TW586248B - Polymer-based nanoscale organophilic clay for gel polymer electrolytes and lithium rechargeable battery - Google Patents

Polymer-based nanoscale organophilic clay for gel polymer electrolytes and lithium rechargeable battery Download PDF

Info

Publication number
TW586248B
TW586248B TW091137412A TW91137412A TW586248B TW 586248 B TW586248 B TW 586248B TW 091137412 A TW091137412 A TW 091137412A TW 91137412 A TW91137412 A TW 91137412A TW 586248 B TW586248 B TW 586248B
Authority
TW
Taiwan
Prior art keywords
scope
polymer
item
patent application
clay
Prior art date
Application number
TW091137412A
Other languages
Chinese (zh)
Other versions
TW200411965A (en
Inventor
Jiunn-Jer Hwang
Hsin-Jiant Liu
Chun-En Tsai
Original Assignee
Jiunn-Jer Hwang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiunn-Jer Hwang filed Critical Jiunn-Jer Hwang
Priority to TW091137412A priority Critical patent/TW586248B/en
Application granted granted Critical
Publication of TW586248B publication Critical patent/TW586248B/en
Publication of TW200411965A publication Critical patent/TW200411965A/en

Links

Classifications

    • Y02E60/122

Landscapes

  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A series quaternary alkylammonium salts used in the organophilic procedure, performed on montmorillonite clay, resulting in intercalation in plasticizer between the polymer and the organophilic clay. A series of gel polymer nanocomposite electrolyte materials were successfully prepared by adding the appropriate percentage of plasticizer, organophilic clay and lithium perchlorate to polymer. The best possible ionic conductivity was 1.03x10<-2> S/cm and exhibited better film formation, plasticizer-maintaining capability and dimensional stability than the electrolyte film without the added organophilic clays. From the cyclic electrochemistry testing result, it is shown that adding organophilic clays significantly enhances the electrochemical stability of the gel polymer electrolyte system. The invention also concerns the lithium rechargeable battery which assembled with gel (nanocompsite polymer electrolytes. Such lithium rechargeable batteries has the stable cyclic charge-rechargeable property and potential great commercial value.

Description

冰6248 -------案號91137412 年月日 修正 五、發明說明(1) 發明概述 本發明係關於一種含奈米級黏土之膠態聚合物電解 ,’乃利用界面活性劑對無機黏土(montmor i 1 loni te)進 订親油化改質,並使膠態聚合物與親油化黏土,在可塑劑 、進行插層作用(intercalation)。適當比例之可塑劑下 添加鐘鹽而製備含奈米級黏土之膠態聚合物電解質薄膜, ,離子導電度可達1·〇3χι〇_2 s /cm,且成膜性佳、可塑 $含浸率以及尺寸安定性(dimensi〇nal stability)皆比 添加奈米級黏土之電解質薄膜佳。並且,添加奈米級黏Bing 6248 ------- Amendment No. 91137412 dated on May 5, V. Description of the invention (1) Summary of the invention The invention relates to the electrolysis of a colloidal polymer containing nano-grade clay. The clay (montmor i 1 loni te) is ordered to be lipophilic and modified, and the colloidal polymer and the lipophilic clay are intercalated in a plasticizer. Adding bell salt under a suitable proportion of plasticizer to prepare a colloidal polymer electrolyte film containing nano-grade clay, which has an ion conductivity of 1.03 × ι_2_2 s / cm, has good film-forming properties, and is plastic-impregnable The rate and dimension stability are better than those of electrolyte films with nanoscale clay. And, add nano-grade sticky

=電解質薄膜,亦使其電解質系統之電化學穩定性明顯 奶徒升。 本發明亦關於一種 備之鐘二次電池, 有穩定之充放電循 含奈米級黏土之膠態 =用上述電解質所組 環效應,具有極優之 聚合物電解質所製 成之鋰二次電池具 商業價值。 發明技術背景 隨著人類科技的進步,生 資訊產品之需求量也大幅提昇 即是研究者及設計者積極努力 化,可攜帶及輕、薄、短、小 作為產品動力來源之配備^ 活品質的提高,各種電子及 因此,產品的功能性改善_ 的目標。其中產品的無線 化更是消費市場所期望的。 池。也須符合安全、重量= Electrolyte film also makes the electrochemical stability of the electrolyte system obvious. The present invention also relates to a prepared secondary battery, which has a stable charge and discharge cycle of colloidal state containing nano-grade clay = a lithium secondary battery made of an excellent polymer electrolyte with a ring effect. Commercial value. BACKGROUND OF THE INVENTION With the advancement of human science and technology, the demand for bio-informatics products has also greatly increased. That is, researchers and designers are actively working hard. It is portable and light, thin, short, and small as a source of product power. Improve the goals of various electronics and therefore, product functional improvements. Among them, the wireless of products is expected by the consumer market. Pool. Must also meet safety, weight

586248586248

輕、薄型化及符合環保等條 二次電池因應而生。聚合物 池系統中兼具電解質及陰陽 作用’因此離子導電度、尺 須達到一定標準。 件,因此,高性能的鋰高分子 電解質材料在鋰高分子二次電 極間隔離膜(separator)二種 寸安定性及電化學穩定性皆必 第一個有關高分子電解質的研究是由Wright等人在 1 973年提出,他們利用混摻的方式在p〇ly(ethylene oxide)(PE0)中添加KSCN,實驗結果得到具結晶性的錯合 物(Complex)。接著1 975年Wright等人更進一步證明,高 溫下(ioo°c以上)這些錯合物具有10_4 s/cm以上的導電 度。此後許多研究單位積極投入高分子電解質導電度之研 究’希望能夠改善在室溫下導電度過低的缺點。 在目前研究的高分子主體中,以聚丙烯月I (Polyacrylonitrile , PAN)的導電度最具利用價值。第一 個提出此類高分子電解質的是Reich和Michael i,此後吸 引了终多研九早位投入這方面的領域。由Scrosati等人在 1994年的研究發現,以PAN為主體之膠態高分子電解質 (Gel-Type Polymer Electrolytes ),其導電度在 25 〇C 時可達10-3 S/cm以上。 目前新合成的高分子主題中,以 poly[2-(2-methoxyethoxyethoxy)] phosphazene(MEEP) 最具發展潛力,其所製成的固態高分子電解質導電度可達 1 0_5 S/cm以上。雖然導電度較高,但尺寸安定性卻相對 降低,因此,Al 1 cock等人,利用r - radiation使MEEP之 分子鏈部Light, thin and environmentally friendly secondary batteries have been developed. The polymer pool system has both electrolyte and yin and yang functions, so the ionic conductivity and scale must meet certain standards. Therefore, high-performance lithium polymer electrolyte materials have two kinds of stability and electrochemical stability in the separator between lithium polymer secondary electrodes. The first research on polymer electrolytes was made by Wright et al. It was proposed by people in 1973 that they added KSCN to poly (ethylene oxide) (PE0) by mixing, and the experimental results obtained a crystalline complex. Then in 1975 Wright et al. Further proved that these complexes have a conductivity of more than 10_4 s / cm at high temperatures (above io ° C). Since then, many research institutes have actively invested in the research on the conductivity of polymer electrolytes, hoping to improve the shortcomings of low conductivity at room temperature. Among the polymer bodies currently studied, the conductivity of Polyacrylonitrile (PAN) is the most valuable. Reich and Michael i were the first to propose such polymer electrolytes, and since then they have attracted the field of research into the early morning research. A 1994 study by Scrosati et al. Found that Gel-Type Polymer Electrolytes with PAN as the main body can have an electrical conductivity of more than 10-3 S / cm at 25 ° C. Among the newly synthesized polymer themes, poly [2- (2-methoxyethoxyethoxy)] phosphazene (MEEP) has the most potential for development, and the solid polymer electrolytes made by it have a conductivity of more than 10-5 S / cm. Although the conductivity is high, the dimensional stability is relatively reduced. Therefore, Al 1 cock et al. Used r-radiation to make the MEEP molecular chain part

第8頁 586248 修正 a 案號 91137412 五、發明說明(3) 份交聯,提高機械加工性。近年來,AUc〇ck等人 同鏈長之醚基取代基來改善MEEP之尺寸安定性。而κ 不 Abraham等人,利用ΡΕ0與ΜΕΕΡ進行摻合改善了肫卯的Μ. 性,但由於ΡΕΟ的結晶態結構,阻礙陽離子的移 ΜΕΕΡ原有之導電度有負面的影響。 發明之目的 本發明之目的係對膠態聚合物電解質材料加以改 利用高介電常數之可塑劑和奈米級黏土的混摻,形^八 子膠態電解質薄膜,提升聚合物電解質薄膜之熱穩定:: 尺寸安定性、成膜性、離子導電度及膠態聚合物電解質 膜之電化學穩定性。此電解質應用在鋰二次電池上具有穩 疋之充放電循環效應,具有極優之商業價值。 發明之詳細說明 本發明係利用界面活性劑對無機黏土 (montmorillonite)進行親油化改質,並使聚合物與親油 化黏土,在可塑劑中進行插層作用(intercalati〇n)。再 於適當比例之可塑劑下添加鋰鹽而製備含奈米級黏土之膠 態聚合物電解質薄膜。 · 本發明所指界面活性劑,凡具有長鏈烷基/芳香基之 界面活性劑,皆可用於本發明,例如,長鏈烷基四級銨 鹽、長鏈苯基四級銨鹽(quaternary alkyUmm〇nium salt)、月桂硫酸鈉、月桂基硫酸三乙醇胺、月桂醯基胺Page 8 586248 Amendment a Case No. 91137412 V. Description of the invention (3) Cross-linking to improve the machinability. In recent years, Aucoc et al. Have improved the dimensional stability of MEEP with the same chain length ether group substituents. However, κ and Abraham et al. Used PEO and MEEP to improve the M. properties of fluorene, but because of the crystalline structure of PEO, the migration of cations hindered the original conductivity of MEEP to have a negative effect. OBJECTS OF THE INVENTION The purpose of the present invention is to change the colloidal polymer electrolyte material by using a blend of a plasticizer with a high dielectric constant and nano-grade clay to shape the gel electrolyte film to improve the thermal stability of the polymer electrolyte film. : Dimensional stability, film formation, ionic conductivity and electrochemical stability of colloidal polymer electrolyte membrane. This electrolyte has a stable charge-discharge cycle effect on lithium secondary batteries and has excellent commercial value. DETAILED DESCRIPTION OF THE INVENTION The present invention utilizes a surfactant to lipophilicly modify inorganic clay (montmorillonite), and to intercalate polymers and lipophilic clays in plasticizers (intercalation). Then, a lithium salt was added under an appropriate proportion of a plasticizer to prepare a colloidal polymer electrolyte film containing nano-grade clay. · The surfactants referred to in the present invention can be used in the present invention, such as long-chain alkyl quaternary ammonium salts and long-chain phenyl quaternary ammonium salts. alkyUmmomium salt), sodium lauryl sulfate, triethanolamine lauryl sulfate, lauryl amine

第9頁 586248Page 9 586248

酸納二氯化硬脂酸三甲基銨、氯化苯烷銨、氣化硬脂酸二 T基苯甲基銨、月桂醯二甲基胺基醋酸三甲基銨内酯、聚 氧乙稀硬脂酸醯胺、硬脂酸二甲基胺醋酸内胺鹽、聚氧乙 稀挪子油脂肪酸醯胺、椰子油脂肪酸單乙醇醯胺、硬脂酸 二乙醇酿胺、硬脂酸單乙醇醯胺 '硬脂酸二乙醇醯胺、c i2H25N(CH3)3Br ^ C14H29N(CH3 )3Br ^ C16H33N(CH3 )3Br [ CH3 (CH2 )n ] 2(CH3)2NBr、C12H25S04Na、C14H29S04Na、C16H33S04Na、C18H37S04 Na、C12H25S04N(C4H9)4、C12H25S04N(CH3)3C12H25、C12H25 CH(々COO)N(CH3)3、(C4H9)2CHCH2(OC2H4)9OH 及n_C12H25(OC2H4)31 〇H等,較佳為長鏈烷基四級銨鹽,特別是^2^((:113)3計、 C14H29N(CH3)3Br、C16H33N(CH3)3Br 及[CH3(CH2)n ]2(CH3)2NBr 等。 本發明所指膠態聚合物,包括所有膠態聚合物皆可以 本發明方法進行改質,例如,聚偏二氟乙烯(PVdF)、聚偏 二氣乙烯-六氟丙烯(PVdF-HFP )聚丙烯瞭PAN)、聚氧乙 烯(PE0)、聚甲基丙烯酸甲酯(PMMA),其中,又以聚丙烯 、聚偏二氟乙烯較佳,所用聚合體分子量依不同聚合體而 不同,分子量的選擇需兼具良好之機械性質及易於進行插 層作用,以聚偏二氟乙烯為例,可為1萬至丨〇 〇萬左右。Trimethylammonium stearate, trimethylammonium stearate, benzyl ammonium stearate, dimethyl benzyl ammonium stearate, trimethylammonium laurate dimethylaminoacetate, polyoxyethyl Diamine stearic acid, dimethylamine stearic acid lactam acetate, polyoxyethylene nodular oil fatty acid amide, coconut oil fatty acid monoethanolamine, stearic acid diethanolamine, stearic acid monoamine Ethanolamine's diethanolammonium stearate, c i2H25N (CH3) 3Br ^ C14H29N (CH3) 3Br ^ C16H33N (CH3) 3Br [CH3 (CH2) n] 2 (CH3) 2NBr, C12H25S04Na, C14H29S04Na, C16H33S04Na, Na, C12H25S04N (C4H9) 4, C12H25S04N (CH3) 3C12H25, C12H25 CH (々COO) N (CH3) 3, (C4H9) 2CHCH2 (OC2H4) 9OH and n_C12H25 (OC2H4) 31 OH, etc., preferably long chain alkane Quaternary ammonium salts, especially ^ 2 ^ ((: 113) 3, C14H29N (CH3) 3Br, C16H33N (CH3) 3Br and [CH3 (CH2) n] 2 (CH3) 2NBr, etc.) Polymers, including all colloidal polymers, can be modified by the method of the present invention, for example, polyvinylidene fluoride (PVdF), polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP polypropylene, PAN), Polyoxyethylene (PE0), Methyl methacrylate (PMMA), of which polypropylene and polyvinylidene fluoride are preferred. The molecular weight of the polymer used varies with different polymers. The choice of molecular weight must have good mechanical properties and be easy to intercalate. The effect, taking polyvinylidene fluoride as an example, can be about 10,000 to 100,000.

本發明所指可塑劑為,凡可以溶解膠態聚合物並具可 塑效果者均可為本發明之可塑劑,例如,二曱基乙烯碳酸 酯(dimethylene carbonate,DMC)、二乙基乙烯碳酸 酯(diethylene carbonate,DEC )、二甲基甲醯胺 (N-N’dimethylformamide,DMF)、丙烯破酸酯 (propyleneThe plasticizer referred to in the present invention is that anyone who can dissolve the colloidal polymer and has a plasticizing effect can be the plasticizer of the present invention, for example, dimethylene carbonate (DMC), diethylethylene carbonate (Diethylene carbonate, DEC), dimethylformamide (N-N'dimethylformamide, DMF), propylene ester

第10頁 586248 -SS__9U37412 五、發明說明(5) carbonate,PC )/乙烯碳酸酯Page 10 586248 -SS__9U37412 V. Description of the invention (5) carbonate, PC) / ethylene carbonate

、it 可翻制隹 Ethylene carbonate ^ EC i = 广上f二塑,之混合物…較佳為二曱 共可塑齊卜3丙稀奴曰/乙埽碳酸醋)(PC/EC)的 本發明所指魏Bg,祐χ 借鋁雪诎夕如雜,皿並不特別限定,可為一般常用於製 備鐘電池之鐘鹽類,例如,L彳ρ ρ S〇2)2^LiBF4 .use LiA 6 ^1^8°3, It can be converted thEthylene carbonate ^ EC i = guangshang f second plastic, the mixture ... preferably the second plastic co-plastic 3 acetonitrile / acetic acid carbonate (PC / EC) of the present invention Refers to Wei Bg, Youxi borrows aluminum and other materials, such as miscellaneous materials, and the dish is not particularly limited. It can be a bell salt commonly used in the preparation of clock batteries, for example, L 彳 ρ ρ S〇2) 2 ^ LiBF4 .use LiA 6 ^ 1 ^ 8 ° 3

LiPF &gt; lSCN UAsF6 、LiC104 等,其中又以 LU^6、LiC104 較佳。 編,所用奈米級黏土分別為耐衝擊性產品用之商品 溆=”、、一,及用於電子級產品之商品編號為PK805等之 ,又經改質之黏土分別以〇 -PK8〇2、◦ —ρκ8〇5等編號 表示。 本發明所選擇之界面活性劑與無機黏土 ρΚ_8〇5、 ^ — 802進行親油化改質,除了使黏土層間距離擴大之外, ’、有助於大分子量之聚合物(PVdF,Mw ·· 1〇〇〇〇〇〇 )進入 黏土層間進行插層作用(intercalati〇n)形成膠態奈米 聚合物電解質材料,此發現有助於減少製程與時間,可適 於分子量loooooo以下之其他聚合物材料。LiPF &gt; lSCN UAsF6, LiC104, etc. Among them, LU ^ 6 and LiC104 are preferred. Edited, the nano-grade clay used is a commodity for impact-resistant products 溆 = ",, one, and the product number for electronic grade products is PK805, etc., and the modified clay is 〇-PK802 , ◦—ρκ800, etc. The lipophilic modification of the surface-active agent selected in the present invention with inorganic clay ρκ_805, ^ -802, in addition to expanding the distance between clay layers, ' Polymers of molecular weight (PVdF, Mw · 10000) enter the clay layer and intercalate (intercalati) to form colloidal nano polymer electrolyte materials. This finding helps to reduce the process and time. Can be suitable for other polymer materials with molecular weights below loooooo.

本發明具體之實施方法 黏土的親油化處理 將含有長碳鏈之適量陽離子界面活性劑Ci2jI25N(CH3)3Specific implementation method of the present invention The lipophilic treatment of clay will include an appropriate amount of a cationic surfactant Ci2jI25N (CH3) 3 containing a long carbon chain.

Br、ci4H29N(CH3)3Br、C16H33N(CH3)3Br、[CH3(CH2)U]2(CH3)Br, ci4H29N (CH3) 3Br, C16H33N (CH3) 3Br, [CH3 (CH2) U] 2 (CH3)

第11頁 586248 _案號 91137412 五、發明說明(6) 曰 修正 pBr分別與黏土水溶液 過濾並以去離子水及甲:勻攪拌’進行親油化處理。接著 m mr\i 鮮’清洗黏土中多餘之界面活性劑 及鹽;,,將此改質後之黏土乾燥磨碎。 田;^、、冬h Α 〇十异界面活性劑所需之克數。 品壬陈制背的重夏(g)=陽離子交換當量(CEC) x 10-3 x界 面活性劑之分子量X黏土之重量χ隸 該係數約介於1-2之間,較佳為12_15之間,其與所 欲使黏土層間撑開距離有關。 聚合物兩分子鏈之插層作用 先使上述改質後之黏土均勻分散於DMF或pc/EC可塑劑 中’、再添加計量之聚合物,均勻攪拌約丨2 hrs後在玻璃板 上成膜’並放入真空烘箱中乾燥;其中PC/EC之比例約為 1 :1至8: 1。最後再利用x_ray繞射分析儀,鑑定其構造型 態之變化。 膠態聚合體電解質之製備 取聚偏一氟乙浠(MW = 530000 )及改質後之黏土與依ρ 值計量之鋰鹽(LiCl〇4),添加在DMF或PC/EC(1:1)可塑劑 中’加熱(約3 0 C -1 0 0 C )均勻授拌,使溶液呈現均勻相f (homogenous),約需6 hrs,後於玻璃板上成膜,控制溫 度使薄膜中DMF或PC/EC可塑劑的含量在一定的範圍(約 30%〜6 0%),而製備膠態聚合體電解質薄膜。 其中,F =鋰鹽莫耳數/(聚合體克數/重複單位分子量) _Page 11 586248 _ Case No. 91137412 V. Description of the invention (6): Correction pBr is filtered separately from the clay aqueous solution and treated with deionized water and nail: homogeneous stirring 'for lipophilic treatment. Then m mr \ i fresh ’to clean the excess surfactant and salt in the clay, and dry and grind the modified clay. Tian; ^ ,, winter h Α 〇 ten different surfactant required grams. The heavy summer (g) = the cation exchange equivalent (CEC) x 10-3 x the molecular weight of the surfactant x the weight of the clay x the coefficient is between 1-2, preferably 12-15 It is related to the desired distance between the clay layers. The intercalation of the two molecular chains of the polymer first makes the modified clay uniformly dispersed in DMF or pc / EC plasticizer ', and then adds a metered polymer, uniformly stirs for about 2 hrs to form a film on a glass plate 'And put it in a vacuum oven to dry; the PC / EC ratio is about 1: 1 to 8: 1. Finally, the x_ray diffraction analyzer is used to identify the change of its structural type. Preparation of colloidal polymer electrolyte: Polyvinylidene fluoride (MW = 530000), modified clay and lithium salt (LiCl〇4) measured according to ρ value, added in DMF or PC / EC (1: 1 ) The plasticizer is heated (approximately 30 C -1 0 0 C) and uniformly mixed to make the solution appear homogeneous f (homogenous), about 6 hrs. After forming a film on a glass plate, the temperature is controlled to make DMF in the film Or the content of PC / EC plasticizer is in a certain range (about 30% to 60%), and a colloidal polymer electrolyte film is prepared. Where F = Molar number of lithium salt / (grams of polymer / repeated unit molecular weight) _

第12頁 586248 _ 案號91137412_年月曰 修正__ 五、發明說明(7) 本發明具體之實施例組成配方如表1及表2所示,並根 據上述方法製備膠態聚合物電解質。 本發明分析方法 利用 X-ray 繞射分析儀(Rigaku D/Max - 3C 0D- 2988N) 進行黏土層間之分析,利用阻抗測定儀(Impede nee Analyser HP4 192A)進行聚合物電解質離子導電度之測 定’利用穿透式電子顯微鏡(JEOL- 200FX)觀察黏土分散於 聚合物電解質材料中的微觀現象,利用循環伏安測定儀 (Eco Chemie BV model PGSTAT30)進行電解質的氧化還原 循環電位及氧化破壞電位之檢測,利用熱機械分析儀 (Perkin-Elmer DMA 7e analyzer)測量聚合物電解質材料 之熱膨脹係數,了解材料在使用溫度範圍中之尺寸安定 性。利用本發明之電解質所組裝之電池,以Arbi η ΒΤ-200〇電池充放電設備進行鐘二次電池充放電測試。 發明之效果 黏土的親油化改質 首先,進行無機黏土的親油化處理,黏土為一種具層f 狀結構之無機矽酸鹽,需藉由界面活性劑的親水端與黏^ 中的陽離子進行離子交換,目的在使界面活性劑的長鏈烷· $進入黏土的層間,達到將層間距離擴大的效果,以利高 · 分子鏈與存在於黏土層間之界面活性劑的親油端產生相容·Page 12 586248 _ Case No. 91137412 _ Year and month Amendment __ V. Description of the invention (7) The composition and formulation of the specific examples of the present invention are shown in Tables 1 and 2, and a colloidal polymer electrolyte is prepared according to the above method. The analysis method of the present invention uses an X-ray diffraction analyzer (Rigaku D / Max-3C 0D-2988N) to analyze the clay layer, and uses an impedance meter (Impede nee Analyser HP4 192A) to measure the ion conductivity of the polymer electrolyte. The transmission electron microscope (JEOL-200FX) was used to observe the microscopic phenomenon of clay dispersed in the polymer electrolyte material, and the cyclic voltammetry (Eco Chemie BV model PGSTAT30) was used to detect the redox cycle potential and oxidative breakdown potential of the electrolyte. Using a Perkin-Elmer DMA 7e analyzer to measure the thermal expansion coefficient of polymer electrolyte materials, to understand the dimensional stability of the materials in the use temperature range. The battery assembled using the electrolyte of the present invention was subjected to a charge and discharge test of a clock secondary battery using an Arbi η-BT-200 battery charge-discharge device. Effect of the invention Lipophilic modification of clay First, the lipophilic treatment of inorganic clay is performed. Clay is an inorganic silicate with a layered f-like structure, which requires the hydrophilic end of the surfactant and the cation in the clay ^ The purpose of ion exchange is to make the long-chain alkanes of the surfactant enter the layers of the clay to achieve the effect of expanding the distance between the layers, so that the molecular chain and the lipophilic end of the surfactant existing between the clay layers generate a phase. Rong ·

第13頁 586248 案號 91137419 五、發明說明(8) I! : 4 ί : ί到改質’在相同操作條件下,•由X_ray繞 、=斤》曰知知,層間距離的變化會因界面活性劑的種類 不同而有所改變。如表四所示,以 a^in^nium br^injde,[CH3(CH2)ij2(CH3)2NBr 所撐開的距離 i^:了二ΐ雙長鏈烧基的結構及鍵角,使雙長鏈烧基 黏土的層間呈現千斤頂的型態,有效地擴大了層間 距、到22埃,原本勘土的層間距離為i 2埃。此外,我們 亦使用芳香族之四級銨鹽,以心〇 — 3為代表進行實驗,其1 組成,如表五所示,其改質測試結果得知AR0_S 吏…、機黏土PK802層間距離擴大為2154埃,而ρκ8〇5層間 距離經改質後,亦可擴大為1 8. 7丨埃。 膠態聚合物與親油化黏土的混成效應 曰以聚偏二氟乙烯為例,配製聚偏二氟乙烯溶液,並 董3%改質黏土後,兩者均勻混合成透明溶液,在玻璃 f成厚度0.2mm薄膜。在X_ray繞射圖譜上發 =本位於4.。2之2 Θ角度已經消失,此乃因聚偏二氣化乙黏 分子鏈在黏土層間可能達完全的分散,即所謂的剝離 L(exf〇llation)。為了證明此一說法,將不同計量 3%,^%,7%)的親油化黏土個別溶於聚偏二氟乙烯溶液製 一 ^厚度的薄膜後,進行X — ray繞射分析,如圖一所示, 隨著黏土含量增加其圖譜產生明顯的變化,1%與3%非 =,在圖譜上並未發現任何2 0角度的吸收峰,也就是 這兩種比例所形成的混成材料呈現剝離狀態Page 13 586248 Case No. 91137419 V. Description of the invention (8) I !: 4 ί: ί to the modification under the same operating conditions, “by X_ray around, = catty” It is known that the change in the distance between layers will vary depending on the interface The type of active agent varies. As shown in Table 4, the distance i ^: a ^ in ^ nium br ^ injde, [CH3 (CH2) ij2 (CH3) 2NBr, and the distance i ^: the structure and bond angle of the double-chain double-chain alkyl group are used to make the double The layers of the long-chain burned clay show a jack type, which effectively expands the layer distance to 22 angstroms. The original inter-layer distance of the surveyed soil is i 2 angstroms. In addition, we also use the aromatic quaternary ammonium salt and perform experiments with the heart of 0-3 as its representative. Its 1 composition is shown in Table 5. The modification test results show that AR0_S…, the distance between the layers of organic clay PK802 is enlarged. It is 2154 Angstroms, and the ρκ805 interlayer distance can be expanded to 18.7 Angstroms after modification. The mixing effect of colloidal polymer and lipophilic clay: Take polyvinylidene fluoride as an example, prepare a polyvinylidene fluoride solution, and after 3% modified clay, the two are evenly mixed into a transparent solution. Form a 0.2mm thickness film. Send on the X_ray diffraction pattern = this is located at 4. The 2-2 angle of Θ has disappeared. This is because the molecular chain of poly (vinylidene difluoride) ethylene may be completely dispersed between the clay layers, so-called exfoliation (L). In order to prove this statement, X-ray diffraction analysis is performed after dissolving lipophilic clays with different amounts of 3%, ^%, 7%) in polyvinylidene fluoride solution to make a thickness of ^, as shown in the figure. As shown in the figure, with the increase of clay content, the map has obvious changes, 1% and 3% are not =, no absorption peak at 20 angles is found on the map, that is, the mixed material formed by these two ratios appears Peeling state

第14頁 586248 修正 91137419 五、發明說明(9) (ΓΓ=1η) ’但若黏土含量增加到5%時,即發現在2 7»/,有一小波峰逐漸形成。當黏土的含量提升到 +〇 Μ ® Μ &amp;更為明顯,顯示聚偏二氟乙烯分子鏈仍然在黏 土的層間進行插層(intercalation),使20角度由4度位 ^到3度表示聚偏二氣乙烯中親油化黏土的含量在3%以上 時,其有機無機混成型態可能是呈現intercalation。利 用穿透式電子顯微鏡來觀察無機黏土在高分子鏈中分散的 情形,取含有5%cUy之聚偏二氣乙埽進行測試,結果如 圖一所示特別針對部分區域進行局部放大,在圖片中明 顯地看到無機黏土的層間被破壞的脫層現象如圖三所示, 以及有一部分的插層現象,如圖四所示,因此聚偏二氟乙 烯與5 %無機黏土的混成效應,兼具剝離狀態 (exfoliation)與層間插層(intercaiati〇n)。此結果亦可 印證X-ray的測試結果。 可塑劑含浸性質Page 14 586248 Amendment 91137419 V. Description of the invention (9) (ΓΓ = 1η) ’However, if the clay content is increased to 5%, a small wave peak is gradually formed at 2 7» /. When the content of clay is increased to + 〇Μ ® Μ &amp; it is more obvious, showing that polyvinylidene fluoride molecular chain is still intercalation between the layers of clay, so that the angle of 20 is changed from 4 degrees to 3 degrees. When the content of lipophilic clay in vinylidene oxide is above 3%, the organic-inorganic mixed state may be intercalation. A transmission electron microscope was used to observe the dispersion of inorganic clay in the polymer chain. Polyvinylidene diacetate containing 5% cUy was used for testing. The results are shown in Fig. 1. Partial enlargement is shown for some areas. It is obvious that the interlayer destruction and delamination phenomenon of inorganic clay is shown in Figure 3, and a part of the intercalation phenomenon is shown in Figure 4, so the mixing effect of polyvinylidene fluoride and 5% inorganic clay, It has both exfoliation and intercaia interlayer. This result also confirms the test results of X-ray. Plasticizer impregnation properties

膠態聚合物電解質(Gel-type polymer electrolyte) 與固態聚合物電解質(solid polymer electrolyte)間最 大的差異在聚合物系統可塑劑的存在與否。相關文獻指 出,可塑劑的存在可提高其離子導電度,但也造成其尺寸 安定性、機械強度及成膜性不佳的負面影響。設計在聚偏 二氟乙烯中添加3 %之無機黏土並將不同F值計量之Licl〇4 加入製備一系列膠態聚合物電解質,其薄膜厚度控制在 50〜100 //m,發現添加無機黏土之聚合物電解質薄膜成膜 性 、The biggest difference between a gel-type polymer electrolyte and a solid polymer electrolyte is the presence or absence of a plasticizer in the polymer system. Relevant literature points out that the presence of plasticizers can increase its ionic conductivity, but also cause its negative effects on dimensional stability, mechanical strength, and poor film formation. Designed to add 3% inorganic clay to polyvinylidene fluoride and to add a series of colloidal polymer electrolytes with different F-valued Licl〇4 to control the thickness of the film to 50 ~ 100 // m. It was found that inorganic clay was added. Polymer electrolyte thin film formation,

第15頁 586248 ___案號91137412_年 月_円 五、發明說明(10) ' ___ 明顯優於未添加之聚合物電解質薄膜,為 是否有助於可塑劑存留於聚合物電解質^了瞭解無機黏土 加及沒有添加無機黏土的聚合物電解質膜之中’將有添 Itorr的真空烘箱並維持在50 °c,觀察可#與同時放置在〇. 結果整理在圖五,其結果說明,隨著時塑劑減少的量, 聚合物電解質薄膜中含有無機黏土時,' ^的增加’當膠態 率是有幫助的,以添加PK805具有較好的社於可塑劑的含浸 少的可塑劑的量最少。 、〜果’因為所減 導電性質 首先 電解質中 之後在測 聚合物電 大導電度 高分子鏈 無定型, 荷吸引鐘 子間的引 子的遷移 從表六的 七,觀察 大致上是 個數量, ’探討奈 對導電度 量的結果 解質薄膜 可達1. 03 分散於無 有助於陽 鹽之過氣 力,使得 速度。相 數據得知 到導電度 隨著鋰鹽 其導電度 米級無 之影響 中發現 ,其導 X 1〇-2 機層材 離子的 酸根離 鋰離子 關之數 ,導電 隨著鐘 含量提 則開始 機黏土添加在膠態聚偏二氟乙坤 如圖,、所示,當添加奈米級黏i ,其導電度皆明顯優於未添加之 電度大致可提昇約2〜3倍,其最 S/cm,歸納原因如下,(一) 之間’有助於聚合物形態更趨於 傳導(二)無機黏土層間之正電 子’破壞了裡離子與過氣酸根雜 具有較大的自由度,可提昇鋰離 據整理於表六。 度與鐘鹽的含量有關係,從圖 鹽含量不同而有所改變,導電度 高而增加,但是鋰鹽含量超過一 降低。原因是聚合物電解質系統Page 15 586248 ___Case No. 9137412_Year__Fifth, the description of the invention (10) '___ is significantly better than the unadded polymer electrolyte film, in order to help the plasticizer stay in the polymer electrolyte ^ Learn about inorganic In the polymer electrolyte membrane with and without inorganic clay added, the vacuum oven with Tim Itorr was maintained at 50 ° c, and the observable can be placed at the same time as the 0. The results are arranged in Figure 5, and the results show that with the When the amount of plasticizer is reduced, when the polymer electrolyte film contains inorganic clay, the increase of ^ is helpful when the colloidal rate is helpful, so the addition of PK805 has a good amount of plasticizer that is less impregnated with plasticizer. least. "~ Because of the reduced conductive properties, the polymer is first amorphous in the electrolyte, and then the polymer conductivity is measured. The molecular chains of the polymer are amorphous, and the charge attracts the clock between the clocks. As a result of the measurement of the conductivity of Nai, the degraded film can reach 1.03 dispersed in the over-power which does not contribute to the positive salt, making the speed. According to the phase data, it is found that the conductivity of the lithium salt does not affect the conductivity of the lithium salt in the order of meters. It is found that the conductance of the acid ion of the X 1〇-2 organic layer ion from the lithium ion is closed, and the conductivity starts with the increase in the content of the clock. When organic clay is added to colloidal polyvinylidene fluoride, as shown in the figure, when the nano-grade adhesive i is added, its electrical conductivity is significantly better than that of the non-added clay, which can be increased by about 2 to 3 times. S / cm can be summarized as follows: (1) the 'helps the polymer form to be more conductive; (2) the positron between the inorganic clay layers' destroys the ions and the peroxy acid radicals, and has a greater degree of freedom. Lithium can be improved according to Table 6. The degree is related to the content of the bell salt. It varies from the salt content in the figure. The conductivity increases and increases, but the lithium salt content decreases. The reason is the polymer electrolyte system

第16頁 586248Page 16 586248

五、發明說明(Π) — 之導電度係由離子傳導所造成,過量的鋰鹽存在於 下,可能造成下列:種狀況(陰陽離子之間仍具 子吸引力,不易被系統中的可塑劑解離。(二)系 : 離子濃度^高,在系統巾遷移過程可能再度結合。美= 述兩種原因’系統中可攜帶電荷之離子數減少,^導 度降低。進-步改變可塑劑的含量,從外觀而 = 的含量多寡對薄膜的影響似乎不大,但就其機械 膜的成膜性而言,可塑劑含量較高之薄膜則顯得較差。2 圖八所示,隨著可塑劑含量的增加,對於導電 t 提昇,尤其在PC/EC可塑劑的系統中,以可塑劑含量d的 及15 %兩者比較,其導電度可提昇約5倍,但是,若二 劑含量大於45%以上時,其聚合物電解質薄膜的均句 2差’且有可塑劑滲出的問題’因此,導異 性較大。 I共 尺寸安定性之研 聚合物電解 及隔離膜兩種功 象,熱能的產生 一來,可能使得 路,因此聚合物 挑選奈米級 0 · 2 5,可塑劑含 進行熱機械分析 究V. Description of the invention (Π) — The electrical conductivity is caused by ion conduction. Excessive lithium salt is present under the following conditions, which may cause the following conditions: (the anion and cation still have a sub-attractive force, and it is not easy to be plasticizer in the system. Dissociation. (II) System: The ion concentration is high, and it may be combined again during the migration process of the system. The beauty = the two reasons, the number of ions that can be carried in the system is reduced, and the conductivity is reduced. Further changes to the plasticizer The content, from the appearance to the content of the film seems to have little effect on the film, but in terms of the film formation of its mechanical film, the film with a higher plasticizer content is worse. 2 As shown in Figure 8, along with the plasticizer The increase of the content will increase the conductivity t, especially in the PC / EC plasticizer system. Compared with the plasticizer content d and 15%, the conductivity can be increased by about 5 times. However, if the content of the second agent is greater than 45, When it is above%, its polymer electrolyte film is poorer than 2 and there is a problem of plasticizer oozing out. Therefore, the heterogeneity is large. I Research on the size and stability of polymer electrolytes and the separation membrane Generate one May make the road, so that the polymer selected nanoscale 0 · 25, containing plasticizer thermal mechanical analysis study

質材料在鋰二次電池系統中,兼具電解 用^當電池充放電時,可能產生放熱現 可能造成聚合物電解質薄膜的變形,如 電池充放電循環效率降低,甚至發生短 電解質材料必須具備優良的尺寸安定性 黏土含量為3% ,LiC104計量值為f = 量為15%,所製備之聚偏二氟乙烯電解質 (TMA )測試,觀察在一溫度範圍内之熱Materials in lithium secondary battery systems are also used for electrolysis ^ When the battery is charged and discharged, heat may be generated and the polymer electrolyte film may be deformed. For example, the battery charge and discharge cycle efficiency is reduced, and even short electrolyte materials must be excellent The dimensional stability clay content is 3%, the LiC104 measurement value is f = the amount is 15%, and the prepared polyvinylidene fluoride electrolyte (TMA) is tested to observe the heat in a temperature range

586248 37412 Ά 曰 修正 五、發明說明(12) 膨脹係數,並與未添加奈米級黏土之膠態聚偏二氟乙烯電 解質進行比較’其結果如圖九所示,添加奈米級黏土之聚 偏二氟乙稀電解質其熱膨脹係數在_5〇〜8〇 〇c溫度範圍中, 其值為ϋ 4 X i 0-6刪/ I,其結果明顯優於未添加奈米級 黏土。之膠態聚偏二氟乙烯電解質薄膜其值為1 8 0 . 9 X 1 〇-6 腿/ C ’這是個相當好的結果,其結果說明添加奈米級黏 土。,有提昇聚合物電解質薄膜之尺寸安定性,即使在 80 °C的高溫下,仍然保有不錯的尺寸安定性,推測其原 因,為奈米級黏土均勻分散在聚偏二氟乙烯電解質薄膜中 ,,j因脫層現象破裂之奈米層狀物,均勻分散在聚偏二 乱a烯之聚合物分子鏈之間,且分子鏈與奈米層狀物之問 可能存在穩定的分子間作用力能 曰 解皙$ 力使付膠態聚偏二氟乙烯電 解筲之尺寸安定性提高。 電化 試, 對應 槽, 鋰離 化破 添加 化還 劑, 學穩 將所 組裝 電極 連接 子氧 壞電 奈米 原循 存在 定性 $得的膠態聚合物電解質薄膜,進行電化學測 一半電池測試元件Li/GPEs/Li作為工作電極及 雷始片做為參考電極,放入充滿氮氣的儲 電机-電壓恆電位儀進行循環伏安測試,了 匕還原循J衣效果,我們發現添加奈米級黏土 、片 位可達4· 2V,在氧化還原的循環測試結果虱 ,黏土的確有助於膠態聚合物電解質^鋰離子氧 二f原因可能是奈米級黏土可使較多的可塑 於電解質薄膜中1有高介電常數之可塑W效 586248 案號 91137412 五、發明說明(13) 質系統之 ’此現象有 地解離链鹽’並使離子均勻分散在聚合物電解 中’當鐘離子付到或失去電子時之可逆性提高 助於鋰高分子二次電池的充放電循環效應。门 鐘二次電池充放電測 ¥前面所製備之聚合物電解質材料(薄膜)’在 箱中(dry box)中組裝硬幣型電池,以鋰金屬做/為 材料,以LiMhO4或LiCo〇2做為陰極材料,進行充放 μ586248 37412 修正 Modified V. Description of the invention (12) Expansion coefficient, and compared with colloidal polyvinylidene fluoride electrolyte without nano-grade clay 'The result is shown in Figure IX, with the addition of nano-grade clay. The thermal expansion coefficient of vinylidene fluoride electrolyte is in the temperature range of _50 ~ 800 ° C, and its value is ϋ 4 X i 0-6 delete / I, and the result is obviously better than that without adding nano-grade clay. The colloidal polyvinylidene fluoride electrolyte film has a value of 180. 9 X 1 0-6 legs / C ', which is a fairly good result. The result indicates that nano-grade clay is added. It has improved the dimensional stability of the polymer electrolyte film, and still maintains good dimensional stability even at a high temperature of 80 ° C. It is speculated that the reason is that nano-grade clay is uniformly dispersed in the polyvinylidene fluoride electrolyte film. The nano-layers that are broken by the delamination phenomenon are evenly dispersed between the polymer molecular chains of poly (vinylidene) ene, and there may be a stable intermolecular force between the molecular chains and the nano-layers. It can improve the size stability of colloidal polyvinylidene fluoride electrolytic tincture. Electrochemical test: Corresponding tank, adding lithium ionizing agent to reduce ionization, and stably assemble the assembled electrode connector oxygen-degraded nanometer to the qualitatively obtained colloidal polymer electrolyte film, and perform electrochemical measurement on half of the battery test element Li. / GPEs / Li was used as the working electrode and the lightning film was used as the reference electrode. A nitrogen-filled storage motor-voltage potentiostat was used for the cyclic voltammetry test. The effect of the J-coat was reduced and we found that nano-grade clay was added. The film position can reach 4 · 2V. In the redox cycle test results, the clay does help the colloidal polymer electrolyte. Lithium ion oxygen can cause more plasticity in the electrolyte film. Medium 1 has a plastic effect with a high dielectric constant. W 586248 Case No. 91137412 V. Description of the invention (13) The phenomenon of the mass system dissociates the chain salt and disperses the ions uniformly in the polymer electrolysis. Or the reversibility improvement when electrons are lost contributes to the charge-discharge cycle effect of lithium polymer secondary batteries. Charge and discharge test of doorbell secondary battery ¥ The polymer electrolyte material (thin film) prepared above is used to assemble a coin-type battery in a dry box, using lithium metal as the material and LiMhO4 or LiCo〇2 as the material Cathode material, charge and discharge μ

測試。鋰二次電池充放電條件設定如下:定電流 mA充電,待電壓達到3. 9伏特後,維持3. 9伏特繼續充 充電電流降低到40x 10-2mA時,進行放電測試,以4 &amp; ( -2mA作為放電電流,待電壓降至2. 7V再重新進行充電。以 此條件方式進行充放電循環測試。 測試結果如圖十所示’充放電循環呈現穩定趨勢從 3.9V - 2.7V - 3.9V ............依次循環100次以上。 充放電壓與電容量關係如圖十一所示,明顯的呈現充電平 台及放電平台’其硬幣型電池之電容量從5· 74 mAh/g逐海 降低而趨於穩定。test. The charge and discharge conditions of the lithium secondary battery are set as follows: constant current mA charging, after the voltage reaches 3.9 volts, maintain 3.9 volts and continue to charge and charge when the charging current is reduced to 40x 10-2 mA, perform a discharge test to 4 &amp; ( -2mA is used as the discharge current. When the voltage drops to 2. 7V, recharge. The charge and discharge cycle test is performed in this condition. The test results are shown in Figure 10. 'The charge and discharge cycle shows a stable trend from 3.9V-2.7V-3.9 V ............ cycled more than 100 times in sequence. The relationship between charge and discharge voltage and capacitance is shown in Figure 11, which clearly shows the charging platform and the discharging platform. 5.74 mAh / g decreases by sea and stabilizes.

本研究添加親油化改質之奈米級黏土來改善膠態聚合物電 解質的相關性質,其結果顯示,利用界面活性劑,成功地 將奈米級黏土層間距離擴大為2 2埃以上,使得膠態聚合物 可進入黏土層間,甚至達到脫層的現象,成為一系列有機In this study, lipophilic modified nano-grade clay was added to improve the related properties of colloidal polymer electrolytes. The results showed that the use of surfactants successfully extended the inter-layer distance of nano-grade clay to more than 22 Angstroms, making Colloidal polymers can enter between clay layers and even reach delamination, becoming a series of organic

第19頁 586248 曰 修正 案號911370 五、發明說明(14) 無機混成材料。添加奈純黏土有助於延長可㈣ 膠態聚合物電解質系統中的含量與時間,當因脫層 破 裂之無機層材的碎片分散在膠態聚合物電解質中P.19 586248, Amendment No. 911370 5. Description of the invention (14) Inorganic hybrid materials. Adding pure clay can help to extend the content and time in the colloidal polymer electrolyte system. When the fragments of the inorganic layer that are broken due to delamination are dispersed in the colloidal polymer electrolyte

2電S,學穩ί性及離子導電度,其離子導電度可達I 機i材仕構cm具ίί要原因是奈米級黏土分散後破裂的無 機層材、.Ό構,具有破壞鋰離子與過氣酸根離子間的 鐘離子具有較大的遷移速度。 其離子導電度可達U3X 10-2 s/cm,且成膜性佳、溶劑 含浸率以及尺寸安定性(diDlensi〇nal stabiuty)皆比未 添加奈米級黏土之電解質薄膜佳。藉由循環伏安(cycUc ITT^測試得知’添加奈米級黏土使其電解質系統 之電化學穩定性明顯地提升。 巧用此電解質之所組成之鐘二次電池具有穩定之充放電循 裱效應,具有極優之商業價值。 第20頁 586248 __案號91137412_年月日 條正_ 圖式簡單說明 表格說明: 表一、組成配方表一 表二、組成配方一 表三、可塑劑含量不同之組成配方表 表四、不同種類之四級銨鹽對PK-805改質後之20及 d-space (A ° ) 表五、芳香族四級銨鹽對PK-805及PK-802改質後之2錾 d-space (A) 1C) 表六、奈米複合膠態聚偏二氟乙烯電解質導電度之數值 圖不簡早說明· 圖一、添加不同量之PK-805在PVdF中之X-ray繞射吸收峰 圖二、添加5 %wt之PVdF之穿透式電子顯微鏡影像 圖二、局部放大(A)區域’呈現intercaiati〇ri (插層 象) 圖四局部放大(B)區域’呈現exf〇iiati〇n(脫層現象) 圖五、PVdF添加奈米級黏土後對可塑劑含浸能力之比較 圖/、 奈未膠態聚偏'一氣乙歸電解質導電度之比較 圖七、可塑劑不同對奈米膠態聚偏二氟乙^電解質導電声 之影響 &amp; 鹵八、可塑劑含浸量不同之奈米膠態聚偏二氟乙烯電解質 導電度之差異2 Electricity S, stability and ionic conductivity, its ionic conductivity can reach 1 machine, material structure cm. The main reason is that the nano-scale clay disintegrates the inorganic layer, the structure, and has the ability to destroy lithium. The bell ions between ions and peroxyacid ions have a large migration speed. Its ionic conductivity can reach U3X 10-2 s / cm, and it has better film formation, solvent impregnation and dimensional stability (diDlensionaal stabiuty) are better than electrolyte films without nano-grade clay. Through cyclic voltammetry (cycUc ITT ^ test), the electrochemical stability of the electrolyte system was significantly improved by adding nano-scale clay. The bell secondary battery composed of this electrolyte has stable charging and discharging cycles. Effect, with excellent commercial value. Page 20 586248 __Case No. 91137412_ Year Month Day Article _ Schematic simple description Table Description: Table 1, composition formula Table 1 Table 2, composition formula 1 Table 3, plasticizer Composition formula table with different contents Table IV. 20 and d-space (A °) of different kinds of quaternary ammonium salts modified PK-805 Table 5. Aromatic quaternary ammonium salts PK-805 and PK-802 2 錾 d-space (A) 1C after modification Table 6: The numerical diagram of the conductivity of the nano-composite colloidal polyvinylidene fluoride electrolyte is not explained briefly. Figure 1. Adding different amounts of PK-805 in PVdF X-ray diffraction absorption peak in Figure 2. Transmission electron microscope image of PVdF added with 5% wt. 2. Partially enlarged (A) region 'intercaiatioli (intercalation image). Figure 4. Partially enlarged (B The area ”shows exf〇iiati〇n (delamination phenomenon) Figure 5. PVdF after adding nano-grade clay Comparison chart of the impregnation ability of plasticizers /, Comparison of the conductivity of nano-colloidal polyimide's gaseous electrolytes Figure 7. The influence of different plasticizers on the conductive sound of nano-colloidal polyvinylidene fluoride ^ Difference in conductivity of nano colloidal polyvinylidene fluoride electrolytes with different plasticizer impregnations

586248 案號 91137412 年月曰 曰 修正 圖式簡單說明 圖九、奈米膠態聚偏二氟乙烯電解質薄膜之熱膨脹率之比 較 圖十、充放電循環測試 圖十一、充放電壓與電容量關係586248 Case No. 91137412 Date Modified Brief Description Figure 9: Thermal expansion ratio of nano colloidal polyvinylidene fluoride electrolyte film Figure 10: Charge and discharge cycle test Figure 11: Relationship between charge and discharge voltage and capacitance

第22頁 586248 _案號91137412_年月日 修正 圖式 表一 F値 PVdFfe) LiC104 (g) day 0 wt% fe) PCffiC^ 耳比 1Λ) 35wt%fe) 02 1 0.33 0 0.72 0.225 1 0.37 0 0.74 0.25 1 0.41 0 0.76 0.275 1 0.45 0 0.78 0.3 1 0.5 0 0.81 F値 PVdF (g) LiC104 (g) 〇Hpk805 3wt%fe) FG/BC® 耳比 1/1) 35wt%(e) 0.2 1 0.33 0.03 0.73 0.225 1 0.37 0.03 0.75 0.25 1 0.41 0.03 0.78 0.275 1 0.45 0.03 0.80 0.3 1 0.5 0.03 0.82 F値 PVdF (g) LiC104 (g) o-p!s8Q2 3wt%fe) VCJECm%it 1Λ) 35wt%fe) 0.2 1 0.33 0.03 0.73 0.225 1 0.37 0.03 0.75 0.25 1 0.41 0.03 0.78 0.275 1 0.45 0.03 0.80 03 1 0.5 0.03 0.82 表二 F値 PVdF (g) LiC104(g) day Owt%fe) PC/K^ 耳比 4Λ) 35wt%fe) 02 1 0.33 0 0.72 0.225 1 0.37 0 0.74 0.25 1 0.41 0 0.76 0.275 1 0.45 0 0.78 0.3 1 0.5 0 0.81 F値 PVdF (g) LiC104(g) o-pkS05 3wl%fe) PG/K^ 耳比 4Λ) 35wt % fe) 0.2 1 0.33 0.03 0.73 0.225 1 0.37 0.03 0.75 0.25 1 0.41 0.03 0.78 0.275 1 0.45 0.03 0.80 0.3 1 0.5 0.03 0.82 F値 PVdF (g) LiC104(g) o^Is8Q2 3wt%fe) PC/K® 耳比 4Λ) 35wt%fe) 0,2 1 0.33 0.03 0.73 0.225 1 037 0.03 0.75 0.25 1 0.41 0.03 0.78 0.275 1 0.45 0.03 0.80 0.3 1 0.5 0.03 0.82 第頁 586248 案號 91137412 年 月 曰 修正 圖式 表三 PVdF (g) LiCl〇4 (g) F=OZ75 〇Hpk805 3 wt% (g) PC/EC (X%) FC/BC^ 耳比 1Λ) ω 1 0.45 0.03 15% 0.26 1 0.45 0.03 25% 0.49 1 0.45 0.03 35% 0.80 1 0.45 0.03 45% 1.21 PVdF (g) LiCl〇4 (g) F=OZ75 o-pk805 3wt%(g) DMF (XX ) DMF(g) 1 0.45 0.03 15% 0.25 1 0Λ5 0.03 35% 0.80 1 0.45 0.03 45% 1.21 1 0.45 0.03 55% 1.81 表四 quaternary ammonium bromide 2Θ d -space(A) none 7.48 12.00 Ci2H25N(CH3)3Br 5.28 16.73 Ci4H2gN(CH3)3Br 4.92 17.95 C16H33N(CH3)3Br 4.70 18.79 [CH3(CH2)ii]2(CH3)2NBr 4.02 22.00 第頁 586248 _案號91137412_年月日 修正 圖式 表五Page 22 586248 _Case No. 9137412_Year Month and Day Revised Schema Table 1 F 値 PVdFfe) LiC104 (g) day 0 wt% fe) PCffiC ^ Ear ratio 1Λ) 35wt% fe) 02 1 0.33 0 0.72 0.225 1 0.37 0 0.74 0.25 1 0.41 0 0.76 0.275 1 0.45 0 0.78 0.3 1 0.5 0 0.81 F 値 PVdF (g) LiC104 (g) 〇Hpk805 3wt% fe) FG / BC® ear ratio 1/1) 35wt% (e) 0.2 1 0.33 0.03 0.73 0.225 1 0.37 0.03 0.75 0.25 1 0.41 0.03 0.78 0.275 1 0.45 0.03 0.80 0.3 1 0.5 0.03 0.82 F 値 PVdF (g) LiC104 (g) op! S8Q2 3wt% fe) VCJECm% it 1Λ) 35wt% fe) 0.2 1 0.33 0.03 0.73 0.225 1 0.37 0.03 0.75 0.25 1 0.41 0.03 0.78 0.275 1 0.45 0.03 0.80 03 1 0.5 0.03 0.82 Table 2 F 値 PVdF (g) LiC104 (g) day Owt% fe) PC / K ^ Ear ratio 4Λ) 35wt% fe) 02 1 0.33 0 0.72 0.225 1 0.37 0 0.74 0.25 1 0.41 0 0.76 0.275 1 0.45 0 0.78 0.3 1 0.5 0 0.81 F 値 PVdF (g) LiC104 (g) o-pkS05 3wl% fe) PG / K ^ Ear ratio 4Λ) 35wt% fe) 0.2 1 0.33 0.03 0.73 0.225 1 0.37 0.03 0.75 0.25 1 0.41 0.03 0.78 0.275 1 0.45 0.03 0.80 0.3 1 0.5 0.03 0.82 F 値 PVdF (g) LiC104 (g) o ^ Is8Q2 3wt% fe) PC / K® ear 4Λ) 35wt% fe) 0,2 1 0.33 0.03 0.73 0.225 1 037 0.03 0.75 0.25 1 0.41 0.03 0.78 0.275 1 0.45 0.03 0.80 0.3 1 0.5 0.03 0.82 Page 586248 Case No. 91137412 Revised Schema Table III PVdF (g ) LiCl〇4 (g) F = OZ75 〇Hpk805 3 wt% (g) PC / EC (X%) FC / BC ^ Ear ratio 1Λ) ω 1 0.45 0.03 15% 0.26 1 0.45 0.03 25% 0.49 1 0.45 0.03 35 % 0.80 1 0.45 0.03 45% 1.21 PVdF (g) LiCl〇4 (g) F = OZ75 o-pk805 3wt% (g) DMF (XX) DMF (g) 1 0.45 0.03 15% 0.25 1 0Λ5 0.03 35% 0.80 1 0.45 0.03 45% 1.21 1 0.45 0.03 55% 1.81 Table 4 quaternary ammonium bromide 2Θ d -space (A) none 7.48 12.00 Ci2H25N (CH3) 3Br 5.28 16.73 Ci4H2gN (CH3) 3Br 4.92 17.95 C16H33N (CH3) 3Br 4.70 18.79 [CH3 ( CH2) ii] 2 (CH3) 2NBr 4.02 22.00 Page 586248 _Case No. 91137412_ Year, month, day, and amendment

Aromatic quaternary ammonium bromide 2Θ d -space(A) none 7.48 12.00 ARO-S/PK805 4.72 18.71 ARO-S/PK802 4.10 21.54Aromatic quaternary ammonium bromide 2Θ d -space (A) none 7.48 12.00 ARO-S / PK805 4.72 18.71 ARO-S / PK802 4.10 21.54

表六Table six

F value GFEs 0.2 0.225 0.25 0.275 0.3 PVdF+IiC104+PC/EC(l/lX35 H) 3.6 xlOJ 5.7 xlO-3 5.5 xlO-3 2.2 xl0J PVdF4t7-PK805+IiC104 +PDEC(1/1X35%&gt; 3.2 xlOJ 6·2 xl(H 1-01 xl(H 1_03 8.3 xl0J PVdF^-PKBOZ+UClO,, +PC/EC(1/1)(35W) 3.7 xlOJ 475 xlO-3 3.8 xl0J 3.0 xl0J 2.5 xl0J PVdF+IiC10^+PC/EC(4/lX35 W) 3.0 xlO-3 4J xl0J 3.8 xl0J 3.5 xlO-3 3.4 xl0J PVdF4t?-PK»05+LiC104 +POEC(4/lX35H) 46 xlO-3 5.8 xl0J 7.1 xl0J 7.35 xl0J 5.2 xl0J PVdF^-PK802+IiCl〇4 +PC/EC(肌)(35¾) 7.8 xl0J 1.01 xl0J 9.6 xl0J 9.1 xl0J 7.9 xl0JF value GFEs 0.2 0.225 0.25 0.275 0.3 PVdF + IiC104 + PC / EC (l / lX35 H) 3.6 xlOJ 5.7 xlO-3 5.5 xlO-3 2.2 xl0J PVdF4t7-PK805 + IiC104 + PDEC (1 / 1X35% &gt; 3.2 xlOJ 6 2 xl (H 1-01 xl (H 1_03 8.3 xl0J PVdF ^ -PKBOZ + UClO ,, + PC / EC (1/1) (35W) 3.7 xlOJ 475 xlO-3 3.8 xl0J 3.0 xl0J 2.5 xl0J PVdF + IiC10 ^ + PC / EC (4 / lX35 W) 3.0 xlO-3 4J xl0J 3.8 xl0J 3.5 xlO-3 3.4 xl0J PVdF4t? -PK »05 + LiC104 + POEC (4 / lX35H) 46 xlO-3 5.8 xl0J 7.1 xl0J 7.35 xl0J 5.2 xl0J PVdF ^ -PK802 + IiCl〇4 + PC / EC (muscle) (35¾) 7.8 xl0J 1.01 xl0J 9.6 xl0J 9.1 xl0J 7.9 xl0J

Claims (1)

586248586248 月 曰 修正 種含奈米級無機黏土之膠態電解質,其特徵係包人 無機黏土及膠態聚合物,其中該無機黏土係利用界面^^^生 劑進行親油化改質,再將膠態聚合物於可塑劑存在下,與 無機黏土進行插層作用(intercalation)而製得之膠態電 解質。 2、 如申請專利範圍第1項所述之膠態電解質,其中,膠態 聚合物包括聚偏二氟乙烯、聚偏二氟乙烯-六氟丙烯、聚 丙烯續(P〇lyacrylonitrile,PAN)、聚氧乙烯、聚曱基丙 烯酸甲酯。 3、 如申請專利範圍第1項所述之膠態電解質,其中,膠態 聚合物為聚丙稀續(p〇lyacryl〇nitrile,PAN)、聚偏二氟 乙稀。Modified colloidal electrolyte containing nano-scale inorganic clay, which is characterized by inclusion of inorganic clay and colloidal polymer, wherein the inorganic clay system uses an interface ^^ biogenic agent for lipophilic modification, and then the gel A colloidal electrolyte made by a polymer in the presence of a plasticizer and intercalation with an inorganic clay. 2. The colloidal electrolyte according to item 1 of the scope of the patent application, wherein the colloidal polymer includes polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene, polypropylene (Polyacrylonitrile, PAN), Polyoxyethylene, polymethyl acrylate. 3. The colloidal electrolyte according to item 1 of the scope of the patent application, wherein the colloidal polymer is polyacrylonitrile (PAN), polyvinylidene fluoride. 4、 如申請專利範圍第1項所述之膠態電解質,其中,界面 活性劑係具長鏈烷基/芳香基之界面活性劑。 5、 如申請專利範圍第1項所述之膠態電解質,其中,所用 聚合體分子量依不同聚合體而不同,分子量的選擇需兼具 良好之機械性質及易於進行插層作用。 6、 如申請專利範圍第1項所述之膠態電解質,其中,聚偏 二氟乙稀分子量為1萬至100萬左右。 7、 如申請專利範圍第1項所述之膠態電解質,其中,可塑 劑為可以溶解膠態聚合物姐具可塑效果之物質。 8、 如申請專利範圍第1項所述之膠態電解質,係於適當比 例之可塑劑下添加鐘鹽而製備含奈米級黏土之膠態聚合物 電解質。4. The colloidal electrolyte according to item 1 of the scope of the patent application, wherein the surfactant is a surfactant having a long-chain alkyl / aromatic group. 5. The colloidal electrolyte described in item 1 of the scope of patent application, wherein the molecular weight of the polymer used varies with different polymers, and the choice of molecular weight must have both good mechanical properties and easy intercalation. 6. The colloidal electrolyte according to item 1 of the scope of patent application, wherein the molecular weight of polyvinylidene fluoride is about 10,000 to 1 million. 7. The colloidal electrolyte described in item 1 of the scope of the patent application, wherein the plasticizer is a substance that can dissolve the colloidal polymer and has a plastic effect. 8. The colloidal electrolyte described in item 1 of the scope of the patent application is prepared by adding bell salt under a suitable proportion of plasticizer to prepare a colloidal polymer electrolyte containing nano-grade clay. 第23頁 586248 ----塞號 91137412__^^^------^ 六、申請專利範圍 9、如申請專利範圍第1項所述之膠態電解質,其中,界 面活性劑為長鏈烷基四級銨鹽、長鏈苯基四級銨鹽。 1 0、如申請專利範圍第i項所述之膠態電解質,其中,界 面活性劑為C12H25N(CH3)3Br、C14H29N(CH3)3Br、C16H33N(CH3)3 Br、[CH3(CH2)u]2(CH3)2NBr。 11、如申請專利範圍第l項所述之膠態電解質,其中,可 塑劑為二甲基乙烯碳酸酯、二乙基乙烯碳酸酯、二甲基甲 蟀胺、丙稀碳酸酯(PC ) /乙稀碳酸酯(EC )共可塑劑 等0 1 2、如申請專利範圍第1項所述之膠態電解質,其中,可 塑劑為二甲基甲醯胺及/或丙烯碳酸酯/乙烯碳酸醋 (PC/EC )的共可塑劑。 1 3、如申請專利範圍第1項所述之膠態電解質,其中,鋰 鹽為一般常用於製備鋰電池之鋰鹽類。 14、如申請專利範圍第1項所述之膠態電解質,其中,鋰 鹽為LiPF6 、LiCF3S03 、LiN (CF3S02 ) 2、LiBF4 、 I iSCN、LiASF6 、LiC104 等。 1 5、如申請專利範圍第i項所述之膠態電解質,其中,鋰 鹽為LiPF6、LiCl〇4。 1 6、如申請專利範圍第1項所述之膠態電解質,其中, 奈米級黏土為耐衝擊性產品用及或用於電子級產品 級之黏土。 17、一種鋰二次電池,其特徵為係利用如申請專利範圍第 1項之膠態電解質作為鋰二次電池中之主要内容填充物。Page 23 586248 ---- Serial No. 91137412 __ ^^^ ------ ^ VI. Application for patent scope 9. The colloidal electrolyte described in item 1 of the patent application scope, wherein the surfactant is a long chain Alkyl quaternary ammonium salt, long chain phenyl quaternary ammonium salt. 10. The colloidal electrolyte according to item i in the scope of the patent application, wherein the surfactant is C12H25N (CH3) 3Br, C14H29N (CH3) 3Br, C16H33N (CH3) 3 Br, [CH3 (CH2) u] 2 (CH3) 2NBr. 11. The colloidal electrolyte according to item 1 of the scope of the patent application, wherein the plasticizer is dimethylethylene carbonate, diethylethylene carbonate, dimethylformamide, acrylic carbonate (PC) / Ethylene carbonate (EC) co-plasticizer, etc. 0 1 2. The colloidal electrolyte described in item 1 of the scope of patent application, wherein the plasticizer is dimethylformamide and / or propylene carbonate / ethylene carbonate (PC / EC) co-plasticizer. 1 3. The colloidal electrolyte according to item 1 of the scope of the patent application, wherein the lithium salt is a lithium salt commonly used in the preparation of lithium batteries. 14. The colloidal electrolyte described in item 1 of the scope of the patent application, wherein the lithium salt is LiPF6, LiCF3S03, LiN (CF3S02) 2, LiBF4, I iSCN, LiASF6, LiC104, and the like. 15. The colloidal electrolyte according to item i in the scope of the patent application, wherein the lithium salt is LiPF6, LiCl04. 16. The colloidal electrolyte according to item 1 of the scope of patent application, wherein the nano-grade clay is a clay for impact-resistant products and / or for electronic-grade products. 17. A lithium secondary battery, characterized in that a colloidal electrolyte such as item 1 of the scope of patent application is used as a main content filler in the lithium secondary battery.
TW091137412A 2002-12-26 2002-12-26 Polymer-based nanoscale organophilic clay for gel polymer electrolytes and lithium rechargeable battery TW586248B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW091137412A TW586248B (en) 2002-12-26 2002-12-26 Polymer-based nanoscale organophilic clay for gel polymer electrolytes and lithium rechargeable battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW091137412A TW586248B (en) 2002-12-26 2002-12-26 Polymer-based nanoscale organophilic clay for gel polymer electrolytes and lithium rechargeable battery

Publications (2)

Publication Number Publication Date
TW586248B true TW586248B (en) 2004-05-01
TW200411965A TW200411965A (en) 2004-07-01

Family

ID=34058085

Family Applications (1)

Application Number Title Priority Date Filing Date
TW091137412A TW586248B (en) 2002-12-26 2002-12-26 Polymer-based nanoscale organophilic clay for gel polymer electrolytes and lithium rechargeable battery

Country Status (1)

Country Link
TW (1) TW586248B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103178296A (en) * 2011-12-20 2013-06-26 财团法人工业技术研究院 Electrolyte for lithium ion battery, method for producing electrolyte solution, and lithium ion battery
US8513519B2 (en) 2009-08-04 2013-08-20 National Taiwan University Use of exfoliated clay nanoplatelets and method for encapsulating cations
US8865826B2 (en) 2010-12-22 2014-10-21 Industrial Technology Research Institute Organic/inorganic composite film and method for forming the same
US9029003B2 (en) 2011-12-14 2015-05-12 Industrial Technology Research Institute Electrode assembly of lithium secondary battery
US9353272B2 (en) 2012-12-07 2016-05-31 Industrial Technology Research Institute Organic dispersion, method for preparing the same, and coating composition prepared from the same
TWI628827B (en) * 2016-12-30 2018-07-01 財團法人工業技術研究院 Gel electrolyte and applications thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8513519B2 (en) 2009-08-04 2013-08-20 National Taiwan University Use of exfoliated clay nanoplatelets and method for encapsulating cations
US8865826B2 (en) 2010-12-22 2014-10-21 Industrial Technology Research Institute Organic/inorganic composite film and method for forming the same
US9029003B2 (en) 2011-12-14 2015-05-12 Industrial Technology Research Institute Electrode assembly of lithium secondary battery
CN103178296A (en) * 2011-12-20 2013-06-26 财团法人工业技术研究院 Electrolyte for lithium ion battery, method for producing electrolyte solution, and lithium ion battery
US9437900B2 (en) 2011-12-20 2016-09-06 Industrial Technology Research Institute Electrolyte, method for fabricating electrolyte solution, and lithium ion battery
US9353272B2 (en) 2012-12-07 2016-05-31 Industrial Technology Research Institute Organic dispersion, method for preparing the same, and coating composition prepared from the same
TWI628827B (en) * 2016-12-30 2018-07-01 財團法人工業技術研究院 Gel electrolyte and applications thereof
CN108270031A (en) * 2016-12-30 2018-07-10 财团法人工业技术研究院 colloidal electrolyte and application thereof

Also Published As

Publication number Publication date
TW200411965A (en) 2004-07-01

Similar Documents

Publication Publication Date Title
Liu et al. Progress and prospect of low-temperature zinc metal batteries
Liu et al. Flexible antifreeze Zn-ion hybrid supercapacitor based on gel electrolyte with graphene electrodes
Ming et al. New insights on graphite anode stability in rechargeable batteries: Li ion coordination structures prevail over solid electrolyte interphases
Huang et al. Ultrastable zinc anodes enabled by anti-dehydration ionic liquid polymer electrolyte for aqueous Zn batteries
KR100284914B1 (en) Secondary Battery and Manufacturing Process Thereof
You et al. N, N-dimethylformamide electrolyte additive via a blocking strategy enables high-performance lithium-ion battery under high temperature
Cao et al. Electrolyte-solvent-modified alternating copolymer as a single-ion solid polymer electrolyte for high-performance lithium metal batteries
Gan et al. Self-healing single-ion conducting polymer electrolyte formed via supramolecular networks for lithium metal batteries
Zhang et al. Building stable solid electrolyte interphases (SEI) for microsized silicon anode and 5V-class cathode with salt engineered nonflammable phosphate-based lithium-ion battery electrolyte
CN108183257A (en) Organogel electrolyte, application, sodium base double ion organic solid-state battery and preparation method thereof
CN102394312A (en) Low temperature improved lithium iron phosphate cell
CN103094611A (en) Preparation method for ionic liquid gel electrolyte
CN108183039A (en) Preparation method, carbon modification titanium niobate material, lithium-ion capacitor and its negative electrode slurry of carbon modification titanium niobate material
CN109888217A (en) Negative electrode active material and cathode pole piece and electrochemistry and electronic device using it
Han et al. Dual effects from in-situ polymerized gel electrolyte and boric acid for ultra-long cycle-life Li metal batteries
CN110600798B (en) Preparation method and application of manganese dioxide/polyoxyethylene composite solid electrolyte
Chen et al. Boron-containing single-ion conducting polymer electrolyte for dendrite-free lithium metal batteries
Jiang et al. Polymer electrolytes shielded by 2D Li0. 46Mn0. 77PS3 Li+-conductors for all-solid-state lithium-metal batteries
TW586248B (en) Polymer-based nanoscale organophilic clay for gel polymer electrolytes and lithium rechargeable battery
Yang et al. Enhancement of Thermal Stability and Cycling Performance of Lithium‐Ion Battery at High Temperature by Nano‐ppy/OMMT‐Coated Separator
Zhou et al. Low temperature nanotailoring of hydrated compound by alcohols: FeF3· 3H2O as an example. Preparation of nanosized FeF3· 0.33 H2O cathode material for Li-ion batteries
Zhao et al. TriMethylene sulfite as a novel additive for SEI film formation in lithium-ion batteries
Li et al. Negatively charged laponite sheets enhanced solid polymer electrolytes for long-cycling lithium-metal batteries
Luo et al. Two-dimensional silica enhanced solid polymer electrolyte for lithium metal batteries
Sun et al. Amide compounds as electrolyte additives for improving the performance of high-voltage lithium-ion batteries

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees