WO2008047871A1 - Process for production of iodine pentafluoride - Google Patents

Process for production of iodine pentafluoride Download PDF

Info

Publication number
WO2008047871A1
WO2008047871A1 PCT/JP2007/070357 JP2007070357W WO2008047871A1 WO 2008047871 A1 WO2008047871 A1 WO 2008047871A1 JP 2007070357 W JP2007070357 W JP 2007070357W WO 2008047871 A1 WO2008047871 A1 WO 2008047871A1
Authority
WO
WIPO (PCT)
Prior art keywords
iodine
liquid phase
fluorine
pentafluoride
iodine pentafluoride
Prior art date
Application number
PCT/JP2007/070357
Other languages
English (en)
French (fr)
Inventor
Hitoshi Yoshimi
Tatsuya Hirata
Tomohiro Isogai
Takashi Shibanuma
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to JP2008539871A priority Critical patent/JP4687792B2/ja
Priority to US12/446,373 priority patent/US8057779B2/en
Priority to CN200780039137.6A priority patent/CN101528593B/zh
Priority to EP07830091A priority patent/EP2098480A4/en
Publication of WO2008047871A1 publication Critical patent/WO2008047871A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/24Inter-halogen compounds

Definitions

  • the present invention produces iodine pentafluoride (IF) by reacting iodine with fluorine.
  • IF iodine pentafluoride
  • Iodine pentafluoride is useful as a raw material for producing an intermediate of a highly reactive fluorinating agent or fluorine-containing compound.
  • Methods for producing iodine pentafluoride by reaction of iodine and fluorine include, for example, a countercurrent contact method between iodine and fluorine dissolved in iodine pentafluoride (see Patent Document 1), ⁇ -containing or slurry like Paburingu method of fluorine into iodide Motochu (see Patent documents 2 and 3) is equipotent s.
  • iodine pentafluoride has a heat of formation of 920 kj / mol, which solidifies and adheres to the piping.
  • the iodine reacts with fluorine, causing a risk of local temperature rise. Therefore, it is not necessarily an industrially useful method.
  • fluorine and iodine are very reactive, when fluorine is brought into contact with high concentration iodine such as molten iodine or slurry iodine, they may react explosively. , Fluorine supply piping side There is a risk that iodine will flow backward. If iodine flows backward to the fluorine supply pipe side, fluorine and iodine react in the fluorine supply pipe, and there is a risk that the temperature rises locally and rapidly, damaging the pipes and equipment.
  • This method has an advantage that heat of reaction can be used to maintain iodine in a liquid state. Since fluorine gas is rich in reactivity, runaway reaction due to intense heat generation due to the reaction, risk of explosion is avoided. Sufficient advanced reaction control technology is required. In addition, there is a risk of clogging of pipes due to sublimable iodine, so it cannot be said that the method is always satisfactory industrially.
  • Patent Document 1 U.S. Pat.No. 3,367,745
  • Patent Document 2 JP-A-54-65196
  • Patent Document 3 British Patent No. 1326130
  • Patent Document 4 Japanese Patent Laid-Open No. 58-145602
  • the problem to be solved by the present invention is to avoid the above-mentioned problems of the conventional iodine pentafluoride production method as much as possible, and to carry out the reaction between fluorine and iodine gently.
  • it is to provide a method for producing iodine pentafluoride that is safer and more productive.
  • fluorine may be intermittently supplied in an amount corresponding to the amount of fluorine consumed by the reaction.
  • the liquid phase present in the reactor it can be kept in the reactor as it is or an amount of iodine corresponding to the amount of iodine consumed by the reaction is mixed with iodine pentafluoride in the reactor. You may supply continuously or intermittently.
  • iodine pentafluoride is produced by the reaction. Therefore, an amount of iodine pentafluoride corresponding to the amount of iodine pentafluoride produced may be removed continuously or intermittently from the liquid phase of the reactor.
  • the mechanism in which fluorine existing in the gas phase moves into iodine pentafluoride as a liquid phase and the mechanism in which iodine present in the iodine pentafluoride liquid phase moves into the gas phase are as follows: It moves as a result of, for example, diffusion of fluorine or iodine, evaporation, sublimation, and the like.
  • the present invention provides a method for producing iodine pentafluoride by reacting fluorine and iodine, and this method comprises fluorine in a gas phase adjacent to an iodine pentafluoride liquid phase containing iodine. It is characterized by being supplied.
  • fluorine is supplied in this manner, at least reaction (a) among the above reactions (a) to (c) causes fluorine and iodine to contact and react to produce iodine pentafluoride.
  • reaction (b) and / or (c) may occur simultaneously.
  • gas phase does not include bubbles present in the liquid phase. Therefore, supplying fluorine into the liquid phase by publishing means “fluorine in the gas phase”. Is not equivalent to “Supplying fluorine to the gas phase” means supplying fluorine to the gas phase existing above and adjacent to the liquid phase, that is, supplying fluorine to the space above the liquid phase and supplying it as such. Means that the formed fluorine constitutes the gas phase (along with the inert gas described below, if necessary).
  • the liquid phase of iodine pentafluoride containing iodine is either in solution in which iodine is dissolved, or in iodine (in liquid or solid form), preferably in the form of fine droplets or particles. It is in the slurry state. That is, iodine dissolves in liquid iodine pentafluoride, so When iodine below saturation solubility is present in iodine fluoride, the liquid phase of iodine pentafluoride containing iodine is in solution, and when more iodine than saturation solubility is present, it is dissolved.
  • a solution of iodine pentafluoride containing iodine exists as a liquid phase, and iodine (solid or liquid depending on temperature) is dispersed in such a solution. In this specification, it is called a slurry state.
  • the liquid phase of iodine pentafluoride containing iodine is in a slurry state in which liquid iodine is dispersed.
  • the liquid phase of iodine pentafluoride containing iodine contains iodine in an amount less than or equal to the saturation solubility, and the concentration of iodine is not particularly limited, but the mass standard of the entire liquid phase Preferably, it contains 0.6 mass% or more, more preferably iodine of saturated solubility at its liquidus temperature, for example, 1.0 mass% iodine at 45 ° C.
  • the liquid phase of iodine pentafluoride containing iodine is in a slurry state, it contains iodine in an amount greater than the saturation solubility, and the iodine content is not particularly limited, but the entire liquid phase (dispersed) Preferably 40 to 40% by mass, more preferably 20 to 40% by mass, for example 30 to 40% by mass of iodine.
  • the fluorine supplied to the gas phase preferentially reacts with iodine present in the gas phase portion. (That is, the reaction ⁇ occurs), and when the remaining fluorine is present in the gas phase, the fluorine approaches the liquid phase or enters the liquid phase, and in the iodine pentafluoride as the liquid phase. It reacts with dissolved iodine and / or dispersed iodine present in, i.e., reacts in the interface and / or liquid phase (i.e., reaction (b) and / or (C) occurs). By reacting in this way, unreacted iodine is prevented from flowing out from the reactor to the piping for discharging gas, and the risk of iodine solidifying and adhering in the piping is reduced.
  • the manufacturing method of the present invention is an operation by appropriately selecting the conditions (for example, reaction pressure, reaction temperature, amount of fluorine supplied, degree of stirring performed as necessary, amount of coexisting hydrogen fluoride as described later, etc.), the fluorine conversion rate Is generally 75% or more, preferably 85% or more, more preferably 90% or more, particularly preferably 95% or more, such as 98% or more. Operate as follows.
  • Fig. 1 is a flow sheet schematically showing an example of the method for producing iodine pentafluoride of the present invention.
  • iodine pentafluoride containing iodine is present in the reactor as a liquid phase, and fluorine is added to the gas phase adjacent to the liquid phase. It is preferably supplied continuously to react iodine and fluorine. Do not supply fluorine directly into this liquid phase.
  • iodine pentafluoride containing iodine constituting the liquid phase may not be supplied thereafter.
  • iodine pentafluoride containing iodine constituting the liquid phase may be continuously or intermittently supplied to the reactor.
  • the method for producing iodine pentafluoride according to the present invention may be carried out batchwise for both supply of fluorine and supply of iodine pentafluoride containing iodine constituting the liquid phase.
  • the supply of fluorine may be performed continuously, and iodine pentafluoride containing iodine constituting the liquid phase may be supplied, or batchwise (re, so-called Semi-batch mode), in yet another embodiment, V, continuous, both for the supply of fluorine and for the supply of iodine pentafluoride containing iodine that makes up the liquid phase!
  • the medium in the mixing tank As a mixture of iodine pentafluoride and solid iodine, a mixture containing iodine pentafluoride and iodine is prepared in advance, and the prepared mixture is supplied to the reactor as a liquid phase and used.
  • iodine pentafluoride in the mixing tank provides a reaction field, and can be called a medium in this sense.
  • mixing and reaction are carried out in separate steps, so that direct addition of iodine to the reactor can be avoided.
  • the method for producing iodine pentafluoride of the present invention comprises:
  • iodine pentafluoride is continuously produced by continuously performing the above steps, iodine is added to the mixing tank corresponding to the amount of iodine pentafluoride generated in the reactor, and An amount of iodine pentafluoride corresponding to the amount of iodine fluoride may be removed from the reactor and removed from the liquid phase.
  • the prepared mixture is continuously supplied to the reactor.
  • the liquid phase of the reactor is continuously changed so as to keep the liquid level of the reactor constant.
  • the liquid phase that is preferably extracted into the mixture may be returned to the mixing tank, for example. If it does in this way, a liquid phase will circulate between a reactor and a mixing tank.
  • an amount of iodine corresponding to the amount of iodine consumed by the reaction can be added to the mixing tank, and an amount of iodine pentafluoride corresponding to the amount of iodine pentafluoride produced by the reaction.
  • Iodine may be removed from the mixing tank (some! / Is the liquid phase of the reactor directly).
  • the concentration distribution or dispersion state of the contents of the mixing tank and / or the reactor is mixed by the mixing action of the circulating flow
  • the uniformity is improved.
  • the reactor has an advantage that the concentration distribution state of the components in the liquid phase or the dispersion state of iodine is made more uniform.
  • the step of obtaining iodine pentafluoride from the liquid phase taken out from the reactor may be performed by any appropriate method. For example, it can be carried out by rectification under normal pressure.
  • an iodine phase is present at the bottom of the reactor and an iodine pentafluoride phase is present thereon.
  • the iodine pentafluoride phase becomes a solution state containing iodine. This can be used as a liquid phase of iodine pentafluoride containing iodine of the present invention.
  • the iodine phase present at the bottom may be solid iodine, but it promotes the diffusion of iodine into the iodine pentafluoride phase, so it is a molten iodine, ie, liquid iodine phase. preferable.
  • iodine pentafluoride constituting the liquid phase adjacent to the gas phase supplying fluorine may further contain hydrogen fluoride.
  • iodine pentafluoride contains hydrogen fluoride, the amount of iodine dissolved in the liquid phase can be increased, and the reaction proceeds more efficiently.
  • the concentration of hydrogen fluoride in the liquid phase gradually decreases. Considering this decrease, the concentration of hydrogen fluoride contained in the liquid phase of the reactor during the reaction period is based on the total amount of liquid phase (ie, the total amount of IF, HF and I, but dispersed) If iodine is present,
  • the amount of iodine is also included), and it is preferably maintained at, for example, 1 ⁇ 0 ⁇ 50.0 mass%, particularly 2 ⁇ 0 ⁇ 20.0 mass%. Further, it is preferable that the layer be 5 to 15% by weight.
  • concentration of hydrogen fluoride exceeds 10% by mass, the iodine solubility gradually decreases. Therefore, it is particularly preferable to keep the hydrogen fluoride concentration around 10% by mass because the reactor can be used effectively.
  • the hydrogen fluoride concentration is substantially constant. Even in that case, the hydrogen fluoride contained in the liquid phase of the reactor is within the above range. Is preferred.
  • hydrogen fluoride may be contained by supplying hydrogen fluoride to the gas phase.
  • water fluoride may be supplied directly to the liquid phase, hydrogen fluoride may be supplied to both the gas phase and the liquid phase.
  • hydrogen fluoride When hydrogen fluoride is supplied to the gas phase, hydrogen fluoride can be dissolved in the liquid phase by being supplied to the gas phase as a mixed gas with fluorine.
  • the composition of the mixed gas is not particularly limited, but is preferably 1.0 to 10% by weight based on the total mass of the hydrogen fluoride.
  • the conditions for reacting fluorine and iodine are not particularly limited, and conditions conventionally employed for this reaction can also be employed in the production method of the present invention.
  • the temperature condition is a temperature at which iodine dispersed in the liquid phase can exist as a solid or liquid, for example, 10 ° C 50 ° C, and at a temperature lower than this temperature range, solidification of iodine pentafluoride
  • a preferred temperature range is 20 ° C 40 ° C, and a more preferred temperature range is 25 ° C 35 ° C.
  • the reaction pressure is not particularly limited as long as iodine pentafluoride can exist as a liquid phase in the reactor.
  • it can be carried out at a pressure of 0 0. lm'Ps (gauge pressure), and may usually be carried out at atmospheric pressure.
  • the apparatus conventionally employed for this reaction can also be used in the production method of the present invention.
  • a commonly used tank reactor, a reactor with a condenser, or the like may be used.
  • the reactor preferably has a stirring device that promotes mixing of the liquid phases.
  • a stirrer as a stirrer is particularly useful when the liquid phase is in a slurry state, since the dispersion state of the slurry can be stably maintained.
  • the fluorine supplied in the gas phase in the production method of the present invention is preferably supplied in a state diluted with a gas that is inert to the reaction. Usually diluted with nitrogen, helium, argon, carbon tetrafluoride, hexafluoride, perfluoroethane, etc.
  • the dilution factor is not particularly limited. For example, the dilution is performed such that the volume% of fluorine is 10 95% based on the total amount of gas supplied to the gas phase. If it is smaller than this range, iodine pentafluoride or iodine may flow out of the reactor outlet piping, or the productivity may decrease due to a decrease in the fluorine conversion rate.
  • the volume% of fluorine contained in the supplied gas is 20 to 90%, and in a more preferred embodiment, the volume% of fluorine contained in the supplied gas is 30 to 90%, particularly 50 to 90%. .
  • fluorine and an inert gas may be separately supplied to the reactor so that the fluorine is diluted in the gas phase of the reactor. Also in this case, it is preferable to supply the fluorine so that the ratio of fluorine is within the above range with respect to the total amount of fluorine and inert gas to be supplied.
  • iodine pentafluoride containing iodine is present in the reactor 10 as the liquid phase 12, and the gas phase 14 located above the liquid phase 12 is diluted with fluorine, preferably nitrogen as shown. Supply fluorine.
  • the liquid phase 12 may be in a solution state or a slurry state as described above.
  • Fluorine supplied to the gas phase 14 mainly reacts with iodine present in the gas phase, and part of the fluorine can move into the liquid phase 12 and react with iodine present there. .
  • gas phase fluorine and liquid phase iodine can react at the gas-liquid interface 16.
  • Iodine pentafluoride containing iodine may be prepared in the mixing tank 20, for example. Add iodine pentafluoride and iodine to the mixing tank 20 and mix them using the stirrer 22 while stirring. The resulting mixture is fed to reactor 10 by pump 24. Prior to the reaction, the mixture prepared in advance as described above may be supplied to the reactor 10 as a liquid phase, and then the mixture may not be supplied to the reactor 10. In this case, since fluorine is continuously supplied to the gas phase, iodine pentafluoride is produced by a semi-batch method. If fluorine is not supplied to the gas phase, iodine pentafluoride will be produced in a batch mode.
  • the mixture may be supplied to the reactor 10 continuously or intermittently, and a part of the liquid phase may be extracted from the reactor 10 by the pump 18 and directly taken out of the system.
  • a part of the liquid phase may be returned to the mixing tank, and the liquid phase may be extracted from the mixing tank and taken out of the system.
  • iodine pentafluoride is produced continuously.
  • iodine pentafluoride contained in the reaction system gradually increases, it is preferable to recover the produced iodine pentafluoride from the reaction system.
  • An amount of iodine is preferably supplied to the mixing vessel.
  • Such recovery of iodine pentafluoride may be performed by any appropriate method.
  • the extracted liquid phase is supplied to the mixing tank 20, and in this case, the liquid phase is circulated between the reactor 10 and the mixing tank 20.
  • the amount of iodine pentafluoride in the liquid phase increases.
  • a part of the contents may be taken out from the mixing tank, and iodine pentafluoride may be recovered from the part.
  • iodine since it is consumed by the iodine power reaction, iodine may be added to the mixing tank 20 and the mixture prepared there may be supplied to the reactor.
  • the fluorine to be supplied is supplied to the gas phase in a state diluted with nitrogen.
  • fluorine reacts with iodine as much as possible, and substantially at least 80%, preferably at least 90%, more preferably at least 95%, for example at least 98% of the supplied fluorine.
  • Reacts with iodine Unreacted fluorine (usually a small amount) and nitrogen are discharged from the reactor 10 via the gas discharge pipe 26.
  • the pipe 26 is provided with a cooler 28 for recovering accompanying iodine pentafluoride. If necessary, it is usually preferable to provide the reactor 10 with the stirrer 30.
  • Example 1 Example 1
  • the non-condensable gas discharged was analyzed with an ultraviolet-visible spectrophotometer.
  • the conversion of fluorine gas was 98 mol%.
  • the liquid phase in the reactor consisted essentially of iodine pentafluoride and was free of iodine.
  • Example 2 In the same manner as in Example 2, a slurry-like liquid phase was prepared in a metal (SUS316) autoclave having an internal volume of 200 ml. The stirring rotation speed is 500 rpm, a gas mixture of 180 Ncc / min of fluorine and 20 Ncc / min of nitrogen is supplied to the gas phase inside the autoclave, the autoclave is cooled in an ice bath, and the internal temperature is maintained at 30 to 50 ° C. The reaction between fluorine and iodine was started.
  • SUS316 metal
  • a slurry-like liquid phase was prepared in a metal (SUS316) autoclave with an internal volume of 500 ml and a cooling tube.
  • the cooling pipe was cooled to 20 ° C.
  • the stirring speed is 500 rpm
  • a mixed gas of 450 Ncc / min fluorine and 50 Ncc / min nitrogen is supplied to the liquid phase in the autoclave, the autoclave is cooled in an ice bath, and the internal temperature is maintained at 30 to 50 ° C.
  • the reaction of fluorine and iodine started. Although the reaction was carried out for 3 hours, the noncondensable gas discharged from the autoclave was analyzed with an ultraviolet-visible spectrophotometer.
  • the non-condensable gas discharged from the autoclave was analyzed with an ultraviolet-visible spectrophotometer.
  • the average conversion of fluorine was 69.6%.
  • no solid iodine was observed on the inner surface of the top cover of the autoclave and the outlet pipe.
  • a slurry-like liquid phase was prepared in a metal (SUS316) autoclave with an internal volume of 500 ml and a cooling tube.
  • the cooling pipe was cooled to 20 ° C.
  • the stirring speed is 500 rpm
  • a mixed gas of fluorine 670 Ncc / min and nitrogen 80 Ncc / min is supplied to the gas phase in the autoclave, the autoclave is cooled in an ice bath, and the internal temperature is kept at 30 to 50 ° C While the reaction of fluorine and iodine started.
  • the fluorine concentration at the gas phase outlet of the autoclave is measured every 15 minutes to determine the fluorine conversion, and the IF of the liquid phase in the autoclave

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

明 細 書
五フッ化ヨウ素の製造方法
技術分野
[0001] 本発明は、ヨウ素とフッ素とを反応させることによって五フッ化ヨウ素(IF )を製造す
5 る方法に関する。五フッ化ヨウ素は、反応性に富むフッ素化剤または含フッ素化合物 の中間体製造の原料として有用である。
背景技術
[0002] ヨウ素とフッ素との反応によって五フッ化ヨウ素を製造する方法としては、例えば、五 フッ化ヨウ素中に溶解させたヨウ素とフッ素との向流接触法 (特許文献 1参照)、溶融ョ ゥ素またはスラリー状ヨウ素中へのフッ素のパブリング法 (特許文献 2および 3参照)等 力 sある。
[0003] これらの方法では、フッ素は液相中に供給され、そのために希釈ガスとして使用し ている窒素、未反応フッ素等によってヨウ素の昇華が促進され、その結果、反応器の 出口配管にヨウ素が固化 '付着し、最終的には、配管が閉塞する危険性がある。また 、それを回避するため温度を上げて運転することは困難である。
[0004] また、五フッ化ヨウ素の生成熱は 920kj/molと大きぐ配管に固化'付着したヨウ 素がフッ素と反応することによって局所的に温度が上昇する危険性もあり、安全性の 面からみて必ずしも工業的に有用な方法とはいえない。
[0005] 更に、フッ素とヨウ素は非常に反応性が高いため、溶融ヨウ素、スラリー状ヨウ素の ような高濃度のヨウ素にフッ素を接触させると、これらが爆発的に反応する恐れがあり 、その結果、フッ素供給配管側 ヨウ素が逆流する危険性もある。ヨウ素がフッ素配 供給管側へ逆流するとフッ素供給配管内でフッ素とヨウ素とが反応し、そこで、温度 が局所的に、また、急激に上昇し、配管、装置類を損傷する危険性がある。
[0006] 特に、反応器において反応熱の除去に一般的に使用される、間接的熱交換器 (外 側ジャケット等)を用いた顕熱による反応熱除去では、有効に除熱可能な熱量が反 応熱と比較して余りにも少ないため、反応温度の制御が困難であり、スケールアップ した場合、反応の暴走、さらには爆発の危険がある。 [0007] 別の製造方法として、溶融ヨウ素の上にフッ素ガスを通してこれらを反応させて五フ ッ化ヨウ素とヨウ素とを含む蒸気混合物を生成させ、既に生成して V、る液状の五フッ 化ヨウ素存在下で該蒸気混合物と新たなフッ素ガスとを反応させて更に五フッ化ヨウ 素を生成させる方法がある (特許文献 4参照)。
[0008] この方法ではヨウ素を液体状態に維持するために反応熱を利用できるという利点が ある力 フッ素ガスは反応性に富むため、反応による激しい発熱による暴走反応、爆 発の危険を回避するに足る高度な反応制御技術が要求される。また、昇華性のある ヨウ素による配管閉塞の危険が伴うため、必ずしも工業的に十分に満足しうる方法と は言えない。
特許文献 1 :米国特許第 3, 367, 745号公報
特許文献 2:特開昭 54— 65196号公報
特許文献 3 :英国特許第 1326130号公報
特許文献 4 :特開昭 58— 145602号公報
発明の開示
発明が解決しょうとする課題
[0009] 本発明が解決しょうとする課題は、上述の従来の五フッ化ヨウ素の製造方法の問題 点を可及的に回避して、フッ素とヨウ素との反応を穏やかに実施して、結果的に、より 安全に、また、より生産性に優れた五フッ化ヨウ素の製造方法を提供することである。 課題を解決するための手段
[0010] 発明者らが鋭意検討を重ねた結果、反応器にお V、て、ヨウ素を含む五フッ化ヨウ素 を液相として存在させ、その液相に隣接する気相にフッ素を存在させる反応系を構 成し、それを用いることによって、上記課題を解決できることを見出し、本発明の完成 に至った。
[0011] 尚、フッ素の反応器への供給は、通常、連続的に実施するが、反応によって消費さ れたフッ素の量に対応する量だけフッ素を間欠的に供給してもよい。また、反応器に 存在する液相については、反応器にそのまま保持してもよぐあるいは反応によって 消費されたヨウ素の量に対応する量のヨウ素を、五フッ化ヨウ素との混合物として反応 器に連続的または間欠的に供給してもよい。また、反応によって五フッ化ヨウ素が生 成するので、生成した五フッ化ヨウ素の量に対応する量の五フッ化ヨウ素を反応器の 液相から連続的または間欠的に除去してもよい。
[0012] 上述のように液相と気相とが隣接する反応系を用いると、次のようにフッ素とヨウ素と が接触して反応して五フッ化ヨウ素が生成する:
(a)五フッ化ヨウ素液相中に存在して!/、たヨウ素が液相から気相に移動して、気相 に存在しているフッ素と接触して反応する、気相反応;
(b)気相に存在して!/、たフッ素が気相から液相としての五フッ化ヨウ素中に移動し て、五フッ化ヨウ素液相中に存在しているヨウ素と接触して反応する、液相反応;
(c)気相に存在して!/、るフッ素が五フッ化ヨウ素液相中に存在して!/、るヨウ素と接触 して反応する、気相と液相との界面での反応。
[0013] 尚、気相に存在していたフッ素が液相としての五フッ化ヨウ素中に移動するメカニズ ム、五フッ化ヨウ素液相中に存在していたヨウ素が気相に移動するメカニズムは特に 限定されるものではなぐ例えばフッ素またはヨウ素の拡散、蒸発、昇華等の結果とし て移動する。
[0014] 従って、本発明は、フッ素とヨウ素とを反応させて五フッ化ヨウ素を製造する方法を 提供し、この方法は、ヨウ素を含む五フッ化ヨウ素液相に隣接する気相にフッ素を供 給することを特徴とする。このようにフッ素を供給すると、上述の反応(a)〜(c)の内、 少なくとも反応(a)によって、フッ素とヨウ素とが接触して反応し、五フッ化ヨウ素が生 成する。勿論、他の反応 (b)および/または(c)も同時に起こってよい。
[0015] 尚、本明細書において、「気相」なる用語には、液相中に存在する気泡が含まれず 、従って、パブリングによって液相中にフッ素を供給することは、「気相にフッ素を供 給する」ことには相当しない。「気相にフッ素を供給する」とは、液相の上方にそれに 隣接して存在する気相にフッ素を供給する、即ち、液相の上方の空間にフッ素を供 給し、そのように供給されたフッ素が(必要な場合には、後述の不活性ガスと一緒に) 気相を構成することを意味する。
[0016] ヨウ素を含む五フッ化ヨウ素の液相は、ヨウ素が溶解している溶液状態、または (液 体または固体の)ヨウ素が (好ましくは微細な液滴または粒子の形態で)中で分散して いるスラリー状態である。即ち、ヨウ素は液体の五フッ化ヨウ素に溶解するので、五フ ッ化ヨウ素中に飽和溶解度以下のヨウ素が存在する場合は、ヨウ素を含む五フッ化ョ ゥ素の液相は溶液状態であり、飽和溶解度より多くのヨウ素が存在する場合は、溶解 しているヨウ素を含む五フッ化ヨウ素の溶液が液相として存在し、溶解しきれない(温 度に応じて固体または液体の)ヨウ素がそのような溶液中に分散した状態となり、この ような状態を、本明細書ではスラリー状態と呼ぶ。本発明の製造方法では、ヨウ素を 含む五フッ化ヨウ素の液相は、液体ヨウ素が分散しているスラリー状態であるのが特 に好ましい。
[0017] ヨウ素を含む五フッ化ヨウ素の液相が溶液状態である場合、飽和溶解度以下の量 のヨウ素を含み、ヨウ素の濃度は特に限定されるものではないが、液相全体の質量基 準で、好ましくは 0. 6質量%以上、より好ましくはその液相温度での飽和溶解度のョ ゥ素、例えば 45°Cでは 1 · 0質量%のヨウ素を含む。
[0018] ヨウ素を含む五フッ化ヨウ素の液相がスラリー状態である場合、飽和溶解度より多く の量のヨウ素を含み、ヨウ素の含量は特に限定されるものではないが、液相全体(分 散しているヨウ素も含む)の質量基準で、好ましくは 10〜40質量%、より好ましくは 2 0〜40質量%、例えば 30〜40質量%のヨウ素を含む。
発明の効果
[0019] 本発明の五フッ化ヨウ素の製造方法によれば、フッ素を気相に供給することによつ て、気相に供給されたフッ素は優先的に気相部に存在するヨウ素と反応し(即ち、反 応 ωが起こり)、残余のフッ素が気相中に存在する場合には、そのフッ素が液相に 近づき、あるいは液相内に進入し、液相としての五フッ化ヨウ素中に存在している、溶 解ヨウ素および/または分散ヨウ素と反応する、即ち、界面および/または液相中に て反応する(即ち、反応 (b)および/または (C)が起こる)。このように反応することに よって、反応器から気体を排出する配管へと未反応のヨウ素が流出するのが抑制さ れ、ヨウ素が配管内で固化 ·付着する危険性が減少する。
[0020] また、気相にフッ素を供給するため、従来公知の五フッ化ヨウ素の製造方法では生 じる可能性があった、フッ素供給配管へのヨウ素の逆流、およびそれに付随する問題 点も避けること力 Sできる。尚、本発明の五フッ化ヨウ素の製造方法では、気相に供給 されたフッ素の転化率は、操作条件によって変わり得る。本発明の製造方法は、操作 条件 (例えば反応圧力、反応温度、供給フッ素量、必要に応じて実施する撹拌の程 度、後述するように共存するフッ化水素の量等)を適当に選択することによって、フッ 素の転化率が一般的には 75%以上となるように、好ましくは 85%以上となるように、よ り好ましくは 90%以上となるように、特に好ましくは 95%以上、例えば 98%またはそれ 以上となるように操作する。
図面の簡単な説明
[0021] [図 1]図 1は、本発明の五フッ化ヨウ素の製造方法の一例を模式的に示すフローシー トでめる。
符号の説明
[0022] 10· · ·反応器、 12· · ·液相、 14…気相、 16…界面、 18· · ·ポンプ、 20· · ·混合槽、 22 …撹拌機、 24· · ·ポンプ、 26· · ·気体排出配管、 28· · ·冷却器、 30· · ·撹拌機。
発明を実施するための最良の形態
[0023] 本発明の五フッ化ヨウ素の製造方法の 1つの態様では、ヨウ素を含む五フッ化ヨウ 素を液相として反応器に存在させておき、その液相に隣接する気相にフッ素を、好ま しくは連続的に、供給して、ヨウ素とフッ素とを反応させる。この液相中にはフッ素を直 接的に供給しない。
[0024] 尚、反応器に一旦フッ素を供給した後で、フッ素を更に供給しなくてもよいが、一般 的には、フッ素を連続的または間欠的に供給するのが好ましい。液相については、 一旦反応器に液相を存在させた後で、その後、液相を構成するヨウ素を含む五フッ 化ヨウ素を供給しなくてもよい。別の態様では、液相を構成するヨウ素を含む五フッ化 ヨウ素を連続的または間欠的に反応器に供給してもよい。
[0025] すなわち、本発明の五フッ化ヨウ素の製造方法を、 1つの態様では、フッ素の供給 および液相を構成するヨウ素を含む五フッ化ヨウ素の供給の双方についてバッチ式 で実施してよぐ別の態様では、フッ素の供給については連続式で実施し、液相を構 成するヨウ素を含む五フッ化ヨウ素の供給にっレ、てはバッチ式で実施してよく(レ、わ ゆるセミバッチ式)、更に別の態様では、フッ素の供給および液相を構成するヨウ素を 含む五フッ化ヨウ素の供給の双方につ V、て連続式で実施してよ!/、。
[0026] 本発明の五フッ化ヨウ素の製造方法の他の 1つの態様では、混合槽において媒体 としての五フッ化ヨウ素と固体ヨウ素とを混合して、五フッ化ヨウ素およびヨウ素を含む 混合物を予め調製し、調製した該混合物を反応器に液相として供給して用いる。尚、 混合槽の五フッ化ヨウ素は反応の場を提供するため、この意味で媒体と呼ぶことがで きる。この場合、混合と反応とが別の工程で実施されるので、反応器へのヨウ素の直 接添加を避けることができる。その結果、高濃度のヨウ素とフッ素が直接接触する可 能性が大幅に減り、安全性が一層向上する。この混合のために、混合槽に撹拌機を 設けることが好ましい。
[0027] この態様では、本発明の五フッ化ヨウ素の製造方法は、
1)混合槽において、媒体としての五フッ化ヨウ素と固体ヨウ素を混合して、五フッ化 ヨウ素およびヨウ素を含む混合物を調製する工程、
2)前記混合物を反応器に液相として供給する工程、
3)反応器の該液相に隣接する気相にフッ素を供給する工程 (この工程では、供給 したフッ素が液相中のヨウ素と反応して五フッ化ヨウ素を生成する)、
4)反応器から液相を取り出す工程 (この工程では、反応の結果、液相中のヨウ素の 量は減少している)、および
5)取り出した液相から五フッ化ヨウ素を得る工程
を含んで成る。尚、上記工程を連続的に実施して五フッ化ヨウ素を定常的に製造す る場合、反応器に五フッ化ヨウ素が生成する量に対応して、混合槽にヨウ素を加え、 生成した五フッ化ヨウ素の量に対応する量の五フッ化ヨウ素を反応器から取り出し、 液相から除去してよい。
[0028] 尚、この態様において、調製した混合物の反応器への供給を連続的に実施してよ ぐこの場合、反応器の液面を一定に保持するように反応器の液相を連続的に抜き 出すのが好ましぐ抜き出した液相は、例えば混合槽に戻してよい。このようにすると 、液相が反応器と混合槽との間で循環することになる。この循環の間、反応によって 消費されるヨウ素の量に対応する量のヨウ素を混合槽に加えてよぐまた、反応によつ て生成する五フッ化ヨウ素の量に対応する量の五フッ化ヨウ素を混合槽(ある!/、は直 接反応器の液相)から取り出してよい。このように液相を循環すると、循環流による混 合作用によって混合槽ぉよび/または反応器の内容物の濃度分布または分散状態 の均一性が改善される。特に、反応器では、液相内の成分の濃度分布状態、あるい はヨウ素の分散状態がより均一化されるという利点がある。
[0029] 尚、反応器から取り出した液相から五フッ化ヨウ素を得る工程は、いずれの適当な 方法で実施してもよい。例えば、常圧下で精留することによって実施できる。
[0030] 更に別の態様では、反応器の底部にヨウ素の相を存在させ、その上に五フッ化ヨウ 素相を存在させておく。この場合、ヨウ素が五フッ化ヨウ素相に拡散して移動するの で、五フッ化ヨウ素相は、ヨウ素を含む溶液状態となる。これは、本発明のヨウ素を含 む五フッ化ヨウ素の液相として使用できる。底部に存在するヨウ素の相は、固体ヨウ素 であってもよいが、五フッ化ヨウ素相へのヨウ素の拡散が促進されるので、溶融したョ ゥ素、即ち、液体ヨウ素の相であるのが好ましい。
[0031] 本発明の五フッ化ヨウ素の製造方法の別の態様では、フッ素を供給する気相に隣 接する液相を構成する五フッ化ヨウ素は、更にフッ化水素を含んでよい。五フッ化ヨウ 素がフッ化水素を含むことによって、液相に溶解するヨウ素の量を増やすことができ、 反応がより効率的に進む。
[0032] 本発明の製造方法において、液相についてバッチ式を採用する場合、反応が進む につれて、液相中の五フッ化ヨウ素の量が増加するので、フッ化水素を途中で追加し ない場合には、液相中のフッ化水素の濃度が徐々に減少する。この減少を考慮して も、反応期間中の反応器の液相に含まれるフッ化水素の濃度は、液相の全量基準( 即ち、 IF、 HFおよび Iの総量基準、但し、分散しているヨウ素が存在する場合は、
5 2
そのヨウ素の量も含める)で例えば 1 · 0—50. 0質量%、特には 2· 0— 20. 0質量% となるように維持するのが好ましい。さらには 5〜; 15重量%となるようにするのがー層 好ましい。フッ化水素の濃度が 10質量%を超えるとヨウ素溶解度は緩やかに低下す る。よって、フッ化水素濃度を 10質量%前後に保つことが反応器が有効に使え、特 に好ましいことになる。尚、定常状態で製造方法を実施する場合には、フッ化水素の 濃度は実質的に一定になる力 その場合であっても、反応器の液相に含まれるフッ 化水素は、上述の範囲であるのが好ましい。
[0033] 液相を構成する五フッ化ヨウ素が更にフッ化水素を含む場合、フッ化水素を気相に 供給することによってフッ化水素が含まれるようにしてよい。別の態様では、フッ化水 素を直接液相に供給してもよぐ更に別の態様では、気相と液相の双方にフッ化水 素を供給してよい。
[0034] フッ化水素を気相に供給する場合、フッ化水素は、フッ素との混合ガスとして気相 に供給してよぐ気相に供給されたフッ化水素が液相に溶解できる。この場合、混合 ガスの組成は特に限定されないが、その全体の質量基準で 1. 0〜; 10質量%のフッ 化水素を含むのが好ましレ、。
[0035] 尚、フッ素とヨウ素とを反応させる条件は、特に限定されるものではなぐこの反応に 常套的に採用されている条件を本発明の製造方法においても採用できる。具体的に は、温度条件としては、液相中に分散するヨウ素が固体または液体として存在できる 温度、例えば 10°C 50°Cであり、この温度範囲より低い温度では、五フッ化ヨウ素の 凝固という可能性があり、また、この温度範囲より高い温度では、ヨウ素の昇華促進に よる配管詰まりという可能性がある。好ましい温度範囲は 20°C 40°C、より好ましい 温度範囲は 25°C 35°Cである。反応圧力についても特に限定されるものではなぐ 反応器内において、五フッ化ヨウ素が液相として存在できる圧力であればよい。例え ば 0 0. lm'Ps (ゲージ圧)の圧力で実施でき、通常、大気圧下で実施してよい。
[0036] 本発明の製造方法において用いる反応器についても、先と同様に、この反応に常 套的に採用されている装置を本発明の製造方法においても使用できる。通常、一般 的に用いられる槽型の反応器、凝縮器付き反応器等を使用してよい。尚、反応器は その液相の混合を促進する撹拌装置を有するのが好ましい。撹拌装置として撹拌機 は、特に液相がスラリー状態である場合には、スラリーの分散状態を安定的に維持で きるので、有用である。
[0037] 本発明の製造方法において気相 供給するフッ素は、反応に対して不活性である ガスによって希釈した状態で供給するのが好ましい。通常、窒素、ヘリウム、アルゴン 、四フッ化炭素、六フッ化ィォゥ、パーフロロエタン等によって希釈する。希釈倍率は 、特に限定されるものではないが、例えば、気相に供給するガスの全量基準でフッ素 の体積%が 10 95%となるように希釈する。この範囲より小さい場合には、反応器 出口配管への五フッ化ヨウ素やヨウ素の流出やフッ素転化率の低下による生産性の 低下という可能性があり、また、この範囲より大きい場合には、ヨウ素、五フッ化ヨウ素 のフッ素供給配管への逆流という可能性がある。好ましい態様では、供給する気体に 含まれるフッ素の体積%が 20〜90%であり、より好ましい態様では、供給する気体 に含まれるフッ素の体積%が 30〜90%、特に 50〜90%である。
[0038] 別の態様では、フッ素と不活性ガスとを別々に反応器に供給して、反応器の気相に おいてフッ素が希釈されるようにしてもよい。この場合も、供給するフッ素と不活性ガ スとの総量に対して、フッ素の割合が上記範囲となるように供給するのが好ましい。
[0039] 次に、本発明の五フッ化ヨウ素の製造方法の一例を模式的に示す、図 1のフローシ ートを参照して、本発明の製造方法を更に詳細に説明する。本発明の製造方法は、 反応器 10にヨウ素を含む五フッ化ヨウ素を液相 12として存在させ、液相 12の上方に 位置する気相 14にフッ素、好ましくは図示するように窒素によって希釈されたフッ素 を供給する。液相 12は、上述のように溶液状態であっても、スラリー状態であってもよ い。
[0040] 気相 14に供給されたフッ素は、主として気相中に存在するヨウ素と反応し、また、一 部のフッ素は液相 12中に移動して、そこに存在するヨウ素と反応し得る。加えて、気 相のフッ素と液相のヨウ素とが気液界面 16でも反応し得る。
[0041] ヨウ素を含む五フッ化ヨウ素は、例えば混合槽 20にて調製してよい。混合槽 20に 五フッ化ヨウ素およびヨウ素を加え、撹拌機 22を用いて撹拌しながらこれらを混合す る。得られた混合物をポンプ 24によって反応器 10に供給する。反応に先立って、こ のように予め調製した混合物を反応器 10に液相として供給し、その後、反応器 10に 混合物を供給しなくてもよい。この場合、フッ素を連続的に気相に供給しているので、 セミバッチ方式で五フッ化ヨウ素を製造することになる。フッ素を気相に供給しない場 合には、バッチ方式で五フッ化ヨウ素を製造することになる。
[0042] 他の態様では、混合物を連続的または間欠的に反応器 10に供給し、反応器 10か ら液相の一部分をポンプ 18によって抜き出して直接系外に取り出してよい。別の態 様では、液相の一部分を混合槽に戻して、混合槽から液相を抜き出して系外に取り 出してよい。これらの場合では、連続式で五フッ化ヨウ素を製造することになる。この 場合、反応系に含まれる五フッ化ヨウ素が漸次的に増加するので、生成した五フッ化 ヨウ素を反応系から回収するのが好ましい。また、生成した五フッ化ヨウ素に対応する 量のヨウ素を混合槽に供給するのが好ましい。このような五フッ化ヨウ素の回収につ いてはいずれの適当な方法で実施してもよい。例えば、反応器または混合槽からォ 一バーフローによりヨウ素、フッ化水素および五フッ化ヨウ素を含む混合液を抜き出し た後、蒸留して五フッ化ヨウ素を分離回収する方法を採用できる。
[0043] 1つの態様では、抜き出した液相を、混合槽 20に供給してよぐこの場合、液相が 反応器 10と混合槽 20との間で循環する。反応が進むと、液相中の五フッ化ヨウ素の 量が増えるので、その場合、例えば混合槽からその内容物の一部分を取り出し、その 一部分から五フッ化ヨウ素を回収してよい。また、ヨウ素力 反応によって消費される ので、ヨウ素を混合槽 20に追加し、そこで調製される混合物を反応器に供給してよい
[0044] 図示した態様では、供給すべきフッ素は、窒素によって希釈された状態で気相に供 給される。反応器において、フッ素はできる限り、ヨウ素と反応するのが好ましぐ実質 的に、供給したフッ素の少なくとも 80%、好ましくは少なくとも 90%、より好ましくは少 なくとも 95%、例えば少なくとも 98%がヨウ素と反応する。未反応のフッ素(通常、少 量)および窒素は、気体排出配管 26を経て反応器 10から排出される。尚、配管 26に は、同伴される五フッ化ヨウ素を回収するために冷却器 28が設けられている。尚、必 要に応じて、反応器 10にも撹拌機 30を設けてよぐ通常、設けるのが好ましい。 実施例 1
[0045] 内容積 150mlのフッ素樹脂(PFA)製の反応器にヨウ素 40g、五フッ化ヨウ素 223g を入れ撹拌しスラリー状態の液相を調製した。反応器内の気相部にフッ素 50Ncc/ min、窒素 50Ncc/minの混合ガスを供給し、反応器を氷浴で冷却して内温を 30〜 50°Cに保持しながらフッ素とヨウ素の反応を開始した。 6時間反応させたが、ヨウ素の フッ素/窒素配管 の逆流は認められず、円滑に反応は進んだ。反応器力 排出さ れる非凝縮ガスを紫外 可視分光光度計で分析したところ、フッ素ガスの転化率は 9 8mol%であった。反応器内の液相は、実質的に五フッ化ヨウ素からなり、ヨウ素は無 くなつていた。
比較例 1
[0046] 実施例 1と同様に、内容積 150mlのフッ素樹脂製の反応器にスラリー状態の液相 を調製した。反応器内の液相部にフッ素 50Ncc/min、窒素 50Ncc/minの混合 ガスを供給し、氷浴で反応器を冷却して内温を 30〜50°Cに保持しながらフッ素とョ ゥ素の反応を開始した。 4分後、液相中のヨウ素がフッ素/窒素配管 (フッ素樹脂製) に逆流し、配管内でフッ素と反応した。反応熱のために、配管は 500°C以上となり、 溶融'破裂し、フッ素、ヨウ素および五フッ化ヨウ素が漏洩したために反応を停止した
実施例 2
[0047] 内容積 200mlの金属製(SUS316)オートクレープ、にヨウ素 75g、五フッ化ヨウ素 3 00gを入れて撹拌し、スラリー状態の液相を調製した。撹拌回転数は 500rpmとし、 オートクレーブ内の気相部にフッ素 90Nml/min、窒素 10Nml/minの混合ガスを 供給し、氷浴でオートクレーブを冷却して内温を 30〜50°Cに保持しながらフッ素とョ ゥ素の反応を開始した。 7時間反応させたが、ヨウ素のフッ素/窒素配管 の逆流も なく円滑に反応した。反応器に残った液相を回収したところ、反応器内のヨウ素は全 て消費されて無くなつており、無色透明の液であった。この液を 19F— NMRで分析 したところ、五フッ化ヨウ素が 100mol%であった。オートクレーブから排出される非凝 縮ガスを紫外 可視分光光度計で分析したところ、フッ素の転化率は常時 98%以上 であった。反応後オートクレープ上蓋内面、出口配管に固体ヨウ素の付着はみられ なかった。
実施例 3
[0048] 実施例 2と同様に、内容積 200mlの金属製(SUS316)オートクレーブにスラリー状 態の液相を調製した。撹拌回転数は 500rpmとし、オートクレーブ内の気相部にフッ 素 180Ncc/min、窒素 20Ncc/minの混合ガスを供給し、氷浴でオートクレーブ を冷却して内温を 30〜50°Cに保持しながらフッ素とヨウ素の反応を開始した。 3時間 反応させたが、ヨウ素のフッ素/窒素配管への逆流もなく円滑に反応し、オートタレ ーブから排出される非凝縮ガスを紫外 可視分光光度計で分析したところ、フッ素の 転化率は常時 98%以上であった。仕込んだヨウ素は完全には消費されておらず、反 応後もオートクレーブ中にヨウ素は残っていた力 オートクレーブ上蓋内面、出口配 管に固体ヨウ素の付着はみられな力、つた。 実施例 4
[0049] 内容積 500mlの冷却管付きの金属製(SUS316)オートクレーブにヨウ素 150g、 五フッ化ヨウ素 300gを入れて撹拌し、スラリー状態の液相を調製した。冷却管は 20 °Cに冷却した。撹拌回転数は 500rpmとし、オートクレーブ内の気相部にフッ素 450 Ncc/min、窒素 50Ncc/minの混合ガスを供給し、氷浴でオートクレーブを冷却し て内温を 30〜50°Cに保持しながらフッ素とヨウ素の反応を開始した。 3時間反応させ た力 ヨウ素のフッ素/窒素配管への逆流もなく円滑に反応し、オートクレープから排 出される非凝縮ガスを紫外 可視分光光度計で分析したところ、フッ素の転化率は 常時 98%以上であった。仕込んだヨウ素は完全には消費されておらず、反応後もォ 一トクレーブ中にヨウ素は残っていた力 オートクレーブ上蓋内面、冷却管、出口配 管に固体ヨウ素の付着はみられな力、つた。
比較例 2
[0050] 実施例 4と同様に、内容積 500mlの冷却管付きの金属製(SUS316)オートクレー ブにスラリー状態の液相を調製した。冷却管は 20°Cに冷却した。撹拌回転数は 500 rpmとし、オートクレーブ内の液相部にフッ素 450Ncc/min、窒素 50Ncc/minの 混合ガスを供給し、氷浴でオートクレープを冷却し内温を 30〜50°Cに保持しながら フッ素とヨウ素の反応を開始した。 3時間反応させたが、オートクレープから排出され る非凝縮ガスを紫外-可視分光光度計で分析したところ、フッ素の転化率は常時 98 %以上であった。仕込んだヨウ素は完全には消費されておらず、反応後もオートタレ ーブ中にヨウ素は残っており、オートクレープ上蓋内面、冷却管、出口配管を目視観 察したところ固体ヨウ素付着が冷却管、出口配管には認められた。
実施例 5
[0051] 内容積 200mlの金属製(SUS316)オートクレープ、にヨウ素 75g、五フッ化ヨウ素 3 00gを入れて撹拌し、スラリー状態の液相を調製した。撹拌回転数は 300rpmとし、 オートクレーブ内の気相部にフッ素 150Nml/min、窒素 50Nml/minの混合ガス を供給し、氷浴でオートクレーブを冷却して内温を 30〜50°Cに保持しながらフッ素と ヨウ素の反応を開始した。ヨウ素のフッ素/窒素配管 の逆流もなく円滑に反応した 。オートクレープから排出される非凝縮ガスを紫外 可視分光光度計で分析したとこ ろ、フッ素の転化率は平均 69. 6%であった。反応後オートクレーブ上蓋内面、出口 配管に固体ヨウ素の付着は認められなかった。
実施例 6
[0052] 内容積 200mlの金属製(SUS316)オートクレープ、にヨウ素 75g、五フッ化ヨウ素 3 00g、フッ化水素 14gを入れて撹拌し、スラリー状態の液相を調製した。撹拌回転数 は 300rpmとし、オートクレーブ内の気相部にフッ素 150Nml/min、窒素 25Nml/ min、フッ化水素 25Nml/minを供給し、氷浴でオートクレーブを冷却して内温を 3 0〜50°Cに保持しながらフッ素とヨウ素の反応を開始した。ヨウ素のフッ素/窒素配 管への逆流もなく円滑に反応した。オートクレープから排出される非凝縮ガスを紫外 可視分光光度計で分析したところ、フッ素の転化率は平均 84. 7%であった。反応 後オートクレープ上蓋内面、出口配管に固体ヨウ素の付着は認められなかった。 実施例 7
[0053] 実施例 4と同様に、内容積 500mlの冷却管付きの金属製(SUS316)オートクレー ブにスラリー状態の液相を調製した。冷却管は 20°Cに冷却した。撹拌回転数は 500 rpmとし、オートクレーブ内の気相部にフッ素 670Ncc/min、窒素 80Ncc/minの 混合ガスを供給し、氷浴でオートクレープを冷却し内温を 30〜50°Cに保持しながら フッ素とヨウ素の反応を開始した。
[0054] オートクレーブの気相出口のフッ素濃度を 15分ごとに測定してフッ素の転化率を求 め、また、オートクレーブ中の液相の IF
5 /\比(モル比)を測定したところ、表 1の結 2
果を得た。尚、ヨウ素のフッ素/窒素配管への逆流もなく円滑に反応が進み、仕込ん だヨウ素は完全には消費されておらず、反応後もオートクレープ中にヨウ素は残って いたが、オートクレープ上蓋内面、冷却管、出口配管に固体ヨウ素の付着は認められ なかった。
[0055] [表 1] 反応時間 (分) フッ素転化率 (%) I F 5/ 丄 2 [raol/raol]
1 5 98 2. 7
30 9 7. 6 3. 6
4 5 96. 4 4. 9
60 9 5. 8 7. 〇
7 5 94. 8 1 1. 0
90 93. 2 2 1. 0
1 05 82. 6 72. 5 表 1の結果から分力、るように、反応開始から時間が経過するにつれてフッ素の転化 率が減少し、フッ素とヨウ素が反応して五フッ化ヨウ素が生成した結果、オートクレー ブ内の液相の IF /\比が増加した。

Claims

請求の範囲
[1] フッ素とヨウ素とを反応させて五フッ化ヨウ素を製造する方法であって、
ヨウ素を含む五フッ化ヨウ素の液相に隣接する気相にフッ素を供給することを特徴 とする五フッ化ヨウ素の製造方法。
[2] 五フッ化ヨウ素の液相は、溶解しているヨウ素を含む溶液状態、または液相中に分 散しているヨウ素を含むスラリー状態であることを特徴とする、請求項 1に記載の五フ ッ化ヨウ素の製造方法。
[3] フッ素を気相に連続的に、供給することを特徴とする、請求項 1または請求項 2に記 載の五フッ化ヨウ素の製造方法。
[4] ヨウ素を含む五フッ化ヨウ素の液相を反応器に連続的または間欠的に供給し、反応 器からその中に存在する液相の一部分を連続的または間欠的に取り出すことを特徴 とする、請求項 1〜3のいずれかに記載の五フッ化ヨウ素の製造方法。
[5] 1)混合槽において、五フッ化ヨウ素と固体ヨウ素を混合して、五フッ化ヨウ素および ヨウ素を含む混合物を調製する工程、
2)前記混合物を液相として反応器に供給する工程、
3)反応器の該液相に隣接する気相にフッ素を供給し、液相中のヨウ素と反応させ て五フッ化ヨウ素を生成させる工程
4)反応器から液相を取り出す工程、および
5)取り出した液相から五フッ化ヨウ素を得る工程
を含んで成る、五フッ化ヨウ素の製造方法。
[6] ヨウ素を含む五フッ化ヨウ素の液相は、フッ化水素を更に含む、請求項;!〜 5のいず れかに記載の五フッ化ヨウ素の製造方法。
[7] ヨウ素を含む五フッ化ヨウ素の液相は、その全体の質量基準で 1. 0〜20質量%の フッ化水素を含むことを特徴とする、請求項 6に記載の五フッ化ヨウ素の製造方法。
[8] フッ化水素を気相に供給することによって液相がフッ化水素を含むことを特徴とす る請求項 6または 7に記載の五フッ化ヨウ素の製造方法。
[9] フッ化水素は、フッ素との混合ガスとして気相に供給することを特徴とする請求項 8 に記載の五フッ化ヨウ素の製造方法。 気相に供給されたフッ素の転化率は、 90%以上であることを特徴とする請求項 1〜9 の!/、ずれかに記載の五フッ化ヨウ素の製造方法。
フッ化水素を液相に供給することを特徴とする請求項 6または 7に記載の五フッ化ョ ゥ素の製造方法。
PCT/JP2007/070357 2006-10-20 2007-10-18 Process for production of iodine pentafluoride WO2008047871A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008539871A JP4687792B2 (ja) 2006-10-20 2007-10-18 五フッ化ヨウ素の製造方法
US12/446,373 US8057779B2 (en) 2006-10-20 2007-10-18 Process for production of iodine pentafluoride
CN200780039137.6A CN101528593B (zh) 2006-10-20 2007-10-18 五氟化碘的制造方法
EP07830091A EP2098480A4 (en) 2006-10-20 2007-10-18 PROCESS FOR PRODUCTION OF IODINE PENTAFLUORIDE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-285733 2006-10-20
JP2006285733 2006-10-20

Publications (1)

Publication Number Publication Date
WO2008047871A1 true WO2008047871A1 (en) 2008-04-24

Family

ID=39314089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070357 WO2008047871A1 (en) 2006-10-20 2007-10-18 Process for production of iodine pentafluoride

Country Status (5)

Country Link
US (1) US8057779B2 (ja)
EP (1) EP2098480A4 (ja)
JP (2) JP4687792B2 (ja)
CN (1) CN101528593B (ja)
WO (1) WO2008047871A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010155742A (ja) * 2008-12-26 2010-07-15 Daikin Ind Ltd 五フッ化ヨウ素の製造方法
WO2017013916A1 (ja) * 2015-07-23 2017-01-26 セントラル硝子株式会社 五フッ化ヨウ素の製造方法
KR20180006439A (ko) 2015-07-23 2018-01-17 샌트랄 글래스 컴퍼니 리미티드 5불화 요오드의 제조 방법

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4693823B2 (ja) * 2007-06-18 2011-06-01 セントラル硝子株式会社 七フッ化ヨウ素の製造法
CN101920937B (zh) * 2010-08-23 2012-01-04 福建省邵武市永飞化工有限公司 五氟化碘的制备方法与反应设备
CN101973526A (zh) * 2010-10-18 2011-02-16 天津市泰旭物流有限公司 气体氟和固体碘在室温下进行反应制备五氟化碘的技术
CN102556974B (zh) * 2010-12-27 2013-09-04 湖北中科博策新材料研究院 连续化制备五氟化碘的方法
CN103449371B (zh) * 2013-09-04 2015-03-18 核工业理化工程研究院华核新技术开发公司 一种提纯五氟化碘的工艺方法
CN104326443B (zh) * 2014-07-18 2017-02-01 多氟多化工股份有限公司 一种五氟化碘的制备方法及生产设备
WO2019116789A1 (ja) * 2017-12-12 2019-06-20 昭和電工株式会社 含フッ素有機化合物の製造方法及び製造装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3367745A (en) 1964-07-07 1968-02-06 Allied Chem Preparation of iodine pentafluoride
GB1326130A (en) 1970-07-17 1973-08-08 Kali Chemie Ag Method of producing iodine pentafluoride
JPS5465196A (en) 1977-10-26 1979-05-25 Air Prod & Chem Manufacture of iodine pentafluoride through direct fluorination of melt iodine
JPS58145602A (ja) 1982-02-22 1983-08-30 Kanto Denka Kogyo Kk 五フツ化ヨウ素の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2904403A (en) * 1957-06-07 1959-09-15 Du Pont Preparation of if5
US3097067A (en) * 1960-07-27 1963-07-09 Du Pont Preparation of iodine pentafluoride
US6239319B1 (en) * 1996-12-27 2001-05-29 Daikin Industries Ltd. Processes for the preparation of perfluoroalkanes and iodine pentafluoride

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3367745A (en) 1964-07-07 1968-02-06 Allied Chem Preparation of iodine pentafluoride
GB1326130A (en) 1970-07-17 1973-08-08 Kali Chemie Ag Method of producing iodine pentafluoride
JPS5465196A (en) 1977-10-26 1979-05-25 Air Prod & Chem Manufacture of iodine pentafluoride through direct fluorination of melt iodine
JPS58145602A (ja) 1982-02-22 1983-08-30 Kanto Denka Kogyo Kk 五フツ化ヨウ素の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010155742A (ja) * 2008-12-26 2010-07-15 Daikin Ind Ltd 五フッ化ヨウ素の製造方法
WO2017013916A1 (ja) * 2015-07-23 2017-01-26 セントラル硝子株式会社 五フッ化ヨウ素の製造方法
KR20180006439A (ko) 2015-07-23 2018-01-17 샌트랄 글래스 컴퍼니 리미티드 5불화 요오드의 제조 방법
KR102014907B1 (ko) 2015-07-23 2019-08-27 샌트랄 글래스 컴퍼니 리미티드 5불화 요오드의 제조 방법

Also Published As

Publication number Publication date
EP2098480A4 (en) 2011-12-21
US8057779B2 (en) 2011-11-15
CN101528593A (zh) 2009-09-09
CN101528593B (zh) 2013-02-27
JP2010285347A (ja) 2010-12-24
JP5229281B2 (ja) 2013-07-03
JP4687792B2 (ja) 2011-05-25
JPWO2008047871A1 (ja) 2010-02-25
US20100166638A1 (en) 2010-07-01
EP2098480A1 (en) 2009-09-09

Similar Documents

Publication Publication Date Title
JP5229281B2 (ja) 五フッ化ヨウ素の製造方法
JP5470844B2 (ja) 五フッ化ヨウ素の製造方法
TW201118065A (en) Continuous preparation of carbonates
EP1215169A1 (en) Method and apparatus for the production of nitrogen trifluoride
JPH05507269A (ja) パーフルオロアルキルエチルアルコールの製造方法
JP2008100881A (ja) 五フッ化ヨウ素の製造法
JP6467955B2 (ja) 五フッ化ヨウ素の製造方法
EP2882703A1 (fr) Procede de production de difluoromethane
JP4764005B2 (ja) フルオロカルボン酸の製造方法
JP5769112B2 (ja) 気体分離方法及び装置そして気体処理方法及び装置
JP6687843B2 (ja) 五フッ化ヨウ素の製造方法
US7413722B2 (en) Method and apparatus for manufacturing nitrogen trifluoride
WO2017013916A1 (ja) 五フッ化ヨウ素の製造方法
JP2007238553A (ja) 2−ヒドロキシ−4−メチルチオブタン酸の製造方法および製造装置
JP2004155669A (ja) ジアルキルアミノアルキル(メタ)アクリレート4級塩の製造方法
JP7306377B2 (ja) 1,2,3,4-テトラクロロブタンの製造方法及び製造装置
JP4032691B2 (ja) ジアセトキシブテンの製造方法
JP3750376B2 (ja) エチレングリコールの製造方法
FR2768426A1 (fr) Procede de fabrication d'hexafluorophosphate de lithium
CN111212823A (zh) 1,2,3,4-四氯丁烷的制造方法
JP2008094900A (ja) 高純度ガスハイドレート製造方法及び製造装置
JP2018076197A (ja) 五フッ化酸化ヨウ素の製造方法
JP2004305800A (ja) 油水分離方法
JPH0577660B2 (ja)
BE701804A (ja)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780039137.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830091

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008539871

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2007830091

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007830091

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12446373

Country of ref document: US