TWI405664B - 有機/無機混成薄膜及其製造方法 - Google Patents

有機/無機混成薄膜及其製造方法 Download PDF

Info

Publication number
TWI405664B
TWI405664B TW099145156A TW99145156A TWI405664B TW I405664 B TWI405664 B TW I405664B TW 099145156 A TW099145156 A TW 099145156A TW 99145156 A TW99145156 A TW 99145156A TW I405664 B TWI405664 B TW I405664B
Authority
TW
Taiwan
Prior art keywords
organic
inorganic
hybrid film
inorganic hybrid
polyvinylidene fluoride
Prior art date
Application number
TW099145156A
Other languages
English (en)
Other versions
TW201226187A (en
Inventor
Chun Wei Su
Chyi Ming Leu
Chih Jen Yang
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW099145156A priority Critical patent/TWI405664B/zh
Priority to CN201010616447.3A priority patent/CN102532756B/zh
Priority to US13/230,701 priority patent/US8865826B2/en
Publication of TW201226187A publication Critical patent/TW201226187A/zh
Application granted granted Critical
Publication of TWI405664B publication Critical patent/TWI405664B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • C08J3/215Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase at least one additive being also premixed with a liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Description

有機/無機混成薄膜及其製造方法
本發明係有關於有機/無機混成薄膜,且特別是有關於一種具有高透明度之有機/無機混成薄膜。
有機/無機複合材料係可將有機及無機的優點相加成,形成兼具兩者特性之新型材料。通常,可在高分子內加入一些如玻璃、纖維、黏土、碳黑等無機物來作為填充物或補強劑,以降低成本及提升材料之物理性質。然而,無機物的分散程度及尺寸大小亦會影響其在高分子材料中所能達到的補強效果,或甚至亦會影響到高分子材料原本的特性。
聚偏氟乙烯(poly(vinylidene fluoride),PVDF)是氟樹脂中機械強度最優異的材料,在高溫及高壓下仍能保持良好的強度,且韌性佳、硬度大、耐磨性好、具有突出的抗紫外線及耐氣候老化的性能,以及具有良好的化學穩定性及熱穩定性。同時,聚偏氟乙烯易於加工,因而具有極佳的應用性。一般而言,利用黏土加入聚偏氟乙烯高分子形成複合材料具有以下幾個優點:1.優良的壓電特性、2.優良的機械性質、3.低熱膨脹係數、4.高耐熱性、5.低吸水率、6.低透氣率、7.優良的耐候性。聚偏氟乙烯主要可分為3種結晶型態:α相、β相及γ相,其中α相最為常見,而γ相係由α相及β相混合而成。在這3種晶相中,以β相的壓電特性及機械性質較佳。在通常情況下,β相不能從聚偏氟乙烯熔體直接獲得,僅能由α相經固相轉變獲得。
聚偏氟乙烯/黏土複合材料之傳統製造方法係為將聚偏氟乙烯及黏土熔融射出(melt-mixing)成型,藉由黏土的添加導致聚偏氟乙烯產生相變化,例如由α相轉變為β相,以增加聚偏氟乙烯的壓電特性及機械性質。然而,依照此種方法所得到之偏氟乙烯/黏土複合材料係為光學特性不佳的薄膜,且黏土添加量僅約5-10wt%。
此外,亦有另一種方法為利用透明且非結晶型之聚甲基丙烯酸甲酯(Polymethylmethacrylate;PMMA)與聚偏氟乙烯(PVDF)混成製作成複合材料,其優點為利用高透明的聚甲基丙烯酸甲酯來改善聚偏氟乙烯的光學特性。然而,由於未加入無機物,其物性將不具有上述有機/無機混成複合材料的優點,且該複合材料之透明度將會受所添加的聚甲基丙烯酸甲酯及聚偏氟乙烯之比例影響,當聚偏氟乙烯之比例越高時,該複合材料之透明度將越低。
因此,業界需要的是一種新穎的聚偏氟乙烯/黏土複合材料,其兼具有良好的光學特性。
本發明係提供一種有機/無機混成薄膜,包括:一聚偏氟乙烯;以及一無機奈米片材分散於此聚偏氟乙烯中,其中此聚偏氟乙烯與此無機奈米片材之重量比約97:3至20:80,此無機奈米片材之尺寸約20-80 nm,其中此有機/無機混成薄膜在380至780 nm的波長下之透明度大於約85%。
本發明亦提供一種有機/無機混成薄膜之製造方法:提供一無機奈米片材之有機分散液,此有機分散液包含一有機溶劑及一氫離子型無機奈米片材,其尺寸約20-80 nm;混合一聚偏氟乙烯與此有機分散液,並塗佈成一薄膜;以及烘烤此薄膜,形成此有機/無機混成薄膜,其中此氫離子型無機奈米片材與此聚偏氟乙烯之重量比約97:3至20:80,且此混成薄膜在380至780 nm的波長下之透明度大於約85%。
為讓本發明之上述和其他目的、特徵、和優點能更明顯易懂,下文特舉出較佳實施例,並配合所附圖式,作詳細說明如下:
本發明係提供一種有機/無機混成薄膜,其包含聚偏氟乙烯及無機奈米片材,其中由於無機奈米片材尺寸小且均勻分散,使此有機/無機混成薄膜亦具有極佳的光學特性,例如高亮度、高穿透度、低色偏(b* color)、低霧度(haze)。此外,當無機奈米尺寸的含量較高時,聚偏氟乙烯為實質上純β相之聚偏氟乙烯(不含α相)。
本發明之有機/無機混成薄膜係由無機奈米片材之有機分散液與聚偏氟乙烯混合製得。此無機奈米片材有機分散液係以直接離子交換的方式,以氫離子取代無機奈米片材中的金屬陽離子,且在製程中無加入任何分散劑或改質劑,因而無機奈米片材中可在轉相至有機溶劑後,仍維持無機奈米片材的形狀及粒徑,及具有高固含量。
無機奈米片材有機分散液之製造方法可合併參照本案申請人同時提出之專利申請案“無機奈米片材之有機分散液及其製造方法”。首先,提供無機奈米片材之水性分散液,無機奈米片材可為天然或合成之奈米黏土,其尺寸介於約5~500 nm之間,較佳約20~300 nm。在一實施例中,片狀黏土之徑長比最小不小於10,較佳之徑長比約在50~10000之間,片狀黏土可為硅礬石黏土(smectite clay)、蛭石(vermiculite)、管狀高嶺土(halloysite)、絹雲母(sericite)、雲母(mica)、合成雲母(synthetic mica)、合成水滑石(layered double hydroxide;LDH)、合成硅礬石黏土、或前述之組合。其中,硅礬石黏土包括:蒙脫土(montmorillonite)、皂土(saponite)、富鋁蒙脫土(beidellite)、矽鐵石(nontronite)、水輝石(hectorite)、富鎂蒙脫石(stevensite)、或前述之組合。上述之片狀黏土可以單獨或混合使用。此水性分散液的固含量約1~20 wt%。
接著,加入H型陽離子交換樹脂及OH型陰離子交換樹脂至上述無機奈米片材之水性分散液中,將無機奈米片材中的陽離子替換成氫離子。在一實施例中,H型陽離子交換樹脂及OH型離子交換樹脂較佳為約1:1,以維持陰離子交換樹脂反應時所釋放的氫離子與陽離子交換樹脂反應時所釋放的氫氧根離子維持等量。H型陽離子交換樹脂可例如為Dowex H form。OH型陰離子交換樹脂可例如為Dowex OH form。
經離子交換程序後,水性分散液中的無機奈米片材均已被替換成氫離子型之無機奈米片材。如此,例如黏土之無機奈米片材的雙層結構即已被拆開,所形成之氫離子無機奈米片材得以以較小的粒徑完全分散在水中。
接著,加入該氫離子型無機奈米片材之水性分散液加入至轉相溶劑及有機分散液之有機溶劑中作均勻混合,使氫離子型無機奈米片材能均勻分散於轉相溶劑中,以轉相至有機分散液之有機溶劑中。在一實施例中,轉相溶劑可包含與水互溶之醇類、乙醚、丙酮或前述之組合。在較佳實施例中,轉相溶劑可包含異丙醇。有機分散液之有機溶劑可包含N-甲基-2-吡咯烷酮(N-methyl-2-pyrrolidone;NMP)、N,N-二甲基乙醯胺(N,N-dimethylacetamide;DMAc)、γ-丁內酯(γ-butyrolactone;GBL)、N,N-二甲基甲醯胺(N,N-Dimethylformamide;DMF)二甲基亞碸(Dimethyl sulfoxide;DMSO)、二甲苯(Xylene)、甲苯(Toluene)、或前述之組合。本領域所屬通常知識者可知的是,轉相溶劑與有機分散液之有機溶劑的比例可依溶液種類而任意變換之。
接著,以例如減壓濃縮或真空抽取的方式去除該轉相溶劑及水,得到氫離子型無機奈米片材之有機分散液。在本發明實施例中,所得到之氫離子型無機奈米片材之有機分散液,具有固含量為約1~20 wt%,無機奈米顆粒仍為片狀,粒徑大小約在20~80 nm之間。
接著,將此氫離子型無機奈米片材之有機分散液與聚偏氟乙烯均勻混合,其中聚偏氟乙烯係溶於例如N-甲基-2-吡咯烷酮(N-methyl-2-pyrrolidone;NMP)、N,N-二甲基乙醯胺(N,N-dimethylacetamide;DMAc)、γ-丁內酯(γ-butyrolactone;GBL)、N,N-二甲基甲醯胺(N,N-Dimethylformamide;DMF)二甲基亞碸(Dimethyl sulfoxide;DMSO)、二甲苯(Xylene)、甲苯(Toluene)、或前述之組合的有機溶劑中,且此有機溶劑較佳與氫離子型無機奈米片材之有機分散液的有機溶劑相同。聚偏氟乙烯與此氫離子型無機奈米片材之重量比例為約97/3至20/80,較佳為約90/10至30/70,更佳為約80/20至40/60。
隨後,將此混合溶液靜置脫泡後,以例如旋轉塗佈、刮刀塗佈或網印塗佈方式形成濕膜。隨後,分別在50~70℃烘烤5~15分鐘,及在120~180℃下烘烤10~60分鐘(請補充),得到本發明之有機/無機混成薄膜。值得注意的是,在有機/無機混成薄膜中,儘管加入了高含量的無機奈米片材,聚偏氟乙烯薄膜仍可維持較小的晶體尺寸,例如小於至少約100 nm,因而可具有優異的光學特性。此外,由於此有機/無機混成薄膜中未加入例如聚甲基丙烯酸甲酯(PMMA)等高分子,在無機奈米片材含量較高時,例如當聚偏氟乙烯與無機奈米片材的重量比大於約90:10時,可使原先為α相之聚偏氟乙烯相大體上完全轉換至β相(不包含α相)。在一實施例中,此該有機/無機混成薄膜之厚度約1~50 μm。
由於無機奈米片材之尺寸小且以均勻分散於有機溶劑中,因而與聚偏氟乙烯薄膜混合後分散性極佳,此外,聚偏氟乙烯薄膜的結晶相為晶體尺寸小於至少約100 nm。因此,經上述步驟所得到之有機/無機混成薄膜的光學特性極佳,例如霧度為小於1.0,較佳小於0.7;在380至780 nm的波長下之透明度大85%,較佳大於90%;亮度大於90,較佳大於約95;以及低色偏(b* color)小於約3,較佳小於約1.5。
【實施例1】
(a)將25g黏土(Laponite RDS,粒徑大小20 nm x 20 nm x 1 nm)分散於1000g去離子水中。接著,取300 g的H型陽離子交換樹脂(Dowex H form)及300 g的OH型陰離子交換樹脂(Dowex OH form)加入至水性分散液中。接著,加入1440 g的異丙醇並減壓蒸餾得到2.5%的異丙醇,再加入287.5 g的N,N-二甲基乙醯胺(DMAc)並減壓蒸餾8 wt%之黏土有機分散液。
(b)將50g聚偏氟乙烯(PVDF)溶於450g N,N-二甲基乙醯胺(DMAc)內,形成10wt%之PVDF-DMAc溶液。
(c)取2.78g之(a)步驟得到之黏土有機分散液與20g之(b)步驟得到之PVDF-DMAc溶液混合,以超音波震盪2小時,靜置隔夜後以刮刀塗佈成膜,接著分別在60℃下烘烤15分鐘及在180℃下烘烤30分鐘,得到10wt%之聚偏氟乙烯/黏土混成薄膜。
【實施例2】
如實施例1之相同方式進行,但步驟(c)之黏土有機分散液的量為6.25g,得到20wt%之聚偏氟乙烯/黏土混成薄膜。
【實施例3】
如實施例1之相同方式進行,但步驟(c)之黏土有機分散液的量為1.39 g,得到5wt%之聚偏氟乙烯/黏土混成薄膜。
【實施例4】
如實施例1之相同方式進行,但步驟(c)之黏土有機分散液的量為0.773g,得到3wt%之聚偏氟乙烯/黏土混成薄膜。
【實施例5】
如實施例1之相同方式進行,但步驟(c)之黏土有機分散液的量為29.17g,得到70wt%之聚偏氟乙烯/黏土混成薄膜。
第1圖顯示實施例1之聚偏氟乙烯/黏土混成薄膜及純聚偏氟乙烯薄膜之X光繞射(XRD)圖。如第1圖所示,實施例1之聚偏氟乙烯/黏土混成薄膜中的聚偏氟乙烯結晶相係僅有β相,但純聚偏氟乙烯薄膜係同時具有α相及β相。
表1顯示實施例1、2之聚偏氟乙烯/黏土混成薄膜與純聚偏氟乙烯薄膜之光學性質的比較。由表1可得知,實施例1、2之聚偏氟乙烯/黏土混成薄膜無論在亮度、穿透度及霧度等光學性質均優於純聚偏氟乙烯薄膜,且b*色度亦皆維持在約3(低於肉眼可辨別之程度)以下。
表2顯示實施例2之聚偏氟乙烯/黏土混成薄膜與純聚偏氟乙烯薄膜之抗UV老化性質的比較。實施例2之聚偏氟乙烯/黏土混成薄膜與純聚偏氟乙烯薄膜係分別強度0.45 W/m2 及波長340 nm的UV下照射500小時至4000小時。如表2所示,實施例2之聚偏氟乙烯/黏土混成薄膜在經長時間UV照射後,反而具有更佳的色偏(b* color)及黃化指數(yellow index),且遠低於純聚偏氟乙烯薄膜。
第2圖顯示實施例1、2之聚偏氟乙烯/黏土混成薄膜與純聚偏氟乙烯薄膜之熱膨脹係數(溫度量測區間為40~105度),其各自為134.4μm/(m*℃)、104.97 μm/(m*℃)、192.6μm/(m*℃)。由上述結果得知,隨著黏土的加入,聚偏氟乙烯/黏土混成薄膜明顯具有較佳的熱穩定性,且隨黏土含量越高越佳。
附件一~三分別顯示純聚偏氟乙烯薄膜、實施例1及實施例2之聚偏氟乙烯/黏土聚偏氟乙烯/黏土混成薄膜薄膜之穿透式電子顯微鏡圖(TEM)。參見附件一,純聚偏氟乙烯薄膜具有較大的結晶尺寸。參見附件二、三,可得知黏土的加入確實可抑制聚偏氟乙烯薄膜的結晶尺寸。另外,可由附件四顯示之原子力顯微鏡(AFM)可觀察到實施例2之偏氟乙烯薄膜的晶體尺寸小於100 nm。
雖然本發明已以數個較佳實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作任意之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。
第1圖顯示依照本發明一實施例之聚偏氟乙烯/黏土混成薄膜及純聚偏氟乙烯薄膜之X光繞射(XRD)圖。
第2圖顯示依照一實施例之聚偏氟乙烯/黏土混成薄膜與純聚偏氟乙烯薄膜之熱膨脹係數。

Claims (15)

  1. 一種有機/無機混成薄膜,包括:一聚偏氟乙烯;以及一無機奈米片材分散於該聚偏氟乙烯中,其中該聚偏氟乙烯與該無機奈米片材之重量比約97:3至20:80,該無機奈米片材之尺寸約20-80 nm,其中該有機/無機混成薄膜在380至780 nm的波長下之透明度大於約85%。
  2. 如申請專利範圍第1項所述之有機/無機混成薄膜,其中該無機奈米片材包含經氫離子交換後之硅礬石黏土(smectite clay)、蛭石(vermiculite)、管狀高嶺土(halloysite)、絹雲母(sericite)、雲母(mica)、合成雲母(synthetic mica)、合成水滑石(layered double hydroxide;LDH)、合成硅礬石黏土、或前述之組合。
  3. 如申請專利範圍第1項所述之有機/無機混成薄膜,其中該無機奈米片材係為氫離子型無機奈米片材。
  4. 如申請專利範圍第1項所述之有機/無機混成薄膜,其中該有機/無機混成薄膜之霧度小於約1.0。
  5. 如申請專利範圍第1項所述之有機/無機混成薄膜,其中該聚偏氟乙烯之晶體尺寸小於約100 nm。
  6. 如申請專利範圍第1項所述之有機/無機混成薄膜,其中該有機/無機混成薄膜之厚度約1-100 μm。
  7. 一種有機/無機混成薄膜之製造方法:提供一無機奈米片材之有機分散液,該有機分散液包含一有機溶劑及一氫離子型無機奈米片材,其尺寸約20-80 nm;混合一聚偏氟乙烯與該有機分散液,並塗佈成一薄膜;以及烘烤該薄膜,形成該有機/無機混成薄膜,其中該聚偏氟乙烯與氫離子型無機奈米片材之重量比約97:3至20:80,且該混成薄膜在380至780 nm的波長下之透明度大於約85%。
  8. 如申請專利範圍第7項所述之有機/無機混成薄膜之製造方法,其中該無機奈米片材包含經氫離子交換後之硅礬石黏土(smectite clay)、蛭石(vermiculite)、管狀高嶺土(halloysite)、絹雲母(sericite)、雲母(mica)、合成雲母(synthetic mica)、合成水滑石(layered double hydroxide;LDH)、合成硅礬石黏土、或前述之組合。
  9. 如申請專利範圍第7項所述之有機/無機混成薄膜之製造方法,其中該有機溶劑包括N-甲基-2-吡咯烷酮(N-methyl-2-pyrrolidone;NMP)、N,N-二甲基乙醯胺(N,N-dimethylacetamide;DMAc)、γ-丁內酯(γ-butyrolactone;GBL)、N,N-二甲基甲醯胺(N,N-Dimethylformamide;DMF)二甲基亞碸(Dimethyl sulfoxide;DMSO)、二甲苯(Xylene)、甲苯(Toluene)、或前述之組合。
  10. 如申請專利範圍第7項所述之有機/無機混成薄膜之製造方法,其中該有機/無機混成薄膜之霧度為小於約1.0。
  11. 如申請專利範圍第7項所述之有機/無機混成薄膜之製造方法,其中該混成薄膜中之聚偏氟乙烯之晶體尺寸小於約100 nm。
  12. 如申請專利範圍第7項所述之有機/無機混成薄膜之製造方法,其中該有無機奈米片材之有機分散液之固含量為約1~20 wt%。
  13. 如申請專利範圍第7項所述之有機/無機混成薄膜之製造方法,其中該無機奈米片材之有機分散液之形成係包含下列步驟:(a) 對一無機奈米片材之水性分散液進行離子交換,得到一氫離子型無機奈米片材之水性分散液;(b)加入該氫離子型無機奈米片材之水性分散液至一含該有機溶劑及一轉相溶劑之混合溶液中;及(c)去除該轉相溶劑及水,以使該氫離子型無機奈米片材分散於該有機溶劑中,形成該有機分散液。
  14. 如申請專利範圍第13項所述之有機/無機混成薄膜之製造方法,其中該轉相溶劑包括包含醇類、丙酮、乙醚或前述之組合。
  15. 如申請專利範圍第7項所述之有機/無機混成薄膜之製造方法,其中該有機/無機混成薄膜之厚度約1-100 μm。
TW099145156A 2010-12-22 2010-12-22 有機/無機混成薄膜及其製造方法 TWI405664B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW099145156A TWI405664B (zh) 2010-12-22 2010-12-22 有機/無機混成薄膜及其製造方法
CN201010616447.3A CN102532756B (zh) 2010-12-22 2010-12-31 有机/无机复合薄膜及其制造方法
US13/230,701 US8865826B2 (en) 2010-12-22 2011-09-12 Organic/inorganic composite film and method for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099145156A TWI405664B (zh) 2010-12-22 2010-12-22 有機/無機混成薄膜及其製造方法

Publications (2)

Publication Number Publication Date
TW201226187A TW201226187A (en) 2012-07-01
TWI405664B true TWI405664B (zh) 2013-08-21

Family

ID=46317566

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099145156A TWI405664B (zh) 2010-12-22 2010-12-22 有機/無機混成薄膜及其製造方法

Country Status (3)

Country Link
US (1) US8865826B2 (zh)
CN (1) CN102532756B (zh)
TW (1) TWI405664B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10392493B2 (en) 2015-12-25 2019-08-27 Industrial Technology Research Institute Dispersion solution, organic/inorganic hybrid material and preparation method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI450759B (zh) 2012-12-07 2014-09-01 Ind Tech Res Inst 有機分散液及其製法及應用其之塗層組成物
TWM472252U (zh) * 2013-10-22 2014-02-11 Ind Tech Res Inst 觸控面板
US10144815B2 (en) 2015-09-29 2018-12-04 Portland State University Modified nano-clays and coating compositions including the same
CN105694610B (zh) * 2016-04-14 2019-01-01 大连理工大学 一种可满足在极端苛刻条件下应用的超疏水涂层的制备方法
TWI655097B (zh) 2017-12-27 2019-04-01 財團法人工業技術研究院 光波導元件及其製造方法
CN112717709B (zh) * 2020-12-09 2022-04-22 山东大学 一种高通量、高稳定性掺杂二维云母的超滤膜的制备方法
CN112755805B (zh) * 2020-12-09 2022-10-25 山东大学 一种水下超疏油二维纳米级云母片油水分离膜及其制备方法与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1951685A (zh) * 2005-10-17 2007-04-25 上海申达科宝新材料有限公司 聚偏二氟乙烯建筑用膜材料及其生产方法
CN101045795A (zh) * 2007-04-12 2007-10-03 中国科学院长春应用化学研究所 一种β相聚偏氟乙烯复合薄膜及其制备方法

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2060994B (en) 1979-10-12 1984-01-25 Marconi Co Ltd Piezoelectric/pyroelectric elements
US4419209A (en) 1981-07-20 1983-12-06 Dorr-Oliver Incorporated Solid polymeric electrolyte
US4513032A (en) 1981-07-20 1985-04-23 Dorr-Oliver Producing a solid polymeric electrolyte
FR2538551B1 (fr) 1982-12-27 1988-11-10 Asahi Chemical Ind Procede et installation de deshydratation d'une substance contenant de l'eau par electro-osmose
JPS6040137A (ja) 1983-08-15 1985-03-02 Kureha Chem Ind Co Ltd フツ化ビニリデン共重合体フイルム
GB2158257B (en) 1984-03-09 1987-12-31 Canon Kk Developing an electrophotographic latent image
JPS62138533A (ja) 1985-12-13 1987-06-22 Dainippon Ink & Chem Inc 透明なポリふつ化ビニリデン系フイルムの製造方法
JPH03128903A (ja) 1989-07-13 1991-05-31 Fine Kurei:Kk 合成樹脂の改質方法および改質合成樹脂
US5575940A (en) * 1992-05-26 1996-11-19 Eastman Kodak Company Inverse limited coalescence process
JP3155849B2 (ja) 1993-01-29 2001-04-16 キヤノン株式会社 静電荷像現像用現像剤
JPH07248582A (ja) 1994-03-09 1995-09-26 Fuji Photo Film Co Ltd 写真処理廃液の処理方法および除銀装置ならびに写真処理装置
US5618647A (en) 1994-09-02 1997-04-08 Canon Kabushiki Kaisha Magnetic toner and image forming method
JPH1121469A (ja) 1997-07-03 1999-01-26 Ishihara Sangyo Kaisha Ltd 無機化合物の製造方法
JP3848919B2 (ja) 2000-09-21 2006-11-22 ローム アンド ハース カンパニー 疎水的に変性された粘土ポリマーナノ複合材
JP3625433B2 (ja) 2001-04-27 2005-03-02 キヤノン株式会社 粒状構造体及びその製造方法
US6914040B2 (en) 2001-05-04 2005-07-05 Procter & Gamble Company Process for treating a lipophilic fluid in the form of a siloxane emulsion
TW200402456A (en) 2002-06-17 2004-02-16 Sekisui Chemical Co Ltd Adhesive, tape and a double side adhensive tape for sealing organic electroluminescent element; an organic electroluminescent element and method thereof
CN1665948A (zh) 2002-06-27 2005-09-07 梅莫瑞公司 β钛组合物及其制备方法
US20040261912A1 (en) 2003-06-27 2004-12-30 Wu Ming H. Method for manufacturing superelastic beta titanium articles and the articles derived therefrom
US20090238811A1 (en) 2002-09-09 2009-09-24 Mcdaniel C Steven Enzymatic Antimicrobial and Antifouling Coatings and Polymeric Materials
TW586248B (en) 2002-12-26 2004-05-01 Jiunn-Jer Hwang Polymer-based nanoscale organophilic clay for gel polymer electrolytes and lithium rechargeable battery
US7475587B2 (en) 2003-01-16 2009-01-13 Methode Electronics, Inc Omni-directional crash sensor
CA2516065A1 (en) 2003-02-14 2004-09-02 The Procter & Gamble Company Discoloration-resistant articles for applying color on surfaces and methods of reducing discoloration in articles for applying color on surfaces
US7026085B2 (en) 2003-03-20 2006-04-11 Fuji Xerox Co., Ltd. Dry toner for electrostatic latent image developer, developer and image forming method
KR101056605B1 (ko) 2003-03-27 2011-08-11 도다 고교 가부시끼가이샤 투명 착색 조성물 및 컬러 필터
US20060249705A1 (en) 2003-04-08 2006-11-09 Xingwu Wang Novel composition
US20050029194A1 (en) 2003-08-07 2005-02-10 Hall David Bruce Method for removal of guanidine compound from aqueous media
US20060287413A1 (en) * 2003-10-14 2006-12-21 National Taiwan University Hyperbranched polyamine and its use to exfoliate inorganic clay into random form of nanosilicate platelet
US7419542B2 (en) 2003-11-13 2008-09-02 Ciba Specialty Chemicals Corporation 2,9-dichloro-quinacridone as α-quinacridone crystal phase inhibitor
EP1689746B1 (en) 2003-11-13 2019-01-09 Basf Se A process for aqueous milling of quinacridone pigments
JP4623626B2 (ja) * 2004-01-30 2011-02-02 日東電工株式会社 多孔質膜およびその製造方法
BRPI0407417A (pt) 2004-02-13 2006-01-10 Procter & Gamble Artigos resistentes à descoloração para a aplicação de cor sobre superfìcies, e métodos para redução de descoloração em artigos para a aplicação de cor sobre superfìcies
TW200606970A (en) 2004-05-10 2006-02-16 Nippon Catalytic Chem Ind Material for electrolytic solution, ionic material-containing composition and use thereof
CN1965002B (zh) 2004-05-12 2010-05-05 佳能株式会社 具有磺酸基或磺酸酯基和酰胺基的聚合物和生产它的方法
EP1770069B1 (en) 2004-05-18 2016-05-04 Mitsubishi Rayon Co., Ltd. Detachable water purifier
EP1798253B8 (en) 2004-08-11 2014-06-18 Kaneka Corporation Method for producing a vinylidene fluoride-based resin multilayered film
JP5167812B2 (ja) 2005-07-15 2013-03-21 コニカミノルタアドバンストレイヤー株式会社 光学フィルムの処理方法、光学フィルムの処理装置及び光学フィルムの製造方法
US7466377B2 (en) 2005-08-26 2008-12-16 Konica Minolta Opto, Inc. Retardation film, manufacturing method thereof, polarizing plate and liquid crystal display apparatus
US7993791B2 (en) 2005-10-26 2011-08-09 Nanotek Instruments, Inc. Self-humidifying proton exchange membrane, membrane-electrode assembly, and fuel cell
JP4997773B2 (ja) 2006-02-03 2012-08-08 ダイキン工業株式会社 アクチュエータ素子
US20070275291A1 (en) 2006-05-10 2007-11-29 Horizon Fuel Cell Technologies Pte. Ltd Novel membrane electrode assembly and its manufacturing process
TWI280261B (en) 2006-06-29 2007-05-01 Univ Nat Taiwan Highly branched poly amine organic exfoliation agent with multiple functional groups and amorphous nano silicate platelet prepared by its exfoliation inorganic clay
MX2009001339A (es) 2006-08-04 2009-02-16 Arkema France Modulos fotovoltaicos que tienen una superficie de floruro de polivinilideno.
JP5065646B2 (ja) 2006-10-06 2012-11-07 住友電工ファインポリマー株式会社 ガスケット、およびリチウムイオン二次電池
CN101053784B (zh) * 2007-02-05 2010-04-14 哈尔滨工业大学 一种聚偏氟乙烯/有机粘土纳米复合超低压超滤膜
DE102007029263A1 (de) 2007-06-22 2008-12-24 Evonik Röhm Gmbh PMMA/PVDF-Folie mit besonders hoher Witterungsbeständigkeit und hoher UV-Schutzwirkung
US20090140219A1 (en) 2007-07-13 2009-06-04 Air Products And Chemicals, Inc. Selenium Containing Electrically Conductive Polymers and Method of Making Electrically Conductive Polymers
CN101952117B (zh) 2008-02-25 2014-01-22 阿科玛法国公司 透明的、耐化学性的冲击性丙烯酸类合金
JP5701474B2 (ja) 2008-06-13 2015-04-15 富士フイルム株式会社 無機微粒子分散液、有機無機複合組成物、成形体および光学部品
JP5723016B2 (ja) * 2010-11-30 2015-05-27 エルジー・ケム・リミテッド リチウム二次電池
TWI427034B (zh) * 2010-12-22 2014-02-21 Ind Tech Res Inst 無機奈米片材之有機分散液及其製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1951685A (zh) * 2005-10-17 2007-04-25 上海申达科宝新材料有限公司 聚偏二氟乙烯建筑用膜材料及其生产方法
CN101045795A (zh) * 2007-04-12 2007-10-03 中国科学院长春应用化学研究所 一种β相聚偏氟乙烯复合薄膜及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10392493B2 (en) 2015-12-25 2019-08-27 Industrial Technology Research Institute Dispersion solution, organic/inorganic hybrid material and preparation method thereof

Also Published As

Publication number Publication date
US20120164423A1 (en) 2012-06-28
TW201226187A (en) 2012-07-01
US8865826B2 (en) 2014-10-21
CN102532756B (zh) 2014-12-10
CN102532756A (zh) 2012-07-04

Similar Documents

Publication Publication Date Title
TWI405664B (zh) 有機/無機混成薄膜及其製造方法
Liu et al. Highly thermally conductive phase change composites with excellent solar-thermal conversion efficiency and satisfactory shape stability on the basis of high-quality graphene-based aerogels
Tai et al. Synthesis of a graphene oxide–polyacrylic acid nanocomposite hydrogel and its swelling and electroresponsive properties
US10729988B2 (en) Bilayered structures for solar steam generation
Shao et al. Self‐assembly of graphene oxide at interfaces
Liu et al. Nanofiber based origami evaporator for multifunctional and omnidirectional solar steam generation
Hu et al. Multifunctional UV-shielding nanocellulose films modified with halloysite nanotubes-zinc oxide nanohybrid
US8652430B2 (en) Organic dispersion of inorganic nano-platelets and method for forming the same
Zhu et al. Bioinspired, ultrastrong, highly biocompatible, and bioactive natural polymer/graphene oxide nanocomposite films
Thayumanavan et al. Effect of sodium alginate modification of graphene (by ‘anion-π’type of interaction) on the mechanical and thermal properties of polyvinyl alcohol (PVA) nanocomposites
CA2850655C (en) Chiral nematic nanocrystalline metal oxides
Chen et al. Tunable self-assembly structure of graphene oxide/cellulose nanocrystal hybrid films fabricated by vacuum filtration technique
Perotto et al. Fabrication of Tunable, High‐Refractive‐Index Titanate–Silk Nanocomposites on the Micro‐and Nanoscale
Zhao et al. Hydrophilicity and crystallization behavior of PVDF/PMMA/TiO 2 (SiO 2) composites prepared by in situ polymerization
Chen et al. Mechanically robust composite hydrogels for high performance solar driven interface evaporation
Gautam et al. Synthesis of montmorillonite clay/poly (vinyl alcohol) nanocomposites and their mechanical properties
TW201825396A (zh) 用以製備石墨烯的方法
Liu et al. Efficient transition metal dichalcogenides exfoliation by cellulose nanocrystals for ultrabroad-pH/temp stable aqueous dispersions and multi-responsive photonic films
Wu et al. A graphene/poly (vinyl alcohol) hybrid membrane self-assembled at the liquid/air interface: enhanced mechanical performance and promising saturable absorber
Wang et al. Two-sided, flexible, durable, highly transparent and hazy plastic-paper for green optoelectronics
Alawi et al. Impact of SiO2–GO hybrid nanomaterials on opto-electronic behavior for novel glass quinary (PAAm–PVP–PVA/SiO2–GO) hybrid nanocomposite for antibacterial activity and shielding applications
Zerriouh et al. A computational and experimental investigation of TEOS-treated graphene oxide-PVA interaction: molecular dynamics simulation and COSMO-RS insights
Zheng et al. Preparation and optical limiting properties of carbon nanotubes coated with Au nanoparticle composites embedded in silica gel-glass
Xu et al. Preparation of transparent ordered mesoporous carbon/silica composites and their optical limiting properties
Sheng et al. Molecular architecting of photothermal hydrogels reinforced by polar-porous C2NxO1-x for efficient solar water purification