EP1149405A1 - Flächenstrahler - Google Patents

Flächenstrahler

Info

Publication number
EP1149405A1
EP1149405A1 EP00901529A EP00901529A EP1149405A1 EP 1149405 A1 EP1149405 A1 EP 1149405A1 EP 00901529 A EP00901529 A EP 00901529A EP 00901529 A EP00901529 A EP 00901529A EP 1149405 A1 EP1149405 A1 EP 1149405A1
Authority
EP
European Patent Office
Prior art keywords
rear part
pane
glass
coating
spacer elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00901529A
Other languages
English (en)
French (fr)
Inventor
Kurt Nattermann
Volker Seibert
Roland Bürkle
Reinhard Kassner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schott AG
Original Assignee
CARL ZEISS STIFTUNG BR TRADING
Carl Zeiss AG
Schott Glaswerke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CARL ZEISS STIFTUNG BR TRADING, Carl Zeiss AG, Schott Glaswerke AG filed Critical CARL ZEISS STIFTUNG BR TRADING
Publication of EP1149405A1 publication Critical patent/EP1149405A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10559Shape of the cross-section
    • B32B17/10577Surface roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10018Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising only one glass sheet
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/02Forming molten glass coated with coloured layers; Forming molten glass of different compositions or layers; Forming molten glass comprising reinforcements or inserts
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/30Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/32Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the invention relates to a surface radiator with a windshield and a rear part, the windshield being held at a distance from the rear part by means of spacer elements, a gaseous filling having a pressure which is lower being introduced into the space between the windshield and the rear part , as the atmospheric ambient pressure, and wherein the windscreen is made of a glass material.
  • Transmissive LCDs require bright backlights with homogeneous luminance, low thickness, low breakage rate during assembly and handling and with high long-term stability.
  • Discharge lamps with an inert gas filling under negative pressure meet the demand for high and homogeneous luminance and low heat development. These lamps can also be designed as surface spotlights.
  • the essential mechanical components of such surface radiators are the front and rear window and spacer elements in order to keep the front and rear window 35 at a distance. Glass front and rear windows are preferred. It is known to provide glass back panes with reflective layers or foils.
  • BES lGU GSKOPIE Surface radiators are known in the prior art in which the discharge current flows through "folded" channels between the front and rear windows, which requires an operating voltage of several 100 V (company specification "Fiat Candle Backlights Products for 4" Diagonal LCD ”) Also known are area radiators in which the current flows directly from the rear window to the front window, such area radiators are operated for LCD applications with operating voltages of only approximately 10 V.
  • a major disadvantage of surface emitters with a vacuum filling is the large thickness and the high weight.
  • the thickness results from the minimum discharge distance and from the thickness of the glass panes for the front and rear panes.
  • the slice thickness results from strength requirements.
  • Fig. 1 shows a perspective view of a section through a known surface radiator, in which the front and rear window and parallel, continuous, strip-shaped spacer elements can be seen. It has been shown that the following problems occur when using thinner glass panes for the front or rear pane, e.g. to save weight or reduce the thickness of the flat radiators:
  • the mechanical stresses in the disks due to the atmospheric external pressure are seen as a major problem.
  • the tension on the The outer pane surface scales approximately like ⁇ x ⁇ (w / t) 2 , where t denotes the pane thickness and w the distance between the spacer elements. You can see that when the slice thickness is reduced, the distance between the
  • This object of the invention is achieved in that the windshield and / or the rear part are at least partially thermally or chemically biased
  • Table 1 shows the maximum distance for the spacer elements w depending on the pane thickness t and the minimum surface prestress in the glass panes ( ⁇ v1min ).
  • thermal tempering shows only little positive effect.
  • chemical tempering using the methods known per se is therefore preferred.
  • the object of the invention is also achieved in that the front pane and / or the rear part is designed as a glass pane which is at least partially provided with a coating consisting of a ductile polymer material.
  • a coating consisting of a ductile polymer material.
  • the polymer films are effective from a layer thickness of approx. 6 ⁇ m.
  • the strength-increasing effect of the layers increases with increasing thickness.
  • the thickness range from 6 to 50 is preferred because then the elasticity of the composite is only slightly impaired and the shrinkage of the polymer films only leads to low stresses in the glass panes.
  • the application of thicker layers, up to 200 ⁇ m, can be useful.
  • adhesion promoters can be used, which create a non-polar glass surface with good adhesive properties for non-polar, organic polymers through a reactive connection of OH groups on the glass surface with their non-polar side chains.
  • Suitable adhesion promoters are e.g. Dimethoxydimethyxsilan or Hexamethyldisilazan.
  • the strength-increasing effect of polymer coatings is actually a preservation of strength.
  • the layers prevent strength-reducing microdefects from occurring in the surface of the glass panes during transport, assembly or handling of the glass panes. This effect therefore develops in particular if the coatings are applied early, preferably immediately after the glass panes are pulled, and more preferably before the glass panes are cut (e.g. for assembling panes to radiant panel dimensions).
  • Table 3 shows an example of which spacer spacings w can be achieved depending on the slice thickness t.
  • Coatings with polymer films have the disadvantage that the coated glass panes may no longer be exposed to high temperatures during subsequent thermal treatments. As a rule, the temperature must remain well below 200 ° C. This limitation is unacceptable if e.g. the panes have to be soldered when installing the surface radiators or if gettering has to be carried out in the mounted surface radiator.
  • the advantages of the invention can be exploited by covering the panes with a washable protective film immediately after their manufacture sealed. This temporary protective film is washed off before the corresponding temperature treatments. This is followed, if necessary, by temporary sealing again or by the application of the permanent coatings according to the invention.
  • panes with a thickness of 1.5 mm or more can be thermally pre-stressed by strong blowing with cold air or immersed in oil or oil-coated water, which significantly increases the strength of the surface emitters.
  • the thermal tempering should take place after cutting the glass panes (e.g. for confectioning panes to radiator dimensions).
  • the rear window of a surface heater which is finished and is already functional is sprayed thinly with the two-component silicone polymer, so that a continuous wetting layer is created.
  • the layer then polymerizes.
  • the amount of silicone polymer used is adjusted so that the polymer layer has a thickness of 40 to 45 ⁇ m.
  • An area radiator with a format of 320 x 360 mm is to be given a 1.1 mm thick chemically prestressed front pane.
  • Glass D263 is used for the windscreen (reference: DESAG AG in Grünenplan).
  • 1.1 mm thick panes of this glass are immersed in a 450 ° C. hot KNO 3 bath for 16 h in order to pretension them by the "Na ⁇ K exchange”. This creates a prestress of more than 230 MPa in a 80 ⁇ m deep surface layer. It was observed that a part of the prestress is "washed out” again by the subsequent processes in the manufacture of the surface emitters, but a prestress of more than 200 MPa is observed as a permanent value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

Die Erfindung betrifft einen Flächenstrahler mit einer Frontscheibe und einem Rückteil, wobei die Frontscheibe mittels Distanzelementen beabstandet zu dem Rückteil gehalten ist, wobei in dem Zwischenraum zwischen der Frontscheibe und dem Rückteil eine gasförmige Füllung eingebracht ist, die unter einem Druck steht, der geringer ist als der atmosphärische Umgebungsdruck, und wobei die Frontscheibe aus einem Glaswerkstoff besteht. Um solche Flächenstrahler mit geringem Eigengewicht herstellen zu können, ist es erfindungsgemäß vorgesehen, dass die Frontscheibe und/oder das Rückteil als zumindest bereichsweise thermisch oder chemisch vorgespannte Glasscheibe ausgebildet ist, bzw. dass die Frontscheibe und/oder das Rückteil als Glasscheibe ausgebildet ist, die zumindest bereichsweise mit einer Beschichtung, bestehend aus einem duktilen Polymermaterial, versehen ist.

Description

ιe
Flächenstrahler
Die Erfindung betrifft einen Flächenstrahler mit einer Frontscheibe und einem 20 Rückteil, wobei die Frontscheibe mittels Distanzelementen beabstandet zu dem Rückteil gehalten ist, wobei in dem Zwischenraum zwischen der Frontscheibe und dem Rückteil eine gasförmige Füllung eingebracht ist, die unter einem Druck steht, der geringer ist, als der atmosphärische Umgebungsdruck, und wobei die Frontscheibe aus einem Glaswerkstoff besteht.
25
Transmissive LCDs benötigen leuchtstarke Hintergrundbeleuchtungen mit homogener Leuchtdichte, geringer Dicke, niedriger Bruchrate bei Montage und Handling und mit hoher Langzeitfestigkeit. Die Forderung nach hoher und homogener Leuchtdichte und geringer Wärmeentwicklung erfüllen Entladungs- 30 lampen mit einer Edelgasfüllung unter Unterdruck. Diese Lampen lassen sich auch als Flächenstrahler gestalten.
Die wesentlichen mechanischen Komponenten von solchen Flächenstrahlern sind die Front- und Rückscheibe und Distanzelemente, um die Front- und Rückscheibe 35 auf Abstand zu halten. Front- und Rückscheiben aus Glas werden bevorzugt. Es ist bekannt, Rückscheiben aus Glas mit reflektierenden Schichten bzw. Folien zu versehen.
BES lGU GSKOPIE Es sind Flächenstrahler im Stand der Technik bekannt, bei denen der Entladungsstrom durch "gefaltete" Kanäle zwischen Front- und Rückscheibe fließt, was eine Betriebsspannung von mehreren 100 V erfordert (Firmenschrift "Fiat Candle Backlights Products for 4" Diagonal LCD"). Es sind auch Flächenstrahler bekannt, bei denen der Strom direkt von der Rück- zur Frontscheibe fließt. Solche Flächenstrahler werden für LCD-Anwendungen mit Betriebsspannungen von nur ca. 10 V betrieben.
Ein wesentlicher Nachteil von Flächenstrahlern mit einer Unterdruckfüllung ist die große Dicke und das hohe Gewicht. Die Dicke ergibt sich aus der Mindest- Entladungsstrecke und aus der Dicke der Glasscheiben für die Front- und Rückscheibe. Die Scheibendicke resultiert aus Festigkeitsanforderungen.
Stand der Technik sind Flächenstrahler mit ca. 2,5 mm dicken Front- und Rückscheiben, die durch Distanzelemente mit im Wesentlichen gleichmäßigen Abstand von 40 bis 50 mm auf Abstand gehalten werden. Fig. 1 zeigt in perspektivischer Sicht einen Schnitt durch einen bekannten Flächenstrahler, bei dem die Front- und Rückscheibe und parallele, durchgängige, streifenförmige Distanzelemente zu erkennen sind. Es hat sich gezeigt, dass bei der Verwendung von dünneren Glasscheiben für die Front- oder Rückscheibe, z.B zur Gewichtsersparnis oder zur Verminderung der Flachenstrahlerdicke folgende Probleme auftreten:
zu hohe mechanische Spannungen in den Scheiben zu starke Durchbiegung der Scheiben zwischen Distanzelementen
Knicken, Umkippen oder Abreißen der Distanzelemente
Als wesentliches Problem werden die mechanischen Spannungen in den Scheiben durch den atmosphärischen Außendruck angesehen. Die Zugspannung an den Scheibenaußenflächen skaliert näherungsweise wie σ x σ(w/t)2, wobei t die Scheibendicke und w den Abstand der Distanzelemente bezeichnet. Man sieht, dass man bei Verringerung der Scheibendicke auch den Abstand der
Distanzelemente reduzieren muß. Man geht davon aus, dass bei einer Scheibendicke von t = 2,5 mm ein Abstand der Distanzelemente von wenigstens w = 40 bis 50 mm erforderlich ist, um die Zugspannung auf der Scheibenaußenfläche unter etwa 10 MPa (erwartete Dauerfestigkeit von Glas) zu halten. Bei einer Scheibendicke von 1 , 1 mm wäre also ein Abstand der Distanzelemente von weniger als 20 mm erforderlich. Dadurch entsteht ein höher Fertigungsaufwand und eine Verminderung der Lichtausbeute durch die vielen Distanzelemente. Diese Vermutung verhinderte bisher die Herstellung von Flächenstrahlern mit dünneren Front- oder Rückscheiben oder mit größerem Abstand der Distanzelemente.
Es ist Aufgabe der Erfindung, bei einem Flächenstrahler der eingangs erwähnten Art eine Gewichtsreduzierung zu erreichen.
Diese Aufgabe der Erfindung wird dadurch gelöst, dass die Frontscheibe und/oder das Rückteil als zumindest bereichsweise thermisch oder chemisch vorgespannte
Glasscheibe ausgebildet ist.
Mit thermisch oder chemisch vorgespannten Glasscheiben lassen sich wesentlich größere Distanzelement-Abstände erreichen als bei den bekannten Flächen- Strahlern. Tabelle 1 zeigt, welchen Höchstabstand für die Distanzelemente w in Abhängigkeit der Scheibendicke t erreicht werden kann und welche Oberflächendruckvorspannung in den Glasscheiben mindestens (σv1min) erreicht werden muß. Tabelle 1
ohne Beschichtung mit Beschichtung
Vorspannungen von mehr als 100 MPa in dünnen Glasscheiben lassen sich nur mit hochdehnenden Gläsern (thermischer Ausdehnungskoeffizient „ 20.300 > ?x 10 1 /°C) oder in Gläsern mit einem hohen TG (TG > 550°C; TG ist die Temperatur, bei der die Viskosität des Glases 1013,6dPas beträgt) erreichen. Die Verwendung von Gläsern mit hohem TG hat den weiteren Vorteil, dass dann die Flächenstrahler- körper bei den Fertigungsprozessen hohen Temperaturen ausgesetzt werden können. Gläser mit hohem TG werden deshalb bevorzugt. Dennoch ist das thermische Vorspannen von dünnen Glasscheiben sehr aufwendig.
Für niedrigdehnende Gläser bzw. für Scheiben mit einer Dicke von weniger als 1 ,5 mm zeigt thermisches Vorspannen nur noch wenig positiven Effekt. Für dünne Glasscheiben wird daher das chemische Vorspannen mit den an sich bekannten Verfahren bevorzugt.
Die Kombination chemisches Vorspannen und Beschichten mit duktilen Polymerschichten führt dabei zu einer weiteren Festigkeitssteigerung. Das Beschichten muß nach dem Vorspannen erfolgen. Mit chemisch vorgespannten Glasscheiben lassen sich wesentlich größere Distanzelement-Abstände erreichen als bei den bekannten Flächenstrahlern bei ausreichender Festigkeit der Flächenstrahler. Tabelle 2 zeigt, welcher Distanz- element-Abstand w in Abhängigkeit der Scheibendicke t erreicht werden kann und welche Oberflächendruckvorspannung in den Glasscheiben mindestens (σv1rnin) erreicht werden muß.
Tabelle 2
ohne Beschichtung mit Beschichtung
Es wurde gefunden, dass die Festigkeit der Flächenstrahier wesentlich erhöht werden kann, wenn man die Standfestigkeit der Distanzelemente dadurch erhöht, dass mann statt gerader Distanzelemente gewellte Distanzelemente verwendet.
Die Aufgabe der Erfindung wird auch dadurch gelöst, dass die Frontscheibe und/oder das Rückteil als Glasscheibe ausgebildet ist, die zumindest bereichsweise mit einer Beschichtung bestehend aus einem duktilen Polymermaterial versehen ist. Zur Beschreibung der Erfindung wird von Flächenstrahlern mit rechteckiger Grundfläche und gleichmäßiger Dicke ausgegangen, die Anleitungen dieser Erfindung können aber auch auf andere Flächenstrahlerformate angewendet werden. Daher werden diese in die Erfindung einbezogen.
Zur Beschreibung der Erfindung wird von parallelen streifenartigen Distanzelementen ausgegangen, die parallel zu einer Flächenstrahlerkante durchgängig verlaufen. Die Anleitungen dieser Erfindung sind aber auch für beliebige
Ausgestaltungen, insbesondere auf segmentierte Distanzelemente (Fig. 3) und Punkt-Distanzelemente (Fig. 4) oder gewellte Distanzelemente (Fig. 5) anwendbar. Daher werden diese in die Erfindung einbezogen.
Es wurde gefunden, dass man auch mit Front- und Rückscheiben aus Glas mit einer Dicke von weniger als 2,5 mm eine ausreichende Festigkeit für Flächenstrahler erreicht, wenn man die Glasscheiben mit Kunststoffschichten laminiert.
Versuche zeigen, dass man durch Laminieren der als Front- und Rückscheibe verwendeten Glasscheiben auf der Außenfläche mit dünnen, duktilen Poiymer- filmen eine ausreichende Flächenfestigkeit von Flächenstrahlern erreicht. Dazu eignen sich dünne Beschichtungen aus Silikonen, Polyurethan oder Polymeren aus der Gruppe der Ormoceren. Silikonbeschichtungen werden wegen ihrer hohen Temperaturbeständigkeit (bis 200°C) und hohen Beständigkeit gegenüber vielen organischen Lösungsmitteln und wäßrigen Lösungen bevorzugt.
Die Polymerfilme werden schon bei Schichtdicken ab ca. 6μm wirksam. Prinzipiell nimmt die festigkeitssteigernde Wirkung der Schichten mit wachsender Dicke zu. AOb einer Dicke von 50 μπ\ ist diese Zunahme jedoch nicht mehr signifikant. Der Dickenbereich von 6 bis 50 wird bevorzugt, weil dann die Elastizität des Verbundes nur wenig beeinträchtigt wird und der Schrumpf der Polymerfilme nur zu geringen Spannungen in den Glasscheiben führt. Aus fertigungstechnischen Gründen kann dennoch die Aufbringung von dickeren Schichten, etwa bis 200 μm, sinnvoll sein.
Zur Verbesserung der Haftung der meist unpolaren Polymere auf der polaren Glasoberfläche können zusätzliche Haftvermittler eingesetzt werden, die durch eine reaktive Verbindung von OH-Gruppen der Glasoberfläche mit ihren unpolaren Seitenketten eine unpolare Glasoberfläche mit guten Hafteigenschaften für unpolare, organische Polymere schaffen. Geeignete Haftvermittler sind z.B. Dimethoxydimethyxsilan oder Hexamethyldisilazan.
Die festigkeitssteigernde Wirkung der Polymerbeschichtungen ist eigentlich eine Festigkeitskonservierung. Die Schichten verhindern, dass bei Transport, Montage oder Handhabung der Glasscheiben festigkeitsmindernde Mikrodefekte in der Oberfläche der Glasscheiben entstehen. Diese Wirkung entfaltet sich daher insbesondere dann, wenn die Beschichtungen frühzeitig, bevorzugt unmittelbar nach dem Ziehen der Glasscheiben und stärker bevorzugt vor dem Schneiden der Glasscheiben (z.B. zum Konfektionieren von Scheiben auf Flächenstrahlermaße) erfolgt.
Mit den vorstehend beschichteten Glasscheiben lassen sich wesentlich größere Distanzelement-Abstände erreichen als bei den bekannten Flächenstrahlern, ohne dass deren Festigkeit sinkt. Tabelle 3 zeigt beispielhaft, welche Distanzelement- Abstände w in Abhängigkeit von der Scheibendicke t erreicht werden können. Tabelle 3
Eine vorteilhafte Variante kann sich ergeben, wenn die Polymerschicht bei einer Temperatur aufgebracht wird, die über der Betriebstemperatur des Flächenstrahlers liegt. Dadurch wird erreicht, dass die Polymerschicht auf der Scheibe unter permanenter Druckspannung steht und damit kratzfest wird.
Beschichtungen mit Polymerfilmen haben den Nachteil, dass die beschichteten Glasscheiben bei nachfolgenden thermischen Behandlungen keinen hohen Temperaturen mehr ausgesetzt werden dürfen. In der Regel muß die Temperatur deutlich unter 200°C bleiben. Diese Einschränkung ist inakzeptabel, wenn z.B. die Scheiben bei der Montage der Flächenstrahler verlötet werden müssen oder wenn im montierten Flächenstrahler Getterungen erfolgen müssen.
In diesem Fall kann man die Vorteile der Erfindung dadurch nutzen, dass man die Scheiben unmittelbar nach ihrer Herstellung mit einem abwaschbaren Schutzfilm versiegelt. Dieser temporäre Schutzfilm wird vor den entsprechenden Temperaturbehandlungen abgewaschen. Danach erfolgt ggf. wieder eine temporäre Ver- siegelung oder gleich die Aufbringung der erfindungsgemäßen, permanenten Beschichtungen.
Versuche zeigen, dass man mit Scheiben ab 1 ,5 mm Dicke durch starkes Anblasen mit kalter Luft oder Tauchen in Öl oder ölüberschichtetes Wasser eine thermische Vorspannung erzielen kann, die die Festigkeit der Flächenstrahler wesentlich erhöht. Das thermische Vorspannen sollte nach dem Schneiden der Glasscheiben (z.B. zum Konfetkionieren von Scheiben auf Flächenstrahlermaße) erfolgen.
Die Kombination thermisches Vorspannen und Beschichten mit duktilen Polymerschichten führt zu einer weiteren Festigkeitssteigerung. Das Beschichten muß nach dem Vorspannen erfolgen.
Die Erfindung wird im Folgenden anhand zweier Ausführungsbeispiele näher erläutert:
Ausführungsbeispiel 1
Die Rückscheibe eines an sich fertiggestellten und schon funktionsfähigen Flächenstrahlers wird nach dem letzten Ausheizprozeß mit dem zwei- komponentigen Silikonpolymer dünn besprüht, so dass eine durchgängige Benetzungsschicht entsteht. Die Schicht polymerisiert dann. Die Menge des verwendeten Silikonpolymers ist so eingestellt, dass sich eine Dicke der Polymerschicht von 40 bis 45 μm ergibt. Ausführungsbeispiel 2
Ein Flächenstrahler mit einem Format 320 x 360 mm soll eine 1 , 1 mm dicke chemisch vorgespannte Frontscheibe erhalten. Für die Frontscheibe wird das Glas D263 verwendet ( Bezug: DESAG AG in Grünenplan). 1 ,1 mm dicke Scheiben aus diesem Glas werden für 16 h in ein 450°C heißes KNO3-Bad getaucht, um sie durch den "Na → K - Tausch" vorzuspannen. Dadurch wird eine Vorspannung von mehr als 230 MPa in einer 80 μm tiefen Oberflächenschicht erzeugt. Es wurde beobachtet, dass durch die nachfolgenden Prozesse bei der Herstellung der Flächenstrahler ein Teil der Vorspannung wieder " ausgewaschen " wird als bleibender Wert wird aber eine Vorspannung von mehr als 200 MPa beobachtet.

Claims

Patentansprüche
1 . Flächenstrahler mit einer Frontscheibe und einem Rückteil, wobei die
Frontscheibe mittels Distanzelementen beabstandet zu dem Rückteil gehalten ist, wobei in dem Zwischenraum zwischen der Frontscheibe und dem Rückteil eine gasförmige Füllung eingebracht ist, die unter einem Druck steht, der geringer ist, als der atmosphärische Umgebungsdruck, und wobei wenigstens die Frontscheibe aus einem Glaswerkstoff besteht, dadurch gekennzeichnet, dass die Frontscheibe und/oder das Rückteil als zumindest bereichsweise thermisch oder chemisch vorgespannte Glasscheibe ausgebildet ist.
2. Flächenstrahler nach Anspruch 1 , dadurch gekennzeichnet, dass die Temperatur, bei der die Viskosität des Glasmaterials der thermisch vorgespannten Frontscheibe und/oder des Rückteils 13,6 dPas beträgt (TG- Temperatur) größer als 550°C ist.
3. Flächenstrahler nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Maß der Wandstärke der thermisch vorgespannten Frontscheibe und/oder des Rückteils 1 ,5mm bis 2,1 mm beträgt und/oder die thermische Vorspannung größer oder gleich 60MPa ist.
4. Flächenstrahler nach Anspruch 1 , dadurch gekennzeichnet, dass das Maß der Wandstärke der chemisch vorgespannten Frontscheibe und/oder des Rückteils größer 0,5mm beträgt und/oder mit einer chemischen Vorspannung von mehr als 160MPa vorgespannt ist.
5. Flächenstrahler mit einer Frontscheibe und einem Rückteil, wobei die
Frontscheibe mittels Distanzelementen beabstandet zu dem Rückteil gehalten ist, wobei in dem Zwischenraum zwischen der Frontscheibe und dem Rückteil eine gasförmige Füllung eingebracht ist, die unter einem Druck steht, der geringer ist, als der atmosphärische Umgebungsdruck, und wobei die Frontscheibe aus einem Glaswerkstoff besteht, dadurch gekennzeichnet, dass die Frontscheibe und/oder das Rückteil als Glasscheibe ausgebildet ist, die zumindest bereichsweise mit einer Beschichtung bestehend aus einem duktilen Polymermaterial versehen ist.
6. Flächenstrahler nach Anspruch 5, dadurch gekennzeichnet, dass die Beschichtung als Film ausgebildet ist und aus einem Silikon-, einem Polyurethan- oder einem Polymermaterial ausgewählt aus der Gruppe der Ormoceren besteht.
7. Flächenstrahler nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass die Beschichtung eine Schichtdicke größer 6μm hat.
8. Flächenstrahler nach Anspruch 7, dadurch gekennzeichnet, dass die Schichtdicke der Beschichtung im Bereich zwischen 6μm und
50μm liegt.
9. Flächenstruktur nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, dass zur Anbindung der Beschichtung auf der Oberfläche der Glasscheibe ein Haftvermittler, vorzugsweise Dimethoxydmethylsilan oder Hexa- methyldisliazan verwendet ist.
10. Flächenstrahler nach einem der Ansprüche 5 bis 9, dadurch gekennzeichnet, dass die Glasscheibe zumindest bereichsweise thermisch oder chemisch vorgespannt ist.
1 1 . Flächenstrahler nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass zwischen der Frontscheibe und dem ebenfalls als Glasscheibe ausgebildeten Rückteil wellenförmige Distanzelemente angeordnet sind, wobei die Wellenlinie parallel zur Flächenerstreckung der Frontscheibe verläuft.
EP00901529A 1999-01-11 2000-01-11 Flächenstrahler Withdrawn EP1149405A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19900713 1999-01-11
DE19900713 1999-01-11
PCT/EP2000/000147 WO2000042635A1 (de) 1999-01-11 2000-01-11 Flächenstrahler

Publications (1)

Publication Number Publication Date
EP1149405A1 true EP1149405A1 (de) 2001-10-31

Family

ID=7893943

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00901529A Withdrawn EP1149405A1 (de) 1999-01-11 2000-01-11 Flächenstrahler

Country Status (9)

Country Link
US (1) US6853123B1 (de)
EP (1) EP1149405A1 (de)
JP (1) JP2002535804A (de)
KR (1) KR20010101433A (de)
AU (1) AU2289300A (de)
CA (1) CA2360329A1 (de)
NO (1) NO20013324L (de)
RU (1) RU2262771C2 (de)
WO (1) WO2000042635A1 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10048186A1 (de) * 2000-09-28 2002-04-11 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Entladungslampe für dielektrisch behinderte Entladungen mit Anordnung von Stützelementen
KR100855492B1 (ko) * 2001-12-24 2008-09-01 엘지디스플레이 주식회사 액정표시모듈
EP1891689A2 (de) * 2005-05-31 2008-02-27 Koninklijke Philips Electronics N.V. Flexible anzeigevorrichtung
DE102006046961A1 (de) * 2006-10-04 2008-04-10 Leibniz-Institut Für Neue Materialien Gemeinnützige Gmbh Herstellung einer flexiblen, gasdichten und transparenten Verbundfolie
TWI327103B (en) * 2007-11-21 2010-07-11 Au Optronics Corp Thin substrate, manufacturing process thereof, and manufacturing process of display panel applying the same
JP5467792B2 (ja) 2008-04-24 2014-04-09 日東電工株式会社 可撓性基板
KR101374400B1 (ko) * 2008-04-24 2014-03-17 닛토덴코 가부시키가이샤 투명 기판
JP5435267B2 (ja) * 2008-10-01 2014-03-05 日本電気硝子株式会社 ガラスロール、ガラスロールの製造装置、及びガラスロールの製造方法
US20110023548A1 (en) 2009-07-29 2011-02-03 Garner Sean M Glass substrate comprising an edge web portion
KR101811893B1 (ko) 2009-10-22 2017-12-22 닛토덴코 가부시키가이샤 투명 기판
JP5416546B2 (ja) 2009-10-23 2014-02-12 日東電工株式会社 透明基板
JP5615134B2 (ja) 2010-04-30 2014-10-29 日東電工株式会社 透明基板の製造方法
US9034458B2 (en) 2011-05-27 2015-05-19 Corning Incorporated Edge-protected product and finishing method
WO2016007448A1 (en) 2014-07-08 2016-01-14 Corning Incorporated Continuous processing of flexible glass ribbon
JP6980532B2 (ja) 2015-05-18 2021-12-15 コーニング インコーポレイテッド ガラスリボンを処理する方法及びシステム
EP3533591B1 (de) 2016-10-26 2022-09-07 Nitto Denko Corporation Herstellungsverfahren für folienlaminierung
CN113329872B (zh) 2019-01-23 2023-07-14 日东电工株式会社 薄玻璃树脂层叠体片的制造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3573072A (en) * 1964-05-05 1971-03-30 David A Duke Glass-ceramic article and method
US4227114A (en) 1977-02-16 1980-10-07 Zenith Radio Corporation Cathodoluminescent gas discharge image display panel
DE2951362A1 (de) 1979-12-20 1981-07-02 Erno Raumfahrttechnik Gmbh, 2800 Bremen Plattenfoermiger sonnenkollektor
US4325489A (en) * 1980-04-17 1982-04-20 Rca Corporation Envelope for flat panel display devices
SU1070624A1 (ru) * 1982-10-06 1984-01-30 Предприятие П/Я Г-4937 Масочный кинескоп
GB2171990B (en) 1985-03-08 1988-12-07 Central Glass Co Ltd Method of strengthening glass article formed of float glass by ion exchange and strengthened glass article
US5296294A (en) * 1987-02-03 1994-03-22 Nippon Sheet Glass Co., Ltd. Glass panel resistant to coloring when irradiated with electron rays
DE3810631A1 (de) * 1988-03-29 1989-10-12 Hoechst Ag Positiv arbeitendes lichtempfindliches gemisch und daraus hergestelltes aufzeichnungsmaterial mit hohem waermestand
US5188553A (en) * 1991-04-05 1993-02-23 Zenith Electronics Corporation Flat front panel CRT bulb pre-stressed prior to final evacuation and method of making same
US6236391B1 (en) 1995-01-24 2001-05-22 Elo Touchsystems, Inc. Acoustic touch position sensor using a low acoustic loss transparent substrate
JP3433032B2 (ja) 1995-12-28 2003-08-04 パイオニア株式会社 面放電交流型プラズマディスプレイ装置及びその駆動方法
TW446637B (en) 1996-05-28 2001-07-21 Mitsui Chemicals Inc Transparent laminates and optical filters for displays using the same
DE19644284A1 (de) * 1996-10-24 1998-04-30 D D C Planungs Entwicklungs Un Großflächiges, einstückiges, multifunktionales, wärmegedämmtes Kombi-Solar-Dachelement als tragendes Dach
TW358895B (en) 1996-12-26 1999-05-21 Sumitomo Chemical Co Plasma display front panel
EP0912990B1 (de) * 1997-03-21 2003-06-04 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Gasentladungslampe mit dielektrisch behinderten elektroden
JPH10294010A (ja) * 1997-04-17 1998-11-04 Sumitomo Chem Co Ltd プラズマディスプレイ用前面板
FR2773907B1 (fr) * 1998-01-20 2000-04-07 Thomson Tubes Electroniques Panneau a plasma bi-substrat a rendement lumineux ameliore
JP2000357463A (ja) * 1999-04-14 2000-12-26 Mitsubishi Electric Corp 交流型プラズマディスプレイパネル,プラズマディスプレイ装置及び交流型プラズマディスプレイパネルの駆動方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0042635A1 *

Also Published As

Publication number Publication date
NO20013324L (no) 2001-09-11
NO20013324D0 (no) 2001-07-04
JP2002535804A (ja) 2002-10-22
US6853123B1 (en) 2005-02-08
WO2000042635A1 (de) 2000-07-20
KR20010101433A (ko) 2001-11-14
CA2360329A1 (en) 2000-07-20
AU2289300A (en) 2000-08-01
RU2262771C2 (ru) 2005-10-20

Similar Documents

Publication Publication Date Title
EP1149405A1 (de) Flächenstrahler
DE60218981T2 (de) Struktur, insbesondere für thermochrome verglasung, mit einer substanz zwischen zwei glassubstraten
DE3010164C2 (de) Dünnschicht-Elektrolumineszenz-Anzeigeelement
DE112013000810B4 (de) Mehrfach-Glasscheibe
DE60215227T2 (de) Flugzeugfenster mit einer elektrochromen scheibe
EP2099996B1 (de) Wärmedämmendes verglasungselement, dessen herstellung und verwendung
EP1062675B1 (de) Glastastatur, sowie verfahren zur herstellung einer glastastatur
EP2278851A1 (de) Elektrisch beheizbare Glasscheibe, Verfahren zu deren Herstellung sowie Fenster
DE102013214422A1 (de) Verbundelement und dessen Verwendung
DE4227050A1 (de) Verfahren zur Herstellung einer Vorprodukt-Glasscheibe und Verbundscheiben mit verbesserter Impact-Festigkeit, die eine Vorprodukt-Glasscheibe als Bauteil aufweisen
DE112018001873T5 (de) Doppelverglasung und verfahren zum herstellen dieser
DE2845190A1 (de) Verfahren zum anloeten eines ersten glasartigen teiles an einen zweiten glasartigen oder metallischen teil
EP0611854A1 (de) Glasverbundplatte für Wand- und Gebäudeverkleidungen
DE4106192C2 (de) Zusammengesetzte Glasplatte und Verfahren zu deren Herstellung
EP1241144A1 (de) Verbund-Sicherheitsglas und Verfahren zu dessen Herstellung
DE112006001274T5 (de) Ventil für doppelverglastes Fenster
DE19817476A1 (de) Leuchtstofflampe mit Abstandshaltern und lokal verdünnter Leuchtstoffschichtdicke
EP1524104A1 (de) Bearbeitungsverbund für ein Substrat
EP1464769A1 (de) Verwendung eines Sicherheitsglases in einem Fensterelement eines Gewächshauses und Fensterelement mit einem derartigen Sicherheitsglas
WO2019110376A1 (de) Verfahren zur herstellung einer verbundscheibe
DE102018110148A1 (de) Verbundglas mit hohem Brandwiderstand
DE112022002800T5 (de) Fahrzeugverbundglas und fahrzeugfensterkonstruktion
DE3611844A1 (de) Verfahren zum herstellen einer vorgespannten und/oder gebogenen glasscheibe mit platinbeschichtung oder dergleichen
DE112021004394T5 (de) Fahrzeugfensterscheibe
DE112020001086T5 (de) Laminiertes glas

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010813

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SCHOTT AG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20061003