WO2011002014A1 - 二次電池用正極及び二次電池 - Google Patents

二次電池用正極及び二次電池 Download PDF

Info

Publication number
WO2011002014A1
WO2011002014A1 PCT/JP2010/061129 JP2010061129W WO2011002014A1 WO 2011002014 A1 WO2011002014 A1 WO 2011002014A1 JP 2010061129 W JP2010061129 W JP 2010061129W WO 2011002014 A1 WO2011002014 A1 WO 2011002014A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
mass
electrode active
parts
Prior art date
Application number
PCT/JP2010/061129
Other languages
English (en)
French (fr)
Inventor
康尋 脇坂
庸介 薮内
拓己 杉本
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2011520951A priority Critical patent/JP5682557B2/ja
Publication of WO2011002014A1 publication Critical patent/WO2011002014A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode for a secondary battery, a method for producing the same, and a secondary battery using the positive electrode for a secondary battery.
  • a polymer serving as a binder is usually dispersed or dissolved in a liquid medium such as water or an organic solvent, and an electrode active material and a conductive agent such as conductive carbon are mixed with the polymer to obtain a slurry.
  • the slurry is applied to the current collector and dried to bind the electrode active material layer to the current collector.
  • the battery capacity depends on the ratio of the electrode active material in the electrode active material layer.
  • the rate characteristic is affected by the ease of electron movement, an increase in the amount of the conductive agent in the electrode active material is effective for improving the rate characteristic.
  • a positive electrode for a secondary battery that is excellent in low swelling property of the binder, binding force with the electrode active material, flexibility of the electrode active material layer, and excellent cycle characteristics and rate characteristics.
  • the positive electrode active material used for the positive electrode for secondary batteries of the present invention is generally selected according to the secondary battery in which the positive electrode is used.
  • Examples of the secondary battery include a lithium ion secondary battery and a nickel hydride secondary battery.
  • lithium-containing composite metal oxides having a spinel structure examples include lithium manganate (LiMn 2 O 4 ) and Li [Mn 3/2 M 1/2 ] O 4 in which a part of Mn is substituted with another transition metal (here M may be Cr, Fe, Co, Ni, Cu or the like.
  • Li X MPO 4 (wherein, M is Mn, Fe, Co, Ni, Cu, Mg, Zn, V, Ca, Sr, Ba, Ti, Al, Li X MPO 4 as the lithium-containing composite metal oxide having an olivine structure)
  • An olivine-type lithium phosphate compound represented by at least one selected from Si, B and Mo, 0 ⁇ X ⁇ 2) may be mentioned.
  • An iron-based oxide having poor electrical conductivity may be used as an electrode active material covered with a carbon material by allowing a carbon source material to be present during reduction firing. These compounds may be partially element-substituted.
  • LiCo 2 O 4 , LiMn 2 O 4 , LiNi 2 O 4 and LiFePO 4 are preferably used.
  • positive electrode active materials for secondary batteries positive electrode active materials for lithium ion secondary batteries that are most required to improve performance such as improvement of long-term cycle characteristics and output characteristics are preferred.
  • it is often used by increasing the energy density during electrode preparation and improving the energy density, and since the effect of suppressing the change in thickness after immersion is noticeable, an inorganic compound is preferable. preferable.
  • the conductivity of the active material is not too low and is used with a small amount of the conductivity-imparting material.
  • a lithium-containing composite metal oxide having a structure and a lithium-containing composite metal oxide having a spinel structure are preferable because the greatest effect can be obtained.
  • an acrylate monomer is preferable because it is electrochemically stable and high cycle characteristics can be obtained.
  • the acrylate monomer include acrylic acid, methacrylic acid or crotonic acid derivatives.
  • Preferable acrylate monomers include (meth) acrylic acid esters used for the production of acrylic soft polymers described later.
  • hydrophilic functional groups include carboxylic acid groups, hydroxyl groups, and sulfonic acid groups.
  • the hydrophilic functional group may be an acid anhydride that generates a carboxylic acid group by hydrolysis.
  • a polymerizable monomer having a hydrophilic functional group is copolymerized during the production of the exemplified polymer, or a polymerization initiator having the hydrophilic functional group is used after the polymer is formed. Can be introduced by graft polymerization.
  • Examples of the polymerizable monomer containing a carboxylic acid group include monocarboxylic acids and derivatives thereof, dicarboxylic acids, acid anhydrides, and derivatives thereof.
  • Monocarboxylic acids include acrylic acid, methacrylic acid, and acid derivatives thereof such as crotonic acid, isocrotonic acid, 2-methylisocrotonic acid, 2-ethylacrylic acid, ⁇ -acetoxyacrylic acid, ⁇ -trans-aryloxy
  • Examples include acrylic acid, ⁇ -chloro- ⁇ -E-methoxyacrylic acid, ⁇ -diaminoacrylic acid and the like.
  • polymerizable monomers containing sulfonic acid groups include vinyl sulfonic acid, methyl vinyl sulfonic acid, (meth) allyl sulfonic acid, styrene sulfonic acid, (meth) acrylic acid-2-ethylsulfonic acid, 2-acrylamide- Examples thereof include 2-methylpropanesulfonic acid and 3-allyloxy-2-hydroxypropanesulfonic acid.
  • acid anhydrides that generate carboxylic acid groups by hydrolysis include dicarboxylic acid anhydrides, such as maleic anhydride, acrylic anhydride, methyl maleic anhydride, and dimethyl maleic anhydride. Can be mentioned.
  • the positive electrode when a crosslinking agent is added to the binder for the secondary battery positive electrode and / or when the soft polymer contains a crosslinkable group, the positive electrode can be crosslinked after the positive electrode is formed, and further dissolved in the electrolytic solution. It is preferable because a tough and flexible positive electrode can be obtained.
  • Oxime / nitroso crosslinking aids such as nitrosophenol; maleimide crosslinking aids such as N, Nm-phenylenebismaleimide; allylic crosslinking aids such as diallyl phthalate, triallyl cyanurate, triallyl isocyanurate; Examples thereof include methacrylate-based crosslinking aids such as ethylene glycol dimethacrylate and trimethylolpropane trimethacrylate; vinyl-based crosslinking aids such as vinyltoluene, ethylvinylbenzene and divinylbenzene; Among these, allylic crosslinking auxiliaries and methacrylate crosslinking auxiliaries are preferable because they are easily dispersed uniformly.
  • the addition amount of the crosslinking aid is appropriately selected depending on the type of the crosslinking agent, but is usually 0.1 to 10 parts by mass, preferably 0.2 to 5 parts by mass with respect to 1 part by mass of the crosslinking agent. If the addition amount of the crosslinking aid is too small, crosslinking is difficult to occur. Conversely, if the addition amount is too large, the lithium conductivity and water resistance of the crosslinked binder may be lowered.
  • Examples of polymerizable monomers containing an oxazoline group include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl- Examples include 2-oxazoline, 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-methyl-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline and the like.
  • the content ratio of the heat-crosslinkable crosslinkable group in the acrylic soft polymer is preferably based on 100% by mass of the total amount of monomers as the amount of the monomer containing the heat-crosslinkable crosslinkable group at the time of polymerization. Is in the range of 0.1 to 10% by mass, more preferably 0.1 to 5% by mass.
  • the content ratio of the heat-crosslinkable crosslinkable group in the acrylic soft polymer can be controlled by the monomer charge ratio at the time of producing the soft polymer. When the content ratio of the heat-crosslinkable crosslinking group in the acrylic soft polymer is within the above range, elution into the electrolytic solution can be suppressed, and excellent binding properties and long-term cycle characteristics can be exhibited.
  • the heat-crosslinkable crosslinkable group is a monomer containing a soft polymer such as (meth) acrylic acid ester and a heat-crosslinkable crosslinkable group when the acrylic soft polymer is produced. It can introduce
  • the method for producing the acrylic soft polymer is not particularly limited, and any method such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method can be used.
  • the polymerization method any method such as ionic polymerization, radical polymerization, and living radical polymerization can be used.
  • the polymerization initiator used for the polymerization include lauroyl peroxide, diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, t-butyl peroxypivalate, 3,3,5-trimethylhexanoyl peroxide, and the like.
  • Organic peroxides, azo compounds such as ⁇ , ⁇ ′-azobisisobutyronitrile, ammonium persulfate, potassium persulfate, and the like.
  • the obtained acrylic soft polymer may be recovered by a normal method and dried before use, or may be used as a solution without drying after replacing the solvent from the reaction solution containing the soft polymer as necessary. You can also.
  • the dispersant examples include anionic compounds, cationic compounds, nonionic compounds, and polymer compounds.
  • a dispersing agent is selected according to the electrode active material and electroconductivity imparting material to be used.
  • the content ratio of the dispersant in the electrode is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the positive electrode active material.
  • antioxidants include phenolic compounds, hydroquinone compounds, organic phosphorus compounds, sulfur compounds, phenylenediamine compounds, and polymer type phenolic compounds.
  • the polymer type phenol compound is a polymer having a phenol structure in the molecule, and a polymer type phenol compound having a weight average molecular weight of 200 to 1000, preferably 600 to 700 is preferably used.
  • the content ratio of the antioxidant in the electrode active material layer is preferably 0.01 to 10 parts by mass, more preferably 0.05 to 5 parts by mass with respect to 100 parts by mass of the positive electrode active material. When the antioxidant is in the above range, the slurry stability, battery capacity and cycle characteristics are excellent.
  • (modified) poly means “unmodified poly” or “modified poly”
  • (meth) acryl means “acryl” or “methacryl”.
  • the content ratio of the thickener in the electrode active material layer is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the positive electrode active material.
  • various resin components can be used in combination as other binders.
  • polyethylene polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), polyacrylic acid derivatives having a glass transition temperature exceeding 15 ° C., polyacrylonitrile derivatives, etc.
  • the content ratio of the other binder in the electrode active material layer is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the electrode active material.
  • the amount of the binder is too large, the internal resistance of the battery may increase and the life characteristics may deteriorate.
  • the method for producing the positive electrode for a secondary battery of the present invention is not particularly limited as long as it is a method in which electrodes are bound in layers on at least one surface, preferably both surfaces of the current collector.
  • a positive electrode slurry described later is applied to a current collector and dried, and then heated at 120 ° C. or higher for 1 hour or longer to form an electrode.
  • the method for applying the positive electrode slurry to the current collector is not particularly limited. Examples thereof include a doctor blade method, a zip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, and a brush coating method.
  • Examples of the drying method include drying by warm air, hot air, low-humidity air, vacuum drying, and drying by irradiation with (far) infrared rays or electron beams.
  • the secondary battery positive electrode slurry used in the present invention includes the secondary battery positive electrode binder, the positive electrode active material, and the solvent described above. As a positive electrode active material, what was demonstrated by the positive electrode for secondary batteries is used.
  • solvents may be used alone or as a mixed solvent by mixing two or more of them.
  • the styrene resin used in the present invention and the acrylic soft polymer having a glass transition temperature of 15 ° C. or less are excellent in solubility, the electrode active material and the conductivity-imparting material are excellent in dispersibility, the boiling point is low, and the volatility is high.
  • the solvent is preferable because it can be removed in a short time and at a low temperature.
  • Acetone, toluene, cyclohexanone, cyclopentane, tetrahydrofuran, cyclohexane, xylene, or N-methylpyrrolidone, or a mixed solvent thereof is preferable.
  • the method for producing the secondary battery positive electrode slurry is not particularly limited, and a styrene resin and an acrylic soft polymer having a glass transition temperature of 15 ° C. or lower, a positive electrode active material, and a solvent are added as necessary. Obtained by mixing other ingredients.
  • LiPF 6 , LiClO 4 , and CF 3 SO 3 Li that are easily soluble in a solvent and exhibit a high degree of dissociation are preferable. Two or more of these may be used in combination. Since the lithium ion conductivity increases as the supporting electrolyte having a higher degree of dissociation is used, the lithium ion conductivity can be adjusted depending on the type of the supporting electrolyte.
  • carbonates are preferable because they have a high dielectric constant and a wide stable potential region. Since the lithium ion conductivity increases as the viscosity of the solvent used decreases, the lithium ion conductivity can be adjusted depending on the type of the solvent.
  • a separator for a lithium ion secondary battery a known one such as a microporous film or non-woven fabric containing a polyolefin resin such as polyethylene or polypropylene or an aromatic polyamide resin; a porous resin coat containing an inorganic ceramic powder; Can do.
  • a polyolefin resin such as polyethylene or polypropylene or an aromatic polyamide resin
  • a porous resin coat containing an inorganic ceramic powder can do.
  • lithium alloys such as lithium metal, Li—Al, Li—Bi—Cd, and Li—Sn—Cd, lithium transition metal nitride, silicon, and the like can be used.
  • the electrode active material a material obtained by attaching a conductivity imparting material to the surface by a mechanical modification method can also be used.
  • the particle size of the negative electrode active material is appropriately selected in consideration of other constituent elements of the battery. From the viewpoint of improving battery characteristics such as initial efficiency, load characteristics, and cycle characteristics, a 50% volume cumulative diameter is usually The thickness is 1 to 50 ⁇ m, preferably 15 to 30 ⁇ m.
  • the content ratio of the negative electrode active material in the electrode active material layer of the negative electrode is preferably 90 to 99.9% by mass, more preferably 95 to 99% by mass.
  • the electrode for a lithium ion secondary battery negative electrode is formed by forming a negative electrode active material comprising a negative electrode active material and a binder on a current collector.
  • the current collector used for the positive electrode of the secondary battery described above can be used, and is not particularly limited as long as it is an electrically conductive and electrochemically durable material. Copper is particularly preferable for the negative electrode of the ion secondary battery.
  • the negative electrode for a lithium ion secondary battery can be produced in the same manner as the positive electrode for a lithium ion secondary battery described above.
  • ⁇ Swelling degree of binder> The binder composition is poured into a petri dish and dried at 120 ° C. for 5 hours under a nitrogen atmosphere to remove the solvent to obtain a binder sheet having a thickness of 50 ⁇ m. 10 g of the binder sheet was immersed in 100 g of an electrolytic solution solvent (diethyl carbonate) at 60 ° C. for 72 hours, and the weight increase at that time was measured as the degree of swelling and evaluated according to the following criteria.
  • C Swelling degree is from 400% to less than 600%
  • ⁇ Normal temperature cycle characteristics> The prepared coin-type battery was charged to 4.3 V with a constant current of 0.1 C at 20 ° C. and discharged to 3.0 V with a constant current of 0.1 C, respectively.
  • the charge / discharge cycle was performed up to 100 cycles, and the ratio of the discharge capacity at the 50th cycle to the initial discharge capacity was defined as the capacity maintenance rate, and the following criteria were used. It shows that the capacity
  • Capacity maintenance ratio is 85% or more A: Capacity maintenance ratio is 80% or more and less than 85% B: Capacity maintenance ratio is 75% or more and less than 80% C: Capacity maintenance ratio is 70% or more and less than 75% D: Capacity maintenance ratio 65% or more and less than 70% E: Capacity maintenance rate is 60% or more and less than 65% F: Capacity maintenance rate is less than 60%
  • Styrene resin Styrene resin A: commercially available styrene resin by solution polymerization method (manufactured by Aldrich, styrene unit amount 100%, weight average molecular weight 192,000, glass transition temperature 82 ° C.)
  • Styrene resin C In an autoclave equipped with a stirrer, 300 parts of ion-exchanged water, 2 parts of sodium alkylbenzenesulfonate, 90 parts of styrene, 10 parts of ethyl acrylate, 1.5 parts of t-dodecyl mercaptan, and 0.3 part of potassium persulfate as a polymerization initiator The mixture was stirred sufficiently and then polymerized by heating to 70 ° C. to obtain a particle dispersion of styrene resin C. The polymerization conversion rate determined from the solid content concentration was approximately 99%.
  • Styrene resin C had a styrene unit amount of 90%, a 2-ethylhexyl acrylate unit amount of 10%, a weight average molecular weight of 140000, and a glass transition temperature of 85 ° C.
  • Acrylic soft polymer A In an autoclave equipped with a stirrer, 300 parts of ion-exchanged water, 82.5 parts of n-butyl acrylate, 15 parts of acrylonitrile, 2.0 parts of glycidyl methacrylate, 0.5 part of 2-acrylamido-2-methylpropanesulfonic acid and a molecular weight regulator As a polymerization initiator, 0.05 part of t-dodecyl mercaptan and 0.3 part of potassium persulfate as a polymerization initiator were added and sufficiently stirred, and then polymerized by heating to 70 ° C. to form acrylic soft polymer (binder) particles A dispersion was obtained.
  • Acrylic soft polymer C Except for changing the composition of the polymerizable monomer to 40 parts of ethyl acrylate, 58 parts of acrylonitrile, 2.0 parts of glycidyl methacrylate, and 0.5 parts of 2-acrylamido-2-methylpropanesulfonic acid, The same polymerization was performed to obtain an NMP solution of an acrylic soft polymer C. The solid content concentration of the polymer C solution was 8%. The acrylic soft polymer C had a glass transition temperature of 23 ° C.
  • Example 1 Preparation of binder composition> The styrene resin A and the acrylic soft polymer A and NMP were mixed so that the solid content ratio (styrene resin: acrylic soft polymer) was 60:40 and the solid content concentration was 8%, and the binder NMP A solution was prepared. The swelling degree was measured about the obtained binder composition. The results are shown in Table 1.
  • the positive electrode slurry is applied on a 20 ⁇ m thick aluminum foil with a comma coater so that the film thickness after drying is about 120 ⁇ m, dried at 60 ° C. for 20 minutes, and then heat-treated at 150 ° C. for 2 hours to form an electrode.
  • This electrode original fabric was rolled with a roll press to produce a positive electrode plate in which the density was 3.7 g / cm 3 and the total thickness of the copper foil and the positive electrode active material layer was controlled to 100 ⁇ m.
  • the binding property of the produced positive electrode plate was measured. The results are shown in Table 1.
  • the obtained positive electrode plate was cut out into a circular sheet having a diameter of 15 mm.
  • a separator made of a circular polypropylene porous film having a diameter of 18 mm and a thickness of 25 ⁇ m, a lithium metal used as a negative electrode, and an expanded metal are sequentially laminated on the positive electrode active material layer surface side of this positive electrode, and this is made of stainless steel provided with a polypropylene packing. It was stored in a coin-type outer container (diameter 20 mm, height 1.8 mm, stainless steel thickness 0.25 mm).
  • Table 1 shows the styrene resin used for the preparation of the positive electrode active material and the binder, the kind of the acrylic soft polymer, the mass ratio of the styrene resin and the acrylic soft polymer, and the amount of the binder used for the positive electrode active material as shown in Table 1. Except for the above, the same operation as in Example 1 was performed to prepare a positive electrode plate and a battery. The results are shown in Table 1.
  • the binding property can be increased.
  • a lithium ion secondary battery excellent in rate characteristics and cycle characteristics can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】バインダーの低膨潤性及び電極活物質との結着力、電極活物質層の柔軟性に優れ、サイクル特性及びレート特性に優れた二次電池用正極を提供する。 【解決手段】本発明に係る二次電池用正極は、集電体、及び該集電体に積層された、正極活物質及びバインダーを含有してなる電極活物質層を有し、 前記電極活物質層は、正極活物質100質量部に対し、バインダーを0.5~5質量部含有し、 前記バインダーが、バインダー全量100質量部中に、 スチレンから導かれる構造単位の含有量が70~100質量%のスチレン樹脂50~70質量部及びガラス転移温度15℃以下のアクリル系軟質重合体50~30質量部を含むことを特徴としている。

Description

二次電池用正極及び二次電池
 本発明は、二次電池用正極及びその製造方法、及び該二次電池用正極を用いた二次電池に関する。
 近年、ノート型パソコン、携帯電話、PDAなどの携帯端末の普及が著しく、これら携帯端末の電源として、リチウムイオン二次電池が多く用いられている。携帯端末の、利便性のために、小型化、薄型化、軽量化が必要で二次電池の高性能化が求められる。二次電池の高性能化のため、電極、電解液、その他の電池部材の改良が検討されている。正極については、電極活物質や集電体そのものに加え、電極活物質などを集電体上に結着するためのバインダーポリマーの検討が鍵になっている。正極は、通常、水や有機溶媒等の液状媒体にバインダーとなるポリマーを分散または溶解させ、これに電極活物質および導電性カーボン等の導電付与剤を混合してスラリーを得る。このスラリーを集電体に塗布し、乾燥することにより、電極活物質層を集電体に結着させて形成される。
 二次電池の高性能化には、電池容量、寿命(サイクル特性)および高レートでの充放電容量の維持率(レート特性)の向上が必要である。電池容量は、電極活物質層中の電極活物質の割合に依存する。また、レート特性は電子の移動の容易さに影響されるので、レート特性の向上には電極活物質中の導電付与剤の増量が効果的である。限られた電池空間内で電極活物質と導電付与剤を増量するには、バインダー量を低減する必要がある。一方、バインダーを減量すると電極活物質の結着性が損なわれ、繰り返し充放電によって集電体から電極活物質が剥離してサイクル特性が悪化する。このため、少量使用でも電極活物質を強く結着できるバインダーが求められている。
 従来、リチウムイオン二次電池の正極用バインダーとしてはポリビニリデンジフルオライドなどのフッ素含有ポリマーが汎用されている。フッ素含有ポリマーを用いると流動性が良く、電極活物質などの固形分が沈降しにくい、安定性に優れた二次電池電極用スラリーが得られる。しかし、バインダーと電極活物質との結着力が十分ではなく、さらに電極活物質層の柔軟性が不足しているために、前記要求性能を充足する正極を得るのが困難であった。
 上記のフッ素含有ポリマーの欠点を改善する方法として、特許文献1には、ゴム系高分子をバインダーとして用いることが提案されている。しかし、ゴム系高分子を用いて電極を作成すると、電極活物質層の柔軟性は改善し得るものの、バインダーの電解液に対する膨潤度が大きくなることによりレート特性が低下し、その結果サイクル特性も低下するといった問題が生じた。また、特許文献2には、スチレン等を共重合してゲル含量を50%以上にしたポリマーを用いて、バインダーの結着力、膨潤度及び電極活物質層の柔軟性を改良する技術が開示されているが、やはりレート特性及びサイクル特性が十分でないという問題があった。
特開平4-255670号公報 特開平11-273682号公報
 本発明は、上記問題点を改善するために提案されるもので、その目的は、バインダーの低膨潤性及び電極活物質との結着力、電極活物質層の柔軟性に優れ、サイクル特性及びレート特性に優れた二次電池用正極を提供することにある。
 本発明者らは、上記課題を解決すべく鋭意検討の結果、バインダーに、スチレン単位含量の高いスチレン樹脂と、ガラス転移温度が特定温度以下のアクリル系軟質重合体とを用いることにより、電解液に対するバインダーの膨潤度が小さくなり、接着強度を向上し、さらに、二次電池正極の電解液浸漬後の厚み変化を小さくできることを見出した。そして、二次電池のサイクル特性及びレート特性が向上することを見出した。また、バインダー中にスチレン単位含量の高いスチレン樹脂を含有することにより、スラリー中の導電付与材の分散性が向上し、レート特性を更に向上させることができることを見出し、本発明を完成するに至った。
 すなわち、上記課題を解決する本発明は、下記事項を要旨として含む。
(1)集電体、及び該集電体に積層された、正極活物質及びバインダーを含有してなる電極活物質層を有し、
 前記電極活物質層は、正極活物質100質量部に対し、バインダーを0.5~5質量部含有し、
 前記バインダーが、バインダー全量100質量部中に、
 スチレンから導かれる構造単位の含有量が70~100質量%のスチレン樹脂50~70質量部及びガラス転移温度15℃以下のアクリル系軟質重合体50~30質量部を含む二次電池用正極。
(2)前記正極活物質がマンガン、鉄及びニッケルからなる群から選ばれる1種以上の遷移金属元素を含む(1)記載の二次電池用正極。
(3)前記スチレン樹脂が、乳化重合法で合成された樹脂である(1)または(2)記載の二次電池用正極。
(4)正極活物質100質量部に対し、バインダーを0.5~5質量部含有し、
 前記バインダーが、バインダー全量100質量部中に、スチレンから導かれる構造単位の含有量が70~100質量%のスチレン樹脂50~70質量部及びガラス転移温度が15℃以下のアクリル系軟質重合体50~30質量部を含有してなるスラリーを、集電体上に塗布・乾燥する工程を含む二次電池用正極の製造方法。
(5)正極、電解液、セパレーター及び負極を有する二次電池であって、
 前記正極が、(1)または(2)に記載の二次電池用正極である二次電池。
 本発明によれば、バインダーの低膨潤性及び電極活物質との結着力、電極活物質層の柔軟性に優れ、サイクル特性及びレート特性に優れた二次電池用正極を得ることができる。
 以下に本発明を詳述する。
 本発明の二次電池用正極は、正極活物質及びバインダーを含有してなる電極活物質層が、集電体上に積層されてなり、前記バインダーとして、スチレン単位含量の高いスチレン樹脂及びガラス転移温度15℃以下のアクリル系軟質重合体を含む。
(正極活物質)
 本発明の二次電池用正極に用いられる正極活物質は、正極が利用される二次電池に応じて選択することが一般的である。前記二次電池としては、リチウムイオン二次電池やニッケル水素二次電池が挙げられる。
 本発明の二次電池用正極を、リチウムイオン二次電池正極用に用いる場合、リチウムイオンの吸蔵放出可能な活物質が用いられ、リチウムイオン二次電池正極用の電極活物質(正極活物質)は、無機化合物からなるものと有機化合物からなるものとに大別される。
 無機化合物からなる正極活物質としては、遷移金属酸化物、遷移金属硫化物、リチウムと遷移金属とからなるリチウム含有複合金属酸化物などが挙げられる。上記の遷移金属としては、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo等が使用される。これらの中でもマンガン、鉄及びニッケルからなる群から選ばれる1種以上の遷移金属元素を含有するリチウム含有複合金属酸化物が好ましく用いられる。
 遷移金属酸化物としては、MnO、MnO、V、V13、TiO、Cu、非晶質VO-P、MoO、V、V13等が挙げられ、中でも得られる二次電池のサイクル安定性と容量からMnO、V、V13、TiOが好ましい。
 遷移金属硫化物としては、TiS、TiS、非晶質MoS、FeS等が挙げられる。
 リチウム含有複合金属酸化物の構造は特に限定はされず、層状構造、スピネル構造、オリビン型構造などが挙げられる。
 層状構造を有するリチウム含有複合金属酸化物としてはリチウム含有コバルト酸化物(LiCoO)、リチウム含有ニッケル酸化物(LiNiO)、Co-Ni-Mnの複合酸化物を主構造とするリチウム含有複合酸化物、Ni-Mn-Alの複合酸化物を主構造とするリチウム含有複合酸化物、Ni-Co-Alの複合酸化物を主構造とするリチウム含有複合酸化物等が挙げられる。
 スピネル構造を有するリチウム含有複合金属酸化物としてはマンガン酸リチウム(LiMn)やMnの一部を他の遷移金属で置換したLi[Mn3/21/2]O(ここでMは、Cr、Fe、Co、Ni、Cu等)等が挙げられる。
 オリビン型構造を有するリチウム含有複合金属酸化物としてはLiMPO(式中、Mは、Mn,Fe,Co,Ni,Cu,Mg,Zn,V,Ca,Sr,Ba,Ti,Al,Si,B及びMoから選ばれる少なくとも1種、0≦X≦2)であらわされるオリビン型燐酸リチウム化合物が挙げられる。電気伝導性に乏しい、鉄系酸化物は、還元焼成時に炭素源物質を存在させることで、炭素材料で覆われた電極活物質として用いてもよい。また、これら化合物は、部分的に元素置換したものであってもよい。
 上記リチウム含有複合金属酸化物の中でも特に、LiCo、LiMn、LiNi、LiFePOが好ましく用いられる。
 有機化合物としては、例えば、ポリアセチレン、ポリ-p-フェニレンなどの導電性高分子を用いることもできる。
 リチウムイオン二次電池用の正極活物質は、上記の無機化合物と有機化合物の混合物であってもよい。正極活物質の粒子径は、電池の他の特性との兼ね合いで適宜選択されるが、負荷特性、サイクル特性などの電池特性の向上の観点から、50%体積累積径が、通常0.1~50μm、好ましくは1~20μmである。50%体積累積径がこの範囲であると、充放電容量が大きい二次電池を得ることができ、かつ電極用スラリーおよび電極を製造する際の取扱いが容易である。50%体積累積径は、レーザー回折で粒度分布を測定することにより求めることができる。
 本発明の二次電池用正極を、ニッケル水素二次電池正極用に用いる場合、用いることのできる正極活物質としては、水酸化ニッケル粒子が挙げられる。水酸化ニッケル粒子は、コバルト、亜鉛、カドミウム等を固溶していてもよく、あるいは表面がアルカリ熱処理されたコバルト化合物で被覆されていてもよい。
 これらの二次電池用の正極活物質の中でも長期サイクル特性の向上・出力特性の向上等性能向上が最も求められているリチウムイオン二次電池用の正極活物質が好ましい。その中でも、電極作製時に高密度化させてエネルギー密度を向上させて用いることが多く、浸漬後の厚み変化の抑制効果が顕著に見られることから、無機化合物が好ましく中でもリチウム含有複合金属酸化物が好ましい。更には、本発明のバインダーを用いることで少量の導電付与材でも高い導電性を示すことが出来る為、活物質の導電性が低すぎず、少量の導電付与材を用いて使用される、層状構造を有するリチウム含有複合金属酸化物及びスピネル構造を有するリチウム含有複合金属酸化物が最も大きな効果が得られる為好ましい。
 本発明においては、電極活物質層中の電極活物質の含有割合は、好ましくは90~99.9質量%、より好ましくは95~99質量%である。電極活物質中における電極活物質の含有量を、前記範囲とすることにより、バインダーとの結着力に優れ、電極活物質層の柔軟性に優れ、二次電池が高い容量を有する。
(バインダー)
 本発明の二次電池正極は、バインダーとして、スチレン単位含量の高いスチレン樹脂及びガラス転移温度15℃以下のアクリル系軟質重合体を含む。
 本発明に用いるスチレン樹脂は、スチレンの単独重合体、スチレン誘導体の単独重合体であってもよく、あるいはスチレン又はその誘導体と、これらと共重合可能な単量体との共重合体であってもよい。スチレン樹脂におけるスチレン及びその誘導体から導かれる構造単位(以降「スチレン単位」と略記する場合がある)は70質量%~100質量%、好ましくは80質量%~100質量%、更に好ましくは83質量%~100質量%で含まれる。また、スチレン樹脂のガラス転移温度は好ましくは20℃以上である。スチレン単位がこの範囲であることにより、後述する導電付与材の分散性に優れるため得られる二次電池のレート特性が向上する。
 スチレン誘導体としては、α-メチルスチレンなどが挙げられる。
 スチレン樹脂は、本発明の効果を損なわない範囲において、さらに共重合可能な単量体を共重合させることができ、このような共重合成分としてはジエン系単量体、オレフィン系単量体、アクリレート系単量体、フッ素系単量体、ウレタン系単量体、シリコーン系単量体、ポリアミド系あるいはポリイミド系単量体、エステル系単量体などが挙げられる。
 これらの中でも、電気化学的に安定であり、高いサイクル特性を得られることから、アクリレート系単量体が好ましい。
 アクリレート系単量体としては、アクリル酸、メタクリル酸またはクロトン酸の誘導体が挙げられる。好ましいアクリレート系単量体としては、後述するアクリル系軟質重合体の製造に用いられる(メタ)アクリル酸エステルが挙げられる。
 前記スチレン樹脂における前記共重合成分の含有割合は30質量%以下、好ましくは20質量%以下、より好ましくは17質量%以下である。
 本発明において、スチレン樹脂のゲルパーミエーションクロマトグラフィー(GPC)により求められる重量平均分子量は、好ましくは10,000~600,000、さらに好ましくは10,000~400,000の範囲である。スチレン樹脂の重量平均分子量が、上記範囲にあると、電極の電解液浸漬後の厚み変化を抑えることができ、得られる二次電池が高い寿命特性と導電パス維持によるレート特性を有する。
 本発明において、スチレン樹脂の示差走査型熱量(DSC)分析により求められるガラス転移温度は、20℃以上であり、好ましくは20℃~120℃、さらに好ましくは40℃~100℃の範囲である。スチレン樹脂のガラス転移温度が上記範囲にあることにより、後述する電極プレス時にプレス戻りの少ない極板を得ることができ、プレス後の電極内部の導電パスを維持することができるため、得られる二次電池が高いレート特性を示す。
 スチレン樹脂の製造方法は特に限定はされず、溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの方法も用いることができる。特に乳化重合は、有機溶剤を用いないため製造作業環境が良好であり、また水系バインダーの均一な混合が容易で、サイクル特性に優れた二次電池の製造に好適である。
 本発明では、バインダーとして上記スチレン樹脂の他に、ガラス転移温度が15℃以下のアクリル系軟質重合体を必須成分とする。ガラス転移温度が15℃以下のアクリル系軟質重合体が含まれることにより、バインダーの結着性及び電極活物質層の柔軟性に優れるため、充放電中に、集電体からの電極活物質の剥離、脱落が起こりにくく、得られる二次電池が優れたレート特性、サイクル特性を示す。
 本発明に用いるアクリル系軟質重合体は、ゴム弾性を示し、ガラス転移温度が15℃以下である重合体であり、ガラス転移温度は0℃以下がより好ましい。ガラス転移温度がこのような温度領域にあることにより、活物質粒子への結着性に優れ、得られる二次電池が低温においても優れたサイクル特性を示す。
 なお、アクリル系軟質重合体のガラス転移温度は、様々な単量体を組み合わせることによって調整可能である。
 前記アクリル系軟質重合体は、ガラス転移温度が15℃以下であれば、本発明の効果を奏するが、これらの中でも、後述する正極用スラリーの静置時の二層分離を抑制する観点から、スチレン樹脂が可溶な溶媒中で、スチレン樹脂との相溶性が高いアクリル系軟質重合体が好ましい。スチレン樹脂と相溶性が高いと、電極活物質層中にスチレン樹脂が均一に存在でき、本発明の効果である電極厚み変化及びサイクル特性、レート特性共に高い効果を示すことが出来る。
 スチレン樹脂とアクリル系軟質重合体との相溶状態はスチレン樹脂及びアクリル系軟質重合体を溶媒に溶解させた状態で1週間程度静置し、上層と下層の溶液の成分分析を赤外分光等を用いて行うことにより、確認することができる。
 また、スチレン樹脂との相溶性を高くする手段として、前述のスチレン樹脂等の中から2種以上を併用してもよい。また、スラリー状態において適度な粘度を持たせることで溶液中でのポリマーの分離を抑制することもできる。
 ガラス転移温度が15℃以下のアクリル系軟質重合体とは、アクリル酸エステル、メタクリル酸エステル及びそれらの誘導体の単量体単位を50質量%以上含有する重合体である。尚、「アクリル及びメタクリル」を以降「(メタ)アクリル」と記載する場合がある。
 (メタ)アクリル酸エステル及びそれらの誘導体の単量体単位を与える単量体としては、(メタ)アクリル酸アルキルエステル、および側鎖に官能基を有する(メタ)アクリル酸エステルが挙げられる。中でも、(メタ)アクリル酸アルキルエステルが好ましく、電解液への膨潤によるリチウムイオンの伝導性を示すこと、スラリー中での活物質の分散に優れ、ポリマーによる橋架け凝集を起こしにくいことから、(メタ)アクリル酸アルキルエステルのエステル基中のアルキル基の炭素数は好ましくは1~14、更に好ましくは1~5である。また、エステル基中のアルキル基は、水素の一部または全部がフッ素などのハロゲンに置換されたハロアルキル基であってもよい。
 エステル基中のアルキル基の炭素数が1~5である(メタ)アクリル酸アルキルエステルとしては、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、およびアクリル酸t-ブチルなどのアクリル酸アルキルエステル;アクリル酸2-(パーフルオロブチル)エチル、アクリル酸2-(パーフルオロペンチル)エチルなどのアクリル酸2-(パーフルオロアルキル)エチル;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、およびメタクリル酸t-ブチルなどのメタクリル酸アルキルエステル;および、メタクリル酸2-(パーフルオロブチル)エチル、メタクリル酸2-(パーフルオロペンチル)エチルなどのメタクリル酸2-(パーフルオロアルキル)エチル;が挙げられる。
 その他の(メタ)アクリル酸アルキルエステルとしては、アクリル酸n-ヘキシル、アクリル酸2-エチルヘキシル、アクリル酸ノニル、アクリル酸ラウリル、アクリル酸ステアリル、アクリル酸シクロヘキシル、およびアクリル酸イソボルニルなどの非カルボニル性酸素原子に結合するアルキル基の炭素数が6~18であるアクリル酸アルキルエステル;メタクリル酸n-ヘキシル、メタクリル酸2-エチルヘキシル、メタクリル酸オクチル、メタクリル酸イソデシル、メタクリル酸ラウリル、メタクリル酸トリデシル、メタクリル酸ステアリル、およびメタクリル酸シクロヘキシルなどの非カルボニル性酸素原子に結合するアルキル基の炭素数が6~18であるメタクリル酸アルキルエステル;アクリル酸2-(パーフルオロヘキシル)エチル、アクリル酸2-(パーフルオロオクチル)エチル、アクリル酸2-(パーフルオロノニル)エチル、アクリル酸2-(パーフルオロデシル)エチル、アクリル酸2-(パーフルオロドデシル)エチル、アクリル酸2-(パーフルオロテトラデシル)エチル、アクリル酸2-(パーフルオロヘキサデシル)エチルなどの非カルボニル性酸素原子に結合するアルキル基の炭素数が6~18であるアクリル酸2-(パーフルオロアルキル)エチル;メタクリル酸2-(パーフルオロヘキシル)エチル、メタクリル酸2-(パーフルオロオクチル)エチル、メタクリル酸2-(パーフルオロノニル)エチル、メタクリル酸2-(パーフルオロデシル)エチル、メタクリル酸2-(パーフルオロドデシル)エチル、メタクリル酸2-(パーフルオロテトラデシル)エチル、メタクリル酸2-(パーフルオロヘキサデシル)エチルなどの非カルボニル性酸素原子に結合するアルキル基の炭素数が6~18であるメタクリル酸2-(パーフルオロアルキル)エチル;が挙げられる。
 これらのアクリル系軟質重合体は、上記の(メタ)アクリル酸エステルと、他の単量体との共重合体であってもよく、共重合可能な単量体としては特に制限されないが、電極の接着性向上と電解液に対する耐電解液性を制御できることから、アクリロニトリル、メタクリロニトリルなどのα,β-不飽和ニトリル化合物などの単量体を共重合させることが好ましい。
 また、前記アクリル系軟質重合体中に、親水性の官能基を含むと、正極活物質の表面が親水性を有する場合には、該粒子の高い分散安定性及び結着強度を実現させることから好ましい。
 親水性の官能基としては、カルボン酸基、水酸基及びスルホン酸基が挙げられる。また、親水性官能基は、加水分解によりカルボン酸基を生成する酸無水物であってもよい。親水性の官能基は、前記例示した重合体製造時に、親水性の官能基を有する重合性単量体を共重合させたり、重合体生成後に前記親水性の官能基を有する重合開始剤を用いてグラフト重合することにより、導入することができる。
 カルボン酸基を含有する重合性単量体としては、モノカルボン酸及びその誘導体やジカルボン酸、その酸無水物、及びこれらの誘導体などが挙げられる。
 モノカルボン酸としては、アクリル酸、メタクリル酸、およびこれらの酸誘導体として、クロトン酸、イソクロトン酸、2-メチルイソクロトン酸、2-エチルアクリル酸、α―アセトキシアクリル酸、β-trans-アリールオキシアクリル酸、α-クロロ-β-E-メトキシアクリル酸、β-ジアミノアクリル酸などが挙げられる。
 ジカルボン酸としては、マレイン酸、フマル酸、イタコン酸などが挙げられる。
 ジカルボン酸誘導体としては、メチルマレイン酸、ジメチルマレイン酸、フェニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、フルオロマレイン酸などマレイン酸メチルアリル、マレイン酸ジフェニル、マレイン酸ノニル、マレイン酸デシル、マレイン酸ドデシル、マレイン酸オクタデシル、マレイン酸フルオロアルキルなどのマレイン酸モノエステル;が挙げられる。
 水酸基を含有する重合性単量体としては、(メタ)アリルアルコール、3-ブテン-1-オール、5-ヘキセン-1-オールなどのエチレン性不飽和アルコール;アクリル酸-2-ヒドロキシエチル、アクリル酸-2-ヒドロキシプロピル、メタクリル酸-2-ヒドロキシエチル、メタクリル酸-2-ヒドロキシプロピル、マレイン酸-ジ-2-ヒドロキシエチル、マレイン酸ジ-4-ヒドロキシブチル、イタコン酸ジ-2-ヒドロキシプロピルなどのエチレン性不飽和カルボン酸のアルカノールエステル類;一般式CH=CR-COO-(C2nO)-H(mは2ないし9の整数、nは2ないし4の整数、Rは水素またはメチル基を表す)で表されるポリアルキレングリコールと(メタ)アクリル酸とのエステル類;
 2-ヒドロキシエチル-2’-(メタ)アクリロイルオキシフタレート、2-ヒドロキシエチル-2’-(メタ)アクリロイルオキシサクシネートなどのジカルボン酸のジヒドロキシエステルのモノ(メタ)アクリル酸エステル類;2-ヒドロキシエチルビニルエーテル、2-ヒドロキシプロピルビニルエーテルなどのビニルエーテル類;(メタ)アリル-2-ヒドロキシエチルエーテル、(メタ)アリル-2-ヒドロキシプロピルエーテル、(メタ)アリル-3-ヒドロキシプロピルエーテル、(メタ)アリル-2-ヒドロキシブチルエーテル、(メタ)アリル-3-ヒドロキシブチルエーテル、(メタ)アリル-4-ヒドロキシブチルエーテル、(メタ)アリル-6-ヒドロキシヘキシルエーテルなどのアルキレングリコールのモノ(メタ)アリルエーテル類;ジエチレングリコールモノ(メタ)アリルエーテル、ジプロピレングリコールモノ(メタ)アリルエーテルなどのポリオキシアルキレングリコール(メタ)モノアリルエーテル類;グリセリンモノ(メタ)アリルエーテル、(メタ)アリル-2-クロロ-3-ヒドロキシプロピルエーテル、(メタ)アリル-2-ヒドロキシ-3-クロロプロピルエーテルなどの、(ポリ)アルキレングリコールのハロゲン及びヒドロキシ置換体のモノ(メタ)アリルエーテル;オイゲノール、イソオイゲノールなどの多価フェノールのモノ(メタ)アリルエーテル及びそのハロゲン置換体;(メタ)アリル-2-ヒドロキシエチルチオエーテル、(メタ)アリル-2-ヒドロキシプロピルチオエーテルなどのアルキレングリコールの(メタ)アリルチオエーテル類;などが挙げられる。
 スルホン酸基を含有する重合性単量体としては、ビニルスルホン酸、メチルビニルスルホン酸、(メタ)アリルスルホン酸、スチレンスルホン酸、(メタ)アクリル酸-2-エチルスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸、3-アリロキシ-2-ヒドロキシプロパンスルホン酸などが挙げられる。
 加水分解によりカルボン酸基を生成する酸無水物としては、ジカルボン酸の酸無水物があげられ、具体的には、無水マレイン酸、アクリル酸無水物、メチル無水マレイン酸、ジメチル無水マレイン酸などが挙げられる。
 これらの中でも電気化学的安定性が良く、サイクル特性に優れるためスルホン酸基を有する重合性単量体が好ましく、スルホン酸基を有する単量体の中でも2-アクリルアミド-2-メチルプロパンスルホン酸が好ましい。
 アクリル系軟質重合体中の親水性の官能基の含有量は、親水性の官能基を有する重合性単量体の重合時の使用量として、使用する単量体全量に対して好ましくは0.3~40質量%、更に好ましくは3~20質量%の範囲である。前記アクリル系軟質重合体中の親水性の官能基の含有量は、重合体製造時の単量体仕込み比により制御できる。アクリル系軟質重合体中の親水性の官能基の含有量が、前記範囲であると、正極活物質へのアクリル系軟質重合体の吸着量と後述する正極用スラリー中に遊離した重合体量とのバランスがとれ、正極活物質の分散性や正極活物質間の結着性に優れる。
 また、二次電池正極用バインダーに、架橋剤を添加する、及び/又は、軟質重合体中に架橋性基を含むと、正極形成後に正極を架橋させることができ、さらに電解液への溶解を抑制できて、強靱で柔軟な正極が得られるので好ましい。
 アクリル系軟質重合体と架橋剤とを併用する場合において、用いる架橋剤としては、特に限定されないが、有機過酸化物、熱により効果を発揮する架橋剤などが用いられる。これらの中でも、架橋が比較的容易な熱架橋し得るものとして、有機過酸化物や、熱架橋性基を有する架橋剤等の熱により効果を発揮する架橋剤が好ましい。
 有機過酸化物としては、例えば、メチルエチルケトンパーオキシド、シクロヘキサノンパーオキシドなどのケトンパーオキシド類;1,1-ビス(t-ブチルパーオキシ)3,3,5-トリメチルシクロヘキサン、2,2-ビス(t-ブチルパーオキシ)ブタンなどのパーオキシケタール類;t-ブチルハイドロパーオキシド、2,5-ジメチルヘキサン-2,5-ジハイドロパーオキシドなどのハイドロパーオキシド類;ジクミルパーオキシド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3、α,α′-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼンなどのジアルキルパーオキシド類:オクタノイルパーオキシド、イソブチリルパーオキシドなどのジアシルパーオキシド類;パーオキシジカーボネートなどのパーオキシエステル類;が挙げられる。これらの中でも、架橋後の樹脂の性能から、ジアルキルパーオキシドが好ましく、アルキル基の種類は、成形温度によって変えるのがよい。
 熱により効果を発揮する架橋剤(硬化剤)は、加熱によって架橋反応させうるものであれば特に限定されないが、ジアミン、トリアミンまたはそれ以上の脂肪族ポリアミン、脂環族ポリアミン、芳香族ポリアミンビスアジド、酸無水物、ジカルボン酸、ジオール、多価フェノール、ポリアミド、ジイソシアネート、ポリイソシアネートなどが挙げられる。
 これらは、1種を単独で使用しても、2種以上の混合物として使用してもよい。これらの中でも、正極極板の強度、密着性に優れるなどの理由により、芳香族ポリアミン類、酸無水物類、多価フェノール類、多価アルコール類が好ましく、中でも4,4-ジアミノジフェニルメタン(芳香族ポリアミン類)、無水マレイン酸変性ノルボルネン樹脂(酸無水物)、多価フェノール類などが特に好ましい。
 これらの架橋剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。架橋剤の配合量は、本発明に用いるアクリル系軟質重合体100質量部に対して、通常0.001~30質量部、好ましくは0.01~25質量部、より好ましくは1~20質量部の範囲である。これらの架橋剤の配合量がこの範囲にあるときに、架橋性及び架橋物の電解液中でのリチウム伝導度、電解液溶解性および正極極板強度などの特性が高度にバランスされ好適である。
 本発明において架橋剤を用いる場合に、さらに架橋助剤(硬化助剤)を使用することにより、架橋性及び配合剤の分散性をさらに高めることができるので好適である。本発明で使用する架橋助剤は、特に限定されるものではないが、特開昭62-34924号公報等に開示されている公知のものでよく、例えば、キノンジオキシム、ベンゾキノンジオキシム、p-ニトロソフェノール等のオキシム・ニトロソ系架橋助剤;N,N-m-フェニレンビスマレイミド等のマレイミド系架橋助剤;ジアリルフタレート、トリアリルシアヌレート、トリアリルイソシアヌレート等のアリル系架橋助剤;エチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレート等のメタクリレート系架橋助剤;ビニルトルエン、エチルビニルベンゼン、ジビニルベンゼンなどのビニル系架橋助剤;等が例示される。これらの中でも、アリル系架橋助剤、メタクリレート系架橋助剤が、均一に分散させやすく好ましい。
 架橋助剤の添加量は、架橋剤の種類により適宜選択されるが、架橋剤1質量部に対して、通常、0.1~10質量部、好ましくは0.2~5質量部である。架橋助剤の添加量は、少なすぎると架橋が起こりにくく、逆に、添加量が多すぎると、架橋したバインダーのリチウム伝導性、耐水性が低下するおそれが生じる。
 アクリル系軟質重合体中に熱架橋性の架橋性基を含有する場合において、熱架橋性の架橋性基としては、エポキシ基、N-メチロールアミド基、及びオキサゾリン基からなる群から選ばれる少なくとも1種が好ましく、エポキシ基が架橋及び架橋密度の調節が容易な点でより好ましい。
 熱架橋性の架橋性基は、前記アクリル系軟質重合体を製造する際に、アクリル系軟質重合体を構成する単量体と、熱架橋性の架橋基を含有する単量体、並びに/又はこれらと共重合可能な他の単量体とを共重合することで共重合体中に導入することができる。
 エポキシ基を含有する重合性単量体としては、炭素―炭素二重結合およびエポキシ基を含有する単量体とハロゲン原子およびエポキシ基を含有する単量体が挙げられる。
 炭素―炭素二重結合およびエポキシ基を含有する重合性単量体としては、たとえば、ビニルグリシジルエーテル、アリルグリシジルエーテル、ブテニルグリシジルエーテル、o-アリルフェニルグリシジルエーテルなどの不飽和グリシジルエーテル;ブタジエンモノエポキシド、クロロプレンモノエポキシド、4,5-エポキシ-2-ペンテン、3,4-エポキシ-1-ビニルシクロヘキセン、1,2-エポキシ-5,9-シクロドデカジエンなどのジエンまたはポリエンのモノエポキシド;3,4-エポキシ-1-ブテン、1,2-エポキシ-5-ヘキセン、1,2-エポキシ-9-デセンなどのアルケニルエポキシド;グリシジルアクリレート、グリシジルメタクリレート、グリシジルクロトネート、グリシジル-4-ヘプテノエート、グリシジルソルベート、グリシジルリノレート、グリシジル-4-メチル-3-ペンテノエート、3-シクロヘキセンカルボン酸のグリシジルエステル、4-メチル-3-シクロヘキセンカルボン酸のグリシジルエステル、などの、不飽和カルボン酸のグリシジルエステル類;が挙げられる。
 ハロゲン原子およびエポキシ基を有する重合性単量体としては、たとえば、エピクロロヒドリン、エピブロモヒドリン、エピヨードヒドリン、エピフルオロヒドリン、β-メチルエピクロルヒドリンなどのエピハロヒドリン;p-クロロスチレンオキシド;ジブロモフェニルグリシジルエーテル;が挙げられる。
 N-メチロールアミド基を含有する重合性単量体としては、N-メチロール(メタ)アクリルアミドなどのメチロール基を有する(メタ)アクリルアミド類が挙げられる。
 オキサゾリン基を含有する重合性単量体としては、2-ビニル-2-オキサゾリン、2-ビニル-4-メチル-2-オキサゾリン、2-ビニル-5-メチル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン、2-イソプロペニル-4-メチル-2-オキサゾリン、2-イソプロペニル-5-メチル-2-オキサゾリン、2-イソプロペニル-5-エチル-2-オキサゾリン等が挙げられる。
 アクリル系軟質重合体中の熱架橋性の架橋性基の含有割合は、重合時の熱架橋性の架橋性基を含有する単量体量として、単量体全量100質量%に対して、好ましくは0.1~10質量%、更に好ましくは0.1~5質量%の範囲である。アクリル系軟質重合体中の熱架橋性の架橋性基の含有割合は、軟質重合体を製造する時の単量体仕込み比により制御できる。アクリル系軟質重合体中の熱架橋性の架橋基の含有割合が、上記範囲内にあることで電解液への溶出を抑制し、優れた結着性と長期サイクル特性を示すことができる。
 熱架橋性の架橋性基は、前記アクリル系軟質重合体を製造する際に、(メタ)アクリル酸エステル等の軟質重合体を構成する単量体と、熱架橋性の架橋基を含有する単量体、並びに/又はこれらと共重合可能な他の単量体とを共重合することで軟質重合体中に導入することができる。
 上記アクリル系軟質重合体の製造方法は特に限定はされず、溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの方法も用いることができる。重合方法としては、イオン重合、ラジカル重合、リビングラジカル重合などいずれの方法も用いることができる。重合に用いる重合開始剤としては、たとえば過酸化ラウロイル、ジイソプロピルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、t-ブチルパーオキシピバレート、3,3,5-トリメチルヘキサノイルパーオキサイドなどの有機過酸化物、α,α’-アゾビスイソブチロニトリルなどのアゾ化合物、または過硫酸アンモニウム、過硫酸カリウムなどがあげられる。
 得られたアクリル系軟質重合体は通常の方法により回収し、乾燥してから用いてもよいし、軟質重合体を含む反応液から必要により溶媒置換をして、乾燥せずに溶液のまま用いることもできる。
 正極活物質層におけるバインダー中のスチレン樹脂とガラス転移温度15℃以下のアクリル系軟質重合体の比率(スチレン樹脂:軟質重合体)は、50:50~70:30(質量比)、好ましくは55:45~65:35(質量比)である。前記バインダー中のスチレン樹脂の比率が前記範囲にあることにより、柔軟性、結着性を有し、レート特性、サイクル特性に優れた正極を得ることができる。
 正極活物質層中のバインダーの含有量は、正極活物質100質量部に対して0.5~5質量部、好ましくは0.5~3質量部である。二次電池正極中のバインダーの含有量が前記範囲にあることで、活物質同士及び集電体への結着性に優れ更に柔軟性を維持しながらも、Liの移動を阻害せず抵抗が増大することがない。
(集電体)
 本発明の二次電池用正極に用いられる集電体は、電気導電性を有しかつ電気化学的に耐久性のある材料であれば特に制限されないが、耐熱性を有するとの観点から、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などの金属材料が好ましい。中でも、リチウムイオン二次電池の正極用としてはアルミニウムが特に好ましい。集電体の形状は特に制限されないが、厚さ0.001~0.5mm程度のシート状のものが好ましい。集電体は、電極活物質層の接着強度を高めるため、予め粗面化処理して使用するのが好ましい。粗面化方法としては、機械的研磨法、電解研磨法、化学研磨法などが挙げられる。機械的研磨法においては、研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線などを備えたワイヤーブラシ等が使用される。また、電極活物質層の接着強度や導電性を高めるために、集電体表面に中間層を形成してもよい。
 本発明の二次電池用正極には、上記成分のほかに、さらに導電性付与材、補強材、分散剤、酸化防止剤、増粘剤、電解液分解抑制等の機能を有する電解液添加剤、その他のバインダー等の、他の成分が含まれていてもよく、後述の二次電池正極用スラリー中に含まれていてもよい。これらは電池反応に影響を及ぼさないものであれば特に限られない。
 導電付与材としては、アセチレンブラック、ケッチェンブラック、カーボンブラック、グラファイト、気相成長カーボン繊維、カーボンナノチューブ等の導電性カーボンを使用することができる。黒鉛などの炭素粉末、各種金属のファイバーや箔などが挙げられる。導電性付与材を用いることにより電極活物質同士の電気的接触を向上させることができ、特にリチウムイオン二次電池に用いる場合に放電負荷特性を改善したりすることができる。補強材としては、各種の無機および有機の球状、板状、棒状または繊維状のフィラーが使用できる。補強材を用いることにより強靭で柔軟な電極を得ることができ、優れた長期サイクル特性を示すことができる。導電性付与材や補強剤の使用量は、正極活物質100質量部に対して通常0.01~20質量部、好ましくは1~10質量部である。前記範囲に含まれることにより、高い容量と高い負荷特性を示すことができる。
 分散剤としてはアニオン性化合物、カチオン性化合物、非イオン性化合物、高分子化合物が例示される。分散剤は用いる電極活物質や導電付与材に応じて選択される。電極中の分散剤の含有割合は、正極活物質100質量部に対して好ましくは0.01~10質量部である。分散剤量が上記範囲であることによりスラリーの安定性に優れ、平滑な電極を得ることができ、高い電池容量を示すことができる。
 酸化防止剤としてはフェノール化合物、ハイドロキノン化合物、有機リン化合物、硫黄化合物、フェニレンジアミン化合物、ポリマー型フェノール化合物等が挙げられる。ポリマー型フェノール化合物は、分子内にフェノール構造を有する重合体であり、重量平均分子量が200~1000、好ましくは600~700のポリマー型フェノール化合物が好ましく用いられる。電極活物質層中の酸化防止剤の含有割合は、正極活物質100質量部に対して好ましくは0.01~10質量部、更に好ましくは0.05~5質量部である。酸化防止剤が上記範囲であることによりスラリー安定性、電池容量及びサイクル特性に優れる。
 増粘剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロースなどのセルロース系ポリマーおよびこれらのアンモニウム塩並びにアルカリ金属塩;(変性)ポリ(メタ)アクリル酸およびこれらのアンモニウム塩並びにアルカリ金属塩;(変性)ポリビニルアルコール、アクリル酸又はアクリル酸塩とビニルアルコールの共重合体、無水マレイン酸又はマレイン酸もしくはフマル酸とビニルアルコールの共重合体などのポリビニルアルコール類;ポリエチレングリコール、ポリエチレンオキシド、ポリビニルピロリドン、変性ポリアクリル酸、酸化スターチ、リン酸スターチ、カゼイン、各種変性デンプン、アクリロニトリル-ブタジエン共重合体水素化物などが挙げられる。増粘剤の使用量がこの範囲であると、塗工性や、電極や有機セパレーターとの密着性が良好である。本発明において、「(変性)ポリ」は「未変性ポリ」又は「変性ポリ」を意味し、「(メタ)アクリル」は、「アクリル」又は「メタアクリル」を意味する。電極活物質層中の増粘剤の含有割合は、正極活物質100質量部に対して好ましくは0.01~10質量部である。増粘剤が上記範囲であることによりスラリー中の活物質等の分散性に優れ、平滑な電極を得ることができ、優れた負荷特性及びサイクル特性を示す。
 電解液添加剤は、後述する電極用スラリー中及び電解液中に使用されるビニレンカーボネートなどを用いることができる。電極活物質層中の電解液添加剤の含有割合は、正極活物質100質量部に対して好ましくは0.01~10質量部である。電解液添加剤が上記範囲であることによりサイクル特性及び高温特性に優れる。その他には、フュームドシリカやフュームドアルミナなどのナノ微粒子:アルキル系界面活性剤、シリコン系界面活性剤、フッ素系界面活性剤、金属系界面活性剤などの界面活性剤が挙げられる。前記ナノ微粒子を混合することにより電極形成用スラリーのチキソ性をコントロールすることができ、さらにそれにより得られる電極のレベリング性を向上させることができる。電極活物質層中のナノ微粒子及の含有割合は、正極活物質100質量部に対して好ましくは0.01~10質量部である。ナノ微粒子が上記範囲であることによりスラリー安定性、生産性に優れ、高い電池特性を示す。前記界面活性剤を混合することにより電極用スラリー中の活物質等の分散性を向上することができ、さらにそれにより得られる電極の平滑性を向上させることができる。電極活物質層中の界面活性剤の含有割合は、正極活物質100質量部に対して好ましくは0.01~10質量部である。界面活性剤が上記範囲であることによりスラリー安定性、電極平滑性に優れ、高い生産性を示す。
 本発明においては、前記スチレン樹脂及びガラス転移温度15℃以下のアクリル系軟質重合体に加えて、その他のバインダーとして様々な樹脂成分を併用することができる。例えば、ポリエチレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、ガラス転移温度が15℃を超えるポリアクリル酸誘導体、ポリアクリロニトリル誘導体などを用いることができる。電極活物質層中のその他のバインダーの含有割合は、電極活物質100質量部に対して好ましくは0.01~10質量部である。その他バインダーが多すぎると電池内部の抵抗が上がり寿命特性が悪化する恐れがある。
 本発明の二次電池用正極を製造する方法は、特に制限されず、前記集電体の少なくとも片面、好ましくは両面に電極を層状に結着させる方法であればよい。例えば、後述する正極用スラリーを集電体に塗布、乾燥し、次いで、120℃以上で1時間以上加熱処理して電極を形成する。正極用スラリーを集電体へ塗布する方法は特に制限されない。例えば、ドクターブレード法、ジップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などの方法が挙げられる。乾燥方法としては例えば温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線や電子線などの照射による乾燥法が挙げられる。
 次いで、金型プレスやロールプレスなどを用い、加圧処理により電極の空隙率を低くすることが好ましい。空隙率の好ましい範囲は5%~15%、より好ましくは7%~13%である。空隙率が高すぎると充電効率や放電効率が悪化する。空隙率が低すぎる場合は、高い体積容量が得難かったり、電極が剥がれ易く不良を発生し易いといった問題を生じる。さらに、硬化性の重合体を用いる場合は、硬化させることが好ましい。
 本発明の二次電池用正極の厚みは、通常5~300μmであり、好ましくは10~250μmである。電極厚みが上記範囲にあることにより、負荷特性及びエネルギー密度共に高い特性を示す。
(二次電池用正極用スラリー)
 本発明に用いる二次電池正極用スラリーは、上記に説明した二次電池正極用バインダー、正極活物質及び溶媒を含む。正極活物質としては、二次電池用正極で説明したものを用いる。
(溶媒)
 溶媒としては、本発明に用いるバインダー(スチレン樹脂及びガラス転移温度15℃以下のアクリル系軟質重合体を含むバインダー)を均一に溶解または分散し得るものであれば特に制限されない。
 正極用スラリーに用いる溶媒としては、水および有機溶媒のいずれも使用できる。有機溶媒としては、シクロペンタン、シクロヘキサンなどの環状脂肪族炭化水素類;トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素類;アセトン、エチルメチルケトン、ジソプロピルケトン、シクロヘキサノン、メチルシクロヘキサン、エチルシクロヘキサンなどのケトン類;メチレンクロライド、クロロホルム、四塩化炭素など塩素系脂肪族炭化水素;芳酢酸エチル、酢酸ブチル、γ-ブチロラクトン、ε-カプロラクトンなどのエステル類;アセトニトリル、プロピオニトリルなどのアシロニトリル類;テトラヒドロフラン、エチレングリコールジエチルエーテルなどのエーテル類:メタノール、エタノール、イソプロパノール、エチレングリコール、エチレングリコールモノメチルエーテルなどのアルコール類;N-メチルピロリドン、N,N-ジメチルホルムアミドなどのアミド類があげられる。
 これらの溶媒は、単独で使用しても、これらを2種以上混合して混合溶媒として使用してもよい。これらの中でも特に、本発明に用いるスチレン樹脂及びガラス転移温度15℃以下のアクリル系軟質重合体の溶解性に優れ、電極活物質及び導電付与材の分散性にすぐれ、沸点が低く揮発性が高い溶媒が、短時間でかつ低温で除去できるので好ましい。アセトン、トルエン、シクロヘキサノン、シクロペンタン、テトラヒドロフラン、シクロヘキサン、キシレン、若しくはN-メチルピロリドン、またはこれらの混合溶媒が好ましい。
 本発明の二次電池正極用スラリーの固形分濃度は、塗布、浸漬が可能な程度でかつ、流動性を有する粘度になる限り特に限定はされないが、一般的には10~80質量%程度である。
 また、二次電池正極用スラリーには、スチレン樹脂及びガラス転移温度15℃以下の軟質重合体を含むバインダー、電極活物質並びに溶媒のほかに、さらに前述の二次電池用正極中に使用される分散剤や電解液分解抑制等の機能を有する電解液添加剤等の他の成分が含まれていてもよい。これらは電池反応に影響を及ぼさないものであれば特に限られない。
(二次電池用正極用スラリーの製法)
 本発明においては、二次電池正極用スラリーを製造する方法は、特に限定はされず、スチレン樹脂及びガラス転移温度15℃以下のアクリル系軟質重合体、正極活物質、及び溶媒と必要に応じ添加される他の成分を混合して得られる。
 本発明においては上記成分を用いることにより混合方法や混合順序にかかわらず、電極活物質と導電付与材が高度に分散された正極用スラリーを得ることができる。混合装置は、上記成分を均一に混合できる装置であれば特に限定されず、ビーズミル、ボールミル、ロールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、フィルミックスなどを使用することができるが、中でも高濃度での分散が可能なことから、ボールミル、ロールミル、顔料分散機、擂潰機、プラネタリーミキサーを使用することが特に好ましい。
 正極用スラリーの粘度は、均一塗工性、スラリー経時安定性の観点から、好ましくは10mPa・s~100,000mPa・s、更に好ましくは100~50,000mPa・sである。前記粘度は、B型粘度計を用いて25℃、回転数60rpmで測定した時の値である。
(二次電池)
 本発明の二次電池は、正極、電解液、セパレーター及び負極を有し、前記正極がスチレン樹脂及びガラス転移温度15℃以下のアクリル系軟質重合体を含むバインダー、並びに正極活物質を含む。
 前記二次電池としては、リチウムイオン二次電池、ニッケル水素二次電池等挙げられるが、長期サイクル特性の向上・出力特性の向上等性能向上が最も求められていることから用途としてはリチウムイオン二次電池が好ましい。以下、リチウムイオン二次電池に使用する場合について説明する。
(リチウムイオン二次電池用電解液)
 リチウムイオン二次電池用の電解液としては、有機溶媒に支持電解質を溶解した有機電解液が用いられる。支持電解質としては、リチウム塩が用いられる。リチウム塩としては、特に制限はないが、LiPF、LiAsF、LiBF、LiSbF、LiAlCl、LiClO、CFSOLi、CSOLi、CFCOOLi、(CFCO)NLi、(CFSONLi、(CSO)NLiなどが挙げられる。中でも、溶媒に溶けやすく高い解離度を示すLiPF、LiClO、CFSOLiが好ましい。これらは、二種以上を併用してもよい。解離度の高い支持電解質を用いるほどリチウムイオン伝導度が高くなるので、支持電解質の種類によりリチウムイオン伝導度を調節することができる。
 リチウムイオン二次電池用の電解液に使用する有機溶媒としては、支持電解質を溶解できるものであれば特に限定されないが、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、メチルエチルカーボネート(MEC)などのカーボネート類;γ-ブチロラクトン、ギ酸メチルなどのエステル類;1,2-ジメトキシエタン、テトラヒドロフランなどのエーテル類;スルホラン、ジメチルスルホキシドなどの含硫黄化合物類;が好適に用いられる。またこれらの溶媒の混合液を用いてもよい。中でも、誘電率が高く、安定な電位領域が広いのでカーボネート類が好ましい。用いる溶媒の粘度が低いほどリチウムイオン伝導度が高くなるので、溶媒の種類によりリチウムイオン伝導度を調節することができる。
 また前記電解液には添加剤を含有させて用いることも可能である。添加剤としては前述の正極用スラリー中に使用されるビニレンカーボネート(VC)などのカーボネート系の化合物が挙げられる。
 リチウムイオン二次電池用の電解液中における支持電解質の濃度は、通常1~30質量%、好ましくは5質量%~20質量%である。また、支持電解質の種類に応じて、通常0.5~2.5モル/Lの濃度で用いられる。支持電解質の濃度が低すぎても高すぎてもイオン導電度は低下する傾向にある。
 上記以外の電解液としては、ポリエチレンオキシド、ポリアクリロニトリルなどのポリマー電解質や前記ポリマー電解質に電解液を含浸したゲル状ポリマー電解質や、LiI、LiNなどの無機固体電解質を挙げることができる。
(リチウムイオン二次電池用セパレーター)
セパレーターとしては、ポリエチレン、ポリプロピレンなどのポリオレフィン製の微孔膜または不織布;無機セラミック粉末を含む多孔質の樹脂コート;など公知のものを用いることができる。
 リチウムイオン二次電池用セパレーターとしては、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂や芳香族ポリアミド樹脂を含んでなる微孔膜または不織布;無機セラミック粉末を含む多孔質の樹脂コート;など公知のものを用いることができる。例えばポリオレフィン系(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)、及びこれらの混合物あるいは共重合体等の樹脂からなる微多孔膜、ポリエチレンテレフタレート、ポリシクロオレフィン、ポリエーテルスルフォン、ポリアミド、ポリイミド、ポリイミドアミド、ポリアラミド、ポリシクロオレフィン、ナイロン、ポリテトラフルオロエチレン等の樹脂からなる微多孔膜またはポリオレフィン系の繊維を織ったもの、またはその不織布、絶縁性物質粒子の集合体等が挙げられる。これらの中でも、セパレーター全体の膜厚を薄くし電池内の活物質比率を上げて体積あたりの容量を上げることができるため、ポリオレフィン系の樹脂からなる微多孔膜が好ましい。
 セパレーターの厚さは、通常0.5~40μm、好ましくは1~30μm、更に好ましくは1~10μmである。この範囲であると電池内でのセパレーターによる抵抗が小さくなり、また電池作成時の作業性に優れる。
(リチウムイオン二次電池負極)
 リチウムイオン二次電池負極用電極は、負極活物質及びバインダーを含む電極活物質層が、集電体上に積層されてなる。
(リチウムイオン二次電池用負極活物質)
 リチウムイオン二次電池負極用の電極活物質(負極活物質)としては、たとえば、アモルファスカーボン、グラファイト、天然黒鉛、メゾカーボンマイクロビーズ、ピッチ系炭素繊維などの炭素質材料、ポリアセン等の導電性高分子などがあげられる。また、負極活物質としては、ケイ素、錫、亜鉛、マンガン、鉄、ニッケル等の金属やこれらの合金、前記金属又は合金の酸化物や硫酸塩が用いられる。加えて、金属リチウム、Li-Al、Li-Bi-Cd、Li-Sn-Cd等のリチウム合金、リチウム遷移金属窒化物、シリコン等を使用できる。電極活物質は、機械的改質法により表面に導電付与材を付着させたものも使用できる。負極活物質の粒径は、電池の他の構成要件との兼ね合いで適宜選択されるが、初期効率、負荷特性、サイクル特性などの電池特性の向上の観点から、50%体積累積径が、通常1~50μm、好ましくは15~30μmである。
 負極の電極活物質層における負極活物質の含有割合は、好ましくは90~99.9質量%、より好ましくは95~99質量%である。電極中における負極活物質の含有量を、前記範囲とすることにより、高い容量を示しながらも柔軟性、結着性を示すことができる。
(リチウムイオン二次電池負極用バインダー)
 リチウムイオン二次電池負極用バインダーとしては、特に制限されず公知のものを用いることができる。例えば、前述のリチウムイオン二次電池正極用に使用される、ポリエチレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、ポリアクリル酸誘導体、ポリアクリロニトリル誘導体などの樹脂や、アクリル系軟質重合体、ジエン系軟質重合体、オレフィン系軟質重合体、ビニル系軟質重合体等の軟質重合体を用いることができる。これらは単独で使用しても、これらを2種以上併用してもよい。
 リチウムイオン二次電池用負極には、上記成分のほかに、さらに前述の二次電池用正極中に使用される分散剤や電解液分解抑制等の機能を有する電解液添加剤等の他の成分が含まれていてもよい。これらは電池反応に影響を及ぼさないものであれば特に限られない。
 リチウムイオン二次電池負極用電極は、負極活物質とバインダーからなる負極活物質が、集電体上に形成されてなる。
 集電体は、前述の二次電池正極用に使用される集電体を用いることができ、電気導電性を有しかつ電気化学的に耐久性のある材料であれば特に制限されないが、リチウムイオン二次電池の負極用としては銅が特に好ましい。
 リチウムイオン二次電池用負極活物質層の厚みは、通常5~300μmであり、好ましくは10~250μmである。電極厚みが上記範囲にあることにより、負荷特性及びエネルギー密度共に高い特性を示す。
 リチウムイオン二次電池用負極は、前述のリチウムイオン二次電池用正極と同様に製造することができる。
 リチウムイオン二次電池の具体的な製造方法としては、正極と負極とをセパレーターを介して重ね合わせ、これを電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口する方法が挙げられる。必要に応じてエキスパンドメタルや、ヒューズ、PTC素子などの過電流防止素子、リード板などを入れ、電池内部の圧力上昇、過充放電の防止をする事もできる。電池の形状は、コイン型、ボタン型、シート型、円筒型、角形、扁平型など何れであってもよい。
(実施例)
 以下に、実施例を挙げて本発明を説明するが、本発明はこれに限定されるものではない。尚、本実施例における部および%は、特記しない限り質量基準である。
 実施例および比較例において、各種物性は以下のように評価する。
<バインダーの膨潤度>
 バインダー組成物をシャーレに流し込み、窒素雰囲気下にて120℃で5時間乾燥させて溶剤を除去して厚さ50μmのバインダーシートを得る。前記バインダーシート10gを、100gの電解液溶媒(ジエチルカーボネート)に60℃で72時間浸漬させ、そのときの重量増加を膨潤度として測定し、以下の基準で評価した。
A:膨潤度が200%未満
B:膨潤度が200%以上~400%未満
C:膨潤度が400%以上~600%未満
D:膨潤度が600%以上~800%未満
E:膨潤度が800%以上
<極板の結着性>
 作製した正極を、それぞれ、幅2.5cm×長さ10cmの矩形に切って試験片とし、正極活物質層面を上にして固定する。試験片の正極活物質層表面に、ニチバン社製粘着テープを貼り付けた後、試験片の一端からセロハンテープを50mm/分の速度で180°方向に引き剥がしたときの応力を測定した。測定を10回行い、その平均値を求めてこれをピール強度とし、以下の基準で評価した。ピール強度が大きいほど正極活物質層の集電体への結着力が大きいことを示す。
SA:ピール強度が14N/m以上
A:ピール強度が12N/m以上~14N/m未満
B:ピール強度が10N/m以上~12N/m未満
C:ピール強度が8N/m以上~10N/m未満
D:ピール強度が4N/m以上~6N/m未満
E:ピール強度が6N/m未満
F:ピール強度が4N/m未満
<常温サイクル特性>
 作成したコイン型電池を、それぞれ20℃で0.1Cの定電流で4.3Vまで充電し、0.1Cの定電流で3.0Vまで放電する充放電サイクルを行った。充放電サイクルは100サイクルまで行い、初期放電容量に対する50サイクル目の放電容量の比を容量維持率とし、下記の基準で判定した。容量維持率が大きいほど繰り返し充放電による容量減が少ないことを示す。
SA:容量維持率が85%以上
A:容量維持率が80%以上85%未満
B:容量維持率が75%以上80%未満
C:容量維持率が70%以上75%未満
D:容量維持率が65%以上70%未満
E:容量維持率が60%以上65%未満
F:容量維持率が60%未満
<低温サイクル特性>
 常温サイクル特性の評価において、評価温度を20℃から-20℃に変更したこと以外は同様にして低温での充放電サイクルを行った。充放電サイクルは100サイクルまで行い、初期放電容量に対する50サイクル目の放電容量の比を容量維持率とし、下記の基準で判定した。容量維持率が大きいほど繰り返し充放電による容量減が少ないことを示す。
A:容量維持率が30%以上
B:容量維持率が25%以上30%未満
C:容量維持率が20%以上25%未満
D:容量維持率が10%以上20%未満
E:容量維持率が10%未満
<充放電レート特性>
 測定条件を、定電流量2.0Cに変更したこと以外は、前記充放電サイクル特性の測定と同様にして、各定電流量における放電容量を測定した。0.1Cでの電池容量に対する2.0Cでの放電容量の割合を百分率で算出して充放電レート特性とし、下記の基準で判定した。この値が大きいほど、内部抵抗が小さく、高速充放電が可能であることを示す。
SA:70%以上
A:65%以上70%未満
B:60%以上65%未満
C:55%以上60%未満
D:50%以上55%未満
E:50%未満
 なお、以下の実施例および比較例において使用した、正極活物質、スチレン樹脂およびアクリル系軟質重合体は下記のとおりである。
(正極活物質)
LiCo(コバルト酸リチウム、日本化学工業社製)
LiMn(マンガン酸リチウム、戸田工業社製)
LiNi(ニッケル酸リチウム、戸田工業社製)
LiFePO(リン酸鉄リチウム、三井造船社製) 
(スチレン樹脂)
スチレン樹脂A:溶液重合法による市販スチレン樹脂(アルドリッチ社製 スチレン単位量100%、重量平均分子量192,000、ガラス転移温度82℃)
スチレン樹脂B:
 撹拌機付きのオートクレーブに、イオン交換水300部、アルキルベンゼンスルホン酸ナトリウム2部、スチレン100部、t-ドデシルメルカプタン2部、重合開始剤として過硫酸カリウム0.3部を入れ、十分に撹拌した後、70℃に加温して乳化重合し、スチレン樹脂Bの粒子分散液を得た。固形分濃度から求めた重合転化率はほぼ99%であった。スチレン樹脂Bのスチレン単位量は100%、重量平均分子量は31,000、ガラス転移温度は100℃であった。
スチレン樹脂C:
 撹拌機付きのオートクレーブに、イオン交換水300部、アルキルベンゼンスルホン酸ナトリウム2部、スチレン90部、エチルアクリレート10部、t-ドデシルメルカプタン1.5部、重合開始剤として過硫酸カリウム0.3部を入れ、十分に撹拌した後、70℃に加温して重合し、スチレン樹脂Cの粒子分散液を得た。固形分濃度から求めた重合転化率はほぼ99%であった。スチレン樹脂Cのスチレン単位量は90%、2エチルヘキシルアクリレート単位量は10%、重量平均分子量は140000、ガラス転移温度は85℃であった。
スチレン樹脂D:
 撹拌機付きのオートクレーブに、イオン交換水300部、アルキルベンゼンスルホン酸ナトリウム2部、スチレン83部、ブチルアクリレート17部、t-ドデシルメルカプタン2部、重合開始剤として過硫酸カリウム0.3部を入れ、十分に撹拌した後、70℃に加温して重合し、スチレン樹脂Dの粒子分散液を得た。固形分濃度から求めた重合転化率はほぼ99%であった。スチレン樹脂Dのスチレン単位量は83%、ブチルアクリレート単位量は17%、重量平均分子量は29,000、ガラス転移温度は60℃であった。
スチレン樹脂E:
 撹拌機付きのオートクレーブに、イオン交換水300部、アルキルベンゼンスルホン酸ナトリウム2部、スチレン65部、ブチルアクリレート35部、t-ドデシルメルカプタン2部、重合開始剤として過硫酸カリウム0.3部を入れ、十分に撹拌した後、70℃に加温して重合し、スチレン樹脂Eの粒子分散液を得た。固形分濃度から求めた重合転化率はほぼ99%であった。スチレン樹脂Eのスチレン単位量は65%、ブチルアクリレート単位量は35%、重量平均分子量は20,000、ガラス転移温度は26℃であった。
 (アクリル系軟質重合体)
アクリル系軟質重合体A:
 撹拌機付きのオートクレーブに、イオン交換水300部、n-ブチルアクリレート82.5部、アクリロニトリル15部、グリシジルメタクリレート2.0部、2-アクリルアミド2-メチルプロパンスルホン酸0.5部および分子量調整剤としてt-ドデシルメルカプタン0.05部、重合開始剤として過硫酸カリウム0.3部を入れ、十分に撹拌した後、70℃に加温して重合し、アクリル系軟質重合体(バインダー)の粒子分散液を得た。固形分濃度から求めた重合転化率はほぼ99%であった。この重合体粒子分散液100部にN-メチルピロリドン(以下、「NMP」と記載することがある。)320部を加え、減圧下に水を蒸発させて、共重合体(以下、「アクリル系軟質重合体A」という。)のNMP溶液を得た。重合体Aの溶液の固形分濃度は8%であった。また、このアクリル系軟質重合体Aのガラス転移温度は-32℃であった。 
アクリル系軟質重合体B:
 重合性単量体の組成を、n-ブチルアクリレート41部、エチルアクリレート42部、アクリロニトリル15部、グリシジルメタクリレート2.0部、2-アクリルアミド2-メチルプロパンスルホン酸0.5部に変更した以外は、上記軟質重合体Aと同様の重合を行い、アクリル系軟質重合体BのNMP溶液を得た。重合体Bの溶液の固形分濃度は8%であった。また、このアクリル系軟質重合体Bのガラス転移温度は-23℃であった。
アクリル系軟質重合体C:
 重合性単量体の組成を、エチルアクリレート40部、アクリロニトリル58部、グリシジルメタクリレート2.0部、2-アクリルアミド2-メチルプロパンスルホン酸0.5部に変更した以外は、上記軟質重合体Aと同様の重合を行い、アクリル系軟質重合体CのNMP溶液を得た。重合体Cの溶液の固形分濃度は8%であった。また、このアクリル系軟質重合体Cのガラス転移温度は23℃であった。
(実施例1)
<バインダー組成物の作製>
 固形分比(スチレン樹脂:アクリル系軟質重合体)が60:40であり、固形分濃度が8%となるように、スチレン樹脂Aとアクリル系軟質重合体AおよびNMPを混合し、バインダーのNMP溶液を調製した。得られたバインダー組成物について、膨潤度を測定した。その結果を表1に示す。
<正極用スラリーの作成>
 正極活物質(LiCo)100部に対し、バインダー1.2部(固形分相当)および導電付与材としてアセチレンブラック2部を混合し、更にN-メチルピロリドンを固形分濃度が80%になるように混合させてプラネタリーミキサーで混合して正極用スラリーを調製した。
<正極の製造>
 上記正極用スラリーをコンマコーターで厚さ20μmのアルミ箔上に、乾燥後の膜厚が120μm程度になるように塗布し、60℃で20分間乾燥後、150℃で2時間加熱処理して電極原反を得た。この電極原反をロールプレスで圧延し、密度が3.7g/cm、銅箔および正極活物質層の合計厚みが100μmに制御された正極極板を作製した。作製した正極極板の結着性を測定した。その結果を表1に示す。
<電池の作製>
 得られた正極極板を直径15mmの円形シートに切り抜いた。この正極の正極活物質層面側に直径18mm、厚さ25μmの円形ポリプロピレン製多孔膜からなるセパレーター、負極として用いる金属リチウム、エキスパンドメタルを順に積層し、これをポリプロピレン製パッキンを設置したステンレス鋼製のコイン型外装容器(直径20mm、高さ1.8mm、ステンレス鋼厚さ0.25mm)中に収納した。この容器中に電解液を空気が残らないように注入し、ポリプロピレン製パッキンを介して外装容器に厚さ0.2mmのステンレス鋼のキャップをかぶせて固定し、電池缶を封止して、直径20mm、厚さ約2mmのコイン型電池を製造した。作製したコイン型電池について、電池特性を評価した。その結果を表1に示す。
(実施例2~7および比較例1~7)
 正極活物質およびバインダーの調製に用いたスチレン樹脂、アクリル系軟質重合体の種類、およびスチレン樹脂とアクリル系軟質重合体との質量比、正極活物質に対するバインダー使用量を表1のように変更した以外は、実施例1と同様の操作を行い、正極極板および電池を作成した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 本発明によれば、実施例1~実施例7に示すように、バインダーとしてスチレン単位含量の高いスチレン樹脂とTg15℃以下のアクリル系軟質重合体を所定の比率で併用することにより、結着性、レート特性、サイクル特性に優れるリチウムイオン二次電池を得ることができる。
 一方、スチレン単位含量の低いスチレン樹脂を用いた場合(比較例1)ではバインダーの膨潤度が高すぎ、また極板の結着性も不十分であり、アクリル系重合体としてTgが高いものを用いた場合(比較例2)では極板の結着性およびサイクル特性が著しく劣り、バインダー中のスチレン樹脂が少なすぎる場合(比較例3)や多すぎる場合(比較例4)にはサイクル特性が不十分であり、活物質に対するバインダー量が多すぎる場合(比較例5)や少なすぎる場合(比較例)はレート特性、サイクル特性のいずれもが不十分であり、バインダーとしてスチレン樹脂のみを用いたもの(比較例7)は、極板の結着性、レート特性、サイクル特性が劣り、特に常温と低温でのサイクル特性において著しく劣っている。

Claims (5)

  1.  集電体、及び該集電体に積層された、正極活物質及びバインダーを含有してなる電極活物質層を有し、
     前記電極活物質層は、正極活物質100質量部に対し、バインダーを0.5~5質量部含有し、
     前記バインダーが、バインダー全量100質量部中に、
     スチレンから導かれる構造単位の含有量が70~100質量%のスチレン樹脂50~70質量部及びガラス転移温度15℃以下のアクリル系軟質重合体50~30質量部を含む二次電池用正極。
  2.  前記正極活物質がマンガン、鉄及びニッケルからなる群から選ばれる1種以上の遷移金属元素を含む請求項1記載の二次電池用正極。
  3.  前記スチレン樹脂が、乳化重合法で合成された樹脂である請求項1または2記載の二次電池用正極。
  4.  正極活物質100質量部に対し、バインダーを0.5~5質量部含有し、
     前記バインダーが、バインダー全量100質量部中に、スチレンから導かれる構造単位の含有量が70~100質量%のスチレン樹脂50~70質量部及びガラス転移温度が15℃以下のアクリル系軟質重合体50~30質量部を含有してなるスラリーを、集電体上に塗布・乾燥する工程を含む二次電池用正極の製造方法。
  5.  正極、電解液、セパレーター及び負極を有する二次電池であって、
     前記正極が、請求項1または2に記載の二次電池用正極である二次電池。
PCT/JP2010/061129 2009-06-30 2010-06-30 二次電池用正極及び二次電池 WO2011002014A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011520951A JP5682557B2 (ja) 2009-06-30 2010-06-30 二次電池用正極及び二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009156250 2009-06-30
JP2009-156250 2009-06-30

Publications (1)

Publication Number Publication Date
WO2011002014A1 true WO2011002014A1 (ja) 2011-01-06

Family

ID=43411085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061129 WO2011002014A1 (ja) 2009-06-30 2010-06-30 二次電池用正極及び二次電池

Country Status (3)

Country Link
JP (1) JP5682557B2 (ja)
KR (1) KR101605582B1 (ja)
WO (1) WO2011002014A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014035900A (ja) * 2012-08-09 2014-02-24 Toyo Ink Sc Holdings Co Ltd プライマー組成物、ニッケル水素二次電池正極及びその製造方法
CN111095600A (zh) * 2017-09-28 2020-05-01 日本瑞翁株式会社 非水系二次电池功能层用组合物、非水系二次电池用功能层和非水系二次电池
WO2023182248A1 (ja) * 2022-03-24 2023-09-28 東亞合成株式会社 二次電池正極用粉末状バインダー及びその利用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014112618A1 (ja) * 2013-01-21 2014-07-24 昭和電工株式会社 リチウムイオン二次電池電極用バインダー、スラリー、電極、及びリチウムイオン二次電池
CN105229824B (zh) * 2013-05-23 2017-07-18 日本瑞翁株式会社 二次电池负极用浆料组合物、二次电池用负极和二次电池
KR102142494B1 (ko) 2020-03-31 2020-08-07 강연균 누출 화학물질 제독용 중화흡수제 및 그 제조방법과 이를 충진한 중화기

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521068A (ja) * 1991-07-16 1993-01-29 Toshiba Battery Co Ltd 非水溶媒二次電池
WO1998039808A1 (en) * 1997-03-04 1998-09-11 Nippon Zeon Co., Ltd. Binder for cell, slurry for cell electrode, electrode for lithium secondary cell, and lithium secondary cell
JPH1125989A (ja) * 1997-07-04 1999-01-29 Jsr Corp 電池電極用バインダー
JPH11354126A (ja) * 1998-06-09 1999-12-24 Matsushita Electric Ind Co Ltd 非水電解液二次電池用負極およびそれを用いた電池
JP2003151556A (ja) * 2001-11-08 2003-05-23 Dainippon Printing Co Ltd 負極用塗工組成物、負極板、その製造方法、及び、非水電解液二次電池
JP2006513554A (ja) * 2003-03-05 2006-04-20 エルジー・ケム・リミテッド 電池特性、接着性、コーティング特性が調節された2相以上の構造を有するリチウム二次電池用バインダー
WO2007072948A1 (ja) * 2005-12-22 2007-06-28 Jsr Corporation 二次電池電極用バインダー組成物、二次電池電極用スラリー、及び二次電池電極
WO2008032699A1 (fr) * 2006-09-11 2008-03-20 Zeon Corporation Électrode pour une batterie secondaire à électrolyte non aqueux et batterie secondaire à électrolyte non aqueux utilisant celle-ci

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100484642B1 (ko) 2002-09-23 2005-04-20 삼성에스디아이 주식회사 리튬-설퍼 전지용 양극 활물질 및 그 제조방법
WO2006107173A1 (en) 2005-04-07 2006-10-12 Lg Chem, Ltd. Binder with good rate property and long cycleability for lithium secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521068A (ja) * 1991-07-16 1993-01-29 Toshiba Battery Co Ltd 非水溶媒二次電池
WO1998039808A1 (en) * 1997-03-04 1998-09-11 Nippon Zeon Co., Ltd. Binder for cell, slurry for cell electrode, electrode for lithium secondary cell, and lithium secondary cell
JPH1125989A (ja) * 1997-07-04 1999-01-29 Jsr Corp 電池電極用バインダー
JPH11354126A (ja) * 1998-06-09 1999-12-24 Matsushita Electric Ind Co Ltd 非水電解液二次電池用負極およびそれを用いた電池
JP2003151556A (ja) * 2001-11-08 2003-05-23 Dainippon Printing Co Ltd 負極用塗工組成物、負極板、その製造方法、及び、非水電解液二次電池
JP2006513554A (ja) * 2003-03-05 2006-04-20 エルジー・ケム・リミテッド 電池特性、接着性、コーティング特性が調節された2相以上の構造を有するリチウム二次電池用バインダー
WO2007072948A1 (ja) * 2005-12-22 2007-06-28 Jsr Corporation 二次電池電極用バインダー組成物、二次電池電極用スラリー、及び二次電池電極
WO2008032699A1 (fr) * 2006-09-11 2008-03-20 Zeon Corporation Électrode pour une batterie secondaire à électrolyte non aqueux et batterie secondaire à électrolyte non aqueux utilisant celle-ci

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014035900A (ja) * 2012-08-09 2014-02-24 Toyo Ink Sc Holdings Co Ltd プライマー組成物、ニッケル水素二次電池正極及びその製造方法
CN111095600A (zh) * 2017-09-28 2020-05-01 日本瑞翁株式会社 非水系二次电池功能层用组合物、非水系二次电池用功能层和非水系二次电池
WO2023182248A1 (ja) * 2022-03-24 2023-09-28 東亞合成株式会社 二次電池正極用粉末状バインダー及びその利用

Also Published As

Publication number Publication date
JPWO2011002014A1 (ja) 2012-12-13
JP5682557B2 (ja) 2015-03-11
KR20120104081A (ko) 2012-09-20
KR101605582B1 (ko) 2016-03-22

Similar Documents

Publication Publication Date Title
KR101539819B1 (ko) 이차 전지용 전극 및 이차 전지
JP6191597B2 (ja) 二次電池用セパレータ
KR101819067B1 (ko) 이차 전지용 정극 및 그 제조 방법, 슬러리 조성물, 그리고 이차 전지
JP6222102B2 (ja) リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極及びその製造方法、並びにリチウムイオン二次電池
JP5733219B2 (ja) 二次電池用正極及び二次電池
KR101646306B1 (ko) 이차 전지용 전극, 이차 전지 전극용 바인더 및 이차 전지
JP5534245B2 (ja) 二次電池用正極及び二次電池
JP6191471B2 (ja) リチウムイオン二次電池用バインダー組成物、その製造方法、リチウムイオン二次電池用スラリー組成物、リチウムイオン二次電池用電極、及びリチウムイオン二次電池
WO2014057993A1 (ja) 二次電池用正極の製造方法、二次電池及び二次電池用積層体の製造方法
KR20140004156A (ko) 이차 전지용 다공막, 이차 전지 다공막용 슬러리 및 이차 전지
WO2011148970A1 (ja) 二次電池用正極及び二次電池
JP2014149936A (ja) 二次電池用セパレータ、二次電池用セパレータの製造方法及び二次電池
WO2010016476A1 (ja) リチウムイオン二次電池用電極
JP6020209B2 (ja) 二次電池負極用スラリー組成物の製造方法
JP2014089834A (ja) リチウムイオン二次電池負極用スラリー組成物及びその製造方法、リチウムイオン二次電池用負極、並びにリチウムイオン二次電池
KR20150040250A (ko) 리튬 이온 2 차 전지 전극용의 슬러리 조성물, 리튬 이온 2 차 전지용 전극 및 리튬 이온 2 차 전지
JP2014149935A (ja) 二次電池用セパレータ、二次電池用セパレータの製造方法及び二次電池
JP6111895B2 (ja) リチウムイオン二次電池負極用スラリー組成物、二次電池用負極および二次電池
WO2011078263A1 (ja) 二次電池用電極及び二次電池
JP5682557B2 (ja) 二次電池用正極及び二次電池
KR20200021935A (ko) 전기 화학 소자용 바인더 조성물, 전기 화학 소자 기능층용 슬러리 조성물, 전기 화학 소자 접착층용 슬러리 조성물, 및 복합막
JP2014203805A (ja) リチウムイオン二次電池負極用粒子状バインダー、リチウムイオン二次電池負極用スラリー組成物およびリチウムイオン二次電池
KR20200024791A (ko) 전기 화학 소자용 바인더 조성물, 전기 화학 소자 기능층용 슬러리 조성물, 전기 화학 소자 접착층용 슬러리 조성물, 및 복합막

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10794182

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011520951

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117031302

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10794182

Country of ref document: EP

Kind code of ref document: A1