WO2008050547A1 - Substrat pour dispositif d'affichage et son procédé de production - Google Patents

Substrat pour dispositif d'affichage et son procédé de production Download PDF

Info

Publication number
WO2008050547A1
WO2008050547A1 PCT/JP2007/067413 JP2007067413W WO2008050547A1 WO 2008050547 A1 WO2008050547 A1 WO 2008050547A1 JP 2007067413 W JP2007067413 W JP 2007067413W WO 2008050547 A1 WO2008050547 A1 WO 2008050547A1
Authority
WO
WIPO (PCT)
Prior art keywords
display element
inorganic glass
element substrate
resin
thickness
Prior art date
Application number
PCT/JP2007/067413
Other languages
English (en)
French (fr)
Inventor
Takeshi Murashige
Yoshimasa Sakata
Tatsuki Nagatsuka
Original Assignee
Nitto Denko Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corporation filed Critical Nitto Denko Corporation
Priority to US12/091,781 priority Critical patent/US8241735B2/en
Publication of WO2008050547A1 publication Critical patent/WO2008050547A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0166Polymeric layer used for special processing, e.g. resist for etching insulating material or photoresist used as a mask during plasma etching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/266Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension of base or substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • Y10T428/31525Next to glass or quartz

Definitions

  • the present invention relates to a display element substrate and a method for manufacturing the same. More specifically, the present invention relates to a display element substrate excellent in gas barrier properties, flexibility, heat resistance and transparency, and excellent in dimensional stability, operability and secondary processability, and a simple manufacturing method thereof. . Background art
  • glass substrates are often used as substrates for liquid crystal display elements.
  • the glass substrate has high heat resistance enough to withstand photo-etching processes such as alignment film formation process and electrode formation process in the manufacturing process of liquid crystal display elements that only have excellent transparency, solvent resistance and gas barrier properties. Have. However, if the thickness of the glass material constituting the glass substrate is reduced so as to be bendable, the impact resistance becomes insufficient and the handling becomes difficult.
  • Patent Document 1 a laminate substrate having an inorganic glass layer and a silicon oxide polymer layer has been proposed (see, for example, Patent Document 1).
  • a laminate substrate is said to be excellent in gas barrier properties, flexibility, heat resistance and transparency.
  • the laminate substrate of Patent Document 1 is still insufficient in thermal expansion, and the secondary workability and operability are insufficient.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-50565
  • the present invention has been made to solve the above-described conventional problems, and the object thereof is excellent in gas barrier properties, flexibility, heat resistance, and transparency, and dimensional stability, operation. It is to provide a substrate for a display element that is excellent in performance and secondary workability and a simple manufacturing method thereof.
  • the display element substrate of the present invention includes an inorganic glass and a resin layer disposed on both sides of the inorganic glass.
  • the ratio d / ⁇ to d is 0 ⁇ 5 to 2 ⁇ 2.
  • the resin layers on both sides of the inorganic glass are made of the same material, have the same thickness, and the thickness of each resin layer is the inorganic glass. Is equal to the thickness of
  • the total thickness of the display element substrate is 150 111 or less.
  • an average linear expansion coefficient at 170 ° C. of the display element substrate is 20 ppm ° C. 1 or less.
  • the display element The fracture diameter when the substrate is curved is 30 mm or less.
  • the transmittance of the display element substrate is 85% or more.
  • the thickness d of the inorganic glass is 1 ⁇ 111 to 50 m.
  • the resin layer is formed from a resin composition containing an epoxy resin as a main component.
  • the Young's modulus at 25 ° C of the resin layer is 1 GPa or more.
  • the resin layer is provided directly on the inorganic glass.
  • a method of manufacturing a display element substrate includes bonding a semi-cured resin composition to inorganic glass and completely curing the resin composition bonded to the inorganic glass.
  • a display element substrate having resin layers on both sides of an inorganic glass.
  • the inorganic glass disposed in the center functions as a gas barrier layer, it is possible to contribute to the thinning of the substrate without the need for additionally laminating the gas barrier layer.
  • the inorganic glass placed in the center part suppresses the thermal expansion of the resin layer that should have a high linear expansion coefficient, and a laminate having a small linear expansion coefficient can be obtained. Therefore, the display element substrate of the present invention is particularly effective as a TFT substrate requiring a high temperature process.
  • the breakage of the inorganic glass plate is generally caused by stress concentration on the surface micro-defects, and the thinner the thickness, the more likely the breakage occurs.
  • the resin layers arranged on both sides relieve stress in the tearing direction to defects during deformation, even when the inorganic glass is thinned, Breaking is unlikely to occur, making it possible to further reduce the thickness and weight.
  • the fact that such an effect can be obtained by laminating the resin layers on both surfaces of the inorganic glass is a finding first found by the present inventors, and is an unexpectedly excellent effect.
  • FIG. 1 (a) is a schematic sectional view of a display element substrate according to one embodiment of the present invention, and (b) is a schematic view of a display element substrate according to another embodiment of the present invention. It is sectional drawing.
  • FIG. 1 (a) is a schematic cross-sectional view of a display element substrate according to a preferred embodiment of the present invention.
  • the display element substrate 100 includes an inorganic glass 10 and resin layers 11 and 1 ⁇ arranged on both sides of the inorganic glass 10.
  • the resin layers 11 and ⁇ on both sides are made of the same material and have the same thickness (that is, the display element substrate has a so-called symmetrical arrangement).
  • the respective resin layers 11 and 1 ⁇ are provided directly on the inorganic glass 10 (that is, without an adhesive layer).
  • the display element substrate having such a configuration can be manufactured by a manufacturing method described later.
  • the respective resin layers 11, 1 ⁇ may be fixed to the glass substrate via the adhesive layers 12, 12 ′.
  • the adhesive layer is composed of any appropriate adhesive or pressure-sensitive adhesive.
  • the ratio d / d between the total thickness d of the resin layer and the thickness d of the inorganic glass is preferable.
  • the substrate is paired.
  • the difference (d ⁇ d) between the thickness d of each resin layer and the thickness d of the inorganic glass is preferably ⁇ 45 111 to 20 111, more preferably 35 m or more; 10 ⁇ m, most preferably d is equal to d.
  • the total thickness of the display element substrate is preferably 150 in or less, more preferably 5 0 111 to 100 111. According to the present invention, by adopting the above-described configuration, the thickness of the inorganic glass can be made much thinner than that of a conventional glass substrate. As a result, a light-weight and thin display element substrate having excellent flexibility can be obtained.
  • the average linear expansion coefficient at 170 ° C of the display element substrate is preferably 20 ppm ° C-1 or less, and more preferably lOpprnt 1 or less. Within the above range, for example, when used in a liquid crystal display element, even when subjected to a plurality of heat treatment steps, pixel displacement and wiring breakage / cracking are unlikely to occur.
  • the fracture diameter when the display element substrate is bent is preferably 30 mm or less, and more preferably 10 mm or less.
  • the transmittance of the display element substrate at a wavelength of 550 nm is preferably 85% or more, and more preferably 90% or more.
  • the display element substrate has a light transmittance reduction rate of 5% or less after heat treatment at 180 ° C. for 2 hours. This is because, with such a reduction rate, a practically acceptable light transmittance can be ensured even if a necessary heat treatment is performed in the manufacturing process of the liquid crystal display element.
  • One of the effects of the present invention is that these characteristics are realized while employing the resin layer.
  • the surface roughness Ra of the display element substrate (substantially, the surface roughness Ra of the resin layer of the substrate) is preferably 50 nm or less, and more preferably 30 nm or less.
  • the waviness of the display element substrate is preferably 0.5 m or less, and more preferably 0 l ⁇ m or less.
  • a display element substrate having such characteristics is excellent in quality. Such characteristics can be realized by, for example, a manufacturing method described later.
  • the in-plane retardation Re (550) of the display element substrate at a wavelength of 550 nm is preferably It is 10 nm or less, more preferably 5 nm or less.
  • the retardation Rth (550) in the thickness direction at a wavelength of 550 nm of the display element substrate is preferably 20 nm or less, more preferably 10 nm or less. If the optical characteristics are within the above ranges, for example, even when the substrate is used in a liquid crystal display device, the display characteristics are not adversely affected. One of the effects of the present invention is that such characteristics are realized while employing the resin layer.
  • the in-plane retardation Re ( ⁇ ) and the thickness direction retardation Rth ( ⁇ ) at the wavelength ⁇ can be obtained from the following equations, respectively.
  • is the refractive index in the slow axis direction
  • ny is the refractive index in the fast axis direction
  • nz is the refractive index in the thickness direction
  • d is the thickness.
  • the slow axis refers to the direction in which the refractive index becomes maximum in the plane
  • the fast axis refers to the direction orthogonal to the slow axis in the plane.
  • the inorganic glass used for the display element substrate of the present invention any appropriate one can be adopted as long as it is plate-shaped.
  • the inorganic glass include soda lime glass, borate glass, aluminosilicate glass, and quartz glass according to the classification according to the composition. Further, according to the classification based on the alkali component, alkali-free glass and low-alkali glass can be mentioned.
  • the content of alkali metal components (eg Na 0, K 0, Li ⁇ ) in the inorganic glass is
  • the amount is preferably 15% by weight or less, more preferably 10% by weight or less.
  • the inorganic glass preferably has a thickness of 1 m to 100 m, more preferably 10 m.
  • the force S can be used to reduce the thickness of the inorganic glass by arranging the resin layers on both sides of the inorganic glass.
  • the transmittance of the inorganic glass at a wavelength of 550 nm is preferably 90% or more.
  • the refractive index n of the inorganic glass at a wavelength of 550 nm is preferably from 1.4 to;
  • the average thermal expansion coefficient of the inorganic glass is preferably lOppmOC i O. Spprnt 1 , more preferably SppmOC i O. Spprnt 1 . If it is the inorganic glass of the said range, the dimensional change of a resin layer can be suppressed effectively in a high temperature or low temperature environment. [0034]
  • the density of the inorganic glass is preferably 2.3 g / cm 3 to 3. Og / cm 3, and more preferably 2.3 g / cm 3 to 2.7 g / cm 3 . If it is the inorganic glass of the said range, a lightweight substrate for display elements will be obtained.
  • the inorganic glass is a mixture of a main raw material such as silica and alumina, an antifoaming agent such as antimony oxide and a reducing agent such as carbon, and a mixture of 1400 ° C to 1600 ° C. It is made by melting at temperature, forming into a thin plate, and then cooling.
  • the method for forming the inorganic glass sheet include a slot down draw method, a fusion method, and a float method.
  • the inorganic glass formed into a plate shape by these methods may be chemically polished with a solvent such as hydrofluoric acid, if necessary, in order to reduce the thickness or improve the smoothness.
  • the inorganic glass a commercially available glass may be used as it is, or a commercially available inorganic glass may be polished to have a desired thickness.
  • examples of commercially available inorganic glasses include “7059”, “1737” or “EAGLE 2000” manufactured by Coung, “AN100” manufactured by Asahi Glass, “NA-35” manufactured by NH Techno Glass, and “NA-35” manufactured by Nippon Electric Glass Co., Ltd. OA-10 ”
  • the resin layer used for the display element substrate of the present invention is disposed on both surfaces of the inorganic glass.
  • the thickness d of the resin layer is preferably l ⁇ m to 100 ⁇ m, more preferably l ⁇ m to 50111.
  • the thickness of each resin layer may be the same or different.
  • the thickness of each resin layer is the same.
  • each resin layer may be made of the same material or different materials.
  • each resin layer is made of the same material. Therefore, most preferably, each resin layer is made of the same material and the same thickness.
  • the total thickness d of the resin layer is preferably 2 H m to 200 ⁇ m, more preferably 2 ⁇ m.
  • the transmittance of the resin layer at a wavelength of 550 nm is preferably 85% or more.
  • the refractive index (n) of the resin layer at a wavelength of 550 nm is preferably 1.3 to 1.7.
  • the difference between the refractive index (n) of the resin layer and the refractive index (n) of the inorganic glass is preferably 0.2 or less.
  • ⁇ g More preferably 0.1 or less. If it is such a range, the bad influence on the display characteristic resulting from the refractive index difference of inorganic glass and a resin layer can be prevented.
  • the elastic modulus (Young's modulus) of the resin layer is preferably 1 GPa or more, and more preferably 1.5 GPa or more. By setting it as the above range, even when the inorganic glass is thinned, the resin layer relaxes the stress in the tearing direction to the defects at the time of deformation.
  • any appropriate resin substantially a resin composition containing the resin as a main component: hereinafter, the resin and the resin composition are collectively referred to as "resin". Force S
  • a resin excellent in heat resistance is preferred.
  • the resin is a thermosetting or ultraviolet curable resin.
  • examples of such resins include polyethersulfone resins, polycarbonate resins, epoxy resins, acrylic resins, and polyolefin resins.
  • the resin layer is formed of a resin composition containing an epoxy resin as a main component. This is because a resin layer having excellent surface smoothness and good hue can be obtained.
  • the epoxy resin may be any appropriate one as long as it has an epoxy group in the molecule.
  • the epoxy resin include bisphenol A type, bisphenol F type, bisphenol S type, and bisphenol types such as water additives thereof; nopolac types such as phenol nopolac type and cresol nopolac type; Nitrogen-containing ring type such as triglycidyl isocyanurate type hydantoin type; alicyclic type; aliphatic type; aromatic type such as naphthalene type, biphenyl type; glycidyl ether type, glycidylamine type, glycidyl ester Examples thereof include glycidyl type such as mold; dicyclo type such as dicyclopentagen type; ester type; ether ester type; and modified types thereof. These epoxy resins can be used alone or in admixture of two or more.
  • the epoxy resin is a bisphenol A type epoxy resin, an alicyclic type epoxy resin, a nitrogen-containing ring type epoxy resin, or a glycidyl type epoxy resin.
  • the epoxy resin is a nitrogen-containing ring type, it is preferably a triglycidyl isocyanurate type epoxy resin.
  • the resin layer is a cured layer of at least one epoxy prepolymer selected from the group consisting of the following general formulas (1), (11), (III) and (IV).
  • X and X are each independently a covalent bond, a CH group, a C (CH) group,
  • Y to Y are substituents, and a to d represent the number of substitutions.
  • a to d are integers from 0 to 4, and 1 is an integer of 2 or more.
  • X and X are each independently a CH group, a C (CH 3) group, or a C (CF 3) group.
  • 3 4 2 3 2 3 2 represents a group, CO group, oxygen atom, nitrogen atom, SO group, Si (CH CH) group, or N (CH) group
  • Y to Y are substituents, and e to g represent the number of substitutions. Y to Y are independent
  • e and g are 0 to 4
  • F is an integer from 0 to 3
  • m is an integer greater than or equal to 2
  • X to X each independently represent a covalent bond, a CH group, a C (CH 3) group,
  • Y is any one of the above formulas (a) to (d).
  • n and m are respectively; Represents an integer of ⁇ 6.
  • Y is
  • the epoxy equivalent (mass per epoxy group) of the epoxy resin is preferably 100 g / eqiv. To 1000 g / eqiv. If it is the said range, the softness
  • the softening point of the epoxy resin is preferably 120 degrees or less.
  • the epoxy resin is preferably a liquid at normal temperature (for example, 5 to 35 ° C.). More preferably, the epoxy resin is a two-component mixed epoxy resin that is liquid at or below the coating temperature (particularly at room temperature). It is because it is excellent in developability and coating property when forming the resin layer.
  • the resin composition may further contain any appropriate additive depending on the purpose.
  • the additives include curing agents, curing accelerators, diluents, anti-aging agents, denaturing agents, surfactants, dyes, pigments, anti-discoloring agents, ultraviolet absorbers, softeners, stabilizers, plasticizers, An antifoaming agent etc. are mentioned.
  • the type, number and amount of additives contained in the resin composition can be appropriately set depending on the purpose.
  • resin composition a commercially available product may be used as it is, or an optional additive and / or resin may be added to a commercially available product.
  • examples of commercially available epoxy resins include Grade 827 and Grade 828 manufactured by Japan Epoxy Resin, and EP Series and KR Series manufactured by Ade Power Company.
  • the method for producing a display element substrate of the present invention includes bonding a semi-cured resin composition to inorganic glass and completely curing the resin composition bonded to the inorganic glass. According to such a manufacturing method, it is possible to directly fix the resin layer through the adhesive layer to the inorganic glass.
  • the method for producing a display element substrate of the present invention comprises applying a resin composition on a release film and semi-curing the resin composition to form a semi-cured layer. Bonding the semi-cured layer to the inorganic glass, coating the resin composition on the side where the semi-cured layer of the inorganic glass is not bonded, and the semi-cured layer and the coated resin composition Is completely cured to form a resin layer on both sides of the inorganic glass.
  • the method for producing a display element substrate of the present invention comprises preparing two laminates of a release film / semi-cured layer, and forming the semi-cured layer of each laminate with an inorganic glass. Bonding to each side of the glass and completely curing the semi-cured layers on both sides of the inorganic glass to form a resin layer.
  • Coating methods for the resin composition include air doctor coating, blade coating, knife coating, reverse coating, transfer roll coating, gravure roll coating, kiss coating, cast coating, spray coating, and slot orifice. Coating methods such as coating, calendar coating, electrodeposition coating, date coating, and die coating; relief printing methods such as flexographic printing, intaglio printing methods such as direct gravure printing methods and offset gravure printing methods, and lithographic plates such as offset printing methods Examples of the printing method include a printing method such as a stencil printing method such as a screen printing method.
  • leveling agents such as silicone oil and additives such as curing agents may be added to the resin composition as necessary to apply the coating liquid and ink.
  • leveling agents such as silicone oil and additives such as curing agents may be added to the resin composition as necessary to apply the coating liquid and ink.
  • the power to improve Furthermore, by applying a silane treatment to the surface of the inorganic glass or by mixing a silane coupling agent with the resin composition, the inorganic glass and the coating resin composition (final resin layer) are adhered to each other. Can increase the sex.
  • a typical example of the silane coupling agent is aminosilane.
  • Specific examples of aminosilanes include ⁇ -aminopropyltriethoxysilane, ⁇ - aminopropyltrimethoxysilane, ⁇ - ⁇ ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane, ⁇ -ureidopropyltriethoxysilane. ⁇ - ⁇ phenylaminopropyltrimethoxysilane. These aminosilanes can be used alone or in combination of two or more. In addition, a coupling agent other than aminosilane may be used in combination.
  • the laminate (release film / semi-cured layer) and the inorganic glass are bonded to each other by any appropriate means.
  • laminating is performed.
  • a substrate for a display element can be manufactured with extremely excellent production efficiency by continuously supplying and laminating a roll-like laminate to inorganic glass. can do.
  • the curing method of the resin composition may be appropriately selected depending on the type of epoxy resin contained in the resin composition. If the epoxy resin is thermosetting, The composition is semi-cured and fully cured by heating.
  • the heating conditions can be appropriately selected according to the type of epoxy resin, the composition of the resin composition, and the like. In one embodiment, the heating conditions for semi-curing the coated resin composition are a temperature of 100 ° C. to 150 ° C. and a heating time of 5 minutes to 30 minutes. In one embodiment, the heating conditions for fully curing the semi-cured layer are a temperature of 170 ° C. to 200 ° C. and a heating time of 60 minutes or more.
  • the resin composition is semi-cured and completely cured by ultraviolet irradiation.
  • Irradiation conditions can be appropriately selected according to the type of epoxy resin, the composition of the resin composition, and the like.
  • the irradiation conditions for semi-curing the coated resin composition are an irradiation intensity of 40 mW / cm 2 to 60 mW / cm 2 and an irradiation time of 3 seconds to 15 seconds.
  • the irradiation conditions for completely curing the semi-cured layer are an irradiation intensity of 40 mW / cm 2 to 60 mW / cm 2 and an irradiation time of 5 minutes to 30 minutes.
  • a heat treatment may be performed after the ultraviolet irradiation for completely curing the semi-cured layer.
  • the heat treatment conditions in this case are, for example, a temperature of 130 ° C. to 150 ° C. and a heating time of 10 minutes to 60 minutes.
  • the semi-cured resin composition is attached to the inorganic glass.
  • the completely cured resin composition (resin layer) is added to the inorganic glass. It goes without saying that it may be attached. In this case, any appropriate adhesive layer can be used as required.
  • the display element substrate of the present invention can be used for any appropriate display element.
  • the display element include a liquid crystal display, a plasma display, and an organic EL display.
  • the display element substrate of the present invention is suitable for a liquid crystal display.
  • the display element substrate of the present invention uses all the processes applied to a conventional glass substrate as it is, and uses a segment method, a simple matrix method, an active matrix method using TFT, or the like. It can be applied to electrode formation corresponding to all drive systems, and can be used for both transmissive and reflective display systems.
  • These display devices include display devices for small-sized portable information terminal devices, word processors, personal computers. Information equipment such as computers and workstations, business equipment, and display devices such as large panels are incorporated into these devices.
  • TMA / S S 150C (manufactured by Seiko Instruments Inc.) was used to measure 30 to 30 ° C; TMA value at 170 ° C m), and an average linear expansion coefficient was calculated.
  • the transmittance at a wavelength of 550 nm was measured using a high-speed spectrophotometer (CMS-500, manufactured by Murakami Color Research Laboratory, using a halogen lamp).
  • CMS-500 manufactured by Murakami Color Research Laboratory, using a halogen lamp.
  • a substrate (size: lOmm x 50mm, number of samples: 5) is wound around cylinders with different diameters, and the breakage of the inorganic glass is visually confirmed. The average of the diameters of the cylinders for the five samples where breakage is confirmed is the break diameter. did.
  • a measurement sample (25 mm x 50 mm) was cut out from a 50 mm thick resin film and calculated from a stress-strain curve when a tensile load was applied to the measurement sample up to 20 N using an autograph (manufactured by Shimadzu Corporation).
  • Measurement was performed at 23 ° C. and a wavelength of 550 nm using a trade name “AxoScan” manufactured by Axometrics.
  • AxoScan a trade name manufactured by Axometrics.
  • a value measured using an Abbe refractometer [product name “DR-M4” manufactured by Atago Co., Ltd.] was used.
  • a resin composition mainly composed of an epoxy resin ((1): (2) 50:50 (weight ratio)) represented by the following chemical formula is sandwiched between release films subjected to silicone treatment, and ⁇ Included an epoxy resin layer with a thickness of 30 m through a metal roll fixed at ⁇ A laminate was obtained.
  • an ultraviolet irradiation device Conveyor speed: 2.5 m / min
  • ultraviolet light was irradiated from one side of the laminate (irradiation energy: 250 mj / cm 2 ), and the epoxy resin layer was half-coated. Cured to form a semi-cured layer.
  • the following table shows the linear expansion coefficient, transmittance, bending resistance, and Young's modulus of the resin layer of the obtained display element substrate.
  • the display element substrate of the present invention can be widely used in display elements such as liquid crystal displays, plasma displays, and organic EL displays. In particular, it can be suitably used for a liquid crystal display.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Laminated Bodies (AREA)

Description

明 細 書
表示素子用基板およびその製造方法
技術分野
[0001] 本発明は、表示素子用基板およびその製造方法に関する。より詳細には、本発明 は、ガスバリア性、柔軟性、耐熱性および透明性に優れ、かつ、寸法安定性、操作性 および二次加工性に優れた表示素子用基板およびその簡便な製造方法に関する。 背景技術
[0002] 近年、映像通信技術の発展により、液晶表示素子は据え置き型では大型化、携帯 端末では軽量'薄型化が進んでいる。今後、高臨場感を求めた大型パネルの曲面表 示や、携帯性および利便性を追求した巻き取り型携帯端末を実現するには、基板の 薄型 ·軽量化に加え柔軟化が不可欠となる。
[0003] 従来、液晶表示素子の基板には、多くの場合ガラス基板が用いられている。ガラス 基板は、透明性ゃ耐溶剤性、ガスバリア性に優れるだけでなぐ液晶表示素子の製 造工程において、配向膜形成工程や電極形成工程におけるフォトエッチングプロセ スゃスパッタリング等に十分耐える高耐熱性を有する。しかし、ガラス基板を構成する ガラス材の厚さを、湾曲可能となるよう薄型化を図ると、耐衝撃性が不十分となり、ハ ンドリングが困難となる問題が生じる。
[0004] そこで、耐衝撃性に優れ、かつ、ガラス以上に軽量かつ柔軟性に優れる樹脂フィル ムまたは樹脂シートを表示用基板の基材に用いる技術開発が進められている。しか し、従来の表示素子用樹脂基板は、ガラスのような無機材料に比べて耐熱性が低い ので、特に高温プロセスを必要とする薄膜トランジスタ (TFTともレ、う)基板用途にお いては、電極に亀裂が生じ、抵抗値の増大や断線が生じるといった課題が指摘され ている。
[0005] 耐熱性を向上させるため、主鎖に芳香環やへテロ環を導入し、高共役構造を有す る樹脂を用いると、必然的に基板が着色し、十分な表示性能が得られない。透明性 を有し、かつ、耐熱性を考慮した樹脂基板として、ポリカーボネート、ポリアリレート、 ポリエーテルスルホン等が検討されている力 このような樹脂基板は、依然として熱膨 張性 (線膨張係数:寸法安定性)が不十分である(具体的には、樹脂基板の線膨張 係数は δθρρπ^θ 1程度であり、ディスプレイ用無アルカリガラスの約 10倍である)。さ らに、樹脂基板を用いた場合、表面にガスバリア層を形成する必要があり、製造工数 の増加に伴い、歩留まりの低下、コストの増加といった問題がある。
[0006] 一方、無機ガラス層とケィ素酸化物ポリマー層とを有する積層体基板が提案されて いる(例えば、特許文献 1参照)。特許文献 1によれば、このような積層体基板は、ガ スバリア性、柔軟性、耐熱性および透明性に優れるとされている。しかし、特許文献 1 の積層体基板は、熱膨張性がいまだ不十分であり、二次加工性および操作性も不十 分である。
特許文献 1 :特開 2004— 50565号公報
発明の開示
発明が解決しょうとする課題
[0007] 本発明は上記従来の課題を解決するためになされたものであり、その目的とすると ころは、ガスバリア性、柔軟性、耐熱性および透明性に優れ、かつ、寸法安定性、操 作性および二次加工性に優れた表示素子用基板およびその簡便な製造方法を提 供することにある。
課題を解決するための手段
[0008] 本発明の表示素子用基板は、無機ガラスと、該無機ガラスの両側に配置された樹 脂層とを備える。
[0009] 好ましい実施形態においては、上記樹脂層の合計厚み d と上記無機ガラスの厚
rsum
み dとの比 d /άが 0· 5〜2· 2である。
g rsum g
[0010] 好ましい実施形態においては、上記無機ガラスの両側の樹脂層は、それぞれ、同 一の材料で構成され、同一の厚みを有し、かつ、該それぞれの樹脂層の厚みは該無 機ガラスの厚みと等しい。
[0011] 好ましい実施形態においては、上記表示素子用基板の総厚は、 150 111以下であ
[0012] 好ましい実施形態においては、上記表示素子用基板の 170°Cにおける平均線膨 張係数は、 20ppm°C 1以下である。好ましい実施形態においては、上記表示素子 用基板を湾曲させた際の破断直径は、 30mm以下である。好ましい実施形態におい ては、上記表示素子用基板の透過率は、 85%以上である。
[0013] 好ましい実施形態においては、上記無機ガラスの厚み dは 1 μ 111〜50 mである。
g
[0014] 好ましい実施形態においては、上記樹脂層は、エポキシ系樹脂を主成分とする樹 脂組成物から形成されて!/、る。
[0015] 好ましい実施形態においては、上記樹脂層の 25°Cにおけるヤング率は lGPa以上 である。
[0016] 好ましい実施形態においては、上記樹脂層は、上記無機ガラスに直接設けられて いる。
[0017] 本発明の別の局面によれば、表示素子用基板の製造方法が提供される。この製造 方法は、無機ガラスに半硬化状態の樹脂組成物を貼り合わせること、および、該無機 ガラスに貼り合わせた該樹脂組成物を完全に硬化させることを含む。
発明の効果
[0018] 本発明によれば、無機ガラスの両側に樹脂層を有する表示素子用基板が提供され る。このような基板は、中心部に配置された無機ガラスがガスバリア層として機能する ため、付加的にガスバリア層を積層する必要がなぐ該基板の薄型化に貢献できる。 また、中心部に配置された無機ガラスは、本来、高い線膨張係数を有するはずの樹 脂層の熱膨張を抑制し、積層体としては、線膨張係数の小さい基板を得ることができ る。そのため、本発明の表示素子用基板は、高温プロセスを必要とする TFT用基板 として、特に有効である。さらに、無機ガラス板の破断は、一般的に表面の微小欠陥 への応力集中が原因とされており、厚みを薄くするほど破断が生じやすくなるので、 無機ガラスの薄型化は困難である。一方、本実施形態の表示素子用基板は、両側に 配置された樹脂層が、変形時の欠陥への引き裂き方向の応力を緩和するため、無機 ガラスを薄くした場合でも、無機ガラスへのクラックや破断が生じ難くなり、さらなる薄 型化、軽量化が可能となる。無機ガラスの両面に、樹脂層を積層することによって、こ のような効果が得られることは、本発明者等によって初めて見出された知見であり、予 期せぬ優れた効果である。
図面の簡単な説明 [0019] [図 1] (a)は、本発明の 1つの実施形態による表示素子用基板の概略断面図であり、 ( b)は、本発明の別の実施形態による表示素子用基板の概略断面図である。
符号の説明
[0020] 10 無機ガラス
11 , 11 ' 樹脂層
12、 12' 接着層
100 表示素子用基板
発明を実施するための最良の形態
[0021] A.表示素子用某板の全体構成
図 1 (a)は、本発明の好ましい実施形態による表示素子用基板の概略断面図であ る。この表示素子用基板 100は、無機ガラス 10と、無機ガラス 10の両側に配置され た樹脂層 11、 1 Γとを備える。このような構成を有することにより、ガスバリア性、柔軟 性、耐熱性および透明性に優れ、かつ、寸法安定性、操作性および二次加工性に 優れた表示素子用基板が得られる。さらに好ましくは、当該両側の樹脂層 11および ΐ Γは、同一の材料で構成され、かつ、同一の厚みを有する(すなわち、表示素子用 基板は、いわゆる対称配置の構成を有する)。このような構成を有することにより、さら に線膨張係数が小さぐかつ、操作性および二次加工性にきわめて優れた基板を得 ること力 Sでさる。
[0022] 好ましくは、図 1 (a)に示すように、それぞれの樹脂層 11、 1 Γは、無機ガラス 10に 直接 (すなわち、接着層を介することなく)設けられている。このような構成を有するこ とにより、より薄型の基板が実現され得る。このような構成を有する表示素子用基板は 、後述の製造方法により作製され得る。必要に応じて、図 1 (b)に示すように、それぞ れの樹脂層 11、 1 Γは、接着層 12、 12'を介してガラス基板に固着されてもよい。接 着層は、任意の適切な接着剤または粘着剤から構成される。
[0023] 上記樹脂層の合計厚み d と上記無機ガラスの厚み dとの比 d /dは、好まし
rsum g rsum g
くは 0. 5〜2. 2であり、さらに好ましくは 1. 5〜2. 1であり、特に好ましくは約 2である 。樹脂層の合計厚みと無機ガラスの厚みがこのような関係を有することにより、加熱処 理における基板の反りやうねりが良好に抑制され得る。とりわけ好ましくは、基板は対 称配置の構成であり、それぞれの樹脂層の厚み dと上記無機ガラスの厚み dとの差 ( d - d )は、好ましくはー45 111〜20 111でぁり、さらに好ましくは 35 m〜; 10〃 mであり、最も好ましくは、 dは dと等しい。このような構成にすることによって、上記表 示素子用基板は、加熱処理されても、無機ガラスの両面に熱応力が均等に掛カ、るた め、反りやうねりがきわめて生じ難くなる。なお、本明細書において「等しい」とは、厳 密に等しい場合のみならず実質的に等しい場合を包含する。
[0024] 上記表示素子用基板の総厚は、好ましくは 150 in以下であり、さらに好ましくは 5 0 111〜100 111でぁる。本発明によれば、上記のような構成とすることによって、無 機ガラスの厚みを、従来のガラス基板よりも格段に薄くすることができる。その結果、 軽量 '薄型で、かつ、優れた柔軟性を有する表示素子用基板が得られる。
[0025] 上記表示素子用基板の 170°Cにおける平均線膨張係数は、好ましくは 20ppm°C— 1以下であり、さらに好ましくは lOpprnt 1以下である。上記の範囲であれば、例え ば、液晶表示素子に用いた場合に、複数の熱処理工程に供されても、画素のずれ や配線の破断 ·亀裂が生じにくい。
[0026] 上記表示素子用基板を湾曲させた際の破断直径は、好ましくは 30mm以下であり 、さらに好ましくは 10mm以下である。
[0027] 上記表示素子用基板の波長 550nmにおける透過率は、好ましくは 85%以上であ り、さらに好ましくは 90%以上である。好ましくは、上記表示素子用基板は、 180°Cで 2時間の加熱処理を施した後の光透過率の減少率が 5%以内である。このような減少 率であれば、例えば液晶表示素子の製造プロセスにお!/、て必要な加熱処理を施し ても、実用上許容可能な光透過率を確保できるからである。樹脂層を採用しながらこ のような特性を実現したことが、本発明の効果の 1つである。
[0028] 上記表示素子用基板の表面粗度 Ra (実質的には、基板の樹脂層の表面粗度 Ra) は、好ましくは 50nm以下であり、さらに好ましくは 30nm以下である。上記表示素子 用基板のうねりは、好ましくは 0· 5 m以下であり、さらに好ましくは 0· l ^ m以下で ある。このような特性の表示素子用基板であれば、品質に優れる。なお、このような特 性は、例えば、後述する製法により実現され得る。
[0029] 上記表示素子用基板の波長 550nmにおける面内位相差 Re (550)は、好ましくは 10nm以下であり、さらに好ましくは 5nm以下である。上記表示素子用基板の波長 5 50nmにおける厚み方向の位相差 Rth (550)は、好ましくは 20nm以下であり、さら に好ましくは 10nm以下である。光学特性が上記のような範囲であれば、例えば基板 を液晶表示装置に用いた場合も、表示特性に悪影響を及ぼすことがない。樹脂層を 採用しながらこのような特性を実現したことが、本発明の効果の 1つである。なお、波 長 λにおける面内位相差 Re ( λ )および厚み方向位相差 Rth ( λ )は、それぞれ、下 記の式から求められる。式中、 ηχは遅相軸方向の屈折率であり、 nyは進相軸方向の 屈折率であり、 nzは厚み方向の屈折率であり、 dは厚みである。遅相軸とは、面内で 屈折率が最大になる方向をいい、進相軸とは、面内で遅相軸に直交する方向をいう
Re ( λ ) = (nx-ny) X d
Rth ( l ) = (nx-nz) X d
[0030] B.無機ガラス
本発明の表示素子用基板に用いられる無機ガラスは、板状のものであれば、任意 の適切なものが採用され得る。上記無機ガラスは、組成による分類によれば、例えば 、ソーダ石灰ガラス、ホウ酸ガラス、アルミノ珪酸ガラス、石英ガラス等が挙げられる。 また、アルカリ成分による分類によれば、無アルカリガラス、低アルカリガラスが挙げら れる。上記無機ガラスのアルカリ金属成分(例えば、 Na 0、 K 0、 Li Ο)の含有量は
2 2 2
、好ましくは 15重量%以下であり、さらに好ましくは 10重量%以下である。
[0031] 上記無機ガラスの厚みは、好ましくは 1 m〜; 100 mであり、さらに好ましくは 10
a m〜70 a mであり、特に好ましくは 25 m〜55 μ mである。本発明にお!/、ては、 無機ガラスの両側に樹脂層を配する構成とすることによって、無機ガラスの厚みを薄 くすること力 Sでさる。
[0032] 上記無機ガラスの波長 550nmにおける透過率は、好ましくは 90%以上である。上 記無機ガラスの波長 550nmにおける屈折率 nは、好ましくは 1. 4〜; ! · 6である。
g
[0033] 上記無機ガラスの平均熱膨張係数は、好ましくは lOppmOC i O. Spprnt 1あり 、さらに好ましくは SppmOC i O. Spprnt 1ある。上記範囲の無機ガラスであれば 、高温又は低温環境下において、樹脂層の寸法変化を効果的に抑制し得る。 [0034] 上記無機ガラスの密度は、好ましくは 2. 3g/cm3〜3. Og/cm3あり、さらに好まし くは 2. 3g/cm3〜2. 7g/cm3ある。上記範囲の無機ガラスであれば、軽量の表示 素子用基板が得られる。
[0035] 上記無機ガラスの成形方法は、任意の適切な方法が採用され得る。代表的には、 上記無機ガラスは、シリカやアルミナ等の主原料と、芒硝ゃ酸化アンチモン等の消泡 剤と、カーボン等の還元剤とを含む混合物を、 1400°C〜; 1600°Cの温度で溶融し、 薄板状に成形した後、冷却して作製される。上記無機ガラスの薄板成形方法として は、例えば、スロットダウンドロー法、フュージョン法、フロート法等が挙げられる。これ らの方法によって板状に成形された無機ガラスは、薄板化したり、平滑性を高めたり するために、必要に応じて、フッ酸等の溶剤により化学研磨されてもよい。
[0036] 上記無機ガラスは、市販のものをそのまま用いてもよぐあるいは、市販の無機ガラ スを所望の厚みになるように研磨して用いてもよい。市販の無機ガラスとしては、例え ば、コーユング社製「7059」、「1737」または「EAGLE2000」、旭硝子社製「AN10 0」、 NHテクノグラス社製「NA—35」、 日本電気硝子社製「OA— 10」等が挙げられ
[0037] c m m
本発明の表示素子用基板に用いられる樹脂層は、上記無機ガラスの両面に配置さ れる。樹脂層の厚み dは、好ましくは l ^ m〜; 100 ^ mであり、さらに好ましくは l〃m 〜50 111である。それぞれの樹脂層の厚みは、同一であってもよく異なっていてもよ い。好ましくは、上記のように、それぞれの樹脂層の厚みは同一である。さらに、それ ぞれの樹脂層は、同一の材料で構成されてもよぐ異なる材料で構成されてもよい。 好ましくは、それぞれの樹脂層は、同一の材料で構成される。したがって、最も好まし くは、それぞれの樹脂層は、同一の材料で同一の厚みになるように構成される。上記 樹脂層の合計厚み d は、好ましくは 2 H m〜200 μ mであり、さらに好ましくは 2 μ
rsum
m〜100 μ mである。
[0038] 上記樹脂層の波長 550nmにおける透過率は、好ましくは 85%以上である。上記 樹脂層の波長 550nmにおける屈折率 (n )は、好ましくは 1. 3〜; 1. 7である。上記樹 脂層の屈折率 (n )と上記無機ガラスの屈折率 (n )との差は、好ましくは 0. 2以下で
Γ g あり、さらに好ましくは 0. 1以下である。このような範囲であれば、無機ガラスと樹脂層 との屈折率差に起因する表示特性への悪影響が防止され得る。
[0039] 上記樹脂層の弾性率 (ヤング率)は、それぞれ、好ましくは lGPa以上であり、さらに 好ましくは 1. 5GPa以上である。上記の範囲とすることによって、無機ガラスを薄くし た場合でも、当該樹脂層が変形時の欠陥への引き裂き方向の応力を緩和するので、 無機ガラスへのクラックや破断が生じ難くなる。
[0040] 上記樹脂層を構成する材料としては、任意の適切な樹脂 (実質的には、当該樹脂 を主成分とする樹脂組成物:以下、樹脂と樹脂組成物をまとめて「樹脂」と称すること もある)力 S採用され得る。耐熱性に優れた樹脂が好ましい。さらに好ましくは、上記樹 脂は、熱硬化型又は紫外線硬化型の樹脂である。このような樹脂としては、例えば、 ポリエーテルスルホン系樹脂、ポリカーボネート系樹脂、エポキシ系樹脂、アクリル系 樹脂、ポリオレフイン系樹脂が挙げられる。特に好ましくは、上記樹脂層は、エポキシ 系樹脂を主成分とする樹脂組成物から形成される。表面平滑性に優れ、色相が良好 な樹脂層が得られるからである。
[0041] 上記エポキシ系樹脂は、分子中にエポキシ基を持つものであれば、任意の適切な ものが使用できる。上記エポキシ系樹脂としては、例えば、ビスフエノール A型,ビス フエノール F型、ビスフエノール S型及びこれらの水添加物等のビスフエノール型;フエ ノールノポラック型やクレゾールノポラック型等のノポラック型;トリグリシジルイソシァヌ レート型ゃヒダントイン型等の含窒素環型;脂環式型;脂肪族型;ナフタレン型、ビフ ェニル型等の芳香族型;グリシジルエーテル型、グリシジルァミン型、グリシジルエス テル型等のグリシジル型;ジシクロペンタジェン型等のジシクロ型;エステル型;エー テルエステル型;およびこれらの変性型等が挙げられる。これらのエポキシ系樹脂は 、単独で、又は 2種以上を混合して使用することができる。
[0042] 好ましくは、上記エポキシ系樹脂は、ビスフエノール A型エポキシ系樹脂、脂環式型 エポキシ系樹脂、含窒素環型エポキシ系樹脂、又はグリシジル型エポキシ系樹脂で ある。上記エポキシ系樹脂が含窒素環型である場合、好ましくは、トリグリシジルイソ シァヌレート型エポキシ系樹脂である。これらのエポキシ系樹脂は、変色防止性に優 れる。 [0043] 好ましくは、上記樹脂層は、下記一般式 (1)、(11)、(III)および (IV)からなる群から 選択される少なくとも 1種のエポキシ系プレポリマーの硬化層である。
[0044] [化 1]
Figure imgf000011_0001
[0045] 上記式 (I)中、 X及び Xは、それぞれ独立して、共有結合、 CH基、 C (CH ) 基、
3 2
C (CF ) 基、 CO基、酸素原子、窒素原子、 SO基、 Si (CH CH ) 基、又は N (CH
3 2 3 2
)基を表す。 Y〜Yは置換基であり、 a〜dはその置換数を表す。 Y〜Yは、それ
3 1 4 1 4 ぞれ独立して、水素原子、ハロゲン原子、炭素数 1〜4のアルキル基、炭素数 1〜4の 置換アルキル基、ニトロ基、シァノ基、チォアルキル基、アルコキシ基、ァリール基、 置換ァリール基、アルキルエステル基、又は置換アルキルエステル基を表す。 a〜d は、 0から 4までの整数であり、 1は 2以上の整数である。
[0046] [化 2]
Figure imgf000011_0002
[0047] 上記式 (II)中、 X及び Xは、それぞれ独立して、 CH基、 C (CH ) 基、 C (CF )
3 4 2 3 2 3 2 基、 CO基、酸素原子、窒素原子、 SO基、 Si (CH CH ) 基、又は N (CH )基を表
2 2 3 2 3 す。 Y〜Yは置換基であり、 e〜gはその置換数を表す。 Y〜Yは、それぞれ独立
5 7 5 7
して、水素原子、ハロゲン原子、炭素数 1〜4のアルキル基、炭素数;!〜 4の置換アル キル基、ニトロ基、シァノ基、チォアルキル基、アルコキシ基、ァリール基、置換ァリー ル基、アルキルエステル基、又は置換アルキルエステル基を表す。 e及び gは 0から 4 までの整数であり、 fは 0から 3までの整数であり、 mは 2以上の整数である ,
[0048] [化 3]
Figure imgf000012_0001
[0049] 上記式 (III)中、 X〜Xは、それぞれ独立して、共有結合、 CH基、 C (CH ) 基、
5 7 2 3 2
C (CF ) 基、 CO基、酸素原子、窒素原子、 SO基、 Si (CH CH ) 基、又は N (CH
3 2 2 2 3 2
)基を表す。 Yは、上記式(a)〜(d)のいずれかである。
3 8
[0050] [化 4]
Figure imgf000012_0002
[0051] 上記式(IV)中、 nおよび mは、それぞれ、;!〜 6のいずれかの整数を表す。 Yは
9 上記式(a)または(b)で表される部分である。 [0052] 上記エポキシ系樹脂のエポキシ当量 (エポキシ基 1個当りの質量)は、好ましくは 100 g/eqiv. ~1000g/eqiv.である。上記範囲であれば、得られる樹脂層の柔軟性 や強度を高めることができる。
[0053] 上記エポキシ系樹脂の軟化点は、好ましくは 120度以下である。また、上記ェポキ シ系樹脂は、好ましくは常温 (例えば、 5〜35°C)で液体である。さらに好ましくは、上 記エポキシ系樹脂は、塗工温度以下で (特に常温で)液体の二液混合型エポキシ系 樹脂である。樹脂層を形成する際の展開性や塗工性に優れるからである。
[0054] 上記樹脂組成物は、 目的に応じて任意の適切な添加剤をさらに含有し得る。上記 添加剤としては、例えば、硬化剤、硬化促進剤、希釈剤、老化防止剤、変成剤、界面 活性剤、染料、顔料、変色防止剤、紫外線吸収剤、柔軟剤、安定剤、可塑剤、消泡 剤等が挙げられる。樹脂組成物に含有される添加剤の種類、数および量は、 目的に 応じて適切に設定され得る。
[0055] 上記樹脂組成物は、市販品をそのまま用いてもよぐ市販品に任意の添加剤およ び/または樹脂を添加して用いてもょレ、。市販のエポキシ系樹脂 (樹脂組成物)とし ては、例えば、ジャパンエポキシレジン社製のグレード 827およびグレード 828、アデ 力社製の EPシリーズおよび KRシリーズが挙げられる。
[0056] D. ^ の 1¾告 法
本発明の表示素子用基板の製造方法は、無機ガラスに半硬化状態の樹脂組成物 を貼り合わせること、および、該無機ガラスに貼り合わせた該樹脂組成物を完全に硬 化させることを含む。このような製造方法によれば、接着層を介することなぐ樹脂層 を無機ガラスに直接固着させることができる。
[0057] 1つの実施形態においては、本発明の表示素子用基板の製造方法は、剥離フィノレ ム上に樹脂組成物を塗工すること、当該樹脂組成物を半硬化させて半硬化層を形成 すること、半硬化層を無機ガラスに貼り合わせること、無機ガラスの半硬化層を貼り合 わせていない側に樹脂組成物を塗工すること、および、当該半硬化層および塗工樹 脂組成物を完全に硬化させて無機ガラスの両側に樹脂層を形成すること、を含む。 別の実施形態においては、本発明の表示素子用基板の製造方法は、剥離フィルム /半硬化層の積層体を 2つ用意すること、それぞれの積層体の半硬化層を無機ガラ スのそれぞれの側に貼り合わせること、および、無機ガラスの両側の半硬化層を完全 に硬化させて樹脂層を形成すること、を含む。
[0058] 上記樹脂組成物は、 C項で説明したとおりである。
[0059] 上記樹脂組成物の塗工方法としては、エアドクターコーティング、ブレードコーティ ング、ナイフコーティング、リバースコーティング、トランスファロールコーティング、グラ ビアローノレコーティング、キスコーティング、キャストコーティング、スプレーコーティン グ、スロットオリフィスコーティング、カレンダーコーティング、電着コーティング、デイツ プコーティング、ダイコーティング等のコーティング法;フレキソ印刷等の凸版印刷法 、ダイレクトグラビア印刷法、オフセットグラビア印刷法等の凹版印刷法、オフセット印 刷法等の平版印刷法、スクリーン印刷法等の孔版印刷法等の印刷法が挙げられる。
[0060] なお、塗工に際しては、シリコーンオイル等のレべリング剤や硬化剤等の添加剤を 必要に応じて樹脂組成物に添加して、塗工液の塗工適性やインクの印刷適性を向 上させること力 Sできる。さらに、無機ガラス表面にシラン処理を施すことにより、または 、樹脂組成物にシランカップリング剤を混合することにより、無機ガラスと塗工樹脂組 成物 (最終的には、樹脂層)との密着性を高めることができる。
[0061] 上記シランカップリング剤の代表例としては、アミノシランが挙げられる。アミノシラン の具体例としては、 γ—ァミノプロピルトリエトキシシラン、 Ί—ァミノプロピルトリメトキ シシラン、 Ν - β ~ (アミノエチル) γ—ァミノプロピルトリメトキシシラン、 γ—ゥレイ ドプロピルトリエトキシシラン、 γ—Ν フエニルァミノプロピルトリメトキシシランが挙げ られる。これらのアミノシランは単独または 2種以上混合して使用することができる。さ らに、アミノシラン以外のカップリング剤を併用しても差支えない。
[0062] 上記積層体(剥離フィルム/半硬化層)と無機ガラスとの貼り合わせは、任意の適 切な手段により行われる。代表的には、ラミネーティングが行われる。例えば、無機ガ ラスの両側に積層体を貼り合わせる場合において、ロール状の積層体を無機ガラス に連続的に供給してラミネーティングすることにより、非常に優れた製造効率で表示 素子用基板を製造することができる。
[0063] 上記樹脂組成物の硬化方法は、樹脂組成物に含有されるエポキシ系樹脂の種類 に応じて適切に選択され得る。エポキシ系樹脂が熱硬化型である場合には、樹脂組 成物は加熱により半硬化および完全硬化される。加熱条件は、エポキシ系樹脂の種 類、樹脂組成物の組成等に応じて適切に選択され得る。 1つの実施形態においては 、塗工した樹脂組成物を半硬化させるための加熱条件は、温度が 100°C〜; 150°Cで 、加熱時間が 5分〜 30分である。 1つの実施形態においては、半硬化層を完全硬化 させるための加熱条件は、温度が 170°C〜200°Cで、加熱時間が 60分以上である。 エポキシ系樹脂が紫外線硬化型である場合には、樹脂組成物は紫外線照射により 半硬化および完全硬化される。照射条件は、エポキシ系樹脂の種類、樹脂組成物の 組成等に応じて適切に選択され得る。 1つの実施形態においては、塗工した樹脂組 成物を半硬化させるための照射条件は、照射強度が 40mW/cm2〜60mW/cm2 で、照射時間が 3秒〜 15秒である。 1つの実施形態においては、半硬化層を完全硬 化させるための照射条件は、照射強度が 40mW/cm2〜60mW/cm2で、照射時 間が 5分〜 30分である。必要に応じて、半硬化層を完全硬化させるための紫外線照 射の後に加熱処理を施してもよい。この場合の加熱処理の条件は、例えば、温度が 1 30°C〜; 150°Cで、加熱時間が 10分〜 60分である。
[0064] なお、上記では半硬化状態の樹脂組成物を無機ガラスに貼り付ける実施形態を説 明したが、本発明においては、完全に硬化した樹脂組成物(樹脂層)を無機ガラスに 貝占り付けてもよいことはいうまでもない。この場合、必要に応じて任意の適切な接着層 が用いられ得る。
[0065] E.用 jj余
本発明の表示素子用基板は、任意の適切な表示素子に用いられ得る。表示素子と しては、例えば、液晶ディスプレイ、プラズマディスプレイ、有機 ELディスプレイ等が 挙げられる。これらの中でも、本発明の表示素子用基板は、液晶ディスプレイに好適 である。
[0066] 液晶ディスプレイに用いられる場合、本発明の表示素子用基板は、従来のガラス基 板に施すプロセスをそのまま利用して、セグメント方式、単純マトリクス方式、 TFTを 用いたアクティブマトリクス方式などすベての駆動方式に対応した電極形成に適応で き、透過型 ·反射型どちらの表示方式にも用いることが出来る。これらの表示装置は、 小型'携帯情報端末用機器の表示装置、さらにはワードプロセッサ、パーソナルコン ピュータ、ワークステーション等の情報機器、ビジネス機器、大型パネル等の表示装 置としてこれらの機器に組み込まれる。
[0067] 以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例になんら 限定されるものではない。実施例の表示素子用基板の評価方法を以下に示す。
(1)厚み;
アンリツ製デジタルマイクロメーター「KC— 351C型」を使用して測定した。
(2)平均線膨張係数;
TMA/S S 150C (セイコーインスツルメンッ社製)を用い 30°C〜; 170°Cにおける T MA値 m)を測定し、平均線膨張係数を算出した。
(3)光透過率;
高速分光光度計 (CMS— 500、村上色彩研究所社製、ハロゲンランプ使用)を用 い、波長 550nmにおける透過率を測定した。
(4)破断直径;
直径の異なる円柱へ基板(サイズ: lOmm X 50mm、 サンプル数: 5)を巻きつけ、 無機ガラスの破断を目視により確認し、破断が確認された 5サンプルについての円柱 の直径の平均を破断直径とした。
(5)ヤング率;
50〃 m厚の樹脂フィルムから測定試料(25mm X 50mm)を切り出し、オートグラフ (島津製作所社製)を用いて、測定試料に 20Nまで引っ張り荷重を加えた際の応力 ひずみ曲線より算出した。
(6)面内位相差及び厚み方向位相差;
Axometrics社製 商品名「AxoScan」を用いて、 23°C、波長 550nmで測定した。な お、平均屈折率は、アッベ屈折率計 [ァタゴ (株)製 製品名「DR— M4」]を用いて 測定した値を用いた。
[0068] (実施例)
シリコーン処理の施された剥離フィルム間に、下記化学式で表されるエポキシ系樹 脂((1): (2) = 50 : 50 (重量比))を主成分とする樹脂組成物を挟み込み、 δθ πι間 隔に固定された金属ロールの間に通して、厚み 30 mのエポキシ系樹脂層を含む 積層体を得た。次に、紫外線照射装置 (コンベア速度: 2. 5m/分)を用いて、上記 積層体の一方の側から、紫外線を照射(照射エネルギー: 250mj/cm2)し、ェポキ シ系樹脂層を半硬化させて半硬化層を形成した。次に、一方の剥離フィルムを除去 し、ラミネータを用いて、上記積層体の半硬化層を無機ガラス(松浪硝子社製 硼珪 酸ガラス,厚み: 30 m)の一方の側の表面に貼着した。無機ガラスのもう一方の側 についても同様の操作を行い、半硬化層を貼着した。次いで、残っていた剥離フィル ムを取り除!/、た後、紫外線を再照射(照射エネルギー: 5000mj/cm2以上)した。そ の後、加熱処理(130°C以上, 10分以上)を施し、無機ガラスの両面の半硬化層を完 全硬化させた。このようにして、樹脂層(30 11 m) /無機ガラス(30 11 m) /樹脂層(3 O ^ m)の構成を有する表示素子用基板を得た。
[0069] [化 5]
Figure imgf000017_0001
[0070] 得られた表示素子用基板の線膨張係数、透過率および曲げ耐性、ならびに樹脂層 のヤング率を、以下の表に示す。
[0071] [表 1] 厚み (μ πι) 約 9 0
平均線膨張係数 (p p rntT 1 ) 1 0
光透過率 (%) 9 0
破断直径 (mm) 2 0
ヤング率 (G P a ) 2 . 5
面内の位相差 (n m) 0 . 5
厚み方向の位相差 (n m) 2 0 本発明の表示素子用基板は、液晶ディスプレイ、プラズマディスプレイ、有機 ELデ イスプレイ等の表示素子に広く用いられ得る。特に、液晶ディスプレイに好適に用い られ得る。

Claims

請求の範囲
[I] 無機ガラスと、該無機ガラスの両側に配置された樹脂層とを備える、表示素子用基 板。
[2] 前記樹脂層の合計厚み d と前記無機ガラスの厚み dとの比 d /dが 0· 5〜2
rsum g rsum g
. 2である、請求項 1に記載の表示素子用基板。
[3] 前記無機ガラスの両側の樹脂層が、それぞれ、同一の材料で構成され、同一の厚 みを有し、かつ、該それぞれの樹脂層の厚みが該無機ガラスの厚みと等しい、請求 項 1または 2に記載の表示素子用基板。
[4] 前記表示素子用基板の総厚が、 150 ^ 111以下である、請求項 1から 3のいずれか に記載の表示素子用基板。
[5] 前記表示素子用基板の 170°Cにおける平均線膨張係数が、 20ppm°C 1以下であ る、請求項 1から 4のいずれかに記載の表示素子用基板。
[6] 前記表示素子用基板を湾曲させた際の破断直径が、 30mm以下である、請求項 1 力、ら 5のいずれかに記載の表示素子用基板。
[7] 前記表示素子用基板の透過率が、 85%以上である、請求項 1から 6のいずれかに 記載の表示素子用基板。
[8] 前記無機ガラスの厚み d力 μ m〜50 μ mである、請求項 1から 7のいずれかに記
g
載の表示素子用基板。
[9] 前記樹脂層が、エポキシ系樹脂を主成分とする樹脂組成物から形成されている、 請求項 1から 8のいずれかに記載の表示素子用基板。
[10] 前記樹脂層の 25°Cにおけるヤング率が lGPa以上である、請求項 1から 9のいずれ かに記載の表示素子用基板。
[I I] 前記樹脂層が、前記無機ガラスに直接設けられている、請求項 1から 10のいずれ かに記載の表示素子用基板。
[12] 無機ガラスに半硬化状態の樹脂組成物を貼り合わせること、および、該無機ガラス に貼り合わせた該樹脂組成物を完全に硬化させることを含む、表示素子用基板の製 造方法。
PCT/JP2007/067413 2006-10-25 2007-09-06 Substrat pour dispositif d'affichage et son procédé de production WO2008050547A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/091,781 US8241735B2 (en) 2006-10-25 2007-09-06 Substrate for display device and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006289439A JP2008107510A (ja) 2006-10-25 2006-10-25 表示素子用基板およびその製造方法
JP2006-289439 2006-10-25

Publications (1)

Publication Number Publication Date
WO2008050547A1 true WO2008050547A1 (fr) 2008-05-02

Family

ID=39324357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/067413 WO2008050547A1 (fr) 2006-10-25 2007-09-06 Substrat pour dispositif d'affichage et son procédé de production

Country Status (6)

Country Link
US (1) US8241735B2 (ja)
JP (1) JP2008107510A (ja)
KR (1) KR100990349B1 (ja)
CN (2) CN102736301B (ja)
TW (1) TW200833507A (ja)
WO (1) WO2008050547A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2273476A1 (en) * 2008-04-24 2011-01-12 Nitto Denko Corporation Transparent substrate
US20110039097A1 (en) * 2008-04-24 2011-02-17 Nitto Denko Corporation Flexible substrate
CN102209693A (zh) * 2008-11-07 2011-10-05 日东电工株式会社 透明基板及其制造方法
EP2492250A1 (en) * 2009-10-23 2012-08-29 Nitto Denko Corporation Transparent substrate
WO2023153513A1 (ja) * 2022-02-14 2023-08-17 積水化学工業株式会社 積層体及び電子機器

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101038329B1 (ko) * 2009-03-23 2011-06-01 웅진케미칼 주식회사 플렉시블 디스플레이 기판
KR101124558B1 (ko) * 2009-08-17 2012-03-16 웅진케미칼 주식회사 광추출효율이 개선된 디스플레이 기판
WO2011049124A1 (ja) 2009-10-22 2011-04-28 日東電工株式会社 透明基板
KR20120104352A (ko) * 2009-12-17 2012-09-20 다우 글로벌 테크놀로지스 엘엘씨 복합 적층체 및 이의 용도
JP5615134B2 (ja) * 2010-04-30 2014-10-29 日東電工株式会社 透明基板の製造方法
JP5883085B2 (ja) * 2010-04-30 2016-03-09 日東電工株式会社 透明基板の製造方法
KR101238214B1 (ko) * 2010-08-17 2013-03-04 웅진케미칼 주식회사 화학강화유리를 이용한 플렉시블 디스플레이 기판
DE102011084132A1 (de) 2011-10-07 2013-04-11 Schott Ag Glasrolle
TWI457885B (zh) * 2012-04-02 2014-10-21 Au Optronics Corp 顯示裝置
US20150140343A1 (en) 2012-05-29 2015-05-21 Nitto Denko Corporation Adhesive, and transparent substrate using same
EP2857473A4 (en) 2012-05-29 2016-01-20 Nitto Denko Corp ADHESIVE, AND TRANSPARENT SUBSTRATE USING THE SAME
JP6113555B2 (ja) * 2013-04-02 2017-04-12 日東電工株式会社 光学フィルム
KR102100763B1 (ko) * 2013-08-08 2020-04-16 삼성디스플레이 주식회사 플렉서블 표시 장치
ES2943120T3 (es) 2016-01-06 2023-06-09 Samsung Electronics Co Ltd Dispositivo electrónico con ventana de visualización flexible
CN106113895A (zh) * 2016-07-28 2016-11-16 京东方科技集团股份有限公司 一种基板贴合方法、基板贴合装置、显示面板及制造方法
CN106229364B (zh) * 2016-07-29 2019-01-01 东莞南玻光伏科技有限公司 双玻太阳能光伏组件
KR20180056443A (ko) * 2016-11-18 2018-05-29 삼성디스플레이 주식회사 표시 장치
CN108873488B (zh) * 2018-06-29 2021-04-20 深圳市华星光电半导体显示技术有限公司 紫外线照射机及制作配向膜的设备
JP6817257B2 (ja) * 2018-07-31 2021-01-20 株式会社Joled 保護シート、表示装置および電子機器
JP7037729B2 (ja) * 2018-09-21 2022-03-17 日本電気硝子株式会社 フレキシブルモールドの製造方法、フレキシブルモールド用の基材、及び光学部品の製造方法
JP7318252B2 (ja) * 2019-03-22 2023-08-01 三菱ケミカル株式会社 積層シート
CN111469515A (zh) * 2020-05-20 2020-07-31 京东方科技集团股份有限公司 显示装置、显示面板、显示盖板及其制造方法
WO2022163191A1 (ja) * 2021-01-29 2022-08-04 東レ株式会社 樹脂被覆超薄板ガラス
JPWO2023277060A1 (ja) * 2021-06-30 2023-01-05

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002297054A (ja) * 2001-03-29 2002-10-09 Sumitomo Bakelite Co Ltd 表示素子用基板

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3167716B2 (ja) * 1990-11-28 2001-05-21 セイコーエプソン株式会社 電気光学装置
GB2335884A (en) * 1998-04-02 1999-10-06 Cambridge Display Tech Ltd Flexible substrates for electronic or optoelectronic devices
JP4250276B2 (ja) 1999-10-20 2009-04-08 三菱樹脂株式会社 プラスチックフィルム・ガラスフィルム積層体及びその製造方法
JP2001162721A (ja) 1999-12-06 2001-06-19 Mitsubishi Plastics Ind Ltd 熱硬化性樹脂複合品及びその製造方法
JP2004050565A (ja) 2002-07-18 2004-02-19 Kri Inc 薄膜シート状基板
JP4092192B2 (ja) * 2002-12-26 2008-05-28 シャープ株式会社 表示パネルの製造方法
KR100641793B1 (ko) * 2002-12-26 2006-11-02 샤프 가부시키가이샤 표시패널 및 그 제조방법
WO2005047200A1 (ja) * 2003-11-13 2005-05-26 Sumitomo Corporation フレキシブル基板及びコーティング液
JP2005297498A (ja) * 2004-04-16 2005-10-27 Dainippon Printing Co Ltd 可撓性基板およびそれを用いた有機デバイス

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002297054A (ja) * 2001-03-29 2002-10-09 Sumitomo Bakelite Co Ltd 表示素子用基板

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2273476A1 (en) * 2008-04-24 2011-01-12 Nitto Denko Corporation Transparent substrate
US20110039097A1 (en) * 2008-04-24 2011-02-17 Nitto Denko Corporation Flexible substrate
EP2273476A4 (en) * 2008-04-24 2014-04-23 Nitto Denko Corp TRANSPARENT SUBSTRATE
CN102209693A (zh) * 2008-11-07 2011-10-05 日东电工株式会社 透明基板及其制造方法
EP2492250A1 (en) * 2009-10-23 2012-08-29 Nitto Denko Corporation Transparent substrate
EP2492250A4 (en) * 2009-10-23 2014-01-29 Nitto Denko Corp TRANSPARENT SUBSTRATE
EP2918562A1 (en) * 2009-10-23 2015-09-16 Nitto Denko Corporation Transparent substrate
EP3381876A1 (en) * 2009-10-23 2018-10-03 Nitto Denko Corporation Transparent substrate
US10221090B2 (en) 2009-10-23 2019-03-05 Nitto Denko Corporation Transparent substrate
WO2023153513A1 (ja) * 2022-02-14 2023-08-17 積水化学工業株式会社 積層体及び電子機器

Also Published As

Publication number Publication date
CN102736301B (zh) 2015-12-16
KR20080069962A (ko) 2008-07-29
TWI365135B (ja) 2012-06-01
TW200833507A (en) 2008-08-16
CN101356558A (zh) 2009-01-28
CN102736301A (zh) 2012-10-17
JP2008107510A (ja) 2008-05-08
US8241735B2 (en) 2012-08-14
KR100990349B1 (ko) 2010-10-29
US20100062234A1 (en) 2010-03-11

Similar Documents

Publication Publication Date Title
WO2008050547A1 (fr) Substrat pour dispositif d'affichage et son procédé de production
US20200198302A1 (en) Transparent sheet and method for manufacturing same
KR101408511B1 (ko) 투명 기판
WO2010053092A1 (ja) 透明基板およびその製造方法
US20130213565A1 (en) Flexible substrate for display panel and manufacturing method thereof
WO2011033751A1 (ja) 透明熱可塑性ポリイミド、およびそれを含む透明基板
TWI436886B (zh) Transparent substrate
WO2009131067A1 (ja) 可撓性基板
TW201505848A (zh) 透明基板
JP2012247785A (ja) 表示素子用基板およびその製造方法
JP5142382B2 (ja) 太陽電池用基板、太陽電池素子、太陽電池用モジュールおよび太陽電池用基板の製造方法
JP5668109B2 (ja) 透明基板ならびに透明基板を用いた表示素子、太陽電池および照明素子
JP5238594B2 (ja) 表示素子用基板およびその製造方法
JP5439019B2 (ja) 表示素子用基板およびその製造方法
JP5567314B2 (ja) 透明基板およびその製造方法
CN112004670A (zh) 玻璃膜-树脂复合体
TWI387812B (zh) 具有光學補償功能之透明基板及其液晶顯示器
TW202132877A (zh) 光學薄膜組以及液晶面板
JP5574676B2 (ja) 表示素子用基板および表示素子用基板を用いた表示素子
JP2012134544A (ja) 太陽電池用基板、太陽電池素子、太陽電池用モジュールおよび太陽電池用基板の製造方法
JP2014201619A (ja) 光学フィルム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780001300.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020087008355

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12091781

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07806854

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07806854

Country of ref document: EP

Kind code of ref document: A1