WO2009131067A1 - 可撓性基板 - Google Patents

可撓性基板 Download PDF

Info

Publication number
WO2009131067A1
WO2009131067A1 PCT/JP2009/057737 JP2009057737W WO2009131067A1 WO 2009131067 A1 WO2009131067 A1 WO 2009131067A1 JP 2009057737 W JP2009057737 W JP 2009057737W WO 2009131067 A1 WO2009131067 A1 WO 2009131067A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
group
flexible substrate
resin
inorganic
Prior art date
Application number
PCT/JP2009/057737
Other languages
English (en)
French (fr)
Inventor
毅 村重
山岡 尚志
大輔 服部
坂田 義昌
辰樹 長塚
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN2009801139574A priority Critical patent/CN102015287B/zh
Priority to KR1020147026647A priority patent/KR101490094B1/ko
Priority to KR1020167001414A priority patent/KR20160014769A/ko
Priority to KR20147031504A priority patent/KR20140141721A/ko
Priority to KR1020127021228A priority patent/KR101484381B1/ko
Priority to US12/988,764 priority patent/US20110039097A1/en
Publication of WO2009131067A1 publication Critical patent/WO2009131067A1/ja
Priority to US14/987,596 priority patent/US20160120029A1/en
Priority to US15/998,859 priority patent/US11260627B2/en
Priority to US16/121,779 priority patent/US20190008043A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1262Multistep manufacturing methods with a particular formation, treatment or coating of the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/0017Casings, cabinets or drawers for electric apparatus with operator interface units
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • H10K50/8445Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • H10K59/8731Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/266Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension of base or substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31645Next to addition polymer from unsaturated monomers

Definitions

  • the present invention relates to a flexible substrate. More specifically, the present invention relates to a flexible substrate having excellent gas barrier properties.
  • a glass substrate is widely used as an FPD substrate.
  • the glass substrate is made thin in order to impart flexibility to the glass substrate, the impact resistance becomes insufficient, and problems such as easy breakage occur in the FPD manufacturing process.
  • Patent Document 1 In order to improve gas barrier properties, a gas barrier laminate in which a metal oxide film or the like and an organic layer are laminated on a base material has been proposed (see Patent Document 1). However, the laminate material of Patent Document 1 is still insufficient in gas barrier properties in an organic electroluminescence display device that requires high gas barrier properties among FPDs.
  • the present invention has been made to solve the above-described conventional problems, and an object thereof is to provide a flexible substrate having excellent flexibility and gas barrier properties.
  • the flexible substrate according to the present invention is disposed on a substrate provided with inorganic glass and a resin layer disposed on each side of the inorganic glass, and on the side of the one resin layer where the inorganic glass is not disposed.
  • An inorganic thin film, and the inorganic thin film is formed on at least one peripheral edge of the substrate.
  • the inorganic thin film is formed on the entire surface of one side of the substrate.
  • a smoothing layer is further provided, and the smoothing layer is disposed on the side of the inorganic thin film on which the resin layer is not disposed.
  • another inorganic thin film is further provided, and the other inorganic thin film is disposed on the side of the smoothing layer where the resin layer is not disposed.
  • the thickness is 600 ⁇ m or less.
  • the resin layer is formed of a resin composition containing an epoxy resin and / or an oxetane resin as a main component.
  • the said resin layer contains the thermoplastic resin which has a repeating unit represented by general formula (X) and / or (Y).
  • R 1 is a substituted or unsubstituted aryl group having 6 to 24 carbon atoms, a cycloalkylene group having 4 to 14 carbon atoms, or a linear or branched alkylene group having 1 to 8 carbon atoms.
  • R 2 is a substituted or unsubstituted aryl group having 6 to 24 carbon atoms, a linear or branched alkyl group having 1 to 8 carbon atoms, a linear or branched alkylene group having 1 to 8 carbon atoms, A cycloalkyl group having 5 to 12 carbon atoms, a cycloalkylene group having 5 to 12 carbon atoms, or a hydrogen atom, and in formula (Y), R 3 and R 4 are each independently a straight chain having 1 to 8 carbon atoms Or a branched alkyl group, a hydrogen atom, a linear or branched alkylene group having 1 to 8 carbon atoms, a cycloalkyl group having 5 to 12 carbon atoms, or a cycloalkylene group having 5 to 12 carbon atoms, and A is Carbonyl group or carbon number 1 ⁇ 8 is a linear or branched alkylene group, m represents an integer of 0 to 8, and n represents an integer of
  • the said resin layer contains the thermoplastic resin which has a repeating unit represented by 1 or more general formula (Z).
  • R 1 is a substituted or unsubstituted aryl group having 6 to 24 carbon atoms, a linear or branched alkylene group having 1 to 8 carbon atoms, or a cycloalkylene group having 4 to 14 carbon atoms, Or an oxygen atom
  • R 2 is a substituted or unsubstituted aryl group having 6 to 24 carbon atoms, a linear or branched alkyl group having 1 to 8 carbon atoms, a linear or branched group having 1 to 8 carbon atoms
  • the resin layer contains a polyethersulfone resin.
  • the inorganic thin film contains at least one inorganic compound selected from the group consisting of oxides, nitrides, hydrides, and composite compounds thereof.
  • the inorganic compound has an amorphous structure.
  • the inorganic thin film has a three-layer structure of inorganic oxide layer / inorganic nitride layer / inorganic oxide layer.
  • a transparent electrode is further provided, and the transparent electrode is disposed on the side of the inorganic thin film on which the resin layer is not disposed.
  • an organic electroluminescence display device includes the flexible substrate.
  • the inorganic glass, the resin layer, and the inorganic thin film by having the inorganic glass, the resin layer, and the inorganic thin film, it is possible to provide a flexible substrate having excellent flexibility and gas barrier properties.
  • the inorganic glass disposed in the center can function as a gas barrier layer. Further, gas and moisture entering from the end of the resin layer can be blocked by the inorganic thin film layer. As a result, the gas barrier property can be excellent.
  • an organic electroluminescence (EL) display device capable of continuing a good light emission state for a long period of time (that is, having excellent storability).
  • the inorganic glass can suppress the thermal expansion of the resin layer having a high linear expansion coefficient, and a substrate having a small linear expansion coefficient can be obtained.
  • the breakage of inorganic glass is caused by the concentration of stress on the surface micro-defects, and the thinner the thickness, the more likely it is to break and the thinning is difficult.
  • the resin layers arranged on both sides of the inorganic glass relieve stress in the tearing direction to defects during deformation, and thus the inorganic glass can be made thinner and lighter. As a result, it can be excellent in flexibility, secondary workability and operability.
  • FIG. 1 is a schematic cross-sectional view of a flexible substrate according to one embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view of a flexible substrate according to another embodiment of the present invention. 6 is a schematic cross-sectional view of a flexible substrate according to still another embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view of a flexible substrate according to still another embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view of an organic EL display device according to an embodiment of the present invention.
  • A. 1 is a schematic sectional view of a flexible substrate according to a preferred embodiment of the present invention.
  • the flexible substrate 100 includes a base material 20 and an inorganic thin film 12 formed on at least one surface of the base material 20.
  • the base material 20 includes an inorganic glass 10 and resin layers 11 and 11 ′ disposed on both sides of the inorganic glass 10.
  • the inorganic thin film 12 is arrange
  • FIG. 2 is a plan view of a flexible substrate according to another preferred embodiment of the present invention. In the flexible substrate 100, the inorganic thin film 12 is formed on the peripheral edge of one surface of the base material 20.
  • the inorganic thin film may be formed only on the peripheral edge of one side of the substrate as shown in FIG. 2, or may be formed on the entire surface of one side of the substrate as shown in FIG. By having such a configuration, a flexible substrate having excellent flexibility and excellent gas barrier properties can be obtained.
  • the resin layer on the side of the flexible substrate on which the organic EL element is formed contains components that cause outgas such as monomer, solvent, moisture, and additives of the resin
  • the inorganic thin film It is preferable to form so as to cover not only the entire surface of one side (substantially the surface of the resin layer) but also the entire base material.
  • FIG. 3 is a schematic cross-sectional view of a flexible substrate according to still another preferred embodiment of the present invention.
  • the flexible substrate 100 ′ further includes a smoothing layer 13 in addition to the inorganic glass 10, the resin layers 11, 11 ′, and the inorganic thin film 12.
  • the smoothing layer 13 is disposed on the side of the inorganic thin film 12 where the resin layer 11 is not disposed.
  • the flexible substrate 100 ′′ further includes another inorganic thin film 12 ′ and another smoothing layer 13 ′ on the surface of the smoothing layer 13.
  • the other inorganic thin film 12 ′ is smooth. It arrange
  • the flexible substrate of this invention can be provided with the inorganic thin film of multiple layers.
  • the flexible substrate of the present invention may include a plurality of smoothing layers, and preferably, the smoothing layer is an adjacent inorganic thin film as shown in the illustrated example.
  • the resin layer is disposed on the side where the resin layer is not disposed.
  • the resin layers 11 and 11 ′ arranged on both sides of the inorganic glass 10 may be made of the same material or different materials. Preferably, it is comprised with the same material.
  • Each of the resin layers 11 and 11 ′ can be set to any appropriate thickness. Specifically, the thickness may be substantially the same, or may be different in consideration of the stress applied to the substrate during the inorganic thin film forming step.
  • the thickness of the resin layer on the side on which the inorganic thin film is formed is increased. For example, it is possible to prevent a convex shape from being formed on the inorganic thin film side in the inorganic thin film forming step. By having such a configuration, it is possible to obtain a flexible substrate having a small linear expansion coefficient and extremely excellent operability and secondary workability.
  • the resin layers 11 and 11 ′ are preferably formed directly on the inorganic glass 10. Specifically, the resin layers 11 and 11 ′ are formed on inorganic glass without interposing an adhesive layer. By having such a configuration, a thinner flexible substrate can be obtained.
  • the resin layers 11 and 11 ′ may be fixed to the inorganic glass through an adhesive layer.
  • the adhesive layer is formed of any appropriate adhesive or pressure-sensitive adhesive.
  • the thickness d g of the inorganic glass is preferably 1 to 400 ⁇ m, more preferably 10 to 200 ⁇ m, and particularly preferably 30 to 100 ⁇ m. By disposing the resin layers on both sides of the inorganic glass, the thickness of the inorganic glass can be reduced.
  • the thickness d r of the resin layer is preferably 1 ⁇ 250 [mu] m, more preferably from 10 ⁇ 125 [mu] m. As described above, the resin layers 11 and 11 ′ may have the same thickness or different thicknesses.
  • the total thickness drsum of the resin layer is preferably 2 to 250 ⁇ m, more preferably 20 to 250 ⁇ m.
  • the ratio d rsum / d g between the total thickness d rsum of the resin layer and the thickness d g of the inorganic glass is preferably 0.01 to 10, more preferably 0.1 to 5, particularly preferably. 0.8 to 2.5.
  • the inorganic glass can be reinforced at the same time as the thermal expansion of the resin layer is suppressed by the inorganic glass. As a result, both low linear expansion and mechanical strength can be achieved.
  • the difference between the thickness d g of the thickness d r and the inorganic glass each resin layer (d r -d g) the ratio of the thickness d g of the inorganic glass to ⁇ (d r -d g) / d g ⁇ is Preferably, it is -0.95 to 1.5, and more preferably -0.6 to 0.3.
  • the thickness of the inorganic thin film is preferably 1 nm to 20 ⁇ m, more preferably 5 nm to 15 ⁇ m, and particularly preferably 10 nm to 10 ⁇ m. By having such a thickness, more excellent gas barrier properties can be obtained.
  • the thickness of the smoothing layer is preferably 1 nm to 20 ⁇ m, more preferably 5 nm to 10 ⁇ m, and particularly preferably 10 nm to 5 ⁇ m.
  • the thickness (total thickness) of the flexible substrate can be set to any appropriate value depending on its configuration.
  • the thickness is preferably 600 ⁇ m or less, more preferably 1 to 400 ⁇ m, and particularly preferably 20 to 200 ⁇ m.
  • the average linear expansion coefficient at 170 ° C. of the flexible substrate is preferably 20 ppm ° C.- 1 or less, more preferably 10 ppm ° C.- 1 or less. Within the above range, for example, even when subjected to a plurality of heat treatment steps, pixel displacement and wiring breakage / cracking are unlikely to occur.
  • the fracture diameter when the flexible substrate is bent is preferably 30 mm or less, and more preferably 10 mm or less.
  • the transmittance of the flexible substrate at a wavelength of 550 nm is preferably 85% or more, and more preferably 90% or more.
  • the flexible substrate has a light transmittance reduction rate of 5% or less after heat treatment at 180 ° C. for 2 hours. This is because, with such a reduction rate, for example, even if a heat treatment necessary in the FPD manufacturing process is performed, a practically acceptable light transmittance can be secured.
  • One of the effects of the present invention is that such characteristics are realized while employing the resin layer.
  • the surface roughness Ra of the flexible substrate (substantially, the surface roughness Ra of the resin layer, the inorganic thin film, or the smoothing layer) is preferably 5 nm or less, and more preferably 2 nm or less.
  • the waviness of the flexible substrate is preferably 0.5 ⁇ m or less, and more preferably 0.1 ⁇ m or less. A flexible substrate having such characteristics is excellent in quality.
  • the shape of the inorganic glass used for the flexible substrate of the present invention is typically a plate shape.
  • the inorganic glass include soda-lime glass, borate glass, aluminosilicate glass, and quartz glass according to the classification according to the composition.
  • category by an alkali component an alkali free glass and a low alkali glass are mentioned.
  • the content of alkali metal components (for example, Na 2 O, K 2 O, Li 2 O) in the inorganic glass is preferably 15% by weight or less, and more preferably 10% by weight or less.
  • the transmittance of the inorganic glass at a wavelength of 550 nm is preferably 90% or more.
  • the refractive index ng of the inorganic glass at a wavelength of 550 nm is preferably 1.4 to 1.6.
  • the average thermal expansion coefficient of the inorganic glass is preferably 10 ppm ° C. ⁇ 1 to 0.5 ppm ° C. ⁇ 1 and more preferably 5 ppm ° C. ⁇ 1 to 0.5 ppm ° C. ⁇ 1 . If it is the inorganic glass of the said range, the dimensional change of a resin layer can be suppressed effectively in a high temperature or low temperature environment.
  • the density of the inorganic glass is preferably 2.3 g / cm 3 to 3.0 g / cm 3, and more preferably 2.3 g / cm 3 to 2.7 g / cm 3 . If it is the inorganic glass of the said range, a lightweight flexible substrate will be obtained.
  • the inorganic glass is a mixture of a main raw material such as silica or alumina, an antifoaming agent such as sodium nitrate or antimony oxide, and a reducing agent such as carbon at a temperature of 1400 ° C to 1600 ° C. Then, after forming into a thin plate shape, it is produced by cooling.
  • the method for forming the inorganic glass sheet include a slot down draw method, a fusion method, and a float method.
  • the inorganic glass formed into a plate shape by these methods may be chemically polished with a solvent such as hydrofluoric acid, if necessary, in order to reduce the thickness or improve the smoothness.
  • the inorganic glass a commercially available one may be used as it is, or a commercially available inorganic glass may be polished to have a desired thickness.
  • examples of commercially available inorganic glasses include “7059”, “1737” or “EAGLE 2000” manufactured by Corning, “AN100” manufactured by Asahi Glass, “NA-35” manufactured by NH Techno Glass, and “OA-” manufactured by Nippon Electric Glass. 10 ”,“ D263 ”or“ AF45 ”manufactured by Schott Corporation.
  • the transmittance of the resin layer at a wavelength of 550 nm is preferably 85% or more.
  • the refractive index (n r ) at a wavelength of 550 nm of the resin layer is preferably 1.3 to 1.7.
  • the difference between the refractive index (n r ) of the resin layer and the refractive index ( ng ) of the inorganic glass is preferably 0.2 or less, and more preferably 0.1 or less. If it is such a range, the bad influence on the display characteristic resulting from the refractive index difference of inorganic glass and a resin layer may be prevented.
  • the elastic modulus (Young's modulus) of the resin layer is preferably 1 GPa or more, more preferably 1.5 GPa or more. By setting it as the above range, even when the inorganic glass is thinned, the resin layer relaxes the stress in the tearing direction to the defects at the time of deformation, so that cracking or breaking of the inorganic glass is difficult to occur.
  • the resin composition includes a resin having excellent heat resistance.
  • the resin may be a thermosetting or ultraviolet curable resin, or may be a thermoplastic resin.
  • thermosetting or ultraviolet curable resins include polyarylate resins, polyimide resins, polyethylene naphthalate resins, polyethersulfone resins, polycarbonate resins, epoxy resins, oxetane resins, and acrylic resins. And polyolefin resins.
  • any appropriate site for example, main chain end
  • these resin may be used independently and may be used in combination.
  • the resin layer is particularly preferably formed from a resin composition containing an epoxy resin and / or an oxetane resin as a main component. This is because a resin layer having excellent surface smoothness and a good hue can be obtained.
  • the resin layer is formed from a resin composition mainly composed of a terminal sulfone-modified polyethersulfone resin and / or an oxetane resin.
  • any appropriate epoxy resin can be used as long as it has an epoxy group in the molecule.
  • the epoxy resin include bisphenol types such as bisphenol A type, bisphenol F type, bisphenol S type and their water additives; novolak types such as phenol novolak type and cresol novolak type; triglycidyl isocyanurate type and hydantoin Nitrogen-containing ring type such as type; alicyclic type; aliphatic type; aromatic type such as naphthalene type and biphenyl type; glycidyl type such as glycidyl ether type, glycidyl amine type and glycidyl ester type; dicyclopentadiene type, etc. Dicyclo type; ester type; ether ester type; and modified types thereof. These epoxy resins can be used alone or in admixture of two or more.
  • the epoxy resin is a bisphenol A type epoxy resin, an alicyclic type epoxy resin, a nitrogen-containing ring type epoxy resin, or a glycidyl type epoxy resin.
  • the epoxy resin is a nitrogen-containing ring type, it is preferably a triglycidyl isocyanurate type epoxy resin.
  • the resin layer is a cured layer of at least one epoxy prepolymer selected from the group consisting of the following general formulas (I), (II), (III), and (IV).
  • X 1 and X 2 are each independently a covalent bond, CH 2 group, C (CH 3 ) 2 group, C (CF 3 ) 2 group, CO group, oxygen atom, nitrogen atom , SO 2 group, Si (CH 2 CH 3 ) 2 group, or N (CH 3 ) group.
  • Y 1 to Y 4 are substituents, and a to d represent the number of substitutions.
  • Y 1 to Y 4 are each independently a hydrogen atom, halogen atom, alkyl group having 1 to 4 carbon atoms, substituted alkyl group having 1 to 4 carbon atoms, nitro group, cyano group, thioalkyl group, alkoxy group, aryl Represents a group, a substituted aryl group, an alkyl ester group, or a substituted alkyl ester group.
  • a to d are integers from 0 to 4
  • l is an integer of 2 or more.
  • X 3 and X 4 are each independently CH 2 group, C (CH 3 ) 2 group, C (CF 3 ) 2 group, CO group, oxygen atom, nitrogen atom, SO 2 Represents a group, Si (CH 2 CH 3 ) 2 group, or N (CH 3 ) group.
  • Y 5 to Y 7 are substituents, and e to g represent the number of substitutions.
  • Y 5 to Y 7 are each independently a hydrogen atom, halogen atom, alkyl group having 1 to 4 carbon atoms, substituted alkyl group having 1 to 4 carbon atoms, nitro group, cyano group, thioalkyl group, alkoxy group, aryl Represents a group, a substituted aryl group, an alkyl ester group, or a substituted alkyl ester group.
  • e and g are integers from 0 to 4
  • f is an integer from 0 to 3
  • m is an integer of 2 or more.
  • X 5 to X 7 are each independently a covalent bond, CH 2 group, C (CH 3 ) 2 group, C (CF 3 ) 2 group, CO group, oxygen atom, nitrogen atom , SO 2 group, Si (CH 2 CH 3 ) 2 group, or N (CH 3 ) group.
  • Y 8 is any one of the above formulas (a) to (d).
  • n and m each represents an integer of 1 to 6.
  • Y 9 is a portion represented by the above formula (a) or (b).
  • an epoxy resin represented by the following general formula (V) is preferably used.
  • R is a residue of an organic compound having z active hydrogens, and the organic compound contains at least one hydroxyl group as an active hydrogen group, or only a hydroxyl group as an active hydrogen group N 1 and a mixture of two or more selected from unsaturated alcohols containing an unsaturated double bond-containing group at the same time, and n 1 , n 2 ,... N z Each represents 0 or an integer of 1 to 30 and the sum thereof is 1 to 100, z is an integer of 1 to 10 representing the number of active hydrogen groups of R, and A is an oxycyclohexane skeleton having a substituent X And a group represented by the following formula (VI) (in the formula (VI), X represents an epoxy group).
  • R in the formula (V) include residues of ethylene glycol, diethylene glycol, triethylene glycol, trimethylolpropane, trimethylolmelamine, and isocyanuric acid.
  • a trimethylolpropane residue is preferably used in terms of availability and ease of handling as a resin.
  • the maximum value z of the subscripts of n 1 , n 2 ,... nz represents the number of active hydrogen groups of R, for example, 2 for ethylene glycol and 3 for trimethylolpropane.
  • z When z is 0, an epoxy group cannot be contained, so that the effect of increasing the viscosity cannot be obtained.
  • z is 11 or more, it is difficult to obtain a skeleton compound, and the cost increases, so it is economical. Absent.
  • n 1, n 2, ⁇ n z is an integer of 0 or 1 to 30 and the sum 1-100 It is.
  • n 1 , n 2 ,... Nz exceeds 30, the viscosity of the epoxy resin increases and the handleability deteriorates.
  • n 1, n 2, ⁇ n z is not reactive at 0 sum, if larger than 100, control of the degree of increase in viscosity during melt-kneading becomes difficult.
  • R is a trimethylolpropane residue, preferably n 1 , n 2 , and n 3 are each an integer of 5 to 30, and the sum is 15 to 90.
  • the epoxy equivalent (mass per epoxy group) of the epoxy resin is preferably 100 g / eqiv. ⁇ 1000 g / eqiv. It is. If it is the said range, the softness
  • the softening point of the epoxy resin is preferably 120 degrees or less.
  • the epoxy resin is preferably liquid at normal temperature (eg, 5 to 35 ° C.). More preferably, the epoxy resin is a two-component mixed epoxy resin that is liquid at or below the coating temperature (particularly at room temperature). It is because it is excellent in developability and coating property when forming the resin layer.
  • oxetane-based resin Any appropriate compound having an oxetane ring in the molecule is used as the oxetane-based resin.
  • oxetane compounds represented by the following formulas (1) to (5).
  • the resin composition may further contain any appropriate additive depending on the purpose.
  • the additive include a curing agent, a curing accelerator, a diluent, an anti-aging agent, a modifying agent, a surfactant, a dye, a pigment, a discoloration preventing agent, an ultraviolet absorber, a softening agent, a stabilizer, a plasticizer, An antifoaming agent etc. are mentioned.
  • the kind, number, and amount of additives contained in the resin composition can be appropriately set depending on the purpose.
  • resin composition a commercially available product may be used as it is, or an optional additive and / or resin may be added to the commercially available product.
  • examples of commercially available epoxy resins include Japan Epoxy Resin's Grade 827 and Grade 828, Adeka's EP series and KR series, Daicel Chemical Industries' Celoxide 2021P and EHPE3150, and the like. It is done.
  • examples of commercially available oxetane resins include OXT221 manufactured by Toa Gosei Co., Ltd.
  • thermoplastic resin As said thermoplastic resin, the thermoplastic resin (A) which has a repeating unit represented by the following general formula (X) and / or (Y) is mentioned, for example.
  • a thermoplastic resin By including such a thermoplastic resin, it is possible to obtain a resin layer having excellent adhesion to the inorganic glass and excellent toughness. As a result, it is possible to obtain a flexible substrate in which cracks are unlikely to progress during cutting.
  • R 1 is a substituted or unsubstituted aryl group having 6 to 24 carbon atoms, a cycloalkylene group having 4 to 14 carbon atoms, or a linear or branched alkylene group having 1 to 8 carbon atoms.
  • R 2 represents a substituted or unsubstituted aryl group having 6 to 24 carbon atoms, a linear or branched alkyl group having 1 to 8 carbon atoms, a linear or branched alkylene group having 1 to 8 carbon atoms, carbon A cycloalkyl group having 5 to 12 carbon atoms, a cycloalkylene group having 5 to 12 carbon atoms or a hydrogen atom, preferably a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, a straight chain having 1 to 6 carbon atoms or A branched alkyl group, a linear or branched alkylene group having 1 to 4 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, a cycloalkylene group having 5 to 10 carbon atoms, or a hydrogen atom.
  • R 3 and R 4 are each independently a linear or branched alkyl group having 1 to 8 carbon atoms, a hydrogen atom, or a linear or branched alkylene group having 1 to 8 carbon atoms.
  • A is a carbonyl group or a linear or branched alkylene group having 1 to 8 carbon atoms, preferably a carbonyl group or a linear or branched alkylene group having 1 to 6 carbon atoms, more preferably a carbonyl group. Or a linear or branched alkylene group having 1 to 4 carbon atoms.
  • m represents an integer of 0 to 8, preferably an integer of 0 to 6, and more preferably an integer of 0 to 3.
  • n represents an integer of 0 to 4, preferably an integer of 0 to 2.
  • the polymerization degree of the thermoplastic resin (A) is preferably 10 to 6000, more preferably 20 to 5000, and particularly preferably 50 to 4000.
  • thermoplastic resin (A) examples include styrene-maleic anhydride copolymer and ester group-containing cycloolefin polymer. These thermoplastic resins can be used alone or in admixture of two or more.
  • the glass transition temperature of the thermoplastic resin (A) is preferably 110 ° C. or higher, more preferably 120 ° C. or higher, and particularly preferably 120 to 350 ° C. If it is such a range, the flexible substrate which is excellent in heat resistance can be obtained.
  • thermoplastic resin includes a thermoplastic resin (B) having one or more repeating units represented by the following general formula (Z).
  • a thermoplastic resin By including such a thermoplastic resin, it is possible to obtain a resin layer having excellent adhesion to the inorganic glass and excellent toughness. As a result, it is possible to obtain a flexible substrate in which cracks are unlikely to progress during cutting.
  • R 1 is a substituted or unsubstituted aryl group having 6 to 24 carbon atoms, a linear or branched alkylene group having 1 to 8 carbon atoms, or a cycloalkylene group having 4 to 14 carbon atoms, Or an oxygen atom, preferably a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, a linear or branched alkylene group having 1 to 6 carbon atoms, a cycloalkylene group having 4 to 12 carbon atoms, or oxygen An atom, more preferably a substituted or unsubstituted aryl group having 6 to 18 carbon atoms, a linear or branched alkylene group having 1 to 4 carbon atoms, or a cycloalkylene group having 5 to 10 carbon atoms, or oxygen Is an atom.
  • R 2 represents a substituted or unsubstituted aryl group having 6 to 24 carbon atoms, a linear or branched alkyl group having 1 to 8 carbon atoms, a linear or branched alkylene group having 1 to 8 carbon atoms, carbon A cycloalkyl group having 5 to 12 carbon atoms, a cycloalkylene group having 5 to 12 carbon atoms, or a hydrogen atom, preferably a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, a straight chain having 1 to 6 carbon atoms Alternatively, they are a branched alkyl group, a linear or branched alkylene group having 1 to 4 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, a cycloalkylene group having 5 to 10 carbon atoms, or a hydrogen atom.
  • the polymerization degree of the thermoplastic resin (B) is preferably 10 to 6000, more preferably 20 to 5000, and particularly preferably 50 to 4000.
  • thermoplastic resin (B) examples include polyarylate, polyester, and polycarbonate. These thermoplastic resins can be used alone or in admixture of two or more.
  • the glass transition temperature of the thermoplastic resin (B) is preferably 120 ° C. or higher, more preferably 150 ° C. or higher, and particularly preferably 180 to 350 ° C. If it is such a range, the flexible substrate which is excellent in heat resistance can be obtained.
  • the inorganic thin film is formed of any appropriate inorganic compound.
  • the inorganic thin film preferably contains at least one inorganic compound selected from the group consisting of oxides, nitrides, hydrides and complex compounds thereof.
  • the inorganic compound may be a complex compound of oxide, nitride and / or hydride as well as an oxide, nitride or hydride alone. By using such a compound, the transparency can be further improved.
  • the inorganic compound that forms the inorganic thin film may have any suitable structure. Specifically, it may have a complete crystal structure or an amorphous structure.
  • the elements constituting the inorganic compound include carbon (C), silicon (Si), aluminum (Al), magnesium (Mg), calcium (Ca), potassium (K), tin (Sn), sodium (Na), Boron (B), titanium (Ti), lead (Pb), zirconium (Zr), yttrium (Y), and the like can be given. These may be used alone or in combination of two or more. Among these, carbon, silicon, and aluminum are preferably used.
  • Specific examples of the inorganic compound include diamond-like carbon (DLC), SiN x , SiO y , AlO z and the like.
  • the value x of SiN x is preferably 0.3-2.
  • the y value of SiO y is preferably 1.3 to 2.5.
  • the z value of AlO z is preferably 0.7 to 2.3.
  • the inorganic thin film may be formed of a single layer or a multi-layer laminate.
  • Specific examples of the case where the inorganic thin film is a laminate include a three-layer structure of inorganic oxide layer / inorganic nitride layer / inorganic oxide layer (for example, SiO y layer / SiN x layer / SiO y layer). It is done.
  • the smoothing layer is formed of any appropriate forming material.
  • the smoothing layer is formed of any appropriate resin composition.
  • the resin composition preferably contains a thermosetting resin or a photocurable resin.
  • thermosetting resin examples include resins that can be cured by applying thermal energy and that can form a transparent and flat surface after curing.
  • Representative examples include polycarbonate, polymethyl methacrylate, polyacrylate, methyl phthalate homopolymer or copolymer, polyethylene terephthalate, polystyrene, diethylene glycol bisallyl carbonate, acrylonitrile / styrene copolymer, poly (-4-methylpentene-1 ), Phenol resins, epoxy resins, cyanate resins, maleimide resins, polyimide resins, etc., and those modified with polyvinyl butyral, acrylonitrile-butadiene rubber, polyfunctional acrylate compounds, etc., crosslinked polyethylene resins, Modified with thermoplastic resin such as crosslinked polyethylene / epoxy resin, crosslinked polyethylene / cyanate resin, polyphenylene ether / epoxy resin, polyphenylene ether / cyanate resin Such as thermosetting resins. These may be used
  • the resin composition which consists of an acrylate compound which has a radical reactive unsaturated compound the resin composition which consists of a mercapto compound which has an acrylate compound and a thiol group, epoxy acrylate, urethane acrylate, polyester acrylate,
  • examples thereof include a resin composition in which an oligomer such as polyether acrylate is dissolved in a polyfunctional acrylate monomer. These may be used alone or in combination of two or more.
  • the resin composition forming the smoothing layer may contain additives such as an antioxidant, an ultraviolet absorber, and a plasticizer as necessary.
  • additives such as an antioxidant, an ultraviolet absorber, and a plasticizer as necessary.
  • an appropriate resin or additive may be included for the purpose of improving film formability and preventing pinholes.
  • the flexible substrate of the present invention is a method in which a resin composition is applied to the inorganic glass, and the resin composition is cured, dried, or heat-treated to form a resin layer. And a step of forming the inorganic thin film on the surface of the obtained resin layer. Moreover, when providing a smoothing layer, the process of forming the said smoothing layer on the inorganic thin film surface is further included.
  • Examples of the resin composition coating method for forming the resin layer include air doctor coating, blade coating, knife coating, reverse coating, transfer roll coating, gravure roll coating, kiss coating, cast coating, spray coating, and slot orifice.
  • Coating methods such as coating, calendar coating, electrodeposition coating, dip coating, and die coating; relief printing methods such as flexographic printing, intaglio printing methods such as direct gravure printing methods, offset gravure printing methods, and lithographic printing methods such as offset printing methods
  • a printing method such as a stencil printing method such as a screen printing method.
  • additives such as leveling agents such as silicone oil and curing agents can be added to the resin composition as necessary to improve the coating suitability of the coating liquid and the ink printing suitability.
  • leveling agents such as silicone oil and curing agents
  • silane coupling agent for example, vinyl, epoxy, styryl, methacryloxy, acryloxy, amino, ureido, chloropropyl, mercapto, sulfide, and isocyanate are used.
  • thermoplastic resin (A) and / or (B) is used as the resin for forming the resin layer, amino-based, epoxy-based, and isocyanate-based materials are preferably used.
  • the hardening method of the said resin composition may be selected according to the kind of resin contained in a resin composition.
  • a thermosetting resin When a thermosetting resin is used, it is cured by heating. Arbitrary appropriate conditions can be employ
  • an ultraviolet curable resin When used, it is cured by ultraviolet irradiation.
  • any appropriate drying method for example, natural drying, air drying, heat drying
  • the drying temperature is typically 100 to 200 ° C.
  • the drying time is typically 1 to 10 minutes.
  • Any appropriate heat treatment method can be adopted as the heat treatment.
  • the heat treatment temperature is 100 ° C. to 300 ° C.
  • the heat treatment time is 5 to 45 minutes.
  • any appropriate method can be adopted as a method of forming the inorganic thin film.
  • Examples thereof include physical vapor deposition methods such as vacuum vapor deposition, oxidation reaction vapor deposition, sputtering, and ion plating (Physical Vapor Deposition); plasma chemical vapor deposition (Chemical Vapor Deposition).
  • a plasma CVD method using an organic silicon compound such as SiH 4 or tetramethoxysilane (TMOS) as a raw material can be used.
  • TMOS tetramethoxysilane
  • a plasma CVD method using hydrocarbons such as methane, acetylene, ethylene, and butadiene as raw materials can be used.
  • any appropriate method can be adopted as a method of forming the smoothing layer.
  • a spin coating method, a spray method, a blade coating method, a dip method, a vapor deposition method, and the like can be given.
  • the resin composition is dissolved or dispersed in an appropriate dilution solvent such as ethanol, chloroform, tetrahydrofuran, dioxane or the like to form a thin film.
  • the flexible substrate of the present invention is typically a self-luminous display device such as an electroluminescence (EL) display, a plasma display (PD), or a field emission display (FED), or a liquid crystal display. It can be used for devices and the like. Among these, the flexible substrate of the present invention can be suitably used for an organic electroluminescence (EL) display device that requires high gas barrier properties.
  • EL electroluminescence
  • PD plasma display
  • FED field emission display
  • FIG. 5 is a schematic sectional view of an organic EL display device according to a preferred embodiment of the present invention.
  • the organic EL display device 200 is disposed so as to cover the flexible substrate 100 of the present invention, the transparent electrode 80, the organic light emitting layer 30, and the counter electrode 40 that are sequentially formed on the flexible substrate 100.
  • Inorganic protective film 60 and resin protective film 70 are provided.
  • the transparent electrode 80 is disposed on the side of the flexible substrate 100 where the inorganic thin film resin layer is not disposed (the upper side in the illustrated example).
  • the transparent electrode 80, the organic light emitting layer 30, and the counter electrode 40 in the region where the transparent electrode 80 and the counter electrode 40 overlap each other constitute the pixel 50.
  • a hard coat layer may be disposed on the side of the flexible substrate 100 where the transparent electrode 80 is not disposed.
  • the configuration of the organic EL display device of the present invention is not limited to the illustrated example, and any appropriate configuration can be adopted.
  • the flexible substrate of the present invention may be disposed so as to cover the inorganic protective film 60 and the organic protective film 70 and used as a sealing member.
  • the organic EL display device may be a top emission method or a bottom emission method.
  • At least one electrode is required to be transparent.
  • a material for forming a transparent electrode indium tin oxide (ITO), indium zinc oxide (IZO), indium tin oxide added with silicon oxide (ITSO), indium oxide containing tungsten oxide (IWO), tungsten oxide Indium zinc oxide containing IWZO, indium oxide containing titanium oxide (ITO), indium tin oxide containing titanium oxide (ITTiO), indium tin oxide containing molybdenum (ITMO), or the like is used.
  • the counter electrode 40 is made of a metal film such as Mg—Ag or Al—Li and used as a cathode.
  • the organic light emitting layer 30 is a laminate of various organic thin films.
  • the organic light emitting layer 30 is made of a hole injecting organic material (for example, a triphenylamine derivative), and has a hole injecting layer 31 provided to improve the hole injecting efficiency from the anode, and the light emitting property.
  • a light emitting layer 32 made of an organic substance (for example, anthracene) and an electron injection layer 33 made of an electron injecting material (for example, a perylene derivative) and provided to improve electron injection efficiency from the cathode.
  • the organic light emitting layer 30 is not limited to the illustrated example, and any suitable combination of organic thin films capable of causing light emission by recombination of electrons and holes in the light emitting layer 32 may be employed.
  • a first hole transport layer eg, copper phthalocyanine
  • a second hole transport layer eg, N, N′-diphenyl-N, N′-dinaphthylbenzidine
  • an electron transport layer / light emitting layer eg, A construction consisting of tris (8-hydroxyquinolinato) aluminum
  • the light emitting layers of three adjacent pixels may be made of a light emitting organic material that emits red (R), green (G), and blue (B) light, respectively.
  • a suitable color filter may be provided on the light emitting layer.
  • the organic light emitting layer 30 is preferably as thin as possible. This is because it is preferable to transmit the emitted light as much as possible.
  • the organic light emitting layer 30 can be composed of a very thin film having a thickness of about 10 nm, for example.
  • the hard coat layer is formed of any appropriate forming material. Typically, it is formed of the same resin composition as the smoothing layer.
  • Example 1 ⁇ Preparation of substrate (resin layer / inorganic glass / resin layer)> A plate-like inorganic glass (“D263” manufactured by Schott Co., Ltd.) having a thickness of 50 ⁇ m was washed with methyl ethyl ketone (MEK) and subjected to corona treatment on both sides. Thereafter, a silane coupling agent (KBM-403, manufactured by Shin-Etsu Chemical Co., Ltd.) was applied to both surfaces of the inorganic glass and heat-treated at 110 ° C. for 5 minutes.
  • D263 methyl ethyl ketone
  • MEK methyl ethyl ketone
  • an epoxy resin 1 represented by the following formula (a) (Delcel Chemical Industries, Celoxide 2021P) and an epoxy resin 2 (2,2-bis (hydroxymethyl) -1-butanol 1,2-epoxy-4 -(2-oxiranyl) cyclohexane adduct, manufactured by Daicel Chemical Industries, EHPE3150), an oxetane resin represented by the following formula (5) (manufactured by Toagosei Co., Ltd., OXT221), and a polymerization initiator (manufactured by Adeka, SP-170) A liquid mixture was prepared.
  • a (Delcel Chemical Industries, Celoxide 2021P)
  • an epoxy resin 2 (2,2-bis (hydroxymethyl) -1-butanol 1,2-epoxy-4 -(2-oxiranyl) cyclohexane adduct, manufactured by Daicel Chemical Industries, EHPE3150)
  • UV light was irradiated at 300 mJ / cm 2 or more to cure the resin, thereby forming a resin layer having a thickness of 25 ⁇ m.
  • a resin layer having a thickness of 25 ⁇ m was formed on the back surface of the inorganic glass, and then heat-treated at 150 ° C. for 30 minutes. In this way, a substrate having a thickness of 100 ⁇ m was produced.
  • SiN x film (thickness 100 nm) was formed on one side of the base material obtained above by plasma CVD.
  • the conditions for forming the SiN x film are as follows. In this way, a flexible substrate was produced. Degree of vacuum: 0.3 Pa (2.25 ⁇ 10 ⁇ 3 Torr) SiH 4 gas flow rate: 50 sccm Nitrogen gas flow rate: 50 sccm Frequency: 13.56MHz Power: 700W
  • Example 2 A flexible substrate was produced in the same manner as in Example 1 except that a SiO y film (thickness: 100 nm) was formed on one surface of the base material by the plasma CVD method.
  • the conditions for forming the SiO x film are as follows. Degree of vacuum: 0.3 Pa (2.25 ⁇ 10 ⁇ 3 Torr) SiH 4 gas flow rate: 10 sccm Oxygen gas flow rate: 20 sccm Nitrogen gas flow rate: 50 sccm Frequency: 13.56MHz Power: 500W
  • Example 3 A flexible substrate was produced in the same manner as in Example 1 except that a diamond-like carbon (DLC) film (thickness: 100 nm) was formed on one side of the substrate by plasma CVD.
  • the conditions for forming the DLC film are as follows. Degree of vacuum: 0.3 Pa (2.25 ⁇ 10 ⁇ 3 Torr) CH 4 gas flow rate: 200 sccm Frequency: 13.56MHz Power: 1000W Electrode DC voltage: 300V
  • Example 4 A SiO y film (thickness 100 nm), a SiN x film (thickness 100 nm), and a SiO y film (thickness 100 nm) are formed in this order on one side of the substrate by the plasma CVD method, and lamination of SiO y / SiN x / SiO y is performed.
  • a flexible substrate was produced in the same manner as in Example 1 except that the body was formed. The formation conditions of the SiO y film and the SiN x film are as described above.
  • Example 5 A flexible substrate was produced in the same manner as in Example 1 except that the following base material was used.
  • Base material A styrene-maleic anhydride copolymer (manufactured by Aldrich, weight average molecular weight 220,000) was dissolved in methyl isobutyl ketone so as to be 20% by weight.
  • D263 manufactured by SCHOTT Co., Ltd.
  • a thickness of 50 ⁇ m and a length of 10 cm x 4 cm was washed with methyl ethyl ketone, followed by corona treatment, followed by an amine group-containing coupling agent (KBM-603, Shin-Etsu).
  • Example 6 An inorganic thin film was formed on the base material used in Example 5 in the same manner as in Example 2 to produce a flexible substrate.
  • Example 7 An inorganic thin film was formed on the base material used in Example 5 in the same manner as in Example 3 to produce a flexible substrate.
  • Example 8 An inorganic thin film was formed on the base material used in Example 5 in the same manner as in Example 4 to produce a flexible substrate.
  • Example 9 A flexible substrate was produced in the same manner as in Example 1 except that the following base material was used.
  • Base material A methylene chloride solution of 20% by weight of polyarylate (U-polymer U-100: manufactured by Unitika) and cyclopentanone were mixed to obtain a 14.5% by weight casting solution.
  • the surface of one side of a 50 ⁇ m-thick inorganic glass (manufactured by Shot Corp., “D263”) is washed with methyl ethyl ketone and then subjected to corona treatment, followed by an amine group-containing coupling agent (KBM-603, manufactured by Shin-Etsu Chemical Co., Ltd.). It was applied and heat treated at 110 ° C.
  • the above-mentioned casting solution was applied to the surface of the inorganic glass that had been subjected to the coupling treatment, dried at 160 ° C. for 10 minutes, and then heat-treated at 200 ° C. for 30 minutes. The same treatment was performed on the other surface of the inorganic glass to obtain a substrate having a total thickness of 120 ⁇ m.
  • Example 10 An inorganic thin film was formed on the base material used in Example 9 in the same manner as in Example 2 to produce a flexible substrate.
  • Example 11 An inorganic thin film was formed on the base material used in Example 9 in the same manner as in Example 3 to produce a flexible substrate.
  • Example 12 An inorganic thin film was formed on the base material used in Example 9 in the same manner as in Example 4 to produce a flexible substrate.
  • Example 13 A flexible substrate was produced in the same manner as in Example 1 except that the following base material was used.
  • Base material Polyethersulfone modified with a terminal hydroxyl group (Sumika Excel 5003P: manufactured by Sumitomo Chemical Co., Ltd.), cyclopentanone, dimethyl sulfoxide, and a leveling agent (BYK-307: manufactured by Big Chemie) are in a weight ratio of 140: 658: 42: 0.105. To obtain a casting solution.
  • one surface of 50 ⁇ m thick, 10 cm long ⁇ 4 cm wide inorganic glass (“D263”, manufactured by Shot Corp.) was washed with methyl ethyl ketone, followed by corona treatment, followed by epoxy group terminal coupling agent (KBM-403: Shin-Etsu) After application, a heat treatment was performed at 110 ° C. for 5 minutes.
  • the above-mentioned casting solution was applied to the surface of the inorganic glass subjected to the coupling treatment, dried at 160 ° C. for 10 minutes, and then heat-treated at 200 ° C. for 30 minutes to form a resin layer having a thickness of 35 ⁇ m.
  • the same treatment was performed on the other surface of the inorganic glass to obtain a substrate having a total thickness of 120 ⁇ m.
  • Example 14 An inorganic thin film was formed on the substrate used in Example 13 in the same manner as in Example 2 to produce a flexible substrate.
  • Example 15 An inorganic thin film was formed on the base material used in Example 13 in the same manner as in Example 3 to produce a flexible substrate.
  • Example 16 An inorganic thin film was formed on the base material used in Example 13 in the same manner as in Example 4 to produce a flexible substrate.
  • Example 17 An organic EL element was produced by the following method and sealed using the flexible substrate of Example 11 to obtain an organic EL display device.
  • the ITO layer surface of a glass substrate (surface resistance value: 10 ⁇ / ⁇ ) having an indium tin composite oxide (ITO) layer was washed with isopropyl alcohol, then subjected to UV-ozone treatment for 15 minutes, and the ITO layer was then transparent electrode (anode ).
  • First hole transport layer copper phthalocyanine (film thickness: 10 nm)
  • Second hole transport layer N, N′-diphenyl-N, N′-dinaphthylbenzidine (film thickness: 40 nm)
  • Electron transport layer / light emitting layer Tris (8-hydroxyquinolinato) aluminum (film thickness: 60 nm)
  • lithium fluoride having a thickness of 1 nm and aluminum having a thickness of 100 nm were sequentially deposited to form a counter electrode (cathode).
  • the aluminum surface was sealed with a flexible substrate (annealed at 110 ° C. for 15 minutes) obtained in Example 11 via an ultraviolet curable epoxy adhesive, and ultraviolet rays were transferred to the flexible substrate side.
  • the organic EL display was obtained by curing the adhesive.
  • Example 18 An organic EL display device was produced in the same manner as in Example 17 except that sealing was performed using the flexible substrate (annealed at 110 ° C. for 15 minutes) obtained in Example 15.
  • Example 1 A laminate was obtained in the same manner as in Example 11 except that the inorganic thin film (DLC film) was not formed.
  • DLC film inorganic thin film
  • Example 2 A laminate was obtained in the same manner as in Example 15 except that the inorganic thin film (DLC film) was not formed.
  • DLC film inorganic thin film
  • Comparative Example 3 An organic EL display device was produced in the same manner as in Example 17 except that sealing was performed using the laminated body obtained in Comparative Example 1 (annealed at 110 ° C. for 15 minutes).
  • the organic EL display device using the flexible substrate of the example of the present invention has much better storage stability than the organic EL display device of the comparative example. More specifically, the organic EL display device of the comparative example has a dark spot after 30 days and does not turn on after 60 days, whereas the organic EL display device of the example is uniform even after 60 days. The light emission state was maintained. Thus, it can be seen that the storage stability is remarkably improved by forming the inorganic thin film on the flexible substrate.
  • the flexible substrate of the present invention can be suitably used for an organic electroluminescence (EL) display device.
  • EL organic electroluminescence

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Laminated Bodies (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

柔軟性に優れ、かつ、ガスバリア性に優れた可撓性基板を提供すること。本発明の可撓性基板100は、無機ガラス10と、無機ガラス10の両側それぞれに配置された樹脂層11,11’とを備える基材20と、一方の該樹脂層11の無機ガラス10が配置されていない側に配置された無機薄膜12とを備える。無機薄膜12は、基材20の少なくとも片面周縁部に形成されている。  

Description

可撓性基板
 本発明は、可撓性基板に関する。より詳細には、本発明は、ガスバリア性に優れた可撓性基板に関する。
 近年、映像通信技術の発展により、フラットパネルディスプレイ(FPD)の薄型化が進められている。今後、高臨場感を求めた大型パネルの曲面表示、携帯性および利便性を追求した巻き取り型携帯端末等のフレキシブル化を実現するには、可撓性と耐衝撃性を兼ね備えた基板が不可欠となる。
 FPD用基板としては、ガラス基板が広く用いられている。しかし、ガラス基板に可撓性を付与するために、ガラス基板の薄型化を図ると、耐衝撃性が不十分となり、FPDの製造工程において割れやすくなる等の問題が生じる。
 そこで、ガラス基板にかわり、耐衝撃性に優れ、軽量かつ柔軟性に優れる樹脂フィルムを、FPD用基板として用いることが検討されている。しかし、樹脂フィルムのみでは、FPD用基板に求められるガスバリア性(例えば、酸素遮断性、水蒸気遮断性)が不十分である。
 ガスバリア性を向上させるため、基材上に金属酸化物膜等と有機層を積層したガスバリア性積層材を提案されている(特許文献1参照)。しかし、特許文献1の積層材は、FPDの中でも、高いガスバリア性が求められる有機エレクトロルミネッセンス表示装置においては、ガスバリア性がいまだ不十分である。
特開2004-82598号公報
 本発明は上記従来の課題を解決するためになされたものであり、その目的とするところは、柔軟性に優れ、かつ、ガスバリア性に優れた可撓性基板を提供することにある。
 本発明の可撓性基板は、無機ガラスと、該無機ガラスの両側それぞれに配置された樹脂層とを備える基材と、一方の該樹脂層の該無機ガラスが配置されていない側に配置された無機薄膜とを備え、該無機薄膜が該基材の少なくとも片面周縁部に形成されている。
 好ましい実施形態においては、上記無機薄膜が上記基材の片面全面に形成されている。
 好ましい実施形態においては、平滑化層をさらに備え、該平滑化層が、上記無機薄膜の上記樹脂層が配置されていない側に配置されている。
 好ましい実施形態においては、別の無機薄膜をさらに備え、該別の無機薄膜が、上記平滑化層の上記樹脂層が配置されていない側に配置されている。
 好ましい実施形態においては、厚み(総厚)が600μm以下である。
 好ましい実施形態においては、上記樹脂層が、エポキシ系樹脂および/またはオキセタン系樹脂を主成分とする樹脂組成物から形成されている。
 好ましい実施形態においては、上記樹脂層が、一般式(X)および/または(Y)で表される繰り返し単位を有する熱可塑性樹脂を含む。
Figure JPOXMLDOC01-appb-C000003
式(X)中、Rは炭素数6~24の置換または非置換のアリール基、炭素数4~14のシクロアルキレン基または炭素数1~8の直鎖状もしくは分岐状のアルキレン基であり、Rは炭素数6~24の置換または非置換のアリール基、炭素数1~8の直鎖状もしくは分岐状のアルキル基、炭素数1~8の直鎖状もしくは分岐状のアルキレン基、炭素数5~12のシクロアルキル基、炭素数5~12のシクロアルキレン基または水素原子であり、式(Y)中、RおよびRはそれぞれ独立して炭素数1~8の直鎖状もしくは分岐状のアルキル基、水素原子、炭素数1~8の直鎖状もしくは分岐状のアルキレン基、炭素数5~12のシクロアルキル基または炭素数5~12のシクロアルキレン基であり、Aはカルボニル基または炭素数1~8の直鎖状もしくは分岐状のアルキレン基であり、mは0~8の整数を表し、nは0~4の整数を表す。
 好ましい実施形態においては、上記樹脂層が、1つ以上の一般式(Z)で表される繰り返し単位を有する熱可塑性樹脂を含む。
Figure JPOXMLDOC01-appb-C000004
式(Z)中、Rは炭素数6~24の置換または非置換のアリール基、炭素数1~8の直鎖状もしくは分岐状のアルキレン基、または炭素数4~14のシクロアルキレン基、または酸素原子であり、Rは炭素数6~24の置換または非置換のアリール基、炭素数1~8の直鎖状もしくは分岐状のアルキル基、炭素数1~8の直鎖状もしくは分岐状のアルキレン基、炭素数5~12のシクロアルキル基、炭素数5~12のシクロアルキレン基、または水素原子である。
 好ましい実施形態においては、上記樹脂層は、ポリエーテルスルホン系樹脂を含む。
 好ましい実施形態においては、上記無機薄膜が、酸化物、窒化物、水素化物およびその複合化合物からなる群から選ばれる少なくとも1種の無機化合物を含む。好ましい実施形態においては、上記無機化合物がアモルファス構造を有する。
 好ましい実施形態においては、上記無機薄膜が、無機酸化物層/無機窒化物層/無機酸化物層の3層構成である。
 好ましい実施形態においては、透明電極をさらに備え、該透明電極が、上記無機薄膜の上記樹脂層が配置されていない側に配置されている。
 本発明の別の局面によれば、有機エレクトロルミネッセンス表示装置が提供される。この有機エレクトロルミネッセンス表示装置は、上記可撓性基板を備える。
 本発明によれば、無機ガラスと樹脂層と無機薄膜とを有することにより、柔軟性に優れ、かつ、ガスバリア性に優れた可撓性基板を提供し得る。具体的には、中央に配置された無機ガラスはガスバリア層として機能し得る。また、樹脂層端部から侵入するガスや水分は、無機薄膜層により遮断され得る。その結果、ガスバリア性に優れ得る。このような可撓性基板を用いることにより、良好な発光状態を長期間継続し得る(すなわち、優れた保存性を有する)有機エレクトロルミネッセンス(EL)表示装置を実現することができる。一方で、無機ガラスは、高い線膨張係数を有する樹脂層の熱膨張を抑制し得、線膨張係数の小さい基板が得られ得る。一般的に、無機ガラスの破断は、表面の微小欠陥への応力集中が原因とされており、厚みを薄くするほど破断が生じやすく薄型化は困難である。本発明の可撓性基板では、無機ガラスの両側に配置された樹脂層が、変形時の欠陥への引き裂き方向の応力を緩和するため、無機ガラスの薄型化、軽量化が可能となる。その結果、柔軟性に優れ、二次加工性およびに操作性に優れ得る。
本発明の1つの実施形態による可撓性基板の概略断面図である。 本発明の別の実施形態による可撓性基板の概略断面図である。 本発明のさらに別の実施形態による可撓性基板の概略断面図である。 本発明のさらに別の実施形態による可撓性基板の概略断面図である。 本発明の1つの実施形態による有機EL表示装置の概略断面図である。
A.可撓性基板の全体構成
 図1は、本発明の好ましい実施形態による可撓性基板の概略断面図である。この可撓性基板100は、基材20と、基材20の少なくとも片面に形成された無機薄膜12とを備える。基材20は、無機ガラス10と、無機ガラス10の両側それぞれに配置された樹脂層11,11’とを備える。無機薄膜12は、一方の樹脂層11の無機ガラス10が配置されていない側に配置されている。図2は、本発明の別の好ましい実施形態による可撓性基板の平面図である。この可撓性基板100では、無機薄膜12が、基材20の片面周縁部に形成されている。無機薄膜は、図2に示すように基材の片面周縁部にのみ形成されていてもよいし、図1に示すように基材の片面全面に形成されていてもよい。このような構成を有することにより、柔軟性に優れ、かつ、ガスバリア性に優れた可撓性基板が得られる。可撓性基板の有機EL素子を形成する側の樹脂層内に当該樹脂のモノマー、溶剤、水分、添加剤等のアウトガスの原因となる成分が含まれている場合には、無機薄膜は、基材の片面全面(実質的には、樹脂層表面)のみならず、基材全体を覆うように形成することが好ましい。
 図3は、本発明のさらに別の好ましい実施形態による可撓性基板の概略断面図である。この可撓性基板100’は、無機ガラス10、樹脂層11,11’および無機薄膜12に加えて、平滑化層13をさらに備える。平滑化層13は、無機薄膜12の樹脂層11が配置されていない側に配置されている。平滑化層を設けることにより、無機薄膜表面の凹凸を平滑化し、表面平滑性に優れた可撓性基板を得ることができる。図4は、本発明のさらに別の好ましい実施形態による可撓性基板の概略断面図である。この可撓性基板100”は、平滑化層13の表面に、別の無機薄膜12’および別の平滑化層13’をさらに備える。本実施形態においては、別の無機薄膜12’は、平滑化層13の樹脂層11が配置されていない側に配置されている。このように、本発明の可撓性基板は、複数層の無機薄膜を備え得る。複数層の無機薄膜を設けることにより、より優れたガスバリア性が得られ得る。また、本発明の可撓性基板は、複数層の平滑化層を備え得る。好ましくは、図示例のように、平滑化層は、隣接する無機薄膜の樹脂層が配置されていない側に配置される。
 無機ガラス10の両側それぞれに配置された樹脂層11および11’は、同一の材料で構成されてもよく、異なる材料で構成されてもよい。好ましくは、同一の材料で構成される。樹脂層11および11’は、それぞれ、任意の適切な厚みに設定され得る。具体的には、略同一の厚みにしてもよいし、無機薄膜形成工程時の基材にかかる応力等を考慮して異なる厚みにしてもよい。好ましくは、無機薄膜を形成する側の樹脂層の厚みを厚くする。例えば、無機薄膜の形成工程で無機薄膜側に凸形状となることを防止し得るからである。このような構成を有することにより、線膨張係数が小さく、かつ、操作性および二次加工性にきわめて優れた可撓性基板を得ることができる。
 樹脂層11,11’は、好ましくは、無機ガラス10に直接形成されている。具体的には、樹脂層11,11’は、接着層を介することなく無機ガラスに形成されている。このような構成を有することにより、より薄型の可撓性基板が得られ得る。なお、樹脂層11,11’は、接着層を介して無機ガラスに固着されていてもよい。当該接着層は、任意の適切な接着剤または粘着剤で形成される。
 上記無機ガラスの厚みdは、好ましくは1~400μmであり、さらに好ましくは10~200μm、特に好ましくは30~100μmである。無機ガラスの両側に樹脂層が配置されることによって、無機ガラスの厚みを薄くすることができる。
 上記樹脂層の厚みdは、好ましくは1~250μmであり、さらに好ましくは10~125μmである。樹脂層11,11’それぞれの厚みは、上述のように、同一であってもよく異なっていてもよい。樹脂層の合計厚みdrsumは、好ましくは2~250μmであり、さらに好ましくは20~250μmである。
 上記樹脂層の合計厚みdrsumと上記無機ガラスの厚みdとの比drsum/dは、好ましくは0.01~10であり、さらに好ましくは0.1~5であり、特に好ましくは0.8~2.5である。樹脂層の合計厚みと無機ガラスの厚みがこのような関係を有することにより、樹脂層の熱膨張を無機ガラスにより抑制することと同時に、無機ガラスを補強することができる。その結果、低線膨張と機械強度の両立が可能となる。それぞれの樹脂層の厚みdと上記無機ガラスの厚みdとの差(d-d)に対する無機ガラスの厚みdとの比{(d-d)/d}は、好ましくは-0.95~1.5であり、さらに好ましくは-0.6~0.3である。このような関係を有することによって、得られる可撓性基板は、加熱処理されても、無機ガラスの両面に熱応力が均等に掛かるため、反りやうねりがきわめて生じ難くなる。
 上記無機薄膜の厚みは、好ましくは1nm~20μm、さらに好ましくは5nm~15μm、特に好ましくは10nm~10μmである。このような厚みを有することにより、より優れたガスバリア性が得られ得る。
 上記平滑化層の厚みは、好ましくは1nm~20μm、さらに好ましくは5nm~10μm、特に好ましくは10nm~5μmである。このような厚みの平滑化層を設けることにより、無機薄膜表面の凹凸を平滑化し、表面平滑性により優れた可撓性基板が得られ得る。
 上記可撓性基板の厚み(総厚)は、その構成に応じて任意の適切な値に設定され得る。好ましくは600μm以下であり、さらに好ましくは1~400μm、特に好ましくは20~200μmである。
 上記可撓性基板の170℃における平均線膨張係数は、好ましくは20ppm℃-1以下であり、さらに好ましくは10ppm℃-1以下である。上記の範囲であれば、例えば、複数の熱処理工程に供されても、画素のずれや配線の破断・亀裂が生じにくい。
 上記可撓性基板を湾曲させた際の破断直径は、好ましくは30mm以下であり、さらに好ましくは10mm以下である。
 上記可撓性基板の波長550nmにおける透過率は、好ましくは85%以上であり、さらに好ましくは90%以上である。好ましくは、上記可撓性基板は、180℃で2時間の加熱処理を施した後の光透過率の減少率が5%以内である。このような減少率であれば、例えば、FPDの製造プロセスにおいて必要な加熱処理を施しても、実用上許容可能な光透過率を確保できるからである。樹脂層を採用しながらこのような特性を実現したことが、本発明の効果の1つである。
 上記可撓性基板の表面粗度Ra(実質的には、樹脂層、無機薄膜、または、平滑化層の表面粗度Ra)は、好ましくは5nm以下であり、さらに好ましくは2nm以下である。上記可撓性基板のうねりは、好ましくは0.5μm以下であり、さらに好ましくは0.1μm以下である。このような特性の可撓性基板であれば、品質に優れる。
B.無機ガラス
 本発明の可撓性基板に用いられる無機ガラスの形状は、代表的には、板状である。無機ガラスは、組成による分類によれば、例えば、ソーダ石灰ガラス、ホウ酸ガラス、アルミノ珪酸ガラス、石英ガラス等が挙げられる。また、アルカリ成分による分類によれば、無アルカリガラス、低アルカリガラスが挙げられる。上記無機ガラスのアルカリ金属成分(例えば、NaO、KO、LiO)の含有量は、好ましくは15重量%以下であり、さらに好ましくは10重量%以下である。
 上記無機ガラスの波長550nmにおける透過率は、好ましくは90%以上である。上記無機ガラスの波長550nmにおける屈折率nは、好ましくは1.4~1.6である。
 上記無機ガラスの平均熱膨張係数は、好ましくは10ppm℃-1~0.5ppm℃-1あり、さらに好ましくは5ppm℃-1~0.5ppm℃-1ある。上記範囲の無機ガラスであれば、高温又は低温環境下において、樹脂層の寸法変化を効果的に抑制し得る。
 上記無機ガラスの密度は、好ましくは2.3g/cm~3.0g/cmあり、さらに好ましくは2.3g/cm~2.7g/cmある。上記範囲の無機ガラスであれば、軽量の可撓性基板が得られる。
 上記無機ガラスの成形方法は、任意の適切な方法が採用され得る。代表的には、上記無機ガラスは、シリカやアルミナ等の主原料と、芒硝や酸化アンチモン等の消泡剤と、カーボン等の還元剤とを含む混合物を、1400℃~1600℃の温度で溶融し、薄板状に成形した後、冷却して作製される。上記無機ガラスの薄板成形方法としては、例えば、スロットダウンドロー法、フュージョン法、フロート法等が挙げられる。これらの方法によって板状に成形された無機ガラスは、薄板化したり、平滑性を高めたりするために、必要に応じて、フッ酸等の溶剤により化学研磨されてもよい。
 上記無機ガラスは、市販のものをそのまま用いてもよく、あるいは、市販の無機ガラスを所望の厚みになるように研磨して用いてもよい。市販の無機ガラスとしては、例えば、コーニング社製「7059」、「1737」または「EAGLE2000」、旭硝子社製「AN100」、NHテクノグラス社製「NA-35」、日本電気硝子社製「OA-10」、ショット社製「D263」または「AF45」等が挙げられる。
C.樹脂層
 上記樹脂層の波長550nmにおける透過率は、好ましくは85%以上である。上記樹脂層の波長550nmにおける屈折率(n)は、好ましくは1.3~1.7である。上記樹脂層の屈折率(n)と上記無機ガラスの屈折率(n)との差は、好ましくは0.2以下であり、さらに好ましくは0.1以下である。このような範囲であれば、無機ガラスと樹脂層との屈折率差に起因する表示特性への悪影響が防止され得る。
 上記樹脂層の弾性率(ヤング率)は、それぞれ、好ましくは1GPa以上であり、さらに好ましくは1.5GPa以上である。上記の範囲とすることによって、無機ガラスを薄くした場合でも、当該樹脂層が変形時の欠陥への引き裂き方向の応力を緩和するので、無機ガラスへのクラックや破断が生じ難くなる。
 上記樹脂層を形成する樹脂組成物としては、任意の適切な樹脂組成物が採用され得る。好ましくは、当該樹脂組成物は、耐熱性に優れた樹脂を含む。当該樹脂は、熱硬化型または紫外線硬化型の樹脂であってもよく、熱可塑性樹脂であってもよい。熱硬化型または紫外線硬化型の樹脂としては、例えば、ポリアリレート系樹脂、ポリイミド系樹脂、ポリエチレンナフタレート系樹脂、ポリエーテルスルホン系樹脂、ポリカーボネート系樹脂、エポキシ系樹脂、オキセタン系樹脂、アクリル系樹脂、ポリオレフィン系樹脂が挙げられる。これらの樹脂は、任意の適切な部位(例えば、主鎖末端)が任意の適切な様式で変性(例えば、水酸基変性)されていてもよい。また、これらの樹脂は、単独で用いられてもよく組み合わせて用いられてもよい。熱硬化型または紫外線硬化型の樹脂を用いる場合、特に好ましくは、上記樹脂層は、エポキシ系樹脂および/またはオキセタン系樹脂を主成分とする樹脂組成物から形成される。表面平滑性に優れ、色相が良好な樹脂層が得られるからである。また、好ましくは、上記樹脂層は、末端水酸基変性されたポリエーテルスルホン系樹脂および/またはオキセタン系樹脂を主成分とする樹脂組成物から形成される。
 上記エポキシ系樹脂は、分子中にエポキシ基を持つものであれば、任意の適切なものが用いられる。上記エポキシ系樹脂としては、例えば、ビスフェノールA型,ビスフェノールF型、ビスフェノールS型及びこれらの水添加物等のビスフェノール型;フェノールノボラック型やクレゾールノボラック型等のノボラック型;トリグリシジルイソシアヌレート型やヒダントイン型等の含窒素環型;脂環式型;脂肪族型;ナフタレン型、ビフェニル型等の芳香族型;グリシジルエーテル型、グリシジルアミン型、グリシジルエステル型等のグリシジル型;ジシクロペンタジエン型等のジシクロ型;エステル型;エーテルエステル型;およびこれらの変性型等が挙げられる。これらのエポキシ系樹脂は、単独で、又は2種以上を混合して使用することができる。
 好ましくは、上記エポキシ系樹脂は、ビスフェノールA型エポキシ系樹脂、脂環式型エポキシ系樹脂、含窒素環型エポキシ系樹脂、又はグリシジル型エポキシ系樹脂である。上記エポキシ系樹脂が含窒素環型である場合、好ましくは、トリグリシジルイソシアヌレート型エポキシ系樹脂である。これらのエポキシ系樹脂は、変色防止性に優れる。
 好ましくは、上記樹脂層は、下記一般式(I)、(II)、(III)および(IV)からなる群から選択される少なくとも1種のエポキシ系プレポリマーの硬化層である。
Figure JPOXMLDOC01-appb-C000005
 上記式(I)中、X及びXは、それぞれ独立して、共有結合、CH基、C(CH基、C(CF基、CO基、酸素原子、窒素原子、SO基、Si(CHCH基、又はN(CH)基を表す。Y~Yは置換基であり、a~dはその置換数を表す。Y~Yは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4の置換アルキル基、ニトロ基、シアノ基、チオアルキル基、アルコキシ基、アリール基、置換アリール基、アルキルエステル基、又は置換アルキルエステル基を表す。a~dは、0から4までの整数であり、lは2以上の整数である。
Figure JPOXMLDOC01-appb-C000006
 上記式(II)中、X及びXは、それぞれ独立して、CH基、C(CH基、C(CF基、CO基、酸素原子、窒素原子、SO基、Si(CHCH基、又はN(CH)基を表す。Y~Yは置換基であり、e~gはその置換数を表す。Y~Yは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4の置換アルキル基、ニトロ基、シアノ基、チオアルキル基、アルコキシ基、アリール基、置換アリール基、アルキルエステル基、又は置換アルキルエステル基を表す。e及びgは0から4までの整数であり、fは0から3までの整数であり、mは2以上の整数である。
Figure JPOXMLDOC01-appb-C000007
 上記式(III)中、X~Xは、それぞれ独立して、共有結合、CH基、C(CH基、C(CF基、CO基、酸素原子、窒素原子、SO基、Si(CHCH基、又はN(CH)基を表す。Yは、上記式(a)~(d)のいずれかである。
Figure JPOXMLDOC01-appb-C000008
 上記式(IV)中、nおよびmは、それぞれ、1~6のいずれかの整数を表す。Yは、上記式(a)または(b)で表される部分である。
 上記エポキシ系樹脂としては、好ましくは、下記一般式(V)で表わされるエポキシ樹脂が用いられる。
Figure JPOXMLDOC01-appb-C000009
 上記式(V)中、Rはz個の活性水素を有する有機化合物の残基であって、該有機化合物が活性水素基として水酸基のみを少なくとも1個含有する化合物、又は活性水素基として水酸基のみを少なくとも1個含有し、かつ、不飽和二重結合含有基を同時に含有する不飽和アルコールから選ばれる1種または2種以上の混合物からなるものであり、n、n、・・・n
はそれぞれ0又は1~30の整数でその和が1~100であり、zはRの活性水素基の数を表す1~10の整数であり、Aは置換基Xを有するオキシシクロヘキサン骨格であり、次式(VI)で表される基である(式(VI)中、Xはエポキシ基を示す)。
Figure JPOXMLDOC01-appb-C000010
 上記式(V)のRの具体例としては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、トリメチロールプロパン、トリメチロールメラミン、イソシアヌル酸の各残基が挙げられる。これらの中でも、トリメチロールプロパン残基が入手のしやすさや樹脂としての取り扱い易さの点で、好ましく用いられる。n、n、・・・nの添字の最大値zはRの活性水素基数を表しており、例えば、エチレングリコールでは2、トリメチロールプロパンでは3の値をとる。zが0ではエポキシ基を含有出来ないので粘度を高くする効果は得られず、一方、zが11以上のものは、骨格となる化合物の入手も難しく、また、価格も高くなるので経済的ではない。
 Aで表されるエポキシ基含有シクロヘキシルエーテル基が結合している数(鎖長)n、n、・・・nはそれぞれ0又は1~30の整数であり、その和は1~100である。このn、n、・・・nが30を超えて多い場合は、エポキシ樹脂の粘度が高くなり取り扱い性が悪化する。また、n、n、・・・nの和が0では反応性がなく、100を超えて大きい場合は、溶融混練時の粘度増加の程度の制御が難しくなる。Rがトリメチロールプロパン残基の場合、好ましくは、n、n、nはそれぞれ5~30の整数であり、その和が15~90である。
 上記エポキシ系樹脂のエポキシ当量(エポキシ基1個当りの質量)は、好ましくは100g/eqiv.~1000g/eqiv.である。上記範囲であれば、得られる樹脂層の柔軟性や強度を高めることができる。
 上記エポキシ系樹脂の軟化点は、好ましくは120度以下である。また、上記エポキシ系樹脂は、好ましくは常温(例えば、5~35℃)で液体である。さらに好ましくは、上記エポキシ系樹脂は、塗工温度以下で(特に常温で)液体の二液混合型エポキシ系樹脂である。樹脂層を形成する際の展開性や塗工性に優れるからである。
 上記オキセタン系樹脂としては、分子中にオキセタン環を有する、任意の適切な化合物が用いられる。具体例としては、下記式(1)~(5)に示すオキセタン化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000011
 上記樹脂組成物は、目的に応じて任意の適切な添加剤をさらに含有し得る。上記添加剤としては、例えば、硬化剤、硬化促進剤、希釈剤、老化防止剤、変成剤、界面活性剤、染料、顔料、変色防止剤、紫外線吸収剤、柔軟剤、安定剤、可塑剤、消泡剤等が挙げられる。樹脂組成物に含有される添加剤の種類、数および量は、目的に応じて適切に設定され得る。
 上記樹脂組成物は、市販品をそのまま用いてもよく、市販品に任意の添加剤および/または樹脂を添加して用いてもよい。市販のエポキシ系樹脂(樹脂組成物)としては、例えば、ジャパンエポキシレジン社製のグレード827およびグレード828、アデカ社製のEPシリーズおよびKRシリーズ、ダイセル化学工業社製のセロキサイド2021PおよびEHPE3150等が挙げられる。市販のオキセタン系樹脂としては、例えば、東亜合成社製のOXT221等が挙げられる。
 上記熱可塑性樹脂としては、例えば、下記一般式(X)および/または(Y)で表される繰り返し単位を有する熱可塑性樹脂(A)が挙げられる。このような熱可塑性樹脂を含むことにより、上記無機ガラスとの密着性に優れ、かつ靭性にも優れる樹脂層を得ることができる。その結果、切断時にクラックが進展し難い可撓性基板を得ることができる。
Figure JPOXMLDOC01-appb-C000012
式(X)中、Rは炭素数6~24の置換または非置換のアリール基、炭素数4~14のシクロアルキレン基または炭素数1~8の直鎖状もしくは分岐状のアルキレン基であり、好ましくは炭素数6~20の置換または非置換のアリール基、炭素数4~12のシクロアルキレン基または炭素数1~6の直鎖状もしくは分岐状のアルキレン基であり、さらに好ましくは炭素数6~18の置換または非置換のアリール基、炭素数5~10のシクロアルキレン基または炭素数1~4の直鎖状もしくは分岐状のアルキレン基である。Rは炭素数6~24の置換または非置換のアリール基、炭素数1~8の直鎖状もしくは分岐状のアルキル基、炭素数1~8の直鎖状もしくは分岐状のアルキレン基、炭素数5~12のシクロアルキル基、炭素数5~12のシクロアルキレン基または水素原子であり、好ましくは炭素数6~20の置換または非置換のアリール基、炭素数1~6の直鎖状もしくは分岐状のアルキル基、炭素数1~4の直鎖状もしくは分岐状のアルキレン基、炭素数5~10のシクロアルキル基、炭素数5~10のシクロアルキレン基または水素原子である。式(Y)中、RおよびRはそれぞれ独立して炭素数1~8の直鎖状もしくは分岐状のアルキル基、水素原子、炭素数1~8の直鎖状もしくは分岐状のアルキレン基、炭素数5~12のシクロアルキル基または炭素数5~12のシクロアルキレン基であり、好ましくは炭素数1~5の直鎖状もしくは分岐状のアルキル基、水素原子、炭素数1~5の直鎖状もしくは分岐状のアルキレン基、炭素数5~10のシクロアルキル基または炭素数5~10のシクロアルキレン基であり、さらに好ましくは炭素数1~4の直鎖状もしくは分岐状のアルキル基、水素原子、炭素数1~4の直鎖状もしくは分岐状のアルキレン基、炭素数5~8のシクロアルキル基または炭素数5~8のシクロアルキレン基である。Aはカルボニル基または炭素数1~8の直鎖状もしくは分岐状のアルキレン基であり、好ましくはカルボニル基または炭素数1~6の直鎖状もしくは分岐状のアルキレン基であり、さらに好ましくはカルボニル基または炭素数1~4の直鎖状もしくは分岐状のアルキレン基である。mは0~8の整数を表し、好ましくは0~6の整数を表し、さらに好ましくは0~3の整数を表す。nは0~4の整数を表し、好ましくは0~2の整数を表す。
 上記熱可塑性樹脂(A)の重合度は、好ましくは10~6000、さらに好ましくは20~5000、特に好ましくは50~4000である。
 上記熱可塑性樹脂(A)の具体例としては、スチレン-無水マレイン酸コポリマー、エステル基含有シクロオレフィンポリマーが挙げられる。これらの熱可塑性樹脂は、単独で、又は2種以上を混合して使用することができる。
 上記熱可塑性樹脂(A)のガラス転移温度は、好ましくは110℃以上、さらに好ましくは120℃以上、特に好ましくは120~350℃である。このような範囲であれば、耐熱性に優れる可撓性基板を得ることができる。
 上記熱可塑性樹脂の別の具体例としては、1つ以上の下記一般式(Z)で表される繰り返し単位を有する熱可塑性樹脂(B)が挙げられる。このような熱可塑性樹脂を含むことにより、上記無機ガラスとの密着性に優れ、かつ靭性にも優れる樹脂層を得ることができる。その結果、切断時にクラックが進展し難い可撓性基板を得ることができる。
Figure JPOXMLDOC01-appb-C000013
式(1)中、Rは炭素数6~24の置換または非置換のアリール基、炭素数1~8の直鎖状もしくは分岐状のアルキレン基、または炭素数4~14のシクロアルキレン基、または酸素原子であり、好ましくは炭素数6~20の置換または非置換のアリール基、炭素数1~6の直鎖状もしくは分岐状のアルキレン基、炭素数4~12のシクロアルキレン基、または酸素原子であり、さらに好ましくは炭素数6~18の置換または非置換のアリール基、炭素数1~4の直鎖状もしくは分岐状のアルキレン基、または炭素数5~10のシクロアルキレン基、または酸素原子である。Rは炭素数6~24の置換または非置換のアリール基、炭素数1~8の直鎖状もしくは分岐状のアルキル基、炭素数1~8の直鎖状もしくは分岐状のアルキレン基、炭素数5~12のシクロアルキル基、炭素数5~12のシクロアルキレン基、または水素原子であり、好ましくは炭素数6~20の置換または非置換のアリール基、炭素数1~6の直鎖状もしくは分岐状のアルキル基、炭素数1~4の直鎖状もしくは分岐状のアルキレン基、炭素数5~10のシクロアルキル基、炭素数5~10のシクロアルキレン基、または水素原子である。
 上記熱可塑性樹脂(B)の重合度は、好ましくは10~6000、さらに好ましくは20~5000、特に好ましくは50~4000である。
 上記熱可塑性樹脂(B)の具体例としては、ポリアリレート、ポリエステル、ポリカーボネートが挙げられる。これらの熱可塑性樹脂は、単独で、又は2種以上を混合して使用することができる。
 上記熱可塑性樹脂(B)のガラス転移温度は、好ましくは120℃以上、さらに好ましくは150℃以上、特に好ましくは180~350℃である。このような範囲であれば、耐熱性に優れる可撓性基板を得ることができる。
D.無機薄膜
 上記無機薄膜は、任意の適切な無機化合物で形成される。無機薄膜は、好ましくは、酸化物、窒化物、水素化物およびその複合化合物からなる群から選ばれる少なくとも1種の無機化合物を含む。具体的には、無機化合物は、酸化物、窒化物または水素化物単体である場合だけでなく、酸化物、窒化物および/または水素化物の複合化合物であり得る。このような化合物を用いることにより、透明性にさらに優れ得る。無機薄膜を形成する無機化合物は、任意の適切な構造を有し得る。具体的には、完全な結晶構造を有していてもよいし、アモルファス構造を有していてもよい。
 上記無機化合物を構成する元素としては、炭素(C)、ケイ素(Si)、アルミニウム(Al)、マグネシウム(Mg)、カルシウム(Ca)、カリウム(K)、スズ(Sn)、ナトリウム(Na)、ホウ素(B)、チタン(Ti)、鉛(Pb)、ジルコニウム(Zr)、イットリウム(Y)等が挙げられる。これらは単独でまたは2種以上組み合わせて用いられ得る。これらの中でも、炭素、ケイ素、アルミニウムが好ましく用いられる。無機化合物の具体例としては、ダイヤモンドライクカーボン(DLC)、SiN、SiO、AlO等が挙げられる。SiNのxの値としては、好ましくは0.3~2である。SiOのyの値としては、好ましくは1.3~2.5である。AlOのzの値としては、好ましくは0.7~2.3である。
 無機薄膜は、任意の適切な構成が採用され得る。具体的には、無機薄膜は、単一層で形成されていてもよいし、複数層の積層体であってもよい。無機薄膜が積層体である場合の具体例としては、無機酸化物層/無機窒化物層/無機酸化物層(例えば、SiO層/SiN層/SiO層)の3層構成等が挙げられる。
E.平滑化層
 上記平滑化層の形成材としては、任意の適切な形成材で形成される。具体例としては、平滑化層は、任意の適切な樹脂組成物で形成される。当該樹脂組成物は、好ましくは、熱硬化性樹脂または光硬化性樹脂を含む。
 上記熱硬化性樹脂は、熱エネルギーが付加されることにより硬化し得、硬化後に透明でかつ平坦な面を形成し得る樹脂が挙げられる。代表例としては、ポリカーボネート、ポリメチルメタクリレート、ポリアクリレート、メチルフタレート単独重合体または共重合体、ポリエチレンテレフタレート、ポリスチレン、ジエチレングリコールビスアリルカーボネート、アクリロニトリル/スチレン共重合体、ポリ(-4-メチルペンテン-1)、フェノ-ル樹脂、エポキシ樹脂、シアナート樹脂、マレイミド樹脂、ポリイミド樹脂等が挙げられ、またこれらをポリビニルブチラール、アクリロニトリル-ブタジエンゴム、多官能性アクリレート化合物等で変性したものや、架橋ポリエチレン樹脂、架橋ポリエチレン/エポキシ樹脂、架橋ポリエチレン/シアナート樹脂、ポリフェニレンエーテル/エポキシ樹脂、ポリフェニレンエーテル/シアナート樹脂等の熱可塑性樹脂で変性した熱硬化性樹脂などが挙げられる。これらは単独でまたは2種以上組み合わせて用いられ得る。
 上記光硬化性樹脂としては、ラジカル反応性不飽和化合物を有するアクリレート化合物によりなる樹脂組成物や、アクリルレート化合物とチオール基を有するメルカプト化合物よりなる樹脂組成物、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート等のオリゴマーを多官能アクリレートモノマーに溶解せしめた樹脂組成物等が挙げられる。これらは単独でまたは2種以上組み合わせて用いられ得る。
 平滑化層を形成する樹脂組成物は、必要に応じて、酸化防止剤、紫外線吸収剤、可塑剤等の添加剤を含み得る。また、成膜性向上およびピンホール防止等を目的として、適切な樹脂や添加剤を含み得る。
F.可撓性基板の製造方法
 本発明の可撓性基板は、代表的には、上記無機ガラスに樹脂組成物を塗工し、当該樹脂組成物を硬化または乾燥・熱処理させて樹脂層を形成する工程と、得られた樹脂層の表面に上記無機薄膜を形成する工程とを含む。また、平滑化層を設ける場合、無機薄膜表面に上記平滑化層を形成する工程をさらに含む。
 上記樹脂層の形成における樹脂組成物の塗工方法としては、例えば、エアドクターコーティング、ブレードコーティング、ナイフコーティング、リバースコーティング、トランスファロールコーティング、グラビアロールコーティング、キスコーティング、キャストコーティング、スプレーコーティング、スロットオリフィスコーティング、カレンダーコーティング、電着コーティング、ディップコーティング、ダイコーティング等のコーティング法;フレキソ印刷等の凸版印刷法、ダイレクトグラビア印刷法、オフセットグラビア印刷法等の凹版印刷法、オフセット印刷法等の平版印刷法、スクリーン印刷法等の孔版印刷法等の印刷法が挙げられる。
 上記塗工に際し、シリコーンオイル等のレベリング剤や硬化剤等の添加剤を必要に応じて樹脂組成物に添加して、塗工液の塗工適性やインクの印刷適性を向上させることができる。また、無機ガラス表面にコロナ処理やシラン処理を施すことにより、または、樹脂組成物にシランカップリング剤を混合することにより、無機ガラスと樹脂組成物(最終的には、樹脂層)との密着性を高めることができる。
 上記シランカップリング剤としては、例えば、ビニル系、エポキシ系、スチリル系、メタクリロキシ系、アクリロキシ系、アミノ系、ウレイド系、クロロプロピル系、メルカプト系、スルフィド系、イソシアネート系が用いられる。上記樹脂層を形成する樹脂として、上記熱可塑性樹脂(A)および/または(B)が用いられる場合、好ましくは、アミノ系、エポキシ系、イソシアネート系が用いられる。
 上記樹脂組成物の硬化方法は、樹脂組成物に含まれる樹脂の種類に応じて選択され得る。熱硬化型の樹脂が用いられる場合、加熱により硬化される。加熱条件は、任意の適切な条件が採用され得る。具体的には、加熱温度は、好ましくは80~250℃である。加熱時間は、好ましくは1~30分である。紫外線硬化型の樹脂が用いられる場合、紫外線照射により硬化される。照射条件は、任意の適切な条件が採用され得る。具体的には、照射量は、好ましくは100~600mJ/cmである。
 上記乾燥は、任意の適切な乾燥方法(例えば、自然乾燥、送風乾燥、加熱乾燥)が採用され得る。例えば、加熱乾燥の場合には、乾燥温度は代表的には100~200℃であり、乾燥時間は代表的には1~10分である。上記熱処理は、任意の適切な熱処理方法が採用され得る。代表的には、熱処理温度は100℃~300℃であり、熱処理時間は5~45分である。上記シランカップリング剤を用いる場合、該熱処理によりカップリング剤熱可塑性樹脂とを化学結合または相互作用させることができると推測される。
 上記無機薄膜の形成方法としては、任意の適切な方法が採用され得る。例えば、真空蒸着法、酸化反応蒸着法、スパッタリング法、イオンプレーティング法等の物理気相成長法(Physical Vapor Deposition法);プラズマ化学気相成長法(Chemical Vapor Deposition法)等が挙げられる。具体的には、ケイ素化合物を含む無機薄膜を形成する場合、例えば、SiH、テトラメトキシシラン(TMOS)等の有機ケイ素化合物を原料とするプラズマCVD法を用い得る。DLCを含む無機薄膜を形成する場合、例えば、メタン、アセチレン、エチレン、ブタジエン等の炭化水素を原料とするプラズマCVD法を用い得る。
 上記平滑化層の形成方法としては、任意の適切な方法が採用され得る。例えば、スピンコーティング法、スプレー法、ブレードコーティング法、ディップ法、蒸着法等が挙げられる。平滑化層を形成する際、代表的には、上記樹脂組成物をエタノール、クロロホルム、テトラヒドロフラン、ジオキサン等の適切な希釈溶媒に溶解または分散させて薄膜を形成する。
G.用途
 本発明の可撓性基板は、代表的には、エレクトロルミネッセンス(EL)ディスプレイ、プラズマディスプレイ(PD)、電界放出ディスプレイ(FED:Field Emission Display)のような自発光型表示装置や、液晶表示装置等に用いられ得る。これらの中でも、本発明の可撓性基板は、高いガスバリア性が求められる有機エレクトロルミネッセンス(EL)表示装置に好適に用いられ得る。
 図5は、本発明の好ましい実施形態による有機EL表示装置の概略断面図である。この有機EL表示装置200は、本発明の可撓性基板100と、可撓性基板100上に順次形成された透明電極80、有機発光層30および対向電極40と、これらを覆うように配された無機保護膜60および樹脂保護膜70とを備える。透明電極80は、可撓性基板100の無機薄膜の樹脂層が配置されていない側(図示例では上側)に配置されている。透明電極80と対向電極40とが重なっている領域における透明電極80、有機発光層30および対向電極40が画素50となる。図示しないが、可撓性基板100の透明電極80が配置されない側にハードコート層が配置されていてもよい。本発明の有機EL表示装置の構成としては、図示例に限定されず、任意の適切な構成が採用され得る。例えば、本発明の可撓性基板を無機保護膜60および有機保護膜70を覆うように配置して、封止部材として用いてもよい。また例えば、有機EL表示装置は、トップエミッション方式であってもよく、ボトムエミッション方式であってもよい。
 有機EL表示装置においては、有機発光層30の発光を取り出すために、少なくとも1つの電極(代表的には、陽極)が透明であることが必要とされる。透明電極の形成材としては、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)、酸化ケイ素を添加したインジウム錫酸化物(ITSO)、酸化タングステンを含むインジウム酸化物(IWO)、酸化タングステンを含むインジウム亜鉛酸化物(IWZO)、酸化チタンを含むインジウム酸化物(ITiO)、酸化チタンを含むインジウム錫酸化物(ITTiO)、モリブテンを含む酸化インジウムスズ(ITMO)等が用いられる。一方、電子注入を容易にして発光効率を上げるには、陰極に仕事関数が小さい物質を用いることが重要である。したがって、代表的には、対向電極40は、Mg-Ag、Al-Li等の金属膜から構成され、陰極として使用される。
 有機発光層30は、種々の有機薄膜の積層体である。図示例では、有機発光層30は、正孔注入性有機材料(例えば、トリフェニルアミン誘導体)からなり、陽極からの正孔注入効率を向上させるべく設けられた正孔注入層31と、発光性有機物質(例えば、アントラセン)からなる発光層32と、電子注入性材料(例えば、ペリレン誘導体)からなり、陰極からの電子注入効率を向上させるべく設けられた電子注入層33とを有する。有機発光層30は、図示例に限定されず、発光層32において電子と正孔とが再結合して発光を生じさせ得る任意の適切な有機薄膜の組み合わせが採用され得る。例えば、第1正孔輸送層(例えば、銅フタロシアニン)、第2正孔輸送層(例えば、N,N´-ジフェニル-N,N´-ジナフチルベンジジン)および電子輸送層兼発光層(例えば、トリス(8-ヒドロキシキノリナト)アルミニウム)からなる構成が採用され得る。
 透明電極-対向電極間に閾値以上の電圧を印加すると、陽極から正孔が供給され、正孔注入層31を経て発光層32に達する。一方、陰極からは電子が供給され、電子注入層33を経て発光層32に達する。発光層32において正孔と電子とが再結合することによって生じるエネルギーが、発光層中の発光性有機物質を励起し、励起された発光性有機物質が基底状態に戻る際に光を放射し、発光する。所望の画素ごとに電圧を印加して有機発光層を発光させることにより、画像表示が可能となる。カラー表示を行う場合には、例えば隣接する3つの画素の発光層を、それぞれ赤(R)、緑(G)および青(B)の発光を示す発光性有機物質で構成してもよく、任意の適切なカラーフィルターを発光層の上に設けてもよい。
 このような有機EL表示装置においては、有機発光層30の厚みは、できる限り薄いことが好ましい。発光した光を可能な限り透過させることが好ましいからである。有機発光層30は、例えば、厚み10nm程度のきわめて薄い膜で構成され得る。その結果、非発光時(黒状態)において、可撓性基板100の下面側から入射して、透明電極80および有機発光層30を透過し、対向電極40で反射した光が、再び可撓性基板100の下面側へ出る。
 上記ハードコート層は、任意の適切な形成材で形成される。代表的には、上記平滑化層と同様の樹脂組成物で形成される。
 以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例になんら限定されるものではない。
[実施例1]
<基材(樹脂層/無機ガラス/樹脂層)の作製>
 厚み50μmで板状の無機ガラス(ショット社製、「D263」)をメチルエチルケトン(MEK)で洗浄し、その両面にコロナ処理を施した。その後、シランカップリング剤(信越化学工業社製、KBM-403)を無機ガラスの両面に塗布し、110℃で5分間熱処理した。
 次に、下記式(a)で表わされるエポキシ樹脂1(ダイセル化学工業社製、セロキサイド2021P)とエポキシ樹脂2(2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物、ダイセル化学工業社製、EHPE3150)と下記式(5)で表わされるオキセタン樹脂(東亜合成社製、OXT221)と重合開始剤(アデカ製、SP-170)との混合液を調製した。得られた混合液を無機ガラス表面に塗工した後、UV光を300mJ/cm以上照射して樹脂を硬化させて、厚み25μmの樹脂層を形成した。同様に、無機ガラス裏面にも厚み25μmの樹脂層を形成した後、150℃で30分間熱処理した。
 このようにして厚み100μmの基材を作製した。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
(無機薄膜の形成)
 上記で得られた基材の片面に、SiN膜(厚み100nm)をプラズマCVD法により形成した。SiN膜の形成条件は以下のとおりである。このようにして可撓性基板を作製した。
真空度:0.3Pa(2.25×10-3Torr)
SiHガス流量:50sccm
窒素ガス流量:50sccm
周波数:13.56MHz
電力:700W
[実施例2]
 基材の片面に、SiO膜(厚み100nm)をプラズマCVD法により形成したこと以外は、実施例1と同様にして可撓性基板を作製した。SiO膜の形成条件は以下のとおりである。
真空度:0.3Pa(2.25×10-3Torr)
SiHガス流量:10sccm
酸素ガス流量:20sccm
窒素ガス流量:50sccm
周波数:13.56MHz
電力:500W
[実施例3]
 基材の片面に、ダイヤモンドライクカーボン(DLC)膜(厚み100nm)をプラズマCVD法により形成したこと以外は、実施例1と同様にして可撓性基板を作製した。DLC膜の形成条件は以下のとおりである。
真空度:0.3Pa(2.25×10-3Torr)
CHガス流量:200sccm
周波数:13.56MHz
電力:1000W
電極直流電圧:300V
[実施例4]
 基材の片面に、SiO膜(厚み100nm)、SiN膜(厚み100nm)およびSiO膜(厚み100nm)をこの順にプラズマCVD法により形成して、SiO/SiN/SiOの積層体を形成したこと以外は、実施例1と同様にして可撓性基板を作製した。なお、SiO膜およびSiN膜の形成条件は上記のとおりである。
[実施例5]
 以下の基材を用いたこと以外は実施例1と同様にして可撓性基板を作製した。
(基材)
 スチレン-無水マレイン酸コポリマー(Aldrich社製、重量平均分子量220000)をメチルイソブチルケトンに20重量%となるように溶解させた。
 別途、厚み50μm、縦10cm×横4cmの無機ガラス(ショット社製、「D263」)の片面表面をメチルエチルケトンで洗浄後、コロナ処理を行い、続けてアミン基含有カップリング剤(KBM-603、信越化学工業社製)を塗布し、110℃で5分間熱処理した。カップリング処理した上記無機ガラス表面に上記スチレン-無水マレイン酸溶液を塗工し、160℃で10分間乾燥後、200℃で30分間熱処理を行った。同様の処理を無機ガラスのもう一方の表面にも行い、総厚み60μmの無機ガラス、アミン基含有カップリング剤層、および熱可塑性樹脂層の積層体を得た。
 さらに、該積層体の片面表面に下記参考例1で合成した7重量%のポリアミドイミドのメチルイソブチルケトン溶液を塗工し、160℃で10分間乾燥後、200℃で30分間熱処理を行った。同様の処理を無機ガラスのもう一方の表面にも行い、総厚み120μmの基材を得た。
(参考例1)ポリアミドイミドの合成
 2,2’-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物(6FDA)と、トリメリット酸無水物(TMA)と、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル(TFMB)によって、ポリアミドイミドを合成した。重量平均分子量は約110000であった。
[実施例6]
 実施例5で用いた基材に、実施例2と同様に無機薄膜を形成して可撓性基板を作製した。
[実施例7]
 実施例5で用いた基材に、実施例3と同様に無機薄膜を形成して可撓性基板を作製した。
[実施例8]
 実施例5で用いた基材に、実施例4と同様に無機薄膜を形成して可撓性基板を作製した。
[実施例9]
 以下の基材を用いたこと以外は実施例1と同様にして可撓性基板を作製した。
(基材)
 20重量%のポリアリレート(U-ポリマー U-100:ユニチカ社製)の塩化メチレン溶液とシクロペンタノンを混合し、14.5重量%のキャスティング溶液を得た。
 別途、厚み50μmの無機ガラス(ショット社製、「D263」)の片面表面をメチルエチルケトンで洗浄後、コロナ処理を行い、続けてアミン基含有カップリング剤(KBM-603、信越化学工業社製)を塗布し、110℃で5分間熱処理した。カップリング処理した上記無機ガラス表面に上記キャスティング溶液を塗工し、160℃で10分間乾燥後、200℃で30分間熱処理を行った。同様の処理を無機ガラスのもう一方の表面にも行い、総厚み120μmの基材を得た。
[実施例10]
 実施例9で用いた基材に、実施例2と同様に無機薄膜を形成して可撓性基板を作製した。
[実施例11]
 実施例9で用いた基材に、実施例3と同様に無機薄膜を形成して可撓性基板を作製した。
[実施例12]
 実施例9で用いた基材に、実施例4と同様に無機薄膜を形成して可撓性基板を作製した。
[実施例13]
 以下の基材を用いたこと以外は実施例1と同様にして可撓性基板を作製した。
(基材)
 末端水酸基変性されたポリエーテルスルホン(スミカエクセル 5003P:住友化学社製)とシクロペンタノンとジメチルスルホキシドとレベリング剤(BYK-307:ビックケミー社製)とを重量比140:658:42:0.105の割合で混合し、キャスティング溶液とした。
 別途、厚み50μm、縦10cm×横4cmの無機ガラス(ショット社製、「D263」)の片面表面をメチルエチルケトンで洗浄後、コロナ処理を行い、続けてエポキシ基末端カップリング剤(KBM-403:信越化学工業社製)を塗布した後、110℃で5分間熱処理をした。上記カップリング処理した無機ガラス表面に上記キャスティング溶液を塗工し、160℃で10分間乾燥後、200℃で30分間熱処理を行い、厚み35μmの樹脂層を形成した。
 同様の処理を上記無機ガラスのもう一方の表面にも行い、総厚み120μmの基材を得た。
[実施例14]
 実施例13で用いた基材に、実施例2と同様に無機薄膜を形成して可撓性基板を作製した。
[実施例15]
 実施例13で用いた基材に、実施例3と同様に無機薄膜を形成して可撓性基板を作製した。
[実施例16]
 実施例13で用いた基材に、実施例4と同様に無機薄膜を形成して可撓性基板を作製した。
[実施例17]
 有機EL素子を以下の方法で作製し、実施例11の可撓性基板を用いて封止して、有機EL表示装置を得た。
 インジウム錫複合酸化物(ITO)層を有するガラス基板(表面抵抗値:10Ω/□)のITO層表面をイソプロピルアルコールで洗浄した後、15分間UV-オゾン処理を行い、ITO層を透明電極(陽極)とした。真空蒸着法を用いて、陽極上に下記の有機化合物層を順次形成した:
  第1正孔輸送層:銅フタロシアニン(膜厚:10nm)
  第2正孔輸送層:N,N´-ジフェニル-N,N´-ジナフチルベンジジン(膜厚:40nm)
  電子輸送層兼発光層:トリス(8-ヒドロキシキノリナト)アルミニウム(膜厚:60nm)
 次に、膜厚1nmのフッ化リチウムおよび膜厚100nmのアルミニウムを順次蒸着し、対向電極(陰極)を形成した。アルミニウム表面を、紫外線硬化型エポキシ系接着剤を介して、実施例11で得られた可撓性基板(110℃で15分間のアニール処理したもの)で封止し、紫外線を可撓性基板側から照射することにより接着剤を硬化させ、有機EL表示装置を得た。
[実施例18]
 実施例15で得られた可撓性基板(110℃で15分間のアニール処理したもの)を用いて封止したこと以外は実施例17と同様にして有機EL表示装置を作製した。
[比較例1]
 無機薄膜(DLC膜)を形成しなかったかったこと以外は実施例11と同様にして積層体を得た。
[比較例2]
 無機薄膜(DLC膜)を形成しなかったかったこと以外は実施例15と同様にして積層体を得た。
[比較例3]
 比較例1で得られた積層体(110℃で15分間のアニール処理したもの)を用いて封止したこと以外は実施例17と同様にして有機EL表示装置を作製した。
[比較例4]
 比較例2で得られた積層体(110℃で15分間のアニール処理したもの)を用いて封止したこと以外は実施例17と同様にして有機EL表示装置を作製した。
[評価]
(1)水蒸気透過率
 実施例1から16で得られた可撓性基板の水蒸気透過率をJIS K 7129Bに準拠したMOCON測定法により評価した。具体的には、MOCON社製の水蒸気透過度測定装置「PERMATRAN W3/33MG型(HRH-1D型高精密流量コントロール装置付)」を用いて測定した。湿度条件は40℃90%RH、ガス流量は10.0±0.5cc/min、測定時間は20時間以上で行った。
 いずれにおいても、水蒸気透過率は測定限界(10-2g/m・day)より少なかった。
(2)保存性
 実施例17および18、ならびに比較例3および4の有機EL表示装置に、直流電圧7Vを印加して発光させた。いずれの表示装置においても、ダークスポットは観察されず均一な発光状態であった。その後、常温常圧の大気下にて保存し、定期的に発光状態を観察した。7日後、30日後、60日後の発光状態を表1に示す。評価基準は以下のとおりである。
  ○:均一な発光状態
  △:ダークスポット発生
  ×:非点灯
Figure JPOXMLDOC01-appb-T000016
 表1から明らかなように、本発明の実施例の可撓性基板を用いた有機EL表示装置は、比較例の有機EL表示装置に比べて保存性が格段に優れる。より具体的には、比較例の有機EL表示装置が30日後にはダークスポットが発生して60日後には点灯しなくなったのに対し、実施例の有機EL表示装置は60日後においても均一な発光状態を維持していた。このように、可撓性基板に無機薄膜を形成することにより、保存性が顕著に改善されることがわかる。
 本発明の可撓性基板は、有機エレクトロルミネッセンス(EL)表示装置に好適に用いられ得る。
 10      無機ガラス
 11、11’  樹脂層
 12      無機薄膜
 13      平滑化層
 20      基材
100      可撓性基板
200      有機EL表示装置
 

Claims (14)

  1.  無機ガラスと、該無機ガラスの両側それぞれに配置された樹脂層とを備える基材と、
     一方の該樹脂層の該無機ガラスが配置されていない側に配置された無機薄膜とを備え、
     該無機薄膜が該基材の少なくとも片面周縁部に形成されている、可撓性基板。
  2.  前記無機薄膜が前記基材の片面全面に形成されている、請求項1に記載の可撓性基板。
  3.  平滑化層をさらに備え、
     該平滑化層が、前記無機薄膜の前記樹脂層が配置されていない側に配置されている、請求項1または2に記載の可撓性基板。
  4.  別の無機薄膜をさらに備え、
     該別の無機薄膜が、前記平滑化層の前記樹脂層が配置されていない側に配置されている、請求項3に記載の可撓性基板。
  5.  厚み(総厚)が600μm以下である、請求項1から4のいずれかに記載の可撓性基板。
  6.  前記樹脂層が、エポキシ系樹脂および/またはオキセタン系樹脂を主成分とする樹脂組成物から形成されている、請求項1から5のいずれかに記載の可撓性基板。
  7.  前記樹脂層が、一般式(X)および/または(Y)で表される繰り返し単位を有する熱可塑性樹脂を含む、請求項1から6のいずれかに記載の可撓性基板:
    Figure JPOXMLDOC01-appb-C000001
    式(X)中、Rは炭素数6~24の置換または非置換のアリール基、炭素数4~14のシクロアルキレン基または炭素数1~8の直鎖状もしくは分岐状のアルキレン基であり、Rは炭素数6~24の置換または非置換のアリール基、炭素数1~8の直鎖状もしくは分岐状のアルキル基、炭素数1~8の直鎖状もしくは分岐状のアルキレン基、炭素数5~12のシクロアルキル基、炭素数5~12のシクロアルキレン基または水素原子であり、式(Y)中、RおよびRはそれぞれ独立して炭素数1~8の直鎖状もしくは分岐状のアルキル基、水素原子、炭素数1~8の直鎖状もしくは分岐状のアルキレン基、炭素数5~12のシクロアルキル基または炭素数5~12のシクロアルキレン基であり、Aはカルボニル基または炭素数1~8の直鎖状もしくは分岐状のアルキレン基であり、mは0~8の整数を表し、nは0~4の整数を表す。
  8.  前記樹脂層が、1つ以上の一般式(Z)で表される繰り返し単位を有する熱可塑性樹脂を含む、請求項1から7のいずれかに記載の可撓性基板:
    Figure JPOXMLDOC01-appb-C000002
    式(Z)中、Rは炭素数6~24の置換または非置換のアリール基、炭素数1~8の直鎖状もしくは分岐状のアルキレン基、または炭素数4~14のシクロアルキレン基、または酸素原子であり、Rは炭素数6~24の置換または非置換のアリール基、炭素数1~8の直鎖状もしくは分岐状のアルキル基、炭素数1~8の直鎖状もしくは分岐状のアルキレン基、炭素数5~12のシクロアルキル基、炭素数5~12のシクロアルキレン基、または水素原子である。
  9.  前記樹脂層が、ポリエーテルスルホン系樹脂を含む、請求項1から8のいずれかに記載の可撓性基板。
  10.  前記無機薄膜が、酸化物、窒化物、水素化物およびその複合化合物からなる群から選ばれる少なくとも1種の無機化合物を含む、請求項1から9のいずれかに記載の可撓性基板。
  11.  前記無機化合物がアモルファス構造を有する、請求項10に記載の可撓性基板。
  12.  前記無機薄膜が、無機酸化物層/無機窒化物層/無機酸化物層の3層構成である、請求項1から11のいずれかに記載の可撓性基板。
  13.  透明電極をさらに備え、
     該透明電極が、前記無機薄膜の前記樹脂層が配置されていない側に配置されている、請求項1から12のいずれかに記載の可撓性基板。
  14.  請求項1から13のいずれかに記載の可撓性基板を備える、有機エレクトロルミネッセンス表示装置。
     
PCT/JP2009/057737 2008-04-24 2009-04-17 可撓性基板 WO2009131067A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN2009801139574A CN102015287B (zh) 2008-04-24 2009-04-17 柔性基板
KR1020147026647A KR101490094B1 (ko) 2008-04-24 2009-04-17 가요성 기판
KR1020167001414A KR20160014769A (ko) 2008-04-24 2009-04-17 가요성 기판
KR20147031504A KR20140141721A (ko) 2008-04-24 2009-04-17 가요성 기판
KR1020127021228A KR101484381B1 (ko) 2008-04-24 2009-04-17 가요성 기판
US12/988,764 US20110039097A1 (en) 2008-04-24 2009-04-17 Flexible substrate
US14/987,596 US20160120029A1 (en) 2008-04-24 2016-01-04 Flexible substrate
US15/998,859 US11260627B2 (en) 2008-04-24 2018-08-17 Flexible substrate
US16/121,779 US20190008043A1 (en) 2008-04-24 2018-09-05 Flexible substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008114372 2008-04-24
JP2008-114372 2008-04-24

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/988,764 A-371-Of-International US20110039097A1 (en) 2008-04-24 2009-04-17 Flexible substrate
US14/987,596 Division US20160120029A1 (en) 2008-04-24 2016-01-04 Flexible substrate

Publications (1)

Publication Number Publication Date
WO2009131067A1 true WO2009131067A1 (ja) 2009-10-29

Family

ID=41216803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057737 WO2009131067A1 (ja) 2008-04-24 2009-04-17 可撓性基板

Country Status (6)

Country Link
US (4) US20110039097A1 (ja)
JP (2) JP5467792B2 (ja)
KR (5) KR101490094B1 (ja)
CN (1) CN102015287B (ja)
TW (2) TWI596007B (ja)
WO (1) WO2009131067A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011086500A3 (en) * 2010-01-12 2011-12-08 Koninklijke Philips Electronics N.V. Sealed thin-film device, oled and solar cell
CN106848089A (zh) * 2016-12-23 2017-06-13 成都新柯力化工科技有限公司 一种柔性oled显示屏薄膜的制备方法
JP2018056572A (ja) * 2017-11-01 2018-04-05 味の素株式会社 シート材

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011181590A (ja) * 2010-02-26 2011-09-15 Technology Research Association For Advanced Display Materials 有機elディスプレイ及び有機elディスプレイの製造方法
KR101374372B1 (ko) * 2011-05-12 2014-03-17 한국생산기술연구원 복합시트 및 이를 이용한 디스플레이 기판
CN103889712B (zh) * 2011-10-18 2015-07-08 旭硝子株式会社 层叠体、层叠体的制造方法及带有电子器件用构件的玻璃基板的制造方法
JP5907722B2 (ja) 2011-12-23 2016-04-26 株式会社半導体エネルギー研究所 発光装置の作製方法
JP5883333B2 (ja) * 2012-04-02 2016-03-15 日東電工株式会社 透明シートおよびその製造方法
KR102198316B1 (ko) * 2012-06-19 2021-01-04 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 표시장치 및 그 제조방법, 그리고 표시장치 지지기재용 폴리이미드 필름 및 그 제조방법
CN102891115B (zh) * 2012-10-11 2016-08-17 京东方科技集团股份有限公司 基板及其制备方法
KR102072805B1 (ko) * 2013-04-15 2020-02-04 삼성디스플레이 주식회사 유기발광표시장치 및 그의 제조방법
US20150029681A1 (en) * 2013-07-29 2015-01-29 Evonik Industries Ag Flexible composite, production thereof and use thereof
JP2015050143A (ja) * 2013-09-04 2015-03-16 積水化学工業株式会社 有機エレクトロルミネッセンス表示素子用封止剤
WO2015073542A1 (en) * 2013-11-12 2015-05-21 Ppg Industries Ohio, Inc. Photovoltaic systems and spray coating processes for producing photovoltaic systems
JP2015195106A (ja) * 2014-03-31 2015-11-05 株式会社ジャパンディスプレイ 有機el表示装置及びその製造方法
JP6288774B2 (ja) * 2014-06-30 2018-03-07 トーカロ株式会社 防汚性に優れた高分子エラストマー部材およびそれを用いたロール部材
JP6520497B2 (ja) * 2014-07-09 2019-05-29 Tdk株式会社 リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP6592883B2 (ja) * 2014-08-06 2019-10-23 三菱ケミカル株式会社 有機el素子及びそれを用いた有機el照明装置
KR102300025B1 (ko) * 2014-10-08 2021-09-09 삼성디스플레이 주식회사 디스플레이 장치
JP2016159585A (ja) * 2015-03-04 2016-09-05 三菱化学株式会社 フレキシブル基板、それを用いた有機el素子及び有機el照明装置
JP6445358B2 (ja) * 2015-03-17 2018-12-26 株式会社ジャパンディスプレイ 表示装置の製造方法
JP6743420B2 (ja) * 2016-03-01 2020-08-19 三菱ケミカル株式会社 フレキシブル基板、電子デバイス製造用基板及び電子デバイス
CN106206945A (zh) 2016-09-08 2016-12-07 京东方科技集团股份有限公司 一种柔性基板及其制备方法、柔性显示装置
US11374184B2 (en) 2016-09-08 2022-06-28 Boe Technology Group Co., Ltd. Flexible substrate and fabrication method thereof, and flexible display apparatus
CN107958879B (zh) * 2016-10-14 2020-06-05 财团法人工业技术研究院 柔性电子装置
US10275062B2 (en) * 2016-10-14 2019-04-30 Industrial Technology Research Institute Flexible electronic device having barrier planarization layer including nitrogen-rich region and oxygen-rich region
TWI692002B (zh) * 2017-02-28 2020-04-21 財團法人國家實驗研究院 可撓式基板結構、可撓式電晶體及其製造方法
CN106847832B (zh) * 2017-03-23 2019-04-26 武汉华星光电技术有限公司 柔性基板及柔性显示器
CN109411417B (zh) 2017-08-18 2020-09-11 财团法人工业技术研究院 电子组件封装体以及显示面板
TWI634468B (zh) 2017-08-18 2018-09-01 財團法人工業技術研究院 透明顯示裝置
US10396256B2 (en) 2017-08-18 2019-08-27 Industrial Technology Research Institute Electronic device package
JP6782211B2 (ja) * 2017-09-08 2020-11-11 株式会社東芝 透明電極、それを用いた素子、および素子の製造方法
JP2018006351A (ja) * 2017-09-11 2018-01-11 株式会社半導体エネルギー研究所 発光装置
US20200247092A1 (en) * 2017-09-29 2020-08-06 Dai Nippon Printing Co., Ltd. Optical film and image display device
KR102429769B1 (ko) * 2017-12-11 2022-08-04 엘지디스플레이 주식회사 디스플레이 장치 및 이를 포함하는 롤러블 디스플레이 시스템
CN109192878B (zh) * 2018-08-30 2019-11-26 武汉华星光电半导体显示技术有限公司 柔性oled显示面板
CN114953663B (zh) * 2019-03-29 2024-04-02 京东方科技集团股份有限公司 一种柔性盖板、显示装置及柔性盖板的制备方法
JP2020181833A (ja) * 2020-08-05 2020-11-05 パイオニア株式会社 発光装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07157341A (ja) * 1993-12-07 1995-06-20 Tosoh Corp 散光性合せガラス
JPH11329715A (ja) * 1998-04-02 1999-11-30 Cambridge Display Technol Ltd 有機デバイスのための可撓性基体、有機デバイスおよびその製造方法
JP2002297054A (ja) * 2001-03-29 2002-10-09 Sumitomo Bakelite Co Ltd 表示素子用基板
JP2002542971A (ja) * 1999-04-30 2002-12-17 ショット・ディスプレイ・グラース・ゲーエムベーハー ポリマーコーティングされたガラス薄膜基板
JP2004082598A (ja) * 2002-08-28 2004-03-18 Dainippon Printing Co Ltd ガスバリア性積層材及びその製造方法
JP2005342898A (ja) * 2004-05-31 2005-12-15 Keiwa Inc 高バリア性シート
JP2007203474A (ja) * 2006-01-31 2007-08-16 Sumitomo Bakelite Co Ltd 透明樹脂積層シート

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6287674B1 (en) * 1997-10-24 2001-09-11 Agfa-Gevaert Laminate comprising a thin borosilicate glass substrate as a constituting layer
JPH11195487A (ja) * 1997-12-27 1999-07-21 Tdk Corp 有機el素子
JP4384356B2 (ja) 1998-07-20 2009-12-16 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 可撓性基板
US6689626B2 (en) 1998-07-20 2004-02-10 Koninklijke Philips Electronics N.V. Flexible substrate
WO2000041978A1 (de) * 1999-01-11 2000-07-20 Schott Display Glas Gmbh Polymerbeschichtete dünnglasfoliensubstrate
EP1149405A1 (de) * 1999-01-11 2001-10-31 Schott Glas Flächenstrahler
JP2002299041A (ja) * 2001-03-30 2002-10-11 Hitachi Ltd 有機el装置に用いるフィルム基材及び有機el素子
US6944906B2 (en) * 2002-05-15 2005-09-20 Trico Products Corporation Direct drive windshield wiper assembly
JP2004079432A (ja) * 2002-08-21 2004-03-11 Nitto Denko Corp 透明ガスバリア性部材及びこれを用いた有機エレクトロルミネッセンス素子
US7229703B2 (en) * 2003-03-31 2007-06-12 Dai Nippon Printing Co. Ltd. Gas barrier substrate
JP4363145B2 (ja) * 2003-09-30 2009-11-11 Jsr株式会社 積層体および積層体の製造方法
US7075103B2 (en) * 2003-12-19 2006-07-11 General Electric Company Multilayer device and method of making
US20050269943A1 (en) * 2004-06-04 2005-12-08 Michael Hack Protected organic electronic devices and methods for making the same
JP4941295B2 (ja) * 2005-03-29 2012-05-30 株式会社スリーボンド 有機el素子封止用フィルム及び有機el素子の封止構造体
JP4911445B2 (ja) * 2005-06-29 2012-04-04 富士フイルム株式会社 有機と無機のハイブリッド光電変換素子
JP4982976B2 (ja) * 2005-06-29 2012-07-25 住友化学株式会社 フレキシブル基板の製造方法及びディスプレイ素子
US20070020451A1 (en) * 2005-07-20 2007-01-25 3M Innovative Properties Company Moisture barrier coatings
JP4906289B2 (ja) * 2005-08-26 2012-03-28 日本合成化学工業株式会社 樹脂成形体、及びその用途
JP4893627B2 (ja) * 2005-10-31 2012-03-07 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
DE102006046196A1 (de) * 2006-09-29 2008-04-03 Osram Opto Semiconductors Gmbh Leuchtmittel
JP2008107510A (ja) * 2006-10-25 2008-05-08 Nitto Denko Corp 表示素子用基板およびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07157341A (ja) * 1993-12-07 1995-06-20 Tosoh Corp 散光性合せガラス
JPH11329715A (ja) * 1998-04-02 1999-11-30 Cambridge Display Technol Ltd 有機デバイスのための可撓性基体、有機デバイスおよびその製造方法
JP2002542971A (ja) * 1999-04-30 2002-12-17 ショット・ディスプレイ・グラース・ゲーエムベーハー ポリマーコーティングされたガラス薄膜基板
JP2002297054A (ja) * 2001-03-29 2002-10-09 Sumitomo Bakelite Co Ltd 表示素子用基板
JP2004082598A (ja) * 2002-08-28 2004-03-18 Dainippon Printing Co Ltd ガスバリア性積層材及びその製造方法
JP2005342898A (ja) * 2004-05-31 2005-12-15 Keiwa Inc 高バリア性シート
JP2007203474A (ja) * 2006-01-31 2007-08-16 Sumitomo Bakelite Co Ltd 透明樹脂積層シート

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011086500A3 (en) * 2010-01-12 2011-12-08 Koninklijke Philips Electronics N.V. Sealed thin-film device, oled and solar cell
CN106848089A (zh) * 2016-12-23 2017-06-13 成都新柯力化工科技有限公司 一种柔性oled显示屏薄膜的制备方法
CN106848089B (zh) * 2016-12-23 2018-12-21 汇精(厦门)电子科技有限公司 一种柔性oled显示屏薄膜的制备方法
JP2018056572A (ja) * 2017-11-01 2018-04-05 味の素株式会社 シート材

Also Published As

Publication number Publication date
US11260627B2 (en) 2022-03-01
JP5467792B2 (ja) 2014-04-09
KR20100127289A (ko) 2010-12-03
KR20140141721A (ko) 2014-12-10
TW201527090A (zh) 2015-07-16
KR101484381B1 (ko) 2015-01-19
US20180368256A1 (en) 2018-12-20
JP5828523B2 (ja) 2015-12-09
KR20140130194A (ko) 2014-11-07
CN102015287A (zh) 2011-04-13
KR20160014769A (ko) 2016-02-11
JP2009279926A (ja) 2009-12-03
TWI596007B (zh) 2017-08-21
US20190008043A1 (en) 2019-01-03
US20160120029A1 (en) 2016-04-28
TW201008768A (en) 2010-03-01
JP2013241023A (ja) 2013-12-05
US20110039097A1 (en) 2011-02-17
KR101490094B1 (ko) 2015-02-04
TWI483844B (zh) 2015-05-11
KR20120104637A (ko) 2012-09-21
CN102015287B (zh) 2013-10-30

Similar Documents

Publication Publication Date Title
JP5828523B2 (ja) 可撓性基板
US20200198302A1 (en) Transparent sheet and method for manufacturing same
US10050224B2 (en) Optical-device surface-sealing composition, optical-device surface-sealing sheet, display, and display manufacturing method
US20180228002A1 (en) Transparent substrate
JP5416546B2 (ja) 透明基板
TWI445619B (zh) Transparent substrate and its manufacturing method
JP4295588B2 (ja) 反射防止ガスバリア性基板
WO2005051654A1 (ja) 樹脂シート、液晶セル基板、液晶表示装置、エレクトロルミネッセンス表示装置用基板、エレクトロルミネッセンス表示装置および太陽電池用基板
WO2013047522A1 (ja) バリア性積層体、ガスバリアフィルムおよびこれらを用いたデバイス
JP2004263064A (ja) 粒子分散系樹脂シート、画像表示装置用基板および画像表示装置
JP2004262080A (ja) フィラー分散系樹脂シート、画像表示装置用基板および画像表示装置
JP2005138325A (ja) フィラー分散系樹脂シート、画像表示装置用基板および画像表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980113957.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09734457

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107023521

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12988764

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09734457

Country of ref document: EP

Kind code of ref document: A1