TW200411965A - Polymer-based nanoscale organophilic clay for gel polymer electrolytes and lithium rechargeable battery - Google Patents

Polymer-based nanoscale organophilic clay for gel polymer electrolytes and lithium rechargeable battery Download PDF

Info

Publication number
TW200411965A
TW200411965A TW091137412A TW91137412A TW200411965A TW 200411965 A TW200411965 A TW 200411965A TW 091137412 A TW091137412 A TW 091137412A TW 91137412 A TW91137412 A TW 91137412A TW 200411965 A TW200411965 A TW 200411965A
Authority
TW
Taiwan
Prior art keywords
scope
patent application
item
colloidal
polymer
Prior art date
Application number
TW091137412A
Other languages
Chinese (zh)
Other versions
TW586248B (en
Inventor
Jiunn-Jer Hwang
Hsin-Jiant Liu
Chun-En Tsai
Original Assignee
Jiunn-Jer Hwang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiunn-Jer Hwang filed Critical Jiunn-Jer Hwang
Priority to TW091137412A priority Critical patent/TW586248B/en
Application granted granted Critical
Publication of TW586248B publication Critical patent/TW586248B/en
Publication of TW200411965A publication Critical patent/TW200411965A/en

Links

Classifications

    • Y02E60/122

Abstract

A series quaternary alkylammonium salts used in the organophilic procedure, performed on montmorillonite clay, resulting in intercalation in plasticizer between the polymer and the organophilic clay. A series of gel polymer nanocomposite electrolyte materials were successfully prepared by adding the appropriate percentage of plasticizer, organophilic clay and lithium perchlorate to polymer. The best possible ionic conductivity was 1.03x10<SP>-2</SP> S/cm and exhibited better film formation, plasticizer-maintaining capability and dimensional stability than the electrolyte film without the added organophilic clays. From the cyclic electrochemistry testing result, it is shown that adding organophilic clays significantly enhances the electrochemical stability of the gel polymer electrolyte system. The invention also concerns the lithium rechargeable battery which assembled with gel (nanocompsite polymer electrolytes. Such lithium rechargeable batteries has the stable cyclic charge-rechargeable property and potential great commercial value.

Description

200411965 五、發明說明(1) 發明概述 本發明 質,乃利用 行親油化改 中進行插層 添加鐘鹽而 其離子導電 含浸率以及 添加奈米級 之電解質薄 提升。 係關於一種含奈米級黏土之膠態聚合物電解 界面活性劑對無機黏土(montmor i 1 loni te)進 質’並使膠態聚合物與親油化黏土,在可塑劑 作用(intercalation)。適當比例之可塑劑下 製備含奈米級黏土之膠態聚合物電解質薄膜, 度可達1 · 03 X 1 Ο-2 s/cm,且成膜性佳、可塑劑 尺寸女疋性(dimensional stability)皆比未 黏土之電解質薄膜佳。並且,添加奈米級黏土 膜,亦使其電解質系統之電化學穩定性明顯地 本發明亦關於一種含奈半幼办丄 備之鋰欠雷%二不未、,及黏土之膠態聚合物電解質所製 ]用上述電解質所組成之裡二次電池且 有t疋之充放電循環效應,具有極優之商業價值。 發明技術背景 隨著人類科技的進步, 資訊產品之需求量也大幅提曰品質的提高,各種電子及 即是研究者及設計者積^ ^,因此,產品的功能性改善 化,可攜帶及輕、薄、、短、力的目標。其中產品的無線 作為產品動力來源之配〜 化更疋消費市場所期望的。 〜電池。也須符合安全、重量 i^srs 200411965 五、發明說明(2) 輕、薄型化及符合環保等條件,因此,高性能的鋰高分子 二次電池因應而生。聚合物電解質材料在鐘高分子二次電 池糸統中兼具電解質及陰陽極間隔離膜(separa t 〇r )二種 作用,因此離子導電度、尺寸安定性及電化學穩定性皆必 須達到一定標準。 第一個有關高分子電解質的研究是由Wright等人在 1 9 7 3年k出’他們利用混換的方式在p〇iy(efhylene oxide)(PE0)中添加KSCN,實驗結果得到具結晶性的錯合 物(Complex)。接著1 975年Wright等人更進一步證明,高 溫下(100°C以上)這些錯合物具有1〇_4 s/cm以上的導電 度。此後許多研究單位積極投入高分子電解質導電度之研 究’希望能夠改善在室溫下導電度過低的缺點。 在目前研究的高分子主體中,以p〇lyacryl〇nitrile (PAN)的導電度最具利用價值。第一個提出此類高分子電 解質的是Reich和Michaeli,此後吸引了許多研究單位投 入這方面的領域。由Scrosati等人在1994年的研究發現, 以PAN為主體之膠態高分子電解質(Ge卜Type p〇lymer200411965 V. Description of the invention (1) Summary of the invention The quality of the present invention is improved by the use of lipophilic modification for intercalation, the addition of bell salt and its ionic conductivity impregnation rate and the addition of nano-level electrolytes. It is about a colloidal polymer electrolyte containing nano-grade clay. Surfactant improves inorganic clay (montmor i 1 loni te) ’and makes the colloidal polymer and lipophilic clay intercalation. The colloidal polymer electrolyte film containing nano-grade clay can be prepared under the appropriate proportion of plasticizer, the degree can reach 1 · 03 X 1 〇-2 s / cm, and the film formation is good, and the dimensional stability of the plasticizer (dimensional stability) ) Are better than unclayed electrolyte membranes. In addition, the addition of nano-grade clay membranes also makes the electrochemical stability of its electrolyte system obvious. The present invention also relates to a lithium polymer electrolyte containing nano-semi-prepared lithium, and a colloidal polymer electrolyte of clay. The produced] secondary battery composed of the above electrolyte has a charge-discharge cycle effect of t 疋 and has excellent commercial value. BACKGROUND OF THE INVENTION With the advancement of human science and technology, the demand for information products has also greatly improved, and various electronics and research and design products have accumulated ^^. Therefore, the functionality of products has been improved, and can be carried and lightened. , Thin, short, force targets. Among them, the wireless of products is a match for the power source of products. ~battery. It must also comply with safety and weight i ^ srs 200411965 V. Description of the invention (2) Light, thin, and environmentally friendly. Therefore, high-performance lithium polymer secondary batteries have been developed. The polymer electrolyte material has both the electrolyte and the separator between the anode and the anode (separa t 〇r) in the Zhongmao secondary battery system. Therefore, the ionic conductivity, dimensional stability and electrochemical stability must all reach a certain level. standard. The first research on polymer electrolytes was made by Wright et al. In 1973. They added KSCN to pOiy (efhylene oxide) (PE0) by mixing and swapping. The experimental results were crystalline. Complex. Then in 1975 Wright et al. Further proved that these complexes have a conductivity of 10-4 s / cm or higher at high temperatures (above 100 ° C). Since then, many research institutes have actively invested in the research on the conductivity of polymer electrolytes, hoping to improve the shortcomings of low conductivity at room temperature. Among the polymer bodies currently studied, the conductivity of poliacrylnitrile (PAN) is the most valuable. The first to propose such polymer electrolytes was Reich and Michaeli, and since then many research institutions have attracted investment in this area. A 1994 study by Scrosati et al. Found that a colloidal polymer electrolyte (Ge Type Polymer

Electrolytes),其導電度在25°C時可達1〇-3 s/cm以 上。 目前新合成的高分子主題中,以p〇ly[2-(2-methoxyethoxyethoxy)] phosphazene(MEEP)最具發展潛 力,其所製成的固態高分子電解質導電度可達1〇-5 S/Cm 以上。雖然導電度較高,但尺寸安定性卻相對降低,因 此,A1 lcock等人,利用r - radiat ion使MEEP之分子鏈部Electrolytes), its conductivity can reach 10-3 s / cm or more at 25 ° C. Among the newly synthesized polymer themes, poly [2- (2-methoxyethoxyethoxy)] phosphazene (MEEP) has the most potential for development, and the solid polymer electrolytes made by it have a conductivity of 10-5 S / Cm or more. Although the conductivity is high, the dimensional stability is relatively reduced. Therefore, A1 lcock et al. Used r-radiat ion to make the MEEP molecular chain part

第7頁 五、發明說明(3) 份父聯,提高機械加工性。近 同鏈長之醚基取代基來善 =專人採用不Page 7 V. Description of the invention (3) Parent affiliation to improve machinability. Near homochain length ether group substituents = good use

Abraham辇人之尺寸女疋性。而K· Μ. 性,但由於ΡΕΟ的^行推曰合改善7ΜΕΕΡ的加工 Μ-原有之導電 1;=^^ 發明之目的 利用==的係對膠態聚合物電解質材料加以改良, = = = ;丨电吊數之可塑劑和奈米級黏土的混摻, 八 尺:I ί ί質f膜,提升聚合物電解質薄膜之熱穩定:: 膜之電二r ΐ Ϊ性、離子導電度及膠態聚合物電解質薄 、$化予私疋性。此電解質應用在鋰二次電池上具有 疋之充放電循環效應,具有極優之商業價值。/、有t 發明之詳細說明 本發明係利用界面活性劑對無機黏土 進行親油化改質,並使聚合物與親油 於^ 在可塑劑中進行插層作用(intercalation)。再 二^當比例之可塑劑下添加鋰鹽而製備含奈米級黏土之膠 恶聚合物電解質薄膜。 本發明所指界面活性劑,凡具有長鏈烷基/芳香基之 =面活性,,皆可用於本發明,例如,長鏈烷基四級銨 長鏈本基四級叙鹽(quaternary alkylamm〇niuni t)月私為,L酸鈉、月桂基硫酸三乙醇胺、月桂醯基胺 200411965 五、發明說明(4) 酸鈉、氯化硬脂酸二ψ茸 ^ ^ ^ ^ ^ ^ ^ Τ基鉍、虱化本烷銨、氯化硬脂酸二 ^ 土 ^甲基錢、月桂酸二甲基胺基醋酸三曱基銨内酯、聚 ^乙烯硬月曰酸醯胺、硬脂酸二甲基胺醋酸内胺鹽、聚氧乙 稀挪子油爿曰肪k 胺、椰子油脂肪酸單乙醇醯胺、硬脂酸 二乙醇醯胺、硬脂酸單乙醇醯胺、硬脂酸二乙醇醯胺、 C12H25N(CH3)3Br ^ C14H29N(CH3 )3Br ' C16H33N(CH3 )3Br [ CH3 (CH2 ) ii 2 3 2NBr、C12H25S〇4Na、ci4H29S04Na、C16H33S04Na、 C18H37S04Na ^ C12H25S〇4N(C4H9)4 &gt; C12H25S04N(CH3 )3C12H25 ^ C12H25CH(C00^N(CH3)3 . (C4H9)2CHCH2(0C2H4)90H^n-C12H25 (ΟΚΗ4)^ 〇H等,較佳為長鏈烷基四級銨鹽,特別是‘^ (CH3)3Br ^ C14H29N(CH3)3Br ^ C16H33N(CH3 )3Br ^ [ CH3 (CH2 )n ]2 (CH3)2NBr 等。 本發明所指膠態聚合物,包括所有膠態聚合物皆可以 本,明方法進行改質,例如,聚偏二氟乙烯(p VdF )、聚偏 ^氣乙稀'六氟丙烯(PVdF-HFP )聚丙烯咏PAN)、聚氧乙 烯(ΡΕ0)、聚甲基丙烯酸甲酯(pMMA),其中,又以聚丙烯轉 '聚偏二氟^乙稀較佳,所用聚合體分子量依不同聚合體而 不同’分子量的選擇需兼具良好之機械性質及易於進行插 層作用’以聚偏二氟乙烯為例,可為1萬至1 0 0萬左右。 本發明所指可塑劑為,凡可以溶解膠態聚合物並具可 塑效果者均可為本發明之可塑劑,例如,二曱基乙烯碳酸 醋(dimethylene carbonate,DMC)、二乙基乙烯碳酸 醋(diethylene carbonate,DEC )、二曱基甲醯胺(1 N,dimethylformamide,MF)、丙烯碳酸酯(pr〇pyleneAbraham's size son-in-law. The K · M. Properties, but because of the combination of PEO and ML, the processing of 7MEEP is improved. The original conductivity is 1; = ^^ The purpose of the invention is to improve the colloidal polymer electrolyte material by using ==, = =; 丨 Blending of plasticizers with nano-grade clay and electric number of feet, 8-foot: I ί quality f film, to improve the thermal stability of polymer electrolyte thin film: the electrical properties of the film r ΐ ΐ, ionic conductivity And colloidal polymer electrolytes are thin and non-toxic. This electrolyte has a tritium charge-discharge cycle effect on lithium secondary batteries and has excellent commercial value. / 、 Detailed description of the invention of the invention The present invention is to use a surfactant to make lipophilic modification of inorganic clay, and to make polymer and lipophilic intercalation in plasticizer. Then, a lithium salt was added to the plasticizer at the same ratio to prepare a nano-grade clay-containing polymer electrolyte film. The surfactants referred to in the present invention can be used in the present invention, as long as they have long-chain alkyl / aromatic group = surface activity, for example, long-chain alkyl quaternary ammonium long-chain quaternary quaternary salt (quaternary alkylamm). niuni t) Moonlight is sodium L, lauryl triethanolamine, lauryl amine 200411965 V. Description of the invention (4) Sodium, chlorinated stearic acid bismuth ^ ^ ^ ^ ^ ^ ^ T-bismuth Benzylammonium chloride, Diammonium chlorostearate, Dimethyl methanoate, Dimethylamino laurate trimethylammonium acetate lactone, Polyammonium stearylamine, Dimethyl stearate Amine lactam lactam, polyoxyethylene norazine oil, fatty amine, coconut oil fatty acid monoethanolamine, stearic acid diethanolamine, stearic acid monoethanolamine, stearic acid diethanolamine Amine, C12H25N (CH3) 3Br ^ C14H29N (CH3) 3Br'C16H33N (CH3) 3Br [CH3 (CH2) ii 2 3 2NBr, C12H25S〇4Na, ci4H29S04Na, C16H33S04Na, C18H37S04Na ^ C12H4N9; C12H25S. CH3) 3C12H25 ^ C12H25CH (C00 ^ N (CH3) 3. (C4H9) 2CHCH2 (0C2H4) 90H ^ n-C12H25 (ΟΚΗ4) ^ 〇H, etc., preferably a long-chain alkyl quaternary ammonium salt, especially '^ (CH3) 3Br ^ C14H29N (CH3) 3Br ^ C16H33N (CH3) 3Br ^ [CH3 (CH2) n] 2 (CH3) 2NBr, etc.) The colloidal polymers referred to in the present invention include all colloidal polymers. Modification of the present method, for example, polyvinylidene fluoride (p VdF), polyvinylidene fluoride (PVdF-HFP), polypropylene (PAN), polyoxyethylene (PE0), polymethyl Methyl acrylate (pMMA), of which polypropylene is also suitable for 'polyvinylidene difluoride ^ ethylene, the molecular weight of the polymer used varies according to different polymers. The choice of molecular weight must have both good mechanical properties and easy Intercalation 'Take polyvinylidene fluoride as an example, it can be about 10,000 to 1 million. The plasticizer referred to in the present invention is that anyone who can dissolve the colloidal polymer and has a plastic effect can be the plasticizer of the present invention, for example, dimethylene carbonate (DMC), diethylethylene carbonate (Diethylene carbonate, DEC), 1 N, dimethylformamide (MF), propylene carbonate

200411965 五、發明說明(5) carbonate,PC) / 乙浠碳酸醋(ethylene carbonate, EC )共可塑劑等,及上述可塑劑之混合物,其中較佳為二 甲基甲醯胺及/或(丙烯碳酸酯/乙稀碳酸酯)(PC/ec) 的共可塑劑。 s200411965 V. Description of the invention (5) carbonate, PC) / ethylene carbonate (EC) co-plasticizer, etc., and a mixture of the above plasticizers, among which dimethylformamide and / or (propylene Carbonate / Ethylene Carbonate) (PC / ec) co-plasticizer. s

本發明所指鋰鹽,並不特別限定,可為一般常用於製 備鋰電池之鋰鹽類,例如,Li PF6 &gt; L1CF3SO3 、UN (CF3S02 ) 2、LiBF4 、LiSCN、LiAsF6 、LiC104 等,其中 又以LiPF6、LiC104 較佳。 ’、 本發明所用奈米級黏土分別為耐衝擊性產品用之商品 編號為PK802,及用於電子級產品之商品編號為ρκ8〇5等之 黏土’又經改質之黏土分別以〇 - P K 8 0 2、〇 - P K 8 0 5等編卞 录不。 本發明所選擇之界面活性劑與無機黏土ΡΚ —8〇5、ρκ〜 8 0 2進行親油化改質,除了使黏土層間距離擴大之外,亦 有助於大分子量之聚合物(PVdF,MW : 1 000 00 0 )進入黏 土層間進行插層作用(intercalati0I1 )形成膠態奈米^ 合物電解質材料,此發現有助於減少製程與時間,可適I 分子量1 0 0 0 0 0 0以下之其他聚合物材料。 ; 本發明具體之實施方法 黏土的親油化處理 將含有長碳鏈之適量陽離子界面活性劑Ci2H25N(C{^) 3Br、C14H29N(CH3)3Br、C16H33N(CH3)3Br、[CH3(CH2)U]2(CH3)The lithium salt referred to in the present invention is not particularly limited, and may be lithium salts commonly used in the preparation of lithium batteries, for example, Li PF6 &gt; L1CF3SO3, UN (CF3S02) 2, LiBF4, LiSCN, LiAsF6, LiC104, etc. LiPF6 and LiC104 are preferred. 'The nano-grade clay used in the present invention is a clay with a product number of PK802 for impact-resistant products and a clay with a product number of ρκ800 and the like for electronic-grade products.' 8 0 2, 0-PK 8 0 5 and other editing records are not available. The surfactant selected by the present invention undergoes lipophilic modification with inorganic clay PK-805, ρκ ~ 802, which not only expands the distance between clay layers, but also contributes to large molecular weight polymers (PVdF, MW: 1 000 00 0) into the clay layer to intercalate (intercalati0I1) to form a colloidal nano ^ complex electrolyte material, this finding helps to reduce the process and time, suitable for molecular weights below 1 0 0 0 0 0 0 0 Other polymer materials. ; The specific implementation method of the present invention, the lipophilic treatment of clay will contain an appropriate amount of cationic surfactants Ci2H25N (C {^) 3Br, C14H29N (CH3) 3Br, C16H33N (CH3) 3Br, [CH3 (CH2) U ] 2 (CH3)

五、發明說明(6) sNBr分別與黏土 六 過濾並以去離子水均勻擾拌,進行親油化處理。接著 及鹽類(N a B r) ^ 甲醇’’月洗黏土中多餘之界面活性劑 其中以下列=質ί之黏土乾燥磨碎。 界面活性劑的重^厂式叶算界面活性劑所需之克數。 活性劑之分早旦里U)=陽離子交換當量(CEC) ΧΙΟ—3 X界面 該係數之重量x係數 欲使黏土層間樓開距離有間關較佳為&quot;―1.5之間’其與所 聚合物高分子鏈之插層作用 Φ,先i使^述改質後之黏土均勻分散於DMF4pC/EC可塑劑 μ 1、赠外加叶量之聚合物,均勻攪拌釣1 2 hrs後在玻璃板 並,,真空烘箱中乾燥;其中PC/EC之比例約為 •至· 1。最後再利用x —ray繞射分析儀,鑑定其 態之變化。 膠態聚合體電解質之製備 取聚偏二氟乙烯(MW = 53 0 0 0 0 )及改質後之黏土與依F 值計量之鋰鹽(UCIO4),添加在DMf或pc/EC(l:l)可塑劑 中’加熱(約3 0 °C - 1 0 0 °C )均勻攪拌,使溶液呈現均勻相 (homogenous),約需6 hrs,後於玻璃板上成膜,控制溫 度使薄膜中DMF或PC/EC可塑劑的含量在一定的範圍(約 〜6 0 % ),而製備膠態聚合體電解質薄膜。 其中,F =鋰鹽莫耳數/(聚合體克數/重複單位分子量)V. Description of the invention (6) sNBr and clay are respectively filtered and mixed with deionized water for lipophilic treatment. Next, the salt (N a B r) ^ methanol ’is used to wash the excess surfactant in the clay. Among them, the following clays are dried and ground. The weight of the surfactant is calculated in milligrams. The score of active agent U) = cation exchange equivalent (CEC) χΙΟ—3 The weight of the coefficient at the X interface x coefficient If the opening distance between the clay layers is related, it is better to &quot; between -1.5 'and its Intercalation effect of polymer and polymer chain Φ, firstly make the modified clay uniformly dispersed in DMF4pC / EC plasticizer μ 1. Give the polymer with additional leaf amount, and stir evenly on the glass plate after 1 2 hrs And, drying in a vacuum oven; the PC / EC ratio is about • to · 1. Finally, the x-ray diffraction analyzer is used to identify the change of state. Preparation of colloidal polymer electrolyte: polyvinylidene fluoride (MW = 53 0 0 0 0), modified clay and lithium salt (UCIO4) measured according to F value, added in DMf or pc / EC (l: l) The plasticizer is heated (approximately 30 ° C-100 ° C) and uniformly stirred to make the solution homogeneous (homogenous), which takes about 6 hrs. After forming a film on a glass plate, the temperature is controlled to make the film The content of DMF or PC / EC plasticizer is in a certain range (about ~ 60%), and a colloidal polymer electrolyte film is prepared. Where F = Molar number of lithium salt / (grams of polymer / repeated unit molecular weight)

200411965 五、發明說明(7) ^—200411965 V. Description of Invention (7) ^ —

本發明具體之實施例組成配方如表丨及表2所示,並根 據上述方法製備膠態聚合物電解質。 X 本發明分析方法 利用 X-ray 繞射分析儀D/Max-3C 0D-2988N) 進行黏土層間之分析,利用阻抗測定儀(Impedence Analyser HP4192A)進行聚合物電解質離子導電度之測 定,利用穿透式電子顯微鏡(JE〇L- 20 0FX)觀察黏土分散 聚合物電解質材料中的微觀現象,利用循環伏安測定儀; (Eco Chemie BV model PGSTAT3〇)進行電解質的氧化 循環電位及氧化破壞電位之檢測,利用熱機械分析儀,、 (Perkin-Elmer DMA 7e analyzer)測量聚合物電解質 之熱膨脹係數,了解材料在使用溫度範圍中之尺寸二=料 性。利用本發明之電解質所組裝之電池,以Arbin ^定 200 0電池充放電設備進行鋰二次電池充放電測試。 發明之效果 黏土的親油化改質 首先,進行無機黏土的親油化處理,黏土為 之無機矽酸鹽,需藉由界面活性劑的親水端。 :的%離子進行離子交換’目的在使界面活性劑的Κ 基進入黏土的層間,達到將層間距離擴大的效果,二, 分子鏈與存在於黏土層間之界面活性劑的親油端產生: 200411965 五、發明說明(8) 作用,進而達到改質,在相同操作條件下,藉由X__ray繞 射分析圖譜得知’層間距離的變化會因界面活性劑的種類 不同而有所改變。如表四所示,以Did〇deCyldimethyl ammonium bromide, [CH3(CH2)u]2(CH3)2NBr 所撐開的距離 為最大’可能是雙長鏈烧基的結構及鍵角,使雙長鏈烷基 與無機黏土的層間呈現千斤頂的型態,有效地擴大了層間 距離達到2 2埃’原本黏土的層間距離為1 2埃。此外,我們 亦使用芳香族之四級銨鹽,以AR〇_S為代表進行實驗,其 結構成分組成’如表五所示,其改質測試結果得知AR〇-S 使無機黏土 P K 8 0 2層間距離擴大為2 1 · 5 4埃,而ρ κ 8 0 5層間 距離經改質後,亦可擴大為18· 71埃。 曰 膠態聚合物與親油化黏土的混成效應 以聚偏二氟乙烯為例,配製聚偏二氟乙烯溶液,並計 量3%改質黏土後,兩者均勻混合成透明溶液,在玻璃板上 製成厚度0.2mm薄膜。在x —ray繞射圖譜上發現,親油化黏 土 f本位於4· 0 2之2 Θ角度已經消失,此乃因聚偏二氟乙The composition and formulation of specific examples of the present invention are shown in Tables 丨 and 2 and a colloidal polymer electrolyte was prepared according to the above method. X The analysis method of the present invention uses the X-ray diffraction analyzer D / Max-3C 0D-2988N) to analyze the clay layer, and uses the impedance analyzer (Impedence Analyser HP4192A) to measure the ion conductivity of the polymer electrolyte. Electron microscopy (JEOL- 20 0FX) to observe the microscopic phenomena in clay-dispersed polymer electrolyte materials, using a cyclic voltammetry tester (Eco Chemie BV model PGSTAT3〇) to measure the oxidation cycle potential and oxidative breakdown potential of the electrolyte Using a thermomechanical analyzer, (Perkin-Elmer DMA 7e analyzer) to measure the thermal expansion coefficient of the polymer electrolyte, understand the size of the material in the use temperature range 2 = material properties. Using the battery assembled by the electrolyte of the present invention, a lithium secondary battery charge-discharge test was performed using an Arbin® 2000 battery charge-discharge device. Effect of the invention Lipophilic modification of clay First, the lipophilic treatment of inorganic clay is performed. The clay is an inorganic silicate, and the hydrophilic end of the surfactant is required. : The purpose of ion exchange of% ions is to make the K group of the surfactant enter the layers of the clay to achieve the effect of expanding the distance between the layers. Second, the molecular chain and the lipophilic end of the surfactant existing between the clay layers are produced: 200411965 V. Explanation of the invention (8) The effect can be further improved. Under the same operating conditions, it can be known from the X_ray diffraction analysis spectrum that the change in the distance between layers will be changed due to different types of surfactants. As shown in Table 4, the distance supported by DidOdeCyldimethyl ammonium bromide, [CH3 (CH2) u] 2 (CH3) 2NBr is the largest, may be the structure and bond angle of the double long chain alkyl group, so that the double long chain The interlayer between the alkyl and the inorganic clay showed a jack type, which effectively increased the interlayer distance to 22 Angstroms. 'The original interlayer distance of the clay was 12 Angstroms. In addition, we also use the aromatic quaternary ammonium salt and perform experiments with AR〇_S as a representative. Its structural composition is shown in Table 5. The modification test results show that AR〇-S makes inorganic clay PK 8 The distance between 0.2 layers was enlarged to 21 · 54 Angstroms, and after the modification of ρ κ 805, the distance between layers could also be enlarged to 18.71 Angstroms. The mixing effect of colloidal polymer and oleophilic clay. Take polyvinylidene fluoride as an example. After preparing a polyvinylidene fluoride solution and measuring 3% of the modified clay, the two are evenly mixed into a transparent solution. A thin film with a thickness of 0.2 mm was made on it. It was found on the x-ray diffraction pattern that the lipophilic clay f originally located at 4 · 2 2 2 Θ angle has disappeared, this is because of polyvinylidene fluoride

稀兩分子鍵在黏土層間可能;&gt;人μ八I · θ間了此達凡全的分散,即所謂的剝離 悲(exfoliation)。為了證明此一說法,將不同 (二3% 5% 7:。)的親油化黏土個別溶於聚偏 製成-定厚度的薄膜後,進行[ray繞射分析,如:一所夜 :,隨著黏土含量增加其圖譜產生明顯的變化 常類似’在圖譜上並未發現任何2 Θ角度的吸收峰/、二非 是說這兩種比例所形成的混成材料呈現剝離狀態 ,Dilute two-molecule bonds are possible between clay layers; &gt; Human μA I · θ intersperses this Dafanquan dispersion, the so-called exfoliation. In order to prove this statement, different (2% 3% 5% 7 :.) lipophilic clays are individually dissolved in polyisocyanate to make a film of a certain thickness, and [ray diffraction analysis is performed, such as: a night: As the clay content increases, the map changes significantly. It is often similar to 'there are no absorption peaks at 2Θ angles found on the map. Second, the mixed material formed by these two ratios shows a peeling state.

第13頁 200411965 五、發明說明(9) (exfoliatl〇n),但若黏土含量增加到⑽時,即發現在 2/ -3度附近有一小波峰逐漸形成。當黏土的含量提升到 7/〇此波峰更為明顯,顯示聚偏二氟乙烯分子鏈仍然在黏 土的層間進行插層(intercalation ),使20角度由4度位 f到3度表示聚偏二氟乙烯中親油化黏土的含量在⑽以上 $ * 有機無機混成型態可能是呈現丨n ^ e r c a 1 a ^丨0 n。利 1穿透式電子顯微鏡來觀察無機黏土在高分子鏈中分散的 十月形,取含有5 % c 1 ay之聚偏二氟乙烯進行測試,結果如 圖二所示’特別針對部分區域進行局部放大,在圖片中明 顯地看到無機黏土的層間被破壞的脫層現象如圖三所示, =及有一部分的插層現象,如圖四所示,因此聚偏二氟乙 稀與5 %無機黏土的混成效應,兼具剝離狀態 (exf〇liation)與層間插層(intercalati〇n)。此結果亦可 印證X-ray的測試結果。 可塑劑含浸性質 膝態聚合物電解質(Gel-type polymer electrolyte) 與固恶聚合物電解質(s〇lid polymer electrolyte)間最 大的差異在聚合物系統可塑劑的存在與否。相關文獻指 出’可塑劑的存在可提高其離子導電度,但也造成其尺寸 安定性、機械強度及成膜性不佳的負面影響。設計在聚偏 二氟乙稀中添加3%之無機黏土並將不同F值計量之LiC104 加入製備一系列膠態聚合物電解質,其薄膜厚度控制在5〇 〜1 〇 0 // m,發現添加無機黏土之聚合物電解質薄膜成膜性Page 13 200411965 V. Description of the invention (9) (exfoliat10n), but if the clay content increases to ⑽, it is found that a small wave peak is gradually formed around 2 / -3 degrees. When the content of clay increases to 7 / 〇, this peak is more obvious, showing that the polyvinylidene fluoride molecular chain is still intercalation between the layers of clay, so that the 20 angle is changed from 4 degrees f to 3 degrees to indicate polyisopropyl The content of lipophilic clay in fluoroethylene is more than ⑽ $ * The organic-inorganic mixed state may show 丨 n ^ erca 1 a ^ 丨 0 n. To observe the october shape of inorganic clay dispersed in the polymer chain through a transmission electron microscope, take polyvinylidene fluoride containing 5% c 1 ay for testing, and the results are shown in Figure 2. 'Specifically for some areas Partially enlarged, the delamination phenomenon of the interlaminar destruction of the inorganic clay is clearly seen in the picture, as shown in Figure 3, and a part of the intercalation phenomenon, as shown in Figure 4, so polyvinylidene fluoride and 5 The mixing effect of% inorganic clay has both exfoliation and intercalation. This result also confirms the test results of X-ray. Plasticizer impregnation properties The greatest difference between a knee-type polymer electrolyte and a solid polymer electrolyte is the presence or absence of a plasticizer in the polymer system. Relevant literature indicates that the presence of a 'plasticizer can increase its ionic conductivity, but also cause its negative effects on dimensional stability, mechanical strength, and poor film formation. Designed to add 3% inorganic clay to polyvinylidene fluoride and add LiC104 with different F-values to prepare a series of colloidal polymer electrolytes. The thickness of the film is controlled to 50 ~ 100% // m. Film formation of polymer electrolyte thin film of inorganic clay

第14頁 200411965 五、發明說明(ίο) 明顯優於未添加之聚合物電解質薄膜,為了瞭解無機黏土 是否有助於可塑劑存留於聚合物電解質薄膜之中,將有添 加及沒有添加無機黏土的聚合物電解質薄膜同時放置在 〇· ltorr的真空烘箱並維持在50 X:,觀察可塑劑減少的 量,結果整理在圖五,其結果說明,隨著時間的增加,當 膠態聚合物電解質薄膜中含有無機黏土時,對於可塑劑的 含浸率是有幫助的,以添加PK805具有較好的結果,因為 所減少的可塑劑的量最少。 &lt; 導電性 首 電解質 之後在 聚合物 大導電 分子鏈 定型, 吸引鋰 間的引 的遷移 從表六 七,觀 大致上 個數量 f、探°寸不米級無機黏土添加在膠態聚偏二氟乙烯 $丨ίίί度之影響如圖六所示’當添加奈米級黏土 /雷果中發現,其導電度皆明顯優於未添加之 :二/犋,其導電度大致可提昇約 度可達1.03 xl0-2 s/cm,歸納肩因_^口 山 分散於盔她拔τ Π项囚如下,(一)咼 有助於i離二沾之間,有助於聚合物形態更趨於無 無機黏土層間之正電荷 力,使得鐘離子具有較與過氯酸根離子 速度。相關之數據整理於π可提昇鋰離子 的數據得知,導電度與 察到導電度隨著鋰_含量=3罝有關係,從圖 是隨著鋰鹽含量# = ;同而有所改變,導電度 ,其導電声但是鋰鹽含量超過一 電度則開始降低。原因是聚合物電解質系統Page 14 200411965 V. Description of the invention (ίο) Significantly better than the unadded polymer electrolyte film. In order to understand whether the inorganic clay helps the plasticizer to stay in the polymer electrolyte film, there will be those with and without added inorganic clay. The polymer electrolyte film was simultaneously placed in a vacuum oven of 0.1 Torr and maintained at 50 X :, and the amount of plasticizer reduction was observed. The results are summarized in Figure 5. The results show that with time, when the colloidal polymer electrolyte film increases, When the inorganic clay is contained, the impregnation rate of the plasticizer is helpful. The addition of PK805 has better results because the amount of plasticizer reduced is the smallest. &lt; After the conductive first electrolyte is shaped in the polymer's large conductive molecular chain, the migration between the attracted lithium is shown in Table 67. The amount of f, the inorganic clay, measured in inches and meters, is added to the colloidal polyisocyanate. The effect of the degree of vinyl fluoride is shown in Figure 6. 'When nano-grade clay / Lego is added, its electrical conductivity is significantly better than that of the non-added: II / 犋, and its conductivity can be improved approximately. Up to 1.03 x l0-2 s / cm, the induction factor is _ ^ Kou Shan is scattered in the helmet. She pulls τ Π. The prisoners are as follows. (1) 咼 helps i to separate from the two, and helps the polymer form to tend to The positive charge force between the inorganic clay layers makes the bell ion have a faster velocity than the perchlorate ion. The related data is compiled from the data that π can increase lithium ions. It is known that the conductivity is related to the observed conductivity as lithium_content = 3 罝. From the figure, it is the same as the lithium salt content # =; Electrical conductivity, its conductive sound, but the lithium salt content begins to decrease when it exceeds one electrical degree. The reason is the polymer electrolyte system

第15頁 200411965 五、發明說明(11) 之導電度係由離子傳導所造成,過量的鋰鹽存在於系統之 下’可能造成下列二種狀況(一)陰陽離子之間仍具強的離 子吸引力’不易被系統中的可塑劑解離。(二)系^中陰陽 離子濃度過高,在系統中遷移過程可能再度結合。基於上 述兩種原因,系統中可攜帶電荷之離子數減^ :使;^導電 度降低。進一步改變可塑劑的含量,從外觀而言,可塑劑 的含量多㈣薄膜㈣響似乎不A,但就其㈣強度及薄 膜的成膜性而言,可塑劑含量較高之薄膜則顯得較差。如 圖八所示’隨著可塑劑含量的增加,對於導電度有明顯的 提昇’尤其在PC/EC可塑劑的系統中,以可塑劑含量45 % 及15%兩者比較,其導電度可提昇約5倍,但是,若 ^ =量大於以上時’其聚合物電解質 且有可塑劑渗出的問題,因…電度數值變異員 尺寸安定性之研究 聚合物電解質材料在鋰二次電池系統中,兼呈帝 ;隔:;兩種功用,當電池充放電時,可能產=放=貝 ‘、、、此的產生可能造成聚合物電解質薄膜的 :末田可能使得電池充放電循環效率降 1此 路,因此聚合物電解質材料必須具備優良的尺寸= 。挑選奈米級:土含量為3%,Licl〇4計量值為卜丨生。 進r # I塑劑含*為15%,~製備之聚偏二氟乙烯電解質 仃熱機械分析(TMA )測試,觀察在一溫度範圍内之熱Page 15 200411965 V. Description of the invention (11) The conductivity is caused by ion conduction. Excessive lithium salt exists under the system. 'It may cause the following two conditions. (1) There is still a strong ionic attraction between anions and cations. Force 'is not easily dissociated by the plasticizer in the system. (2) The concentration of yin and yang in the system is too high, and the migration process in the system may be combined again. Based on the above two reasons, the number of ions that can carry a charge in the system is reduced ^: makes; ^ conductivity is reduced. By further changing the content of plasticizer, from the appearance, the content of plasticizer is more than that of film, but the sound of film does not seem to be A, but in terms of its strength and film-forming property, film with higher plasticizer content is worse. As shown in Figure 8, 'As the plasticizer content increases, there is a significant increase in electrical conductivity.' Especially in PC / EC plasticizer systems, when the plasticizer content is 45% and 15%, the electrical conductivity can be compared. The increase is about 5 times, but if the amount is greater than the above, its polymer electrolyte and the problem of plasticizer oozing, due to the study of the variability of the electrical value, the stability of the polymer electrolyte material in the lithium secondary battery system The two functions, when the battery is charged and discharged, may produce = discharge = shell ',, and this may cause the polymer electrolyte film: Sueda may reduce the battery charge and discharge cycle efficiency 1 This way, the polymer electrolyte material must have excellent size =. Select nanometer grade: soil content is 3%, Licl04 measurement value is Bu Sheng. The r # I plasticizer contains * 15%, ~ prepared polyvinylidene fluoride electrolyte 仃 Thermomechanical analysis (TMA) test, observe the heat in a temperature range

第16頁 五、發明說明(12) 膨脹係數,並與未添加奈米級黏土之膠態聚偏二氟乙烯電 解貝it行1較,其結果如圖九所示,添加奈米級黏土之聚 偏二氣乙烯電解質其熱膨脹係數在— 5〇〜8(rc溫度範圍中, 八值為1 54· 4 X 1 〇 mm/ C,其結果明顯優於未添加奈米級 黏土之膠態聚偏二氟乙稀電解質薄膜其值為18〇· 9χ 1〇 6 r 個曰相當好的結* ’其結果說明添加奈米級黏 二合物電解質薄膜之尺寸安定⑯,即使在 8 0 C的南溫下’供缺仅女丁 w [ m 1 乃…、保有不錯的尺寸安定性,推測1舜 B!,米級黏土均勻分散在聚偏二氟乙稀電解質薄膜中 時,其因脫層現象破裂之奈来層狀物 氟乙稀之聚合物分子鏈之間,且分子=偏: 可能存在穩定的分子門栳田 ’、米㈢狀物之間 解質之尺寸安定性提使得膠態聚偏二氟乙烯電 電化學穩定性 將所製得的膠態聚合物電解 試,組裝一半電池測試元件Li/Gp^:,進行電化學測 對應電極,以一鉑片做夂 1作為工作電極及 槽,連接電流—電屡h ’極,放入充滿氮氣的蚀 咬條电々丨L冤壓恆電位儀 从虱的儲 鋰離:氧化還原猶環效果,我們衣女測試’ 了解其 化破壞電位可達4. 2V,在氧化^ :奈米級黏土之章 添加奈米級黏土的確有助於膠能聚人::挪試結果發現, 化還原循環’其原因可能是夺;m解質令趣離子氧 劑’存在於電解質薄膜令,具有高;電較多的可塑 &quot;數之可塑劑有於 200411965 五、發明說明(13) 地解離鋰鹽,並使離子均勻分耑力 ^ , f聚合物電解皙έ站+ 中,當鋰離子得到或失去電子時之可、、,==貝糸統之 助於鋰高分子二次電池的充放電德 $性提南’此現象有 电偈%效應。 鋰二次電池充放 將前面所製備之 箱中(dry box ) 材料,以LiMn204 測試。鋰二次電 充電,待電壓達 電電流降低到40 作為放電電流, 件方式進行充放 測試結果如圖十 3· 9V — 2·7V - 充放電壓與電容 台及放電平台, 降低而趨於穩定 電測試 聚合物電解質材料( 中組裝硬幣型電:&quot;二),在自動乾燥 彳f ^ I i 池,鋰金屬做為陽極 ^ ^ 何抖 進彳丁充放電循環 池充放電條件設定如 …。η 卜·疋電流9 0 X 1 〇-2 m a 到3 · 9伏特後,维拉q Q &amp; 寸便、、隹持3· 9伙特繼續充電待充 X 1 0'2mA時,進杆你蕾、日,丨μ ,Page 16 V. Explanation of the invention (12) The expansion coefficient is compared with the colloidal polyvinylidene fluoride electrolytic shell without nano-grade clay. The results are shown in Figure 9. Polyvinylidene gas electrolytes have a thermal expansion coefficient in the range of -50 ~ 8 (rc temperature range, the octave value is 1 54 · 4 X 10 mm / C, and the results are significantly better than the colloidal polymer without the addition of nano-grade clay. The value of vinylidene difluoride electrolyte film is 180.9 × 10 6 r, which is a very good junction * 'The results show that the size of the nano-scale viscous complex electrolyte film is stable, even at 80 ° C. "Nanwenxia's supply is only for females w [m 1 Nai ..., maintaining good dimensional stability, it is speculated that 1 Shun B !, when rice-grade clay is uniformly dispersed in polyvinylidene fluoride electrolyte film, its delamination Phenomenon of rupture is the layer of fluoroethylene polymer molecular chain, and the molecule = partial: there may be a stable molecular gate 栳 田 ', the stability of the size of the disintegration between rice glutinous materials is improved to make the colloidal Electro-electrochemical stability of polyvinylidene fluoride. The colloidal polymer prepared was electrolytically tested to assemble half of the electricity. Cell test element Li / Gp ^: Electrochemical measurement corresponding electrode, a platinum sheet as 电极 1 as a working electrode and a slot, connected to the current-electricity h 'pole, put a nitrogen-filled corrosion bite 々L Isopotentiostat from the storage of lithium from lice: the redox effect, our ladies test 'understand that its chemical damage potential can reach 4. 2V, adding nano-grade clay in the oxidation ^: nano-grade clay chapter indeed Help glue to gather people :: The results of the test found that the reduction and reduction cycle 'may be caused by deprivation; m solution quality makes the fun ion oxygen agent' exist in the electrolyte film, which has high; more plasticity &quot; number of more electricity The plasticizer was in 200411965 V. Description of the invention (13) Lithium salts were dissociated and the ions were uniformly divided, ^, f polymer electrolysis station +, when lithium ions gain or lose electrons ,,,, == Beijing's system helps charge and discharge lithium polymer secondary batteries. This phenomenon has a “% effect”. Lithium secondary batteries charge and discharge the dry box materials prepared previously. Tested with LiMn204. Lithium secondary charge, until the voltage reaches the current reduced to 40 As the discharge current, the charging and discharging test results of the component method are shown in Fig. 10 3 · 9V — 2 · 7V-The charging and discharging voltage and capacitor stage and discharge platform are lowered and tend to stabilize the electrical test of polymer electrolyte materials (in the assembled coin-type electricity: &quot; Second), in the automatic drying 彳 f ^ I i cell, lithium metal is used as the anode ^ ^ He Diao into the 充 charge and discharge cycle of the battery charge and discharge conditions set as follows. η Bu · 疋 current 9 0 X 1 〇-2 When ma reaches 3. 9 volts, Vera q Q &amp; inch will hold, 3.9 hooters continue to charge when X 1 0'2mA, charge your bud, day, 丨 μ,

适仃敌電測試,以4. 5 X l〇-2mA 待電壓降至2 · 7 V爯番報、隹&gt; 士 + 丨v丹垔新進仃充電。以此條 電循環測試。 〃 所示,充放電循環呈現穩定趨勢從 \3·9ν ............依次循環100次以上。 ΐ關係如圖十一所示,明顯的呈現充電平 其硬幣型電池之電容量從5· 74 mAh/g逐漸 5.結論 本研究添加親油化改質之奈米級黏土來改善膠態聚合物電 解貝的相關性質,其結果顯示,利用界面活性劑,成功地 將奈米級黏土層間距離擴大為22埃以上,使得膠態聚合物 可進入黏土層間,甚至達到脫層的現象,成為一系列有機Applicable to the enemy's electricity test, with the voltage of 4.5 × 10-2mA until the voltage drops to 2 · 7 V, the report will be reported and the taxi will be charged. Test with this cycle. As shown in 〃, the charge-discharge cycle shows a steady trend from \ 3 · 9ν ............ cycled more than 100 times in sequence. The relationship between 如图 is shown in Figure 11. It is obvious that the capacity of the coin-type battery is gradually increased from 5.74 mAh / g to the charge level. 5. Conclusion This study added lipophilic modified nano-grade clay to improve colloidal polymerization. The related properties of bioelectrolytic shellfish, the results show that the use of surfactants successfully extended the inter-layer distance of nano-scale clay to more than 22 angstroms, allowing colloidal polymers to enter the clay layers and even reach the phenomenon of delamination. Organic series

第18頁 200411965 五、發明說明(u) 無機混成材料。禾+ 炚能取人仏 、、口不米級黏土有助於延長可朔為丨六各 膠心♦ a物電解質系人旦 、,』月丨存在於 裂之無機層材的碎片分在;二=二二,當因脫層現象破 助於其電化學穩定性及離子導電度,其離匕二;貝有 10-2 S/cm ’最主要原因是奈米級黏土 J = …、機層材結構’具有破壞鐘離子與過氣酸根離子 j、 力,鐘離子具有較大的遷移速度。 其離子導電度可達1·03χ 10-2 s /cm,且成膜性佳、溶劑含 浸率以及尺寸安定性(dimensional stability)皆比未添 加奈米級黏土之電解質薄膜佳。藉由循環伏安(cycl ic vo 1 tmmetry)測試得知,添加奈米級黏土使其電解質系統 之電化學穩定性明顯地提升。 利用此電解質之所組成之鋰二次電池具有穩定之充放電循 環效應,具有極優之商業價值。 _Page 18 200411965 V. Description of the Invention (u) Inorganic hybrid materials. He + 炚 can take human, and mouth-sized clay can help to extend the six different rubber cores ♦ a material electrolyte system, 『month』 The fragments that exist in the cracked inorganic layer are divided into two; = 22, when it is broken due to the delamination phenomenon, its electrochemical stability and ionic conductivity are separated from it; there is 10-2 S / cm 'because the main reason is nano-grade clay J =…, machine layer The material structure has the force to destroy the bell ion and the peroxyacid ion j, and the bell ion has a large migration speed. Its ionic conductivity can reach 1.03 × 10-2 s / cm, and its film formation, solvent impregnation and dimensional stability are better than those of electrolyte films without nanometer clay added. According to cycl ic vo 1 tmmetry test, it is known that the electrochemical stability of the electrolyte system is significantly improved by adding nano-grade clay. The lithium secondary battery using this electrolyte has a stable charge-discharge cycle effect and has excellent commercial value. _

第19頁 200411965 圖式簡單說明 表格說明: 表一、組成配方表一 表二、組成配方二 表三、可塑劑含量不同之組成配方表 表四、不同種類之四級銨鹽對PK — 8 05改質後之2 0及 d-space (A ° ) 表五、芳香族四級銨鹽對PK-805及PK-802改質後之2 0及d-space (A °) 表六、奈米複合膠態聚偏二氟乙烯電解質導電度之數值 圖示簡單說明: 圖一、添加不同量之PK-80 5在PVdF中之X-ray繞射吸收峰 圖二、添加5 %wt之PVdF之穿透式電子顯微鏡影像 圖二、局部放大(A)區域,呈現intercalation (插層現 象) 圖四、局部放大“)區域,呈現口;[〇141^011(脫層現象) 圖五、PVdF添加奈米級黏土後對可塑劑含浸能力之比較 圖六、奈米膠態聚偏二氟乙烯電解質導電度之比較 圖七、可塑劑不同對奈米膠態聚偏二氟乙烯電解質導雷产 之影響 、〒又 圖八、可塑劑含浸量不同之奈米膠態聚偏二氟乙烯電解質 導電度之差異 'Page 19 200411965 Schematic description of the table Description: Table 1, composition formula Table 1, Table 2, composition formula 2, Table 3, composition formula with different plasticizer content Table 4, different types of quaternary ammonium salt PK — 8 05 Modified 20 and d-space (A °) Table 5: Aromatic quaternary ammonium salt Modified PK-805 and PK-802 20 and d-space (A °) Table 6 Nanometer The numerical value of the conductivity of the composite colloidal polyvinylidene fluoride electrolyte is briefly explained: Figure 1. X-ray diffraction absorption peaks of PVdF added with different amounts of PK-80 5 in PVdF. 2. Adding 5% wt of PVdF Transmission electron microscope image Figure 2. Partially enlarged (A) area showing intercalation (intercalation phenomenon) Figure 4. Partially enlarged ") area showing mouth; [〇141 ^ 011 (delamination phenomenon) Figure 5. PVdF addition Comparison of impregnation ability of plasticizers after nano-grade clay Figure 6. Comparison of conductivity of nano colloidal polyvinylidene fluoride electrolytes Figure 7. Difference of plasticizers for nano-colloidal polyvinylidene fluoride electrolytes Figure 8. Impact of nanoplastic colloidal polyvinylidene fluoride with different plasticizer impregnation Differences' quality of conductivity

第20頁 200411965 圖式簡單說明 圖九、奈米膠態聚偏二氟乙烯電解質薄膜之熱膨脹率之比 較 圖十、充放電循環測試 圖十一、充放電壓與電容量關係Page 20 200411965 Brief description of the diagrams Figure IX: Thermal expansion ratio of nano colloidal polyvinylidene fluoride electrolyte film Comparison Figure 10: Charge-discharge cycle test Figure 11: Relationship between charge-discharge voltage and capacitance

Claims (1)

200411965 六、申請專利範圍 1、 一種含奈米級無機黏土之膠態電解質,其係利用界面 活性劑對無機黏土進行親油化改質,並使膠態聚合物與親 油化黏土,在可塑劑中進行插層作用(i n t e r c a 1 a t i ο η)製 備而得。 2、 如申請專利範圍第1項所述之膠態電解質,其中,膠態 聚合物包括聚偏二氟乙烯、聚偏二氟乙烯-六氟丙烯、聚 丙烯聚氧乙烯、聚甲基丙烯酸甲酯。 3、 如申請專利範圍第1項所述之膠態電解質,其中,膠態 聚合物為聚丙烯轉、聚偏二氟乙烯。 4、 如申請專利範圍第1項所述之膠態電解質,其中,界面 活性劑係具長鏈烧基/芳香基之界面活性劑。 5、 如申請專利範圍第1項所述之膠態電解質,其中,所用 聚合體分子量依不同聚合體而不同,分子量的選擇需兼具 良好之機械性質及易於進行插層作用。 6、 如申請專利範圍第1項所述之膠態電解質,其中,聚偏 二氟乙烯分子量為1萬至100萬左右。 7、 如申請專利範圍第1項所述之膠態電解質,其中,可塑 劑為可以溶解膠態聚合物並具可塑效果之物質。 8、 如申請專利範圍第1項所述之膠態電解質,係於適當比 例之可塑劑下添加鋰鹽而製備含奈米級黏土之膠態聚合物 電解質。 9、 如申請專利範圍第1項所述之膠態電解質,其中,界 面活性劑為長鏈烷基四級銨鹽、長鏈苯基四級銨鹽。 1 0、如申請專利範圍第1項所述之膠態電解質,其中,界200411965 6. Scope of patent application 1. A colloidal electrolyte containing nano-scale inorganic clay, which uses a surfactant to lipophilicize and modify colloidal polymers and lipophilic clays. It is prepared by intercalation (interca 1 ati ο η) in the agent. 2. The colloidal electrolyte according to item 1 of the scope of the patent application, wherein the colloidal polymer includes polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene, polypropylene polyoxyethylene, polymethacrylate ester. 3. The colloidal electrolyte according to item 1 of the scope of the patent application, wherein the colloidal polymer is polypropylene to polyvinylidene fluoride. 4. The colloidal electrolyte according to item 1 of the scope of the patent application, wherein the surfactant is a surfactant having a long-chain sintered group / aromatic group. 5. The colloidal electrolyte described in item 1 of the scope of patent application, wherein the molecular weight of the polymer used varies with different polymers, and the choice of molecular weight must have both good mechanical properties and easy intercalation. 6. The colloidal electrolyte according to item 1 of the scope of patent application, wherein the molecular weight of polyvinylidene fluoride is about 10,000 to 1 million. 7. The colloidal electrolyte described in item 1 of the scope of the patent application, wherein the plasticizer is a substance that can dissolve the colloidal polymer and has a plasticizing effect. 8. The colloidal electrolyte described in item 1 of the scope of the patent application is prepared by adding a lithium salt under a suitable proportion of plasticizer to prepare a colloidal polymer electrolyte containing nano-grade clay. 9. The colloidal electrolyte according to item 1 of the scope of the patent application, wherein the surfactant is a long-chain alkyl quaternary ammonium salt and a long-chain phenyl quaternary ammonium salt. 10. The colloidal electrolyte described in item 1 of the scope of patent application, wherein 第22頁 200411965 六、申請專利範圍 面活性劑為C12H25N(CH3)3Br、C14H29N(CH3)3Br、C16H33N(CH3) 3Br、[CH3(CH2)u ]2(CH3)2NBr。 11、如申請專利範圍第1項所述之膠態電解質,其中,可 塑劑為二甲基乙烯碳酸酯、二乙基乙烯碳酸酯、二甲基甲 醯胺、丙烯碳酸酯(PC ) /乙烯碳酸酯(EC )共可塑劑 等。 /、 1 2、如申請專利範圍第1項所述之膠態電解質,其中,可 塑劑為二甲基甲醯胺及/或丙烯碳酸酯/乙烯碳酸酯 (PC/EC )的共可塑劑。 其中,鋰 1 3、如申請專利範圍第1項所述之膠態電解質, 鹽為一 :1又$用於製備鐘電池之鐘鹽類。 其中,鋰 14、 如申請專利範圍第!項所述之π膠態電解質, 鹽為LiPF6 、LiCF3S03 、LiN (CF3S02 ) 2、LiBF4 LiSCN、Li ASF6 、LiC104 等。 其中,鋰 15、 如申請專利範圍第1項所述之膠態電解質, 鹽為LiPF6、LiCl〇4。 ^請專利範圍第1項所述之膠態電解質,1中, 衝擊性產品用及或用於電子級產品之 、種鐘一人電池,係利用如申請專利範圍第1項所、十、 之膠態電解質所製備而得。〒月』祀㈤弟1項所遠Page 22 200411965 6. Scope of patent application The surfactants are C12H25N (CH3) 3Br, C14H29N (CH3) 3Br, C16H33N (CH3) 3Br, [CH3 (CH2) u] 2 (CH3) 2NBr. 11. The colloidal electrolyte according to item 1 of the scope of the patent application, wherein the plasticizer is dimethylethylene carbonate, diethylethylene carbonate, dimethylformamide, propylene carbonate (PC) / ethylene Carbonate (EC) co-plasticizer and so on. /, 1 2. The colloidal electrolyte according to item 1 of the scope of the patent application, wherein the plasticizer is dimethylformamide and / or a propylene carbonate / ethylene carbonate (PC / EC) co-plasticizer. Among them, lithium 1 3. The colloidal electrolyte described in item 1 of the scope of patent application, the salt is one: one and one is used to prepare bell salts for bell batteries. Among them, lithium 14, such as the scope of patent application! In the π colloidal electrolyte described in the item, the salts are LiPF6, LiCF3S03, LiN (CF3S02) 2, LiBF4 LiSCN, Li ASF6, LiC104, and the like. Among them, lithium 15. The colloidal electrolyte described in item 1 of the scope of patent application, and the salts are LiPF6 and LiCl04. ^ Please refer to the gelled electrolyte described in item 1 of the patent scope. In 1, the battery for impact products and / or electronic grade products is used as the battery for one person. State of the electrolyte. One month away 第23頁 200411965 六、申請專利範圍 第24頁Page 23 200411965 6. Scope of Patent Application Page 24
TW091137412A 2002-12-26 2002-12-26 Polymer-based nanoscale organophilic clay for gel polymer electrolytes and lithium rechargeable battery TW586248B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW091137412A TW586248B (en) 2002-12-26 2002-12-26 Polymer-based nanoscale organophilic clay for gel polymer electrolytes and lithium rechargeable battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW091137412A TW586248B (en) 2002-12-26 2002-12-26 Polymer-based nanoscale organophilic clay for gel polymer electrolytes and lithium rechargeable battery

Publications (2)

Publication Number Publication Date
TW586248B TW586248B (en) 2004-05-01
TW200411965A true TW200411965A (en) 2004-07-01

Family

ID=34058085

Family Applications (1)

Application Number Title Priority Date Filing Date
TW091137412A TW586248B (en) 2002-12-26 2002-12-26 Polymer-based nanoscale organophilic clay for gel polymer electrolytes and lithium rechargeable battery

Country Status (1)

Country Link
TW (1) TW586248B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI455388B (en) * 2011-12-20 2014-10-01 Ind Tech Res Inst Electrolyte, method for fabricating an electrolyte solution, and lithium ion battery

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201106518A (en) 2009-08-04 2011-02-16 Univ Nat Taiwan Uses of nanosheets of exfoliated clay and method of rapidly adsorbing cation
TWI405664B (en) 2010-12-22 2013-08-21 Ind Tech Res Inst Organic/inorganic composite film and method for forming the same
TWI482340B (en) 2011-12-14 2015-04-21 Ind Tech Res Inst Electrode assembly of lithium secondary battery
TWI450759B (en) 2012-12-07 2014-09-01 Ind Tech Res Inst Organic dispersion and method for preparing the same and coating composition preparing from the dispersion
TWI628827B (en) * 2016-12-30 2018-07-01 財團法人工業技術研究院 Gel electrolyte and applications thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI455388B (en) * 2011-12-20 2014-10-01 Ind Tech Res Inst Electrolyte, method for fabricating an electrolyte solution, and lithium ion battery
US9437900B2 (en) 2011-12-20 2016-09-06 Industrial Technology Research Institute Electrolyte, method for fabricating electrolyte solution, and lithium ion battery

Also Published As

Publication number Publication date
TW586248B (en) 2004-05-01

Similar Documents

Publication Publication Date Title
Wu et al. Performance of “polymer-in-salt” electrolyte PAN-LiTFSI enhanced by graphene oxide filler
KR100803197B1 (en) Silane compound, organic electrolytic solution and lithium battery employing the same
CN103094611B (en) Preparation method for ionic liquid gel electrolyte
KR100754378B1 (en) Organic electrolytic solution cotaining silane compound and lithium battery employing the same
CN103665678B (en) Polymer film and preparation method thereof, electrolyte and battery with polymer film
CN104393336A (en) Nano composite fiber-reinforced gel polymer electrolyte and preparation method thereof
Aziam et al. Solid-state electrolytes for beyond lithium-ion batteries: A review
CN111313083B (en) Composite solid electrolyte film and preparation and application thereof
CN102044702A (en) Composite polymer electrolyte for lithium ion battery and preparation method thereof
Zheng et al. Progress in gel polymer electrolytes for sodium‐ion batteries
TW201108488A (en) Electrolyte compositions and methods of making and using the same
CN108183039A (en) Preparation method, carbon modification titanium niobate material, lithium-ion capacitor and its negative electrode slurry of carbon modification titanium niobate material
Song et al. Enhanced transport and favorable distribution of Li-ion in a poly (ionic liquid) based electrolyte facilitated by Li1. 3Al0. 3Ti1. 7 (PO4) 3 nanoparticles for highly-safe lithium metal batteries
Wang et al. Enhanced electrochemical properties of nanocomposite polymer electrolyte based on copolymer with exfoliated clays
CN103855423A (en) Liquid crystalline ionomer PEO/PMMA solid electrolyte and preparation method thereof
JP2002280072A (en) Battery incorporating organic/inorganic composite polymer solid electrolyte
CN107863553A (en) Solid lithium ion battery based on inierpeneirating network structure polymer dielectric
Chen et al. A Flexible Semi-Interpenetrating Network-Enhanced Ionogel Polymer Electrolyte for Highly Stable and Safe Lithium Metal Batteries
JP7152429B2 (en) Solid polymer electrolyte for batteries
JP2019102301A (en) Composition for solid electrolyte formation, polymer solid electrolyte, method for manufacturing composition for solid electrolyte formation, method for manufacturing polymer solid electrolyte, and all-solid battery
CN104409770B (en) Preparation method of polymer electrolyte containing allyl functionalized ionic liquid
TWI756162B (en) Preparation method of all-solid-state composite polymer electrolyte membrane and all-solid-state lithium battery
CN114006036B (en) Asymmetric gel polymer electrolyte and preparation method and application thereof
Song et al. A durable gel polymer electrolyte with excellent cycling and rate performance for enhanced lithium storage
TW200411965A (en) Polymer-based nanoscale organophilic clay for gel polymer electrolytes and lithium rechargeable battery

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees