WO2009099199A1 - コアシェル型酸化コバルト微粒子又はそれを含有する分散液、それらの製造方法及び用途 - Google Patents

コアシェル型酸化コバルト微粒子又はそれを含有する分散液、それらの製造方法及び用途 Download PDF

Info

Publication number
WO2009099199A1
WO2009099199A1 PCT/JP2009/052085 JP2009052085W WO2009099199A1 WO 2009099199 A1 WO2009099199 A1 WO 2009099199A1 JP 2009052085 W JP2009052085 W JP 2009052085W WO 2009099199 A1 WO2009099199 A1 WO 2009099199A1
Authority
WO
WIPO (PCT)
Prior art keywords
cobalt oxide
oxide fine
core
shell type
fine particle
Prior art date
Application number
PCT/JP2009/052085
Other languages
English (en)
French (fr)
Inventor
Noriya Izu
Ichiro Matsubara
Toshio Itoh
Woosuck Shin
Maiko Nishibori
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to US12/865,427 priority Critical patent/US20110003156A1/en
Publication of WO2009099199A1 publication Critical patent/WO2009099199A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/04Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2998Coated including synthetic resin or polymer

Definitions

  • the present invention relates to a core-shell type cobalt oxide fine particle or a dispersion containing the same, a method for producing the same, and a use thereof. More specifically, the present invention includes a core-shell type cobalt oxide fine particle that can be applied to a pigment, a catalyst, and the like. The present invention relates to a dispersion, the cobalt oxide fine particles for producing them, a method for producing a dispersion containing the same, and a product thereof.
  • the present invention is a core-shell type cobalt oxide fine particle having a particle size of about 50 to 200 nm, a small particle size distribution (standard deviation of particle size), and spherical, and secondary particles in the core portion are also spherical and large.
  • the manufacturing method of these and those uses are provided.
  • Cobalt oxide is a well-known material as a pigment raw material.
  • the prior art discloses the use of cobalt oxide as a pigment (see Patent Documents 1 and 2).
  • the pigment when the dispersibility of the contained fine particles is poor, the coating properties of the pigment are deteriorated, so that good dispersibility is required.
  • the application of the pigment by inkjet can draw very fine lines and surfaces, but for this purpose, the fine particles contained in the pigment need to be small. Therefore, although attention is paid to the dispersibility of nanoparticles and the like, generally, the smaller the particle, the stronger the cohesion and the worse the performance as a pigment.
  • the nanoparticle synthesis method is either a gas phase process or a liquid phase process, it generally aggregates strongly unless the nanoparticles are suppressed after the nanoparticles are generated. Once the nanoparticles are strongly agglomerated, it is generally difficult to remove the agglomeration even if a treatment for releasing the agglomeration is performed.
  • Patent Document 3 discloses a technique for mechanically deaggregating using ceramic beads (see Patent Document 3), in this case, it is considered that impurities are mixed, and the dispersion is performed in a solvent. It is necessary to add an agent. From the above, it is necessary to synthesize cobalt oxide fine particles that are easy to disperse, that is, do not easily aggregate, without the addition of a dispersing agent as a method for solving the aggregation.
  • the nanoparticles Once the nanoparticles have aggregated, separation is difficult, so if they are treated before aggregation, that is, at the same time as the formation of the nanoparticles, they should give cobalt oxide fine particles that are easy to disperse. is there.
  • the present inventors in view of the above-mentioned conventional technique, suppress the aggregation of nanoparticles, and a method for producing nanosized cobalt oxide fine particles having a long-term stability and a dispersion thereof.
  • a method for producing nanosized cobalt oxide fine particles having a long-term stability and a dispersion thereof As a result of accumulating diligent research with the goal of developing an organic solvent, there are many advantages such as being able to use an organic solvent and sometimes not requiring a reaction initiator by using the reflux method.
  • We have discovered new findings such as the ability to use inexpensive acetates instead of expensive alkoxides, and the ability to prepare core-shell type cobalt oxide microparticles and dispersions thereof that suppress the aggregation of nanoparticles. Over time, the present invention has been completed.
  • the present invention is a core-shell type cobalt oxide fine particle having a particle size of about 50 to 200 nm, a small particle size distribution (standard deviation of particle size), a spherical shape, and two core portions.
  • the secondary particles are spherical and uniform in size, and provide a core-shell type cobalt oxide fine particle having good dispersibility in the liquid and the cobalt oxide fine particle dispersion, and the reflux method is applied to the above concept.
  • An object of the present invention is to provide a method for producing the core-shell type cobalt oxide fine particles, the cobalt oxide fine particle dispersion, and uses thereof.
  • the present invention for solving the above-described problems comprises the following technical means.
  • (1) Core-shell type cobalt oxide fine particles 1) The core portion is a secondary particle in which primary particles of cobalt oxide are aggregated in a spherical shape, 2) The shape of the secondary particles is uniform, and 3) A core-shell type cobalt oxide fine particle characterized in that an organic polymer layer serving as a shell portion is present on the surface of the secondary particle, and 4) the average particle size of the fine particle is from 50 nm to 200 nm.
  • the organic polymer layer is composed of polyvinyl pyrrolidone (PVP), hydroxypropyl cellulose (HPC), or an organic polymer of polyol, or an organic polymer in which the organic polymer is crosslinked,
  • PVP polyvinyl pyrrolidone
  • HPC hydroxypropyl cellulose
  • the core-shell type cobalt oxide fine particles according to (1) wherein the core-shell type cobalt oxide fine particles according to (1) are not separated from the secondary particles in the core portion even when washed, and the layer is present at a ratio of 10 wt% to 20 wt%.
  • the core-shell type cobalt oxide fine particles according to (1) wherein the primary particle diameter is 10 to 20 nm and the coefficient of variation of the secondary particle diameter is 0.2 or less.
  • a core-shell type cobalt oxide fine particle powder comprising: (5) The core-shell type cobalt oxide fine particle according to any one of (1) to (3) or the core-shell type cobalt oxide fine particle powder according to claim 4 is dispersed in a dispersion medium. Core shell type cobalt oxide fine particle dispersion.
  • a core shell comprising: a step of mixing a molecule and distilled water with a high boiling point organic solvent to obtain a mixture; and a step of heating and refluxing the mixture at a temperature of 190 ° C. or higher to precipitate cobalt oxide fine particles.
  • the cobalt salt is cobalt acetate
  • the organic polymer is polyvinyl pyrrolidone (PVP), hydroxypropyl cellulose (HPC), or polyethylene glycol (PEG)
  • the high-boiling organic solvent is diethylene glycol ( (DEG)
  • the average molecular weight in terms of polyethylene glycol of the organic polymer is 4000 to 5000, or the concentration of the cobalt salt is 0.05 kmol / m 3 to 0.20 kmol / m 3
  • the present invention is a core-shell type cobalt oxide fine particle, the core part of which is a secondary particle in which primary particles of cobalt oxide are assembled in a spherical shape, and the shape of the secondary particle is uniform, and the surface of the secondary particle is An organic polymer layer serving as a shell portion is present, and the average particle diameter of the fine particles is 50 nm to 200 nm.
  • the present invention is a dry powder containing the core-shell type cobalt oxide fine particles, and has a property of being well dispersed in a dispersion medium to which no dispersant is added.
  • the present invention is a core-shell type cobalt oxide fine particle dispersion, wherein the core-shell type cobalt oxide fine particles or the core-shell type cobalt oxide fine particle powder is dispersed in a dispersion medium.
  • the core-shell type cobalt oxide fine particles referred to in the present invention are defined to mean fine particles in which an organic polymer layer is present on the surface of secondary particles in which primary particles of cobalt oxide are assembled in a spherical shape (see FIG. 1). ),
  • the core-shell type cobalt oxide particles are different from those in which a polymer exists on the surface of primary particles or secondary particles in which primary particles are irregularly aggregated.
  • Japanese Patent Laid-Open No. 2006-8629 discloses composite particles in which the surface of primary particles or aggregates is coated with a polymer compound.
  • the primary particles or aggregates are not spherical and are not spherical. It has a uniform shape. This is because the metal oxide fine particles synthesized in advance are dispersed and pulverized using a disperser such as a bead mill in the manufacturing method disclosed in the above-mentioned document.
  • the ratio of the polymer to be coated is 25 wt% or more, in the present invention, as will be described later, the ratio of the polymer is 10 to 20 wt%, The molecular layer is less than 25 wt%. This is because organic polymers that are easily liberated are removed by washing. This is also a very different point from the composite particles of the above-mentioned document.
  • the present invention relates to a core-shell type cobalt oxide fine particle having an average particle diameter of the core-shell type cobalt oxide fine particle of 50 nm to 200 nm, and the shape of the secondary particle as the core part is spherical, The shape is spherical, the size is uniform, and the organic polymer that is the shell portion is attached to the surface of the cobalt oxide secondary particles.
  • the present invention is a core-shell type cobalt oxide fine particle dispersion, wherein the core-shell type cobalt oxide fine particles are dispersed in a dispersion medium.
  • the present invention is the above core-shell type cobalt oxide fine particle powder, characterized in that it has a property of being well dispersed in a dispersion medium to which no dispersant is added.
  • the present invention is a method for producing core-shell type cobalt oxide fine particles, comprising a step of obtaining a mixture by mixing a cobalt salt and an organic polymer in a high boiling point organic solvent, and heating the mixture at a temperature of 190 ° C. or higher. And a step of causing the cobalt oxide fine particles to be precipitated by refluxing to cause a crosslinking reaction of the organic polymer.
  • the said salt of cobalt is cobalt acetate.
  • the core-shell type cobalt oxide fine particle dispersion is a dispersion of core-shell type cobalt oxide fine particles, which is a dispersoid, dispersed in a dispersion medium, and can also be called a suspension, sol, or suspension instead of the dispersion. It is. Also, when the viscosity is high, it is also called a paste.
  • the starting materials are cobalt acetate, a high boiling point organic solvent, distilled water and an organic polymer.
  • cobalt acetate may be commercially available and is generally a hydrate.
  • the high-boiling organic solvent is diethylene glycol (DEG), glycerin or the like, and more preferably DEG.
  • the organic polymer is preferably one that dissolves in an organic solvent, such as polyvinyl pyrrolidone (PVP), hydroxypropyl cellulose (HPC), polyethylene glycol (PEG), and more preferably PVP.
  • the concentration of cobalt acetate is preferably 0.05 to 0.2 kmol / m 3 or more.
  • the concentration of the organic polymer is preferably 100 kg / m 3 to 140 kg / m 3 .
  • the concentration of the organic polymer is defined as the weight of the organic polymer added per unit solvent volume.
  • Reasons concentration of the organic polymer is in the range of 100 kg / m 3 of 140 kg / m 3, the above which is too small, there is a possibility that dispersibility is deteriorated.
  • concentration of the organic polymer is more than the above range, spherical cobalt oxide fine particles may not be obtained.
  • distilled water is added to increase the concentration of the resulting cobalt oxide fine particles.
  • the addition ratio of distilled water is preferably a volume ratio of 0.016 or more with respect to the high boiling point organic solvent.
  • the above mixture is heated and refluxed at a temperature of 190 ° C. or higher.
  • This is a step of depositing cobalt oxide by heating and refluxing at a predetermined temperature.
  • an alkali such as sodium hydroxide or ammonia is added, but the present invention is characterized by not requiring it.
  • sodium hydroxide or the like sodium or the like may be mixed into the finally obtained nanoparticles.
  • alkali or the like is not required, so that such impurities cannot be mixed.
  • Heating / refluxing time is 300 minutes or more. If the heating / refluxing time is short, a large amount of unreacted cobalt ions may remain. During heating and reflux, the mixture becomes turbid. Heat and reflux for a predetermined time and cool. Thus, a core-shell type cobalt oxide fine particle dispersion in which the core-shell type cobalt oxide fine particles are dispersed in an organic solvent in which the organic polymer is dissolved is obtained.
  • the generation mechanism of the core-shell type cobalt oxide fine particles is considered as follows.
  • Cobalt oxide primary particles are nucleated in a high-boiling organic solvent (polyol) in which the organic polymer is uniformly dissolved.
  • Primary particles aggregate in a spherical shape. At this time, primary particles are constantly nucleated. 3. The primary particles nucleated on the surface of the aggregated particles (secondary particles) gather in a spherical shape. 4). At this time, cobalt oxide acts as a catalyst on the surface of the secondary particles, and the organic polymer and / or the organic solvent undergoes a crosslinking reaction to form a strong organic polymer layer. 5). When a strong organic polymer layer is sufficiently developed, it cannot aggregate and becomes core-shell type cobalt oxide fine particles.
  • the core-shell type cobalt oxide fine particles are secondary particles in which the primary particles of cobalt oxide are gathered in a spherical shape, and the shape of the secondary particles is uniform, and the shell is formed on the surface of the secondary particles. It is defined as being characterized by the presence of a partial organic polymer layer and the average particle size of the microparticles being between 50 nm and 200 nm.
  • the organic polymer layer in the shell portion is composed of a polyol such as polyvinyl pyrrolidone (PVP), hydroxypropyl cellulose (HPC), polyethylene glycol (PEG) or diethylene glycol (DEG) or a related organic polymer.
  • PVP polyvinyl pyrrolidone
  • HPC hydroxypropyl cellulose
  • DEG diethylene glycol
  • Related organic polymers are organic polymers crosslinked between PVP, organic polymers crosslinked between HPCs, organic polymers crosslinked between PVP and HPC and polyol, organic polymers crosslinked between polyols, and the like.
  • Various organic polymers are included.
  • Japanese Patent Laid-Open No. 6-218276 discloses such a metal oxide polymer composite composition, which is essentially different from the present invention.
  • the dispersion medium is the organic solvent used for the heating / refluxing.
  • the dispersion medium is DEG.
  • the dispersion medium can be replaced by separating the dispersion medium and the dispersoid by centrifugation, removing the dispersion medium, and adding a desired dispersion medium. At this time, the organic polymer in the shell portion is not separated by washing, but is inseparable from the core.
  • the organic polymer used in the heating / refluxing may remain in the dispersion medium, and unreacted Co ions may remain. For this reason, excess organic polymer can be removed by centrifuging and repeating solvent replacement.
  • the core-shell type cobalt oxide fine particles which are the dispersoid of the dispersion obtained by the above method are spherical.
  • the particle diameter is the particle diameter of the core-shell type cobalt oxide fine particles, and is a particle diameter determined by observation with a scanning electron microscope (SEM).
  • the secondary particles in the core part are aggregates of primary particles and may be referred to as primary aggregates.
  • the primary particle size is 10 to 20 nm.
  • Each particle of the spherical cobalt oxide fine particles in the core portion is a secondary particle, not a primary particle.
  • the cobalt oxide fine particles may be those to which monovalent to pentavalent metal ions are added.
  • metal ions such as Na, Ca, Y, Gd, Zr, Hf, and Nb are added.
  • ⁇ Agglomerates of secondary particles may be referred to as secondary aggregates.
  • the refractive index of the dispersion medium and the viscosity of the dispersion medium are required, but literature values can be used for the refractive index of the dispersion medium.
  • the viscosity of the dispersion medium is the same as that of the dispersion liquid, and the viscosity of the dispersion liquid is measured and used.
  • the dispersion obtained by the above method is centrifuged and redispersed in water or ethanol about three times, and dried at, for example, 80 ° C. to obtain a dry powder. About this, it observes by SEM and calculates
  • the average particle diameter of the core-shell type cobalt oxide fine particles is 50 nm to 200 nm. Furthermore, core-shell type cobalt oxide fine particles having a uniform particle size, that is, a small variation coefficient of the particle size can be obtained. In this case, the coefficient of variation is 0.20 or less, and may be about 0.10. This can be confirmed by SEM observation of the dry powder.
  • the particle size in the dispersion medium is not more than twice that of the core-shell type cobalt oxide fine particles. In the dispersion medium, it is shown that the core-shell type cobalt oxide fine particles exist with almost no aggregation.
  • an organic polymer layer is present in the shell portion. This can be confirmed by investigating the dry powder by Fourier transform infrared spectrophotometer (FTIR) analysis and thermogravimetric (TG) analysis. Since the dry powder is subjected to centrifugal separation and redispersion in water or ethanol about three times, excess organic polymer unrelated to the core-shell type cobalt oxide fine particles is removed. Further, since the drying is performed, the dispersion medium is sufficiently removed.
  • the proportion of the organic polymer layer is preferably 10 to 20 wt%.
  • organic polymer for example, PVP, HPC, an organic polymer cross-linked with PVP, an organic polymer cross-linked with HPC, an organic polymer cross-linked with PVP or HPC and polyol, and polyol cross-linked Preferred are organic polymers obtained by reacting these with a cobalt oxide.
  • the dry powder of the present invention can be easily dispersed by using, for example, an ultrasonic homogenizer without requiring a dispersant.
  • the dispersion medium at this time is arbitrary and is preferably, for example, any one of water, ethanol, terpineol, and ethylene glycol, or a mixed solution in which a plurality of them are mixed.
  • the present invention has the following effects. (1) It is possible to provide a core-shell type cobalt oxide fine particle having a particle diameter of about 50 nm to 200 nm, spherical and having good dispersibility in the liquid, and a dispersion thereof. (2) A dry powder of core-shell type cobalt oxide fine particles that can be easily redispersed can be provided. (3) A core-shell type cobalt oxide fine particle dispersion liquid dispersed in an arbitrary dispersion medium can be provided. (4) A high-viscosity core-shell type cobalt oxide fine particle dispersion, that is, a core-shell type cobalt oxide fine particle paste can be provided.
  • a simple method for producing core-shell type cobalt oxide fine particles and a dispersion of the cobalt oxide fine particles can be provided.
  • a high-concentration cobalt oxide fine particle dispersion can be obtained.
  • the above mixture was heated and refluxed at 200 ° C. for 360 minutes. Thereafter, the mixture was cooled to obtain a core-shell type cobalt oxide fine particle dispersion.
  • the dispersion was centrifuged at 18000 rpm, and washed with water and ethanol. After washing, it was dried at 80 ° C. to obtain a powder. The dried powder was observed by SEM, and the particle size distribution was investigated from the photograph.
  • the SEM image of the dry powder is shown in FIG. Spherical fine particles were observed.
  • the particle size determined from the SEM image was 81.1 nm and the coefficient of variation was 0.166. That is, it was confirmed that the particle diameters were uniform and monodispersed.
  • Fig. 3 shows the XRD pattern of the dry powder. This is a diffraction pattern of the NaCl structure and was confirmed to be cobalt oxide. This confirmed that cobalt oxide was contained in the fine particles and dry powder present in the dispersion immediately after reflux. However, a slight peak of CoOOH could be confirmed, and the dry powder was not a single phase of oxide. When the crystallite was calculated from the diffraction peak width, it was confirmed to be 12-14 nm.
  • FIG. 4 shows the IR spectrum of the dry powder. Moreover, IR spectrum of the dry powder of Comparative Example 4 shown later is shown. In Comparative Example 4, PVP and water were not added during the synthesis of Example 1, and the synthesis was performed at a reflux / heating temperature of 180 ° C. Furthermore, the IR spectrum of PVP is also shown. In the IR spectrum of the dry powder of Example 1, an absorption peak was observed at 1600 to 1700 cm ⁇ 1 .
  • Example 1 TG analysis results are shown in FIG. When the temperature was raised to 900 ° C., the weight decreased by about 14%. Considering comprehensively from the results of FTIR and TG, the fine particles of Example 1 have PVP or an organic polymer related to PVP on the surface. Thus, it was confirmed that the fine particles obtained in Example 1 were core-shell type cobalt oxide fine particles in which the core was cobalt oxide and the shell was an organic polymer.
  • Example 1 In the re-dispersed sample of Example 1, the ratio of precipitates was increased by standing for one day, but some of the samples were dispersed. On the other hand, in Comparative Example 5, the precipitation layer and the transparent layer were completely separated. From these facts, the fine particles (Example 1) obtained by adding PVP and the fine particles not obtained (Comparative Example 5) clearly have different redispersibility behavior, and Example 1 is more redispersible. Was found to be easy.
  • Examples 2 and 3 As Examples 2 and 3, experiments were performed under exactly the same conditions as in Example 1.
  • the core of the obtained fine particle was cobalt oxide (however, as described in Example 1, CoOOH was slightly present), and the shape of the fine particle was spherical.
  • the particle sizes were 57.2 and 65.5 nm in Examples 2 and 3, respectively.
  • the coefficient of variation was 0.137 and 0.105 in Examples 2 and 3, respectively.
  • the XRD pattern and IR spectrum were almost the same as in Example 1, and from the above, it was confirmed that the reproducibility was good.
  • Comparative Example 1 As Comparative Example 1, the experiment was performed based on Example 1 (same as Example 1 except for the following conditions), and the heating / refluxing temperature was lowered to 180 ° C. Only a small amount of fine particles were obtained, and it was revealed by SEM observation that the obtained fine particles were not spherical particles. Thus, it was found that spherical fine particles cannot be obtained unless the heating / refluxing temperature is higher than 180 ° C.
  • Example 1 was used as a basis (same as Example 1 except for the following conditions), and the experiment was conducted without adding water (distilled water). Also in this case, only a small amount of fine particles was obtained as in Comparative Example 1, and it was revealed by SEM observation that the obtained fine particles were not spherical particles. Thus, it was found that spherical fine particles cannot be obtained unless water is added.
  • Comparative Example 3 As Comparative Example 3, the experiment was conducted based on Example 1 (same as Example 1 except for the following conditions), with the heating / refluxing temperature lowered to 180 ° C., and without addition of water. In this case as well, as in Comparative Example 1, only a small amount of fine particles was obtained, and it was revealed by SEM observation that the obtained fine particles were not spherical particles.
  • Comparative Example 4 As Comparative Example 4, the experiment was performed without adding PVP, based on Comparative Example 1 (same as Comparative Example 1 except for the following conditions). In this case, many particles were obtained, but SEM observation revealed that they were not spherical particles. As a result of XRD analysis, it was found to be amorphous. Further, the IR pattern did not have an absorption peak in the vicinity of 1600 to 1700 cm ⁇ 1 , and the result was clearly different from Example 1.
  • Example 1 was used as a basis (same as Example 1 except for the following conditions), and the experiment was performed without adding PVP. In this case, too, many particles were obtained in the same manner as Comparative Example 4, but it was revealed by SEM observation that the obtained fine particles were not spherical particles. Thus, it was found that spherical particles cannot be obtained when PVP is not contained. Even when re-dispersion in water was performed, it immediately precipitated. This is because the aggregated particles are large and easily settled.
  • the present invention relates to core-shell type cobalt oxide fine particles or a dispersion containing the same, and a production method and use thereof, and according to the present invention, the particle diameter is about 50 nm to 200 nm and is spherical.
  • the core-shell type cobalt oxide fine particles having good dispersibility in the liquid and the dispersion liquid thereof can be provided.
  • a core-shell type cobalt oxide fine particle dispersion or a pigment containing the cobalt oxide particle dispersion can be provided.
  • the present invention is a core-shell type cobalt oxide fine particle having a particle size of about 50 to 200 nm, a small particle size distribution (standard deviation of particle size), and spherical, and secondary particles in the core portion are also spherical and large.
  • the present invention is useful as a method for producing a cobalt fine particle dispersion and applications thereof.
  • the schematic diagram of a core-shell structure is shown.
  • the SEM image of the dry powder of Example 1 is shown.
  • the XRD pattern of the dry powder of Example 1 is shown.
  • the IR spectrum of the dry powder of Example 1 is shown.
  • the TG curve of the dry powder of Example 1 is shown.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

   本発明は、コアシェル型酸化コバルト微粒子又はそれを含有する分散液、それらの製造方法及び用途を提供することを目的とするものであり、本発明は、粒子径の平均が50~200nmであるコアシェル型酸化コバルト微粒子であって、コア部分の二次粒子の形状が球状であり、その表面にシェルである有機高分子が付着している、前記微粒子、該酸化コバルト微粒子の分散液、該酸化コバルト微粒子分散液の乾燥粉体、及び、コバルトの塩と有機高分子を有機溶媒に混合して混合物を得る工程と、その混合物を所定の温度で加熱・還流してコアシェル型酸化コバルト微粒子を析出する工程とを有する、コアシェル型酸化コバルト微粒子又はその分散液の製造方法であって、前記コバルトの塩が、酢酸コバルトであるコアシェル型酸化コバルト微粒子の製造方法、及びそれらの用途、に係るものである。

Description

コアシェル型酸化コバルト微粒子又はそれを含有する分散液、それらの製造方法及び用途
 本発明は、コアシェル型酸化コバルト微粒子又はそれを含有する分散液、それらの製造方法及び用途に関するものであり、更に詳しくは、顔料や触媒などに応用可能な、コアシェル型酸化コバルト微粒子及びそれを含む分散液、これらを製造するための当該酸化コバルト微粒子及びそれを含む分散液の製造方法及びその製品に関するものである。本発明は、コアシェル型酸化コバルト微粒子であって、その粒径は50~200nm程度、粒径分布(粒径の標準偏差)が小さく、球状であり、コア部分の二次粒子も球状で大きさが揃っており、液中での分散性が良好であるコアシェル型酸化コバルト微粒子及び当該酸化コバルト微粒子分散液、並びに、還流法を適用させた、前記コアシェル型酸化コバルト微粒子及び当該酸化コバルト微粒子分散液の製造方法及びそれらの用途を提供するものである。
 酸化コバルトは、顔料の原料として有名な材料であり、例えば、先行文献には、酸化コバルトの顔料としての用途について開示されている(特許文献1、2参照)。顔料としては、含有する微粒子の分散性が悪いと顔料の塗布特性が悪くなるため、良好な分散性が必要となる。
 インクジェットでの顔料の塗布は、非常に微細な線や面を描画できるが、このためには、顔料に含まれる微粒子が小さい必要がある。そのため、ナノ粒子などの分散性について注目されているが、一般に、粒子が小さくなればなるほど凝集性が強くなり、顔料としての性能は悪くなる。
 上記用途用の酸化コバルト微粒子分散液を作製する場合、通常の方法により、単に乾燥した酸化コバルト微粒子を分散媒に分散させるだけでは、安定した分散液を得ることができない。これは、安定した分散液を得るためには、一度凝集した酸化コバルト微粒子の凝集を解く必要があるためである。
 ナノ粒子の合成方法が、気相プロセス、あるいは液相プロセスのいずれの場合であっても、ナノ粒子が生成した後、凝集を抑制しない限り、一般に、強固に凝集してしまう。一度、ナノ粒子が強固に凝集すると、凝集を解くための処理を行っても、凝集を解くことは、一般に、困難である。
 先行文献には、セラミックビーズを使って機械的に凝集を解く技術が開示されているが(特許文献3参照)、この場合、問題点として、不純物の混入が考えられ、また、溶媒に、分散剤を添加する必要が有る。以上のことから、凝集を解く方法が、機械的な手法でなく、また、分散剤の添加を必要としないで、分散しやすい、すなわち凝集しにくい酸化コバルト微粒子を合成する必要がある。
 ナノ粒子が一度凝集してしまうと、乖離が困難なことから、凝集する前、すなわち、ナノ粒子の生成と同時に、凝集を抑制する処理を施せば、分散しやすい酸化コバルト微粒子が得られるはずである。
 このとき、高分子が溶解した分散媒を反応場として使用すれば、酸化コバルト微粒子の生成と同時に凝集を抑制でき、それにより、安定な酸化コバルト微粒子分散液が得られると考えられる。また、酸化コバルト微粒子分散液を乾燥させたとしても、凝集抑制処理を行っているため、それを、再度分散媒に再分散させれば、容易に分散することが予想される。
 酸化コバルトに関する報告ではないが、このようなコンセプトを、ゾルゲル法あるいは加水分解法に適用した例が報告されている(非特許文献1~4、特許文献4参照)。しかしながら、これまで、このようなコンセプトを、酸化コバルト微粒子を析出させる還流法に適用した事例は見当たらない。
 これまで、酸化コバルトの微粒子やナノ粒子の合成については幾つかの報告がなされている(特許文献5~7参照)。また、先行文献には、それぞれ、金属酸化物超微粒子とその製造方法、及び金属酸化物微粒子が開示されているが(特許文献8、9参照)、上記先行文献には、例えば、粒径は50~200nm程度で、金属酸化物の粒径分布(粒径の標準偏差)が小さく、10から20nm程度の金属酸化物の一次粒子が集合した球状二次粒子であり、液中での分散性が良好であるコアシェル型の酸化コバルト微粒子又はコアシェル型酸化コバルト微粒子分散液に関する記述は何もなされていない。
特開2007-284340号公報 特開2006-291215号公報 特開2004-35632号公報 特開平2-92810号公報 特開2007-76975号公報 特開2007-1809号公報 特開2002-211930号公報 特開平6-218276号公報 特開2006-8629号公報 H.Yang,C.Huang,X.Su,Materials Letters,60(2006)3714 Z.T.Zhang,B.Zhao,L.M.Hu,J.Solid State Chem.,121(1996)105 D.L.Tao,F.Wei,Mater.Lett.58(2004)3226 G.C.Xi,Y.Y.Peng,L.Q.Xu,M.Zhang,W.C.Yu,Y.T.Qian Inorg.Chem.Commun.7(2004)607
 このような状況の中で、本発明者らは、上記従来技術に鑑みて、ナノ粒子の凝集を抑制して、長期安定性を保持したナノサイズの酸化コバルト微粒子及びその分散液を製造する方法を開発することを目標として鋭意研究を積み重ねた結果、還流法を用いることで、有機溶媒が使えること、反応開始剤を必要としない場合があるなど、有利な点が多いこと、原料としては、高価なアルコキシドでなく、安価な酢酸塩が好適に使用できること、それにより、ナノ粒子の凝集を抑制したコアシェル型酸化コバルト微粒子及びその分散液を調製できること、などの新規な知見を見出し、更に研究を重ねて、本発明を完成するに至った。
 本発明は、以上のことを踏まえて、コアシェル型酸化コバルト微粒子であって、その粒径は50~200nm程度、粒径分布(粒径の標準偏差)が小さく、球状であり、コア部分の二次粒子も球状で大きさが揃っており、液中での分散性が良好であるコアシェル型酸化コバルト微粒子及び当該酸化コバルト微粒子分散液を提供すること、及び、還流法を上記コンセプトに適用させた、前記コアシェル型酸化コバルト微粒子及び当該酸化コバルト微粒子分散液の製造方法及びそれらの用途を提供すること、を目的とするものである。
 上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)コアシェル型酸化コバルト微粒子であって、1)そのコア部分は酸化コバルトの一次粒子が球状に集合した二次粒子であり、2)その二次粒子の形状は揃っており、3)その二次粒子表面にシェル部分となる有機高分子の層が存在し、4)該微粒子の粒径の平均が50nmから200nmである、ことを特徴とするコアシェル型酸化コバルト微粒子。
(2)前記有機高分子の層が、ポリビニルピロリドン(PVP)、ヒドロキシプロピルセルロース(HPC)、又はポリオールの有機高分子、あるいは該有機高分子が架橋した有機高分子で構成され、その層が、洗浄してもコア部分の二次粒子から分離することがなく、かつ、その層が、10wt%から20wt%の割合で存在している、前記(1)に記載のコアシェル型酸化コバルト微粒子。
(3)一次粒子径が10から20nmであり、かつ、二次粒子径の変動係数が0.2以下である、前記(1)に記載のコアシェル型酸化コバルト微粒子。
(4)前記(1)から(3)のいずれか1項に記載のコアシェル型酸化コバルト微粒子を含有する乾燥粉体であって、分散剤を添加していない分散媒に良好に分散する性質を有することを特徴とするコアシェル型酸化コバルト微粒子粉体。
(5)前記(1)から(3)のいずれか1項に記載のコアシェル型酸化コバルト微粒子又は請求項4に記載のコアシェル型酸化コバルト微粒子粉体が分散媒中に分散したことを特徴とするコアシェル型酸化コバルト微粒子分散液。
(6)前記分散媒が、水、エタノール、テルピネオール、エチレングリコールのいずれか一つ、あるいは、これらが複数混合している混合溶液である、前記(5)に記載のコアシェル型酸化コバルト微粒子分散液又は酸化コバルト微粒子分散液。
(7)前記(1)から(3)のいずれか1項に記載の微粒子、前記(4)に記載の微粒子粉体又前記(5)若しくは(6)に記載の微粒子分散液を含有することを特徴とする顔料。
(8)前記(1)から(6)のいずれか1項に記載のコアシェル型酸化コバルト微粒子、酸化コバルト微粒子粉体又は酸化コバルト微粒子分散液を製造する方法であって、コバルトの塩、有機高分子及び蒸留水を高沸点有機溶媒に混合して混合物を得る工程と、その混合物を190℃以上の温度で加熱・還流して酸化コバルト微粒子を析出する工程とを有することを特徴とする、コアシェル型酸化コバルト微粒子、酸化コバルト微粒子粉体又は酸化コバルト微粒子分散液の製造方法。
(9)前記コバルトの塩が、酢酸コバルトであり、前記有機高分子が、ポリビニルピロリドン(PVP)、ヒドロキシプロピルセルロース(HPC)又はポリエチレングリコール(PEG)であり、前記高沸点有機溶媒が、ジエチレングリコール(DEG)である、前記(9)に記載の酸化コバルト微粒子、酸化コバルト微粒子粉体又は酸化コバルト微粒子分散液の製造方法。
(10)前記有機高分子の濃度(単位有機溶媒体積当たりに添加した有機高分子重量)が、100kg/mから140kg/mである、前記(8)又は(9)に記載の酸化コバルト微粒子、酸化コバルト微粒子粉体又は酸化コバルト微粒子分散液の製造方法。
(11)前記有機高分子のポリエチレングリコール換算での平均分子量が、4000から5000である、あるいは、前記コバルトの塩の濃度が0.05kmol/mから0.20kmol/mである、前記(8)又は(9)に記載の酸化コバルト微粒子、酸化コバルト微粒子粉体又は酸化コバルト微粒子分散液の製造方法。
(12)前記蒸留水の添加割合が、前記高沸点有機溶媒に対して0.016以上の体積比である、前記(8)又は(9)に記載の酸化コバルト微粒子、酸化コバルト微粒子粉体又は酸化コバルト微粒子分散液の製造方法。
 次に、本発明について更に詳細に説明する。
 本発明は、コアシェル型酸化コバルト微粒子であって、そのコア部分は酸化コバルトの一次粒子が球状に集合した二次粒子であり、その二次粒子の形状は揃っており、その二次粒子表面にシェル部分となる有機高分子の層が存在し、該微粒子の粒径の平均が50nmから200nmである、ことを特徴とするものである。また、本発明は、上記コアシェル型酸化コバルト微粒子を含有する乾燥粉体であって、分散剤を添加していない分散媒に良好に分散する性質を有することを特徴とするものである。また、本発明は、コアシェル型酸化コバルト微粒子分散液であって、上記コアシェル型酸化コバルト微粒子又は上記コアシェル型酸化コバルト微粒子粉体が分散媒中に分散したことを特徴とするものである。
 本発明で言うコアシェル型酸化コバルト微粒子とは、酸化コバルトの一次粒子が球状に集合した二次粒子表面に有機高分子層が存在する微粒子を意味するものとして定義されるものであり(図1参照)、該コアシェル型酸化コバルト粒子は、一次粒子又は一次粒子が不規則に凝集した二次粒子の表面に高分子が存在するものとは異なる。
 先行文献(特開2006-8629号公報)には、一次粒子又は凝集体の表面に高分子化合物が被覆した複合粒子が開示されているが、この一次粒子又は凝集体は、球状ではなく、不均一な形状をしている。それと言うのも、上記文献に開示されている製造方法では、予め合成された金属酸化物微粒子をビーズミルなどの分散機を使って分散及び解砕しているためである。
 この分散工程では、一次粒子あるいは一次粒子の凝集粒子に解砕されるが、解砕後の一次粒子の凝集粒子は、本発明のコアシェル型酸化コバルト粒子のように、粒子が、球状で、大きさが揃うことは有り得ない。更に、被覆する高分子の割合は25wt%以上であることが上記文献に記載されているが、本発明では、後記するように、高分子の割合は、10から20wt%であって、有機高分子の層が25wt%より少ない。これは、遊離しやすい有機高分子は、洗浄により取り除かれているためである。このことも、上記文献の複合粒子とは大きく異なる点である。
 本発明は、コアシェル型酸化コバルト微粒子の粒径の平均が、50nmから200nmであるコアシェル型酸化コバルト微粒子であって、コア部分である二次粒子の形状が球状であること、その二次粒子の形状は球状であって、大きさが揃っていること、酸化コバルト二次粒子表面に、シェル部分である有機高分子が付着していること、を特徴とするものである。
 また、本発明は、コアシェル型酸化コバルト微粒子分散液であって、上記のコアシェル型酸化コバルト微粒子が分散媒中に分散したこと、を特徴とするものである。また、本発明は、上記のコアシェル型酸化コバルト微粒子粉体であって、分散剤を添加していない分散媒に良好に分散する性質を有することを特徴とするものである。
 更に、本発明は、コアシェル型酸化コバルト微粒子の製造方法であって、コバルトの塩と有機高分子を高沸点有機溶媒に混合して混合物を得る工程と、その混合物を190℃以上の温度で加熱・還流して酸化コバルト微粒子を析出させ、有機高分子の架橋反応を生じさせる工程とを有すること、を特徴とするものである。また、本発明では、前記コバルトの塩が、酢酸コバルトであることを、好ましい実施の態様としている。
 ここで、コアシェル型酸化コバルト微粒子分散液とは、分散質であるコアシェル型酸化コバルト微粒子が分散媒に分散したものであり、分散液の代わりに、懸濁液、ゾル、サスペンジョンとも言うことが可能である。また、粘度が高い場合は、ペーストとも言う。
 まず、本発明のコアシェル型酸化コバルト微粒子分散液の製造方法について説明すると、出発原料となるのは、酢酸コバルト、高沸点有機溶媒、蒸留水及び有機高分子である。これらのうち、酢酸コバルトは、市販されているもので良く、一般には、水和物である。
 金属イオンを添加した(ドープした)酸化コバルト微粒子を得る場合は、酢酸コバルトの他に、金属塩を添加する。また、高沸点有機溶媒としては、ジエチレングリコール(DEG)、グリセリンなどであり、より好ましくはDEGである。更に、有機高分子としては、有機溶媒に溶解するものが好ましく、例えば、ポリビニルピロリドン(PVP)、ヒドロキシプロピルセルロース(HPC)、ポリエチレングリコール(PEG)などであり、より好ましくは、PVPである。
 これらの原料を混合し、溶解させる。これが、コバルトの塩、有機高分子及び蒸留水を高沸点有機溶媒に混合して混合物を得る工程である。このとき、酢酸コバルトの濃度は、0.05から0.2kmol/m以上であることが好ましい。有機高分子の濃度は、100kg/mから140kg/mであることが好ましい。
 ここで、有機高分子の濃度とは、単位溶媒体積当たりに添加した有機高分子の重量と定義される。有機高分子の濃度が100kg/mから140kg/mの範囲である理由は、これより少な過ぎると、分散性が悪くなる可能性があるためである。また、有機高分子の濃度が上記範囲より多過ぎると、球状の酸化コバルト微粒子が得られない可能性があるためである。また、得られる酸化コバルト微粒子の濃度を多くするために、蒸留水を加える。蒸留水の添加割合は、高沸点有機溶媒に対して、0.016以上の体積比であることが好ましい。
 次に、上記混合物を190℃以上の温度で加熱・還流するが、これが、所定の温度で加熱・還流して酸化コバルトを析出する工程である。一般に、酸化物を析出させる場合、水酸化ナトリウム、アンモニアなどのアルカリなどを加えるが、本発明は、それを必要としないことが特徴である。水酸化ナトリウムなどを加えると、最終的に得られるナノ粒子にナトリウムなどが混入する恐れがあるが、本発明では、アルカリなどを必要としないため、そのような不純物の混入は有り得ない。
 加熱・還流時間は、300分以上である。加熱・還流時間が短いと、未反応のコバルトイオンが多く残留する可能性がある。加熱・還流中に、混合液は、濁りを増す。所定の時間加熱・還流を行い、冷却する。こうして、有機高分子が溶解した有機溶媒に、コアシェル型酸化コバルト微粒子が分散した、コアシェル型酸化コバルト微粒子分散液が得られる。コアシェル型酸化コバルト微粒子の生成メカニズムは、以下のように考えられる。
1.有機高分子が均一に溶解している高沸点有機溶媒(ポリオール)中に酸化コバルトの一次粒子が核生成する。
2.一次粒子が球状に凝集する。このときも、絶えず一次粒子が核生成する。
3.凝集粒子(二次粒子)の表面に核生成した一次粒子が球状に集まってくる。
4.このとき、二次粒子の表面で酸化コバルトが触媒として働き、有機高分子及び/又は有機溶媒が架橋反応を生じて、強固な有機高分子層が形成される。
5.強固な有機高分子層が十分発達すると、凝集ができなくなり、コアシェル型酸化コバルト微粒子となる。
 本発明において、コアシェル型酸化コバルト微粒子は、そのコア部分は、酸化コバルトの一次粒子が球状に集合した二次粒子であり、その二次粒子の形状は揃っており、その二次粒子表面にシェル部分となる有機高分子の層が存在し、該微粒子の粒径の平均が50nmから200nmである、ことで特徴付けられるものとして定義される。
 シェル部分の有機高分子層は、ポリビニルピロリドン(PVP)、ヒドロキシプロピルセルロース(HPC)、ポリエチレングリコール(PEG)やジエチレングリコール(DEG)などのポリオール又はこれらの関連有機高分子で構成されたものである。関連有機高分子とは、PVP同士で架橋した有機高分子、HPC同士で架橋した有機高分子、PVPやHPCとポリオールとが架橋した有機高分子、ポリオール同士が架橋した有機高分子などであり、このような有機高分子が種々含まれたものである。
 酸化コバルトが触媒作用を引き起こすには、熱が必要と考えられ、このために、190℃以上の温度での加熱・還流が必要となる。加熱・還流温度が低い場合、例え、一次粒子が生成したとしても、コアシェル型とはならない。一次粒子が凝集しなければ、本発明で言うコアシェル型酸化コバルト微粒子とはならない。
 この場合、未反応の有機高分子が多く存在するため、溶媒を揮発させると、高分子マトリックス中に一次粒子が取り残された酸化コバルト高分子複合組成物となるが、これは、明らかに、コアシェル型酸化コバルト微粒子とは異なる。
 また、この場合、例え、凝集が生じても、酸化コバルト表面での触媒反応がないため、有機高分子層が形成できず、形態が不均一な凝集粒子となる。先行文献(特開平6-218276号公報)には、このような金属酸化物高分子複合組成物が開示されているが、これと、本発明とは、本質的に異なるものである。
 後記する実施例で示すように、ある臨界となる温度より低いと、コアシェル型酸化コバルト微粒子が生成しないため、高温での加熱・還流が不可欠である。上記加熱・還流の直後に得られる、コアシェル型酸化コバルト微粒子分散液では、分散媒は、加熱・還流に用いた有機溶媒となる。例えば、ジエチレングリコール(DEG)で加熱・還流を行えば、分散媒は、DEGである。
 分散媒を任意の分散媒に変更したい場合は、分散媒の置換を行えば良い。例えば、遠心分離などで、分散媒と分散質とを分離し、分散媒を取り除き、所望の分散媒を加えることにより、分散媒の置換を行うことが可能である。このとき、シェル部分の有機高分子は、洗浄によって、分離するものではなく、コアと不可分のものである。
 上記加熱・還流で用いた有機高分子は、分散媒中に残留しており、また、未反応のCoイオンも残っていることが考えられる。このため、余分な有機高分子などは、遠心分離を施し、溶媒置換を繰り返すことで、除去することが可能である。上記方法より得られる分散液の分散質であるコアシェル型酸化コバルト微粒子は、球状である。ここでの粒径とは、コアシェル型酸化コバルト微粒子の粒子径であり、走査電子顕微鏡(SEM)観察で求められる粒径である。
 コア部分の二次粒子は、一次粒子の集合体であり、一次凝集体と言う場合もある。一次粒子径は、10から20nmである。コア部分の球状の酸化コバルト微粒子の1つ1つの粒子は、二次粒子であり、一次粒子ではない。また、酸化コバルト微粒子は、1価~5価の金属イオンが添加されたものであっても良い。例えば、Na、Ca、Y、Gd、Zr、Hf、Nbなどの金属イオンが添加される。
 二次粒子(微粒子)が凝集したものを二次凝集体と言う場合もある。動的光散乱(DLS)法では、分散媒の屈折率と分散媒の粘度が必要であるが、分散媒の屈折率は、文献値を用いることができる。また、分散媒の粘度は、分散液の粘度と同一として、分散液の粘度を測定し、それを使用する。
 このようにして、平均粒径(d)及び標準偏差(s)を求め、変動係数c(=s/d)を計算する。また、上記方法より得られる分散液を、遠心分離と水やエタノールへの再分散を3回程度行い、例えば、80℃で乾燥させることで、乾燥粉体が得られる。これについて、SEMで観察し、形状、平均粒径、標準偏差を求める。
 コアシェル型酸化コバルト微粒子の平均粒径は、50nmから200nmである。更に、粒径が揃った、すなわち、粒径の変動係数が小さいコアシェル型酸化コバルト微粒子が得られる。この場合の変動係数は0.20以下であり、0.10程度の場合もある。これは、乾燥粉体のSEM観察で確認できる。また、分散媒中での粒径は、コアシェル型酸化コバルト微粒子の2倍以下である。分散媒中では、コアシェル型酸化コバルト微粒子は、ほとんど凝集せずに存在することが示される。
 また、コアシェル型酸化コバルト微粒子の表面には、当然ながら、シェル部分に有機高分子層が存在している。これは、上記乾燥粉体について、フーリエ変換赤外分光光度計(FTIR)分析及び熱重量(TG)分析で調査し、確認することができる。上記乾燥粉体は、遠心分離と水やエタノールへの再分散を3回程度行っていることから、コアシェル型酸化コバルト微粒子と無関係な、余分な有機高分子は除去されている。また、乾燥を行っていることから、分散媒も十分除去されている。有機高分子層の割合は、10から20wt%が好ましい。
 フーリエ変換赤外分光光度計(FTIR)で観察される酸化コバルト以外の吸収ピークは、酸化コバルト微粒子表面に存在するものに起因するものであり、それは、有機高分子の吸収と似ていること、及び、分散媒の沸点よりも高温で重量変化が存在することにより、酸化コバルト微粒子の表面に有機高分子が付着している、との結論が導かれる。
 ここで、有機高分子としては、例えば、PVP、HPC、PVP同士で架橋した有機高分子、HPC同士で架橋した有機高分子、PVPやHPCとポリオールとが架橋した有機高分子、ポリオール同士が架橋した有機高分子又はそれらと酸化コバルトとが反応したものが好ましい。
 上記乾燥粉体を分散媒に再分散しても容易に分散する。これは、一般の粉体と異なる特性である。一般には、粉体を一度乾燥させると、強固に凝集するため、粉体を再分散させようとしても容易に分散しない。しかし、本発明の乾燥粉体は、例えば、超音波ホモジナイザーを使うだけで、分散剤は必要としないで、容易に分散させることができる。このときの分散媒は、任意であり、好適には、例えば、水、エタノール、テルピネオール、エチレングリコールのいずれか一つ、あるいは、複数混合している混合溶液、である。
 本発明により、次のような効果が奏される。
(1)粒径が50nmから200nm程度で、球状で、液中での分散性が良好であるコアシェル型酸化コバルト微粒子及びその分散液を提供することができる。
(2)容易に再分散するコアシェル型酸化コバルト微粒子の乾燥粉体を提供できる。
(3)任意の分散媒に分散したコアシェル型酸化コバルト微粒子分散液を提供できる。
(4)高粘度であるコアシェル型酸化コバルト微粒子分散液、すなわち、コアシェル型酸化コバルト微粒子ペーストを提供できる。
(5)コアシェル型酸化コバルト微粒子及び当該酸化コバルト微粒子の分散液の簡便な製造方法を提供できる。
(6)高濃度の酸化コバルト微粒子分散液が得られる。
(7)インクジェットなどによる高精細な印刷、描画が可能である顔料を提供できる。
 次に、本発明を実施例に基づいて具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。
[実施例1]
 30cmのジエチレングリコール(DEG)(和光純薬製)に、水、ポリビニルピロリドン(PVP)(シグマアルドリッチ製)及びCo(CHCOO)・4HO(酢酸コバルト四水和物)(和光純薬製)を加え、撹拌した。水は、DEGの1cmに対して、0.017cm加えた。加えたポリマーの濃度は120kg/mとした。PVPの平均分子量は、カタログ値で10,000であり、ポリエチレングリコール換算での平均分子量が4,000から5,000である。Co(CHCOO)・4HOの濃度は、0.10kmol/m(1kmol/m=1mol/L)とした。
 上記混合物を加熱し、200℃で360min加熱・還流した。その後、冷却し、コアシェル型酸化コバルト微粒子分散液を得た。未反応物や、余分なPVPを除去するために、分散液を18000rpmの条件で遠心分離し、水及びエタノールで洗浄した。洗浄後、80℃で乾燥させ、粉体を得た。乾燥粉体をSEM観察し、その写真から、粒度分布を調査した。
 乾燥粉体のSEM像を図2に示す。球状の微粒子が観察された。SEM像から求めた粒径は81.1nmであり、変動係数は0.166であった。すなわち、粒径が揃っており、単分散であることが確認された。
 図3に、乾燥粉体のXRDパターンを示す。これは、NaCl構造の回折パターンであり、酸化コバルトであることが確認された。これによって、還流直後の分散液中に存在する微粒子及び乾燥粉体に、酸化コバルトが含有していることが確認された。ただし、わずかにCoOOHのピークも確認でき、乾燥粉体では、酸化物の単相ではなかった。回折ピーク幅から結晶子を計算すると、12-14nmであることが確認された。
 図4に、乾燥粉体のIRスペクトルを示す。また、後で示す比較例4の乾燥粉体のIRスペクトルを示す。比較例4は、実施例1の合成時にPVP及び水を添加しないで、かつ、還流・加熱温度が180℃で合成したものである。更に、PVPのIRスペクトルも併せて示す。実施例1の乾燥粉体のIRスペクトルには、1600から1700cm-1に吸収ピークが観察された。
 一方、比較例4の乾燥粉体のIRスペクトルには、吸収ピークは、観察されなかった。PVPのIRスペクトルにも、1600から1700cm-1に吸収ピークが観察されることから、比較例4では、観察されず、実施例1で観察される1600から1700cm-1のピークは、PVPに関連する吸収ピークであることが確認された。
 TG分析結果を図5に示す。900℃まで昇温すると、14%ほど重量が減少した。FTIR及びTGの結果から総合的に考えると、実施例1の微粒子は、表面にPVP又はPVPに関連した有機高分子が存在する。これによって、実施例1で得られた微粒子は、コアが酸化コバルト、シェルが有機高分子である、コアシェル型酸化コバルト微粒子であることが確認された。
 実施例1の乾燥粉体を、水に再分散させた分散液と、比較例5の乾燥粉体を水に再分散させた分散液の水中での分散安定性について調べた。比較例5については、後で詳細に記載する。実施例1又は比較例5の乾燥粉体0.02gを、水2cmに分散させ、分散液が沈殿する様子を観察した。
 超音波ホモジナイザーで3分間照射(アウトプット9.5)しても、両サンプルの沈殿物が残っていたので、手で振とうし、更に、6分間超音波を照射(アウトプット9.5)した。そうすると、実施例1のサンプルは、沈殿物がわずかに存在するが、液が茶色に濁り、再分散した。しかし、比較例5では、すぐに沈殿し、大部分が透明層となり、ほとんど再分散しなかった。
 実施例1の再分散サンプルは、一日放置することにより、沈殿物の割合は増えたが、分散しているものもあった。一方、比較例5では、沈殿層と透明層が完全に分離した。これらのことから、PVPを添加して得られた微粒子(実施例1)と、そうでない微粒子(比較例5)では、明らかに再分散性の挙動が異なり、実施例1の方が再分散性が容易であることが分かった。
[実施例2、3]
 実施例2、3として、実施例1における実験条件と全く同じ条件で実験を行った。いずれの実施例でも、得られた微粒子のコアは、酸化コバルト(但し、実施例1でも述べたように、わずかにCoOOHが存在した。)であり、微粒子の形状は球状であった。粒径は、実施例2及び3で、それぞれ57.2及び65.5nmであった。また、変動係数は、実施例2及び3で、それぞれ0.137及び0.105であった。また、XRDパターンやIRスペクトルも、ほぼ実施例1と同じであり、以上のことから、再現性が良いことが確認された。
[比較例1]
 比較例1として、実施例1を基本とし(次に示す条件以外は、実施例1と同じ)、加熱・還流温度を180℃に下げて、実験を行った。わずかな量の微粒子しか得られず、得られた微粒子は、球状粒子ではないことが、SEM観察で明らかとなった。これによって、加熱・還流温度は、180℃よりも高温でないと、球状の微粒子が得られないことが分かった。
[比較例2]
 比較例2として、実施例1を基本とし(次に示す条件以外は、実施例1と同じ)、水(蒸留水)の添加なしで実験を行った。この場合も、比較例1と同じでわずかな量の微粒子しか得られず、得られた微粒子は、球状粒子ではないことが、SEM観察で明らかとなった。これによって、水を添加しないと、球状の微粒子が得られないことが分かった。
[比較例3]
 比較例3として、実施例1を基本とし(次に示す条件以外は、実施例1と同じ)、加熱・還流温度を180℃に下げ、かつ、水の添加なしで実験を行った。この場合も、比較例1と同じで、わずかな量の微粒子しか得られず、得られた微粒子は、球状粒子ではないことが、SEM観察で明らかとなった。
[比較例4]
 比較例4として、比較例1を基本とし(次に示す条件以外は、比較例1と同じ)、PVPを添加しないで実験を行った。この場合、粒子は、多く得られたが、SEM観察の結果、球状粒子ではないことが明らかとなった。また、XRD分析の結果、非晶質であることが分かった。更に、IRパターンには、1600から1700cm-1付近に吸収ピークがなく、実施例1とは明らかに異なる結果であった。
[比較例5]
 比較例5として、実施例1を基本とし(次に示す条件以外は、実施例1と同じ)、PVPを添加しないで実験を行った。この場合も、比較例4と同じで、粒子は多く得られたが、得られた微粒子は、球状粒子ではないことが、SEM観察で明らかとなった。これによって、PVPを含有していない場合、球状粒子は得られないことが分かった。水への再分散実験を行っても、すぐに沈殿した。これは、凝集粒子が大きく、沈殿しやすくなったためである。
 以上詳述した通り、本発明は、コアシェル型酸化コバルト微粒子又はそれを含有する分散液、それらの製造方法及び用途に係るものであり、本発明により、粒径が50nmから200nm程度で、球状で、液中での分散性が良好であるコアシェル型酸化コバルト微粒子及びその分散液を提供することができる。また、本発明により、コアシェル型酸化コバルト微粒子分散液又は該酸化コバルト粒子分散液を含有する顔料を提供することができる。本発明は、コアシェル型酸化コバルト微粒子であって、その粒径は50~200nm程度、粒径分布(粒径の標準偏差)が小さく、球状であり、コア部分の二次粒子も球状で大きさが揃っており、液中での分散性が良好であるコアシェル型酸化コバルト微粒子及び当該酸化コバルト微粒子分散液を提供すること、及び、還流法を適用させた、前記コアシェル型酸化コバルト微粒子及び当該酸化コバルト微粒子分散液の製造方法及びそれらの用途を提供するものとして有用である。
コアシェル構造の模式図を示す。 実施例1の乾燥粉体のSEM像を示す。 実施例1の乾燥粉体のXRDパターンを示す。 実施例1の乾燥粉体のIRスペクトルを示す。 実施例1の乾燥粉体のTG曲線を示す。

Claims (12)

  1.  コアシェル型酸化コバルト微粒子であって、1)そのコア部分は酸化コバルトの一次粒子が球状に集合した二次粒子であり、2)その二次粒子の形状は揃っており、3)その二次粒子表面にシェル部分となる有機高分子の層が存在し、4)該微粒子の粒径の平均が50nmから200nmである、ことを特徴とするコアシェル型酸化コバルト微粒子。
  2.  前記有機高分子の層が、ポリビニルピロリドン(PVP)、ヒドロキシプロピルセルロース(HPC)、又はポリオールの有機高分子、あるいは該有機高分子が架橋した有機高分子で構成され、その層が、洗浄してもコア部分の二次粒子から分離することがなく、かつ、その層が、10wt%から20wt%の割合で存在している、請求項1に記載のコアシェル型酸化コバルト微粒子。
  3.  一次粒子径が10から20nmであり、かつ、二次粒子径の変動係数が0.2以下である、請求項1に記載のコアシェル型酸化コバルト微粒子。
  4.  請求項1から3のいずれか1項に記載のコアシェル型酸化コバルト微粒子を含有する乾燥粉体であって、分散剤を添加していない分散媒に良好に分散する性質を有することを特徴とするコアシェル型酸化コバルト微粒子粉体。
  5.  請求項1から3のいずれか1項に記載のコアシェル型酸化コバルト微粒子又は請求項4に記載のコアシェル型酸化コバルト微粒子粉体が分散媒中に分散したことを特徴とするコアシェル型酸化コバルト微粒子分散液。
  6.  前記分散媒が、水、エタノール、テルピネオール、エチレングリコールのいずれか一つ、あるいは、これらが複数混合している混合溶液である、請求項5に記載のコアシェル型酸化コバルト微粒子分散液又は酸化コバルト微粒子分散液。
  7.  請求項1から3のいずれか1項に記載の微粒子、請求項4に記載の微粒子粉体又は請求項5若しくは6に記載の微粒子分散液を含有することを特徴とする顔料。
  8.  請求項1から6のいずれか1項に記載のコアシェル型酸化コバルト微粒子、酸化コバルト微粒子粉体又は酸化コバルト微粒子分散液を製造する方法であって、コバルトの塩、有機高分子及び蒸留水を高沸点有機溶媒に混合して混合物を得る工程と、その混合物を190℃以上の温度で加熱・還流して酸化コバルト微粒子を析出する工程とを有することを特徴とする、コアシェル型酸化コバルト微粒子、酸化コバルト微粒子粉体又は酸化コバルト微粒子分散液の製造方法。
  9.  前記コバルトの塩が、酢酸コバルトであり、前記有機高分子が、ポリビニルピロリドン(PVP)、ヒドロキシプロピルセルロース(HPC)又はポリエチレングリコール(PEG)であり、前記高沸点有機溶媒が、ジエチレングリコール(DEG)である、請求項9に記載の酸化コバルト微粒子、酸化コバルト微粒子粉体又は酸化コバルト微粒子分散液の製造方法。
  10.  前記有機高分子の濃度(単位有機溶媒体積当たりに添加した有機高分子重量)が、100kg/mから140kg/mである、請求項8又は9に記載の酸化コバルト微粒子、酸化コバルト微粒子粉体又は酸化コバルト微粒子分散液の製造方法。
  11.  前記有機高分子のポリエチレングリコール換算での平均分子量が、4000から5000である、あるいは、前記コバルトの塩の濃度が0.05kmol/mから0.20kmol/mである、請求項8又は9に記載の酸化コバルト微粒子、酸化コバルト微粒子粉体又は酸化コバルト微粒子分散液の製造方法。
  12.  前記蒸留水の添加割合が、前記高沸点有機溶媒に対して0.016以上の体積比である、請求項8又は9に記載の酸化コバルト微粒子、酸化コバルト微粒子粉体又は酸化コバルト微粒子分散液の製造方法。
     
PCT/JP2009/052085 2008-02-07 2009-02-06 コアシェル型酸化コバルト微粒子又はそれを含有する分散液、それらの製造方法及び用途 WO2009099199A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/865,427 US20110003156A1 (en) 2008-02-07 2009-02-06 Core-Shell Type Cobalt Oxide Microparticle or Dispersion Containing the Microparticle, and Production Process and Use of the Microparticle or the Dispersion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-027187 2008-02-07
JP2008027187A JP5392696B2 (ja) 2008-02-07 2008-02-07 コアシェル型酸化コバルト微粒子又はそれを含有する分散液、それらの製造方法及び用途

Publications (1)

Publication Number Publication Date
WO2009099199A1 true WO2009099199A1 (ja) 2009-08-13

Family

ID=40952267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052085 WO2009099199A1 (ja) 2008-02-07 2009-02-06 コアシェル型酸化コバルト微粒子又はそれを含有する分散液、それらの製造方法及び用途

Country Status (3)

Country Link
US (1) US20110003156A1 (ja)
JP (1) JP5392696B2 (ja)
WO (1) WO2009099199A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4701409B2 (ja) * 2008-12-26 2011-06-15 独立行政法人産業技術総合研究所 コアシェル型酸化セリウムポリマーハイブリッドナノ粒子及びその分散液の製造方法
JP5672754B2 (ja) * 2010-04-13 2015-02-18 トヨタ自動車株式会社 水酸化コバルトのコロイド溶液の製造方法
US20140205781A1 (en) * 2013-01-23 2014-07-24 Zeus Industrial Products, Inc. Silicone espun ptfe composites
JP6749574B2 (ja) * 2015-07-29 2020-09-02 東京都公立大学法人 無機系単分散球形微粒子、無機系単分散球形微粒子の製造方法、電池用電極並びに電池
CN105289433B (zh) * 2015-11-24 2017-07-04 河南师范大学 一种规模化制备过渡金属氧化物多孔微球的方法
ES2624730B8 (es) * 2015-12-16 2020-06-02 Enersos I S L Particulas metalicas polimericas para la produccion de biogas

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06218276A (ja) * 1993-01-27 1994-08-09 Mitsui Toatsu Chem Inc 安定化された金属酸化物超微粒子とその製造方法
JP2006328309A (ja) * 2005-05-30 2006-12-07 Canon Inc 磁性ポリマー粒子及びその製造方法
WO2007036475A1 (de) * 2005-09-27 2007-04-05 Basf Se Verfahren zur herstellung oberflächenmodifizierter nanopartikulärer metalloxide, metallhydroxide und/oder metalloxidhydroxide
WO2008041729A1 (fr) * 2006-10-05 2008-04-10 National Institute Of Advanced Industrial Science And Technology Procédé de fabrication d'une dispersion de fines particules de composé métallique et la dispersion correspondante

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1300869C (zh) * 2002-05-20 2007-02-14 日亚化学工业株式会社 非水电解液二次电池用正极活性物质及其电池
JP2005097642A (ja) * 2003-09-22 2005-04-14 Tanaka Kikinzoku Kogyo Kk 貴金属−金属酸化物複合クラスター
JP4495995B2 (ja) * 2004-03-31 2010-07-07 三井金属鉱業株式会社 複合黒色酸化物粒子の製造方法、黒色塗料及びブラックマトリックス
JP4037899B2 (ja) * 2004-10-29 2008-01-23 東京電力株式会社 粉末状の金属酸化物母粒子、粉末状の金属酸化物子粒子、粉末状の金属酸化物粒子の製造方法、粉末状の複合粒子及び固体酸化物形燃料電池用電極
JP5077941B2 (ja) * 2006-10-10 2012-11-21 独立行政法人産業技術総合研究所 コアシェル型酸化セリウム微粒子又はそれを含有する分散液及びそれらの製造方法
JP4701409B2 (ja) * 2008-12-26 2011-06-15 独立行政法人産業技術総合研究所 コアシェル型酸化セリウムポリマーハイブリッドナノ粒子及びその分散液の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06218276A (ja) * 1993-01-27 1994-08-09 Mitsui Toatsu Chem Inc 安定化された金属酸化物超微粒子とその製造方法
JP2006328309A (ja) * 2005-05-30 2006-12-07 Canon Inc 磁性ポリマー粒子及びその製造方法
WO2007036475A1 (de) * 2005-09-27 2007-04-05 Basf Se Verfahren zur herstellung oberflächenmodifizierter nanopartikulärer metalloxide, metallhydroxide und/oder metalloxidhydroxide
WO2008041729A1 (fr) * 2006-10-05 2008-04-10 National Institute Of Advanced Industrial Science And Technology Procédé de fabrication d'une dispersion de fines particules de composé métallique et la dispersion correspondante

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MERIKHI J. ET AL.: "Sub-micrometer CoA1204 pigment particles -synthesis and preparation of coatings", JOURNAL OF MATERIALS CHEMISTRY, vol. 10, no. 6, June 2000 (2000-06-01), pages 1311 - 1314 *

Also Published As

Publication number Publication date
JP5392696B2 (ja) 2014-01-22
US20110003156A1 (en) 2011-01-06
JP2009184884A (ja) 2009-08-20

Similar Documents

Publication Publication Date Title
JP5392697B2 (ja) コアシェル型酸化亜鉛微粒子又はそれを含有する分散液、それらの製造方法及び用途
JP5077941B2 (ja) コアシェル型酸化セリウム微粒子又はそれを含有する分散液及びそれらの製造方法
JP5201655B2 (ja) コアシェル型金属酸化物微粒子分散液の製造方法及びその分散液
JP4701409B2 (ja) コアシェル型酸化セリウムポリマーハイブリッドナノ粒子及びその分散液の製造方法
JP5079450B2 (ja) 分散性シリカナノ中空粒子及びシリカナノ中空粒子の分散液の製造方法
JP5392696B2 (ja) コアシェル型酸化コバルト微粒子又はそれを含有する分散液、それらの製造方法及び用途
JP5126714B2 (ja) 架橋構造を有する高分子でシェル部分を構成したコアシェル型金属酸化物微粒子及びその用途
JP2010513666A (ja) 重合体と金属/メタロイド酸化物ナノ粒子との複合体及びこれらの複合体を形成するための方法
TW200831412A (en) Liquid suspension and powder of cerium oxide particles, processes for the preparation thereof and use in polishing
WO2010074063A1 (ja) 複合粒子及びその製造方法、中空粒子、その製造方法及び用途
DE10297612T5 (de) Anorganisches Oxid
TWI673235B (zh) 單斜晶氧化鋯系奈米粒子及其製造方法
JP6179015B2 (ja) 粉粒体及びその製造方法、並びに特性改質材
KR101752170B1 (ko) 루타일계 티타늄 디옥사이드 나노분산졸 및 이의 제조방법
JP2010189215A (ja) ルチル型複合微粒子及びルチル型複合微粒子分散液並びにルチル型複合微粒子の製造方法
Xu et al. Synthesis of TiO2–SiO2/polymer core–shell microspheres with a microphase‐inversion method
JP2009175131A (ja) 酸化セリウム厚膜を用いたガスセンサ素子及びその製造方法
JP6124832B2 (ja) 赤外線遮蔽材料微粒子の製造方法、赤外線遮蔽材料微粒子分散液の製造方法、赤外線遮蔽材料微粒子、赤外線遮蔽材料微粒子粉末、赤外線遮蔽材料微粒子分散液、赤外線遮蔽材料微粒子分散体および被覆基材
JP2013170110A (ja) 酸化チタンの非極性有機溶媒分散液
JP6202749B2 (ja) 赤外線遮蔽材料微粒子の製造方法、赤外線遮蔽材料微粒子分散液の製造方法、赤外線遮蔽材料微粒子、赤外線遮蔽材料微粒子粉末、赤外線遮蔽材料微粒子分散液、赤外線遮蔽材料微粒子分散体および被覆基材
Romano Growth and Stabilization of Ag and Ni Nanoclusters within a Polymer Matrix via Aerosol Spray Pyrolysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09709271

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12865427

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09709271

Country of ref document: EP

Kind code of ref document: A1