WO2008041729A1 - Procédé de fabrication d'une dispersion de fines particules de composé métallique et la dispersion correspondante - Google Patents

Procédé de fabrication d'une dispersion de fines particules de composé métallique et la dispersion correspondante Download PDF

Info

Publication number
WO2008041729A1
WO2008041729A1 PCT/JP2007/069397 JP2007069397W WO2008041729A1 WO 2008041729 A1 WO2008041729 A1 WO 2008041729A1 JP 2007069397 W JP2007069397 W JP 2007069397W WO 2008041729 A1 WO2008041729 A1 WO 2008041729A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal oxide
core
oxide fine
shell type
type metal
Prior art date
Application number
PCT/JP2007/069397
Other languages
English (en)
French (fr)
Inventor
Noriya Izu
Ichiro Matsubara
Toshio Itoh
Woosuck Shin
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to CN2007800371870A priority Critical patent/CN101522560B/zh
Priority to US12/444,508 priority patent/US20100056361A1/en
Priority to EP07829136A priority patent/EP2072462A4/en
Publication of WO2008041729A1 publication Critical patent/WO2008041729A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/32Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of elements or compounds in the liquid or solid state or in non-aqueous solution, e.g. sol-gel process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/235Cerium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G99/00Subject matter not provided for in other groups of this subclass
    • C01G99/006Compounds containing, besides a metal not provided for elsewhere in this subclass, two or more other elements other than oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/10Treatment with macromolecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/52Particles with a specific particle size distribution highly monodisperse size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability

Definitions

  • the present invention relates to a method for producing a core-shell type metal oxide fine particle dispersion and the dispersion, and more specifically, a catalyst, a photonic crystal, a gas sensor, a chemical mechanical abrasive, and an ultraviolet shielding agent.
  • the present invention relates to a method for producing a core-shell type metal oxide fine particle dispersion for producing a dispersion containing core-shell type metal oxide fine particles that can be applied to bonding paste and the like, and a product thereof.
  • Dispersions containing metal oxide fine particles can be used in various fields such as catalysts, gas sensors, chemical mechanical polishing agents, ultraviolet shielding materials, and bonding pastes.
  • a stable dispersion can be obtained simply by dispersing dried oxide fine particles or metal oxide fine particles in a dispersion medium by a conventional method. I can't. This is because, in order to produce a stable dispersion containing metal oxide fine particles, it is necessary to break up the aggregation of once-aggregated oxide fine particles and metal oxide fine particles, but this is difficult.
  • the metal oxide fine particles must be spherical and have a uniform particle size (monodisperse).
  • Prior art documents disclose metal oxide ultrafine particles, a method for producing the same, and metal oxide fine particles (Patent Documents 3 and 4). However, these documents may be used for photo-back crystals.
  • the particle size is 30 ⁇ ;! OOOnm degree, metal oxide with small particle size distribution (standard deviation of particle size) is spherical, and dispersibility in liquid is good There is no description about the core-shell type metal oxide fine particles or the core-shell type metal oxide fine particle dispersion.
  • Patent Document 1 JP 2004-35632 A
  • Patent Document 2 JP-A-2-92810
  • Patent Document 3 JP-A-6-218276
  • Patent Document 4 Japanese Patent Laid-Open No. 2006-8629
  • Non-Patent Document 1 H. Yang, C. Huang, X. Su, Materials Letters, 60 (2006) 37 14
  • Non-Patent Document 2 Z. T. Zhang, B. Zhao, L. M. Hu, J. Solid State Chem., 12 1 (1996) 105
  • Non-Patent Document 3 D. L. Tao, F. Wei, Mater. Lett. 58 (2004) 3226
  • Non-Patent Document 4 G. C. Xi, Y. Y. Peng, L. Q. Xu, M. Zhang, W. C. Yu, Y. T.
  • the present inventors have prepared a dispersion containing nano-sized metal oxide fine particles that suppress aggregation of nanoparticles and retain long-term stability.
  • advantages such as using an organic solvent and not requiring a reaction initiator by using the reflux method.
  • the inventors have discovered new findings such as the ability to prepare a dispersion containing core-shell type metal oxide fine particles in which aggregation of nanoparticles is suppressed, and have further researched to complete the present invention.
  • the present invention provides a method for producing the dispersion, which makes it possible to produce a dispersion containing core-shell type metal oxide fine particles that is stable over the long term by applying the reflux method to the above concept, and
  • An object of the present invention is to provide a dispersion containing the core-shell type metal oxide fine particles.
  • the present invention for solving the above-described problems comprises the following technical means.
  • the core-shell type metal oxide fine particle dispersion is not precipitated even after being left standing for more than 1 day! /, Which has stability, from (1) to (3)! / A manufacturing method of the core-shell type metal oxide fine particle dispersion described in 1.
  • the concentration of the polymer (weight of polymer added per unit organic solvent volume) is 80 kg.
  • the method for producing a core-shell type metal oxide fine particle dispersion liquid according to any one of (1) to (6), wherein / m 3 to 120 kg / m 3 .
  • Core-shell type metal oxide fine particles in which a polymer layer is present on the surface of secondary particles in which primary particles of metal oxide obtained by the production method according to any one of (1) to (12) are spherically assembled 1) The primary particles of the oxide are agglomerated in a spherical shape, 2) A strong polymer layer is formed on the surface of the aggregated particles (secondary particles) by a crosslinking reaction, 3) The core-shell type metal oxide fine particle dispersion, wherein the core-shell type metal oxide fine particle dispersion is dispersed in a dispersion medium.
  • a core-shell type metal oxide fine particle powder comprising a dry powder with good dispersibility obtained by drying the core-shell type metal oxide fine particle dispersion described in (13). The invention will be described in more detail.
  • the core-shell type metal oxide fine particle is defined as a fine particle having a polymer layer on the surface of a secondary particle in which the primary particles of the metal oxide are assembled in a spherical shape. This is different from the case where the polymer is present on the surface of the primary particles or the secondary particles where the primary particles are irregularly aggregated.
  • Patent Document 4 primary particles or aggregates are disclosed. Composite particles having a surface coated with a polymer compound are disclosed, but the primary particles or aggregates have a non-uniform shape rather than a spherical shape. This is because the metal oxide fine particles synthesized in advance are dispersed and pulverized using a disperser such as a bead mill in the manufacturing method disclosed in the above-mentioned document.
  • the force that is crushed into primary particles or aggregated particles of primary particles cannot be spherical and uniform in size.
  • the ratio of the polymer to be coated is 25 wt% or more. In the present invention, as described later, it is 25 wt% or less. This is because the polymer that is easily released is removed by washing. This is also a very different point from this document.
  • the present invention is a method for producing a core-shell type metal oxide fine particle dispersion, comprising a step of mixing a metal salt and a polymer in a high boiling point organic solvent to obtain a mixture, and the mixture at a predetermined temperature ( 110.degree. C. or higher) and refluxing to precipitate a metal oxide, wherein the metal salt is nitrate or acetate, and The particle size of the metal oxide fine particles is controlled by the molecular weight of the polymer.
  • the present invention is a core-shell type metal oxide fine particle dispersion obtained by the above-described production method, and is characterized in that no sedimentation is observed even after standing for 1 day or longer. Further, the present invention provides a core-shell type metal oxide fine particle powder having good dispersibility, wherein the core-shell type metal oxide fine particle dispersion is dried to obtain a dry powder force having good dispersibility. It is a feature.
  • the core-shell type metal oxide fine particle dispersion is a dispersion of core-shell type metal oxide fine particles, which is a dispersoid, in a dispersion medium. Also called metal oxide fine particle sol, core-shell type metal oxide suspension. When the viscosity is high, it is also called a core-shell type metal oxide fine particle paste.
  • the starting materials are metal salts, organic solvents, polymers, and the like. Among these, as the metal salt, nitrate or acetate is exemplified, and a commercially available product is generally a hydrate.
  • the nitrate is preferably, for example, cerium nitrate, zirconyl nitrate, aluminum nitrate. Um, magnesium nitrate, etc., and metal nitrates.
  • Preferred examples of the acetate include zinc acetate and cobalt acetate.
  • an organic solvent a high boiling point thing is essential and a polyol is illustrated.
  • the polyol is a polyhydric alcohol, and examples thereof include ethylene glycol (EG), diethylene glycol, glycerin, and the like, and ethylene glycol or diethylene glycol is more preferable.
  • polymer those that are soluble in an organic solvent are preferred, for example, polybulphine lididone (PVP), hydroxypropyl cellulose (HPC), polyethylene glycol (PEG), and the like, more preferably It is bull pyrrolidone (PVP).
  • PVP polybulphine lididone
  • HPC hydroxypropyl cellulose
  • PEG polyethylene glycol
  • PVP bull pyrrolidone
  • the concentration of the metal salt is preferably not less than 0.05 kmol / m 3 . This is because the ratio of the metal oxide contained in the obtained dispersion increases, and this improves the productivity.
  • the polymer concentration is preferably 80kg / m 3 to 1 20kg / m 3 ! /.
  • the polymer concentration is defined as the weight of the polymer added per unit solvent volume.
  • concentration of the polymer is in the range of 80 kg / m 3 to 120 kg / m 3 is that the metal oxide fine particles tend to aggregate when the concentration is too small, and this is because the core-shell type metal oxide This is because no fine particles are produced, aggregated fine particles are produced, or particles with poor dispersibility are produced.
  • the reason why it is in the above range is that if it is more than this range, the nucleation reaction of the metal oxide will not proceed.
  • the mixture is heated and refluxed at 110 ° C. to 200 ° C.
  • This is the process of depositing the metal oxide by heating and refluxing at a predetermined temperature.
  • an alkali such as sodium hydroxide or ammonia is added, but the present invention is characterized by not requiring it.
  • sodium hydroxide or the like is added, there is a possibility that sodium or the like may be mixed into the finally obtained nanoparticles.
  • alkali or the like is required, such impurities are not likely to be mixed. .
  • the heating and refluxing time is about 10 minutes to 120 minutes. Heating ⁇ If the reflux time is short, no reaction In contrast, if it is too long, secondary particles may grow. For this reason, a heating / refluxing time of about 10 minutes to 120 minutes is preferable. Heating • During reflux, the mixture becomes cloudy. Heat and reflux for a specified time and cool. Thus, a core-shell type metal oxide fine particle dispersion in which core-shell type metal oxide fine particles are dispersed in an organic solvent in which a polymer is dissolved is obtained.
  • Oxide primary particles nucleate in high boiling organic solvent (polyol) in which polymer is uniformly dissolved.
  • Primary particles aggregate in a spherical shape. At this time, primary particles are constantly nucleating.
  • the oxide acts as a catalyst on the surface of the secondary particles, and the polymer and / or the organic solvent undergoes a crosslinking reaction to form a strong polymer layer.
  • the core-shell type metal oxide fine particles are: 1) the primary particles of the oxide are agglomerated spherically; 2) the surface of the agglomerated particles (secondary particles) has a strong high It is characterized by the formation of a molecular layer.
  • Patent Document 3 discloses the power of the metal oxide polymer composite composition, which is essentially different from the present invention. As shown in the examples described later, when the heating / refluxing temperature is lower than a critical temperature, the core In the present invention, heating and refluxing at a high temperature is indispensable because no L-shaped metal oxide fine particles are formed.
  • the particle diameter of the obtained core-shell type metal oxide fine particles by changing the molecular weight of the polymer.
  • the average molecular weight in terms of polyethylene glycol determined by the gel permeation chromatography of the polymer is between 4000 and 20000, the particle diameter of the core-shell type metal oxide fine particles decreases as the molecular weight increases.
  • the correlation between the molecular weight of the polymer and the particle size of the fine particles is obtained in advance, and a dispersion containing metal oxide fine particles having a desired particle size is prepared by using a polymer having a predetermined molecular weight. It is possible.
  • the dispersion medium becomes the organic solvent used for the heating / refluxing. That is, if heating / refluxing is performed with ethylene glycol (EG), the dispersion medium is EG.
  • the dispersion medium may be replaced.
  • the dispersion medium can be replaced by separating the dispersion medium and the dispersoid by centrifugation, removing the dispersion medium, and adding a desired dispersion medium.
  • the polymer used for the above heating and refluxing remains in the dispersion medium, and unreacted metal ions also remain. For this reason, excess polymer can be removed by subjecting the dispersion medium to centrifugal separation and repeated solvent replacement. At this time, the polymer in the shell portion is inseparable from the core that is not separated by washing.
  • the particle size of the metal oxide fine particles in the dispersion medium can be confirmed by the dynamic light scattering (DLS) method.
  • the particle diameter of the metal oxide fine particles is generally different from the particle diameter observed with a scanning electron microscope (SEM) or the like.
  • the reason is that the particles are often further aggregated in the dispersion medium, and in this case, the aggregated particle diameter appears as a result.
  • the refractive index of the dispersion medium and the viscosity of the dispersion medium are required.
  • the refractive index of the dispersion medium can be obtained by using literature values.
  • the dispersion containing the core-shell type metal oxide fine particles obtained by the above method is separated from the dispersion medium by a method such as centrifugation, and dried to obtain a powder.
  • a method such as centrifugation
  • dry powder of metal oxide fine particles is difficult to re-disperse in a solvent, but the above-mentioned core shell type metal oxide fine particle powder can be easily re-dispersed in any solvent. is there. This is considered to be due to the presence of a polymer layer in the shell portion of the core-shell type metal oxide fine particle powder, thereby improving dispersibility.
  • the metal oxide fine particles are core monodisperse spherical, it can be force s used as a raw material of the photonic crystal. Further, even if the shell part is removed by heat treatment, the spherical secondary particles can be maintained without causing the primary particles in the core part to be separated.
  • the present invention utilizes a reflux method in which a metal oxide is precipitated by heating and refluxing at a high temperature, so that the mixing step of the raw material and the precipitation step of the metal oxide fine particles can be carried out with a specific metal salt and a high amount.
  • core-shell metal oxide fine particles that are stable for a long period of time are formed by applying a treatment that suppresses nanoparticle aggregation simultaneously with the formation of nanoparticles, that is, by forming a core-shell structure. It is possible to prepare and provide a dispersion.
  • the core metal oxide fine particles are also spherical and uniform in size, and the core-shell type metal oxide fine particles in which the shell polymer is present are also spherical and large. Can be provided. If cerium nitrate is used, a cerium oxide fine particle dispersion is obtained. If zinc acetate is used, a zinc oxide fine particle dispersion is obtained.
  • a dispersion containing metal oxide fine particles having long-term stability can be obtained.
  • the particle diameter of the core-shell type metal oxide in the dispersion medium is as small as 30 nm force, lOOOnm.
  • a core-shell type metal oxide fine particle dispersion can be prepared by a simple method.
  • the dispersion containing the metal oxide fine particles of the present invention is, for example, a catalyst, a photonic crystal, It can be applied to gas sensors, chemical mechanical abrasives, UV screening agents, and bonding pastes.
  • the average particle size of the produced fine particles can be arbitrarily controlled.
  • Spherical metal oxide fine particles can be a raw material for photonic crystals.
  • the concentration of 3 3 2 was 0.4400 kmol / m 3 .
  • the particle size distribution of the dispersion was examined by the DLS method.
  • the viscosity and refractive index of the solvent are required to determine the particle size.
  • B-type viscometer was cone and plate type .
  • the value of ethylene glycol (EG) (1.429) was used as the refractive index.
  • the average particle size was determined by a cumulant analysis method.
  • the powder dried at 80 ° C was characterized by X-ray diffraction (XRD) method and SEM.
  • XRD X-ray diffraction
  • Sample 14 was not clouded and a dispersion was not obtained.
  • the product was cerium oxide.
  • the average particle size of the dispersoid was 1330 nm, which was supported by the results of SEM observation.
  • the average particle size of the dispersoid was about lOnm.
  • Figures 1 and 2 show SEM photographs of Sampu Nore 1 2 and 3, respectively. Spherical microparticles with a particle size of about 11 Onm were observed and agreed with the average particle size determined by DLS.
  • Example 2 PVP having various average molecular weights was added to 30 cm 3 of EG (manufactured by Wako Pure Chemical Industries, Ltd.) and stirred. Table 2 shows the catalog value of the average molecular weight of PVP and the analysis value by GPC (polyethylene glycol equivalent). In order of PVP from A to F, the average molecular weight by GPC analysis increased. The concentration of added PV P was 120 kg / m 3 . Ce (NO) ⁇ 6 ⁇ The concentration of ⁇ is 0 ⁇ 600kmol / m 3
  • the mixture was heated and heated at 190 ° C for 10-30 minutes.
  • the average particle size, viscosity, and long-term stability of the dispersion were evaluated in the same manner as described in Example 1.
  • the particle shape, average particle size, and coefficient of variation c were determined from the SEM observation results.
  • the product was identified by the same method as in Example 1.
  • the average particle diameter d was the average value of the particle diameters of 90 or more fine particles taken in the SEM photograph.
  • the product was confirmed by XRD.
  • Example 2 also showed that spherical core-shell cerium oxide fine particles were dispersed independently in the dispersion.
  • Sample 2-1 had a large average particle size. This coincided with the shape of the fine particles being aggregates. Moreover, it precipitated immediately and was not stable as a dispersion.
  • the average particle size obtained by DLS was larger than the average particle size from the SEM observation results. As shown in Fig. 7, this is thought to be due to the fact that the average particle size has increased since there are particles in which particles are combined in a fibrous form.
  • a dispersion was prepared by the same method as Sample 2-2 shown in Example 2, and then an experiment for replacing the dispersion medium was performed by the following procedure.
  • the dispersion medium and the dispersoid were separated by centrifugation, terbinol was added to the dispersoid after separation, and the mixture was dispersed using an ultrasonic homogenizer.
  • the dispersion time was 4 minutes, and the dispersion was performed while cooling.
  • the average particle diameter was calculated
  • the results are shown in Table 4.
  • the particle size was almost the same as Sample 2-2. Therefore, it was confirmed that even when the dispersion medium was replaced, the core-shell cerium oxide fine particles were dispersed without aggregation.
  • the dispersion was very stable and did not separate even after standing for 10 days or longer.
  • FTIR Fourier transform infrared spectrophotometer
  • the crystallite (primary particle) size was found using the Hall equation, and it was found to be about 3 nm. Transmission electron microscope As a result of microscopic (TEM) observation, the primary particle size was confirmed to be 1 to 2 nm or less. In addition, it was found that the primary particles were aggregated at a high density with no gaps between the primary particles.
  • the concentration of added PVP was 120 kg / m 3 .
  • the average molecular weight of PVP is 10 000 (manufactured by Sigma-Aldrich) as a catalog value.
  • Zn (CH COO) is 10 000 (manufactured by Sigma-Aldrich) as a catalog value.
  • the concentration of VP was 120 kg / m 3 .
  • the concentration of Ce (N0) 6600 is 0.600kmol / m 3
  • the XRD pattern of the powder dried at 80 ° C using an evaporator also showed a slight diffraction peak of cerium oxide (CeO).
  • the powder contained cerium oxide.
  • the obtained powder is considered to be a composite composition of an oxide and a polymer. From the above, it was found that when the heating and reflux temperature is lower than 110 ° C, core-shell type fine particles cannot be obtained. In other words, it was found that a temperature of 110 ° C. or higher was necessary to obtain core-shell type cerium oxide fine particles.
  • a re-dispersed liquid obtained by re-dispersing sample 2-2 shown in Example 2 in ethanol was added to 50 ° C. By heating, the ethanol was evaporated to obtain a needle-like crystal sample (sample 81). As a result of observing this with an optical microscope and SEM, it was found that core-shell cerium oxide fine particles were accumulated three-dimensionally.
  • Sample 8-1! / FIG. 11 shows the results of measurement of the reflectance in the ultraviolet-visible light region with a micro-ultraviolet-visible-near infrared spectrophotometer. There is a peak around 333 nm. This is considered to be a peak due to the periodic arrangement of cerium oxide fine particles. This indicates that the Sampnore 8-1 is likely to be a photonic crystal.
  • Fig. 12 shows the SEM observation results of Sample 91 obtained by heat-treating the powder produced by the same method as Sample 2-2 of Example 2 except for heating and refluxing time in air at 500 ° C for 5 hours. At this temperature, most of the polymer layer is burning and hardly remains in the powder. For this reason, SEM images of cerium oxide fine particles with only a core that is not the core shell were found to be spherical and almost uniform in size. In addition, it was found that even after the heat treatment, even if the polymer layer disappears, there can be secondary particles in which the primary particles do not fall apart and the primary particles are aggregated in a spherical shape.
  • the present invention relates to a method for producing a core-shell type metal oxide fine particle dispersion and the dispersion, and according to the present invention, a core-shell type metal oxide having long-term stability is provided.
  • a dispersion containing fine particles and a powder thereof can be prepared and provided.
  • the dispersion containing the core-shell type metal oxide fine particles of the present invention can be applied to, for example, a catalyst, a photonic crystal, a gas sensor, a chemical mechanical abrasive, an ultraviolet shielding agent, and a bonding paste.
  • the present invention is a novel core-shell type metal oxide fine particle dispersion that can synthesize a core-shell type metal oxide fine particle dispersion having an arbitrary particle size by controlling the particle size of the metal oxide fine particles according to the molecular weight of the polymer. It is useful for providing manufacturing methods and products.
  • FIG.6 Shows SEM images of Sample 2-5.
  • FIG. 8 A TEM image of the powder of Sample 2-2 and a TEM image of the powder produced under the same conditions as Sample 2-2, but with different ethylene glycol volumes but with cerium nitrate and PVP concentrations.
  • the black core portion is an oxide, which is a collection of primary particles in a spherical shape.
  • the portion of the surrounding light gray shell is a polymer layer.
  • FIG. 9 A high-magnification TEM image of the powder of Sample 2-2 and the powder prepared under the same conditions as Sample 2-2, but with different ethylene glycol volume but cerium nitrate and PVP concentrations. The cerium oxide primary particles are densely accumulated.
  • Example 6 A SEM image of the zinc oxide fine particles obtained in Example 6 is shown.
  • FIG. 11 Shows the measurement results of Sample 8-1 with a micro ultraviolet visible near infrared spectrophotometer.
  • FIG. 12 An SEM image of cerium oxide fine particles (only secondary particles) in the core part of sample 91.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Colloid Chemistry (AREA)

Description

明 細 書
コアシェル型金属酸化物微粒子分散液の製造方法及びその分散液 技術分野
[0001] 本発明は、コアシェル型金属酸化物微粒子分散液の製造方法及びその分散液に 関するものであり、更に詳しくは、触媒、フォトニック結晶、ガスセンサ、化学的機械的 研磨剤、紫外線遮蔽剤、接合用ペーストなどに応用可能な、コアシェル型金属酸化 物微粒子を含む分散液を製造するための当該コアシェル型金属酸化物微粒子分散 液の製造方法及びその製品に関するものである。
背景技術
[0002] 金属酸化物微粒子を含む分散液は、例えば、触媒、ガスセンサ、化学的機械的研 磨剤、紫外線遮蔽材、接合用ペーストなど、種々の分野で使うことが可能である。上 記用途用の金属酸化物微粒子を含む分散液を作製する場合、通常の手法で、単に 乾燥した酸化物微粒子や金属酸化物微粒子を分散媒に分散させるだけでは、安定 した分散液を得ることができない。これは、金属酸化物微粒子を含む安定した分散液 を作製するために、一度凝集した酸化物微粒子や金属酸化物微粒子の凝集を解く 必要があるが、それが難しいためである。
[0003] 通常のナノ粒子合成方法では、気相プロセス、液相プロセスの!/、ずれの場合であ つても、ナノ粒子が生成した後、ナノ粒子の凝集を抑制しない限り、一般に、合成した ナノ粒子は強固に凝集してしまう。一度、ナノ粒子が強固に凝集すると、凝集を解くた めの処理を行っても、凝集を解くことは、一般に、困難である。先行技術文献には、 無機酸化物の分散方法として、セラミックビーズを使ってサンドグライダーミル中で機 械的に凝集を解く技術が開示されているが(特許文献 1)、この場合、問題点として、 不純物の混入が考えられ、また、溶媒に、分散剤を添加する必要が有ることがあげら れる。
[0004] このこと力、ら、ナノ粒子が凝集する前、すなわち、ナノ粒子の生成と同時に、凝集を 抑制する処理を施せば、分散しやす!/、酸化物微粒子や金属酸化物微粒子が得られ るはずである。このとき、高分子が溶解した分散媒を反応場として使用すれば、金属 酸化物微粒子の生成と同時に凝集を抑制することができ、そのまま長期的に安定な 金属酸化物微粒子の分散液が得られる。このようなコンセプトを、ゾルゲル法あるい は加水分解法に適用した例が報告されている(非特許文献 1 4、特許文献 2)。しか しながら、これまで、このようなコンセプトを還流法に適用した事例は見当たらない。
[0005] フォトニック結晶として用いるには、金属酸化物微粒子は、球状で、粒径が揃ってい る(単分散である)必要がある。先行技術文献には、金属酸化物超微粒子とその製造 方法、及び金属酸化物微粒子が開示されている(特許文献 3、及び 4)が、これらの 文献には、フォトユック結晶用に用いることができるような、粒径は 30〜; !OOOnm程 度、金属酸化物の粒径分布 (粒径の標準偏差)が小さぐ金属酸化物が球状であり、 液中での分散性が良好であるコアシェル型の金属酸化物微粒子又はコアシェル型 金属酸化物微粒子分散液に関する記述は何もない。
[0006] 特許文献 1:特開 2004— 35632号公報
特許文献 2:特開平 2— 92810号公報
特許文献 3 :特開平 6— 218276号公報
特許文献 4 :特開 2006— 8629号公報
非特許文献 1 : H. Yang, C. Huang, X. Su, Materials Letters, 60 (2006) 37 14
非特許文献 2 : Z. T. Zhang, B. Zhao, L. M. Hu, J. Solid State Chem. , 12 1 (1996) 105
非特許文献 3 : D. L. Tao, F. Wei, Mater. Lett. 58 (2004) 3226
非特許文献 4 : G. C. Xi, Y. Y. Peng, L. Q. Xu, M. Zhang, W. C. Yu, Y. T.
Qian, Inorg. Chem. Commun. 7 (2004) 607
発明の開示
発明が解決しょうとする課題
[0007] このような状況の中で、本発明者らは、上記従来技術に鑑みて、ナノ粒子の凝集を 抑制して、長期安定性を保持したナノサイズの金属酸化物微粒子を含む分散液の製 造方法を開発することを目標として鋭意研究を積み重ねた結果、還流法を用いること で、有機溶媒が使え、反応開始剤を必要としないなど、有利な点が多いこと、それに より、ナノ粒子の凝集を抑制したコアシェル型金属酸化物微粒子を含む分散液を調 製できること、などの新規知見を見出し、更に研究を重ねて、本発明を完成するに至 つた。
[0008] 本発明は、還流法を上記コンセプトに適用させることで、長期的に安定なコアシェ ル型金属酸化物微粒子を含む分散液を製造することを可能とする当該分散液の製 造方法及びそのコアシェル型金属酸化物微粒子を含む分散液を提供することを目 的とするものである。
課題を解決するための手段
[0009] 上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)金属塩と高分子を高沸点有機溶媒に混合して混合物を得る工程と、その混合物 を 110°C以上の温度で加熱 ·還流して金属酸化物を析出させる工程とからなることを 特徴とする、前記金属酸化物の一次粒子が球状に集合した二次粒子表面に前記高 分子又はその関連高分子の層が存在するコアシェル型金属酸化物微粒子分散液の 製造方法。
(2)前記コアシェル型金属酸化物微粒子の粒径の変動係数が、 0. 25より小である、 前記(1)に記載のコアシェル型金属酸化物微粒子分散液の製造方法。
(3)前記(1)又は(2)に記載の製造方法で得られる分散液の溶媒中の未反応イオン 及び高分子を除去する工程と、新たに溶媒を加える工程とを含むことを特徴とするコ ァシェル型金属酸化物微粒子分散液の製造方法。
(4)前記コアシェル型金属酸化物微粒子分散液が、 1日以上静置させても沈降が認 められな!/、安定性を有する、前記(1)から (3)の!/、ずれかに記載のコアシェル型金属 酸化物微粒子分散液の製造方法。
(5)前記金属塩が、硝酸塩又は酢酸塩である、前記(1)から(4)のいずれかに記載 のコアシェル型金属酸化物微粒子分散液の製造方法。
(6)前記高分子の分子量を大きくすることによって、金属酸化物微粒子の粒径を小さ くする、前記(1)から(5)の!/、ずれかに記載のコアシェル型金属酸化物微粒子分散 液の製造方法。
(7)前記高分子の濃度(単位有機溶媒体積当たりに添加した高分子重量)が 80kg /m3から 120kg/m3である、前記(1)から(6)のいずれかに記載のコアシェル型金 属酸化物微粒子分散液の製造方法。
(8)前記高分子が、ポリビュルピロリドン又はヒドロキシプロピルセルロースであり、力、 つ、前記高分子又はその関連高分子の層が、洗浄によって分離しない、前記(1)か ら(7)の!/、ずれかに記載のコアシェル型金属酸化物微粒子分散液の製造方法。
(9)前記金属塩の濃度が、 0. 05kmol/m3以上である、前記(1)から(8)のいずれ かに記載のコアシェル型金属酸化物微粒子分散液の製造方法。
(10)前記高沸点有機溶媒が、エチレングリコール又はジエチレングリコールのポリオ ールである、前記(1)から(9)の!/、ずれかに記載のコアシェル型金属酸化物微粒子 分散液の製造方法。
(11 )前記硝酸塩又は酢酸塩が、硝酸セリウム又は酢酸亜鉛である、前記(5)に記載 のコアシェル型金属酸化物微粒子分散液の製造方法。
(12)コアシェル型金属酸化物微粒子の粒径が、 30nm力、ら lOOOnmである、前記( 1)から(11)の!/、ずれかに記載の製造方法。
(13)前記(1)から(12)のいずれかに記載の製造方法により得られる金属酸化物の 一次粒子が球状に集合した二次粒子表面に高分子層が存在するコアシェル型金属 酸化物微粒子分散液であって、 1)酸化物の一次粒子が球状に凝集している、 2)該 凝集粒子(二次粒子)の表面で架橋反応による強固な高分子層が形成されている、 3 )分散媒に分散している、ことを特徴とする上記コアシェル型金属酸化物微粒子分散 液。
(14)前記(13)に記載のコアシェル型金属酸化物微粒子分散液を乾燥させた、分散 性の良好な乾燥粉体からなることを特徴とするコアシェル型金属酸化物微粒子粉体 次に、本発明について更に詳細に説明する。
本発明で、コアシェル型金属酸化物微粒子とは、金属酸化物の一次粒子が球状に 集合した二次粒子表面に、高分子層が存在する微粒子のことを意味するものとして 定義されるものであり、一次粒子又は一次粒子が不規則に凝集した二次粒子の表面 に、高分子が存在するものとは異なる。上記特許文献 4には、一次粒子又は凝集体 の表面に高分子化合物が被覆した複合粒子が開示されているが、この一次粒子又 は凝集体は、球状ではなぐ不均一な形状をしている。それというのも、上記文献に 開示されてレ、る製造方法では、予め合成された金属酸化物微粒子をビーズミルなど の分散機を使って分散及び解砕しているためである。
[0011] この分散工程では、一次粒子あるいは一次粒子の凝集粒子に解砕される力 解砕 後の一次粒子の凝集粒子は、球状で、大きさが揃うことは有り得ない。更に、この文 献には、被覆する高分子の割合は 25wt%以上であることが記載されている力 本発 明では、後述するように、 25wt%以下である。これは、遊離しやすい高分子は、洗浄 により取り除かれているためである。このことも、この文献とは大きく異なる点である。
[0012] 本発明は、コアシェル型金属酸化物微粒子分散液の製造方法であって、金属塩と 高分子を高沸点有機溶媒に混合して混合物を得る工程と、その混合物を所定の温 度(110°C以上)で加熱 ·還流して金属酸化物を析出する工程とを有するコアシェノレ 型金属酸化物微粒子分散液の製造方法であって、前記金属塩が硝酸塩又は酢酸 塩であり、かつ、前記高分子の分子量の大きさによって金属酸化物微粒子の粒径を 制御すること、を特徴とするものである。また、本発明は、上記製造方法により得られ るコアシェル型金属酸化物微粒子分散液であって、 1日以上静置させても沈降が認 められないこと、を特徴とするものである。更に、本発明は、分散性の良好なコアシェ ル型金属酸化物微粒子粉体であって、上記コアシェル型金属酸化物微粒子分散液 を乾燥させた、分散性の良好な乾燥粉体力 なること、を特徴とするものである。
[0013] 本発明で、コアシェル型金属酸化物微粒子分散液とは、分散質であるコアシェル型 金属酸化物微粒子が分散媒に分散したものであり、コアシェル型金属酸化物微粒子 懸濁液、コアシェル型金属酸化物微粒子ゾル、コアシェル型金属酸化物サスペンジ ヨンとも云う。また、粘度が高い場合は、コアシェル型金属酸化物微粒子ペーストとも 云う。まず、本発明のコアシェル型金属微粒子分散液の製造方法について説明する と、出発原料となるのは、金属塩、有機溶媒、及び高分子などである。これらのうち、 金属塩としては、硝酸塩又は酢酸塩が例示され、市販されているものでよぐ一般的 には、水和物である。
[0014] 硝酸塩としては、好適には、例えば、硝酸セリウム、硝酸ジルコニル、硝酸アルミ二 ゥム、硝酸マグネシウムなどであり、金属硝酸塩である。酢酸塩としては、好適には、 酢酸亜鉛、酢酸コバルトなどである。また、有機溶媒としては、高沸点のものが必須 であり、ポリオールが例示される。また、ここで、ポリオールとは、多価アルコールであ り、エチレングリコール(EG)、ジエチレングリコール、グリセリンなどが例示され、より 好ましくはエチレングリコール又はジエチレングリコールである。
[0015] 更に、高分子としては、有機溶媒に溶解するものが好ましぐ例えば、ポリビュルピ 口リドン(PVP)、ヒドロキシプロピルセルロース(HPC)、ポリエチレングリコール(PEG )などであり、より好ましくは、ポリビュルピロリドン (PVP)である。しかし、これらに制限 されるものではなぐこれらと同等又は類似の高分子で同様の性質を有するものであ れば同様に使用することができる。
[0016] これらの原料を混合し、溶解させる。これが、金属塩と高分子を高沸点有機溶媒に 混合して混合物を得る工程である。このとき、金属塩の濃度は、 0. O5kmol/m3以 上であることが好ましい。これは、得られる分散液に含まれる金属酸化物の割合が増 えるためであり、これにより、生産性が向上する。高分子の濃度は、 80kg/m3から 1 20kg/m3であることが好まし!/、。
[0017] ここで、高分子の濃度とは、単位溶媒体積当たりに添加した高分子の重量と定義さ れる。高分子の濃度が 80kg/m3から 120kg/m3の範囲である理由は、これより少 な過ぎると、金属酸化物微粒子が凝集し易くなるためであり、これは、コアシェル型の 金属酸化物が生成しない、凝集した微粒子が生成する、あるいは、分散性が悪い粒 子が生成するためである。また、上記範囲である理由は、これより多すぎると、金属酸 化物の核生成反応が進行しなレ、ためである。
[0018] 次に、上記混合物を 110°Cから 200°Cにおいて加熱.還流する。これが、所定の温 度で加熱 ·還流して金属酸化物を析出する工程である。一般に、金属酸化物を析出 させる場合、水酸化ナトリウム、アンモニアなどのアルカリなどを加えるが、本発明は、 それを必要としないことが特徴である。水酸化ナトリウムなどを加えると、最終的に得 られるナノ粒子にナトリウムなどが混入する恐れがある力 本発明では、アルカリなど を必要としなレ、ため、そのような不純物の混入は有り得なレ、。
[0019] 加熱 ·還流時間は、 10分から 120分ほどである。加熱 ·還流時間が短いと、未反応 の金属イオンが多く残留する可能性があり、逆に長すぎると、二次粒子が粒成長する 可能性がある。このため、 10分から 120分間ほどの加熱 ·還流時間が好ましい。加熱 •還流中に、混合液は、濁りを増す。所定の時間加熱 ·還流を行い、冷却する。こうし て、高分子が溶解した有機溶媒に、コアシェル型金属酸化物微粒子が分散した、コ ァシェル型金属酸化物微粒子分散液が得られる。
[0020] コアシェル型金属酸化物微粒子の生成メカニズムは、以下のように考えられる。
1.高分子が均一に溶解している高沸点有機溶媒 (ポリオール)中に酸化物の一次粒 子が核生成。
2.一次粒子が球状に凝集。このときも、絶えず一次粒子が核生成。
3.凝集粒子(二次粒子)の表面に、核生成した一次粒子が集まってくる。
4.このとき、二次粒子の表面で、酸化物が触媒として働き、高分子及び/又は有機 溶媒が架橋反応を生じて、強固な高分子層が形成される。
5.高分子層が十分発達すると、凝集ができなくなり、コアシェル型金属酸化物微粒 子となる。
[0021] 本発明において、コアシェル型の金属酸化物微粒子は、 1)酸化物の一次粒子が 球状に凝集している、 2)該凝集粒子(二次粒子)の表面で架橋反応による強固な高 分子層が形成されている、ことで特徴付けられる。
[0022] 酸化物が触媒作用を引き起こすには、熱が必要と考えられ、このために、 110°C以 上の温度での加熱 ·還流が必要となる。加熱'還流温度が低い場合、例え、一次粒 子が生成したとしても、コアシェル型とはならない。一次粒子が凝集しなければ、本発 明で云うコアシェル型金属酸化物微粒子とならない。この場合、未反応の高分子が 多く存在するため、エバポレータなどで溶媒除去を行うと、高分子マトリックス中に一 次粒子が取り残された酸化物高分子複合組成物となるが、これは、明らかにコアシェ ル型金属酸化物微粒子とは異なる。
[0023] また、例え、凝集が生じても、酸化物表面での触媒反応が無いため、強固な高分子 層が形成できず、形態が不均一な凝集粒子となる。特許文献 3には、前記金属酸化 物高分子複合組成物が開示されている力 これと、本発明とは本質的に異なる。後 記する実施例で示すように、加熱 ·還流温度がある臨界となる温度より低いと、コアシ エル型金属酸化物微粒子が生成しないため、本発明では、高温での加熱'還流が不 可欠である。
[0024] このとき、上記高分子の分子量を変えることにより、得られるコアシェル型金属酸化 物微粒子の粒径を制御することが可能である。高分子のゲルパーミッションクロマトグ ラフィ一により求めたポリエチレングリコール換算の平均分子量が 4000から 20000 の間で、分子量が大きくなるにつれ、コアシェル型金属酸化物微粒子の粒径は小さく なる。本発明では、高分子の分子量と、微粒子の粒径の相関関係を予め求めておき 、所定の分子量の高分子を用いることで、所望の粒径の金属酸化物微粒子を含む 分散液を作製することが可能である。
[0025] 上記加熱 ·還流の直後に得られる、コアシェル型金属酸化物微粒子を含む分散液 では、その分散媒は、加熱 ·還流に用いた有機溶媒となる。すなわち、エチレングリコ ール (EG)で加熱 ·還流を行えば、分散媒は、 EGである。分散媒を任意の分散媒に 変更したい場合は、分散媒の置換を行えばよい。例えば、遠心分離などで、分散媒 と分散質とを分離し、分散媒を取り除き、所望の分散媒を加えることにより、分散媒の 置換を行うことが可能である。
[0026] 上記加熱 '還流で用いた高分子は、分散媒中に残留しており、また、未反応の金属 イオンも、残っていることが考えられる。このため、余分な高分子などは、分散媒に遠 心分離を施し、溶媒置換を繰り返すことで、除去することが可能である。このとき、シェ ル部分の高分子は、洗浄によって、分離するものではなぐコアと不可分のものであ る。分散媒中での金属酸化微粒子の粒径は、動的光散乱 (DLS)法により確認する こと力 Sできる。この金属酸化物微粒子の粒径は、一般には、走査電子顕微鏡(SEM) などで観察される粒子径とは異なる。
[0027] その理由は、分散媒中で粒子が更に凝集していることが多ぐこの場合、凝集粒子 径が結果として現れるからである。 DLS法では、分散媒の屈折率と分散媒の粘度が 必要であるが、分散媒の屈折率は、文献値を用いること力 Sできる。また、分散媒の粘 度は、分散液の粘度と同一として、分散液の粘度を測定し、それを使用することがで きる。このようにして、平均粒径 (d )及び標準偏差 (s)を求め、変動係数 c ( = s/
average
d )を計算する。 [0028] 上記の方法で得られるコアシェル型金属酸化物微粒子を含む分散液を、遠心分離 などの方法で分散媒と分離し、乾燥させることにより、粉体が得られる。一般に、金属 酸化物微粒子の乾燥粉体は、溶媒に再分散することが困難であるが、前記のコアシ エル型金属酸化物微粒子粉体は、容易に任意の溶媒に再分散することが可能であ る。これは、コアシェル型金属酸化物微粒子粉体のシェル部分に高分子の層が存在 しており、これにより、分散性が向上していることによるものと考えられる。
[0029] コアである金属酸化物微粒子が球状で単分散であれば、フォトニック結晶の原料と して使用すること力 sできる。また、シェル部分を熱処理で除去しても、コア部分の一次 粒子がばらばらになることはなぐ球状の二次粒子を保つことができる。
[0030] 従来、各種のナノ粒子合成方法を利用してナノサイズの酸化物粒子の分散液を調 製することが種々試みられている力 S、ナノ粒子が生成した後、ナノ粒子が凝集し、上 記酸化物粒子の安定した分散液を得ることは困難とされていた。これに対し、本発明 は、高温での加熱 ·還流により金属酸化物を析出させる還流法を利用して、原料の混 合工程と、金属酸化物微粒子の析出工程を、特定の金属塩と高分子を使用して実 施することにより、ナノ粒子の生成と同時に、ナノ粒子の凝集を抑制する処理を施す こと、すなわち、コアシェル構造を形成することで、長期間安定なコアシェル型金属酸 化物微粒子分散液を調製し、提供することを可能とするものである。
[0031] また、本発明は、コアである金属酸化物微粒子も、球状で、大きさが揃っており、シ エルとなる高分子が存在するコアシェル型金属酸化物微粒子も、球状で、大きさが揃 つているものを提供できる。硝酸セリウムであれば、酸化セリウム微粒子分散液が得ら れ、酢酸亜鉛であれば、酸化亜鉛微粒子分散液が得られる。
発明の効果
[0032] 本発明により、次のような効果が奏される。
(1)長期安定性を有する金属酸化物微粒子を含む分散液を得ることができる。
(2)分散媒中のコアシェル型金属酸化物の粒径は、 30nm力、ら lOOOnmと小さい。
(3)簡便な手法で、コアシェル型金属酸化物微粒子分散液を作製することができる。
(4)任意の金属硝酸塩又は酢酸塩を使用することが可能である。
(5)本発明の金属酸化物微粒子を含む分散液は、例えば、触媒、フォトニック結晶、 ガスセンサ、化学的機械的研磨剤、紫外線遮蔽剤、接合用ペーストなどに応用可能 である。
(6)ナノ粒子の凝集が抑制された、溶媒に再分散できるコアシェル型金属酸化物微 粒子粉体を提供することができる。
(7)微粒子分散液の製造に添加する高分子の分子量を変えることにより、製造される 微粒子の平均粒径を任意に制御することができる。
(8)高濃度の微粒子分散液が得られる。
(9)焼成することにより、球状の金属酸化物微粒子が得られる。
(10)球状の金属酸化物微粒子は、フォトニック結晶の原料となりうる。
発明を実施するための最良の形態
[0033] 次に、実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例 により何ら限定されるものではなレ、。
実施例 1
[0034] 30cm3の EG (和光純薬製)に、平均分子量がカタログ値で 10000、ゲルパーミツシ ヨンクロマトグラフィー(GPC)による分析値で 4350 (ポリエチレングリコール換算)の P VP (シグマアルドリッチ製)及び Ce (NO ) · 6Η Ο (高純度化学製)を加え、撹拌し
3 3 2
た。加えた PVPの濃度は、 16kg/m3力、ら 160kg/m3とした。 Ce (NO ) · 6Η Oの
3 3 2 濃度は、 0. 400kmol/m3とした。
[0035] 混合物を加熱し、 190°Cで 10— 20分間加熱.還流した。ただし、サンプル 1—4は 、加熱 ·還流時間を 120minまで延ばしても、次に示す反応が生じな力 た。サンプ ノレ 1—1から 3では、加熱'還流実験中に、茶色のガスが発生し、その後、溶液は白濁 した。所定時間加熱 ·還流後、白濁した混合溶液 (分散液)が得られた。次に、未反 応物及び余分な PVPを除去するために、白濁した溶液の一部を 3000rpmから 100 OOrpmの条件で遠心分離し、水及びエタノールで洗浄した。エタノールで洗浄後、 8 0°Cで乾燥させ、粉体を得た。表 1に、実験条件及び結果を示す。
[0036] 分散液の粒度分布を、 DLS法により調べた。 DLS法では、粒径を求めるために、 溶媒の粘度及び屈折率が必要である。 B型粘度計を用いて、分散液の粘度を調べ、 それを溶媒の粘度として用いた。 B型粘度計は、コーンアンドプレートタイプであった 。また、屈折率として、エチレングリコール(EG)の値(1. 429)を用いた。平均粒径は 、キュムラント解析法により求めた。 80°Cで乾燥した粉体については、 X線回折 (XR D)法、 SEMによりキャラクタリゼーシヨンした。また、分散液の長期安定性について は、容器にサンプルを入れ、放置し、観察した。
[0037] 前述の通り、サンプル 1 4は、白濁せず、分散液が得られなかった。サンプル 1 1から 3では、生成物は、酸化セリウムであった。サンプル 1 1では、分散質の平均 粒径は 1330nmと大きぐ SEM観察の結果もそれを支持し、し力も、すぐに沈殿した 。一方、サンプル 1— 2、 3では、分散質の平均粒径は、約 l lOnmであった。サンプ ノレ 1 2、 3の SEM写真をそれぞれ図 1、 2に示す。粒径が約 11 Onmの球状の微粒 子が観察され、 DLSで求められた平均粒径と一致した。
[0038] このこと力、ら、粒径 l lOnmの球状のコアシェル型酸化セリウム微粒子が独立して分 散液中に分散していることが明らかとなった。また、 PVP濃度が小さいと、安定な分 散液が得られないこと、及び PVP濃度が大きいと反応が生じなレ、ことが分かり、安定 な酸化セリウム微粒子分散液を得るための好適な PVP濃度が存在することが分かつ た。この実施例から、その十分条件として、 PVP濃度は、 80kg/m3から 105. 6kg/ m3であることが示された。また、次に示す実施例から、 PVP濃度は、 120kg/m3で あることも、安定な酸化セリウム微粒子分散液を得るための十分条件であることが示さ れた。
[0039] [表 1]
Figure imgf000013_0001
実施例 2 [0040] 30cm3の EG (和光純薬製)に、種々の平均分子量の PVPを加え、撹拌した。 PVP の平均分子量のカタログ値と GPCによる分析値 (ポリエチレングリコール換算)を表 2 に示す。 PVPの Aから Fの順に、 GPC分析による平均分子量は増大した。加えた PV Pの濃度は、 120kg/m3とした。 Ce (NO ) · 6Η Οの濃度は、 0· 600kmol/m3
3 3 2
した。混合物を加熱し、 190°Cで 10— 30分間加熱 '還流した。
[0041] 表 3に示す全てのサンプルで、加熱'還流実験中に、茶色のガスが発生し、その後 、溶液は、白濁した。所定時間加熱 ·還流後、白濁した混合溶液 (分散液)が得られ た。分散液については、エチレングリコール (EG)で 10倍に希釈したものも作製した 。次に、未反応物及び余分な PVPを除去するために、白濁した溶液の一部を 3000r pmから lOOOOrpmの条件で遠心分離し、水及びエタノールで洗浄した。エタノール で洗浄後、 80°Cで乾燥させ、粉体を得た。
[0042] 実施例 1に示した方法と同様の方法で、分散液の平均粒径、粘度、長期安定性を 評価した。変動係数 (c)については、 DLS法で、平均粒径 (d)と標準偏差 (s)を Con tin法によるヒストグラム解析で求め、 c = s/dで求めた。また、粉体については、 SE M観察結果から、粒子形状、平均粒径、変動係数 cを求めた。生成物の同定は、実 施例 1と同様の方法で求めた。平均粒径 dは、 SEM写真に撮影された 90個以上の 微粒子の粒径の平均値とした。変動係数 (c)は、粒径の分布を求め、それの標準偏 差 sを求め、 c = s/dで求めた。生成物は、 XRDにより確認した。
[0043] サンプル 2—1から 6の生成物は、全て CeOであった。微粒子の形状は、 SEM観
2
察により、サンプル 2— 1のみ凝集体で不均一であり、それ以外は球状であることが分 かった(図 3から 7)。サンプル 2— 6の SEM写真では、粒子と粒子の間に繊維状のも のが観察された。球状であるサンプルについて、 SEM写真から平均粒径を求めると 、表 3のようになった。
[0044] 分子量 (GPC分析値)が 18000までは、分子量が増えるにつれ、平均粒径が小さく なることが分力、つた。分子量が 18000を超えると、逆に粒径は大きくなつた。変動係 数については、サンプル 2— 2から 6まで全て 0. 15以下であり、粒径分布が狭い、す なわち、ほぼ単分散であることが分力、つた。よって、 PVPの分子量を制御することによ り、ほぼ単分散であるコアシェル型酸化セリウム微粒子の平均粒径を自由に変えるこ とが可能であることが示された。
[0045] 次に、分散液の特性について説明する。サンプル 2— 1から 6の分散液の粘度は、 分子量とともに増加した。 DLSで求めた平均粒径は、サンプル 2—1と 6を除き、 SE M観察結果から求めた平均粒径とほぼ一致した。よって、球状のコアシェル型酸化 セリウム微粒子が、独立して分散液中に分散していることが、実施例 2においても示さ れた。
[0046] サンプル 2— 1は、平均粒径が大きかった。これは、微粒子の形状が凝集体である ことと一致した。また、すぐ沈殿し、分散液として安定性がなかった。サンプル 2— 6に ついては、 SEM観察結果からの平均粒径より、 DLSで求めた平均粒径のほうが大き かった。これは、図 7に示したように、粒子と粒子が繊維状のもので結合されたものが 存在するため、平均粒径として大きくなつたことによると考えられる。
[0047] [表 2]
Figure imgf000015_0001
[0048] [表 3]
サンプ PVP 分散液 粉体
ル No. (表 2 粘 度 DLS法 安定性 SEM 平 均 粒径 生成 参照) (mPas) 平均粒 粒径 観察 粒 径 の変 物 径 の 変 によ' (nm) 動係
原液 EGで
(nm) 動 係 る微 数
10倍
数 粒子
布釈 形状
2-1 A 58 1220 0. 187 X X 凝集 Ce02 比較例 体
2-2 B 61. 1 111. 2 0. 065 〇 ◎ 球状 113. 8 0. 120 CeOz
2-3 C 61. 8 85. 8 0. 122 〇 ◎ 球状 84. 3 0. 146 Ce02
2-4 D 116. 3 64. 1 0. 095 Δ ◎ 球状 57. 7 0. 140 Ce02
2-5 E 138. 3 70. 3 0. 199 Δ ◎ 球状 56. 1 0. 149 Ce02
2-6 F 3943 168. 5* 0. 044 〇 ◎ 球状 100. 4 0. 150 Ce02
[0049] ◎一ヶ月経過しても沈殿物が認められない。
〇一ヶ月経過でわずかに沈殿物が認められる。
△一ヶ月経過で多くの沈殿物が認められる。
X 2、 3日ほどで沈殿物が認められる。
*原液での測定結果は、高粘度のため正確に求められなかった。このため、 EG (ェ チレンダリコール)で 10倍に希釈したデータを用レ、た。
実施例 3
[0050] 実施例 2で示したサンプル 2— 2と同じ方法で、分散液を作製し、次に、分散媒置換 の実験を、以下の手順で行った。遠心分離で分散媒と分散質を分離し、分離後の分 散質にテルビネオールを加え、超音波ホモジナイザーを使い、分散させた。分散時 間は、 4minであり、冷却しながら、分散させた。分散媒置換後の分散液について、 D LSにより平均粒径を求めた。その結果を表 4に示す。粒径は、サンプル 2— 2とほぼ 同じであった。よって、分散媒置換しても、コアシェル型酸化セリウム微粒子は、凝集 なしに分散していることが確認できた。また、分散液は、非常に安定しており、 10日以 上放置しても分離しなかった。
[0051] [表 4] サンプル No. 分散媒置換後の分散液
粘度 (mPas) DLS法 安定性
平 均 粒 径 変動係数
(nm)
3-1 45 99 0. 072 良好 実施例 4
[0052] 実施例 2で示したサンプル 2— 2の粉体(分散液から分離後の粉体)、及びエチレン グリコールの体積は異なるが硝酸セリウムや PVPの濃度がサンプル 3— 2と同じ条件 で作製した粉体について、フーリエ変換赤外分光光度計 (FTIR)、熱重量分析 (TG )及び透過電子顕微鏡 (TEM)により、キャラクタリゼーシヨンを行った。熱重量分析( TG)の結果、 220°C付近で 15%近い重量減少が認められた。すなわち、分散媒の 沸点(190°C)よりも高温で重量が生じた。乾燥粉体を 900°Cまで加熱することにより 、 22wt%の重量減少があった。作製日が異なる別のサンプルでは、 19wt%の重量 減少であり、おおよそ 19から 22wt%の重量減少があることが分かった。
[0053] また、フーリエ変換赤外分光光度計 (FTIR)の結果、酸化セリウムに起因するピー ク以外のピークが観察された。上記乾燥粉体では、遠心分離と水やエタノールへの 再分散を 3回行っていることから、酸化セリウム微粒子と無関係な余分な高分子は除 去されている。また、乾燥を行っていることから、分散媒も十分除去されている。よつ て、フーリエ変換赤外分光光度計 (FTIR)で観察された酸化セリウム以外の吸収ピ ークは、酸化セリウム微粒子表面に存在するものに起因するものであること、及び、そ れは、高分子の吸収と似ていること、が示された。
[0054] また、透過電子顕微鏡 (TEM)観察の結果(図 8、 9)から、粒子表面に 5nm程度の 高分子の層らしいものが観察された。これは、長時間の透過電子顕微鏡 (TEM)観 察により層が減少することも明らかになつており、電子線により分解していることも示 唆された。以上のことから総合的に考えて、酸化セリウム微粒子の表面に高分子が付 着していることが明ら力、となった。
[0055] サンプル 2— 2の粉体の XRDパターンのピークの半値幅から、 Hallの式を使って結 晶子(一次粒子)の大きさを求めると、約 3nm程度であることが分かった。透過電子顕 微鏡 (TEM)観察の結果力もも、一次粒子の大きさは、 1から 2nm以下であることが 確認された。また、一次粒子間には、隙間などなぐ高密度に一次粒子が集合した二 次粒子であることが分かった。
実施例 5
[0056] 30cm3の EG (和光純薬製)に、ヒドロキシプロピルセルロース(HPC) (分子量: 150 00から 30000 (和光純薬製))及び Ce (NO ) · 6Η Ο (高純度化学製)を加え、撹拌
3 3 2
した。加えた HPCの濃度は 120kg/m3とした。 Ce (N〇 ) · 6Η〇の濃度は 0· 600
3 3 2
kg/m3とした。混合物を加熱し、 190°Cで 10分間加熱 ·還流した。加熱 ·還流実験 中に、茶色のガスが発生し、その後、溶液は、白濁した。所定時間加熱'還流後、白 濁した混合溶液 (分散液)が得られた。次に、未反応物及び余分な HPCを除去する ために、白濁した溶液の一部を 18000rpmの条件で遠心分離し、水及びエタノール で洗浄した。 80°Cで乾燥させ、粉体を得た。
[0057] 生成物は、酸化セリウムであることが XRDにより確認できた。粉体の SEM観察から 微粒子の形状は球状であることが確認できた。また、平均粒径は 90. lnmであり、そ の変動係数は 0. 223であった。分散液の平均粒径は 170. 6nm (変動係数は 0. 18 2)であり、 SEM観察から求められる平均粒径の約 1. 89倍であった。また、分散液は 2週間放置しても安定に存在した。以上のことから、 PVPの代わりに、 HPCを用いて 合成しても、分散液中での粒径は PVPを使った場合と比べ大きいが、安定性のある 分散液が得られることが分かった。
実施例 6
[0058] 30cm3のジエチレングリコール(DEG) (和光純薬製)に、ポリマー及び酢酸亜鉛(Z n (CH COO) · 2Η Ο :和光純薬製)を加え、撹拌した。ポリマーは、 PVPを使用し
3 2 2
た。加えた PVPの濃度は、 120kg/m3とした。 PVPの平均分子量は、カタログ値で 1 0, 000 (シグマアルドリッチ製)である。 Zn (CH COO) · 2Η Οの濃度は、 0. 05又
3 2 2
は 0. 10kmol/m3とした。混合物を加熱し、 180°Cで 20minカロ熱 ·還流した。
[0059] 未反応物や、余分なポリマーを除去するために、白濁した溶液の一部を 18000rp mの条件で遠心分離し、水及びエタノールで洗浄した。洗浄後、 80°Cで乾燥させ、 粉体を得た。加熱 ·還流直後の混合溶液 (原液)について、 DLS法により、分散粒子 の粒度分布を調査した。また、乾燥粉体を SEM観察し、その写真から粒度分布を調 查した。サンプル 6—1及びサンプル 6— 2は、それぞれ Zn (CH COO) · 2Η Οの濃
3 2 2 度が 0. 10及び 0. 05kmol/m3で作製したものである。
[0060] サンプル 6— 1について調査した結果は、次の通りである。乾燥粉体の XRD分析の 結果から、微粒子は酸化亜鉛であることが確認できた。図 10に、得られた酸化亜鉛 微粒子の SEM写真を示す。粒径のそろった球状の粒子が得られた。 SEM写真から 求めた粒径は、約 340nmであり、その変動係数は、 0. 08と単分散であることが分か つた。 IRの結果、 PVPに特徴的に存在する ΙδδΟ π 1付近のピークが存在した。
[0061] このこと力、ら、粒子表面に PVPあるいはそれに関連する高分子層が存在することが 示された。 TGの結果、 900°C加熱による重量減少は 6wt%であった。 300°C付近に 発熱を伴う重量減少があった。また、 XRDパターンのピーク幅から求めた結晶子サイ ズは 14nmであった。サンプル 6— 2では、 SEM写真から求めた粒径は、 600力、ら 80 Onmの範囲にあった。
実施例 7
[0062] 30cm3の EG (和光純薬製)に、平均分子量がカタログ値で 10000の PVP (シグマ アルドリッチ製)及び Ce (NO ) · 6Η 0 (高純度化学製)を加え、撹拌した。加えた Ρ
3 3 2
VPの濃度は、 120kg/m3とした。 Ce (N〇 ) · 6Η〇の濃度は、 0. 600kmol/m3
3 3 2
とした。
[0063] 混合物を加熱し、種々の温度で加熱'還流した。実験条件を表 5に示す。サンプノレ 7—1から 7— 5までは、加熱 ·還流後の液は白濁していたため、実施例 1とほぼ同様 の方法で、分散液から微粒子を分離し、 SEMや XRDによるキャラクタリゼーシヨンを 行った。サンプル 7— 6、 7— 7は、加熱 ·還流後も白濁しなかったため、サンプル 7— 6について、 150°Cで乾燥機を使って、乾燥又は 80°Cでエバポレータによる乾燥を 行い、 SEMや XRDによるキャラクタリゼーシヨンを行った。 150°Cでは、すぐに溶媒 が揮発し、乾燥体が得られた。
[0064] [表 5] サンプ 加熱 · 加熱 · 白濁開始 加熱 ·還 S E Mに S E Mから X R Dに ル No. ¾έ流時 時間 流後の液 観察によ 求めた平均 よる分析 度 間 (min) の状態 る粒子の 粒径 結果
(min) 形状 ( n m)
7-1 190 15 5 白濁 球状 76 C e 0 2
7-2 160 45 14 白濁 球状 82 C e 0 2
7-3 140 120 40 白濁 球状 149 C e 0 2
7-4 120 1320 180 白濁 球状 85 C e 0 2
7-5 110 1320 300m i n以 白濁 球状 73 C e 0 2
7 - 6 100 1320 白濁なし 透明 球状粒子 球状粒子は C e 0 2 比較例 は見られ ない。
なレヽ
7 - 7 90 1320 白濁なし 透明
比較例
[0065] 表 5で明らかなように、加熱 ·還流温度が 110°C以上と 100°C以下では、明らかに 異なる結果が得られた。表 5の通り、加熱 ·還流温度が 190°Cより低くなるにつれ、白 濁が開始するのに時間がかかった。また、濁りが強くなるのも温度が低いほうが時間 がかかった。 110°C以上の加熱 ·還流温度では、全て球状の粒子が観察され、コアシ エル型の微粒子が得られることが示された。
[0066] 一方、 100°C以下では、 22時間加熱 ·還流しても白濁しなかった。加熱'還流後の 溶液(分散液)は透明感が有り、白濁とはいえなかった。サンプル 7— 6を 150°Cで乾 燥させた粉体の XRDパターンは、酸化セリウム(CeO )の回折ピークが見られ、また
2
、エバポレータを使った 80°Cで乾燥させた粉体の XRDパターンにも、酸化セリウム( CeO )の回折ピークがわずかであるが見られた。
2
[0067] これによつて、粉体には、酸化セリウムが含有することが確認できた。サンプル 7— 6 を 150°Cで乾燥させた粉体の SEM観察の結果、コアシェル型の粒子は観察されな かった。これによつて、得られた粉体は、酸化物と高分子の複合組成物と考えられる 。以上のことから、加熱.還流温度が 110°Cより低い場合は、コアシェル型の微粒子 は得られないことが分かった。逆に言い換えると、コアシェル型の酸化セリウム微粒子 を得るには、 110°C以上の温度が必要であることが分かった。
実施例 8
[0068] 実施例 2で示したサンプル 2— 2をエタノールに再分散させた再分散液を 50°Cに加 熱して、エタノールを蒸発させ、針状の結晶状サンプル (サンプル 8 1)を得た。これ を光学顕微鏡及び SEMで観察した結果、コアシェル型酸化セリウム微粒子が三次 元的に集積していることが分かった。
[0069] サンプル 8— 1につ!/、て、紫外可視光域での反射率を顕微紫外可視近赤外分光光 度計により測定した結果を図 11に示す。 333nm付近にピークが存在する。これは、 酸化セリウム微粒子の周期配列に起因するピークと考えられる。これによつて、サンプ ノレ 8—1は、フォトニック結晶である可能性が高いことが示された。
実施例 9
[0070] 実施例 2のサンプル 2— 2と加熱 ·還流時間以外は同じ方法で作製した粉体を 500 °C 5h空気中で熱処理を加えたサンプル 9 1の SEM観察結果を図 12に示す。この 温度では、ほとんどの高分子層が燃焼しており、粉体にほとんど残留していない。こ のため、コアシェルではなぐコアだけの酸化セリウム微粒子の SEM像であり、球状 で大きさがほぼ揃っていることが分かった。また、熱処理後、高分子層がなくなっても 、一次粒子がばらばらになることはなぐ一次粒子が球状に集合した二次粒子が存在 できることが分かった。
産業上の利用可能性
[0071] 以上詳述したように、本発明は、コアシェル型金属酸化物微粒子分散液の製造方 法及びその分散液に係るものであり、本発明により、長期安定性を有するコアシェル 型金属酸化物微粒子を含む分散液及びその粉体を作製し、提供することができる。 本発明のコアシェル型金属酸化物微粒子を含む分散液は、例えば、触媒、フォトニッ ク結晶、ガスセンサ、化学的機械的研磨剤、紫外線遮蔽剤、接合用ペーストなどに 応用可能である。本発明は、高分子の分子量によって金属酸化物微粒子の粒径を 制御して任意の粒径のコアシェル型金属酸化物微粒子分散液を合成することができ るコアシェル型金属酸化物微粒子分散液の新規製造方法及びその製品を提供する ものとして有用である。
図面の簡単な説明
[0072] [図 1]サンプル 1 2の SEM像を示す。
[図 2]サンプル 1 3の SEM像を示す。 [図 3]サンプル 2— 2の SEM像を示す。
[図 4]サンプル 2— 3の SEM像を示す。
[図 5]サンプル 2— 4の SEM像を示す。
[図 6]サンプル 2— 5の SEM像を示す。
[図 7]サンプル 2— 6の SEM像を示す。
[図 8]サンプル 2— 2の粉体の TEM像、及びエチレングリコールの体積は異なるが硝 酸セリウムや PVPの濃度がサンプル 2— 2と同じ条件で作製した粉体の TEM像を示 す。黒いコアの部分が酸化物であり、これは、一次粒子が球状に集合したものである 。周りの淡い灰色のシェルの部分は、高分子層である。
[図 9]サンプル 2— 2の粉体、及びエチレングリコールの体積は異なるが硝酸セリウム や PVPの濃度がサンプル 2— 2と同じ条件で作製した粉体の高倍率の TEM像を示 す。酸化セリウム一次粒子が高密度に集積している。
園 10]実施例 6で得られた酸化亜鉛微粒子の SEM像を示す。
[図 11]サンプル 8— 1の顕微紫外可視近赤外分光光度計による測定結果を示す。
[図 12]サンプル 9 1のコア部分だけの酸化セリウム微粒子(二次粒子のみ)の SEM 像を示す。

Claims

請求の範囲
[1] 金属塩と高分子を高沸点有機溶媒に混合して混合物を得る工程と、その混合物を
110°C以上の温度で加熱 ·還流して金属酸化物を析出させる工程とからなることを特 徴とする、前記金属酸化物の一次粒子が球状に集合した二次粒子表面に前記高分 子又はその関連高分子の層が存在するコアシェル型金属酸化物微粒子分散液の製 造方法。
[2] 前記コアシェル型金属酸化物微粒子の粒径の変動係数力 0. 25より小である、請 求項 1に記載のコアシェル型金属酸化物微粒子分散液の製造方法。
[3] 請求項 1又は 2に記載の製造方法で得られる分散液の溶媒中の未反応イオン及び 高分子を除去する工程と、新たに溶媒を加える工程とを含むことを特徴とするコアシ エル型金属酸化物微粒子分散液の製造方法。
[4] 前記コアシェル型金属酸化物微粒子分散液が、 1日以上静置させても沈降が認め られない安定性を有する、請求項 1から 3のいずれかに記載のコアシェル型金属酸 化物微粒子分散液の製造方法。
[5] 前記金属塩が、硝酸塩又は酢酸塩である、請求項 1から 4の!/、ずれかに記載のコア シェル型金属酸化物微粒子分散液の製造方法。
[6] 前記高分子の分子量を大きくすることによって、金属酸化物微粒子の粒径を小さく する、請求項 1から 5のいずれかに記載のコアシェル型金属酸化物微粒子分散液の 製造方法。
[7] 前記高分子の濃度(単位有機溶媒体積当たりに添加した高分子重量)が 80kg/ m3から 120kg/m3である、請求項 1から 6のいずれかに記載のコアシェル型金属酸 化物微粒子分散液の製造方法。
[8] 前記高分子が、ポリビュルピロリドン又はヒドロキシプロピルセルロースであり、かつ 、前記高分子又はその関連高分子の層が、洗浄によって分離しない、請求項 1から 7 のいずれかに記載のコアシェル型金属酸化物微粒子分散液の製造方法。
[9] 前記金属塩の濃度が、 0. 05kmol/m3以上である、請求項 1から 8のいずれかに 記載のコアシェル型金属酸化物微粒子分散液の製造方法。
[10] 前記高沸点有機溶媒が、エチレングリコール又はジエチレングリコールのポリオ一 ノレである、請求項 1から 9の!/、ずれかに記載のコアシェル型金属酸化物微粒子分散 液の製造方法。
[11] 前記硝酸塩又は酢酸塩が、硝酸セリウム又は酢酸亜鉛である、請求項 5に記載の コアシェル型金属酸化物微粒子分散液の製造方法。
[12] コアシェル型金属酸化物微粒子の粒径が、 30nm力、ら lOOOnmである、請求項 1か ら 11のレ、ずれかに記載の製造方法。
[13] 請求項 1から 12のいずれかに記載の製造方法により得られる金属酸化物の一次粒 子が球状に集合した二次粒子表面に高分子層が存在するコアシェル型金属酸化物 微粒子分散液であって、 1)酸化物の一次粒子が球状に凝集している、 2)該凝集粒 子(二次粒子)の表面で架橋反応による強固な高分子層が形成されている、 3)分散 媒に分散している、ことを特徴とする上記コアシェル型金属酸化物微粒子分散液。
[14] 請求項 13に記載のコアシェル型金属酸化物微粒子分散液を乾燥させた、分散性 の良好な乾燥粉体からなることを特徴とするコアシェル型金属酸化物微粒子粉体。
PCT/JP2007/069397 2006-10-05 2007-10-04 Procédé de fabrication d'une dispersion de fines particules de composé métallique et la dispersion correspondante WO2008041729A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2007800371870A CN101522560B (zh) 2006-10-05 2007-10-04 核壳型金属氧化物微粒分散液的制造方法及其分散液
US12/444,508 US20100056361A1 (en) 2006-10-05 2007-10-04 Process for producing dispersion of fine core/shell type metal oxide particles and dispersion
EP07829136A EP2072462A4 (en) 2006-10-05 2007-10-04 METHOD FOR MANUFACTURING FINE PARTICLE DISPERSION OF METAL COMPOUND AND DISPERSION THEREOF

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-273647 2006-10-05
JP2006273647 2006-10-05
JP2007260044A JP5201655B2 (ja) 2006-10-05 2007-10-03 コアシェル型金属酸化物微粒子分散液の製造方法及びその分散液
JP2007-260044 2007-10-03

Publications (1)

Publication Number Publication Date
WO2008041729A1 true WO2008041729A1 (fr) 2008-04-10

Family

ID=39268583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/069397 WO2008041729A1 (fr) 2006-10-05 2007-10-04 Procédé de fabrication d'une dispersion de fines particules de composé métallique et la dispersion correspondante

Country Status (5)

Country Link
US (1) US20100056361A1 (ja)
EP (1) EP2072462A4 (ja)
JP (1) JP5201655B2 (ja)
CN (1) CN101522560B (ja)
WO (1) WO2008041729A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009099201A1 (ja) * 2008-02-07 2009-08-13 National Institute Of Advanced Industrial Science And Technology コアシェル型酸化亜鉛微粒子又はそれを含有する分散液、それらの製造方法及び用途
WO2009099199A1 (ja) * 2008-02-07 2009-08-13 National Institute Of Advanced Industrial Science And Technology コアシェル型酸化コバルト微粒子又はそれを含有する分散液、それらの製造方法及び用途

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4958088B2 (ja) * 2007-12-28 2012-06-20 独立行政法人産業技術総合研究所 酸化セリウム厚膜を用いたガスセンサ素子及びその製造方法
JP5126714B2 (ja) * 2008-02-20 2013-01-23 独立行政法人産業技術総合研究所 架橋構造を有する高分子でシェル部分を構成したコアシェル型金属酸化物微粒子及びその用途
JP5422973B2 (ja) * 2008-11-18 2014-02-19 株式会社豊田中央研究所 球状酸化物半導体粒子、並びに、これを用いた集積体及び光電極
JP4701409B2 (ja) * 2008-12-26 2011-06-15 独立行政法人産業技術総合研究所 コアシェル型酸化セリウムポリマーハイブリッドナノ粒子及びその分散液の製造方法
JP4682368B2 (ja) 2009-08-11 2011-05-11 独立行政法人産業技術総合研究所 球状コアシェル型酸化セリウム/高分子ハイブリッドナノ粒子の集積体及びその製造方法
MX2012005503A (es) * 2009-11-16 2012-06-14 Basf Se Nanocompuestos de oxido de metal para proteccion uv.
CN101800130B (zh) * 2010-04-19 2011-06-22 西安交通大学 氧化锌纳米结构染料敏化太阳能电池复合光阳极的制备方法
JP5842250B2 (ja) * 2011-11-21 2016-01-13 国立研究開発法人産業技術総合研究所 研磨剤及び基板の研磨方法
JP2013208582A (ja) * 2012-03-30 2013-10-10 National Institute Of Advanced Industrial Science & Technology 触媒担体用γ−アルミナ及びその製造方法
CN103235460B (zh) * 2013-04-08 2015-12-02 京东方科技集团股份有限公司 一种显示装置及其制造方法
JP6514427B2 (ja) * 2013-06-28 2019-05-15 サムスン エスディアイ カンパニー,リミテッドSamsung Sdi Co.,Ltd. 樹脂膜、樹脂膜の製造方法、及び塗工液
JP6032679B2 (ja) * 2013-09-30 2016-11-30 株式会社ノリタケカンパニーリミテド 単一相の立方晶チタン酸バリウム微粒子、それを含有する分散体およびその製造方法
JP6229217B2 (ja) * 2013-12-25 2017-11-15 国立研究開発法人産業技術総合研究所 コアシェル型ナノ粒子の処理方法
JP6793915B2 (ja) * 2015-07-14 2020-12-02 国立研究開発法人産業技術総合研究所 表面改質された球状単分散コアシェル型酸化セリウムポリマーハイブリッドナノ粒子
CN114621681B (zh) * 2016-06-02 2023-07-18 M技术株式会社 透明材料用紫外线和/或近红外线遮断剂组合物
CN111566128B (zh) 2017-11-10 2022-06-21 营养与生物科学美国4公司 独特形态的多糖
CN112345112B (zh) * 2020-10-21 2021-10-15 厦门大学 一种温度敏感纳米探针的制备方法
JP2022187791A (ja) * 2021-06-08 2022-12-20 キヤノン株式会社 検体検査用偏光発光粒子

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0292810A (ja) 1988-09-29 1990-04-03 Catalysts & Chem Ind Co Ltd 球状酸化物粒子の製造方法
JPH06218276A (ja) 1993-01-27 1994-08-09 Mitsui Toatsu Chem Inc 安定化された金属酸化物超微粒子とその製造方法
JPH07232919A (ja) * 1994-02-22 1995-09-05 Nippon Shokubai Co Ltd 酸化亜鉛微粒子の製法
JPH10316426A (ja) * 1997-05-12 1998-12-02 Tokuyama Corp 被覆酸化錫
JP2004035632A (ja) 2002-07-01 2004-02-05 Tayca Corp 高い透明性と紫外線遮蔽能を有する無機酸化物分散体および分散方法
JP2005097642A (ja) * 2003-09-22 2005-04-14 Tanaka Kikinzoku Kogyo Kk 貴金属−金属酸化物複合クラスター
JP2006008629A (ja) 2004-06-29 2006-01-12 Hitachi Maxell Ltd 化粧料用粉体および化粧料

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6752979B1 (en) * 2000-11-21 2004-06-22 Very Small Particle Company Pty Ltd Production of metal oxide particles with nano-sized grains
DE10163256A1 (de) * 2001-12-21 2003-07-10 Henkel Kgaa Oberflächenmodifiziertes Zinkoxid zur Herstellung nanopartikulärer Dispersionen
JP5077941B2 (ja) * 2006-10-10 2012-11-21 独立行政法人産業技術総合研究所 コアシェル型酸化セリウム微粒子又はそれを含有する分散液及びそれらの製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0292810A (ja) 1988-09-29 1990-04-03 Catalysts & Chem Ind Co Ltd 球状酸化物粒子の製造方法
JPH06218276A (ja) 1993-01-27 1994-08-09 Mitsui Toatsu Chem Inc 安定化された金属酸化物超微粒子とその製造方法
JPH07232919A (ja) * 1994-02-22 1995-09-05 Nippon Shokubai Co Ltd 酸化亜鉛微粒子の製法
JPH10316426A (ja) * 1997-05-12 1998-12-02 Tokuyama Corp 被覆酸化錫
JP2004035632A (ja) 2002-07-01 2004-02-05 Tayca Corp 高い透明性と紫外線遮蔽能を有する無機酸化物分散体および分散方法
JP2005097642A (ja) * 2003-09-22 2005-04-14 Tanaka Kikinzoku Kogyo Kk 貴金属−金属酸化物複合クラスター
JP2006008629A (ja) 2004-06-29 2006-01-12 Hitachi Maxell Ltd 化粧料用粉体および化粧料

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
D. L. TAO; F. WEI, MATER. LETT., vol. 58, 2004, pages 3226
H. YANG; C. HUANG; X. SU, MATERIALS LETTERS, vol. 60, 2006, pages 3714
HO C. ET AL.: "Morphology-Controllable Synthesis of Mesoporous CeO2 Nano- and Microstructures", CHEMISTRY OF MATERIALS, vol. 17, no. 17, 2005, pages 4514 - 4522, XP003021390 *
LAI J.-I. ET AL.: "Controlling the Size of Magnetic Nanoparticles Using Pluronic Block Copolymer", THE JOURNAL OF PHYSICAL CHEMISTRY B, vol. 109, no. 1, 2005, pages 15 - 18, XP008105849 *
LAKHWANG S. ET AL.: "Adsorption of Polyvinylpyrrolidone (PVP) and its Effect on the Consolidation of Suspensions of Nanocrystalline CeO2 particles", JOURNAL OF THE MATERIALS SCIENCE, vol. 34, no. 16, 1999, pages 3909 - 3912, XP008151673 *
See also references of EP2072462A4
SI R. ET AL.: "Self-Organized Monolayer of Nanosized Ceria Colloids Stabilized by Poly(vinylpyrrolidone)", THE JOURNAL OF PHYSICAL CHEMISTRY B, vol. 110, no. 12, 30 March 2006 (2006-03-30), pages 5994 - 6000, XP003021390 *
SUNDERLAND K. ET AL.: "Synthesis of gamma-Fe2O3/polypyrrole nanocomposite materials", MATERIALS LETTERS, vol. 58, 2004, pages 3136 - 3140, XP008105846 *
Z. T. ZHANG; B. ZHAO; L. M. HU, J. SOLID STATE CHEM., vol. 121, 1996, pages 105

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009099201A1 (ja) * 2008-02-07 2009-08-13 National Institute Of Advanced Industrial Science And Technology コアシェル型酸化亜鉛微粒子又はそれを含有する分散液、それらの製造方法及び用途
WO2009099199A1 (ja) * 2008-02-07 2009-08-13 National Institute Of Advanced Industrial Science And Technology コアシェル型酸化コバルト微粒子又はそれを含有する分散液、それらの製造方法及び用途
US20110003156A1 (en) * 2008-02-07 2011-01-06 Noriya Izu Core-Shell Type Cobalt Oxide Microparticle or Dispersion Containing the Microparticle, and Production Process and Use of the Microparticle or the Dispersion
US8647679B2 (en) 2008-02-07 2014-02-11 National Institute Of Advanced Industrial Science And Technology Core-shell type zinc oxide microparticle or dispersion containing the microparticle, and production process and use of the microparticle or the dispersion

Also Published As

Publication number Publication date
US20100056361A1 (en) 2010-03-04
EP2072462A4 (en) 2012-10-31
EP2072462A1 (en) 2009-06-24
CN101522560B (zh) 2012-05-30
JP2008111114A (ja) 2008-05-15
JP5201655B2 (ja) 2013-06-05
CN101522560A (zh) 2009-09-02

Similar Documents

Publication Publication Date Title
WO2008041729A1 (fr) Procédé de fabrication d'une dispersion de fines particules de composé métallique et la dispersion correspondante
JP5077941B2 (ja) コアシェル型酸化セリウム微粒子又はそれを含有する分散液及びそれらの製造方法
Wu et al. Magnesium hydroxide nanoparticles synthesized in water-in-oil microemulsions
JP4701409B2 (ja) コアシェル型酸化セリウムポリマーハイブリッドナノ粒子及びその分散液の製造方法
US8647679B2 (en) Core-shell type zinc oxide microparticle or dispersion containing the microparticle, and production process and use of the microparticle or the dispersion
TW200831412A (en) Liquid suspension and powder of cerium oxide particles, processes for the preparation thereof and use in polishing
JP5126714B2 (ja) 架橋構造を有する高分子でシェル部分を構成したコアシェル型金属酸化物微粒子及びその用途
Tunusoğlu et al. Surfactant-assisted formation of organophilic CeO2 nanoparticles
Qasim et al. Synthesis and characterization of ultra-fine colloidal silica nanoparticles
CN110200821A (zh) 一种基于石墨烯量子点的l-薄荷醇缓释材料及其制备方法
JP5392696B2 (ja) コアシェル型酸化コバルト微粒子又はそれを含有する分散液、それらの製造方法及び用途
TWI673235B (zh) 單斜晶氧化鋯系奈米粒子及其製造方法
Anil et al. Synthesis of poly (ethylene glycol)(PEG)-capped Fe3O4 nanoclusters by hydrothermal method.
JP2011001205A (ja) 多孔質シリカカプセルの製造方法
JP4958088B2 (ja) 酸化セリウム厚膜を用いたガスセンサ素子及びその製造方法
JP6064338B2 (ja) 酸化チタンの非極性有機溶媒分散液の製造方法
Pomelova et al. Top-down synthesis and characterization of exfoliated layered KLnS2 (Ln= La, Ce, Gd, Yb, Lu) nanosheets, their colloidal dispersions and films
Okuyama et al. Technology Innovation in the Nanoparticle Project—Synthesis of Nanoparticles and Nanocomposites—[Translated]
JP6202749B2 (ja) 赤外線遮蔽材料微粒子の製造方法、赤外線遮蔽材料微粒子分散液の製造方法、赤外線遮蔽材料微粒子、赤外線遮蔽材料微粒子粉末、赤外線遮蔽材料微粒子分散液、赤外線遮蔽材料微粒子分散体および被覆基材

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780037187.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07829136

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007829136

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12444508

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE