WO2008044548A1 - Gasket, enclosed secondary battery and electrolytic capacitor - Google Patents

Gasket, enclosed secondary battery and electrolytic capacitor Download PDF

Info

Publication number
WO2008044548A1
WO2008044548A1 PCT/JP2007/069286 JP2007069286W WO2008044548A1 WO 2008044548 A1 WO2008044548 A1 WO 2008044548A1 JP 2007069286 W JP2007069286 W JP 2007069286W WO 2008044548 A1 WO2008044548 A1 WO 2008044548A1
Authority
WO
WIPO (PCT)
Prior art keywords
gasket
negative electrode
positive electrode
electrode terminal
ionomer
Prior art date
Application number
PCT/JP2007/069286
Other languages
English (en)
French (fr)
Inventor
Makoto Nakabayashi
Original Assignee
Sumitomo Electric Fine Polymer, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Fine Polymer, Inc. filed Critical Sumitomo Electric Fine Polymer, Inc.
Priority to KR1020097006952A priority Critical patent/KR101389186B1/ko
Priority to US12/442,907 priority patent/US20100104941A1/en
Publication of WO2008044548A1 publication Critical patent/WO2008044548A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/80Gaskets; Sealings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • H01G9/10Sealing, e.g. of lead-in wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • H01M50/188Sealing members characterised by the disposition of the sealing members the sealing members being arranged between the lid and terminal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/193Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/198Sealing members characterised by the material characterised by physical properties, e.g. adhesiveness or hardness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/176Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for prismatic or rectangular cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a gasket used for a sealed secondary battery and an electrolytic capacitor, and a sealed secondary battery and an electrolytic capacitor using the gasket.
  • sealed secondary battery power S such as lithium ion secondary batteries is widely known.
  • a sealed secondary battery generally includes a positive electrode plate, a negative electrode plate, an electrode plate group including a separator disposed between the positive electrode plate and the negative electrode plate, and an electrolyte solution for immersing the electrode plate group,
  • a battery element containing is housed inside a partially opened battery case (exterior body) and sealed by a sealing body for sealing the opening of the battery case.
  • a pair of contact points between a positive electrode terminal electrically connected to the positive electrode plate and a negative electrode terminal electrically connected to the negative electrode plate are provided as a pair.
  • Gaskets are provided to prevent short circuits between terminals and electrolyte leakage.
  • This gasket is required to have resistance to electrolytic solution (electrolytic solution resistance), excellent sealing properties and insulation properties.
  • electrolytic solution resistance electrolytic solution resistance
  • overheating due to overcharging of a sealed secondary battery, battery case and sealing Excellent heat resistance is required to cope with instantaneous heating during laser welding to the body.
  • Patent Document 1 proposes an insulating gasket made of a radiation-crosslinked resin and having a residual elastic modulus of 4.0% or more as a gasket used for a sealed secondary battery.
  • radiation-crosslinked resins include polyolefin resins, polyolefin elastomers, polyethylene terephthalate resins, polyester elastomers, polyphenylene sulfide resins, polyarylate resins, polyamide resins, polyamide elastomers, fluorine resins, and fluorine elastomers. Yes.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-310569
  • the resin is converted into a three-dimensional structure by radiation cross-linking, and the temperature at which the shape can be maintained (shape maintenance temperature) is increased, and a residual elastic modulus that exceeds a certain level. To maintain the elasticity of the resin!
  • the absolute amount of compression deformation (the amount of deformation due to compression) of the gasket decreases when the gasket is made smaller or thinner. Therefore, the sealing performance of the gasket may be reduced.
  • the downsizing or thinning of the gasket tends to reduce the heat resistance of the gasket.
  • the heat resistance against instantaneous heating instantaneous during laser welding between the battery case and the sealing body
  • the heat resistance is remarkably lowered by downsizing or thinning the gasket, and problems such as thermal deformation of the gasket and leakage of the electrolyte accompanying the thermal deformation are likely to occur.
  • the problem can be caused in the same manner as the problem of a decrease in the sealing performance of the gasket as the electrolytic capacitor is made smaller or thinner.
  • an object of the present invention is to have excellent heat resistance (particularly instantaneous heat resistance), excellent electrolytic solution resistance and insulation, and exhibit excellent sealing performance even if it is small or thin. It is an object of the present invention to provide a gasket that can be used, a sealed secondary battery and an electrolytic capacitor using the gasket.
  • the gasket of the present invention is characterized by containing a crosslinked ionomer.
  • this gasket it is possible to increase the shape maintenance temperature while maintaining its elasticity as well as having excellent electrolytic solution resistance and insulation. That is, the heat resistance can be improved while maintaining the sealability of the gasket, and the instantaneous heat resistance can be improved with the force S.
  • ionomers are, for example, battery cases and electrolytic capacitors for sealed secondary batteries.
  • a gasket formed of a cross-linked ionomer that has high adhesion to a metal (for example, aluminum) that forms the exterior body of the metal is firmly bonded to the gasket by heating and pressurizing. be able to.
  • the gasket of the present invention is bonded to, for example, a battery case that is also used as a positive electrode terminal of a sealed secondary battery by heating and pressing, or by heating and pressing with an outer body of an electrolytic capacitor. Adhesion allows the gasket to follow the thermal expansion and shrinkage of the battery case or outer package, and the heat cycle, even if the sealed secondary battery or electrolytic capacitor is downsized or thinned. As a result, even if the absolute amount of the compression deformation of the gasket is reduced, the force S can be used to exert excellent sealing performance.
  • the ionomer is a polyolefin ionomer or a fluorine ionomer.
  • the ionomer is a polyolefin ionomer
  • the balance between elasticity and heat resistance is good after crosslinking.
  • the ionomer is a fluorine ionomer
  • the durability of the gasket is good, and the gasket is more suitable for use at high temperatures.
  • the gasket of the present invention has a tensile storage elastic modulus E ′ measured at a temperature of 350 ° C. and a frequency of 10 Hz of IMPa or more and 200 to 400 ° with respect to the surface of the metal plate. It is preferable that the peel adhesive strength force is 0.1 N / I 5 mm or more when crimped under conditions of C, 0.
  • the tensile storage elastic modulus E ′ shows a sufficiently high value at a high temperature of 350 ° C., excellent elasticity can be exhibited even in a high temperature range.
  • the sealed secondary battery of the present invention includes a positive electrode plate, a negative electrode plate, a battery element including a separator interposed between the positive electrode plate and the negative electrode plate, and the positive electrode plate electrically A positive electrode terminal to be connected; a negative electrode terminal electrically connected to the negative electrode plate; and a gasket for insulating between the positive electrode terminal and the negative electrode terminal, wherein the gasket is the gasket of the present invention. And is bonded to the positive electrode terminal or the negative electrode terminal by heating and pressurizing.
  • the gasket of the present invention is used for the gasket used for sealing and insulation between the positive electrode terminal and the negative electrode terminal, the gap between the positive electrode terminal and the negative electrode terminal is used.
  • the airtightness and insulation of the film become very good.
  • excellent sealing performance by the gasket is exhibited.
  • the gasket is bonded to the positive electrode terminal or the negative electrode terminal by heating and pressurization.
  • the residual elastic modulus of the gasket is low. Even if it is less than 0% (see Patent Document 1), sealing and insulation between the positive electrode terminal and the negative electrode terminal can be achieved, and leakage of the electrolyte can be prevented.
  • an exterior body for housing the battery element and a sealing body for sealing the opening of the exterior body are mutually welded by laser welding according to a conventional method.
  • the gasket interposed between the sealing body and the negative electrode terminal is instantaneously heated by instantaneous heating of the exterior body and the sealing body, but the gasket of the present invention is instantaneously heated. Because of its excellent heat resistance against heat (instantaneous heat resistance), it is possible to prevent thermal deformation of the gasket and leakage of the electrolyte solution due to thermal deformation.
  • An electrolytic capacitor of the present invention includes a positive electrode foil, a negative electrode foil, a capacitor element including a separator interposed between the positive electrode foil and the negative electrode foil, and one for accommodating the capacitor element.
  • the gasket of the present invention is used for sealing between the exterior body and the sealing body, the airtightness between the exterior body and the sealing body becomes extremely good. In addition, even when the gasket is reduced in size or thickness due to downsizing or thinning of the electrolytic capacitor, excellent sealing performance by the gasket is exhibited.
  • the gasket of the present invention enables excellent heat resistance (particularly instantaneous heat resistance) and excellent electrolytic solution resistance.
  • the gasket can exhibit insulating properties, and can exhibit excellent sealing performance even if it is small or thin.
  • the sealed secondary battery and the electrolytic capacitor can be further reduced in size and thickness.
  • FIG. 1 is a partially cutaway perspective view showing an embodiment of a sealed secondary battery of the present invention.
  • FIG. 2 is a partially cutaway perspective view showing another embodiment of the sealed secondary battery of the present invention.
  • FIG. 3 is a cross-sectional view showing still another embodiment of the sealed secondary battery of the present invention.
  • FIG. 4 is a partially cutaway perspective view showing an embodiment of the electrolytic capacitor of the present invention.
  • FIG. 5 is a schematic diagram for explaining a method for measuring a residual elastic modulus of a gasket.
  • the gasket of the present invention includes a crosslinked ionomer.
  • An ionomer is a polymer composed of a polymer (ionomer molecule) containing a structural unit having an ionic functional group and / or an ionizable group.
  • ionic functional group examples include a carboxyl group and a sulfo group.
  • Specific examples of the structural unit having an ionic functional group and / or an ionizable group include, for example, acrylic acid (1 carboxyethylene unit), methacrylic acid (1-methyl- Carboxyl groups such as 1 carboxyethylene unit), maleic acid (1,2-dicarboxyethylene unit), styrene carboxylic acid (1 carboxyphenylethylene unit), maleic acid (1,2-dicarboxyethylene unit)
  • Monomer units having a sulfo group such as ethylene sulfonic acid (1 sulfoethylene unit), styrene sulfonic acid (1-sulfophenylethylene unit), and a sulfobenzene dicarboxylic acid alkylene unit represented by the following formula: Can be mentioned.
  • n represents an integer of! To 6
  • sulfobenzenedicarboxylic acid alkylene unit represented by the above formula for example, examples thereof include ethylene lufoterephthalate units and ethylene units of sulfoisophthalate.
  • the ionic functional group of the ionic monomer may form a salt or may not form a salt. Further, when the ionic functional group is a carboxyl group, the carboxyl group exists as an anhydride of dicarboxylic acid! /, Or may /!
  • the above salt can be used to dissociate one or more dissociable hydrogen ions in an ionic monomer, such as alkali metal ions (Na + , Li + etc.), alkaline earth metal ions (Mg 2+ , Ca 2+). Etc.), zinc ion (Zn 2+ ), aluminum ion (Al 3+ ), ammonium ion (NH 4+ ), phosphonium ion (PH 4+ ) and other cations.
  • the salt is preferably substituted with a dissociable hydrogen ion force zinc ion in the ionic monomer from the viewpoint of lowering the water absorption of the ionomer.
  • the ionomer is a copolymer containing an ionic monomer and a monomer unit other than the ionic monomer
  • examples of the other monomer unit include polyolefin (for example, ethylene, Propylene, etc.), for example, styrene (1 phenylethylene unit), eg, styrene derivatives (eg, p-methylstyrene (1- (p-tolyl) ethylene unit), etc.), eg, benzene dicarboxylic acid alkylenes (eg, , Ethylene terephthalate (ethylene terephthalate unit), ethylene isophthalenoate (ethylene isophthalate unit), butylene terephthalate (butylene terephthalate unit), butylene isophthalate (butylene isophthalate unit)), for example, acrylic acid mono Alkyl esters (eg, acrylic acid mono Til (ethyl acrylate unit), for example, me
  • the other monomer units are preferably ethylene, styrene, ethylene terephthalate, ethylene isophthalate, and tetrafluoroethylene among the above examples.
  • Specific examples of ionomers include, for example, polyolefin ionomers, fluorine ionomers, polystyrene ionomers, polyester ionomers, and (meth) acrylic. System ionomers.
  • the dissociable hydrogen ion in the ionizable monomer may be substituted with the cation to form a salt.
  • polyolefin-based ionomer examples include monomer-containing ionomers containing, for example, olefin, and ionic monomers containing, for example, acrylic acid, methacrylic acid, maleic acid, ethylene sulfonic acid and the like.
  • the dicarboxylic acid such as maleic acid may be an anhydride.
  • Specific examples include, but are not limited to, ethylene acrylate / ethylene copolymer and ethylene / methacrylic acid copolymer.
  • fluorinated ionomer examples include, as monomer units, for example, fluorinated olefins and olefins, or only fluorinated olefins, and as ionic monomers, for example, ionomers including maleic acid.
  • ionic monomers for example, ionomers including maleic acid.
  • Specific examples include, but are not limited to, for example, polyvinylidene fluoride (PVDF) and tetrafluoroethylene-ethylene copolymer (ETF E) modified with an ionic monomer such as maleic anhydride.
  • the monomer unit includes, for example, styrene or a styrene derivative, and the ionic monomer includes, for example, an ionomer including acrylic acid, methacrylic acid, styrene carboxylic acid, styrene sulfonic acid, or the like, or
  • Examples of monomer units include olefin, and examples of ionic monomers include ionomers including styrene carboxylic acid and styrene sulfonic acid.
  • include, for example, styrene-styrene sulfonic acid copolymer, styrene-acrylic acid copolymer, styrene-methacrylic acid copolymer, styrene-styrene carboxylic acid copolymer.
  • the polymer (ii) include ethylene styrene carboxylic acid copolymer, ethylene styrene sulfonic acid copolymer, and the like.
  • the monomer unit includes, for example, alkylene benzenedicarboxylate,
  • the monomer for example, an ionomer containing sulfobenzenedicarboxylic acid alkylenes, acrylic acid, methacrylic acid, styrene carboxylic acid, ethylene sulfonic acid, styrene sulfonic acid, or the like, or
  • Monomer units include, for example, olefin, styrene, styrene derivatives, acrylic acid monoalkyl esters or methacrylic acid monoalkyl esters, and ionic monomers include, for example, sulfobenzenedicarboxylic acid alkylenes. And ionomers.
  • examples of the above (iii) include, for example, a copolymer of ethylene terephthalate and ethylene sulfoterephthalate, and a copolymer of ethylene isophthalate and ethylene sulfoisophthalate. And a copolymer of butylene terephthalate and sulfoethylene terephthalate, and a copolymer of butylene isophthalate and ethylene sulfoisophthalate.
  • Specific examples of (iv) above include, for example, ethylene and sulfoterephthalate. And a copolymer of ethylene acid and a copolymer of ethylene and ethylene sulfoisophthalate.
  • Monomer units include, for example, acrylic acid monoalkyl esters or metathallic acid monoalkyl esters, and ionic monomers include, for example, ionomers including acrylic acid, methacrylic acid, or the like, or
  • the monomer unit for example, an ionomer containing olefin and an ionic monomer containing atalic acid or methacrylic acid can be mentioned.
  • acrylate-acrylic acid acrylate copolymer examples include methyl methacrylate-acrylic acid copolymer.
  • acrylate-methacrylic acid copolymer examples include methyl methacrylate-methacrylic acid copolymer.
  • the ionomer includes, for example, a styrene mono (N-methyl 4-vinylpyridinium salt) copolymer.
  • the ionomer is particularly preferably a polyolefin ionomer from the viewpoint of the crosslinkability and availability of the ionomer, among the above examples.
  • Polyolefin ionomers have, for example, an ethylene group (one CH CH one) in the molecule, The cross-linkability by this is good, and after cross-linking, the shape maintaining temperature can be improved and the thermal deformation of the gasket can be suppressed while maintaining the elasticity of the resin.
  • the ionomer is particularly preferably a fluorine ionomer among the above examples.
  • a fluorine ionomer is used, the long-term heat resistance of the gasket can be improved, and a gasket suitable for use at high temperatures can be obtained.
  • the weight average molecular weight of the ionomer is not particularly limited. For example, it is preferably 5 to 5 million, more preferably 1000 to 1 million as measured by the GPC method (polystyrene conversion, eluent THF). . Ionomers with a weight average molecular weight greater than 5 million are very difficult to synthesize and obtain. On the other hand, an ionomer having a weight average molecular weight of less than 500 may not be able to obtain sufficient mechanical strength even after crosslinking, and the fragility of the gasket may become remarkable.
  • the copolymerization rate of the ionic monomer of the ionomer is not particularly limited, but the content ratio (mol%) of the ionic monomer unit to the total monomer unit in the ionomer is preferably 20 mol% or less, and more Preferably, it is;! ⁇ 20mol%, More preferably, it is;! ⁇ 16mol%.
  • the copolymerization rate of the ionic monomer is obtained by multiplying the molar fraction of the ionic monomer in the ionomer by 100.
  • the copolymerization rate of the ionic monomer is 20 mol% or less, the balance between elasticity and heat resistance (shape maintaining property) becomes good after ionomer crosslinking. If the copolymerization rate of the ionizable monomer is less than 1 mol%, the ionomer may have low crosslinkability and heat resistance may be impaired (thermal deformation is likely to occur). On the other hand, if it exceeds 20 mol%, the ionomer has a high crosslinking property, and the elasticity may be impaired after the crosslinking.
  • the degree of neutralization of the ionomer is not particularly limited because it varies greatly depending on the type of monomer unit forming the ionomer, the type of cation forming the salt, and the like, but in general, it is preferably 5-60. %.
  • the degree of neutralization indicates the conversion rate of the ionic functional group contained in the ionic monomer into a salt.
  • the degree of neutralization When the degree of neutralization is 5 to 60%, there is a difference between the ionomer gas barrier properties and moisture absorption resistance. Can be improved. On the other hand, if the degree of neutralization is less than 5%, although the moisture absorption resistance is improved, the gas barrier property may be lowered. Conversely, when the degree of neutralization exceeds 60%, the gas barrier property is improved, but the moisture absorption resistance may be lowered.
  • the ionomer is available as a commercial product.
  • the product name “Himiran (registered trademark)” (Ionomer resin) manufactured by Mitsui's DuPont Polychemical Co., Ltd.
  • "Nittalel (registered trademark)” series (ethylene-methacrylic acid copolymer)
  • trade name “Admer (registered trademark)” series modified polyolefins manufactured by Mitsui Chemicals, Inc., but the functionalities introduced into polyolefins
  • the group include a carboxyl group and a dicarboxylic acid anhydride).
  • fluorine ionomer for example, trade name "Nafion (registered trademark)” series (perfluorosulfonic acid-tetrafluoroethylene copolymer) manufactured by DuPont, Daikin Industries, Ltd.
  • denaturation thing etc. of the brand name "Neofluon ETFE” series (tetrafluorinated styrene-ethylene copolymer (ETFE)) manufactured by the company are mentioned.
  • the ionomer can be cross-linked by, for example, radiation cross-linking, chemical cross-linking, silane cross-linking, etc., and it is particularly preferable to cross-link by radiation cross-linking.
  • Examples of radiation cross-linking include electron beam cross-linking, ⁇ -ray cross-linking, ⁇ -ray cross-linking, zero-ray cross-linking, and neutron beam cross-linking, and industrially, preferably electron fountain cross-linking.
  • the conditions for radiation crosslinking are not particularly limited because they are appropriately set according to the type of radiation, the thickness of the gasket, etc.
  • the radiation dose is preferably 10 to;! OOOkGy More preferably, it is 100-500-kGy.
  • Examples of chemical cross-linking include so-called peroxide cross-linking using a peroxide as a cross-linking agent.
  • Examples of the peroxide as the crosslinking agent include dicumyl peroxide, 2,5-dimethyl 2,5-di (t-butylperoxy) hexane (for example, “Peroxide manufactured by NOF Corporation”). Hexa (registered trademark) 25BJ and the like.
  • the gasket may contain other polymers in addition to the ionomer.
  • polymers include, for example, polyolefins, polyesters, polyureas, polycarbonates, polyurethanes, polyacryls, fluororesins, fluoroelastomers, polyolefine elastomers, polyphenylene sulfide (PPS), polyetheretherketone (PEE K ) And the like, preferably polyolefin.
  • PPS polyphenylene sulfide
  • PEE K polyetheretherketone
  • the polyolefin includes, for example, polyethylene, polypropylene, ethylene-ethyl acrylate copolymer (EEA), ethylene acetate butyl copolymer (EVA), polycyclic olefin, and the like.
  • ESA ethylene-ethyl acrylate copolymer
  • EVA ethylene acetate butyl copolymer
  • Polycyclic olefin and the like.
  • Polyethylene and more preferably high-density polyethylene.
  • the other polymer is a polymer having good compatibility with the ionomer.
  • a force that can be exemplified by polyolefin is used.
  • polyester is preferable, and polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and the like are more preferable.
  • the content ratio of the ionomer in the polymer component forming the gasket is preferably 20 to 100% by weight, more preferably 50 to 50%, based on the total weight of the polymer component forming the gasket. it is 100 weight 0/0, more preferably 70 to 100 weight 0/0. If the ionomer content is less than 20% by weight, the desired effect of the present invention may not be obtained.
  • the gasket may further contain a crosslinking aid.
  • crosslinking aids include triallyl isocyanate (TAIC), diallyl isocyanate, all di (meth) acrylate, polyethylene glycol di (meth) acrylate, pentaerythritol di (meth) acrylate, dipentaerythritol.
  • TAIC triallyl isocyanate
  • diallyl isocyanate all di (meth) acrylate, polyethylene glycol di (meth) acrylate, pentaerythritol di (meth) acrylate, dipentaerythritol.
  • examples include hexaatalylate, trimethylolonepronone allylate, divininolebenzene, trivininolebenzene, hexamethinolevene, and the like, and preferably TAIC force S.
  • the crosslinkability between ionomers, or the crosslinkability between the ionomer and other polymers and other blending components can be improved.
  • a crosslinking aid By blending the ionic functional group on the side chain of the ionomer with a compound having various reactive functional groups, the ionic functional group on the side chain of the ionomer and the main chain of other ionomer (especially , And the mechanical strength of the gasket can be improved by this cross-linking or bonding.
  • the crosslinking density can be improved while reducing the radiation dose by incorporating a crosslinking aid.
  • the crosslinking structure by the crosslinking aid is, for example, an ionomer containing a carboxyl group as an ionic functional group, an ester bond by a reaction between a carboxyl group and a hydroxyl group, or a carboxyl group and an amino group.
  • the amide bond by reaction of these is mentioned.
  • an ionomer containing a sulfo group as an ionic functional group a sulfonamide bond by a reaction between a sulfo group and an amino group can be mentioned.
  • the crosslinking aid is an optional blending component
  • the blending amount thereof is not particularly limited. For example, it is preferably 10 parts by weight or less with respect to 100 parts by weight of the ionomer.
  • the gasket may further contain a filler.
  • the filler examples include silica, kaolin, clay, organic clay, talc, my strength, anolemina, calcium carbonate, calcium terephthalate, titanium oxide, calcium phosphate, calcium fluoride, lithium fluoride, crosslinked polystyrene, and potassium titanate. Among them, silica is preferable. These fillers are preferably blended in the form of fine particles.
  • the blending amount of the filler is not particularly limited. For example, it is preferably! To 100 parts by weight, more preferably 10 to 50 parts by weight, with respect to 100 parts by weight of the polymer component forming the gasket. is there.
  • the above-mentioned gasket is blended with an ionomer, if necessary, with another polymer, a crosslinking aid and a filler, mixed with a twin-screw extruder or the like, formed into a desired shape, and then crosslinked. That's fine.
  • ionomer contains ethylene and acrylic acid or methacrylic acid that do not contain metal ions.
  • An ionomer is obtained by appropriately adding a acetylacetone metal complex, a metal oxide, a fatty acid metal salt, etc. to the copolymer, introducing ionic crosslinking into the copolymer, and molding it. It is good.
  • a resin that is an ethylene / acrylic acid copolymer that does not contain metal ions and that can be converted into an ionomer by molding is commercially available.
  • Mitsubishi Chemical The product name “Yukaron EAA” manufactured by Co., Ltd. can be listed.
  • the above gasket preferably has a tensile storage elastic modulus E ′ measured at a temperature of 350 ° C. and a frequency of 10 Hz of 1 ⁇ 10 6 Pa or more.
  • the gasket of the present invention can be provided with excellent sealing properties and heat resistance.
  • the gasket has a peel adhesion strength of 200 N / 15 mm or more when pressed against the surface of the metal plate at 200 to 300 ° C .;! To lOMPa.
  • the gasket can follow the deformation accompanying the thermal expansion / contraction of the metal plate. Therefore, for example, when a gasket is interposed between a metal plate and another member, a seal between the metal plate and the other member is used as a gasket between the metal plate and the other member. This can be achieved not only by compressive deformation of the metal plate, but also by bonding the metal plate to the gasket.
  • the metal plate is not limited to this, but an aluminum plate is preferable.
  • the metal plate is an aluminum plate and the peel adhesion strength under the above conditions satisfies the above range, the gasket can follow the deformation accompanying the thermal expansion and contraction of the aluminum plate.
  • the gasket has a volume resistivity P force of preferably 1 110 8 ⁇ ⁇ « ⁇ or more from the viewpoint of exhibiting excellent insulating properties.
  • the gasket of the present invention has excellent electrolytic solution resistance and insulating properties! /, Excellent sealing performance that is not limited to it, and excellent heat resistance (particularly instantaneous heat resistance). ) .
  • a sealed secondary battery it is disposed between a positive electrode terminal and a negative electrode terminal, and as a gasket for achieving insulation between both terminals, prevention of short circuit, and prevention of electrolyte leakage, or
  • an electrolytic capacitor it is disposed between an outer package and a sealing body, and is suitable as a gasket for achieving a seal between them and prevention of electrolyte leakage.
  • FIG. 1 is a partially cutaway perspective view showing an embodiment of a sealed secondary battery of the present invention.
  • this sealed secondary battery 10 is a so-called square sealed secondary battery.
  • a positive electrode plate 11, a negative electrode plate 12, and an electrode plate group having two separators 13 and 14 interposed therebetween, and an electrolyte (not shown) for immersing the electrode plate group The battery element 15 containing the battery element 15, the battery case 16 that houses the battery element 15 and is electrically connected to the positive electrode plate 11, and the opening of the battery case 16 is sealed and electrically connected to the battery case 16
  • the sealing body 17 is disposed inside the battery case 16 and is interposed between the through hole provided in the sealing body 17 so as to be exposed to the outside of the battery case 16, and is electrically connected to the negative electrode plate 12.
  • a part of the battery element 15 including the positive electrode plate 11, the negative electrode plate 12, and the two separators 13 and 14 includes a positive electrode plate 11 and a negative electrode.
  • the obtained laminate is placed on the positive electrode 11 side outside.
  • the other separator 14 is wound inside and rolled up so as to have a substantially rectangular shape when viewed from above.
  • the positive electrode plate 11 has a positive electrode active material layer formed by applying a positive electrode paste, drying and rolling on one or both surfaces of a positive electrode current collector. In addition, a portion of the positive electrode plate 11 that appears on the outermost surface of the battery element 15 is provided with a plain portion on which the positive electrode active material layer is not formed. A positive electrode lead 21 for electrically connecting the bottom surface 20 of the battery case 16 is welded.
  • Examples of the material for forming the positive electrode current collector include aluminum, an aluminum alloy, and copper. It is done.
  • the thickness of the positive electrode current collector is not particularly limited, but is preferably 10 60 111.
  • the surface of the positive electrode current collector may be subjected to lath processing or etching treatment.
  • the positive electrode paste is prepared by mixing a positive electrode active material, a binder, a dispersion medium, and, if necessary, a conductive agent, a thickener, and the like.
  • the positive electrode active material is not particularly limited, and examples thereof include a lithium-containing transition metal compound that can accept lithium ions as a guest.
  • a lithium-containing transition metal compound that can accept lithium ions as a guest.
  • lithiated niobium oxide is not particularly limited, and examples thereof include a lithium-containing transition metal compound that can accept lithium ions as a guest.
  • lithiated niobium oxide lithiated niobium oxide.
  • Examples of the composite metal oxide of the transition metal and lithium include Li CoO Li MnO.
  • Sc Y Mn Fe Co Ni Cu Zn Al Cr Pb Indicates at least one element selected from the group force consisting of Sb and B, X is 0—1.2 y, 0—0.9.z is , 2. 0-2. 3 are shown respectively. ). Note that X in the above formula increases and decreases due to charge and discharge.
  • These positive electrode active materials may be used alone or in combination of two or more.
  • the average particle diameter of the positive electrode active material is not particularly limited, but is preferably;
  • binder examples include conductive agent, thickener, and dispersion medium for the positive electrode paste.
  • the binder is not particularly limited as long as it can be dissolved or dispersed in a paste dispersion medium.
  • a fluorine-based binder acrylic rubber, modified acrylic rubber, styrene butadiene rubber (SBR). , Acrylic polymers, and bull polymers.
  • SBR styrene butadiene rubber
  • Acrylic polymers and bull polymers.
  • the fluorine-based binder includes, for example, polyvinylidene fluoride, a copolymer of vinylidene fluoride and propylene hexafluoride, polytetrafluoroethylene, and the like.
  • Examples of the conductive agent include acetylene black, graphite, and carbon fiber. It is. These conductive agents may be used alone or in combination of two or more.
  • Examples of the thickener include ethylene-butyl alcohol copolymer, carboxymethylol cellulose, methyl cellulose and the like.
  • the dispersion medium for the positive electrode paste is preferably a solvent in which the binder can be dissolved.
  • N-methyl-2-pyrrolidone N, N-dimethylformamide, tetrahydrofuran, dimethylacetamide, dimethyl sulfoxide, hexamethylsulfuramide, tetramethylurea, acetone, methylethyl
  • ketones include ketones.
  • the positive electrode paste is blended with the above-described binder, conductive agent and dispersion medium, and, if necessary, a thickener and the like, for example, a planetary mixer, a homomixer, a pin mixer, a binder. It is prepared by mixing using a homogenizer or the like.
  • the positive electrode paste prepared as described above is coated with a coating means such as a slit die coater, a reno-clown coater, a lip coater, a blade coater, a knife coater, a gravure coater, or a dip coater. Then, it is applied to one or both sides of the positive electrode current collector, and further formed by drying and rolling.
  • a coating means such as a slit die coater, a reno-clown coater, a lip coater, a blade coater, a knife coater, a gravure coater, or a dip coater.
  • the material for forming the positive electrode lead 21 is set according to the material of the positive electrode plate 11, the type of the electrolyte, the material of the battery case 16, the material of the sealing body 17 as the positive electrode terminal, etc. It is not limited, The thing similar to the past is mentioned. Specific examples include metals such as aluminum and nickel.
  • the negative electrode plate 12 has a negative electrode active material layer formed by applying a negative electrode paste, drying and rolling on one or both surfaces of a negative electrode current collector. Further, a part of the negative electrode plate 12 is provided with a plain part where the negative electrode active material layer is not formed, and the negative electrode plate 12 and the negative electrode terminal 18 are electrically connected to the plain part.
  • the negative electrode lead 22 for welding is welded.
  • Examples of the material for forming the negative electrode current collector include aluminum, an aluminum alloy, and copper.
  • the thickness of the negative electrode current collector is not particularly limited, but is preferably 10 to 60 m.
  • the surface of the negative electrode current collector may be subjected to lath processing or etching treatment.
  • the negative electrode paste is prepared by mixing a negative electrode active material, a binder, a dispersion medium, and a conductive agent, a thickener, and the like, if necessary.
  • the negative electrode active material is not particularly limited, but is preferably a carbon material capable of inserting and extracting lithium ions by charging and discharging.
  • carbon materials obtained by firing organic polymer compounds for example, phenol resin, polyacrylonitrile, cellulose, etc.
  • carbon materials obtained by firing coatas and pitch include pitch-based carbon fibers and PAN-based carbon fibers.
  • These negative electrode active materials may be used alone or in combination of two or more.
  • examples of the shape of the negative electrode active material include fibrous, spherical, scaly, and massive shapes.
  • the binder, the conductive agent, and the thickener those similar to the conventional ones are used. Specifically, the same binder, conductive agent, and thickener as those used for the positive electrode paste are used. Can be mentioned. Moreover, as a dispersion medium, the dispersion medium similar to what is used for a positive electrode paste is mentioned. The method for preparing the negative electrode paste and the method for forming the negative electrode active material layer are the same as those for the positive electrode paste and the positive electrode active material.
  • the two separators 13 and 14 are both provided to prevent a short circuit between the positive electrode plate 11 and the negative electrode plate 12.
  • the upper insulating plate 23 for preventing the battery element 15 and the sealing plate 17 from being in direct physical contact, and the battery element 15 and the bottom surface 20 of the battery case 16 are physically provided.
  • each separator 13, 14 is in contact with both the upper insulating plate 23 and the lower insulating plate 24! / RU
  • a microporous film made of a polymer may be mentioned.
  • polymer forming the microporous film examples include polyethylene, polypropylene, polyvinylidene fluoride, polyvinylidene chloride, polyacrylonitrile, polyacrylamide, polytetrafluoroethylene, polysenolephone, polyethenores norephone, polycarbonate, Polyamide, polyimide, polyether compounds (eg, polyethylene oxide, polypropylene oxide, etc.), cellulose compounds (eg, carboxymethyl cellulose, hydroxypropyl cellulose), poly (meth) acrylic acid and poly (meth) acrylic acid ester Examples include at least one polymer selected from the group of force.
  • the separator may be a multilayer film obtained by superposing microporous films made of the above polymers. Of these, a microporous film made of polyethylene, polypropylene, polyvinylidene fluoride, or the like is preferable.
  • the thickness of the separators 13 and 14 is not particularly limited, but is preferably 15 to 30 111.
  • a part of the battery case 16 is opened, and the battery element 15 is accommodated therein. Also, the battery case 16 is integrated with the sealing body 17 by welding at the open end thereof, Connected.
  • Examples of the material for forming the battery case 16 and the sealing body 17 include copper, nickel, stainless steel, nickel-plated steel, aluminum, and an aluminum alloy. Further, from the viewpoint of enhancing the corrosion resistance of the battery case 16 and the sealing body 17, the processed battery case 16 may be subjected to a mesh treatment. In addition, the material for forming the battery case 16 and the sealing body 17 may be aluminum or an aluminum alloy from the viewpoint of manufacturing a light-weight, square, sealed secondary battery having a high energy density. preferable.
  • the battery case 16 is formed into a desired shape by subjecting the forming material to drawing processing, DI processing, or the like.
  • the battery case can be shaped.
  • the battery case 16 and the sealing body 17 can be integrated by a known welding method, and a specific welding method includes, for example, laser welding.
  • Both the battery case 16 and the sealing body 17 are electrically connected to the positive electrode lead 21, and constitute a positive electrode terminal as an external terminal of the positive electrode!
  • the negative electrode terminal 18 as an external terminal of the negative electrode is fitted into a through-hole provided on the sealing body 17 via the gasket 19.
  • Examples of the material for forming the negative electrode terminal 18 include copper, nickel, stainless steel, nickel-plated steel, anorium, aluminum alloy, and the like.
  • the gasket 19 of the present invention described above is used as the gasket 19.
  • the gasket 19 is formed in a through-hole provided on the sealing body 17 by force. It is attached and adhered to the surface of the sealing body 17.
  • the negative electrode terminal 18 is attached to the sealing body 17 via the gasket 19 so that insulation between the sealing body 17 and the negative electrode terminal 18 is achieved.
  • the gasket 19 formed in a ring shape is attached along the periphery of the through hole on the sealing body 17, and the gasket 19 is attached to the sealing body 17. What is necessary is just to make it crimp.
  • the sealing body 17 and the gasket 19 may be crimped by a caulking machine and heated to 300 ° C. or higher by laser welding.
  • the gasket 19 since the gasket 19 is adhered to the surface of the sealing body 17, the gasket 19 is resistant to deformation due to thermal expansion / contraction of the sealing body 17. Power S to follow Therefore, leakage of the electrolyte solution due to thermal deformation of the sealing body 17 and a short circuit between the positive electrode terminal and the negative electrode terminal can be highly suppressed.
  • the gasket of the present invention having excellent heat resistance (particularly instantaneous heat resistance) is used as the gasket 19, for example. Even when the battery case 16 is integrated by a known welding method such as laser welding, sufficient heat resistance (particularly instantaneous heat resistance) against the heat during welding can be exhibited. Therefore, leakage of the electrolytic solution due to thermal deformation of the sealing body 17 and a short circuit between the positive electrode terminal (sealing plate 17) and the negative electrode terminal 18 can be highly suppressed.
  • the electrode plate group including the positive electrode plate 11, the negative electrode plate 12, and the two separators 13 and 14 interposed therebetween forms the electronic element 15.
  • the present invention is not limited to the case of winding, and for example, it may be folded in a so-called zigzag shape.
  • the battery case 16 and the sealing plate 17 that is electrically connected to the battery case are used as the positive electrode terminals, and the terminals protruding from the through holes of the sealing plate 17 are Although the negative electrode terminal is used, the positive electrode and the negative electrode may be reversed.
  • the sealed secondary battery 10 includes, for example, a negative electrode terminal 18 that is a negative external terminal and a positive electrode terminal that is a positive external terminal by covering the surface of the battery case 16 with an insulator such as a resin.
  • the sealing member 17 may be exposed to the outside.
  • a safety valve 26 may be provided on the sealing plate 17 or the like.
  • FIG. 2 is a partially cutaway perspective view showing another embodiment of the sealed secondary battery of the present invention.
  • this sealed secondary battery 30 is a so-called cylindrical sealed secondary battery.
  • a secondary battery comprising a positive electrode plate 31, a negative electrode plate 32 and two separators 33 and 34 interposed therebetween, and an electrolyte solution (not shown) for immersing the electrode plate group )
  • the battery element 35 the battery case 35 that houses the battery element 35 and is electrically connected to the negative electrode plate 32, and the opening of the battery case 36 is sealed, and the positive electrode plate 31 is electrically connected
  • a sealing member 37 as a positive electrode terminal, and a gasket 38 interposed between the battery case 36 and the sealing member 37.
  • the electrode plate group including the positive electrode plate 31, the negative electrode plate 32, and the two separators 33 and 34 the positive electrode plate 31 and the negative electrode, as shown in FIG.
  • the plate 32 is overlapped with one separator 33, and the other separator 34 is laminated on the surface of the negative electrode plate 32, and the resulting laminate is placed on the positive electrode plate 31 side outside. Then, the other separator 34 is placed inside and rolled up! /
  • the positive electrode plate 31 has a positive electrode active material layer formed by applying a positive electrode paste, drying and rolling on one or both surfaces of a positive electrode current collector. Further, a part of the positive electrode plate 31 is provided with a plain part in which a positive electrode active material layer is not formed, and the positive electrode plate 31 and the sealing body 37 are electrically connected to the plain part. The positive electrode lead 39 is welded.
  • Examples of the positive electrode current collector, the positive electrode paste, and the positive electrode active material include the same materials as described above.
  • the negative electrode plate 32 has a negative electrode active material layer formed by applying a negative electrode paste, drying and rolling on one or both surfaces of a negative electrode current collector. Also, a part of the negative electrode plate 32 is provided with a plain part on which the negative electrode active material layer is not formed, and the negative electrode plate 32 and the bottom surface 40 of the battery case 36 are electrically connected to the plain part. A negative electrode lead 41 for connection to the electrode is welded. Examples of the negative electrode current collector, the negative electrode paste, and the negative electrode active material include the same materials as described above.
  • the two separators 33 and 34 both prevent a short circuit between the positive electrode plate 31 and the negative electrode plate 32. It is provided for this purpose.
  • the upper insulating plate 42 for preventing the battery element 35 and the sealing plate 37 from coming into direct physical contact, and the battery element 35 and the bottom surface 40 of the battery case 36 are physically provided.
  • a lower insulating plate 43 is provided to prevent direct contact with the separator 33, and each separator 33, 34 is in contact with both the upper insulating plate 42 and the lower insulating plate 43! / RU
  • Examples of the material for forming the separators 33 and 34 include the same materials as described above.
  • a part of the battery case 36 is opened, the battery element 35 is accommodated therein, and the battery case 36 is sealed by the opening force sealing member 37 of the battery case 36.
  • the battery case 36 is electrically connected to the negative electrode plate 32 by a negative electrode lead 41, and acts as an external connection terminal (negative electrode terminal) of the negative electrode.
  • the seal between the battery case 36 and the sealing body 37 is achieved by the gasket 38.
  • Examples of the material for forming the battery case 36 include the same materials as described above.
  • the method for forming the battery case 36 is also the same as described above.
  • the sealing body 37 includes a cap 37 a, a valve body 37 b for preventing abnormal pressure increase in the battery case 36, and a plate 37 c for contacting the positive electrode lead 39.
  • sealing body 37 is electrically connected to the positive electrode plate 31 by the positive electrode lead 39, and the cap 37a functions as an external connection terminal (positive electrode terminal) of the positive electrode.
  • the material for forming the cap 37a, the valve body 37b, and the plate 37c is the same as that of the sealing body 17 of the sealed secondary battery 10 shown in FIG.
  • the gasket of the present invention described above is used as the gasket 38.
  • the gasket 38 is molded into a ring shape and bonded in advance near the opening on the inner peripheral surface of the battery case 36 by pressure bonding. Further, by interposing the gasket 38 between the battery case 36 and the sealing body 37, insulation between the sealing body 37 as the positive electrode terminal and the battery case 36 as the negative electrode terminal is achieved.
  • the gasket 38 force is adhered to the inner peripheral surface of the battery case 36.
  • the ket 38 can be made to follow. Therefore, leakage of the electrolytic solution due to thermal deformation of the battery case 36 and a short circuit between the positive electrode terminal and the negative electrode terminal can be suppressed to a high degree.
  • FIG. 3 is a cross-sectional view showing still another embodiment of the sealed secondary battery of the present invention.
  • this sealed secondary battery 50 is a so-called button-type sealed secondary battery, and is interposed between the positive electrode plate 51, the negative electrode plate 52, the positive electrode plate 51, and the negative electrode plate 52.
  • An electrode plate group having a separator 53, a battery element containing an electrolytic solution (not shown) for immersing the electrode plate group, and a positive electrode that houses the battery element 54 and is electrically connected to the positive electrode plate 51
  • the battery case 55 as a terminal
  • the opening of the battery case 55 is sealed
  • the sealing body 56 as a negative electrode terminal electrically connected to the negative electrode plate 52 is interposed between the battery case 55 and the sealing body 56.
  • a gasket 57 to be worn.
  • the positive electrode plate 51 has a positive electrode active material layer formed by applying a positive electrode paste, drying and rolling on both surfaces of a positive electrode current collector.
  • Examples of the positive electrode current collector, the positive electrode paste, and the positive electrode active material include the same ones as described above.
  • the negative electrode plate 52 has a negative electrode active material layer formed by applying a negative electrode paste, drying and rolling on one or both surfaces of a negative electrode current collector.
  • Examples of the negative electrode current collector, the negative electrode paste, and the negative electrode active material include the same as described above.
  • the separator 53 is provided to prevent a short circuit between the positive electrode plate 51 and the negative electrode plate 52.
  • Examples of the material for forming the separator 53 include the same materials as described above.
  • a part of the battery case 55 is opened, and the battery element 54 is accommodated therein.
  • the battery case 55 includes a sealing body 56 in the opening, and the battery case 55 and the sealing body 56 are provided. The sealing force between is achieved by gasket 57.
  • Examples of the material for forming the battery case 55 include the same materials as described above.
  • the method for forming the battery case 55 is also the same as described above.
  • the material for forming the sealing body 56 is the same as the sealing body 17 of the sealed secondary battery 10 shown in FIG. It is.
  • the above-described gasket of the present invention is used as the gasket 57.
  • a gasket 57 is molded into a ring shape and bonded in advance near the opening on the inner peripheral surface of the battery case 55 by pressure bonding.
  • insulation between the battery case 55 as the positive electrode terminal and the sealing body 56 as the negative electrode terminal is achieved. Is done.
  • the crimping process for adhering the gasket 57 to the inner peripheral surface of the battery case 55 is the same as that in the sealed secondary battery 10 shown in FIG. What is necessary is just to carry out similarly to the crimping
  • the gasket 57 since the gasket 57 is adhered to the surface of the battery case 55, the gasket 57 is resistant to deformation due to thermal expansion and contraction of the battery case 55. It is possible to follow the force S. Therefore, leakage of the electrolyte due to thermal deformation of the battery case 55, a short circuit between the positive electrode terminal and the negative electrode terminal, and the like can be highly suppressed.
  • FIG. 4 is a partially cutaway perspective view showing an embodiment of the electrolytic capacitor of the present invention.
  • this electrolytic capacitor 70 is a so-called snap-in type electrolytic capacitor, and has a positive foil 71, a negative foil 72, and two separators 73 and 74 interposed therebetween.
  • Capacitor element 75 including an electrode foil group and an electrolytic solution (not shown) for immersing the electrode foil group, a partially opened exterior body 76 for housing capacitor element 75, and an exterior body A sealing body 77 for sealing the opening of 76 and a gasket 78 for sealing between the exterior body 76 and the sealing body 77 are provided.
  • the electrode foil group having the positive electrode foil 71, the negative electrode foil 72, and the two separators 73, 74 is composed of the positive electrode foil 71 and the negative electrode 72.
  • the other separator 74 are laminated on the surface of the negative electrode foil 72, and the resulting laminate is made with the positive electrode foil 71 side outside and the other.
  • One of the separators 74 on the inside is rolled up!
  • the positive electrode foil 71 has a positive electrode active material layer formed by applying a positive electrode paste, drying and rolling on one or both surfaces of a positive electrode current collector. Further, a part of the positive electrode foil 71 includes a positive electrode active material. A plain portion in which a quality layer is not formed is provided. A positive electrode lead 80 is welded to the plain portion, and the positive electrode lead 80 is electrically connected to the positive electrode terminal 79. As a result, the positive terminal 79 is electrically connected to the positive foil 71.
  • Examples of the positive electrode current collector, the positive electrode paste, and the positive electrode active material include the same ones as described above.
  • the negative electrode foil 72 has a negative electrode active material layer formed by applying a negative electrode paste, drying and rolling on one or both surfaces of a negative electrode current collector.
  • a part of the negative electrode foil 72 is provided with a plain part where the negative electrode active material layer is not formed.
  • a negative electrode lead 82 is welded to the plain part, and further, the negative electrode lead 82 is provided. Is electrically connected to the negative terminal 81. As a result, the negative electrode terminal 81 is electrically connected to the negative electrode foil 72.
  • Examples of the negative electrode current collector, the negative electrode paste, and the negative electrode active material include the same materials as described above.
  • the two separators 73 and 74 are both provided to prevent a short circuit between the positive foil 71 and the negative foil 72.
  • the capacitor element 75 and the upper insulating plate 83 for preventing direct contact between the positive electrode terminal 79 and the negative electrode terminal 81 and the direct connection between the capacitor element 75 and the bottom surface 84 of the outer casing 76 are provided.
  • a lower insulating plate 85 is provided to prevent contact between the upper insulating plate 83 and the lower insulating plate 85.
  • Each of the separators 73 and 74 is in contact with both the upper insulating plate 83 and the lower insulating plate 85.
  • Examples of the material for forming the separators 73 and 74 include the same materials as described above.
  • the exterior body 76 is partially opened, and the capacitor element 75 is accommodated therein. Further, the exterior body 76 includes a sealing body 77 in the opening, and the exterior body 76 and the sealing body 77 are connected to each other. A seal between is achieved by gasket 78.
  • the forming material of the outer package 76 is the same as that of the battery case 16 of the sealed secondary battery 10 shown in Fig. 1, and the molding method of the outer package 76 is also the same as described above.
  • the gasket of the present invention described above is used as the gasket 78.
  • the gasket 78 is molded into a ring shape and is previously In the vicinity of the opening of the peripheral surface, it is bonded by pressure bonding. Further, by interposing the gasket 78 between the exterior body 76 and the sealing body 77, leakage of the electrolytic solution from between the exterior body 76 and the sealing body 77 is prevented.
  • the gasket 78 force, the adhesion force to the surface of the exterior body 76, and the force that allows the gasket 78 to follow the deformation due to the thermal expansion and contraction of the exterior body 76. S can. Therefore, the leakage of the electrolyte due to the thermal deformation of the exterior body 76 can be highly suppressed.
  • the gasket of the present invention can be provided as an insert product integrated with a conductive substrate such as an electrode, for example, by insert molding, and can be outsert for a molded product such as a conductive substrate. It can also be provided as an outsert product integrated by molding.
  • the gasket of the present invention is an electrode that has been molded as an integral molded product with a rigid body (for example, a substrate), and then the resin surface is applied to the surface of the gasket portion to achieve insulation between the rigid body. It can also be provided.
  • the gasket of the present invention has a cross-linked ionomer, which can suppress the swelling caused by the electrolytic solution.
  • Cross-linked ionomers are less adhesive to metal plates than non-cross-linked ionomers, but they are contained in ionomers! / By increasing the content of ionic functional groups. Adhesion can be maintained. Therefore, the gasket of the present invention is, for example, a member in which a thin gasket is fixed to the surface of a very small conductor (lead wire) (specifically, for example, manufactured by Sumitomo Electric Industries, Ltd.). Suitable for use in lead wires for Li-ion batteries, trade name “TAB LEAD”, etc.
  • the gasket of the present invention is excellent in sealing performance (sealing performance) as a gasket.
  • sealing performance sealing performance
  • 'Ethylene-acrylate copolymer ionic species zinc, product number "1706", Mitsui' manufactured by DuPont Polychemical Co., Ltd.
  • Maleic acid modified tetrafluoroethylene ethylene copolymer maleic acid modified ETFE: Tetrafluoride Tylene Maleic acid-modified product of ethylene copolymer (ETFE; trade name "Neofluon ET FEJ, manufactured by Daikin Industries, Ltd.).
  • Maleic anhydride-modified polypropylene (Maleic anhydride-modified PP): Trade name” Admer (registered trademark) QF551 " ⁇ Mitsui Chemicals Co., Ltd.
  • High-density polyethylene Product name “Hi-Zex (registered trademark) 5305”, Prime Polymer Co., Ltd.
  • Tetrafluoroethylene Copolymer (ETFE) Trade name “Neofluon ETFE”, Dykin Made by Kogyo Co., Ltd.
  • Crosslinking aid triallyl isocyanate (TAIC)
  • Filler silica
  • Example 1 For each Example and Comparative Example, the components shown in Table 1 were blended, and the resulting resin composition was mixed with a twin-screw extruder and injection molded to obtain a plate having a length of 50 mm, a width of 60 mm, and a thickness of 2 mm. Formed into a shape. Next, this plate-like body was adjusted to have an irradiation dose of 240 kGy and irradiated with an electron beam to obtain a crosslinked sample.
  • the tensile storage rate E 'at a temperature of 350 ° C and a frequency of 10 Hz is required to be 1. OMPa or higher.
  • the sample (crosslinked body) obtained in the above (1) was superimposed on the surface of an aluminum foil (width 15 mm, thickness 0.1 mm), and pressed for 10 seconds under the conditions of 300 ° C. and lOMPa.
  • the composite of the sample (crosslinked body) and the aluminum foil (15 mm in width) thus obtained was used for V, and the peel adhesion strength (N / 15 mm) between the sample (crosslinked body) and the aluminum foil was measured.
  • the results are shown in Table 1 below.
  • the 50% residual elastic modulus is obtained by calculating the amount of increase in thickness when the compressed state is released with respect to the thickness when the volume of the resin constituting the sample is compressed to 50%. It is the value which expressed the ratio of the increase in percentage on the basis of the thickness of a state.
  • the 50% residual elastic modulus is measured, for example, as shown in FIGS. 5 (a) to 5 (c).
  • the test force 90 (thickness) made of the resin force constituting the above sample is transferred to the shim using the upper mold 91a and the lower mold 91b. 92
  • the residual elastic modulus M (%) is calculated by the following formula (1) from the thickness t when the test piece 90 is compressed and the thickness t after releasing the compressed state.
  • the square sealed secondary battery 10 shown in FIG. 1 was produced.
  • LiCo02 (positive electrode active material), carbon black (conducting agent) and polytetrafluoroethylene (binder) aqueous dispersion are mixed at a solid weight ratio of 100: 3: 10.
  • the paste obtained was dispersed and applied to both sides of a current collector made of aluminum foil (thickness 30 m) to a thickness of about 230 m by a doctor blade method and dried.
  • the coating film of the paste was rolled so as to have a thickness of 180 m, and cut to a predetermined size to obtain a positive electrode plate 11.
  • the carbonaceous material as the main material and the styrene butadiene rubber binder are in a weight ratio.
  • the mixture was dispersed at a ratio of 100: 5, and the resulting paste was applied to both sides of a copper foil current collector (thickness 20 m) by a doctor blade method to a thickness of about 230 m. And dried. Next, the coating film of the paste was rolled so as to have a thickness of 180 m and cut into a predetermined size to obtain the negative electrode plate 12.
  • the resin compositions obtained by blending the components shown in Table 1 were mixed with a twin-screw extruder and then molded into a ring shape with a substantially U-shaped cross section by injection molding.
  • the obtained ring-shaped resin composition was irradiated with an electron beam while adjusting the irradiation dose to lOOkGy, and a crosslinked gasket 19 was obtained.
  • the gasket 19 made of the resin composition of each example and comparative example was fitted to the peripheral edge 25 of the insertion hole for the negative electrode terminal 18 of the sealing body 17 made of an aluminum alloy, and further, the gasket for the negative electrode terminal 18 Insert the negative terminal 18 into the hole, fold the leg 27 of the negative terminal 18 along the gasket 19 (see Fig. 1), and press for 10 seconds at 200 ° C and lOMPa. As a result, the gasket 19 was bonded to the sealing body 17 and the negative electrode terminal 18.
  • the positive electrode plate 11 and the negative electrode plate 12 are flattened through two separators (thickness 25 m, shape maintaining temperature 128 ° C) 13, 14 made of a polyethylene resin microporous film. Then, this was pressed to obtain an electrode plate group having a substantially elliptical cross-sectional shape. Lithium hexafluorophosphate is added to a mixed solvent containing this electrode group and an electrolyte solution for immersing this electrode group (ethylene carbonate and jetyl carbonate in a molar ratio of 1: 3) at lmol / L.
  • the battery element 15 containing the solution was stored in a rectangular battery case 16 made of aluminum alloy and sealed with a sealing member 17.
  • the gasket 19 is set so that its compression rate is 50% when it is crimped between the sealing body 17 and the negative electrode terminal 18. did.
  • the square sealed secondary battery 10 thus obtained had outer dimensions of 5.3 mm, 30 mm, and 48 mm in thickness, width, and height, respectively, and the battery capacity was 800 mAh.
  • the 50% residual elastic modulus of the gasket was less than 4%.
  • the 50% residual elastic modulus is 4 to 25% from the viewpoint of leakage resistance and shape maintenance temperature of the gasket! /, (See Patent Document 1).
  • the gasket is made of a crosslinked ionomer and is bonded to the positive electrode terminal or the negative electrode terminal by heating and pressurization, so the residual elastic modulus of the gasket is 4.
  • the gasket is made of a crosslinked ionomer and is bonded to the positive electrode terminal or the negative electrode terminal by heating and pressurization, so the residual elastic modulus of the gasket is 4.
  • sealing and insulation between the positive electrode terminal and the negative electrode terminal could be achieved, and electrolyte leakage could be prevented.
  • the gasket is not formed of a cross-linked ionomer, and since the peel adhesion strength and the tensile storage elastic modulus at high temperature are low, the residual elastic modulus of the gasket is low. 4. Despite exceeding 0%, sealing and insulation between the positive electrode terminal and the negative electrode terminal were not achieved, and prevention of electrolyte leakage was insufficient.
  • the gasket of the present invention enables excellent heat resistance (particularly instantaneous heat resistance) and excellent electrolytic solution resistance.
  • it can provide excellent sealing performance even if it is small or thin, and realizes further reduction in size and thickness of sealed secondary batteries and electrolytic capacitors. Therefore, the industrial applicability is extremely large.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

明 細 書
ガスケット、密閉型二次電池および電解コンデンサ
技術分野
[0001] 本発明は、密閉型二次電池や電解コンデンサに用いられるガスケットと、そのガス ケットを用いた密閉型二次電池および電解コンデンサに関する。
背景技術
[0002] 携帯電話、 PDA (携帯情報端末)などの携帯型電子機器の電源として、例えば、リ チウムイオン二次電池などの密閉型二次電池力 S、広く知られている。
密閉型二次電池は、一般に、正極板、負極板、および、正極板と負極板との間に 配置されたセパレータを含む極板群と、この極板群を浸漬するための電解液と、を含 む電池素子が、一部が開口されている電池ケース(外装体)の内部に収容され、電池 ケースの開口を封口するための封口体により密閉されて!/、る。
[0003] また、この密閉型二次電池において、例えば、正極板と電気的に接続されている正 極端子と、負極板と電気的に接続されている負極端子との接点には、一対の端子間 での短絡防止や、電解液の漏出防止のために、ガスケットが設けられている。
このガスケットには、電解液に対する耐性(耐電解液性)や、優れたシール性および 絶縁性が要求されており、さらに、密閉型二次電池の過充電による過熱や、電池ケ 一スと封口体とのレーザ溶接時における瞬間的な加熱に対応するための、優れた耐 熱性が要求されている。
[0004] また、特許文献 1では、密閉型二次電池に用いられるガスケットとして、放射線架橋 されている樹脂からなり、残留弾性率が 4. 0%以上である絶縁ガスケットが提案され ており、さらに、放射線架橋される樹脂として、ポリオレフイン樹脂、ポリオレフインエラ ストマー、ポリエチレンテレフタレート樹脂、ポリエステルエラストマ一、ポリフエ二レン サルファイド樹脂、ポリアリレート樹脂、ポリアミド樹脂、ポリアミドエラストマ一、フッ素 樹脂およびフッ素エラストマ一が例示されている。
特許文献 1 :特開 2005— 310569号公報
発明の開示 発明が解決しょうとする課題
[0005] しかるに、特許文献 1に記載の絶縁ガスケットでは、放射線架橋により樹脂を三次 元構造体に変換して、その形状を維持できる温度 (形状維持温度)を高めるとともに、 一定以上の残留弾性率を保持させて、樹脂の弾力性を維持して!/、る。
しかしながら、近年の密閉型二次電池に対する小型化、薄型化の要請に合わせて 、ガスケットを小型化または薄型化しようとすると、ガスケットの圧縮変形の代 (圧縮に よる変形量)の絶対量が減少するため、ガスケットのシール性が低下するおそれがあ
[0006] さらに、ガスケットの小型化または薄型化は、ガスケットの耐熱性の低下を招く傾向 があり、とりわけ、電池ケースと封口体とのレーザ溶接時における瞬間的な加熱に対 する耐熱性(瞬間耐熱性)は、ガスケットの小型化または薄型化によって顕著に低下 し、ガスケットの熱変形と、その熱変形に伴う電解液の漏出といった不具合が生じ易く なる。
また、密閉型二次電池と同様の構造を有する電解コンデンサにおいても、電解コン デンサの小型化または薄型化に伴うガスケットのシール性の低下の問題力 同様に 生じ得る。
[0007] そこで、本発明の目的は、優れた耐熱性(特に、瞬間耐熱性)や、優れた耐電解液 性および絶縁性を有し、小型または薄型であっても優れたシール性を発揮することの できるガスケットと、そのガスケットを用いた密閉型二次電池および電解コンデンサを 提供することにある。
課題を解決するための手段
[0008] 上記目的を達成するために、本発明のガスケットは、架橋されたアイオノマーを含 むことを特 ί毁としている。
このガスケットによれば、優れた耐電解液性や絶縁性を有しているだけでなぐその 弾力性を維持しつつ、形状維持温度を高めることができる。すなわち、ガスケットのシ 一ル性を維持しつつ、耐熱性を向上させることができ、しかも、瞬間耐熱性について も、向上させること力 Sでさる。
[0009] さらに、アイオノマーは、例えば、密閉型二次電池の電池ケースや電解コンデンサ の外装体を形成する金属(例えば、アルミニウムなど)との密着性が高ぐ架橋された アイオノマーにより形成されたガスケットを、加熱および加圧により接着することにより 、金属とガスケットとを強固に接着させることができる。
それゆえ、本発明のガスケットを、例えば、密閉型二次電池の正極端子と兼用され る電池ケースと加熱および加圧により接着させることにより、あるいは、電解コンデン サの外装体と加熱および加圧により接着させることにより、上記電池ケースまたは外 装体の熱膨張 '収縮に伴う変形やヒートサイクルに対し、ガスケットを追従させることが でき、たとえ、密閉型二次電池や電解コンデンサの小型化または薄型化によって、ガ スケットの圧縮変形の代の絶対量が減少したとしても、優れたシール性を発揮させる こと力 Sでさる。
[0010] また、本発明のガスケットは、前記アイオノマーが、ポリオレフイン系アイオノマーま たはフッ素系アイオノマーであることが好適である。
アイオノマーがポリオレフイン系アイオノマーであるときは、架橋後において、弾力 性と耐熱性 (形状維持性)とのバランスが良好となる。
アイオノマーがフッ素系アイオノマーであるときは、ガスケットの耐久性が良好となり 、また、ガスケットが、高温での使用により一層適したものとなる。
[0011] また、本発明のガスケットは、温度 350°C、周波数 10Hzの条件で測定された引張 貯蔵弾性率 E'が、 IMPa以上であり、かつ、金属板の表面に対し、 200〜400°C、 0 . ;!〜 lOMPaの条件で圧着したときの剥離接着強さ力 0. 1N/I 5mm以上である ことが好適である。
このガスケットによれば、 350°Cといった高い温度において、引張貯蔵弾性率 E'が 十分に高い値を示すことから、高温域においても、優れた弾力性を発揮させることが できる。
[0012] しかも、金属板の表面に対する剥離接着強さ力 十分に高い値を示すことから、金 属板との密着性が高ぐ金属板の熱膨張'収縮に伴う変形に対し、ガスケットを追従さ せること力 Sできる。また、これにより、例えば、密閉型二次電池において、金属板により 形成される正極端子と負極端子との間をシールする際や、電解コンデンサにおいて 、金属板により形成される外装体と封口体との間をシールする際のシール性を、向上 させること力 Sでさる。
[0013] 本発明の密閉型二次電池は、正極板、負極板、および、前記正極板と前記負極板 との間に介装されるセパレータを含む電池素子と、前記正極板と電気的に接続され る正極端子と、前記負極板と電気的に接続される負極端子と、前記正極端子と前記 負極端子との間を絶縁するためのガスケットと、を備え、前記ガスケットが、本発明の ガスケットであり、かつ、前記正極端子または前記負極端子に、加熱および加圧によ り接着されてレ、ることを特徴として!/、る。
[0014] この密閉型二次電池によれば、正極端子と負極端子との間の密閉および絶縁に用 いられるガスケットに、本発明のガスケットが用いられることから、正極端子と負極端子 との間の密閉性および絶縁性が極めて良好になる。また、密閉型二次電池の小型化 または薄型化により、ガスケットが小型化または薄型化された場合においても、ガスケ ットによる優れたシール性が発揮される。
[0015] さらに、上記の密閉型二次電池によれば、ガスケットが、正極端子または負極端子 に、加熱および加圧により接着されているため、ガスケットの残留弾性率が低ぐ例え ば、 4. 0%未満(特許文献 1参照)であったとしても、正極端子と負極端子との間の密 閉および絶縁を達成することができ、電解液の漏出を防止することができる。
しかも、この密閉型二次電池によれば、例えば、電池素子を収容するための外装体 と、この外装体の開口を封止するための封口体とが、常法に従い、互いにレーザ溶 接によって接着されるときには、外装体および封口体の瞬間的加熱により、封口体と 負極端子との間に介装されるガスケットも瞬間的に加熱されるものの、本発明のガス ケットは、瞬間的な加熱に対する耐熱性(瞬間耐熱性)に優れていることから、ガスケ ットの熱変形や、熱変形に起因する電解液の漏出を防止することができる。
[0016] 本発明の電解コンデンサは、正極箔、負極箔、および、前記正極箔と前記負極箔と の間に介装されるセパレータを含むコンデンサ素子と、前記コンデンサ素子を収容 するための、一部が開口されている外装体と、前記外装体の開口を封止するための 封口体と、前記外装体と前記封口体との間を密閉するためのガスケットとを備え、前 記ガスケットが、本発明のガスケットであり、かつ、前記外装体の内側表面および前記 封口体の表面の!/、ずれかに、加熱および加圧により接着されて!/、ることを特徴として いる。
[0017] この電解コンデンサによれば、外装体と封口体との間の密閉に、本発明のガスケッ トが用いられることから、外装体と封口体との間の密閉性が極めて良好になる。 また、電解コンデンサの小型化または薄型化により、ガスケットが小型化または薄型 化された場合においても、ガスケットによる優れたシール性が発揮される。
発明の効果
[0018] 本発明のガスケットと、そのガスケットを用いた密閉型二次電池および電解コンデン サによれば、上記ガスケットにより、優れた耐熱性(特に、瞬間耐熱性)や、優れた耐 電解液性および絶縁性を発揮することができ、しかも、小型または薄型であっても優 れたシール性を発揮することができる。
それゆえ、本発明によれば、密閉型二次電池および電解コンデンサについて、さら なる小型化および薄型化を実現することができる。
図面の簡単な説明
[0019] [図 1]本発明の密閉型二次電池の一実施形態を示す一部切り欠き斜視図である。
[図 2]本発明の密閉型二次電池の他の実施形態を示す一部切り欠き斜視図である。
[図 3]本発明の密閉型二次電池のさらに他の実施形態を示す断面図である。
[図 4]本発明の電解コンデンサの一実施形態を示す一部切り欠き斜視図である。
[図 5]ガスケットの残留弾性率の測定方法を説明するための模式図である。
符号の説明
[0020] 10, 30, 50 密閉型二次電池
11 , 31 , 51 正極板
12, 32, 52 負極板
13, 14, 33, 34, 53, 54, 73, 74 セノルータ
17, 37 封口体(正極端子)
18 負極端子
19, 38, 57, 78 ガスケッ卜
36 電池ケース(負極端子)
55 電池ケース(正極端子) 56 封口体 (負極端子)
70 電解コンデンサ
71 正極箔
72 負極箔
79 正極端子
81 負極端子
発明を実施するための最良の形態
[0021] 本発明のガスケットは、架橋されたアイオノマーを含んでいる。
アイオノマー(ィオノマー)は、イオン性官能基および/またはイオン化が可能な基 を有する構成単位を含む高分子 (ィオノマー分子)からなるポリマーである。
イオン性官能基としては、例えば、カルボキシル基、スルホ基などが挙げられる。 イオン性官能基および/またはイオン化が可能な基を有する構成単位(以下、「ィ オン性モノマー」という。)の具体例としては、例えば、アクリル酸(1 カルボキシェチ レン単位)、メタクリル酸(1ーメチルー 1 カルボキシエチレン単位)、マレイン酸(1 , 2—ジカルボキシエチレン単位)、スチレンカルボン酸(1 カルボキシフエニルェチレ ン単位)、マレイン酸(1 , 2—ジカルボキシエチレン単位)などの、カルボキシル基を 有するモノマー単位、例えば、エチレンスルホン酸(1 スルホエチレン単位)、スチレ ンスルホン酸(1ースルホフェニルエチレン単位)、下記式で示されるスルホベンゼン ジカルボン酸アルキレン単位などの、スルホ基を有するモノマー単位が挙げられる。
[0022] [化 1]
Figure imgf000008_0001
[0023] (式中、 nは、;!〜 6の整数を示す。)
上記式で示されるスルホベンゼンジカルボン酸アルキレン単位としては、例えば、ス ルホテレフタル酸エチレン単位、スルホイソフタル酸エチレン単位などが挙げられる。 イオン性モノマーのイオン性官能基は、塩を形成していてもよぐまた、塩を形成し ていなくてもよい。また、イオン性官能基がカルボキシル基である場合において、その カルボキシル基は、ジカルボン酸の無水物として存在して!/、てもよ!/、。
[0024] 上記塩は、イオン性モノマー中の解離可能な 1以上の水素イオンを、例えば、アル カリ金属イオン (Na+、 Li+など)、アルカリ土類金属イオン (Mg2+、 Ca2+など)、亜鉛ィォ ン(Zn2+)、アルミニウムイオン (Al3+)、アンモニゥムイオン(NH4+)、ホスホニゥムイオン (PH4+)などのカチオンで置換して形成される。なかでも、上記塩は、アイオノマーの 吸水性を低くする観点より、イオン性モノマー中の解離可能な水素イオン力 亜鉛ィ オンで置換されてレ、ることが好ましレ、。
[0025] 上記アイオノマーが、イオン性モノマーと、イオン性モノマー以外の他のモノマー単 位とを含む共重合体である場合に、上記他のモノマー単位としては、例えば、ォレフ イン(例えば、エチレン、プロピレンなど)、例えば、スチレン(1 フエニルエチレン単 位)、例えば、スチレン誘導体(例えば、 p—メチルスチレン(1— (p—トリル)エチレン 単位)など)、例えば、ベンゼンジカルボン酸アルキレン類(例えば、テレフタル酸ェチ レン(エチレンテレフタレート単位)、イソフタノレ酸エチレン(エチレンイソフタレート単 位)、テレフタル酸ブチレン(ブチレンテレフタレート単位)、イソフタル酸ブチレン(ブ チレンイソフタレート単位)など)、例えば、アクリル酸モノアルキルエステル類(例えば 、アクリル酸モノェチル (ェチルアタリレート単位)など)、例えば、メタクリル酸アルキ ルエステル類(例えば、メタクリル酸モノメチル (メチルメタタリレート単位)など)、例え ば、フッ素化ォレフイン(例えば、 1 , 1—ジフルォロエチレン(すなわち、ポリフッ化ビ 二リデンのモノマー単位)、ノ ーフノレオ口エチレン、ノ ーフノレオ口プロピレンなど)が挙 げられる。また、イオン性モノマーと、上記他のモノマー単位との共重合体において、 上記他のモノマー単位は、単独で含まれていてもよぐ 2種以上含まれていてもよい。
[0026] 他のモノマー単位としては、上記例示のなかでも、好ましくは、エチレン、スチレン、 テレフタル酸エチレン、イソフタル酸エチレン、テトラフルォロエチレンが挙げられる。 アイオノマーの具体例としては、例えば、ポリオレフイン系アイオノマー、フッ素系ァ ィオノマー、ポリスチレン系アイオノマー、ポリエステル系アイオノマー、 (メタ)アクリル 系アイオノマーなどが挙げられる。なお、以下に例示するアイオノマーにおいて、ィォ ン性モノマー中の解離可能な水素イオンは、上記カチオンで置換され、塩を形成し ていてもよい。
[0027] ポリオレフイン系アイオノマーとしては、モノマー単位として、例えば、ォレフィンを含 み、イオン性モノマーとして、例えば、アクリル酸、メタクリル酸、マレイン酸、エチレン スルホン酸などを含むアイオノマーが挙げられる。マレイン酸などのジカルボン酸は、 無水物であってもよい。具体的には、特に限定されないが、例えば、エチレン アタリ ル酸共重合体、エチレンーメタクリル酸共重合体などが挙げられる。
[0028] フッ素系アイオノマーとしては、モノマー単位として、例えば、フッ素化ォレフインと ォレフィンや、フッ素化ォレフインのみを含み、イオン性モノマーとして、例えば、マレ イン酸などを含むアイオノマーが挙げられる。具体的には、特に限定されないが、例 えば、ポリフッ化ビニリデン(PVDF)や四フッ化工チレン エチレン共重合体(ETF E)を、例えば、無水マレイン酸などのイオン性モノマー変性したものなどが挙げられ
[0029] ポリスチレン系アイオノマーとしては、
(i) モノマー単位として、例えば、スチレンもしくはスチレン誘導体を含み、イオン性 モノマーとして、例えば、アクリル酸、メタクリル酸、スチレンカルボン酸、スチレンスル ホン酸などを含むアイオノマー、または、
(ii) モノマー単位として、例えば、ォレフィンを含み、イオン性モノマーとして、例え ば、スチレンカルボン酸、スチレンスルホン酸などを含むアイオノマー、が挙げられる
[0030] 具体的には、特に限定されないが、上記 ωの具体例として、例えば、スチレンース チレンスルホン酸共重合体、スチレン アクリル酸共重合体、スチレンーメタクリル酸 共重合体、スチレン スチレンカルボン酸共重合体、スチレン エチレンスルホン酸 共重合体などが挙げられ、上記 (ii)の具体例としては、例えば、エチレン スチレン カルボン酸共重合体、エチレン スチレンスルホン酸共重合体などが挙げられる。
[0031] ポリエステル系アイオノマーとしては、
(iii) モノマー単位として、例えば、ベンゼンジカルボン酸アルキレン類を含み、ィォ ン性モノマーとして、例えば、スルホベンゼンジカルボン酸アルキレン類、アクリル酸、 メタクリル酸、スチレンカルボン酸、エチレンスルホン酸、スチレンスルホン酸などを含 むアイオノマー、または、
(iv) モノマー単位として、例えば、ォレフィン、スチレン、スチレン誘導体、アクリル 酸モノアルキルエステル類もしくはメタクリル酸モノアルキルエステル類を含み、ィォ ン性モノマーとして、例えば、スルホベンゼンジカルボン酸アルキレン類などを含むァ ィオノマー、が挙げられる。
[0032] 具体的には、特に限定されないが、上記 (iii)の具体例として、例えば、テレフタル 酸エチレンとスルホテレフタル酸エチレンとの共重合体、イソフタル酸エチレンとスル ホイソフタル酸エチレンとの共重合体、テレフタル酸ブチレンとスルホテレフタル酸ェ チレンとの共重合体、イソフタル酸ブチレンとスルホイソフタル酸エチレンとの共重合 体などが挙げられ、上記 (iv)の具体例として、例えば、エチレンとスルホテレフタル酸 エチレンとの共重合体、エチレンとスルホイソフタル酸エチレンとの共重合体などが 挙げられる。
[0033] (メタ)アクリル系アイオノマーとしては、
(V) モノマー単位として、例えば、アクリル酸モノアルキルエステル類もしくはメタタリ ル酸モノアルキルエステル類を含み、イオン性モノマーとして、例えば、アクリル酸、メ タクリル酸などを含むアイオノマー、または、
(vi) モノマー単位として、例えば、ォレフィンを含み、イオン性モノマーとして、アタリ ル酸もしくはメタクリル酸を含むアイオノマー、が挙げられる。
[0034] 具体的には、特に限定されないが、上記 (V)の具体例として、アクリル酸ェチルーァ クリル酸共重合体、アクリル酸ェチルーメタクリル酸共重合体、メタクリル酸メチルーァ クリル酸共重合体、メタクリル酸メチルーメタクリル酸共重合体などが挙げられる。 また、アイオノマーとしては、上記以外に、例えば、スチレン一(N メチル 4—ビ ニルピリジニゥム塩)共重合体が挙げられる。
[0035] アイオノマーは、アイオノマーの架橋性と入手の容易さとの観点より、上記例示のな かでも特に、ポリオレフイン系アイオノマーが好ましい。ポリオレフイン系アイオノマー は、例えば、分子中にエチレン基(一CH CH一)を有していることから、放射線架橋 による架橋性が良好であって、架橋後において、樹脂の弾力性を維持しつつ、形状 維持温度を向上させて、ガスケットの熱変形を抑制することができる。
[0036] また、アイオノマーは、耐久性や高温での使用特性との観点より、上記例示のなか でも特に、フッ素系アイオノマーが好ましい。フッ素系アイオノマーを用いた場合には 、ガスケットの長期耐熱性を向上させることができ、高温での使用に適したガスケット が得られる。
アイオノマーの重量平均分子量は、特に限定されないが、例えば、 GPC法による 測定 (ポリスチレン換算、溶離液 THF)で、好ましくは、 500〜500万であり、より好ま しくは、 1000〜; 100万である。重量平均分子量が 500万を上回るアイオノマーは、そ の合成および入手が極めて困難である。一方、重量平均分子量が 500を下回るアイ オノマーは、架橋後においても、十分な機械的強度が得られなくなる場合があり、ガ スケットの脆弱性が顕著になる場合がある。
[0037] アイオノマーのイオン性モノマーの共重合率は、特に限定されないが、アイオノマ 一中の全モノマー単位に対するイオン性モノマー単位の含有割合(mol%)として、 好ましくは、 20mol%以下であり、より好ましくは、;!〜 20mol%であり、さらに好ましく は、;!〜 16mol%である。なお、イオン性モノマーの共重合率は、アイオノマー中での イオン性モノマーのモル分率に 100を乗じて得られる。
[0038] イオン性モノマーの共重合率が、 20mol%以下であるときは、アイオノマーの架橋 後において、弾力性と、耐熱性 (形状維持性)とのバランスが良好となる。なお、ィォ ン性モノマーの共重合率が、 lmol%を下回ると、アイオノマーの架橋性が低くなつて 、耐熱性が損なわれる(熱変形が生じ易くなる)場合がある。逆に、 20mol%を上回る と、アイオノマーの架橋性が高くなつて、架橋後において弾力性が損なわれる場合が ある。
[0039] また、アイオノマーの中和度は、アイオノマーを形成するモノマー単位の種類、塩を 形成するカチオンの種類などによって大きく変動するため、特に限定されないが、一 般に、好ましくは、 5〜60%である。なお、中和度は、イオン性モノマー中に含まれる イオン性官能基の塩への変換率を示す。
中和度が、 5〜60%であるときは、アイオノマーのガスバリア性と耐吸湿性とのバラ ンスを良好なものとすることができる。一方、中和度が 5%を下回ると、耐吸湿性が向 上するものの、ガスバリア性が低下する場合がある。逆に、中和度が 60%を上回ると 、ガスバリア性が向上するものの、耐吸湿性が低下する場合がある。
[0040] アイオノマーは、市販品として入手可能であり、市販品としては、例えば、三井'デュ ボンポリケミカル (株)製の商品名「ハイミラン (登録商標)」シリーズ (アイオノマー樹脂 )、同社製の「二ユタレル (登録商標)」シリーズ (エチレン—メタクリル酸共重合体)、三 井化学 (株)製の商品名「アドマー(登録商標)」シリーズ (変性ポリオレフイン;但し、ポ リオレフインに導入された官能基として、カルボキシル基ゃジカルボン酸無水物を含 むもの。)などが挙げられる。
[0041] また、フッ素系アイオノマーとしては、例えば、デュポン社製の商品名「ナフイオン( 登録商標)」シリーズ (パーフルォロスルホン酸ーテトラフルォロエチレン共重合体)、 ダイキン工業 (株)製の商品名「ネオフロン ETFE」シリーズ(四フッ化工チレンーェチ レン共重合体 (ETFE) )のマレイン酸変性物などが挙げられる。
上記アイオノマーは、例えば、放射線架橋、化学架橋、シラン架橋などにより架橋 すること力 Sでき、なかでも、放射線架橋により架橋することが好適である。
[0042] 放射線架橋としては、電子線架橋、 α線架橋、 γ線架橋、 0線架橋、中性子線架 橋などが挙げられる力 S、工業的に、好ましくは、電子泉架橋が挙げられる。
放射線架橋の条件は、放射線の種類、ガスケットの厚みなどにあわせて、適宜設定 されることから、特に限定されないが、一般的には、放射線照射量が、好ましくは、 10 〜; !OOOkGyであり、より好ましくは、 100〜500〜kGyである。
[0043] なお、ガスケットに対する放射線照射量が多すぎるときは、ガスケットの弾力性が損 なわれる場合があり、逆に、放射線照射量が少なすぎるときは、ガスケットの耐熱性、 特に瞬間耐熱性が低下する場合がある。
化学架橋としては、架橋剤として過酸化物を用いる、いわゆる過酸化物架橋が挙げ られる。
[0044] 架橋剤としての過酸化物としては、例えば、ジクミルパーオキサイド、 2, 5—ジメチ ルー 2, 5—ジ (t—ブチルパーォキシ)へキサン (例えば、 日本油脂(株)製の「パー へキサ (登録商標) 25BJなど)などが挙げられる。 上記ガスケットは、アイオノマー以外に、他のポリマーを含有していてもよい。
他のポリマーとしては、例えば、ポリオレフイン、ポリエステル、ポリ尿素、ポリカーボ ネート、ポリウレタン、ポリアクリル、フッ素樹脂、フッ素系エラストマ一、ポリオレフイン 系エラストマ一、ポリフエ二レンスルフイド(PPS)、ポリエーテルエーテルケトン(PEE K)などが挙げられ、好ましくは、ポリオレフインが挙げられる。
[0045] また、ポリオレフインとしては、例えば、ポリエチレン、ポリプロピレン、エチレンーェ チルアタリレート共重合体(EEA)、エチレン 酢酸ビュル共重合体(EVA)、ポリ環 状ォレフインなどが挙げられ、なかでも、好ましくは、ポリエチレンが挙げられ、より好 ましくは、高密度ポリエチレンが挙げられる。
なお、上記他のポリマーは、アイオノマーとの相溶性が良好なポリマーであることが 好ましぐこの観点より、一般的には、ポリオレフインが挙げられる力 例えば、ポリエス テル系アイオノマーが用いられるときは、他のポリマーとして、ポリエステルが好ましく 、なかでも、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナ フタレートなどがより好ましレ、。
[0046] 上記ガスケットを形成するポリマー成分中の、アイオノマーの含有割合は、ガスケッ トを形成するポリマー成分の全重量に対し、好ましくは、 20〜; 100重量%であり、より 好ましくは、 50〜100重量0 /0であり、さらに好ましくは、 70〜100重量0 /0である。アイ オノマーの含有割合が、 20重量%を下回るときは、本発明の所期の効果が得られな くなる場合がある。
[0047] 上記ガスケットは、さらに、架橋助剤を含有していてもよい。
架橋助剤としては、例えば、トリアリルイソシァネート (TAIC)、ジァリルイソシァネー オールジ(メタ)アタリレート、ポリエチレングリコールジ(メタ)アタリレート、ペンタエリス ルトールジ(メタ)アタリレート、ジペンタエリスリトールへキサアタリレート、トリメチロー ノレプロノ ンアタリレート、ジビニノレベンゼン、トリビニノレベンゼン、へキサメチノレべンゼ ンなどが挙げられ、好ましくは、 TAIC力 S挙げられる。
[0048] 架橋助剤の配合により、アイオノマー同士の架橋性、または、アイオノマーと、他の ポリマーその他の配合成分との架橋性を向上させることができる。例えば、架橋助剤 の配合により、アイオノマーの側鎖のイオン性官能基と、様々な反応性官能基を有す る化合物との架橋や、アイオノマーの側鎖のイオン性官能基と、他のアイオノマーの 主鎖(特に、主鎖中のメチレン部分)との結合が可能になり、この架橋または結合によ り、ガスケットの機械的強度などが向上させることができる。また、例えば、アイオノマ 一を放射線架橋により架橋する場合には、架橋助剤の配合により、放射線の照射量 を低減させつつ、架橋密度を向上させることができる。
[0049] なお、架橋助剤による架橋構造としては、例えば、イオン性官能基として、カルボキ シル基を含有するアイオノマーでは、カルボキシル基とヒドロキシル基との反応による エステル結合や、カルボキシル基とアミノ基との反応によるアミド結合が挙げられる。 また、イオン性官能基として、スルホ基を含有するアイオノマーでは、スルホ基とアミノ 基との反応によるスルホンアミド結合などが挙げられる。
[0050] 架橋助剤は、任意の配合成分であることから、その配合量は特に限定されないが、 例えば、好ましくは、アイオノマー 100重量部に対し、 10重量部以下である。
上記ガスケットは、さらに、充填剤を含有していてもよい。
充填剤としては、例えば、シリカ、カオリン、クレー、有機化クレー、タルク、マイ力、 ァノレミナ、炭酸カルシウム、テレフタル酸カルシウム、酸化チタン、リン酸カルシウム、 フッ化カルシウム、フッ化リチウム、架橋ポリスチレン、チタン酸カリウムなどが挙げら れ、なかでも、好ましくは、シリカが挙げられる。また、これら充填剤は、好ましくは、微 粒子状の形態で配合される。
[0051] ガスケット中に、シリカなどの充填剤を配合したときは、特に、高温状態でのガスケッ トに対し、その変形や硬度の低下を抑制することができる。
充填剤の配合量は、特に限定されないが、例えば、好ましくは、ガスケットを形成す るポリマー成分 100重量部に対し、;!〜 100重量部であり、より好ましくは、 10〜50重 量部である。
[0052] 上記ガスケットは、アイオノマーに、必要に応じて、他のポリマー、架橋助剤および 充填剤を配合後、二軸押出機などで混合して、所望の形状に成形し、次いで、架橋 すればよい。
また、金属イオンを含有していない、エチレンと、アクリル酸またはメタクリル酸との 共重合体に対し、ァセチルアセトン金属錯体、酸化金属、脂肪酸金属塩などを、適 宜添加して、上記共重合体に対してイオン架橋を導入し、これを成形加工することに より、アイオノマーとしてもよい。
[0053] 金属イオンを含まないエチレンとアクリル酸共重合体であって、成形加工によりアイ オノマーに変換可能な樹脂は、市販品として入手可能であり、市販品としては、例え ば、三菱化学 (株)製の商品名「ユカロン EAA」などが挙げられる。
上記ガスケットは、温度 350°C、周波数 10Hzの条件で測定された引張貯蔵弾性率 E'が、好ましくは、 1 X 106Pa以上である。
[0054] 上記条件下での引張貯蔵弾性率 E'が上記範囲内にあるときは、 350°Cという高温 条件下においても、ガスケットによって、十分なゴム弾性を発揮させることができる。そ れゆえ、上記条件下での引張貯蔵弾性率 E'を上記範囲内に設定することで、本発 明のガスケットに、優れたシール性と耐熱性とを付与することができる。
また、上記ガスケットは、金属板の表面に対し、 200〜300°C、;!〜 lOMPaの条件 で圧着したときの剥離接着強さ力 好ましくは、 10N/15mm以上である。
[0055] 金属板の表面に対する剥離接着強さが、上記範囲であるときは、金属板の熱膨張' 収縮に伴う変形に対し、ガスケットを追従させることができる。それゆえ、例えば、ガス ケットを、金属板と他の部材との間に介装させた場合において、金属板および他の部 材間のシールを、金属板と他の部材との間でのガスケットの圧縮変形だけではなぐ 金属板とガスケットの接着によっても達成することができ、ガスケットの小型化、薄型 ィ匕にあ対応させること力でさる。
[0056] 上記剥離接着強さにおいて、金属板としては、これに限定されないが、好ましくは、 アルミニウム板が挙げられる。なお、金属板がアルミニウム板である場合において、上 記条件による剥離接着強さが、上記範囲を満たすときは、アルミニウム板の熱膨張- 収縮に伴う変形に対し、ガスケットを追従させることができる。
また、上記ガスケットは、優れた絶縁性を発揮するという観点より、その体積抵抗率 P力 好ましくは、 1 Χ 108 Ω · «η以上である。
[0057] 本発明のガスケットは、上述のとおり、優れた耐電解液性や絶縁性を有して!/、るだ けでなぐ優れたシール性と、優れた耐熱性(特に、瞬間耐熱性)とを兼ね備えている 。このため、例えば、密閉型二次電池において、正極端子と負極端子との間に配置 され、両端子間の絶縁、短絡防止や、電解液の漏出防止を達成するためのガスケッ トとして、または、例えば、電解コンデンサにおいて、外装体と封口体との間に配置さ れ、両者間のシールおよび電解液の漏出防止を達成するためのガスケットとして、好 適である。
[0058] 図 1は、本発明の密閉型二次電池の一実施形態を示す一部切り欠き斜視図である 図 1において、この密閉型二次電池 10は、いわゆる角型の密閉型二次電池であつ て、正極板 11、負極板 12およびこれらの間に介装される 2枚のセパレータ 13, 14を 有する極板群ならびにこの極板群を浸漬するための電解液(図示せず)を含む電池 素子 15と、この電池素子 15を収容し、正極板 11と電気的に接続される電池ケース 1 6と、この電池ケース 16の開口を封止し、電池ケース 16と電気的に接続される封口 体 17と、電池ケース 16の内部に配置され、かつ、封口体 17に設けられた貫通孔から 、電池ケース 16の外部へ露出するように介装されて、負極板 12と電気的に接続され る負極端子 18と、この負極端子 18と封口体 17との間に介装されて、封口体 17およ び負極端子 18間を絶縁するガスケット 19と、を備えてレ、る。
[0059] 図 1において、一部を切り欠いて示すように、電池素子 15のうち、正極板 11、負極 板 12および 2枚のセパレータ 13, 14を有する極板群は、正極板 11と負極板 12とを 1 枚のセパレータ 13を介して重ね合わせ、さらに、その負極板 12側表面に、他の 1枚 のセパレータ 14を積層後、得られた積層体を、その正極板 11側を外側とし、他の 1 枚のセパレータ 14を内側として、巻き重ねて、上面視で略矩形状となるように押し広 げられている。
[0060] 正極板 11は、正極集電体の片面または両面に、正極ペーストを塗着、乾燥、圧延 して形成された正極活物質層を有している。また、正極板 11のうち、電池素子 15の 最表面に現れている部分には、正極活物質層が形成されていない無地部が設けら れており、この無地部には、正極板 11と電池ケース 16の底面 20とを電気的に接続 するための正極リード 21が溶接されている。
[0061] 正極集電体の形成材料は、例えば、アルミニウム、アルミニウム合金、銅などが挙げ られる。正極集電体の厚みは、特に限定されないが、好ましくは、 10 60 111である また、正極集電体の表面には、ラス加工やエッチング処理がされていてもよい。 正極ペーストは、正極活物質と、結着剤と、分散媒と、その他、必要に応じて、導電 剤、増粘剤などを配合し、これらを混合して調製される。
[0062] 正極活物質としては、特に限定されないが、例えば、リチウムイオンをゲストとして受 け入れることのできるリチウム含有遷移金属化合物が挙げられる。具体的には、例え ば、コバルト、マンガン、ニッケル、クロム、鉄およびバナジウムから選ばれる少なくとも 1種の遷移金属と、リチウムとの複合金属酸化物や、遷移金属カルコゲン化物、バナ ジゥム酸化物のリチウム化物、ニオブ酸化物のリチウム化物などが挙げられる。
[0063] 上記遷移金属とリチウムとの複合金属酸化物としては、例えば、 Li CoO Li MnO
Li NiO LiCrO a LiFeO LiVO , Li Co Ni O Li Co M O Li Ni M
2 x 2 2 2 2 x y l~y 2 x y l - y z x l— y
O Li Mn O Li Mn M Oで示される複合金属酸化物(式中、 Mは、 Na Mg y z x 2 4 x 2-y y 4
Sc Y Mn Fe Co Ni Cu Zn Al Cr Pb Sbおよび Bよりなる群力、ら選ば、れ る少なくとも 1種の元素を示し、 Xは、 0—1. 2 yは、 0—0. 9 zは、 2. 0—2. 3を、そ れぞれ示す。)が挙げられる。なお、上記式中の Xは、充放電により増減する。
[0064] これら正極活物質は、単独で用いてもよぐ 2種以上を組み合わせて用いてもよい。
また、正極活物質の平均粒径は、特に限定されないが、好ましくは、;!〜 30 111であ o
正極ペーストの結着剤、導電剤、増粘剤および分散媒としては、従来と同様のもの が挙げられる。
具体的に、結着剤としては、ペーストの分散媒に溶解または分散できるものであれ ば特に限定されず、例えば、フッ素系結着剤、アクリルゴム、変性アクリルゴム、スチ レン ブタジエンゴム(SBR)、アクリル系重合体、ビュル系重合体などが挙げられる 。これら結着剤は単独で用いてもよぐ 2種以上を組み合わせて用いてもよい。なお、 フッ素系結着剤として、好ましくは、例えば、ポリフッ化ビニリデン、フッ化ビニリデンと 六フッ化プロピレンの共重合体、ポリテトラフルォロエチレンなどが挙げられる。
[0065] 導電剤としては、例えば、アセチレンブラック、グラフアイト、炭素繊維などが挙げら れる。これら導電剤は、単独で用いてもよぐ 2種以上を組み合わせて用いてもよい。 増粘剤としては、例えば、エチレン—ビュルアルコール共重合体、カルボキシメチ ノレセルロース、メチルセルロースなどが挙げられる。
正極ペーストの分散媒としては、上記結着剤が溶解可能な溶媒であることが好まし い。
具体的には、例えば、 N—メチル—2—ピロリドン、 N, N—ジメチルホルムアミド、テト ラヒドロフラン、ジメチルァセトアミド、ジメチルスルホキシド、へキサメチルスルホルアミ ド、テトラメチル尿素、アセトン、メチルェチルケトンなどが挙げられる。これら分散媒 は、単独で用いてもよぐ 2種以上を組み合わせて用いてもよい。
[0066] 正極ペーストは、上記した結着剤、導電剤および分散媒、その他、必要に応じて、 増粘剤などを配合し、これを、例えば、プラネタリーミキサ、ホモミキサ、ピンミキサ、二 ーダ、ホモジナイザなどを用いて混合することにより、調製される。
正極活物質層は、上記のようにして調製された正極ペーストが、例えば、スリットダイ コータ、リノく一スローノレコータ、リップコーター、ブレードコータ、ナイフコータ、グラビ アコータ、ディップコータなどのコーティング手段を用いて、正極集電体の片面または 両面に塗着され、さらに、乾燥および圧延を経ることにより、形成される。
[0067] 正極リード 21の形成材料としては、正極板 11の材質、電解液の種類、電池ケース 16の材質、正極端子としての封口体 17の材質などに合わせて設定されること以外は 、特に限定されず、従来と同様のものが挙げられる。具体的には、例えば、アルミユウ ム、ニッケルなどの金属が挙げられる。
負極板 12は、負極集電体の片面または両面に、負極ペーストを塗着、乾燥、圧延 して形成された負極活物質層を有している。また、負極板 12の一部には、負極活物 質層が形成されていない無地部が設けられており、この無地部には、負極板 12と負 極端子 18とを電気的に接続するための負極リード 22が溶接されている。
[0068] 負極集電体の形成材料としては、例えば、アルミニウム、アルミニウム合金、銅など が挙げられる。負極集電体の厚みは、特に限定されないが、好ましくは、 10〜60 mである。また、負極集電体の表面には、ラス加工やエッチング処理がされていても よい。 負極ペーストは、負極活物質と、結着剤と、分散媒と、その他、必要に応じて、導電 剤、増粘剤などを配合し、これらを混合して調製される。
[0069] 負極活物質としては、特に限定されないが、充電 ·放電によりリチウムイオンを吸蔵- 放出できる炭素材料が好ましい。具体的には、例えば、有機高分子化合物(例えば、 フエノール樹脂、ポリアクリロニトリル、セルロースなど)を焼成して得られる炭素材料、 コータスやピッチを焼成して得られる炭素材料、人造黒鉛、天然黒鉛、ピッチ系炭素 繊維、 PAN系炭素繊維などが挙げられる。これら負極活物質は、単独で用いてもよ ぐ 2種以上を組み合わせて用いてもよい。また、負極活物質の形状としては、例えば 、繊維状、球状、鱗片状、塊状などが挙げられる。
[0070] 結着剤、導電剤および増粘剤としては、従来と同様のものが用いられ、具体的には 、正極ペーストに用いられるのと同様の結着剤、導電剤および増粘剤が挙げられる。 また、分散媒としては、正極ペーストに用いられるのと同様の分散媒が挙げられる。 また、負極ペーストの調製方法や、負極活物質層の形成方法は、正極ペーストや 正極活物質の場合と同様である。
[0071] 2枚のセパレータ 13, 14は、ともに、正極板 11および負極板 12間の短絡を防止す るために設けられている。電池ケース 16内には、電池素子 15と封口板 17とが物理的 に直接に接触するのを防止するための上部絶縁板 23、および、電池素子 15と電池 ケース 16の底面 20とが物理的に直接に接触するのを防止するための下部絶縁板 2 4が設けられており、各セパレータ 13, 14は、いずれも、上部絶縁板 23と下部絶縁 板 24との双方と接触して!/、る。
[0072] 各セパレータ 13, 14の形成材料としては、高分子からなる微多孔性フィルムが挙 げられる。
微多孔性フィルムを形成する高分子としては、例えば、ポリエチレン、ポリプロピレン 、ポリフッ化ビニリデン、ポリ塩化ビニリデン、ポリアクリロニトリル、ポリアクリルアミド、ポ リテトラフノレォロエチレン、ポリスノレホン、ポリエーテノレスノレホン、ポリカーボネート、ポ リアミド、ポリイミド、ポリエーテル系化合物(例えば、ポリエチレンォキシド、ポリプロピ レンォキシドなど)、セルロース系化合物(例えば、カルボキシメチルセルロース、ヒド ロキシプロピルセルロース)、ポリ(メタ)アクリル酸およびポリ(メタ)アクリル酸エステル 力もなる群より選ばれる、少なくとも 1種の高分子が挙げられる。
また、セパレータは、上記の高分子からなる微多孔性フィルムを重ね合わせて得ら れる多層フィルムであってもよい。なかでも、ポリエチレン、ポリプロピレン、ポリフッ化 ビニリデンなどからなる微多孔性フィルムが好適である。また、セパレータ 13, 14の 厚みは、特に限定されないが、好ましくは、 15〜30 111である。
[0073] 電池ケース 16は、その一部が開口され、その内部に電池素子 15が収容されている また、電池ケース 16は、その開口端において、溶接により、封口体 17と一体化され 、電気的に接続されている。
電池ケース 16および封口体 17の形成材料としては、例えば、銅、ニッケル、ステン レス鋼、ニッケルメツキ鋼、アルミニウム、アルミニウム合金などが挙げられる。また、電 池ケース 16や封口体 17の防蝕性を高める観点より、加工後の電池ケース 16にメッ キ処理を施してもよい。また、電池ケース 16および封口体 17の形成材料は、上記例 示のなかでも、軽量でエネルギー密度の高い角型の密閉型二次電池を作製すると いう観点より、アルミニウムまたはアルミニウム合金であることが好ましい。
[0074] 電池ケース 16は、上記形成材料に、絞り加工、 DI加工などを施すことで、所望の形 状に成形される。電池ケースの形状にすることができる。
電池ケース 16と封口体 17とは、公知の溶接方法により一体化することができ、具体 的な溶接方法としては、例えば、レーザ溶接が挙げられる。
電池ケース 16と封口体 17とは、ともに、正極リード 21と電気的に接続しており、正 極の外部端子としての正極端子を構成して!/、る。
[0075] 一方、負極の外部端子としての負極端子 18は、ガスケット 19を介して、封口体 17 上に設けられた貫通孔に嵌め合わされて!/、る。
負極端子 18の形成材料としては、例えば、銅、ニッケル、ステンレス鋼、ニッケルメ ツキ鋼、ァノレミニゥム、アルミニウム合金などが挙げられる。
図 1に示す密閉型二次電池 10において、ガスケット 19としては、上記した本発明の ガスケットが用いられる。
[0076] 図 1において、ガスケット 19は、あら力、じめ、封口体 17に上に設けられた貫通孔に 装着され、封口体 17の表面に接着されている。また、この封口体 17に、ガスケット 19 を介して、負極端子 18が装着されることで、封口体 17と負極端子 18との間の絶縁が 達成される。
ガスケット 19を、封口体 17の表面に接着するには、リング状に形成されたガスケット 19を、封口体 17上の貫通孔の周縁に沿って装着し、封口体 17に対して、ガスケット 19を圧着させればよい。圧着処理は、例えば、カシメ機により、封口体 17とガスケット 19とを圧着させ、レーザ溶接により、 300°C以上に加熱すればよい。
[0077] 図 1に示す密閉型二次電池 10によれば、ガスケット 19が、封口体 17の表面に接着 されていることから、封口体 17の熱膨張 ·収縮による変形に対して、ガスケット 19を追 従させること力 Sできる。それゆえ、封口体 17の熱変形に起因する電解液の漏出や、 正極端子と負極端子との間の短絡などを、高度に抑制できる。
また、図 1に示す密閉型二次電池 10によれば、ガスケット 19として、耐熱性(特に、 瞬間耐熱性)に優れた本発明のガスケットが用いられていることから、例えば、封口 1 7と電池ケース 16とを、レーザ溶接などの公知の溶接方法により一体化する場合であ つても、溶接時の熱に対する十分な耐熱性(特に、瞬間耐熱性)を発揮することがで きる。また、それゆえ、封口体 17の熱変形に起因する電解液の漏出や、正極端子( 封口板 17)と負極端子 18との間の短絡などを、高度に抑制できる。
[0078] 図 1に示す密閉型二次電池 10において、正極板 11、負極板 12およびこれらの間 に介装される 2枚のセパレータ 13, 14を有する極板群は、電子素子 15を形成するの にあたり、巻き重ねる場合に限定されず、例えば、いわゆるつづら折り状に、折り重ね てもよい。
図 1に示す密閉型二次電池 10においては、電池ケース 16および電池ケースと電 気的に接続される封口板 17を、正極端子とし、封口板 17の貫通孔から突出された端 子を、負極端子としたが、正極および負極は、逆であってもよい。
[0079] 密閉型二次電池 10は、例えば、電池ケース 16の表面を、樹脂などの絶縁体で覆う ことにより、負極の外部端子である負極端子 18と、正極の外部端子である正極端子と しての封口体 17とを、外部に露出させてもよい。
また、密閉型二次電池 10は、充放電時に内部の圧が過剰に上昇することを防止す るために、例えば、封口板 17などに、安全弁 26を設けていてもよい。
[0080] 図 2は、本発明の密閉型二次電池の他の実施形態を示す一部切り欠き斜視図であ 図 2において、この密閉型二次電池 30は、いわゆる円筒型の密閉型二次電池であ つて、正極板 31、負極板 32およびこれらの間に介装される 2枚のセパレータ 33, 34 を有する極板群ならびにこの極板群を浸漬するための電解液(図示せず)を含む電 池素子 35と、電池素子 35を収容し、負極板 32と電気的に接続される負極端子として の電池ケース 36と、電池ケース 36の開口を封止し、正極板 31と電気的に接続される 正極端子としての封口体 37と、電池ケース 36と封口体 37との間に介装されるガスケ ット 38とを備えている。
[0081] 図 2において、一部を切り欠いて示すように、電池素子 35のうち、正極板 31、負極 板 32および 2枚のセパレータ 33, 34を有する極板群は、正極板 31と負極板 32とを 1 枚のセパレータ 33を介して重ね合わせ、さらに、その負極板 32側表面に、他の 1枚 のセパレータ 34を積層後、得られた積層体を、その正極板 31側を外側とし、他の 1 枚のセパレータ 34を内側として、巻き重ねられて!/、る。
[0082] 正極板 31は、正極集電体の片面または両面に、正極ペーストを塗着、乾燥、圧延 して形成された正極活物質層を有している。また、正極板 31の一部には、正極活物 質層が成されていない無地部が設けられており、この無地部には、正極板 31と封口 体 37とを電気的に接続するための正極リード 39が溶接されている。
正極集電体、正極ペーストおよび正極活物質としては、上記したのと同じものが挙 げられる。
[0083] 負極板 32は、負極集電体の片面または両面に、負極ペーストを塗着、乾燥、圧延 して形成された負極活物質層を有している。また、負極板 32の一部には、負極活物 質層が形成されていない無地部が設けられており、この無地部には、負極板 32と電 池ケース 36の底面 40とを電気的に接続するための負極リード 41が溶接されている。 負極集電体、負極ペーストおよび負極活物質としては、上記したのと同じものが挙 げられる。
[0084] 2枚のセパレータ 33, 34は、ともに、正極板 31および負極板 32間の短絡を防止す るために設けられている。電池ケース 36内には、電池素子 35と封口板 37とが物理的 に直接に接触するのを防止するための上部絶縁板 42、および、電池素子 35と電池 ケース 36の底面 40とが物理的に直接に接触するのを防止するための下部絶縁板 4 3が設けられており、各セパレータ 33, 34は、いずれも、上部絶縁板 42と下部絶縁 板 43との双方と接触して!/、る。
[0085] 各セパレータ 33, 34の形成材料としては、上記したのと同じものが挙げられる。
電池ケース 36は、その一部が開口され、その内部に電池素子 35が収容されており 、また、電池ケース 36の開口力 封口体 37によって封止されている。
また、電池ケース 36は、負極リード 41によって、負極板 32と電気的に接続しており 、負極の外部接続端子 (負極端子)として作用している。
[0086] また、電池ケース 36と封口体 37との間のシールは、ガスケット 38により達成されて いる。
電池ケース 36の形成材料としては、上記したのと同じものが挙げられる。また、電池 ケース 36の成形方法についても、上記と同様である。
封口体 37は、キャップ 37aと、電池ケース 36内での異常な昇圧を防止するための 弁体 37bと、正極リード 39と接触させるためのプレート 37cとを有している。
[0087] また、封口体 37は、正極リード 39によって、正極板 31と電気的に接続しており、こ のうち、キャップ 37aは、正極の外部接続端子(正極端子)として作用している。
キャップ 37a、弁体 37bおよびプレート 37cの形成材料としては、図 1に示す密閉型 二次電池 10の封口体 17と同様である。
図 2に示す密閉型二次電池 30において、ガスケット 38としては、上記した本発明の ガスケットが用いられる。
[0088] 図 2において、ガスケット 38は、リング状に成形されて、あらかじめ、電池ケース 36 の内周面の開口近傍において、圧着により接着されている。また、電池ケース 36と封 口体 37との間に、ガスケット 38を介装することにより、正極端子としての封口体 37と、 負極端子としての電池ケース 36との間の絶縁が達成される。
なお、図 2に示す密閉型二次電池 30において、ガスケット 38を、電池ケース 36の 内周面に接着するための圧着処理は、図 1に示す密閉型二次電池 10において、ガ スケット 19を、封口体 17の表面に接着するための圧着処理と同様にすればよい。
[0089] 図 2に示す密閉型二次電池 30によれば、ガスケット 38力 電池ケース 36の内周面 に接着されていることから、電池ケース 36の熱膨張 '収縮による変形に対して、ガス ケット 38を追従させることができる。それゆえ、電池ケース 36の熱変形に起因する電 解液の漏出や、正極端子と負極端子との間の短絡などを、高度に抑制できる。
図 3は、本発明の密閉型二次電池のさらに他の実施形態を示す断面図である。
[0090] 図 3において、この密閉型二次電池 50は、いわゆるボタン型の密閉型二次電池で あって、正極板 51、負極板 52、正極板 51および負極板 52間に介装されるセパレー タ 53を有する極板群ならびにこの極板群を浸漬するための電解液(図示せず)を含 む電池素子と、電池素子 54を収容し、正極板 51と電気的に接続される正極端子とし ての電池ケース 55と、電池ケース 55の開口を封止し、負極板 52と電気的に接続さ れる負極端子としての封口体 56と、電池ケース 55と封口体 56との間に介装されるガ スケット 57とを備えている。
[0091] 正極板 51は、正極集電体の両面に、正極ペーストを塗着、乾燥、圧延して形成さ れた正極活物質層を有している。正極集電体、正極ペーストおよび正極活物質とし ては、上記したのと同じものが挙げられる。
負極板 52は、負極集電体の片面または両面に、負極ペーストを塗着、乾燥、圧延 して形成された負極活物質層を有している。負極集電体、負極ペーストおよび負極 活物質としては、上記したのと同じものが挙げられる。
[0092] セパレータ 53は、正極板 51および負極板 52間の短絡を防止するために設けられ ている。セパレータ 53の形成材料としては、上記したのと同じものが挙げられる。 電池ケース 55は、その一部が開口され、その内部に電池素子 54が収容されている また、電池ケース 55は、その開口に、封口体 56を備えており、電池ケース 55と封 口体 56との間のシール力 ガスケット 57により達成されている。
[0093] 電池ケース 55の形成材料としては、上記したのと同じものが挙げられる。また、電池 ケース 55の成形方法についても、上記と同様である。
封口体 56の形成材料としては、図 1に示す密閉型二次電池 10の封口体 17と同様 である。
図 3に示す密閉型二次電池 50において、ガスケット 57としては、上記した本発明の ガスケットが用いられる。
[0094] 図 3において、ガスケット 57は、リング状に成形されて、あらかじめ、電池ケース 55 の内周面の開口近傍において、圧着により接着されている。また、電池ケース 55と封 口体 56との間に、ガスケット 57を介装することにより、正極端子としての電池ケース 5 5と、負極端子としての封口体 56と、との間の絶縁が達成される。
なお、図 3に示す密閉型二次電池 50において、ガスケット 57を、電池ケース 55の 内周面に接着するための圧着処理は、図 1に示す密閉型二次電池 10において、ガ スケット 19を、封口体 17の表面に接着するための圧着処理と同様にすればよい。
[0095] 図 3に示す密閉型二次電池 50によれば、ガスケット 57力 電池ケース 55の表面に 接着されていることから、電池ケース 55の熱膨張 '収縮による変形に対して、ガスケッ ト 57を追従させること力 Sできる。それゆえ、電池ケース 55の熱変形に起因する電解液 の漏出や、正極端子と負極端子との間の短絡などを、高度に抑制できる。
図 4は、本発明の電解コンデンサの一実施形態を示す一部切り欠き斜視図である。
[0096] 図 4において、この電解コンデンサ 70は、いわゆるスナップインタイプの電解コンデ ンサであって、正極箔 71、負極箔 72およびこれらの間に介装される 2枚のセパレー タ 73, 74有する電極箔群ならびにこの電極箔群を浸漬するための電解液(図示せ ず)を含むコンデンサ素子 75と、コンデンサ素子 75を収容するための、一部が開口 されている外装体 76と、外装体 76の開口を封止するための封口体 77と、外装体 76 と封口体 77との間を密閉するためのガスケット 78とを備えて!/、る。
[0097] 図 4において、一部を切り欠いて示すように、コンデンサ素子 75のうち、正極箔 71、 負極箔 72および 2枚のセパレータ 73, 74有する電極箔群は、正極箔 71と負極 72と を 1枚のセパレータ 73介して重ね合わせ、さらに、その負極箔 72側表面に、他の 1枚 のセパレータ 74を積層後、得られた積層体を、その正極箔 71側を外側とし、他の 1 枚のセパレータ 74を内側として、巻き重ねられて!/、る。
[0098] 正極箔 71は、正極集電体の片面または両面に、正極ペーストを塗着、乾燥、圧延 して形成された正極活物質層を有している。また、正極箔 71の一部には、正極活物 質層が形成されていない無地部が設けられており、この無地部には、正極リード 80 が溶接されており、さらに、この正極リード 80は、正極端子 79と電気的に接続されて いる。また、これにより、正極端子 79が、正極箔 71と電気的に接続する。
[0099] 正極集電体、正極ペーストおよび正極活物質としては、上記したのと同じものが挙 げられる。
負極箔 72は、負極集電体の片面または両面に、負極ペーストを塗着、乾燥、圧延 して形成された負極活物質層を有している。また、負極箔 72の一部には、負極活物 質層が形成されていない無地部が設けられており、この無地部には、負極リード 82 が溶接されており、さらに、この負極リード 82は、負極端子 81と電気的に接続されて いる。また、これにより、負極端子 81が、負極箔 72と電気的に接続する。
[0100] 負極集電体、負極ペーストおよび負極活物質としては、上記したのと同じものが挙 げられる。
2枚のセパレータ 73, 74は、ともに、正極箔 71および負極箔 72間の短絡を防止す るために設けられている。電池ケース 76内には、コンデンサ素子 75と、正極端子 79 や負極端子 81との直接の接触を防止するための上部絶縁板 83、および、コンデン サ素子 75と外装体 76の底面 84との直接の接触を防止するための下部絶縁板 85が 設けられており、各セパレータ 73, 74は、いずれも、上部絶縁板 83と下部絶縁板 85 との双方と接触している。
[0101] 各セパレータ 73, 74の形成材料としては、上記したのと同じものが挙げられる。
外装体 76は、その一部が開口され、その内部にコンデンサ素子 75が収容されてい また、外装体 76は、その開口に、封口体 77を備えており、外装体 76と封口体 77と の間のシールが、ガスケット 78により達成されている。
[0102] 外装体 76の形成材料としては、図 1に示す密閉型二次電池 10の電池ケース 16と 同じであって、外装体 76の成形方法についても、上記と同様である。
図 4に示す電解コンデンサ 70において、ガスケット 78としては、上記した本発明の ガスケットが用いられる。
図 4において、ガスケット 78は、リング状に成形されて、あらかじめ、外装体 76の内 周面の開口近傍において、圧着により接着されている。また、外装体 76と封口体 77 との間に、ガスケット 78を介装することにより、外装体 76と封口体 77との間からの電 解液の漏出が防止されてレ、る。
[0103] なお、図 4に示す電解コンデンサ 70において、ガスケット 78を、外装体 76の内周面 に接着するための圧着処理は、図 1に示す密閉型二次電池 10において、ガスケット 19を、封口体 17の表面に接着するための圧着処理と同様にすればよい。
上記の電解コンデンサ 70によれば、ガスケット 78力、外装体 76の表面に接着され ていること力、ら、外装体 76の熱膨張 '収縮による変形に対して、ガスケット 78を追従さ せること力 Sできる。それゆえ、外装体 76の熱変形に起因する電解液の漏出を、高度 に抑制できる。
[0104] 本発明のガスケットは、例えば、インサート成形により、電極などの導電性基板と一 体化されたインサート品として提供することができ、また、導電性基板などの成形品に 対し、アウトサート成形により一体化したアウトサート品として提供することもできる。 また、本発明のガスケットは、剛体 (例えば、基板)との一体成形物として成形後、ガ スケット部分の表面に樹脂めつきを施し、上記剛体との間の絶縁が実現された電極 き 才として提供することもできる。
[0105] 本発明のガスケットは、上述したように、アイオノマーが架橋されており、これにより、 電解液による膨潤を抑制すること力 Sできる。また、架橋アイオノマーは、非架橋のアイ オノマーに比べると、金属板に対する接着性が低くなるものの、アイオノマー中に含 まれて!/、るイオン性官能基の含有割合を増加させることで、十分な接着性を保持でき る。それゆえ、本発明のガスケットは、例えば、極めて微小な導体(リード線)の表面に 薄層のガスケットが固定されているような部材(具体的には、例えば、住友電気工業( 株)製の Liイオン電池用リード線、商品名「タブリード (TAB LEAD」 )などへの使用 に好適である。特に、本発明のガスケットは、ガスケットとしてのシール性 (密閉性)に 優れているだけでなぐ上記のとおり、電解液による膨潤が抑制され、金属板に対す る接着性が保持されていることから、導体(リード線)の表面に薄層のガスケットを固定 する際に、接着層を介在させる必要がなくなる。このため、ガスケットのより一層の薄 層化 '薄膜化を実現でき、その結果として、電池容量の増加、電池の小型化、電池の 製造コストの低減などを実現できる。
[0106] なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示 にすぎず、限定的に解釈してはならない。上記発明の属する技術分野の当業者によ つて明らかな本発明の変形例は、本願の特許請求の範囲に含まれるものである。 実施例
[0107] 次に、実施例を挙げて本発明を説明する力 本発明は、下記の実施例によって限 定されるものではない。
以下の実施例および比較例で使用した成分は、次のとおりである。
'エチレン—アクリル酸塩共重合体:イオン種 亜鉛、品番「1706」、三井 'デュポンポ リケミカル (株)製.マレイン酸変性四フッ化工チレン エチレン共重合体(マレイン酸 変性 ETFE):四フッ化工チレン エチレン共重合体(ETFE ;商品名「ネオフロン ET FEJ、ダイキン工業(株)製)のマレイン酸変性物 .無水マレイン酸変性ポリプロピレン (無水マレイン酸変性 PP):商品名「アドマー(登録商標) QF551」、三井化学 (株)製 •高密度ポリエチレン:品名「ハイゼックス(登録商標) 5305」、プライムポリマー(株) 製.四フッ化工チレン エチレン共重合体(ETFE):商品名「ネオフロン ETFE」、ダ ィキン工業 (株)製
•架橋助剤:トリアリルイソァシァネート (TAIC) ·充填剤:シリカ
実施例;!〜 5、比較例;!〜 3
(1) ガスケットのサンプルの作製
各実施例および比較例について、表 1に示す成分を配合し、得られた樹脂組成物 を、二軸押出機で混合後、射出成形して、長さ 50mm、幅 60mm、厚さ 2mmの板状 に成形した。次いで、この板状体に、照射線量が 240kGyとなるように調整して電子 線を照射し、架橋されたサンプルを得た。
[0108] サンプル (架橋体)の動的粘弾性特性として、上記サンプルについての温度 350°C 、周波数 10Hzでの引張貯蔵弾性率 E' (MPa)を、動的粘弾性スぺクトロメータ(DM S)により測定した。
なお、上記したサイズのサンプルの場合、温度 350°C、周波数 10Hzでの引張貯蔵 弹生率 E'は、 1. OMPa以上であることが求められる。 [0109] (2) ガスケットのサンプルの物性評価
次に、上記(1)で得られたサンプル (架橋体)を、アルミニウム箔(幅 15mm、厚さ 0 . 1mm)の表面に重ね合わせ、 300°C、 lOMPaの条件で、 10秒間プレスした。 こうして得られた、サンプル (架橋体)とアルミニウム箔との複合体(幅 15mm)を用 V、て、サンプル (架橋体)とアルミニウム箔との剥離接着強さ(N/15mm)を測定した 。その結果を下記の表 1に示す。
[0110] なお、上記サンプル (架橋体)と、アルミニウム箔との剥離接着強さ(N/15mm)は 、JIS K 6256: 「加硫ゴム及び熱可塑性ゴムの接着試験方法」に記載の方法に
1999
準じて、測定した。
さらに、上記サンプル (架橋体)のうち、実施例 1および比較例 1の樹脂組成物を用 いて得られたサンプル (架橋体)については、それぞれ、圧縮率 50%の時の残留弹 性率(50%残留弾性率)を測定した。その結果を、下記の表 1に示す。
[0111] なお、 50%残留弾性率とは、上記サンプルを構成する樹脂の体積を 50%に圧縮 した状態での厚みに対し、圧縮状態を解除した状態での厚みの増加量を求め、圧縮 状態の厚みを基準として、その増加分の割合を百分率で表した値である。
50%残留弾性率は、具体的には、例えば、図 5 (a)〜図 5 (c)に示されるようにして 測定される。まず、図 5 (a)および図 5 (b)を参照して、上記サンプルを構成する樹脂 力、らなるテストピース 90 (厚み )を、上部金型 91aと下部金型 91bを用いて、シム 92
0
の厚み tまで圧縮する。次いで、図 5 (b)に示す状態で、テストピース 90を 100°Cの
1
環境下で 2日間放置し、その後、図 5 (c)に示すように、圧縮状態を解除し、圧縮状態 解除後のテストピース 90の厚み tを測定する。残留弾性率 M (%)は、テストピース 9 0の圧縮時の厚み tと、圧縮状態解除後の厚み tとから、下記式(1)により算出される
1 2
。また、圧縮状態でのテストピース 90の圧縮率 C (%)は、下記式(2)により算出され [0112] M= ( (t -t ) /t ) X 100
2 1 1
C= ( (t -t ) /t ) X 100 · ' · (2)
0 1 0
(3) 密閉型二次電池の作製およびその物性評価
次に、以下に示すようにして、図 1に示す角型の密閉型二次電池 10を作製した。 LiCo〇2 (正極活物質)と、カーボンブラック(導電剤)と、ポリ四フッ化工チレン (結 着剤)の水性ディスパージヨンとを、固形分の重量比で 100: 3: 10の割合で混鍊分 散させ、得られたペーストを、ドクターブレード方式により、アルミニウム箔からなる集 電体(厚さ 30 m)の両面に、厚さが約 230 mとなるように塗布し、乾燥した。次い で、上記ペーストの塗膜を、厚さが 180 mとなるように圧延し、所定寸法に切断して 正極板 11を得た。
[0113] また、主材料としての炭素質材料とスチレンブタジエンゴム系結着剤とを、重量比で
100 : 5の割合で混鍊分散させ、得られたペーストを、ドクターブレード方式により、銅 箔からなる集電体(厚さ 20 m)の両面に、厚さが約 230 mとなるように塗布し、乾 燥した。次いで、上記ペーストの塗膜を、厚さが 180 mとなるように圧延し、所定寸 法に切断して負極板 12を得た。
[0114] 各実施例および比較例について、表 1に示す成分を配合して得られた樹脂組成物 を、二軸押出機で混合後、射出成形により断面略 U字形のリング状に成形した。次い で、得られたリング状の樹脂組成物に、照射線量が lOOkGyとなるように調整して電 子線を照射し、架橋されたガスケット 19を得た。
次に、各実施例および比較例の樹脂組成物からなるガスケット 19を、アルミニウム 合金製である封口体 17の負極端子 18用揷入孔の周縁部 25に嵌め合わせ、さらに、 負極端子 18用揷入孔に負極端子 18を揷入し、負極端子 18の脚部 27をガスケット 1 9に沿うようにして(図 1参照)折り曲げた後、 200°C、 lOMPaの条件で、 10秒間プレ スすることにより、ガスケット 19と、封口体 17および負極端子 18とを接着した。
[0115] 上記正極板 11および負極板 12を、ポリエチレン樹脂製の微多孔性フィルムからな る 2枚のセパレータ(厚さ 25 m、形状維持温度 128°C) 13, 14を介して、扁平状に 巻回し、次いで、これをプレス加工し、断面形状が略楕円状の極板群を得た。この極 板群と、この極板群を浸漬するための電解液 (エチレンカーボネートとジェチルカ一 ボネートとを、 1 : 3のモル比で含有する混合溶媒に、六フッ化リン酸リチウムを lmol /Lの濃度で溶解したもの。)と、を含む電池素子 15を、アルミニウム合金製の角型 電池ケース 16に収容し、封口体 17で封止した。なお、ガスケット 19は、封口体 17と 負極端子 18との間にかしめつけられた状態で、その圧縮率が 50%となるように設定 した。
[0116] こうして得られた角型の密閉型二次電池 10は、厚み、幅、高さの外寸がそれぞれ 5 . 3mm、 30mm, 48mmであり、その電池容量は、 800mAhであった。
次に、各実施例および比較例の樹脂組成物からなるガスケット 19が用いられた密 閉型二次電池 10を、各実施例および比較例で 10個ずつ用いて、それぞれについて 、充放電処理を 100サイクル実行した。その後、密閉型二次電池 10を外部から視認 により観察して、電解液の液漏れが生じていた電池の個数を計数し、 100サイクル後 の液漏れの状況を、下記の基準で評価した。
◎:液漏れの発生が全く観察されなかった。電解液の漏出防止効果が極めて良好で あった。
〇:液漏れの発生がごくわずか観察されたものの、電解液の漏出防止効果は良好で 、実用上十分であった。
△:液漏れの発生が観察された。電解液の漏出防止効果は、実用上不十分であった
X:液漏れの発生が顕著であって、電解液の漏出防止効果は、不十分であった。
[0117] 以上の結果を、下記の表 1に示す。
[0118] [表 1]
ぉ淤¾掛 1钿 ()5a %-%0s9- I.
Figure imgf000033_0001
表 1中、引張貯蔵弾性率 E'は、温度 350°C、周波数 10Hzでの測定値である。 表 1に示すように、実施例;!〜 5では、ガスケットが、架橋されたアイオノマーを含ん でいることから、高温での引張貯蔵弾性率が高ぐアルミニウム箔との剥離接着強さ が良好であった。また、実施例 1〜5で得られたガスケットを用いた密閉型二次電池 によれば、 100サイクルの充放電後においても、液漏れを生じなかった。
[0120] 一方、比較例;!〜 3では、ガスケットが、架橋されたアイオノマーを含んでいないこと から、高温での引張貯蔵弾性率が低ぐアルミニウム箔との剥離接着強さが不十分で あった。また、比較例 1〜3で得られたガスケットを用いた密閉型二次電池によれば、 100サイクルの充放電後に、液漏れを生じたケースが観察された。
なお、ガスケット 19として、実施例 1の樹脂組成物からなるガスケットが用いられてい る密閉型二次電池では、ガスケットの 50%残留弾性率が 4%を下回っていた。一般 に、ガスケットを密閉型二次電池に使用する場合には、ガスケットの耐漏液性や形状 維持温度の観点から、 50%残留弾性率が 4〜25%であることが好まし!/、(特許文献 1参照)。しかし、実施例 1の密閉型二次電池では、ガスケットが、架橋されたアイオノ マーからなり、正極端子または負極端子に、加熱および加圧によって接着されている ため、ガスケットの残留弾性率が 4. 0%を下回っているにもかかわらず、正極端子と 負極端子との間の密閉および絶縁を達成でき、電解液の漏出を防止できた。一方、 比較例 1の密閉型二次電池では、ガスケットが、架橋されたアイオノマーで形成され ておらず、剥離接着強さや、高温での引張貯蔵弾性率が低いことから、ガスケットの 残留弾性率が 4. 0%を上回っているにもかかわらず、正極端子と負極端子との間の 密閉および絶縁が達成されず、電解液の漏出の防止が不十分であった。
産業上の利用可能性
[0121] 本発明のガスケットと、そのガスケットを用いた密閉型二次電池および電解コンデン サによれば、上記ガスケットにより、優れた耐熱性(特に、瞬間耐熱性)や、優れた耐 電解液性および絶縁性を発揮することができ、しかも、小型または薄型であっても優 れたシール性を発揮することができ、密閉型二次電池および電解コンデンサについ て、さらなる小型化および薄型化を実現することができるので、産業上利用可能性は 極めて大きい。

Claims

請求の範囲
[1] 架橋されたアイオノマーを含むことを特徴とする、ガスケット。
[2] 前記アイオノマーが、ポリオレフイン系アイオノマーまたはフッ素系アイオノマーであ ることを特徴とする、請求項 1に記載のガスケット。
[3] 温度 350°C、周波数 10Hzの条件で測定された引張貯蔵弾性率 E'が、 IMPa以上 であり、かつ、金属板の表面に対し、 200〜400°C、 0.;!〜 lOMPaの条件で圧着し たときの剥離接着強さが、 0. IN/15mm以上であることを特徴とする、請求項 1また は 2に記載のガスケット。
[4] 正極板、負極板、および、前記正極板と前記負極板との間に介装されるセパレータ を含む電池素子と、前記正極板と電気的に接続される正極端子と、
前記負極板と電気的に接続される負極端子と、前記正極端子と前記負極端子との 間を絶縁するためのガスケットと、を備え、前記ガスケットが、請求項;!〜 3のいずれか に記載のガスケットであり、かつ、前記正極端子または前記負極端子に、加熱および 加圧により接着されていることを特徴とする、密閉型二次電池。
正極箔、負極箔、および、前記正極箔と前記負極箔との間に介装されるセパレータ を含むコンデンサ素子と、前記コンデンサ素子を収容するための、一部が開口されて いる外装体と、前記外装体の開口を封止するための封口体と、前記外装体と前記封 口体との間を密閉するためのガスケットとを備え、前記ガスケットが、請求項 1〜3のい ずれかに記載のガスケットであり、かつ、前記外装体の内側表面および前記封口体 の表面のいずれかに、加熱および加圧により接着されていることを特徴とする、電解 コンデンサ。
PCT/JP2007/069286 2006-10-06 2007-10-02 Gasket, enclosed secondary battery and electrolytic capacitor WO2008044548A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020097006952A KR101389186B1 (ko) 2006-10-06 2007-10-02 개스킷, 밀폐형 2차 전지 및 전해 콘덴서
US12/442,907 US20100104941A1 (en) 2006-10-06 2007-10-02 Gasket, enclosed secondary battery and electrolytic capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-275440 2006-10-06
JP2006275440A JP5065646B2 (ja) 2006-10-06 2006-10-06 ガスケット、およびリチウムイオン二次電池

Publications (1)

Publication Number Publication Date
WO2008044548A1 true WO2008044548A1 (en) 2008-04-17

Family

ID=39282757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/069286 WO2008044548A1 (en) 2006-10-06 2007-10-02 Gasket, enclosed secondary battery and electrolytic capacitor

Country Status (5)

Country Link
US (1) US20100104941A1 (ja)
JP (1) JP5065646B2 (ja)
KR (1) KR101389186B1 (ja)
CN (1) CN101529615A (ja)
WO (1) WO2008044548A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110072648A1 (en) * 2009-09-30 2011-03-31 Sanyo Electric Co., Ltd. Method for manufacturing sealed battery
US20110274967A1 (en) * 2008-12-16 2011-11-10 Satoshi Suzuki Sealed battery
US9312528B2 (en) * 2010-05-20 2016-04-12 Samsung Sdi Co., Ltd. Rechargeable battery and battery module

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4339923B1 (ja) * 2008-08-29 2009-10-07 睦月電機株式会社 密閉型電池
KR101093339B1 (ko) 2009-10-29 2011-12-14 삼성에스디아이 주식회사 고출력 이차전지
TWI405664B (zh) 2010-12-22 2013-08-21 Ind Tech Res Inst 有機/無機混成薄膜及其製造方法
KR101683208B1 (ko) 2011-09-22 2016-12-07 삼성에스디아이 주식회사 이차 전지 및 전지 모듈
KR101678532B1 (ko) * 2013-02-21 2016-11-22 삼성에스디아이 주식회사 배터리 모듈
JP6364812B2 (ja) * 2013-02-27 2018-08-01 三菱ケミカル株式会社 非水系電解液及びそれを用いた非水系電解液電池
KR102040192B1 (ko) * 2013-10-18 2019-11-04 삼성에스디아이 주식회사 코팅 분리막 및 이를 포함하는 전기화학소자
JP6187820B2 (ja) 2013-12-25 2017-08-30 トヨタ自動車株式会社 角型電池の製造方法
JP6164357B2 (ja) * 2014-03-06 2017-07-19 日立金属株式会社 含フッ素エラストマー組成物、並びにこれを用いた絶縁電線及びケーブル
JP6618018B2 (ja) * 2014-07-24 2019-12-11 パナソニックIpマネジメント株式会社 円筒型電池
JP2016110787A (ja) * 2014-12-04 2016-06-20 日立オートモティブシステムズ株式会社 角形二次電池
JP6540961B2 (ja) * 2016-01-26 2019-07-10 住友電気工業株式会社 電池、及びシール材
DE102016105696A1 (de) * 2016-03-29 2017-10-19 Epcos Ag Elektrolytkondensator
CN109155386A (zh) * 2016-05-20 2019-01-04 株式会社村田制作所 蓄电设备
JP6940861B2 (ja) * 2016-10-31 2021-09-29 新生化学工業株式会社 扁平状の密閉電池、及び密閉電池のガスケット製造方法
TWM547743U (zh) * 2017-06-22 2017-08-21 Lelon Electronics Corp 電解電容器
US11757153B2 (en) * 2017-07-31 2023-09-12 Panasonic Intellectual Property Management Co., Ltd. Cylindrical battery
CN111886717A (zh) * 2018-03-23 2020-11-03 三洋电机株式会社 二次电池
JP7340805B2 (ja) * 2018-11-30 2023-09-08 パナソニックIpマネジメント株式会社 電解コンデンサ
KR102596689B1 (ko) * 2023-02-13 2023-12-04 상신이디피(주) 이차전지용 부품의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60148050A (ja) * 1984-01-13 1985-08-05 Toshiba Battery Co Ltd 偏平型電池
JPH0148124B2 (ja) * 1982-05-10 1989-10-18 Hoya Corp
JP2002145982A (ja) * 2000-11-08 2002-05-22 Nippon Polyurethane Ind Co Ltd 内装材用含浸剤組成物及び内装材の製造方法
JP2003133185A (ja) * 2001-10-19 2003-05-09 Nec Tokin Corp 電気二重層コンデンサの製造方法及び電気二重層コンデンサ
JP2003197483A (ja) * 2001-12-26 2003-07-11 Nok Corp 圧力開放弁

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6448124A (en) * 1987-08-19 1989-02-22 Fujitsu Ltd Data transfer device
US5571878A (en) * 1991-09-24 1996-11-05 Chevron Chemical Company Ethylene-alkyl acrylate copolymers and derivatives having improved melt-point temperatures and adhesive strength and processes for preparing same
JP3900507B2 (ja) * 1998-11-30 2007-04-04 ソニー株式会社 非水電解質電池
JP3460805B2 (ja) * 1999-06-24 2003-10-27 日本電気株式会社 電池の製造方法
JP4993052B2 (ja) * 2001-02-19 2012-08-08 大日本印刷株式会社 リチウムイオン電池用包装材料
JP4629998B2 (ja) * 2004-04-22 2011-02-09 パナソニック株式会社 密閉型二次電池
JP4671651B2 (ja) * 2004-08-26 2011-04-20 京セラ株式会社 電池用ケースおよび電池ならびに電気二重層キャパシタ用ケースおよび電気二重層キャパシタ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0148124B2 (ja) * 1982-05-10 1989-10-18 Hoya Corp
JPS60148050A (ja) * 1984-01-13 1985-08-05 Toshiba Battery Co Ltd 偏平型電池
JP2002145982A (ja) * 2000-11-08 2002-05-22 Nippon Polyurethane Ind Co Ltd 内装材用含浸剤組成物及び内装材の製造方法
JP2003133185A (ja) * 2001-10-19 2003-05-09 Nec Tokin Corp 電気二重層コンデンサの製造方法及び電気二重層コンデンサ
JP2003197483A (ja) * 2001-12-26 2003-07-11 Nok Corp 圧力開放弁

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110274967A1 (en) * 2008-12-16 2011-11-10 Satoshi Suzuki Sealed battery
US8551649B2 (en) * 2008-12-16 2013-10-08 Toyota Jidosha Kabushiki Kaisha Sealed battery
US20110072648A1 (en) * 2009-09-30 2011-03-31 Sanyo Electric Co., Ltd. Method for manufacturing sealed battery
US9312528B2 (en) * 2010-05-20 2016-04-12 Samsung Sdi Co., Ltd. Rechargeable battery and battery module

Also Published As

Publication number Publication date
US20100104941A1 (en) 2010-04-29
JP5065646B2 (ja) 2012-11-07
KR101389186B1 (ko) 2014-04-24
JP2008097882A (ja) 2008-04-24
CN101529615A (zh) 2009-09-09
KR20090073133A (ko) 2009-07-02

Similar Documents

Publication Publication Date Title
JP5065646B2 (ja) ガスケット、およびリチウムイオン二次電池
JP5621772B2 (ja) 二次電池用電極及び二次電池
US20030118904A1 (en) Electrode for lithium secondary battery and lithium secondary battery and method of manufacturing same
US8383271B2 (en) Electrode and method for manufacturing the same
US20110269012A1 (en) Galvanic element with composite of electrodes, and separator formed by an adhesive
US7462420B2 (en) Electrode with a phase-separated binder that includes a vinylidene fluoride binder polymer and a polyether polar polymer with a lithium salt
JP2007157412A (ja) リチウムイオン電池タブ及びその製造方法並びにそれを用いたリチウムイオン電池
CN105190945A (zh) 薄型电池
JP6951002B2 (ja) 二次電池用電解液、これを含むバッテリーおよびフレキシブルバッテリー
JP2001256933A (ja) 電池及び電池パック
US20210036376A1 (en) Flexible battery, method for manufacturing thereof and supplementary battery comprising the same
EP3683860A1 (en) Separator for non-aqueous secondary battery and non-aqueous secondary battery
JP2008041504A (ja) 非水電解質電池
KR101141058B1 (ko) 열 안정성이 향상된 이차전지
JP2021512464A5 (ja)
JP2021512464A (ja) フレキシブルバッテリー、この製造方法およびこれを含む補助バッテリー
JP2021512465A5 (ja)
JP4595302B2 (ja) バイポーラ電池
JP2013131381A (ja) 非水電解質二次電池
JP2024026624A (ja) パウチフィルム積層体、パウチ型電池ケースおよびパウチ型二次電池
JP4629998B2 (ja) 密閉型二次電池
JP4942249B2 (ja) リチウムイオン二次電池の製造方法
WO2011002014A1 (ja) 二次電池用正極及び二次電池
JP3494607B2 (ja) リチウム二次電池
KR20200003559A (ko) 이차전지용 리드 탭 필름 및 이를 포함하는 이차전지

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780037441.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07829026

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020097006952

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07829026

Country of ref document: EP

Kind code of ref document: A1