional expression (13) is satisfied.
  • conditional expression (13) If the upper limit of conditional expression (13) is exceeded, it will be difficult to sufficiently correct spherical aberration. On the other hand, if the lower limit of conditional expression (13) is not reached, the power of the biconcave negative lens 122 becomes strong, so that the chromatic aberration of magnification becomes large and the deterioration of image quality becomes remarkable.
  • the second lens group 12 satisfies the following conditional expression (14).
  • conditional expression (14) If the upper limit of conditional expression (14) is exceeded, the power of the second lens group 12 is too weak to obtain a zoom ratio of about 2 to 4 times. On the other hand, if the lower limit of conditional expression (14) is not reached, the error sensitivity of the second lens group 12 will be very high, making manufacturing difficult.
  • conditional expression (14) preferably satisfies the following conditional expression (14) '
  • the optical power of the second lens group 12 does not become weak. Therefore, it is possible to shorten the optical total length without increasing the amount of movement of the second lens group 12 necessary for zooming. S can. In addition, the eccentric error sensitivity of the second lens group 12 does not become too high. Since adjustment between lenses is not essential, production costs can be reduced.
  • variable magnification optical system 1 Optical materials made of various glass materials and resin materials that are not particularly limited can be used for the materials of the lenses constituting the first to fourth lens groups 11 to 14.
  • a resin material if a resin material is used, it is lightweight and can be mass-produced by means of an injection mold, etc., so that the manufacturing cost can be reduced and the variable magnification optical system 1 can be reduced in weight as compared with the case of manufacturing with a glass material. Is advantageous. Accordingly, it is desirable that the variable magnification optical system 1 includes at least one lens made of a resin material. Of course, two or more lenses made of a resin material may be provided.
  • the negative lens in the third lens group 13 negative meniscus lens 131 in the case of FIG. 1
  • the positive lens in the fourth lens group 14 are used. It is desirable that the (positive male lens 141) is made of a resin material. In this case, it is possible to suppress the back focus shift accompanying the environmental temperature change.
  • this resin material lens it is desirable to use a lens molded using a material in which particles having a maximum length of 30 nanometers or less, particularly inorganic particles, are dispersed in the resin material.
  • a resin material lens as described above, the refractive index change due to the temperature change of the resin material lens can be made extremely small.
  • the temperature change A of the refractive index can be expressed by the following equation (15) by differentiating the refractive index n with respect to the temperature t based on the equation of the one-lentz Lorentz.
  • the aspheric glass lens when an aspheric glass lens is used, the aspheric glass lens may be molded with a mold, or may be a composite type of a glass material and a resin material.
  • the mold type is suitable for mass production, but the glass material is limited.
  • the composite type has the advantage of a high degree of freedom in design because of the large number of glass materials that can be used as substrates. Since aspherical lenses using high refractive materials are generally difficult to mold, in the case of a single-sided aspherical surface, the advantages of the composite type can be maximized.
  • variable magnification optical system 1 a mechanical shirter having a function of shielding light from the image sensor 16 may be disposed instead of the optical aperture 15.
  • a mechanical shirter having a function of shielding light from the image sensor 16 may be disposed instead of the optical aperture 15.
  • the mechanical shirt is effective in preventing smear.
  • a conventionally known cam mechanism or stepping motor can be used as a drive source for driving each lens group, diaphragm, shutter, etc. provided in the variable magnification optical system 1. Also move If the amount is small, or the weight of the drive group is light! / In some cases, the use of an ultra-small piezoelectric actuator can drive each group independently while suppressing increase in volume and power consumption of the drive unit.
  • the imaging lens apparatus including the variable magnification optical system 1 can be further downsized.
  • the image sensor 16 photoelectrically converts the R, G, and B component image signals into a predetermined image processing circuit in accordance with the amount of light of the optical image of the subject imaged by the variable magnification optical system 1. Output.
  • R (red), G (green), and B (blue) color filters are pasted in a pine pattern on the surface of each CCD in the area sensor where the CCD is arranged in a two-dimensional shape. It is possible to use a so-called Bayer type single plate type color area sensor. In addition to such CCD image sensors, CMOS image sensors, VMIS image sensors, and the like can also be used.
  • the low-pass filter 17 is a parallel plate-shaped optical component that is disposed on the light receiving surface of the image sensor 16 and removes noise components.
  • this low-pass filter 17 for example, a birefringence low-pass filter made of a crystal whose direction of a predetermined crystal axis is adjusted, or a phase-type low-pass filter that realizes a required optical cutoff frequency characteristic by a diffraction effect. Etc. are applicable.
  • the low-pass filter 17 is not necessarily provided, and instead of the optical low-pass filter 17 described above, an infrared cut filter is used to reduce noise included in the image signal of the image sensor 16. Also good.
  • an infrared reflection coating may be applied to the surface of the optical low-pass filter 17 so that both filter functions can be realized by one.
  • FIG. 2 is an external configuration diagram of the camera-equipped cellular phone 2 showing an embodiment of the digital device according to the present invention.
  • the digital device includes a digital still camera, a video camera, a digital video unit, a personal digital assistant (PDA), a personal computer, a mobile computer, or peripheral devices (mouse, scanner, Printer, etc.).
  • PDA personal digital assistant
  • peripheral devices mouse, scanner, Printer, etc.
  • Fig. 2 (a) shows the operation surface of the mobile phone 2
  • Fig. 2 (b) shows the back surface of the operation surface, that is, the back surface. is doing.
  • the mobile phone 2 has an antenna 21 at the top, a rectangular display 22 on the operation surface, an image switch button 23 that activates image capture mode and switches between still image and movie capture, and controls zooming.
  • a scaling button 24, a shutter button 25, and a dial button 26 are provided.
  • the enlargement / reduction button 24 has a printing power of “T” representing telephoto at the upper end and “W” representing wide angle at the lower end and pressing the print position will change the magnification. It consists of a two-contact switch that can be commanded.
  • the cellular phone 2 incorporates an imaging device 27 configured by the variable magnification optical system 1 described above.
  • FIG. 3 is a functional block diagram showing an electrical functional configuration relating to imaging of the mobile phone 2.
  • the mobile phone 2 includes an imaging unit 30, an image generation unit 31, an image data buffer 32, an image processing unit 33, a drive unit 34, a control unit 35, a storage unit 36, and an I / F unit 37 for the imaging function. It is prepared for.
  • the image capturing unit 30 includes an image capturing device 27 and an image sensor 16.
  • the imaging device 27 includes a variable magnification optical system 1 as shown in FIG. 1 and a lens drive device (not shown) for driving the lens in the optical axis direction to perform variable magnification and focusing. .
  • the light beam from the subject is imaged on the light receiving surface of the image sensor 16 by the variable magnification optical system 1 and becomes an optical image of the subject.
  • the image sensor 16 converts the optical image of the subject imaged by the variable magnification optical system 1 into electrical signals (image signals) of R (red), G (green), and B (blue) color components. , Output to the image generation unit 31 as image signals of R, G, and B colors.
  • the imaging device 16 is controlled by the control unit 35 to perform imaging operations such as imaging of either a still image or a moving image or reading of output signals of each pixel (horizontal synchronization, vertical synchronization, transfer) in the imaging device 16. Be controlled.
  • the image generation unit 31 performs amplification processing, digital conversion processing, and the like on the analog output signal from the image sensor 16 and determines an appropriate black level for the entire image, ⁇ correction, and white balance. Image data of each pixel is generated from the image signal by performing known image processing such as adjustment (WB adjustment), contour correction, and color unevenness correction. The image data generated by the image generation unit 31 is output to the image data buffer 32.
  • the image data buffer 32 temporarily stores the image data and also stores the image data.
  • the memory is used as a work area for performing the later-described processing on the image processing unit 33, and is composed of, for example, RAM (RANDOM ACCESS MEMORY).
  • the image processing unit 33 is a circuit that performs image processing such as resolution conversion on the image data in the image data buffer 32. Further, if necessary, the image processing unit 33 can be configured to correct a force that cannot be corrected by the variable magnification optical system 1 and the aberration.
  • the drive unit 34 drives the plurality of lens groups of the zoom optical system 1 so as to perform desired zooming and focusing by the control signal output from the control unit 35.
  • the control unit 35 includes, for example, a microprocessor, and includes an imaging unit 30, an image generation unit 31, an image data buffer 32, an image processing unit 33, a drive unit 34, a storage unit 36, and an I / F unit. Control the operation of each part of 37. That is, the control unit 35 controls the imaging device 27 and the imaging device 16 to perform at least one of still image shooting and moving image shooting of the subject.
  • the storage unit 36 is a storage circuit that stores image data generated by still image shooting or moving image shooting of a subject, and includes, for example, a ROM (READ ONLY MEMORY) and a RAM. That is, the storage unit 36 has a function as a memory for still images and moving images.
  • the I / F unit 37 is an interface that transmits and receives image data to and from an external device.
  • the I / F unit 37 is an interface that conforms to a standard such as USB or IEEE1394.
  • the control unit 35 controls the image capturing device 27 and the image sensor 16 to capture a still image and drives a lens driving device (not shown) of the image capturing device 27. And focusing.
  • the in-focus optical image is
  • the image is periodically and repeatedly formed on the light receiving surface, converted into image signals of R, G, and B color components, and then output to the image generation unit 31.
  • the image signal is temporarily stored in the image data buffer 32, subjected to image processing by the image processing unit 33, transferred to a display memory (not shown), and guided to the display 22. Then, the photographer can adjust the main subject to be in a desired position on the screen by looking at the display 22. By pressing the shutter button 25 in this state, a still image can be obtained. That is, the image data is stored in the storage unit 36 as a still image memory.
  • the image switching button 23 is pressed once to activate the still image shooting mode, and then the image switching button 23 is pressed again to switch to the movie shooting mode.
  • the control unit 35 controls the imaging device 27 and the imaging element 16 to take a moving image.
  • the photographer looks at the display 22 and adjusts so that the image of the subject obtained through the imaging device 27 falls within a desired position on the screen.
  • the scaling button 24 it is possible to adjust the magnification of the subject image using the scaling button 24.
  • press the shutter button 25 to start movie recording.
  • the enlargement ratio of the subject can be changed at any time with the zoom button 24.
  • the control unit 35 causes the imaging device 27 and the image sensor 16 to capture a moving image.
  • the lens driving device (not shown) of the imaging device 27 is driven to perform focusing.
  • a focused optical image is periodically and repeatedly formed on the light receiving surface of the image sensor 16, converted into R, G, and B color component image signals, and then output to the image generation unit 31. It is powered.
  • the image signal is temporarily stored in the image data buffer 32, subjected to image processing by the image processing unit 33, transferred to the display memory, and guided to the display 22. If you press the shutter button 25 again, movie shooting will end.
  • the captured moving image is guided to and stored in the storage unit 36 as a moving image memory.
  • variable magnification optical system ⁇ Description of a more specific embodiment of the variable magnification optical system>
  • variable power optical system 1 constituting the imaging device 27 mounted in the variable power optical system 1 shown in FIG. 1, that is, the camera-equipped mobile phone 2 shown in FIG. This will be described with reference to the drawings.
  • FIG. 4 is a cross-sectional view (optical path diagram) taken along the optical axis (AX), showing the arrangement of lens groups in the variable magnification optical system 1A of Example 1.
  • the optical path diagrams of FIG. 4 and FIGS. 5 to 9 shown below show the lens arrangement at the wide angle end (W).
  • these lens groups are arranged in order from the object side (left side in FIG. 4) in the figure, and the first lens group (Grl) having a negative optical power as a whole.
  • the first lens group (Grl) located closest to the object side has a negative optical power so-called negative lead configuration.
  • each lens group is configured as follows in order from the object side.
  • the first lens group (Grl) has a negative optical power as a whole, and is composed of a biconcave negative lens (first lens L1) and a positive meniscus lens (second lens L2) convex on the object side.
  • the second lens group (Gr2) has a positive optical power as a whole, and consists of a biconvex positive lens (third lens L3) and a biconcave negative lens (fourth lens L4).
  • an optical aperture (ST) that moves together with the second lens group (Gr2) at the time of zooming is provided. It is.
  • the third lens group (Gr3) is composed of one negative meniscus lens (fifth lens L5) convex toward the object side having negative optical power.
  • the fourth lens group (Gr4) is composed of one positive meniscus lens (sixth lens L6) convex toward the object side having positive optical power.
  • the light receiving surface of the image sensor (SR) is arranged via a parallel plate (FT).
  • the parallel plate (FT) corresponds to an optical low-pass filter, an infrared cut filter, a cover glass of an image sensor, or the like.
  • a mechanical shirter may be arranged in place of the optical diaphragm (ST).
  • a two-focus switching variable power optical system with the same optical configuration may be used, aiming for more compactness.
  • the movement trajectory of the first lens group (Grl) makes a U-turn (moves so as to draw a convex trajectory on the image side), resulting in the total optical length at the wide-angle end and the telephoto end.
  • the first lens group (Grl) can be fixed at the time of zooming by using a two-focus switching zooming optical system. There is a big effect on miniaturization.
  • the optical diaphragm (ST), both sides of the parallel plate (FT), and the light receiving surface of the image sensor (SR) are also handled as one surface.
  • Such poles are the same in the optical path diagrams (FIGS. 5 to 9) of other embodiments described later, and the meanings of the reference numerals in the drawings are basically the same as those in FIG. However, it does not mean that they are exactly the same, for example, the same reference numeral (rl) is attached to the lens surface closest to the object in each figure, but these curvatures are the same throughout the embodiments. It doesn't mean that.
  • the light rays incident from the object side are first and second in order along the optical axis AX.
  • the electrical signal is subjected to predetermined digital image processing, image compression processing, and the like as necessary, and is recorded as a digital video signal in a memory of a mobile phone, a portable information terminal, or other digital device by wire or wirelessly. Or transmitted to.
  • FIGS. 16 (a), (b), (c) and FIG. 17 are schematic diagrams showing the moving directions of these lens groups during zooming.
  • FIGS. 16 (a), (b), (c) and FIG. 17 show not only the first embodiment but also the moving directions of the lens groups in the second and later embodiments which will be described later.
  • 16 (a) shows the moving direction of each lens group in Example 1
  • FIG. 16 (b) shows the moving directions of Examples 2 and 5
  • FIG. 16 (c) shows the moving directions of Examples 3 and 6, and FIG. It is shown.
  • the left side is the object side as before, and from the object side, the first lens group (Grl), the second lens group (Gr2), the third lens group (Gr3), and the fourth lens Arranged in order of the group (Gr4)!
  • symbol W indicates the wide-angle end with the shortest focal length, that is, the largest angle of view
  • symbol T indicates the telephoto end with the longest focal length, that is, the smallest angle of view.
  • the symbol M represents the intermediate point between the wide angle end (W) and the telephoto end (T).
  • the actual lens group can be moved along a straight line along the optical axis.
  • the positions of the lens groups at the wide-angle end (W), midpoint (M), and telephoto end (T) are shown in the figure. It is shown in the form of arranging from top to bottom.
  • Example 1 the first lens group (Grl) to the third lens group (G r3) are movable during zooming, and the fourth lens group (Gr4) Only fixed at zooming. Specifically, during zooming from the wide-angle end (W) to the telephoto end (T), the first lens group (Grl) is moved so as to draw a convex trajectory on the image side, and the second lens group (Gr2 ) Is moved linearly in the direction approaching the object, and the third lens group (Gr3) is moved to draw a convex trajectory on the object side.
  • the direction of movement and the amount of movement of these lens groups can vary depending on the optical power of the lens group, the lens configuration, and the like. For example, in Fig. 16, V is drawn to move linearly like the second lens group (Gr2)! /, Even if it is a convex curve on the object side or image side It also includes the case of U-turn shape.
  • Tables 2 and 3 show construction data of each lens in the variable magnification optical system 1A of Example 1.
  • all lenses L1 to L6 are double-sided aspheric lenses It is said that.
  • the first, fifth, and sixth lenses (Ll, L5, and L6) are resin lenses, and the other lenses are glass lenses.
  • Table 16 below shows the numbers when the above-described conditional expressions (1) to (; 14) are applied to the optical system of Example 1.
  • Table 2 shows, in order from the left, the number of each lens surface, the radius of curvature of each surface (unit: mm), wide angle end (W), midpoint (M), and telephoto end (T).
  • the distance between the lens surfaces on the optical axis in the infinite focus state (axis top surface distance) (unit: mm), the refractive index of each lens, and the Abbe number.
  • the blank for the top axis spacing M T indicates that it is the same as the value in the left W column.
  • the axial upper surface distance is a distance converted assuming that the medium existing in a region between a pair of opposing surfaces (including an optical surface and an imaging surface) is air.
  • the aspherical shape of the optical surface uses a local Cartesian coordinate system (X, y, z) in which the vertex of the surface is the origin and the direction from the object toward the image sensor is the positive direction of the z axis. )
  • the radius of curvature for the aspherical lens shown in Table 2 shows the value near the surface apex of the lens.
  • Table 3 shows the conic coefficient k and the values of the aspheric coefficients A, B, C, and D for the aspheric surface (the surface with ri in * in Table 2). is there.
  • Figure 7 shows the spherical aberration (LONGITUDINAL SPHERICAL ABERRATION), astigmatism (ASTIGMAT ISM), and distortion (DISTORTION) of the entire optical system in Example 1 under the lens arrangement and configuration as described above. Shown in order from the left side of 10.
  • the upper row shows the aberrations at the wide-angle end (W)
  • the middle row shows the aberrations at the midpoint (M)
  • the lower row shows the aberrations at the telephoto end (T).
  • the horizontal axis of spherical aberration and astigmatism represents the displacement of the focal position in mm
  • the horizontal axis of distortion aberration represents the amount of distortion as a percentage (%) of the total.
  • the vertical axis of spherical aberration is shown as a value normalized by the incident height, while the vertical axis of astigmatism and distortion is expressed in image height (image height) (unit: mm).
  • red wavelength 656. 28 nm
  • yellow blue
  • blue wavelength 435.84 nm
  • d line the results on the sagittal (radial) plane and tangential (meridional) plane, respectively.
  • diagrams of astigmatism and distortion are the results when the yellow line (d line) is used.
  • the lens group of Example 1 has excellent optical characteristics with distortion within approximately 5% at the wide-angle end (W), the midpoint (M), and the telephoto end (T). Is shown.
  • Table 14 and Table 15 show the focal length (unit: mm) and the F value at the wide angle end (W), the intermediate point (M), and the telephoto end (T) in Example 1, respectively. From these tables, it can be seen that in the present invention, a bright optical system with a short focus can be realized.
  • FIG. 5 is a cross-sectional view of the lens group in the variable magnification optical system IB of Example 2 taken along the optical axis (AX).
  • the variable magnification optical system 1B of Example 2 includes a first lens group (Grl) in which each lens group has a negative optical power as a whole in order from the object side, an optical stop (ST), and a positive optically as a whole.
  • the first lens group (Grl) is composed of, in order from the object side, a biconcave negative lens (L1) and a positive meniscus lens (L2) convex toward the object side.
  • the second lens group (Gr2) is composed of a biconvex positive lens (L3) and a biconcave negative lens (L4) in this order from the object side.
  • the third lens group (Gr3) consists of l negative meniscus lenses (L5) convex toward the object side.
  • the fourth lens group (Gr4) consists of a single positive meniscus lens (L6) convex toward the object side.
  • the zoom optical system 1B according to Example 2 having such a lens configuration as shown in FIG. 16 (b), when zooming from the wide-angle end (W) to the telephoto end (T),
  • the second lens group (Gr2) moves linearly toward the object side
  • the third lens group (Gr3) moves U-turns so as to draw a convex shape toward the object side.
  • the first lens group (Grl) and the fourth lens group (Gr4) are fixed.
  • the optical aperture (ST) moves together with the second lens group (Gr2) during zooming.
  • Table 4 and Table 5 show construction data of each lens in the variable magnification optical system 1B according to Example 2.
  • all the lenses (L1 to L6) are double-sided aspheric lenses.
  • the fifth and sixth lenses (L5, L6) are resin lenses, and the other lenses are glass lenses!
  • FIG. 6 is a cross-sectional view of the lens group in the variable magnification optical system 1C of Example 3 taken along the optical axis (AX).
  • each lens group in order from the object side has a first lens group (Grl) having an overall negative optical power, an optical aperture (ST), and a positive optical system as a whole.
  • the first lens group (Grl) has a negative meniscus lens (L1) convex toward the object side, a flat plate (PR) corresponding to an optical path folding prism, and a convex toward the object side in order of the object side force. It consists of a positive meniscus lens (L2).
  • the second lens group (Gr2) is composed of, in order from the object side, a biconvex positive lens (L3) and a negative meniscus lens (L4) convex toward the object side.
  • the third lens group (Gr3) Negative lens (L5) It consists of l pieces.
  • the fourth lens group (Gr4) consists of a single biconvex positive lens (L6).
  • Table 6 and Table 7 show construction data of each lens in the variable magnification optical system 1C according to Example 3.
  • the second to sixth lenses (L2 to L6) are double-sided aspherical lenses, and the first lens is a single-sided aspherical lens. All the lenses (L1 to L6) are glass lenses.
  • a prism is used to suppress the size of the lens unit in the thickness direction.
  • a reflective mirror or the like can be used instead. Of course it is possible.
  • FIG. 7 is a cross-sectional view of the lens group in the variable magnification optical system 1D of Example 4 taken along the optical axis (AX).
  • the variable magnification optical system 1D of Example 4 includes a first lens group (Grl) having an overall negative optical power in order from the object side, an optical aperture stop (ST), and a positive optical system as a whole. It consists of a second lens group (Gr2) having a negative power and a third lens group (Gr3) having a negative optical power. More specifically, in order from the object side, the first lens group (Grl) is a negative meniscus lens (L1) convex toward the object side and a positive meniscus lens (L2 convex toward the object side).
  • the second lens group (Gr2) consists of a biconvex positive lens (L3) and a biconcave negative lens in order from the object side. (L4) and force.
  • the third lens group (Gr3) has one negative meniscus lens (L5) convex toward the image side.
  • the zoom optical system 1D according to Example 4 having such a lens configuration as shown in FIG. 17, when the zoom is changed from the wide angle end (W) to the telephoto end (T), the second The lens group (Gr2) moves in a straight line toward the object side, and the third lens group (Gr3) moves in a U-turn so as to draw a convex shape on the object side.
  • the first lens group (Grl) is fixed.
  • the optical aperture (ST) moves with the second lens group (Gr2) during zooming.
  • Table 8 and Table 9 show construction data of each lens in the variable magnification optical system 1D according to Example 4.
  • all the lenses (L1 to L5) are double-sided aspheric lenses.
  • the fifth lens (L5) is a resin lens, and the other lenses are glass lenses!
  • FIG. 8 is a cross-sectional view of the lens group in the variable magnification optical system IE of Example 5 taken along the optical axis (AX).
  • the variable magnification optical system 1E of Example 5 includes a first lens group (Grl) in which each lens group has a negative optical power as a whole in order from the object side, an optical stop (ST), and a positive optical element as a whole.
  • the first lens group (Grl) is composed of, in order from the object side, a biconcave negative lens (L1) and a positive meniscus lens (L2) convex toward the object side.
  • the second lens group (Gr2) is composed of a biconvex positive lens (L3) and a biconcave negative lens (L4) in this order from the object side.
  • the third lens group (Gr3) consists of l negative meniscus lenses (L5) convex toward the object side.
  • the fourth lens group (Gr4) consists of a single biconvex positive lens (L6).
  • the zoom optical system 1E according to Example 5 having such a lens configuration as shown in FIG. 16 (b), when zooming from the wide-angle end (W) to the telephoto end (T),
  • the second lens group (Gr2) is on the object side. Move in a straight line and move U-turn so that the third lens group (Gr3) is convex on the object side.
  • the first lens group (Grl) and the fourth lens group (Gr4) are fixed.
  • the optical aperture (ST) moves together with the second lens group (Gr2) during zooming.
  • Table 10 and Table 11 show construction data of each lens in the variable magnification optical system 1E according to Example 5.
  • all the lenses (L1 to L6) are double-sided aspheric lenses.
  • the fifth and sixth lenses (L5, L6) are resin lenses, and the other lenses are glass lenses.
  • FIG. 9 is a cross-sectional view of the lens group in the variable magnification optical system IF of Example 6 taken along the optical axis (AX).
  • the variable magnification optical system 1F of Example 6 includes a first lens group (Grl) in which each lens group has a negative optical power as a whole in order from the object side, an optical stop (ST), and a positive optical element as a whole.
  • the first lens group (Grl) is composed of, in order from the object side, a biconcave negative lens (L1) and a positive meniscus lens (L2) convex toward the object side.
  • the second lens group (Gr2) is composed of a biconvex positive lens (L3) and a biconcave negative lens (L4) in this order from the object side.
  • the third lens group (Gr3) is on the object side Convex negative meniscus lens (L5).
  • the fourth lens group (Gr4) consists of a single biconvex positive lens (L6).
  • the zoom optical system 1F according to Example 6 having such a lens configuration, as shown in FIG. 16 (c), when zooming from the wide angle end (W) to the telephoto end (T),
  • the second lens group (Gr2) moves linearly toward the object side
  • the third lens group (Gr3) moves linearly toward the object side in such a manner that the moving speed is shifted at the intermediate point (M).
  • the first lens group (Grl) and the fourth lens group (Gr4) are fixed.
  • the optical aperture (ST) moves with the second lens group (Gr2) during zooming.
  • Table 12 and Table 13 show construction data of each lens in the variable magnification optical system 1F according to Example 6.
  • all the lenses (L1 to L6) are double-sided aspheric lenses.
  • the fifth and sixth lenses (L5, L6) are resin lenses, and the other lenses are glass lenses.
  • the spherical aberration, astigmatism, and distortion of the variable magnification optical systems 1 to 1 F of Examples 2 to 6 are shown in Figs. 11 to 15 under the above lens arrangement and configuration. Each is shown.
  • the spherical aberration diagram shows the aberrations when using three light beams with different wavelengths, as shown in FIG. 10, red for the dashed line, yellow for the solid line, and blue for the dashed line. Yes.
  • the lens groups in any of the examples show excellent optical characteristics with distortion within approximately 5% at any of the wide-angle end (W), intermediate point (M), and telephoto end (T).
  • Table 16 shows numerical values when the above-described conditional expressions (1) to (14) are applied to the variable magnification optical systems IB to; LF of Examples 2 to 6, respectively.
  • variable magnification optical system 1A in the first to sixth embodiments described above; IF, in the variable magnification optical system having a variable magnification ratio of about 2 to 4 times, over the entire variable magnification range. It is possible to provide a zoom lens that can compensate for various types of convergence well and achieve ultra-small size at low cost.

Abstract

 本発明は、超コンパクト化を達成しつつ、色収差・非点収差等の諸収差を十分に補正する。このため、変倍光学系は、物体側から順に、負正負正の光学的パワーを有する第1~第4レンズ群を有し、広角端から望遠端への変倍時に第1レンズ群と第2レンズ群との間隔が狭くなる光学系である。第1レンズ群は、負レンズと正メニスカスレンズとから構成され、第2レンズ群が、両凸正レンズと両凹負レンズとから構成され非球面を含む。物体距離無限時の、広角端、望遠端での最も物体側レンズ面の面頂点から像面までの距離をTLw、TLt、両凸正レンズと両凹負レンズとの屈折率差をΔN2、アッベ数差をΔν2、正メニスカスレンズのレンズ面の面頂点から像面までの距離をLb、広角端での全光学系の合成焦点距離をfwとするとき、TLw/TLt<1.2、ΔN2>0.15、Δν2>20、及びLb/fw≦1.2を満たす。

Description

明 細 書
変倍光学系、撮像装置及びデジタル機器
技術分野
[0001] 本発明は、複数のレンズ群からなり、光軸方向にレンズ群の間隔を変えることで変 倍を行う変倍光学系、その変倍光学系を備える撮像装置及びその撮像装置を搭載 したデジタル機器に関し、特に超小型化に適した変倍光学系に関するものである。 背景技術
[0002] 近年、携帯電話機や携帯情報端末(PDA : PERSONAL DIGITAL ASSIST ANT)の普及が目覚しぐこれらの機器に、コンパクトなデジタルスチルカメラユニット やデジタルビデオユニットが内蔵される仕様が一般化してきている。これらの機器で は、サイズやコストの制約が非常に厳しいことから、通常のデジタルスチルカメラ等に 比べて低画素数で小型の撮像素子と、プラスチックレンズ;!〜 3枚程度からなる単焦 点光学系とを備えた撮像装置が一般的に用いられている。携帯情報端末に搭載され る撮像装置も高画素化 ·高機能化が急速に進んでいる中で、高画素撮像素子に対 応でき、且つ撮影者から離れた被写体をも撮影可能とする、携帯電話機等に搭載で きるコンパクトな変倍光学系が要求されている。
[0003] 従来、例えば特許文献 1には、負正正 3成分の変倍光学系において、第 2レンズ群 の変倍負担を増加させることで、変倍に伴うレンズ群の移動量を抑えるようにした変 倍光学系が開示されている。しかし、開示されている光学系は、いずれも第 1レンズ 群、第 2レンズ群に各 3枚のレンズを使用しており、コンパクト化が十分と言えない。
[0004] また、特許文献 2には、負正負 3成分の変倍光学系において、第 1レンズ群を固定 とすることで小型化を図った変倍光学系が開示されている。しかし、提案されている 光学系は、第 1レンズ群内のパワー配置や、第 2レンズ群の硝材が最適化されていな V、ため、非点収差や色収差の補正が不十分となって!/、る。
[0005] さらに、特許文献 3には、負正負正 4成分の変倍光学系において、光軸を直角に折 り曲げて光学ユニットの薄型化を図るようにした所謂屈曲光学系と呼ばれる変倍光学 系が開示されている。しかし、光軸を折り曲げるプリズムを含めてレンズ枚数が 7〜9 枚と多ぐコスト高となる上、薄型化は図っているものの、光学全長としては非常に長 いため、ユニット体積の観点からは小型化が不十分である。
特許文献 1:特開 2001— 318311号公報
特許文献 2:特開 2005— 55725号公報
特許文献 3:特開 2004— 205796号公報
発明の開示
発明が解決しょうとする課題
[0006] 従来提案されている変倍光学系は、レンズ枚数の多さや変倍移動量の大きさから、 ユニット体積としてのコンパクト化が十分に図られていない。また、変倍光学系の更な るコンパクト化を達成しょうとすると、収差補正が不十分となる課題があった。
[0007] 本発明はこのような技術的課題に鑑みてなされたものであり、変倍光学系の超コン ノ タト化を達成しつつ、色収差 ·非点収差等の諸収差を十分に補正することができる 変倍光学系、撮像装置及びデジタル機器を提供することを目的とする。
課題を解決するための手段
[0008] 本発明は、上記技術的課題を解決するために、以下のような構成を有する変倍光 学系、撮像装置及びデジタル機器を提供するものである。なお、以下の説明におい て使用されてレ、る用語は、本明細書にお!/、ては次の通り定義されて!/、るものとする。
(a)屈折率は、 d線の波長(587. 56nm)に対する屈折率である。
(b)アッベ数は、 d線、 F線(486· 13nm)、 C線(656. 28nm)に対する屈折率を各 々nd、 nF、 nC、アッベ数を v dとした場合に、
r d= (nd- l) / (nF-nC)
の定義式で求められるアッベ数 v dをいうものとする。
(c)面形状に関する表記は、近軸曲率に基づいた表記である。
(d)光学的パワーの表記にお!/、て、接合レンズを構成して!/、る各単レンズにつ!/、て は、該単レンズのレンズ面の両側が空気であるとした場合の光学的パワーをいうもの とする。 (e)非球面サグ (sag)量とは、レンズの面頂点と最大有効半径に対する非球 面曲線上の点との間の光軸方向の距離と、近軸曲率に基づく球面サグ量との差分を 表すパラメータである。 (f)複合型非球面レンズ (基板となる球面ガラス材料の上に薄い樹脂材料を塗布して 非球面形状としたレンズ)に用いる樹脂材料は、基板ガラス材料の付加的機能しかな いため、単独の光学部材としては取扱わず、基板ガラス材料が非球面を有する場合 と同等の极いとし、レンズ枚数も 1枚と考える。その際、レンズ屈折率も、基板となって V、るガラス材料の屈折率を用いるものとする。
(g)屈曲光学系の場合は、プリズムをレンズ枚数として数える。
(h)レンズについて、「凹」、「凸」又は「メニスカス」という表記を用いた場合、これらは 光軸近傍(レンズの中心付近)でのレンズ形状を表して!/、るもの(近軸曲率に基づレ、 た表記)とする。
[0009] 1.物体側から順に、負の光学的パワーを有する第 1レンズ群と、正の光学的パヮ 一を有する第 2レンズ群と、負の光学的パワーを有する第 3レンズ群とを含み、広角 端から望遠端への変倍時に前記第 1レンズ群と前記第 2レンズ群との間隔が狭くなる 変倍光学系において、前記第 1レンズ群は少なくとも 1枚の負レンズと少なくとも 1枚 の正レンズとを含み、前記第 2レンズ群は 1枚の正レンズと 1枚の負レンズとからなり、 当該第 2レンズ群内に少なくとも 1面の非球面が具備され、且つ、下記(1)〜(4)の条 件式を満たすことを特徴とする変倍光学系。
[0010] TLw/TLt< l . 2 · · · (1)
Δ Ν2〉0. 15 · · · (2)
Δ r 2 > 20 · · · (3)
Lb/fw≤l . 2 …(4)
但し、 TLw、 TLt :物体距離無限時における、広角端 (w)、望遠端 (t)での最も 物体側レンズ面の面頂点から像面までの光軸上距離
Δ N2:前記第 2レンズ群内のレンズの屈折率差
Δ r 2 :前記第 2レンズ群のレンズのアッベ数差
Lb:望遠端において、最も像側に位置するパワーを有するレンズ面の面頂 点から像面までの光軸上距離 (空気換算長)
fw:広角端での全光学系の合成焦点距離
この構成によれば、最も物体側に位置する第 1レンズ群が負の光学的パワーを持つ た、いわゆる負リードの光学系とされている。このため、物体側から大きな角度で入射 してくる光線を、第 1レンズ群の負の光学的パワーによりいち早く緩めることができ、光 学全長や前玉径のサイズのコンパクト化を図る点で有利となる。さらに、負リードの構 成では光学系のコンパクト化を図った場合でも、誤差感度の上昇を抑制し得る。これ らの点は、変倍比が 2〜4倍程度のズームレンズにおいて特に顕著となる。また、前 記第 1レンズ群が負レンズと正レンズとを少なくとも各 1枚有する構成とされているの で、倍率色収差を良好に補正することができる。さらに、前記第 2レンズ群が、軸上色 収差と球面収差の補正に最低限必要な正負各 1枚のレンズにて構成されているので 、変倍時において移動量が大きくなる第 2レンズ群の駆動装置の負荷を減らし、レン ズ枚数削減によるコスト低減を達成することが可能となる。加えて、第 2レンズ群内に 少なくとも 1面の非球面が具備されているので、第 2レンズ群の光学的パワーの増加 に伴って増大する球面収差を補正することができる。
[0011] さらに、コンパクト化や光学性能に鑑みて上記条件式(1)〜(4)を満たすことを要件 としている。 TLw/TLtが条件式(1)の上限を上回ると、広角端における像面の周辺 照度を確保するために、最も物体側のレンズの有効光路径を大きくする必要が生じ る。このため、変倍光学系の外径方向のサイズ小型化が困難となる。 Δ Ν2が条件式 (2)の下限を下回ると、ペッツバール和の増加に伴う非点収差が顕著となる。 A v 2 が条件式(3)の下限を下回ると、軸上色収差の補正が不十分となる。 Lb/fwが条件 式 (4)の上限を上回ると、広角端での非点収差補正と望遠端での非点収差補正とを 、共に良好な状態で両立させることが困難となる。
[0012] 2.前記第 2レンズ群が、下記(5)の条件式を満たすことを特徴とする 1に記載の変 倍光学系。
[0013] 0. 6 < f2/fw< 2. 0 …(5)
但し、 f2 :前記第 2レンズ群の合成焦点距離
上記条件式 (5)を満たす変倍光学系によれば、光学性能や製造難易度の面で一 層優れた変倍光学系とすることができる。 f2/fwが条件式(5)の上限を上回ると、第 2レンズ群の光学的パワーが弱すぎ、変倍光学系のコンパクト性を維持した状態で 2 〜4倍程度の変倍比を得ることが困難となる。一方、条件式(5)の下限を下回ると、第 2レンズ群の偏芯誤差感度が非常に高くなり、製造難易度が高くなる。
[0014] 3.無限遠物体から近距離物体へのフォーカシンダカ 前記第 3レンズ群を像側に 移動させることによって行われ、下記(6)の条件式を満たすことを特徴とする 1又は 2 に記載の変倍光学系。
[0015] 1. 5< I f3/fw I < 6. 0 · · · (6)
但し、 f3 :前記第 3レンズ群の合成焦点距離
第 3レンズ群でフォーカシングすることで、繰り出しによる光学全長の増加や前玉レ ンズ径の増大を招くことなぐ近距離物体まで鮮明な画像を得ることができる。また、 条件式 (6)を満たすことで、第 3レンズ群の光学性能や製造難易度の面で一層優れ た変倍光学系とすることができる。 f3/fwが条件式(6)の上限を上回ると、第 3レンズ 群のフォーカス移動量が大きくなる。このため、コンパクト性を維持しょうとした時に、 変倍レンズ群の移動量が制約されることになり、所望の変倍比を得ることが難しくなる 。一方、条件式 ½)の下限を下回ると、第 3レンズ群の光学的パワーが強くなりすぎ、 偏芯誤差感度が高くなつて、レンズの組立が困難となる。
[0016] 4.前記第 3レンズ群が、広角端から望遠端への変倍時に、物体側に凸形状の軌跡 を描くように移動するものであって、下記(7)の条件式を満たすことを特徴とする請求 の 1乃至 3のいずれかに記載の変倍光学系。
[0017] I D3/ (fwX ft) 1/2 I < 1. 5 · · · (7)
但し、 D3:広角端から望遠端への変倍時における前記第 3レンズ群の移動量 ft:望遠端での全光学系の合成焦点距離
第 3レンズ群を、広角端から望遠端への変倍時において、物体側に凸形状の軌跡 を描くように移動させることで、第 3レンズ群の変倍負担を軽減できる。そして、条件式 (7)を満たすことで、第 3レンズ群の偏芯誤差感度を抑制することができる。条件式( 7)の上限を上回ると、第 3レンズ群の偏芯誤差感度が高くなりすぎる。このため、レン ズの製造難易度が高くなる。
[0018] 5.前記第 1レンズ群は、広角端から望遠端への変倍時に固定であって、下記(8) の条件式を満たすことを特徴とする 1乃至 4のいずれかに記載の変倍光学系。
[0019] 0. Khl/TLw …(8) 但し、 hi:最も物体側レンズ面の広角端での有効光路半径
上記構成によれば、第 1レンズ群が固定とされているので、レンズ群の駆動装置の 負荷を大幅に低減することが可能となる。また、第 1レンズ群を変倍時に可動とする 場合には、第 1レンズ群の外側に駆動装置を配置しなければならず、このことは外径 方向のサイズアップを招来する。従って、第 1レンズ群を固定とすることで、外径方向 の小型化に対して非常に有効である。また、条件式(8)を満たすことで、第 1レンズ群 の光学性能の適正化を図ることができる。 hl/TLwが条件式(8)の下限を下回ると 、第 1レンズ群の光学的パワーが強くなりすぎ、偏芯誤差感度が高くなる。このため、 組立時に調整を行う必要が生じ、製造コストのアップに繋がる。
[0020] 6.前記第 1レンズ群及び、前記第 1レンズ群と前記第 2レンズ群とのレンズ群間隔
1S 下記(9)、(10)の条件式を満たすことを特徴とする 1乃至 5のいずれかに記載の 変倍光学系。
[0021] 0. 2 <Tl/ (fw X ft) 1/2< l . 5 · · · (9)
T12/ (fw X ft) 1/2< 0. 3 · · · (10)
但し、 T1:前記第 1レンズ群のレンズ最前面から前記第 1レンズ群のレンズ最後 面までの光軸上厚み
T12 :望遠端における、前記第 1レンズ群と前記第 2レンズ群との光軸上間 隔
条件式(9)、(10)を満たすことで、第 1レンズ群の構成、及び第 1レンズ群と第 2レ ンズ群とのレンズ群間隔を一層適正化することができる。条件式(9)の上限を上回る と、光学全長をコンパクトに維持しょうとする場合、第 2レンズ群の実質的な変倍移動 量が小さくなる。このため、第 2レンズ群の光学的パワーが強くなり、製造難易度が高 くなる。条件式(9)の下限を下回ると、第 1レンズ群内の負レンズの光学的パワーが 弱くなつて後側主点が像面から遠ざかる。このため、同じ焦点距離を維持しょうとする と、相対的にバックフォーカスの確保が困難となり、また射出瞳を像面から遠ざけるこ とが困難となる傾向が顕著となる。また、条件式(10)の上限を上回ると、光学全長を コンパクトに維持しょうとする場合、第 2レンズ群の実質的な変倍移動量力 S小さくなる 。このため、第 2レンズ群の光学的パワーが強くなり、製造難易度が高くなる。 [0022] 7.前記第 2レンズ群の物体側に開口絞りが備えられ、前記開口絞りは絞り径が固 定であることを特徴とする 1乃至 6のいずれかに記載の変倍光学系。
[0023] この構成によれば、第 2レンズ群の物体側に開口絞りを配置することで、第 1レンズ 群の前玉径を極力小さくすることができる。一方で、第 1レンズ群と第 2レンズ群との 間隔は光学全長に与える影響が大きぐ可変絞り機構を挿入するために当該間隔を 広げるよう構成すると、例えば 2〜3倍程度光学全長を長くする必要が生じる。そこで 、絞り径を固定として絞り部材を簡略化することで、光軸方向の薄肉化が達成できる ようになる。
[0024] 8.前記第 2レンズ群の像側に、光量を調節する機構が配置されていることを特徴と する 7に記載の変倍光学系。
[0025] 光量調節機構を配置するに際しては、像面の中心と周辺との光量ムラを避けるため 、全光束が同一位置を通過する絞り位置に配置することが好ましい。一方で、第 1レ ンズ群と第 2レンズ群との間隔は光学全長に与える影響が大きぐ当該間隔を広げる と 2〜3倍程度光学全長が長くなり得る。このため、厚みのある光量調節機構を絞り位 置に配置することは難しい。そこで第 2レンズ群の像側に光量調節機構を設けること により、絞り位置とほぼ同等程度に光量ムラを抑え、かつコンパクト性も維持すること が可能となる。なお、光量調節機構としては、例えば、絞りによる回折の影響を抑える ための NDフィルタやメカニカルシャツタ等を用いることができる。
[0026] 9.前記第 3レンズ群の像側に、正の光学的パワーを有する第 4レンズ群をさらに具 備することを特徴とする 1乃至 8のいずれかに記載の変倍光学系。
[0027] 前記第 4レンズ群を設けることにより、像面(撮像素子受光面)への軸外光線の入射 角度をテレセントリックに近づけることができる。
[0028] 10.前記第 4レンズ群は、広角端から望遠端への変倍時に固定であって、
下記(11)の条件式を満たすことを特徴とする 9に記載の変倍光学系。
[0029] 1. 0< I EPw/fw I < 8. 0 · · · (11)
但し、 EPw:広角端における、最大画角の主光線の射出瞳位置から像面までの 距離
第 4レンズ群を変倍時固定とすることで、変倍のための機械的な機構 (鏡筒機構)を 簡略化することができ、位置精度も向上させることができる。条件式(11)を満たすこと で、第 4レンズ群が変倍時固定の光学系において、光学特性を良好なものとすること 力できる。条件式(11)の上限を上回ると、コンパクトな光学全長を維持した際に、第 1レンズ群の光学的パワーが増加するため、誤差感度の増大が顕著になる。一方、 条件式(11)の下限を下回ると、像面への光線入射角のテレセントリック性が崩れ、撮 像素子の撮像面手前に画素に対応したレンズアレイを配置したとしても、周辺照度 低下を防ぐことが難しくなる。
[0030] 11.変倍光学系力 4つのレンズ群のみから構成されることを特徴とする 1乃至 10 の!/、ずれかに記載の変倍光学系。
[0031] 変倍光学系の超小型化を図る場合、レンズは製造限界の都合上、一定のスペース を必ず占有するため、レンズユニットの全空間に対するレンズの空間占有比率が相 対的に高くなる。そのため、製造難度よりレンズ単品の精度向上を優先させてでも、 レンズ群数やレンズ枚数を極力減らす必要がある。従って、 4成分の変倍光学系とす ることで、超小型化に有利な構成とすることができる。特に、負正負正 4成分とするこ とで、他のズームタイプよりもコンパクト化と高性能化とのバランス、すなわちコンパクト 化とフォーカス性能、製造誤差感度、像面入射角のテレセントリック性とのバランスを 最適なものとすることができる。
[0032] 12.変倍時に可動のレンズ群が、変倍群とズーミングに伴う像面変動補正群との 2 つのレンズ群のみであることを特徴とする請求の 1乃至 11のいずれかに記載の変倍 光学系。
[0033] 可動群が変倍群の一つである場合、構成によってはズーミングに伴う像面変動補 正が行えず、不連続な変倍となってしまうことがある。しかし、上記構成を採ることで、 いずれの構成でも連続的な変倍が可能となる。また、 3群以上の可動群がある場合 に比べて、レンズ群の駆動装置が占有する体積を減少させることができ、変倍光学 系ユニットの小型化を図ることができる。
[0034] 13.前記第 1レンズ群が、物体側から順に、 1枚の負レンズと 1枚の正レンズとから なり、下記( 12)の条件式を満たすことを特徴とする 1乃至 12の!/、ずれかに記載の変 倍光学系。 [0035] 0. 15 < I fln/flp | < 0. 50 · · · (12)
但し、 flp:前記第 1レンズ群内の正レンズの焦点距離
fin :前記第 1レンズ群内の負レンズの焦点距離
第 1レンズ群のレンズ配列を物体側から順に負正とすることで、広角端でのバックフ オーカス確保が容易となり、また広画角な軸外光の非点収差、倍率色収差を良好に 補正すること力 Sできる。なお、 I fln/flp Iが条件式(12)の上限を上回ると、特に 広角端での非点収差、歪曲収差の補正が不十分となる。一方、条件式(12)の下限 を下回ると、第 1レンズ群を構成する各レンズのパワーが非常に強くなるため、製造 難易度が高くなる。
[0036] 14.前記第 2レンズ群は、物体側から順に、 1枚の正レンズと 1枚の負レンズとから なり、下記( 13)の条件式を満たすことを特徴とする 1乃至 13の!/、ずれかに記載の変 倍光学系。
[0037] 1. 0 < I f2n/f2p | < 2. 5 · · · (13)
但し、 f2p:前記第 2レンズ群内の正レンズの焦点距離
f2n:前記第 2レンズ群内の負レンズの焦点距離
第 1レンズ群のレンズ配列を物体側から順に正負とすることで、第 2レンズ群の主点 位置が第 1レンズ群側に近付く。このため、変倍作用を保ったまま第 2レンズ群の実 質的パワーを軽減することができ、誤差感度低減に寄与する。なお、 I f2n/f2p I が条件式(13)の上限を上回ると、球面収差を十分に補正することが困難になる。一 方、条件式(13)の下限を下回ると、第 2レンズ群の負レンズのパワーが強くなるため 、倍率色収差が大きくなり、画質の低下が顕著になる。
[0038] 15.少なくとも 1枚の樹脂材料製レンズを有することを特徴とする 1乃至 14のいずれ かに記載の変倍光学系。
[0039] この構成によれば、樹脂材料製レンズを用いることで、安定した品質での大量生産 が可能となり、大幅なコストダウンを図ることができる。
[0040] 16.前記樹脂材料製レンズは、樹脂材料中に最大長が 30ナノメートル以下の粒子 を分散させてなる素材を用いて成形したレンズであることを特徴とする 15に記載の変 倍光学系。 [0041] 一般に透明な樹脂材料に微粒子を混合させると、光の散乱が生じ透過率が低下す るため、光学材料として使用することは困難である。しかし、微粒子の大きさを透過光 束の波長より小さくすることにより、散乱が実質的に発生しないようにできる。樹脂材 料は温度が上昇することにより屈折率が低下してしまうが、例えば無機の微粒子は温 度が上昇すると屈折率が上昇する。そこで、これらの温度依存性を利用して互いに 打ち消しあうように作用させることにより、屈折率変化がほとんど生じないようにするこ と力できる。具体的には、母材となる樹脂材料に最大長が 30ナノメートル以下の粒子 を分散させることで、屈折率の温度依存性が極めて低レ、樹脂材料とすることができる 。例えばアクリルに酸化ニオブ (Nb O )の微粒子を分散させることで、温度変化によ
2 5
る屈折率変化を小さくすることができる。従って、少なくとも 1枚のレンズに、このような 粒子を分散させた樹脂材料を用いることにより、本発明に係る変倍光学系の全系の 環境温度変化に伴うバックフォーカスずれを小さく抑えることができる。
[0042] 17.前記第 4レンズ群、又は第 4レンズ群よりも像側に位置するレンズ群内の正レン ズが、樹脂材料製レンズであることを特徴とする 9に記載の変倍光学系。
[0043] この構成によれば、前記正レンズが樹脂材料製レンズとされているので、コンパクト 性を損ねることなくコストダウンを図ることが可能となる。また、前記正レンズが温度変 化するとバックフォーカスに影響を与えるため、 30ナノメートル以下の粒子を分散さ せた材料を用いれば、この影響を大幅に軽減することができる。
[0044] 18. 1乃至 17のいずれかに記載の変倍光学系と、光学像を電気的な信号に変換 する撮像素子とを備え、前記変倍光学系が前記撮像素子の受光面上に被写体の光 学像を形成可能とされて!/、ることを特徴とする撮像装置。
この構成によれば、携帯電話機や携帯情報端末等に搭載可能な超小型でかつ高精 細でありながら、変倍が可能な撮像装置を実現し得る。
[0045] 19. 18に記載の撮像装置と、前記撮像装置及び撮像素子に被写体の静止画撮 影及び動画撮影の少なくとも一方の撮影を行わせる制御部とを具備し、前記撮像装 置の変倍光学系が、前記撮像素子の受光面上に被写体の光学像を形成可能に組 み付けられていることを特徴とするデジタル機器。
20.前記デジタル機器は、携帯端末であることを特徴とする 19に記載のデジタル機 これらの構成によれば、高精細を保ったままで変倍可能な撮像装置を搭載したデジ タル機器を実現し得る。なお、前記携帯端末とは、携帯電話機や携帯情報端末等に 代表される、携帯することを常態とするデジタル機器のことである。
発明の効果
[0046] 本発明によれば、十分なコンパクト化を達成しつつ、変倍域全域にわたって収差が 良好に補正された変倍光学系を提供できるようになり、特に変倍比が 2〜4倍程度の 変倍光学系、及びこれを搭載した撮像装置若しくはデジタル機器を、安価に、且つ 小型化が十分達成された態様で提供することができる。
図面の簡単な説明
[0047] [図 1]本発明に係る変倍光学系の構成を模式的に示す図である。
[図 2]本発明に係る変倍光学系を搭載したカメラ付携帯電話機の外観構成図であつ て、(a)は、その操作面を示す外観構成図、(b)は、操作面の裏面を示す外観構成 図である。
[図 3]本発明に係る変倍光学系を具備するデジタル機器の一例としての携帯電話機 の撮像に係る機能部の構成を示す機能ブロック図である。
[図 4]本発明の実施例 1に係る変倍光学系の広角端光路図を示す断面図である。
[図 5]実施例 2に係る変倍光学系の広角端光路図を示す断面図である。
[図 6]実施例 3に係る変倍光学系の広角端光路図を示す断面図である。
[図 7]実施例 4に係る変倍光学系の広角端光路図を示す断面図である。
[図 8]実施例 5に係る変倍光学系の広角端光路図を示す断面図である。
[図 9]実施例 6に係る変倍光学系の広角端光路図を示す断面図である。
[図 10]実施例 1におけるレンズ群の球面収差、非点収差及び歪曲収差を示す収差 図である。
[図 11]実施例 2におけるレンズ群の球面収差、非点収差及び歪曲収差を示す収差 図である。
[図 12]実施例 3におけるレンズ群の球面収差、非点収差及び歪曲収差を示す収差 図である。 [図 13]実施例 4におけるレンズ群の球面収差、非点収差及び歪曲収差を示す収差 図である。
[図 14]実施例 5におけるレンズ群の球面収差、非点収差及び歪曲収差を示す収差 図である。
[図 15]実施例 6におけるレンズ群の球面収差、非点収差及び歪曲収差を示す収差 図である。
[図 16]実施例におけるレンズ群の移動方向を示す模式図である。
[図 17]実施例におけるレンズ群の移動方向を示す模式図である。
符号の説明
[0048] 1、 1A〜; IF 変倍光学系
11、 Grl 第 1レンズ群
12、 Gr2 第 2レンズ群
13、 Gr3 第 3レンズ群
14、 Gr4 第 4レンズ群
15、 ST 光学絞り
16、 SR 撮像素子
AX 光軸
2 携帯電話機 (デジタル機器)
27 撮像装置
発明を実施するための最良の形態
[0049] 以下、図面に基づいて、本発明の実施形態につき説明する。
<変倍光学系の構成の説明〉
図 1は、本発明に係る変倍光学系 1の構成例を示す光路図(広角端の光路図)であ る。この変倍光学系 1は、光学像を電気的な信号に変換する撮像素子 16の受光面( 像面)上に被写体の光学像を形成するものであって、物体側から順に、負の光学的 パワーを有する第 1レンズ群 11、正の光学的パワーを有する第 2レンズ群 12、負の 光学的パワーを有する第 3レンズ群 13及び正の光学的パワーを有する第 4レンズ群 14が配列され、広角端から望遠端への変倍時に前記第 1レンズ群 11と前記第 2レン ズ群 12との間隔が狭くなる変倍光学系である。なお、図 1で例示した変倍光学系 1は 、後述する実施例 1の変倍光学系 1A (図 4参照)と同じ構成である。
[0050] ここでは、第 1レンズ群 1 1が、両凹の負レンズ 111と物体側に凸の正メニスカスレン ズ 112と力、ら構成され、第 2レンズ群 12力 両凸正レンズ 121と両凹負レンズ 122と力、 ら構成され、第 3レンズ群 13が物体側に凸の負メニスカスレンズ 131のみで構成され 、また第 4レンズ群 14が物体側に凸の正メニスカスレンズ 141のみで構成されている 例を示している。なお、第 2レンズ群 12の物体側には光学絞り 15が配置されている。 このような変倍光学系 1の像側には、ローパスフィルタ 17を介して撮像素子 16が配 置され、これにより物体側の被写体光学像が、変倍光学系 1によりその光軸 AXに沿 つて適宜な変倍比で撮像素子 16の受光面まで導かれ、撮像素子 16により前記被写 体の光学像が撮像されるものである。
[0051] この変倍光学系 1は、負正負正 4成分の光学系であって、最も物体側に位置する第 1レンズ群 11が負の光学的パワーを持った、負リードの光学系である。このため、物 体側から大きな角度で入射してくる光線を、第 1レンズ群 11の負の光学的パワーによ りいち早く緩めることができ、光学全長や前玉径のサイズのコンパクト化を図る点で有 利である。さらに、負リードの構成では光学系のコンパクト化を図った場合でも、誤差 感度の上昇を抑制できる利点がある。
[0052] 本発明においては、上述の変倍光学系 1で例示したように、第 1レンズ群 11は、少 なくとも 1枚の負レンズ (負レンズ 111)と、少なくとも 1枚の正レンズ(正メニスカスレン ズ 112)とを含んで構成される。これにより、倍率色収差を良好に補正することができ る。ここでは、第 1レンズ群 11に負レンズと正レンズとが 1枚ずつ含まれている例を示 しているが、各々複数枚含んでいても良い。また、光軸 AXを例えば直角に折り曲げ るプリズムを含んでいても良い。し力、し、第 1レンズ群 1 1はプリズムも含めて 4枚以下 のレンズで構成することが望ましい。これにより、レンズ枚数削減によるコスト低減を達 成すること力できる。なお、両凹の負レンズ 111に代えて、物体側に凸の負メニスカス レンズを用いることも、好ましい実施形態の一つである。
[0053] また、第 2レンズ群 12は 1枚の正レンズ(両凸正レンズ 121)と、 1枚の負レンズ(両 凹負レンズ 122)とから構成される。これにより、軸上色収差と球面収差の補正に最低 限必要な正負各 1枚のレンズを有する一方で、変倍時において移動量が大きくなる 第 2レンズ群 12の駆動装置の負荷を減らし、レンズ枚数削減によるコスト低減を達成 できる。
[0054] さらに、第 2レンズ群 12内には、少なくとも 1面の非球面が具備される。図 1の例で は、両凸正レンズ 121及び両凹負レンズ 122が有する 4つのレンズ面のうち、少なくと も 1面が非球面とされる。勿論、複数面を非球面としても良ぐ全ての面を非球面とし ても良い。この非球面の存在により、第 2レンズ群 12の光学的パワーの増加に伴って 増大する球面収差を良好に補正することができる。とりわけ、第 2レンズ群 12内の正 レンズ、つまり両凸正レンズ 121に非球面を設けることが望ましい。これにより、コンパ タト化に伴う第 2レンズ群のパワー増大により発生する球面収差とコマ収差を良好に ネ甫正すること力 Sでさる。
[0055] なお、第 2レンズ群 12に限らず、他のレンズ群にも非球面を具備させることが望まし い。特に、空気と面している全てのレンズ面力 非球面であることが望ましい。すなわ ち、負レンズ 111、正メニスカスレンズ 112、両凸正レンズ 121、両凹負レンズ 122、 負メニスカスレンズ 131及び正メニスカスレンズ 141の全てのレンズの物体側及び像 側のレンズ面が、非球面とされていることが望ましい。これにより、超コンパクト化と高 画質化の両立を図ることができる。
[0056] さらに変倍光学系 1は、物体距離無限時における、広角端 (w)、望遠端 (t)での最 も物体側レンズ面の面頂点力、ら像面までの光軸 AX上の距離を TLw、 TLt、第 2レン ズ群 12内のレンズである両凸正レンズ 121と両凹負レンズ 122との屈折率差を Δ Ν2 、並びにアッベ数差を Δ V 2、望遠端において最も像側に位置するレンズである正メ ニスカスレンズ 141のレンズ面の面頂点から像面までの光軸 AX上の距離 (空気換算 長)を Lb、広角端での全光学系の合成焦点距離を fwとするとき、下記(1)〜(4)の 条件式を満たすものとされる。
[0057] TLw/TLt < 1. 2 · · · (1)
Δ Ν2〉0. 15 · · · (2)
Δ r 2 > 20 · · · (3)
Lb/fw≤l . 2 …(4) TLw/TLtが条件式(1)の上限を上回ると、広角端における像面の周辺照度を確 保するために、負レンズ 111の有効光路径を大きくする必要が生じる。このため、変 倍光学系 1の外径方向のサイズ小型化が困難となる。 Δ Ν2が条件式(2)の下限を 下回ると、ペッツバール和の増加に伴う非点収差が顕著となる。 Δ V 2が条件式(3) の下限を下回ると、軸上色収差の補正が不十分となる。 Lb/fwが条件式 (4)の上限 を上回ると、広角端での非点収差補正と望遠端での非点収差補正とを、共に良好な 状態で両立させることが困難となる。
[0058] ここで、上記条件式(2)の関係、すなわち両凸正レンズ 121と両凹負レンズ 122と の屈折率差 Δ N2は、下記(2) 'の条件式を満たすことが望まし!/、。
[0059] Δ Ν2〉0. 20 · · · (2),
条件式(2) 'を満足することで、第 2レンズ群 12内での非点収差の補正が十分とな り、レンズ群の組立誤差に伴う性能バラツキが大きくなる傾向が緩やかになる。
[0060] また、上記条件式(3)の関係、すなわち両凸正レンズ 121と両凹負レンズ 122との アッベ数差を Δ V 2は、下記(3) 'の条件式を満たすことが望ましい。
[0061] Δ r 2 > 30 · · · (3) '
条件式(3) 'を満足することで、望遠端での軸上コントラストが回折限界に比して 低下しない。このため、望遠端での F値と相まって、鮮明な画像を得ることの難易度が 上昇しない。
[0062] さらに、上記条件式 (4)における Lb/fwの関係は、下記 (4),の条件式を満たすこ とが望ましい。
[0063] Lb/fw< l . 0 ' · · (4),
条件式 (4) 'を満足することで、望遠端において、撮像素子 16の受光面へ入射す る軸外光線のテレセントリック性の崩れ度合いが大きくならず、周辺照度の低下を抑 X·る。
[0064] 変倍光学系 1において、第 2レンズ群 12の合成焦点距離を f2とするとき、当該第 2 レンズ群 12が、下記(5)の条件式を満たすことが望ましレ、。
[0065] 0. 6 < f2/fw< 2. 0 …(5)
f2/fwが条件式(5)の上限を上回ると、第 2レンズ群 12の光学的パワーが弱すぎ 、変倍光学系 1のコンパクト性を維持した状態で 2〜4倍程度の変倍比を得ることが困 難となる。一方、条件式(5)の下限を下回ると、第 2レンズ群 12の偏芯誤差感度が非 常に高くなり、製造難易度が高くなる。
[0066] ここで、上記条件式(5)における f2/fwの関係は、下記(5),の条件式を満たすこ とが望ましい。
[0067] 0. 8 < f 2/fw< 1. 8 . · · (5),
条件式(5) 'を満足することで、第 2レンズ群 12の光学的パワーが弱くならないため 、変倍時に必要な第 2レンズ群 12の移動量が増加することなぐ光学全長を短くする こと力 Sできる。また、第 2レンズ群 12の偏芯誤差感度が高くなりすぎることがなぐレン ズ間の調整が必須とならないため、生産コストを抑えることができる。
[0068] 変倍光学系 1のフォーカシング構成について、無限遠物体から近距離物体へのフ オーカシングが、第 3レンズ群 13 (負メニスカスレンズ 131)を像側に移動させることに よって行われることが好ましい。この場合、第 3レンズ群 13の合成焦点距離を f3とす るとき、下記(6)の条件式を満たすことが望ましい。
[0069] 1. 5 < I f3/fw I < 6. 0 · · · (6)
フォーカシングは、例えば第 1レンズ群 11を移動させることによって行うこともできる 。しかし、第 3レンズ群 13でフォーカシングすることで、繰り出しによる光学全長の増 加や前玉レンズ径の増大を招くことなぐ近距離物体まで鮮明な画像を得ることがで きる。また、条件式 (6)を満たすことで、第 3レンズ群 13の光学性能や製造難易度の 面で一層優れた変倍光学系 1とすることができる。 f3/fwが条件式(6)の上限を上 回ると、第 3レンズ群 13のフォーカス移動量が大きくなる。このため、コンパクト性を維 持しょうとした時に、変倍レンズ群の移動量が制約されることになり、所望の変倍比を 得ること力 S難しくなる。一方、条件式(6)の下限を下回ると、第 3レンズ群 13の光学的 ノ ヮ一が強くなりすぎ、偏芯誤差感度が高くなつて、レンズの組立が困難となる。
[0070] 変倍光学系 1にお!/、て、変倍時に移動させるレンズ群は、適宜に設定することがで きる。その中で、第 3レンズ群 13が、広角端から望遠端への変倍時に、物体側に凸 形状の軌跡を描くように移動するものとし、広角端から望遠端への変倍時における第 3レンズ群 13の移動量を D3、望遠端での全光学系の合成焦点距離を ftとするとき、 下記(7)の条件式を満たすことが望ましレ、。
[0071] I D3/ (fw X ft) 1/2 I < 1. 5 · · · (7)
第 3レンズ群 13を、広角端から望遠端への変倍時において、物体側に凸形状の軌 跡を描くように移動させることで、第 3レンズ群 13の変倍負担を軽減できる。そして、 条件式(7)を満たすことで、第 3レンズ群 13の偏芯誤差感度を抑制することができる 。条件式(7)の上限を上回ると、第 3レンズ群 13の偏芯誤差感度が高くなりすぎる。こ のため、レンズの製造難易度が高くなる。
[0072] 上記条件式(7)の関係は、下記(7) 'の条件式を満たすことが望ましい。
[0073] D3/ (fw X ft) l/2 < l . 0 . · · (7),
条件式(7) 'を満足することで、偏芯誤差感度の上昇による軸外性能のバラツキ が大きくならないため、前記バラツキを調整する作業が不要となり、生産コストを抑え ること力 Sでさる。
[0074] これに対し、第 1レンズ群 11は、広角端から望遠端への変倍時に固定とすることが 望ましい。第 1レンズ群 11を固定とすれば、レンズ群の駆動装置の負荷を大幅に低 減すること力 S可能となる。また、第 1レンズ群 11を変倍時に可動とする場合には、第 1 レンズ群 11の外側に駆動装置を配置しなければならず、このことは外径方向のサイ ズアップを招来する。従って、第 1レンズ群 1 1を固定とすることで、外径方向の小型 化に対して非常に有効である。
[0075] 第 1レンズ群 11を固定とする場合、最も物体側のレンズ面、すなわち負レンズ 111 の物体側のレンズ面の広角端での有効光路半径を hiとするとき、下記(8)の条件式 を満たすことが望ましい。
[0076] 0. K hl/TLw · · · (8)
hl/TLwが条件式(8)の下限を下回ると、第 1レンズ群 11の光学的パワーが強く なりすぎ、偏芯誤差感度が高くなる。このため、組立時に調整を行う必要が生じ、製 造コストのアップに繋がる。
[0077] 第 1レンズ群 11の構成及び、第 1レンズ群 11と第 2レンズ群 12とのレンズ群間隔は 、次の通りとすることが望ましい。すなわち、光軸 AX上における第 1レンズ群 11のレ ンズ最前面(負レンズ 111の物体側面)力、ら第 1レンズ群 11のレンズ最後面(正メニス カスレンズ 112の像側面)までの光軸上厚みを Tl、望遠端における第 1レンズ群 11 と第 2レンズ群 12との光軸上間隔(正メニスカスレンズ 112の像側面と両凸正レンズ 1 21の物体側面との望遠端間隔)を T12とするとき、下記(9)、 (10)の条件式を満た すことが望ましい。
[0078] 0. 2 <Tl/ (fw X ft) 1/2< l . 5 · · · (9)
T12/ (fw X ft) 1/2< 0. 3 · · · (10)
条件式(9)の上限を上回ると、光学全長をコンパクトに維持しょうとする場合、第 2レ ンズ群 12の実質的な変倍移動量が小さくなる。このため、第 2レンズ群 12の光学的 ノ ヮ一が強くなり、製造難易度が高くなる。条件式 (9)の下限を下回ると、第 1レンズ 群 12内の負レンズ 111の光学的パワーが弱くなつて後側主点が像面から遠ざかる。 このため、同じ焦点距離を維持しょうとすると、相対的にバックフォーカスの確保が困 難となり、また射出瞳を像面から遠ざけることが困難となる傾向が顕著となる。また、 条件式(10)の上限を上回ると、光学全長をコンパクトに維持しょうとする場合、第 2レ ンズ群 12の実質的な変倍移動量が小さくなる。このため、第 2レンズ群 12の光学的 ノ^ーを強くせねばならず、製造難易度が高くなる。
[0079] なお、変倍時に可動のレンズ群が、変倍群とズーミングに伴う像面変動補正群との
2つのレンズ群のみであることが望ましい。図 1に示す変倍光学系 1の場合、例えば、 第 2レンズ群 12と第 3レンズ群 13のみを変倍時に移動させる変倍構成とすることが望 ましい。可動群が変倍群の一つである場合、構成によってはズーミングに伴う像面変 動補正が行えず、不連続な変倍となってしまうことがある。しかし、上記構成を採るこ とで、いずれの構成でも連続的な変倍が可能となる。また、 3群以上の可動レンズ群 がある場合に比べて、レンズ群の駆動装置が占有する体積を減少させることができ、 変倍光学系 1の小型化を図ることができる。
[0080] 本発明において、光学絞り 15 (開口絞り)の配置位置は特に限定されるものではな いが、図 1に示すように、第 2レンズ群 12の物体側に配置されることが望ましい。また 、光学絞り 15は絞り径が固定であることが望ましい。
[0081] 第 2レンズ群の物体側に光学絞り 15を配置することで、第 1レンズ群 11の前玉径を 極力小さくすること力 Sできる。一方で、第 1レンズ群 11と第 2レンズ群 12との間隔は光 学全長に与える影響が大きぐ可変絞り機構を揷入するために当該間隔を広げるよう 構成すると、例えば 2〜3倍程度光学全長を長くする必要が生じる。そこで、絞り径を 固定として絞り部材を簡略化することで、第 1レンズ群 11と第 2レンズ群 12との間隔を 必要以上に広げる必要がなくなり、光軸方向の薄肉化が達成できるようになる。
[0082] 図 1では図示省略している力 S、第 2レンズ群 12の像側に、光量調節機構を配置する ことが望ましい。ここで光量調節機構としては、例えば、絞りによる回折の影響を抑え るための NDフィルタやメカニカルシャツタ等を用いることができる。一般に、光量調節 機構を配置するに際しては、像面の中心と周辺との光量ムラを避けるため、全光束が 同一位置を通過する絞り位置に配置することが好ましぐ図 1に例では第 2レンズ群 1 2の物体側に光量調節機構を配置することが好ましいと言える。し力、しながら、第 1レ ンズ群 11と第 2レンズ群 12との間隔は光学全長に与える影響が大きぐ当該間隔を 広げると 2〜3倍程度光学全長が長くなり得る。このため、厚みのある光量調節機構 を絞り位置に配置することは難しい。そこで、光学絞り 15に近い第 2レンズ群 12の像 側に光量調節機構を設けることにより、絞り位置とほぼ同等程度に光量ムラを抑え、 かつコンパクト性も維持することができる。
[0083] 本発明に係る変倍光学系は、負正負 3成分を具備していれば良い。しかし、図 1に 例示するように、第 3レンズ群 13の像側に、正の光学的パワーを有する第 4レンズ群 14 (正メニスカスレンズ 141)を具備していることが望ましい。第 4レンズ群 14を設ける ことにより、撮像素子 16の受光面への軸外光線の入射角度をテレセントリックに近づ けること力 Sでさる。
[0084] 第 4レンズ群 14を設ける場合は、この第 4レンズ群 14は、広角端から望遠端への変 倍時に固定とすることが望ましい。これにより、変倍のための機械的な機構 (鏡筒機 構)を簡略化することができ、位置精度も向上させることができる。
[0085] さらに、広角端における、最大画角の主光線の射出瞳位置から像面までの距離を EPwとするとき、下記(11)の条件式を満たすことが望まし!/、。
[0086] 1. 0 < I EPw/fw I < 8. 0 · · · (11)
条件式(11)の上限を上回ると、コンパクトな光学全長を維持した際に、第 1レンズ 群 11の光学的パワーが増加するため、誤差感度の増大が顕著になる。一方、条件 式(11 )の下限を下回ると、像面への光線入射角のテレセントリック性が崩れ、撮像素 子 16の受光面手前に画素に対応したレンズアレイを配置したとしても、周辺照度低 下を防ぐことが難しくなる。
[0087] 上記条件式(11)の I EPw/fw Iの関係は、下記(1 1) 'の条件式を満たすことが 望ましい。
[0088] 2. 0 < I EPw/fw | < 4. 0 - - - (11) '
条件式(11) 'を満足することで、広角端と望遠端での撮像素子 16の受光面への 軸外光線入射角度の差が大きくなりすぎることがなぐ変倍時における周辺照度低下 が抑えられる。
[0089] 図 1では、負正負正 4成分の変倍光学系 1を例示しているが、さらに他のレンズ群を 追加することもできる。しかし、 4つのレンズ群のみから構成される変倍光学系 1は、 超小型化を図る場合に有利である。特に、負正負正 4成分とすることで、他のズーム タイプよりもコンパクト化と高性能化とのバランス、すなわちコンパクト化とフォーカス性 能、製造誤差感度、像面入射角のテレセントリック性とのバランスを最適なものとする こと力 Sでさる。
[0090] とりわけ、物体側から順に、負レンズと物体側に凸の正メニスカスレンズから成る第 1 レンズ群、両凸レンズ、負レンズから成る第 2レンズ群、負レンズから成る第 3レンズ群 、正レンズから成る第 4レンズ群を含む構成とすることが望ましい。第 2レンズ群を正 負の順としたのは、第 2レンズ群の主点位置を第 1レンズ群側に近付けることにより、 変倍作用を保ったまま第 2レンズ群の実質的パワーを軽減し誤差感度低減を行うた めである。第 2レンズ群に両凸レンズを配置するのは、第 2レンズ群のパワーを強め、 変倍時の移動量を減らすためである。第 3レンズ群を負レンズとするのは、光学全長 短縮化と非点収差補正を両立するためである。第 4レンズ群を正レンズとするのは、 上述したように撮像素子の受光面への軸外光線入射角度をテレセントリックに近づけ るためである。力、かる要件を図 1に示す変倍光学系 1は満たしており、ここに示す意 味にぉレ、ても、変倍光学系 1は好まし!/、構成を備えて!/、る。
[0091] 図 1に示すように、第 1レンズ群 11力 物体側から順に、 1枚の負レンズ (負レンズ 1 11 )と 1枚の正レンズ(正メニスカスレンズ 112)との 2枚からなるだけでなく、正メニス カスレンズ 112の焦点距離を flp、負レンズ 111の焦点距離を finとするとき、下記(1 2)の条件式を満たすことが望まし!/、。
[0092] 0. 15 < I fln/flp | < 0. 50 · · · (12)
第 1レンズ群 12のレンズ配列を物体側から順に負正とすることで、広角端でのバッ クフォーカス確保が容易となり、また広画角な軸外光の非点収差、倍率色収差を良 好に補正することができる。なお、 I f ln/f lp Iが条件式(12)の上限を上回ると、 特に広角端での非点収差、歪曲収差の補正が不十分となる。一方、条件式(12)の 下限を下回ると、第 1レンズ群を構成する負レンズ 111及び正メニスカスレンズ 112の ノ ヮ一が非常に強くなるため、製造難易度が高くなる。
[0093] また第 2レンズ群 12は、物体側から順に、 1枚の正レンズ(両凸正レンズ 121)と 1枚 の負レンズ(両凹負レンズ 122)とからなり、両凸正レンズ 121の焦点距離を f2p、両 凹負レンズ 122の焦点距離を f2nとするとき、下記(13)の条件式を満たすことが望ま しい。
[0094] 1. 0 < I f2n/f2p | < 2. 5 · · · (13)
条件式(13)の上限を上回ると、球面収差を十分に補正することが困難になる。一 方、条件式(13)の下限を下回ると、両凹負レンズ 122のパワーが強くなるため、倍率 色収差が大きくなり、画質の低下が顕著になる。
[0095] さらに第 2レンズ群 12は、下記(14)の条件式を満たすことが望ましい。
[0096] 0. 3 < f2/ft< 0. 9 · · · (14)
条件式(14)の上限を上回ると、第 2レンズ群 12のパワーが弱すぎて 2〜4倍程度 の変倍比を得ることが困難である。一方、条件式(14)の下限を下回ると、第 2レンズ 群 12の誤差感度が非常に高くなり、製造が困難となる。
[0097] 上記条件式(14)の f2/ftの関係は、下記(14) 'の条件式を満たすことが望ましい
[0098] 0. 4 < f2/ft< 0. 8 - - - (14) '
条件式(14) 'を満足することで、第 2レンズ群 12の光学パワーが弱くならないため 、変倍に際して必要な第 2レンズ群 12の移動量が増加することなぐ光学全長を短く すること力 Sできる。また、第 2レンズ群 12の偏芯誤差感度が高くなりすぎることがなぐ レンズ間の調整が必須とならないため、生産コストを抑えることができる。
[0099] 次に、変倍光学系 1の構成材料について説明する。上記第 1〜第 4レンズ群 11〜1 4を構成する各レンズの材質につ!/、ては特に制限はなぐ各種ガラス材料や樹脂(プ ラスチック)材料からなる光学材料を用いることができる。しかし、樹脂材料を用いれ ば、軽量で、且つインジェクションモールド等により大量生産が可能であることから、 ガラス材料で作製する場合に比して、製造コストの抑制や変倍光学系 1の軽量化の 面で有利である。従って、変倍光学系 1に、少なくとも 1枚の樹脂材料製レンズを具備 させることが望ましい。勿論、 2枚以上の樹脂材料製レンズを具備させても良い。
[0100] なお、樹脂材料製レンズを少なくとも 2枚用いる場合には、第 3レンズ群 13中の負レ ンズ(図 1の場合は負メニスカスレンズ 131)と、第 4レンズ群 14中の正レンズ(正メ二 スカスレンズ 141)を樹脂材料にて構成することが望ましい。この場合、環境温度変 化に伴うバックフォーカスずれを小さく抑えることができる。
[0101] この樹脂材料製レンズとしては、樹脂材料中に最大長が 30ナノメートル以下の粒 子、特に無機粒子を分散させてなる素材を用いて成形したレンズを用いることが望ま しい。このような樹脂材料製レンズを用いることで、上述した通り樹脂材料製レンズの 温度変化による屈折率変化を極めて小さくすることができる。
[0102] ここで、屈折率の温度変化について詳細に説明する。屈折率の温度変化 Aは、口 一レンツ'ローレンツの式に基づいて、屈折率 nを温度 tで微分することにより、下記( 15)式にて表すことができる。
[0103] [数 1]
A ( 1 5 )
Figure imgf000024_0001
但し、 :纏膨張係数、 [ R ] 分子屈折
[0104] 樹脂材料の場合は、一般に(15)式中の第 1項に比べ第 2項の寄与が小さぐほぼ 無視できる。例えば、 PMMA樹脂の場合、線膨張係数 αは 7 X 10— 5であり、上記(1 5)式に代入すると、 Α=— 1. 2 X 10— 4[/°C]となり、実測値とおおむね一致する。 具体的には、従来は— 1. 2 X 10— 4[/°C]程度であった屈折率の温度変化 Aを、絶 対値で 8 X 1(T5[/°C]未満に抑えることが好ましい。好ましくは絶対値で 6 X 1 ( 5[ /°C]未満にすることが好ましい。 6 X 10_5[/°C]未満にすることで、環境温度変化 時におけるバックフォーカス変動量を約半分に抑制することが可能となる。なお、上 記変倍光学系 1に適用可能な樹脂材料の屈折率の温度変化 A ( = dn/dT)を表 1 に示す。
[0105] [表 1]
Figure imgf000025_0001
[0106] この場合、第 4レンズ群 14、又は第 4レンズ群 14よりも像側にさらにレンズ群が存在 している場合は当該レンズ群内の正レンズ力 S、樹脂材料製レンズであることが望まし い。これにより、コンパクト性を損ねることなくコストダウンを図ることが可能となる。また 、前記正レンズが温度変化時にバックフォーカスに影響を与えるため、 30ナノメート ル以下の無機粒子を分散させた材料とした場合には、この影響を大幅に軽減するこ と力 Sできる。
[0107] 変倍光学系 1において、非球面ガラスレンズを用いる場合、その非球面ガラスレン ズをモールドで成形しても構わな!/、し、或いはガラス材料と樹脂材料との複合型とし ても勿論構わない。モールドタイプは大量生産に向く反面、硝材が限定されてしまう 。一方の複合型は、基板と成り得るガラス材料が非常に多ぐ設計の自由度が高い利 点がある。高屈折材料を用いた非球面レンズは、一般的にモールド成形が難しいの で、片面非球面の場合には複合型の利点を最大限活用することができる。
[0108] また、変倍光学系 1は、光学絞り 15の代わりに、撮像素子 16に対して遮光を行う機 能を有するメカニカルシャツタを配置しても良い。力、かるメカニカルシャツタは、例えば 撮像素子 16として CCD (CHARGE COUPLED DEVICE)方式のものが用いら れた場合に、スミア防止に効果がある。
[0109] 変倍光学系 1に備えられている各レンズ群や絞り、シャッター等の駆動の駆動源と しては、従来公知のカム機構やステッピングモータを用いることができる。また、移動 量が少なレ、場合や駆動群の重量が軽!/、場合には、超小型の圧電ァクチユエータを 用いれば、駆動部の体積や電力消費の増加を抑えつつ、各群を独立に駆動させる ことも可能で、変倍光学系 1を含む撮像レンズ装置の更なるコンパクト化が図れるよう になる。
[0110] 撮像素子 16は、当該変倍光学系 1により結像された被写体の光像の光量に応じて 、 R、 G、 B各成分の画像信号に光電変換して所定の画像処理回路へ出力するもの である。例えば撮像素子 16としては、 CCDが 2次元状に配置されたエリアセンサの 各 CCDの表面に、 R (赤)、 G (緑)、 B (青)のカラーフィルタが巿松模様状に貼り付け られた、いわゆるべィヤー方式と呼ばれる単板式カラーエリアセンサで構成されたも のを用いることができる。このような CCDイメージセンサの他、 CMOSイメージセンサ 、 VMISイメージセンサ等も用いることができる。
[0111] ローパスフィルタ 17は、撮像素子 16の受光面上に配置され、ノイズ成分を除去する 平行平板状の光学部品である。このローパスフィルタ 17として、例えば所定の結晶軸 方向が調整された水晶等を材料とする複屈折型ローパスフィルタや、必要とされる光 学的な遮断周波数特性を回折効果により実現する位相型ローパスフィルタ等が適用 可能である。なお、ローパスフィルタ 17は必ずしも備える必要はなぐまた、前述の光 学的なローパスフィルタ 17に代えて、撮像素子 16の画像信号に含まれるノイズを低 減するために赤外線カットフィルタを用いるようにしてもよい。さらに、光学的ローパス フィルタ 17の表面に赤外線反射コートを施して、両方のフィルタ機能を一つで実現し てもよい。
<変倍光学系を組み込んだデジタル機器の説明〉
次に、以上説明したような変倍光学系 1が組み込まれたデジタル機器について説 明する。図 2は、本発明に係るデジタル機器の一実施形態を示す、カメラ付携帯電話 機 2の外観構成図である。なお、本発明において、デジタル機器としては、デジタノレ スチルカメラ、ビデオカメラ、デジタルビデオユニット、携帯情報端末 (PDA: PERSO NAL DIGITAL ASSISTANT)、パーソナルコンピュータ、モバイルコンピュータ 、又はこれらの周辺機器(マウス、スキャナ、プリンタ等)を含むものとする。
[0112] 図 2 (a)は、携帯電話機 2の操作面を、図 2 (b)は、操作面の裏面、つまり背面を表 している。携帯電話機 2には、上部にアンテナ 21、操作面には、長方形のディスプレ ィ 22、画像撮影モードの起動及び静止画と動画撮影の切り替えを行う画像切替ボタ ン 23、変倍(ズーミング)を制御する変倍ボタン 24、シャッターボタン 25及びダイヤル ボタン 26が備えられている。変倍ボタン 24は、その上端部分に望遠を表す「T」の印 字力 下端部分に広角を表す「W」の印字がされ、印字位置が押下されることで、そ れぞれの変倍動作が指示可能な 2接点式のスィッチ等で構成されている。さらに、こ の携帯電話機 2には、先に説明した変倍光学系 1によって構成された撮像装置 27が 内蔵されている。
[0113] 図 3は、上記携帯電話機 2の撮像に係る電気的な機能構成を示す機能ブロック図 である。この携帯電話機 2は、撮像機能のために、撮像部 30、画像生成部 31、画像 データバッファ 32、画像処理部 33、駆動部 34、制御部 35、記憶部 36、及び I/F部 37を備えて構成される。
[0114] 撮像部 30は、撮像装置 27と撮像素子 16とを備えて構成される。撮像装置 27は、 図 1に示したような変倍光学系 1と、光軸方向にレンズを駆動し変倍及びフォーカシ ングを行うための図略のレンズ駆動装置等とを備えて構成される。被写体からの光線 は、変倍光学系 1によって撮像素子 16の受光面上に結像され、被写体の光学像とな
[0115] 撮像素子 16は、変倍光学系 1により結像された被写体の光学像を R (赤), G (緑), B (青)の色成分の電気信号 (画像信号)に変換し、 R, G, B各色の画像信号として画 像生成部 31に出力する。撮像素子 16は、制御部 35の制御により、静止画あるいは 動画のいずれか一方の撮像、又は撮像素子 16における各画素の出力信号の読出 し (水平同期、垂直同期、転送)等の撮像動作が制御される。
[0116] 画像生成部 31は、撮像素子 16からのアナログ出力信号に対し、増幅処理、デジタ ル変換処理等を行うと共に、画像全体に対して適正な黒レベルの決定、 γ補正、ホ ワイトバランス調整 (WB調整)、輪郭補正及び色ムラ補正等の周知の画像処理を行 つて、画像信号から各画素の画像データを生成する。画像生成部 31で生成された 画像データは、画像データバッファ 32に出力される。
[0117] 画像データバッファ 32は、画像データを一時的に記憶するとともに、この画像デー タに対し画像処理部 33により後述の処理を行うための作業領域として用いられるメモ リであり、例えば、 RAM (RANDOM ACCESS MEMORY)等で構成される。
[0118] 画像処理部 33は、画像データバッファ 32の画像データに対し、解像度変換等の画 像処理を行う回路である。また、必要に応じて画像処理部 33に、変倍光学系 1では 補正しきれな力、つた収差を補正させるように構成することも可能である。
[0119] 駆動部 34は、制御部 35から出力される制御信号により、所望の変倍及びフォー力 シングを行わせるように変倍光学系 1の複数のレンズ群を駆動する。
[0120] 制御部 35は、例えばマイクロプロセッサ等を備えて構成され、撮像部 30、画像生 成部 31、画像データバッファ 32、画像処理部 33、駆動部 34、記憶部 36及び I/F 部 37の各部の動作を制御する。すなわち、該制御部 35により、被写体の静止画撮 影及び動画撮影の少なくとも一方の撮影を、撮像装置 27及び撮像素子 16が実行す るよう制卸される。
[0121] 記憶部 36は、被写体の静止画撮影又は動画撮影により生成された画像データを 記憶する記憶回路であり、例えば、 ROM (READ ONLY MEMORY)や RAM を備えて構成される。つまり、記憶部 36は、静止画用及び動画用のメモリとしての機 能を有する。
[0122] I/F部 37は、外部機器と画像データを送受信するインターフェースであり、例えば 、 USBや IEEE1394等の規格に準拠したインターフェースである。
[0123] 以上の通り構成された携帯電話機 2の撮像動作について説明する。静止画を撮影 するときは、まず、画像切替ボタン 23を押すことで、画像撮影モードを起動する。ここ では、画像切替ボタン 23を一度押すことで静止画撮影モードが起動し、その状態で もう一度画像切替ボタン 23を押すことで動画撮影モードに切り替わる。つまり、画像 切替ボタン 23からの指示を受けた携帯電話機 2本体の制御部 35が、物体側の被写 体の静止画撮影及び動画撮影の少なくとも一方の撮影を撮像装置 27及び撮像素子 16に実行させる。
[0124] 静止画撮影モードが起動すると、制御部 35は、撮像装置 27及び撮像素子 16に静 止画の撮影を行わせるように制御すると共に、撮像装置 27の図略のレンズ駆動装置 を駆動し、フォーカシングを行う。これにより、ピントの合った光学像が撮像素子 16の 受光面に周期的に繰り返し結像され、 R、 G、 Bの色成分の画像信号に変換された後 、画像生成部 31に出力される。その画像信号は、画像データバッファ 32に一時的に 記憶され、画像処理部 33により画像処理が行われた後、表示用メモリ(図略)に転送 され、ディスプレイ 22に導かれる。そして、撮影者はディスプレイ 22を司見くことで、主 被写体をその画面中の所望の位置に収まるように調整することができる。この状態で シャッターボタン 25を押すことで、静止画像を得ることができる。すなわち、静止画用 のメモリとしての記憶部 36に画像データが格納される。
[0125] このとき、被写体が撮影者から離れた位置にある、あるいは近くの被写体を拡大し たいためズーム撮影を行うときには、変倍ボタン 24の上端「T」の印字部分を押下す ると、その状態が検出され、制御部 35は押下時間に応じて変倍のためのレンズ駆動 を実行し、変倍光学系 1に連続的にズーミングを行わせる。また、ズーミングし過ぎた 場合など、被写体の拡大率を下げたい場合には、変倍ボタン 24の下端「W」の印字 部分を押下することでその状態が検出され、制御部 35が変倍光学系 1を制御するこ とにより、押下時間に応じて連続的に変倍が行われる。このようにして、撮影者から離 れた被写体であっても、変倍ボタン 24を用いてその拡大率を調節することができる。 そして、通常の等倍撮影と同様、主被写体がその画面中の所望の位置に収まるよう に調整し、シャッターボタン 25を押すことで、拡大された静止画像を得ることができる
[0126] また、動画撮影を行う場合には、画像切替ボタン 23を一度押すことで静止画撮影 モードを起動した後、もう一度画像切替ボタン 23を押して動画撮影モードに切り替え る。これにより、制御部 35は、撮像装置 27及び撮像素子 16を制御し動画の撮影を 行わせる。後は静止画撮影のときと同様にして、撮影者はディスプレイ 22を司見き、撮 像装置 27を通して得た被写体の像が、その画面中の所望の位置に収まるように調整 する。このとき、静止画撮影と同様に、変倍ボタン 24を用いて被写体像の拡大率を調 節すること力 Sできる。この状態でシャッターボタン 25を押すことで、動画撮影が開始さ れる。この撮影中、変倍ボタン 24により、被写体の拡大率を随時変えることも可能で ある。
[0127] 動画撮影時、制御部 35は、撮像装置 27及び撮像素子 16に動画の撮影を行わせ るように制御すると共に、撮像装置 27の図略のレンズ駆動装置を駆動し、フォーカシ ングを行う。これにより、ピントの合った光学像が撮像素子 16の受光面に周期的に繰 り返し結像され、 R、 G、 Bの色成分の画像信号に変換された後、画像生成部 31に出 力される。その画像信号は、画像データバッファ 32に一時的に記憶され、画像処理 部 33により画像処理が行われた後、表示用メモリに転送され、ディスプレイ 22に導か れる。ここで、もう一度シャッターボタン 25を押すことで、動画撮影は終了する。撮影 された動画像は、動画用のメモリとしての記憶部 36に導かれて格納される。
<変倍光学系のより具体的な実施形態の説明〉
以下、図 1に示したような変倍光学系 1、すなわち図 2に示したようなカメラ付携帯電 話機 2に搭載される撮像装置 27を構成する変倍光学系 1の具体的構成を、図面を参 照しつつ説明する。
実施例
[0128] [実施例 1]
図 4は、実施例 1の変倍光学系 1Aにおけるレンズ群の配列を示す、光軸 (AX)を 縦断した断面図(光路図)である。この図 4、及び以下に示す図 5〜図 9の光路図は、 広角端 (W)におけるレンズ配置を示している。実施例 1及び以下に示す実施例 2〜 6を通じて、これらのレンズ群は、図の物体側(図 4における左側)から順に、全体とし て負の光学的パワーを有する第 1レンズ群(Grl)、正の光学的パワーを有する第 2レ ンズ群 (Gr2)、負の光学的パワーを有する第 3レンズ群 (Gr3)を含み、さらに実施例 4を除き正の光学的パワーを有する第 4レンズ群(Gr4)を含んで構成されて!/、る。つ まり、最も物体側に位置する第 1レンズ群 (Grl)が負の光学的パワーを有する、いわ ゆる負リードの構成とされている。
[0129] 図 4に示した実施例 1の変倍光学系 1Aは、各レンズ群が物体側から順に、以下の ように構成されている。第 1レンズ群 (Grl)は、全体として負の光学的パワーを有し、 両凹の負レンズ(第 1レンズ L1)と物体側に凸の正メニスカスレンズ(第 2レンズ L2)か ら成る。第 2レンズ群(Gr2)は、全体として正の光学的パワーを有し、両凸の正レンズ (第 3レンズ L3)と両凹負レンズ(第 4レンズ L4)と力、ら成る。この第 2レンズ群(Gr2)の 物体側には、変倍時に該第 2レンズ群 (Gr2)と共に移動する光学絞り(ST)が備えら れている。第 3レンズ群(Gr3)は、負の光学的パワーを有する物体側に凸の負メニス カスレンズ(第 5レンズ L5) l枚で構成されている。第 4レンズ群(Gr4)は、正の光学 的パワーを有する物体側に凸の正メニスカスレンズ(第 6レンズ L6) l枚で構成されて いる。この第 4レンズ群 (Gr4)の像側には、平行平板 (FT)を介して撮像素子(SR) の受光面が配置されている。前記平行平板 (FT)は、光学的ローパスフィルタ、赤外 カットフィルタ、撮像素子のカバーガラス等に相当するものである。
[0130] なお、上記光学絞り (ST)に代えてメカニカルシャツタを配置するようにしても良い。
また、図 4では連続的な変倍光学系を示している力 よりコンパクト化を目指して、同 一の光学構成での 2焦点切り替え変倍光学系としても良い。特に広角端から望遠端 への変倍時に第 1レンズ群 (Grl)の移動軌跡が Uターン (像側に凸の軌道を描くよう に移動)し、結果として広角端と望遠端での光学全長が略同一となる場合には、 2焦 点切り替え変倍光学系とすることで、第 1レンズ群 (Grl)を変倍時固定とすることが可 能なため駆動機構を含めたユニットサイズの小型化に大きな効果がある。これらの点 は、以下に説明する実施例 2〜6においても同様である(以下では説明を省略する)
[0131] 図 4において各レンズ面に付されている番号 ri (i= l , 2, 3, · · · )は、物体側から数 えたときの i番目のレンズ面(ただし、レンズの接合面は 1つの面として数えるものとす る。)であり、 riに「*」印が付されている面は非球面であることを示すものである。なお 、前記光学絞り(ST)、平行平板(FT)の両面、撮像素子(SR)の受光面も 1つの面と して扱っている。このような极いは、後述する他の実施例についての光路図(図 5〜 図 9)でも同様で、図中の符号の意味は、基本的に図 4と同様である。但し、全く同一 のものであるという意味ではなぐ例えば、各図を通じて、最も物体側のレンズ面には 同じ符号 (rl)が付けられているが、これらの曲率等が実施形態を通じて同一であると いう意味ではない。
[0132] このような構成の下で、物体側から入射した光線は光軸 AXに沿って、順に第 1、第
2、第 3及び第 4レンズ群 (Grl , Gr2, Gr3, Gr4)及び平行平板 (FT)を通過し、撮 像素子(SR)の受光面に物体の光学像を形成する。そして、撮像素子(SR)におい て、平行平板 (FT)において修正された光学像が電気的な信号に変換される。この 電気信号は、必要に応じて所定のデジタル画像処理や画像圧縮処理等が施されて 、デジタル映像信号として携帯電話機や携帯情報端末等のメモリに記録されたり、有 線あるいは無線により他のデジタル機器に伝送されたりする。
[0133] 図 16 (a)、 (b)、(c)及び図 17は、これらレンズ群の変倍時における移動方向を示 した模式図である。この図 16 (a)、(b)、 (c)及び図 17には、実施例 1のみならず、後 述する実施例 2以降の各レンズ群の移動方向も同時に示してある。すなわち、図 16 ( a)は実施例 1、図 16 (b)は実施例 2と 5、図 16 (c)は実施例 3と 6、図 17は実施例 4の 各レンズ群の移動方向を示してある。この図 16及び図 17においてもこれまでと同様 左側が物体側であり、その物体側から第 1レンズ群 (Grl)、第 2レンズ群 (Gr2)、第 3 レンズ群(Gr3)及び第 4レンズ群(Gr4)の順に並んで配置されて!/、る。この図にお!/ヽ て、符号 Wは焦点距離が最も短い、すなわち画角が最も大きい広角端を示しており、 符号 Tは焦点距離が最も長い、すなわち画角が最も小さい望遠端を示している。また 、符号 Mは焦点距離が広角端 (W)と望遠端 (T)との中間点を表している。実際のレ ンズ群は光軸に沿った直線上を移動させられるが、この図においては、広角端 (W) 、中間点(M)及び望遠端 (T)におけるレンズ群の位置を、図の上から下へ並べる形 で表している。
[0134] 図 16 (a)に示すように、この実施例 1では、第 1レンズ群(Grl)乃至第 3レンズ群(G r3)が変倍時可動とされ、第 4レンズ群 (Gr4)のみが変倍時固定とされている。具体 的には、広角端 (W)から望遠端 (T)への変倍時に、第 1レンズ群 (Grl)は、像側に 凸の軌道を描くように移動され、第 2レンズ群 (Gr2)は物体に近付く方向に直線的に 移動され、第 3レンズ群 (Gr3)は、物体側に凸の軌道を描くように移動される。但し、 以下の実施例も含め、これらレンズ群の移動の向きや移動量等は、当該レンズ群の 光学的パワーやレンズ構成等に依存して変わり得るものである。例えば、図 16にお V、て、第 2レンズ群 (Gr2)のように直線的に移動するように描かれて!/、るものであって も、それは物体側又は像側に凸の曲線である場合なども含み、 Uターン形状である 場合なども含むものである。
[0135] 実施例 1の変倍光学系 1Aにおける、各レンズのコンストラタシヨンデータを表 2、表 3に示す。この変倍光学系 1Aでは、すべてのレンズ(L1〜L6)が両面非球面レンズ とされている。また、第 1、 5、 6レンズ(Ll、 L5、 L6)が樹脂レンズとされ、その他のレ ンズはガラスレンズとされている。さらに、上述した条件式(1 )〜(; 14)を、実施例 1の 光学系に当てはめた場合のそれぞれの数 を、後掲の表 16に示す。
[表 2]
Figure imgf000033_0001
[表 3]
Figure imgf000034_0001
[0138] 表 2に示したものは、左から順に、各レンズ面の番号、各面の曲率半径(単位は mm )、広角端 (W)、中間点 (M)及び望遠端 (T)における、無限遠合焦状態での光軸上 の各レンズ面の間隔(軸上面間隔)(単位は mm)、各レンズの屈折率、そしてアッベ 数である。軸上面間隔 M Tの空欄は、左の W欄の値と同じであることを表している。 また、軸上面間隔は、対向する一対の面(光学面、撮像面を含む)間の領域に存在 する媒質が空気であるとして換算した距離である。ここで、各レンズ面の番号 ri (i= l , 2, 3, · · ·) «、図 4に示したように、光路上の物体側から数えて i番目の光学面であり 、 に *が付された面は非球面(非球面形状の屈折光学面または非球面と等価な屈 折作用を有する面)であることを示す。なお、光学絞り(ST)、平行平面板 (FT)の両 面及び撮像素子(SR)の受光面の各面は平面であるために、それらの曲率半径は∞ である。
[0139] 光学面の非球面形状は、面頂点を原点、物体から撮像素子に向かう向きを z軸の 正の方向とするローカルな直交座標系(X, y, z)を用い、下記(16)式により定義する
[0140] [数 2]
Figure imgf000034_0002
• * · ( 1 6 )
[0141] ただし、 z :高さ hの位置での z軸方向の変位量(面頂点基準) h : z軸に対して垂直な方向の高さ(h2 = x2 + y2)
^近軸曲率(= 1/曲率半径)
A, B, C, D, E, F, G :それぞれ 4, 6, 8, 10, 12, 14, 16次の非球面係数 k :円錐係数
上記(16)式から分かるように、表 2に示した非球面レンズに対する曲率半径は、レ ンズの面頂点付近の値を示している。また表 3は、非球面とされている面(表 2におい て riに *が付された面)の円錐係数 kと非球面係数 A, B, C, Dの値とをそれぞれ示 すものである。
[0142] 以上のようなレンズ配置、構成のもとでの、実施例 1における全光学系の球面収差( LONGITUDINAL SPHERICAL ABERRATION)、非点収差(ASTIGMAT ISM)、及び歪曲収差(DISTORTION)を、図 10の左側から順に示す。この図にお いて、上段は広角端 (W)、中段は中間点 (M)、下段は望遠端 (T)における各収差を 表している。また、球面収差と非点収差の横軸は焦点位置のずれを mm単位で表し ており、歪曲収差の横軸は歪量を全体に対する割合(%)で表している。球面収差の 縦軸は、入射高で規格化した値で示してあるが、非点収差と歪曲収差の縦軸は像の 高さ(像高)(単位 mm)で表してある。
[0143] さらに球面収差の図には、一点鎖線で赤色(波長 656. 28nm)、実線で黄色(いわ ゆる d線;波長 587. 56nm)、そして破線で青色(波長 435. 84nm)と、波長の異な る 3つの光を用いた場合の収差がそれぞれ示してある。また、非点収差の図中、符号 sと tはそれぞれサジタル (ラディアル)面、タンジェンシャル (メリディォナル)面におけ る結果を表している。さらに、非点収差及び歪曲収差の図は、上記黄線 (d線)を用い た場合の結果である。この図 10からわかるように、実施例 1のレンズ群は、広角端 (W )、中間点(M)、望遠端 (T)のいずれにおいても、歪曲収差がほぼ 5%以内と優れた 光学特性を示している。また、この実施例 1における広角端 (W)、中間点(M)及び望 遠端 (T)における焦点距離(単位 mm)及び F値を、表 14及び表 15にそれぞれ示す 。これらの表から、本発明では、短焦点で明るい光学系が実現できていることがわか
[0144] [実施例 2] 図 5は、実施例 2の変倍光学系 IBにおけるレンズ群の配列を示す、光軸 (AX)を縦 断した断面図である。この実施例 2の変倍光学系 1Bは、各レンズ群が物体側から順 に、全体として負の光学的パワーを有する第 1レンズ群 (Grl)、光学絞り(ST)、全体 として正の光学的パワーを有する第 2レンズ群(Gr2)、負の光学的パワーを有する第 3レンズ群 (Gr3)及び正の光学的パワーを有する第 4レンズ群(Gr4)カゝらなる。さら に詳しくは、第 1レンズ群 (Grl)は物体側から順に、両凹の負レンズ (L1)と物体側に 凸の正メニスカスレンズ (L2)とからなる。第 2レンズ群(Gr2)は物体側から順に、両 凸の正レンズ (L3)と両凹の負レンズ (L4)とからなる。第 3レンズ群(Gr3)は、物体側 に凸の負メニスカスレンズ (L5) l枚からなる。第 4レンズ群(Gr4)は、物体側に凸の 正メニスカスレンズ(L6) 1枚からなる。
[0145] このようなレンズ構成の実施例 2に係る変倍光学系 1Bにおいては、広角端 (W)か ら望遠端 (T)への変倍時に、図 16 (b)に示すように、第 2レンズ群 (Gr2)が物体側に 直線的に移動し、第 3レンズ群 (Gr3)が物体側に凸を描くように Uターン移動する。 一方、第 1レンズ群 (Grl)及び第 4レンズ群 (Gr4)は固定とされる。なお、光学絞り( ST)は、変倍時に第 2レンズ群 (Gr2)と共に移動する。
[0146] 次に、実施例 2に係る変倍光学系 1Bにおける、各レンズのコンストラタシヨンデータ を表 4及び表 5に示す。これらの表及び図 5に示すように、この実施例 2では、すべて のレンズ(L1〜L6)が両面非球面レンズとされている。また、第 5、 6レンズ(L5、 L6) が樹脂レンズとされ、その他のレンズはガラスレンズとされて!/、る。
[0147] [表 4]
レン'ズ面' 屈折率 アッベ数
(mm) T
rl * -38.BS1
0* 800 1.S闘 52.82 rZ* 4, 146
ri * 9.218
1.4:95
r4 * 25.S45
4.086 0. §00
f5(絞リ) oo
0. δδδ
r6 * 4.3S3
3. S0S ,翻 3 61.24 rl * -4. δΟ?
0.17S
r8 * ~δ, &δ
1.83? 1.89542 26.13 r§* 42. ?5δ
2.471 $, 138 r!O* 4δ.稱
η, 1.53Q4S SS.72 r" * 9.24S
8.327 S.S43
Π2 * 8, 760
1.41S 1.583 0 30.23 ri3 * I7.51S
1.634
r14 ϋύ
0.300 I.SISSG 64.20 r15 οο
0. soo
r 6(像面 οο
) 5]
求面係数
円錐係数
A B D
ズレ
面ン 3.04E»83 - UE- 04 6. SSE-O?
1.26Ε-03 3. S4E-04 -I.57E-0S -t. SE-OT
- 1.36E-E53 3.47E-0 -3.6?E~0S -δ, 01£~0?
~2. i§E-03 1.88E-Q4 - 7.73£-0§ 9, 97E-07
-1. 1SE-03 -S.40Ε-δδ -1. 25£~βδ -21 Οδ
s- m~ -4.3TE-0S 3.63E-07
-KS4E-03 3, SSE~04 -2. SE-05 -8, 1 E-0S
\, ~ 1.48£-M ~5. ΠΕ-δδ -4. 17E~07
δ. ΰΕ-04 -1. 51E-84
- 3.89E-03 9. z ~u -1.54E-04 1.93E-05
3.36E-03 -7. 17E-04 8. 8E-0S -5. 18E-CS
7. ~8.30E-0S
Figure imgf000038_0001
[実施例 3]
図 6は、実施例 3の変倍光学系 1Cにおけるレンズ群の配列を示す、光軸 (AX)を 縦断した断面図である。この実施例 3の変倍光学系 1Cは、各レンズ群が物体側から 順に、全体として負の光学的パワーを有する第 1レンズ群 (Grl)、光学絞り(ST)、全 体として正の光学的パワーを有する第 2レンズ群(Gr2)、負の光学的パワーを有する 第 3レンズ群 (Gr3)及び正の光学的パワーを有する第 4レンズ群(Gr4)カゝらなる。さ らに詳しくは、第 1レンズ群(Grl)は物体側力 順に、物体側に凸の負メニスカスレン ズ (L1)と、光路折り返しプリズムに相当する平板(PR)と、物体側に凸の正メニスカス レンズ (L2)とからなる。第 2レンズ群(Gr2)は物体側から順に、両凸の正レンズ (L3) と物体側に凸の負メニスカスレンズ (L4)とからなる。第 3レンズ群(Gr3)は、両凹の 負レンズ (L5) l枚からなる。第 4レンズ群(Gr4)は、両凸の正レンズ (L6) 1枚からな
[0150] このようなレンズ構成の実施例 3に係る変倍光学系 1Cにおいては、広角端 (W)か ら望遠端 (T)への変倍時に、図 16 (c)に示すように、第 2レンズ群 (Gr2)が物体側に 直線的に移動し、第 3レンズ群 (Gr3)が中間点(M)で移動速度をシフトする態様で、 物体側に直線的に移動する。一方、第 1レンズ群 (Grl)及び第 4レンズ群 (Gr4)は 固定とされる。なお、光学絞り(ST)は、変倍時に第 2レンズ群 (Gr2)と共に移動する
[0151] 次に、実施例 3に係る変倍光学系 1Cにおける、各レンズのコンストラタシヨンデータ を表 6及び表 7に示す。これらの表及び図 6に示すように、この実施例 3では、第 2〜 第 6レンズ(L2〜L6)が両面非球面レンズとされ、第 1レンズが片面非球面レンズとさ れている。また、すべてのレンズ(L1〜L6)がガラスレンズとされている。
[0152] [表 6]
曲率半搔 軸上面閎隔 (mm)
レンズ漏 麵率 アッベ数
{mm) W T
rl 128-840
L754S0 r2* 4.310 r3 oo
20.88 r4 00 r5* S.晨
068 soo 989655 s 13l 1 o 8 o o o Q ΰ Q o o 6 &o 2 o 42 s 1.S45S6 τδ* 13,182
3.18S 0.難
r赚リ) OQ r8* 3, 351
1,48700 81,S5 rS* ' 4.,お 4 r!O* 5,419
1.7瞻1 27,84 rl J * ϊ 8s
I, 314
rlZ* -19.975
LS9§37 48.51 r13 * S, 949
S.000
ri4* 服 333
L 85000 39, &0 r15* -&,478
i 6:
1,5藤 64.10 r17 oo d赚面 oo
) 7]
Figure imgf000041_0001
雜球面係数
Ε F G
Q, OOE QO {}.職舰 ο. αδε+so
Q., OOE-flO (L職確
-7. 4E-07 1JIE-07 -4, IOE-09
-L2QE-04 ~3,88Ε-0δ
-S.6 E-05 1.33E-OS 30Ε-09
1.8§E- 4 δ,舰働 0,鶴 03
LOSE- IS 0, 00Ε+0δ O.OOE OO
1.47E-0? Ο,όΟΕ+Οδ
3.95E-07 0. ββ闘
O.OOE+fiO ο.載細 0. GDE+ 0
&. OOE+OQ δ,δβ睡 L ―」
[0154] なお、実施例 3においては、レンズユニットの厚み方向のサイズを抑えるためにプリ ズムを使用する例を示したが、光路折り返し部材として、反射ミラー等を代替的に用 V、ることももちろん可能である。
[0155] [実施例 4]
図 7は、実施例 4の変倍光学系 1Dにおけるレンズ群の配列を示す、光軸 (AX)を 縦断した断面図である。この実施例 4の変倍光学系 1Dは、各レンズ群が物体側から 順に、全体として負の光学的パワーを有する第 1レンズ群 (Grl)、光学絞り(ST)、全 体として正の光学的パワーを有する第 2レンズ群(Gr2)及び負の光学的パワーを有 する第 3レンズ群 (Gr3)からなる。さらに詳しくは、第 1レンズ群 (Grl)は物体側から 順に、物体側に凸の負メニスカスレンズ(L1)と物体側に凸の正メニスカスレンズ(L2
)と力もなる。第 2レンズ群 (Gr2)は物体側から順に、両凸正レンズ (L3)と両凹負レン ズ (L4)と力、らなる。第 3レンズ群(Gr3)は、像側に凸の負メニスカスレンズ (L5) 1枚 力 なる。
[0156] このようなレンズ構成の実施例 4に係る変倍光学系 1Dにおいては、広角端 (W)か ら望遠端 (T)への変倍時に、図 17に示したように、第 2レンズ群 (Gr2)は物体側に直 線的に移動し、第 3レンズ群 (Gr3)は物体側に凸を描くように Uターン移動する。一 方、第 1レンズ群 (Grl)は固定とされる。なお、光学絞り(ST)は、変倍時に第 2レン ズ群 (Gr2)と共に移動する。
[0157] 次に、実施例 4に係る変倍光学系 1Dにおける、各レンズのコンストラタシヨンデータ を表 8及び表 9に示す。これらの表及び図 7に示すように、この実施例 4では、全ての レンズ (L1〜L5)が両面非球面レンズとされている。また、第 5レンズ (L5)が樹脂製 レンズとされ、その他のレンズはガラスレンズとされて!/、る。
[0158] [表 8]
曲率半径 軸上面闢隔 (mm)
! レンズ面 屈街率 アッベ Ιϊ
(mm 5 W M T
rl * 2δ.915
0,874 1, mm
r2* 3,歸
ί,ΜΊ
r3 * §, ?48
1.35S
r4 * 16, ?03
8,84? 3,572 0.600
r5(絞リ) οο
0,瞧
Γβ * 4, 875
4.2S1 ί.圆 3 61.24 r? * -5.5SS
0.1 S6
rS* -9.318
3, 000 1.80S42 26.13 r9* 170.599
5. OH 7. S97
r O* -S.9¾2.
1.46S 1.51048
rll * -13. Π7
0.872 S.214
Π2
0.300 1; 51880 84.20 rl3
\ r!4(像面 οο
) 9]
Figure imgf000044_0001
Figure imgf000044_0002
[0160] [実施例 5]
図 8は、実施例 5の変倍光学系 IEにおけるレンズ群の配列を示す、光軸 (AX)を縦 断した断面図である。この実施例 5の変倍光学系 1Eは、各レンズ群が物体側から順 に、全体として負の光学的パワーを有する第 1レンズ群 (Grl)、光学絞り(ST)、全体 として正の光学的パワーを有する第 2レンズ群(Gr2)、負の光学的パワーを有する第 3レンズ群 (Gr3)及び正の光学的パワーを有する第 4レンズ群(Gr4)カゝらなる。さら に詳しくは、第 1レンズ群 (Grl)は物体側から順に、両凹の負レンズ (L1)と物体側に 凸の正メニスカスレンズ (L2)とからなる。第 2レンズ群(Gr2)は物体側から順に、両 凸の正レンズ (L3)と両凹の負レンズ (L4)とからなる。第 3レンズ群(Gr3)は、物体側 に凸の負メニスカスレンズ(L5) l枚からなる。第 4レンズ群(Gr4)は、両凸の正レンズ (L6) 1枚からなる。
[0161] このようなレンズ構成の実施例 5に係る変倍光学系 1Eにおいては、広角端 (W)か ら望遠端 (T)への変倍時に、図 16 (b)に示すように、第 2レンズ群 (Gr2)が物体側に 直線的に移動し、第 3レンズ群 (Gr3)が物体側に凸を描くように Uターン移動する。 一方、第 1レンズ群 (Grl)及び第 4レンズ群 (Gr4)は固定とされる。なお、光学絞り( ST)は、変倍時に第 2レンズ群 (Gr2)と共に移動する。
[0162] 次に、実施例 5に係る変倍光学系 1Eにおける、各レンズのコンストラタシヨンデータ を表 10及び表 11に示す。これらの表及び図 8に示すように、この実施例 5では、すべ てのレンズ(L1〜L6)が両面非球面レンズとされている。また、第 5、 6レンズ(L5、 L 6)が樹脂レンズとされ、その他のレンズはガラスレンズとされている。
[0163] [表 10] 曲率半径 軸上面間隔 (mm)
レンズ面 屈折率 i アッベ数 1
(mm) W T
rl *
§00 1.68980 52. E rZ * S.182
,815
r3* δ. §42
283 1.S0542 26.13 r4 * 25, 3S3
!.75δ 4, 11 0, 84S
oo
3,爾
.000 ί.58913 δί.24 r?* ~4<S21
.117
Γ8* «28.562
89? 1,80542 2S.13 rS* S.704
.S76 1,165 6. m
rlO* 13.6S2
750 1.53048 55. ?2 rtl * 7, m
.2?0 δ, 2δ l 4.498
r!2 * 13,805
545 55,72
Π3* -29.891
381
r14; oo
.3SD 1.516 0 S4> 20 rl5 oo
500
r 《像面
) [表 11] レン 剛係数
円錐係数
ズ面 A S C 1 D
rl 0 I.57E-03 ~1.8SE~05 1 7.171- 07 rZ 0 S.81E-S4 ~
r3 0 -L 83E-03 5.I3E-05 3.9ΤΕ~δ5 -2.88Ε-08 r4 0 -t.S3E-0 2.23E-SS -5.7ΙΕ-07 rl 0 -?,4:4£-03 ?, 38Ε-β5
f7 0 ?,騰 - 3 ~l.87E-04 -3.δίΕ~04
FS o 4,:δδΕ-8 9.04E- 4 -ί,縦- Μ g.OOE~05 r3 0 1.§7£-03 -1.34ε 04 28E-0S 1 rlO 0 -2.2SE-&3 1.2SE-G3 -Z.4Sg-04 1.63E-05 i rl? 3 -i. - 1. lSE-03 -1.72Ε~0 L1SE-S5 r12 -1 1
ri3 B ..33E-0S -LO4E-03
Figure imgf000046_0001
[実施例 6]
図 9は、実施例 6の変倍光学系 IFにおけるレンズ群の配列を示す、光軸 (AX)を縦 断した断面図である。この実施例 6の変倍光学系 1Fは、各レンズ群が物体側から順 に、全体として負の光学的パワーを有する第 1レンズ群 (Grl)、光学絞り(ST)、全体 として正の光学的パワーを有する第 2レンズ群(Gr2)、負の光学的パワーを有する第 3レンズ群 (Gr3)及び正の光学的パワーを有する第 4レンズ群(Gr4)カゝらなる。さら に詳しくは、第 1レンズ群 (Grl)は物体側から順に、両凹の負レンズ (L1)と物体側に 凸の正メニスカスレンズ (L2)とからなる。第 2レンズ群(Gr2)は物体側から順に、両 凸の正レンズ (L3)と両凹の負レンズ (L4)とからなる。第 3レンズ群(Gr3)は、物体側 に凸の負メニスカスレンズ(L5) l枚からなる。第 4レンズ群(Gr4)は、両凸の正レンズ (L6) 1枚からなる。
[0166] このようなレンズ構成の実施例 6に係る変倍光学系 1Fにおいては、広角端 (W)か ら望遠端 (T)への変倍時に、図 16 (c)に示すように、第 2レンズ群 (Gr2)が物体側に 直線的に移動し、第 3レンズ群 (Gr3)が中間点(M)で移動速度をシフトする態様で、 物体側に直線的に移動する。一方、第 1レンズ群 (Grl)及び第 4レンズ群 (Gr4)は 固定とされる。なお、光学絞り(ST)は、変倍時に第 2レンズ群 (Gr2)と共に移動する
[0167] 次に、実施例 6に係る変倍光学系 1Fにおける、各レンズのコンストラタシヨンデータ を表 12及び表 13に示す。これらの表及び図 9に示すように、この実施例 6では、すべ てのレンズ(L1〜L6)が両面非球面レンズとされている。また、第 5、 6レンズ(L5、 L 6)が樹脂レンズとされ、その他のレンズはガラスレンズとされている。
[0168] [表 12]
曲率半径 I 軸上面髑隳 (mm)
レンズ面 屈折率 アツべ数 indm) W M 丁
rl *
1.092 1.68880 52, 82 r * 4.633
1.709
r3* 5.810
1.SSS 1.89542 26.13 r4 * S-■
8.320 4.371 δ, 87?
fS《絞リ》 :
8,000
r§* 3.851
2.970 1.5翻 S1.24 r7* ~4,27S
0,100
rS *; -IS.078
0.848 ! I.80S42 2S.13 rS* 7.215 :
15Π 2,蘭 4. m
* 14, jSS
0, ?50 1.S304 ■55、 n rll * 5.3S4
1.37! 5.726 S.430
r12* 38,646 !
1.408 1.5834Q
r13 * 歸
2,557
rl oo
S.300 84,20 rl5 00 !
; ;
0.500
r1晴面 oo
) 一 _ 」
13]
1 非球面係数
1 円錐係数
ズ面 A B I C [ -『 Ί
ト δ -2.98E-Q4 I, I .- -1.S5€~05 ! ?' S2E-D7
i rl 0 -3. 4£-03 8.17E-0 ~z,4 - ι -Qi f3 0 -2,3 Ε-03 Z. D 3E-0 1.5IE-0S
r4 0 -1.3¾Ε-03 1.35E-04 L05E-&5 38E-OS
I re 0 -USE- 03 ~L51E~04 5. - 85 1 -8.79E-Q5
I r? 0 7, 48E-03 -6.61E-04 . -4.21S-0 j , OSE-0 r8 0 -5, m^m L縦- M -3.13£-iS
I rS 0 -2'お £-Q4 2, S7E-0S r1Q 0 -4, m~m L43E-83 -LT8E~94 2.37E-05 rll 0 -s.m~ 1、„ - 2, 43E-04 1.3?£-0S r12 - 1 3. DE-03 -?.94E-Q4 1.03E-Q4 19E-08
1 rl3 0 03 し 03 L QE-Q4 j -6. m~m
Figure imgf000049_0001
[0170] 以上のようなレンズ配置、構成のもとでの、上記実施例 2〜6の変倍光学系 1Β〜1 Fの球面収差、非点収差、そして歪曲収差を図 11〜図 15にそれぞれ示す。これらの 図において、球面収差の図には、図 10と同様に、一点鎖線で赤色、実線で黄色、そ して破線で青色と、波長の異なる 3つの光を用いた場合の収差がそれぞれ示してあ る。いずれの実施例におけるレンズ群も、広角端 (W)、中間点(M)、望遠端 (T)のい ずれにおいても、歪曲収差がほぼ 5%以内と優れた光学特性を示している。
[0171] また、この実施例 2〜6の各変倍光学系 1B〜1Fにおける広角端 (W)、中間点(M) 、そして望遠端 (T)における焦点距離(単位 mm)及び F値を、表 14及び表 15にそれ ぞれ示す。これらの表から、実施例 1と同様に、短焦点で、明るい光学系が実現でき ていることがわかる。 [0172] [表 14]
Figure imgf000050_0002
[0173] [表 15]
Figure imgf000050_0001
Figure imgf000050_0003
[0174] また、この実施例 2〜6の各変倍光学系 IB〜; LFに、上述した条件式(1)〜(14)を 当てはめた場合のそれぞれの数値を、表 16に示す。
[0175] [表 16]
Figure imgf000051_0001
以上説明したように、上記実施例 1〜6に係る変倍光学系 1A〜; IFによれば、とりわ け変倍比が 2〜4倍程度の変倍光学系において、変倍域全域にわたって各種の収 差が良好に補正され、且つ、超小型化が達成できるズームレンズを安価に提供する こと力 Sでさる。

Claims

請求の範囲
[1] 物体側から順に、負の光学的パワーを有する第 1レンズ群と、正の光学的パワーを 有する第 2レンズ群と、負の光学的パワーを有する第 3レンズ群とを含み、広角端から 望遠端への変倍時に前記第 1レンズ群と前記第 2レンズ群との間隔が狭くなる変倍 光学系において、
前記第 1レンズ群は少なくとも 1枚の負レンズと少なくとも 1枚の正レンズとを含み、 前記第 2レンズ群は 1枚の正レンズと 1枚の負レンズとからなり、当該第 2レンズ群内 に少なくとも 1面の非球面が具備され、且つ、
下記(1)〜 (4)の条件式を満たすことを特徴とする変倍光学系。
TLw/TLt<l.2 ··· (1)
ΔΝ2〉0.15 ··· (2)
Δ r 2>20 ··· (3)
Lb/fw≤l.2 …(4)
但し、 TLw、 TLt:物体距離無限時における、広角端 (w)、望遠端 (t)での最も 物体側レンズ面の面頂点から像面までの光軸上距離
Δ N2:前記第 2レンズ群内のレンズの屈折率差
Δ r 2:前記第 2レンズ群のレンズのアッベ数差
Lb:望遠端において、最も像側に位置するパワーを有するレンズ面の面頂 点から像面までの光軸上距離 (空気換算長)
fw:広角端での全光学系の合成焦点距離
[2] 前記第 2レンズ群が、下記(5)の条件式を満たすことを特徴とする請求の範囲第 1 項に記載の変倍光学系。
0.6<f2/fw<2.0 ··· (5)
但し、 f2:前記第 2レンズ群の合成焦点距離
[3] 無限遠物体から近距離物体へのフォーカシングが、前記第 3レンズ群を像側に移 動させることによって行われ、
下記(6)の条件式を満たすことを特徴とする請求の範囲第 1項又は第 2項に記載の 変倍光学系。
1. 5< I f3/fw I <6.0 ··· (6)
但し、 f3:前記第 3レンズ群の合成焦点距離
[4] 前記第 3レンズ群が、広角端から望遠端への変倍時に、物体側に凸形状の軌跡を 描くように移動するものであって、
下記(7)の条件式を満たすことを特徴とする請求の範囲第 1項乃至第 3項のいずれ かに記載の変倍光学系。
I D3/(fwXft)1/2 I <1. 5 ---(7)
但し、 D3:広角端から望遠端への変倍時における前記第 3レンズ群の移動量 ft:望遠端での全光学系の合成焦点距離
[5] 前記第 1レンズ群は、広角端から望遠端への変倍時に固定であって、
下記(8)の条件式を満たすことを特徴とする請求の範囲第 1項乃至第 4項のいずれ かに記載の変倍光学系。
0. Khl/TLw ··· (8)
但し、 hi:最も物体側レンズ面の広角端での有効光路半径
[6] 前記第 1レンズ群及び、前記第 1レンズ群と前記第 2レンズ群とのレンズ群間隔が、 下記(9)、 (10)の条件式を満たすことを特徴とする請求の範囲第 1項乃至第 5項の V、ずれかに記載の変倍光学系。
0. 2<Tl/(fwXft)1/2<l. 5 ··· (9)
T12/(fwXft)1/2<0. 3 ··· (10)
但し、 T1:前記第 1レンズ群のレンズ最前面から前記第 1レンズ群のレンズ最後 面までの光軸上厚み
T12:望遠端における、前記第 1レンズ群と前記第 2レンズ群との光軸上間 隔
[7] 前記第 2レンズ群の物体側に開口絞りが備えられ、
前記開口絞りは絞り径が固定であることを特徴とする請求の範囲第 1項乃至第 6項 の!/、ずれかに記載の変倍光学系。
[8] 前記第 2レンズ群の像側に、光量を調節する機構が配置されていることを特徴とす る請求の範囲第 7項に記載の変倍光学系。
[9] 前記第 3レンズ群の像側に、正の光学的パワーを有する第 4レンズ群をさらに具備 することを特徴とする請求の範囲第 1項乃至第 8項のいずれかに記載の変倍光学系
[10] 前記第 4レンズ群は、広角端から望遠端への変倍時に固定であって、
下記(11)の条件式を満たすことを特徴とする請求の範囲第 9項に記載の変倍光学
1. 0 < I EPw/fw I < 8. 0 · · · (11)
但し、 EPw :広角端における、最大画角の主光線の射出瞳位置から像面までの 距離
[11] 変倍光学系が、 4つのレンズ群のみから構成されることを特徴とする請求の範囲第
1項乃至第 10項のいずれかに記載の変倍光学系。
[12] 変倍時に可動のレンズ群が、変倍群とズーミングに伴う像面変動補正群との 2つの レンズ群のみであることを特徴とする請求の範囲第 1項乃至第 11項のいずれかに記 載の変倍光学系。
[13] 前記第 1レンズ群が、物体側から順に、 1枚の負レンズと 1枚の正レンズとからなり、 下記(12)の条件式を満たすことを特徴とする請求の範囲第 1項乃至第 12項のい ずれかに記載の変倍光学系。
0. 15 < I fln/flp I < 0. 50 · · · (12)
但し、 flp:前記第 1レンズ群内の正レンズの焦点距離
fin :前記第 1レンズ群内の負レンズの焦点距離
[14] 前記第 2レンズ群は、物体側から順に、 1枚の正レンズと 1枚の負レンズとからなり、 下記(13)の条件式を満たすことを特徴とする請求の範囲第 1項乃至第 13項のい ずれかに記載の変倍光学系。
1. 0 < I f2n/f2p I < 2. 5 · · · (13)
但し、 f2p:前記第 2レンズ群内の正レンズの焦点距離
f2n:前記第 2レンズ群内の負レンズの焦点距離
[15] 少なくとも 1枚の樹脂材料製レンズを有することを特徴とする請求の範囲第 1項乃至 第 14項の!/、ずれかに記載の変倍光学系。
[16] 前記樹脂材料製レンズは、樹脂材料中に最大長が 30ナノメートル以下の粒子を分 散させてなる素材を用いて成形したレンズであることを特徴とする請求の範囲第 15項 に記載の変倍光学系。
[17] 前記第 4レンズ群、又は第 4レンズ群よりも像側に位置するレンズ群内の正レンズが 、樹脂材料製レンズであることを特徴とする請求の範囲第 9項に記載の変倍光学系。
[18] 請求の範囲第 1項乃至第 17項のいずれかに記載の変倍光学系と、光学像を電気 的な信号に変換する撮像素子とを備え、
前記変倍光学系が前記撮像素子の受光面上に被写体の光学像を形成可能とされ て!/ヽることを特徴とする撮像装置。
[19] 請求の範囲第 18項に記載の撮像装置と、
前記撮像装置及び撮像素子に被写体の静止画撮影及び動画撮影の少なくとも一 方の撮影を行わせる制御部とを具備し、
前記撮像装置の変倍光学系が、前記撮像素子の受光面上に被写体の光学像を形 成可能に組み付けられていることを特徴とするデジタル機器。
[20] 前記デジタル機器は、携帯端末であることを特徴とする請求の範囲第 19項に記載 のデジタル機器。
PCT/JP2007/072823 2006-12-14 2007-11-27 変倍光学系、撮像装置及びデジタル機器 WO2008072466A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008549236A JPWO2008072466A1 (ja) 2006-12-14 2007-11-27 変倍光学系、撮像装置及びデジタル機器
EP07832548A EP2093599A4 (en) 2006-12-14 2007-11-27 VARIABLE ENLARGEMENT OPTICAL SYSTEM, IMAGE CAPTURE DEVICE, AND DIGITAL EQUIPMENT
US12/518,319 US7982968B2 (en) 2006-12-14 2007-11-27 Variable-power optical system, image pickup device, and digital apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006337359 2006-12-14
JP2006-337359 2006-12-14

Publications (1)

Publication Number Publication Date
WO2008072466A1 true WO2008072466A1 (ja) 2008-06-19

Family

ID=39511491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/072823 WO2008072466A1 (ja) 2006-12-14 2007-11-27 変倍光学系、撮像装置及びデジタル機器

Country Status (4)

Country Link
US (1) US7982968B2 (ja)
EP (1) EP2093599A4 (ja)
JP (1) JPWO2008072466A1 (ja)
WO (1) WO2008072466A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010152146A (ja) * 2008-12-25 2010-07-08 Panasonic Corp ズームレンズ系、撮像装置及びカメラ
JP2010276645A (ja) * 2009-05-26 2010-12-09 Fujifilm Corp 撮像レンズおよび撮像装置
US7982968B2 (en) 2006-12-14 2011-07-19 Konica Minolta Opto, Inc. Variable-power optical system, image pickup device, and digital apparatus
JP2012252175A (ja) * 2011-06-03 2012-12-20 Olympus Imaging Corp ズームレンズ及びそれを有する撮像装置
JP2013072959A (ja) * 2011-09-27 2013-04-22 Olympus Imaging Corp 光路反射型ズームレンズを備えた撮像装置
JP2013130669A (ja) * 2011-12-21 2013-07-04 Olympus Imaging Corp インナーフォーカスレンズ系及びそれを備えた撮像装置
US8786958B2 (en) 2010-12-22 2014-07-22 Panasonic Corporation Zoom lens system, interchangeable lens apparatus and camera system
WO2014132494A1 (ja) * 2013-02-28 2014-09-04 オリンパスメディカルシステムズ株式会社 対物光学系
JP2015180969A (ja) * 2015-07-08 2015-10-15 オリンパス株式会社 光路折り曲げ部材を有するズームレンズ及びそれを備える撮像装置
US9195032B2 (en) 2011-06-24 2015-11-24 Olympus Corporation Image pickup apparatus equipped with zoom lens with bent optical path
CN107942478A (zh) * 2013-10-23 2018-04-20 三星电机株式会社 镜头模块

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8045276B2 (en) * 2008-01-22 2011-10-25 E-Pin Optical Industry Co., Ltd. Compact zoom lens with three lens groups and design method thereof
CN103018889B (zh) * 2011-09-22 2015-09-30 赛恩倍吉科技顾问(深圳)有限公司 变焦成像镜头
CN106443969B (zh) * 2016-10-12 2019-04-19 浙江舜宇光学有限公司 超广角摄像镜头
CN109061836B (zh) * 2018-08-14 2020-09-18 瑞声光学解决方案私人有限公司 摄像光学镜头
CN109061848B (zh) * 2018-08-14 2020-09-18 瑞声光学解决方案私人有限公司 摄像光学镜头
CN109358408B (zh) * 2018-11-23 2024-02-13 广东奥普特科技股份有限公司 一种大视场宽工作距离高分辨率机器视觉镜头

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07311339A (ja) * 1994-05-16 1995-11-28 Minolta Co Ltd コンパクトなズームレンズ
JPH11109230A (ja) * 1997-10-02 1999-04-23 Minolta Co Ltd ビデオ用撮影光学系
JP2001318311A (ja) 2000-05-09 2001-11-16 Olympus Optical Co Ltd ズーム光学系
JP2004205796A (ja) 2002-12-25 2004-07-22 Olympus Corp 光路折り曲げズーム光学系
JP2005055725A (ja) 2003-08-06 2005-03-03 Sony Corp ズームレンズおよび電子機器
JP2005275280A (ja) * 2004-03-26 2005-10-06 Canon Inc ズームレンズを有する光学機器
JP2006301416A (ja) * 2005-04-22 2006-11-02 Canon Inc 光学系
JP2006308957A (ja) * 2005-04-28 2006-11-09 Ricoh Co Ltd ズームレンズおよび情報装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1020194A (ja) * 1996-07-08 1998-01-23 Konica Corp ズームレンズ
US5963377A (en) * 1997-10-02 1999-10-05 Minolta Co., Ltd. Taking optical system for video shooting
JP2001116992A (ja) * 1999-10-18 2001-04-27 Canon Inc ズームレンズ
JP3475148B2 (ja) 2000-05-11 2003-12-08 Tdk株式会社 薄膜磁気ヘッド及びその製造方法
WO2003085439A1 (fr) * 2002-04-09 2003-10-16 Olympus Corporation Objectif zoom et appareil de formation d'image dans lequel il est utilise
JP4285951B2 (ja) * 2002-08-02 2009-06-24 オリンパス株式会社 ズームレンズ及びそれを用いた電子撮像装置
JP4636812B2 (ja) * 2004-04-28 2011-02-23 キヤノン株式会社 ズームレンズ
DE602006017139D1 (de) * 2005-04-28 2010-11-11 Ricoh Kk Zoomobjektiv und Informationsvorrichtung
JP4810133B2 (ja) * 2005-06-15 2011-11-09 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
US7450314B2 (en) * 2006-04-04 2008-11-11 Olympus Imaging Corp. Zoom lens system and image pickup apparatus using the same
JPWO2008072466A1 (ja) 2006-12-14 2010-03-25 コニカミノルタオプト株式会社 変倍光学系、撮像装置及びデジタル機器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07311339A (ja) * 1994-05-16 1995-11-28 Minolta Co Ltd コンパクトなズームレンズ
JPH11109230A (ja) * 1997-10-02 1999-04-23 Minolta Co Ltd ビデオ用撮影光学系
JP2001318311A (ja) 2000-05-09 2001-11-16 Olympus Optical Co Ltd ズーム光学系
JP2004205796A (ja) 2002-12-25 2004-07-22 Olympus Corp 光路折り曲げズーム光学系
JP2005055725A (ja) 2003-08-06 2005-03-03 Sony Corp ズームレンズおよび電子機器
JP2005275280A (ja) * 2004-03-26 2005-10-06 Canon Inc ズームレンズを有する光学機器
JP2006301416A (ja) * 2005-04-22 2006-11-02 Canon Inc 光学系
JP2006308957A (ja) * 2005-04-28 2006-11-09 Ricoh Co Ltd ズームレンズおよび情報装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2093599A4

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7982968B2 (en) 2006-12-14 2011-07-19 Konica Minolta Opto, Inc. Variable-power optical system, image pickup device, and digital apparatus
JP2010152146A (ja) * 2008-12-25 2010-07-08 Panasonic Corp ズームレンズ系、撮像装置及びカメラ
JP2010276645A (ja) * 2009-05-26 2010-12-09 Fujifilm Corp 撮像レンズおよび撮像装置
US8786958B2 (en) 2010-12-22 2014-07-22 Panasonic Corporation Zoom lens system, interchangeable lens apparatus and camera system
JP2012252175A (ja) * 2011-06-03 2012-12-20 Olympus Imaging Corp ズームレンズ及びそれを有する撮像装置
US9500841B2 (en) 2011-06-03 2016-11-22 Olympus Corporation Zoom lens, and imaging apparatus incorporating the same
US10254518B2 (en) 2011-06-24 2019-04-09 Olympus Corporation Image pickup apparatus equipped with zoom lens with bent optical path
US9507130B2 (en) 2011-06-24 2016-11-29 Olympus Corporation Image pickup apparatus equipped with zoom lens with bent optical path
US9195032B2 (en) 2011-06-24 2015-11-24 Olympus Corporation Image pickup apparatus equipped with zoom lens with bent optical path
JP2013072959A (ja) * 2011-09-27 2013-04-22 Olympus Imaging Corp 光路反射型ズームレンズを備えた撮像装置
JP2013130669A (ja) * 2011-12-21 2013-07-04 Olympus Imaging Corp インナーフォーカスレンズ系及びそれを備えた撮像装置
US10353172B2 (en) 2011-12-21 2019-07-16 Olympus Corporation Inner focus lens system and image pickup apparatus using the same
US8947793B2 (en) 2011-12-21 2015-02-03 Olympus Imaging Corp. Inner focus lens system and image pickup apparatus using the same
US9810878B2 (en) 2011-12-21 2017-11-07 Olympus Corporation Inner focus lens system and image pickup apparatus using the same
JP5802847B2 (ja) * 2013-02-28 2015-11-04 オリンパス株式会社 対物光学系
JPWO2014132494A1 (ja) * 2013-02-28 2017-02-02 オリンパス株式会社 対物光学系
US9341838B2 (en) 2013-02-28 2016-05-17 Olympus Corporation Objective optical system
WO2014132494A1 (ja) * 2013-02-28 2014-09-04 オリンパスメディカルシステムズ株式会社 対物光学系
CN107942478A (zh) * 2013-10-23 2018-04-20 三星电机株式会社 镜头模块
CN107942478B (zh) * 2013-10-23 2020-09-29 三星电机株式会社 镜头模块
JP2015180969A (ja) * 2015-07-08 2015-10-15 オリンパス株式会社 光路折り曲げ部材を有するズームレンズ及びそれを備える撮像装置

Also Published As

Publication number Publication date
US7982968B2 (en) 2011-07-19
JPWO2008072466A1 (ja) 2010-03-25
EP2093599A4 (en) 2013-03-27
US20100033834A1 (en) 2010-02-11
EP2093599A1 (en) 2009-08-26

Similar Documents

Publication Publication Date Title
JP5321670B2 (ja) 変倍光学系及びデジタル機器
JP5083219B2 (ja) 変倍光学系、撮像装置及びデジタル機器
WO2008072466A1 (ja) 変倍光学系、撮像装置及びデジタル機器
JP4802658B2 (ja) 変倍光学系、撮像レンズ装置及びデジタル機器
JP5445307B2 (ja) 変倍光学系、撮像装置およびデジタル機器
JP5251884B2 (ja) 変倍光学系、撮像装置およびデジタル機器
JP5050700B2 (ja) 変倍光学系、撮像装置およびデジタル機器
JP4857529B2 (ja) 変倍光学系、撮像レンズ装置及びデジタル機器
JP5082604B2 (ja) 変倍光学系、撮像装置及びデジタル機器
JP5029185B2 (ja) 変倍光学系、撮像装置およびデジタル機器
JP4661085B2 (ja) 変倍光学系、撮像レンズ装置及びデジタル機器
WO2008075566A1 (ja) 変倍光学系、撮像装置及びデジタル機器
JP2008233611A (ja) 変倍光学系、撮像装置及びデジタル機器
JP2006113404A (ja) 変倍光学系、撮像レンズ装置及びデジタル機器
JP2007072263A (ja) 変倍光学系
JP2005292403A (ja) 変倍光学系、撮像レンズ装置及びデジタル機器
WO2007145194A1 (ja) 撮像光学系、撮像レンズ装置及びデジタル機器
JP2006163075A (ja) 変倍光学系、撮像レンズ装置及びデジタル機器
JP4569155B2 (ja) 変倍光学系、撮像レンズ装置及びデジタル機器
JP2006154481A (ja) 変倍光学系、撮像レンズ装置及びデジタル機器
JP2011154401A (ja) 変倍光学系、撮像レンズ装置及びデジタル機器
JP2008310035A (ja) 変倍光学系、撮像装置およびデジタル機器
JP2006119319A (ja) 変倍光学系、撮像レンズ装置及びデジタル機器
JP2006039063A (ja) 変倍光学系、撮像レンズ装置及びデジタル機器
JP2006317800A (ja) 変倍光学系、撮像レンズ装置及びデジタル機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07832548

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008549236

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12518319

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007832548

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE