WO2008038694A1 - Buse de carotte et son procédé de production - Google Patents

Buse de carotte et son procédé de production Download PDF

Info

Publication number
WO2008038694A1
WO2008038694A1 PCT/JP2007/068764 JP2007068764W WO2008038694A1 WO 2008038694 A1 WO2008038694 A1 WO 2008038694A1 JP 2007068764 W JP2007068764 W JP 2007068764W WO 2008038694 A1 WO2008038694 A1 WO 2008038694A1
Authority
WO
WIPO (PCT)
Prior art keywords
sprue
main body
water channel
body water
bushing
Prior art date
Application number
PCT/JP2007/068764
Other languages
English (en)
French (fr)
Inventor
Yasushi Furukawa
Kazuho Morimoto
Original Assignee
Ngk Insulators, Ltd.
Opm Laboratory Co., Ltd.
Ngk Fine Molds, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ngk Insulators, Ltd., Opm Laboratory Co., Ltd., Ngk Fine Molds, Inc. filed Critical Ngk Insulators, Ltd.
Priority to KR1020097006888A priority Critical patent/KR101425691B1/ko
Priority to CN2007800360240A priority patent/CN101535026B/zh
Priority to JP2008536414A priority patent/JP5001289B2/ja
Publication of WO2008038694A1 publication Critical patent/WO2008038694A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles
    • B29C45/2737Heating or cooling means therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • B22F10/12Formation of a green body by photopolymerisation, e.g. stereolithography [SLA] or digital light processing [DLP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles
    • B29C45/2701Details not specific to hot or cold runner channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a sprue bush and a method for manufacturing the same.
  • a mold used for injection molding has a sprue bush that is pressed against an injection port portion of an injection molding machine that injects a molten material, and a shape portion for forming a molded product.
  • the mold has a sprue bush having a sprue that is a space into which the molten material is injected, a cavity that is a space that is filled with the molten material, and a runner that is a flow path of the molten material. Sprue and cavity are connected through the runner.
  • the volume per unit area is larger for sprues and runners than for cavity. Therefore, the time required for the molten material filled in the sprue or runner to harden is longer than the time required for the molten material filled in the cavity to harden. For this reason, shortening the time required for the molten material filled in the sprue or runner to harden contributes to the improvement of production efficiency.
  • the sprue bushing (hereinafter referred to as a sprue bushing or the like) that forms the runner is cooled with cooling water
  • the sprue bushing or the like is cooled inside the sprue bushing or the like in order to increase the cooling efficiency.
  • a water supply port for supplying the cooling water and a drain port for discharging the cooling water are required.
  • the water supply port and the drain port need to connect the flow path of the cooling water formed inside the sprue bush and the outside of the spruce bush.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-18909 (Claim 1, FIG. 2, etc.)
  • the present invention has been made to solve the above-described problems, and it is possible to efficiently cool the molten material filled in the sprue and to suppress the quality deterioration of the molded product.
  • An object of the present invention is to provide a sprue bushing and a manufacturing method thereof.
  • the first feature of the present invention is that the inlet is formed to be connectable to the injection port of the injection molding machine at one end, and the discharge is formed to be connectable to the mold cavity when attached to the mold at the other end.
  • a sprue with a mouth is provided inside the main body, and a cylindrical sprue bushing body with a main body water channel embedded in a part of the area excluding the sprue is projected from the inlet side end of the sprue bushing body and connected to the sprue bushing body.
  • the sprue bush is provided with a flange portion in which a flange portion water passage continuing to the main body water passage and leading to the outside is embedded.
  • a second feature of the present invention is that a metal powder is applied, and a hollow substantially conical sprue having a diameter increasing toward the other end of the molten material in the flow direction is provided inside the main body.
  • One end on the small diameter side of the sprue is formed so that it can be connected to the injection port of the injection molding machine, and the other end on the large diameter side of the sprue is connected to the mold cavity when attached to the mold.
  • a cylindrical sprue bushing body that is formed and has a body channel embedded in the part of the area excluding the sprue so that it surrounds the sprue on the sprue outlet side.
  • the gist of the present invention is a sprue bushing manufacturing method including: a step of performing heat processing according to the above and further stacking and stacking to form a three-dimensional shape; and a step of cutting into a three-dimensional shape.
  • FIG. 1 is a perspective view of a sprue bushing 10 according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the configuration of the sprue bushing 10 according to the first embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing the configuration of the sprue bushing 10 according to the first embodiment of the present invention.
  • FIG. 4 is a cross-sectional view for explaining assembly of the sprue bushing 10 according to the first embodiment of the present invention.
  • FIG. 5 is a flowchart showing a method for manufacturing the sprue bushing 10 according to the first embodiment of the present invention.
  • FIG. 6 is a manufacturing process diagram (manufacturing apparatus schematic diagram) of the sprue bushing 10 according to the first embodiment of the present invention.
  • FIG. 7 is a manufacturing process diagram (manufacturing apparatus schematic diagram) of the sprue bushing 10 according to the first embodiment of the present invention.
  • FIG. 8 is a manufacturing process diagram of the sprue bushing 10 according to the first embodiment of the present invention.
  • FIG. 9 is a manufacturing process diagram of the sprue bushing 10 according to the first embodiment of the present invention ((a) top view,
  • FIG. 10 is a manufacturing process diagram of the sprue bushing 10 according to the first embodiment of the present invention ((a) top view, (b) cross-sectional view).
  • FIG. 11 is a manufacturing process diagram of the sprue bushing 10 according to the first embodiment of the present invention ((a) top view, (b) cross-sectional view).
  • FIG. 12 is a manufacturing process diagram ((a) top view, (b) sectional view) of the sprue bushing 10 according to the first embodiment of the present invention.
  • FIG. 13 is a manufacturing process diagram ((a) top view (b) sectional view) of the sprue bushing 10 according to the first embodiment of the present invention.
  • FIG. 14 is a view for explaining the method of manufacturing the sprue bushing 10 according to the first embodiment of the present invention.
  • FIG. 15 is a cross-sectional view of the sprue bushing 10 according to the first embodiment of the present invention.
  • FIG. 16 is a cross-sectional view of the sprue bushing 10 according to the first embodiment of the present invention.
  • FIG. 17 is a cross-sectional view of the sprue bushing 10 according to the first embodiment of the present invention.
  • FIG. 18 is a cross-sectional view of the sprue bushing 10 according to the first embodiment of the present invention.
  • FIG. 19 is a cross-sectional view of the sprue bushing 10 according to the first embodiment of the present invention.
  • FIG. 20 is a perspective view of a sprue bushing 10 according to a second embodiment of the present invention.
  • FIG. 21 is a cross-sectional view showing a configuration of a sprue bushing 10 according to a second embodiment of the present invention.
  • FIG. 22 is a perspective view of a sprue bushing 10 according to a third embodiment of the present invention.
  • FIG. 23 is a cross-sectional view showing a configuration of a sprue bushing 10 according to a third embodiment of the present invention.
  • FIG. 24 is a cross-sectional view showing a configuration of a sprue bushing 10 according to a third embodiment of the present invention.
  • FIG. 1 is a perspective view of a sprue bushing 10 according to a first embodiment of the present invention.
  • the sprue bushing 10 As shown in FIG. 1, the sprue bushing 10 according to the first embodiment is provided with a hollow substantially conical sprue 12 having a diameter increasing from one end to the other end in the flow direction of the molten material.
  • the sprue 12 has one end on the small diameter side that can be connected to the injection port of the injection molding machine, and the other end on the large diameter side of the sprue 12 is connected to the mold cavity when attached to the mold.
  • the sprue bushing body 61 extends from the inlet 11 side end and is connected to the sprue bushing body 61.
  • the flange section waterways 15a and 15b are embedded in the mold so as to continue to the body waterways 14a, 14b, and 14c and to the outside.
  • a flanged portion 60 provided with a water supply port 16a and a drainage port 16b continuous to the flanged water channels 15a and 15b on the supported surface.
  • the main body water channel 14 includes a first main body water channel 14a, a second main body water channel 14b, and a third main body water channel 14c.
  • the first main body water channel 14a and the second main body water channel 14b are formed in parallel to the central axis of the sprue 12 in the flow direction of the molten material.
  • one end of the first main body water channel 14a and the second main body water channel 14b is connected to the water supply port 16a or the water discharge port 16b via the flange part water channels 15a and 15b, respectively.
  • the other ends of the first main body water channel 14a and the second main body water channel 14b are formed to surround the sprue 12 on the sprue outlet 16b side. Are connected to each other through main channel 14c.
  • a part of the flange section water passage 15a is formed in the flange portion 60 (flange portion 60a).
  • the water supply port 16a provided in the supported surface 10b and the main body water channel 14a are connected via a flanged water channel 15a.
  • at least a part of the flange section water channel 15b is formed in the flange portion 60 (flange portion 60b).
  • the drainage port 16b provided in the supported surface 10c and the main body waterway 14b are connected via the flange section waterway 15b!
  • the main body water channel 14c includes a main body portion 61 (the main body portion 61a and the main body portion). 61b).
  • the main body water channel 14a and the main body water channel 14b are connected via the main body water channel 14c.
  • the main body water channel 14c has a semicircular arc shape surrounding the sprue 12 over a half circumference.
  • the sprue bushing 10 has a pressing surface 10a against which the injection port 20 for injecting the molten material is pressed.
  • the sprue bushing 10 is assembled to the upper mold 31 (the upper mold 31a and the upper mold 31b) via the supported surface 10b and the supported surface 10c.
  • the supported surface 10b is provided with a water supply port 16a for supplying cooling water.
  • the supported surface 10c is provided with a drain port 16b for draining the cooling water.
  • the sprue bushing 10 has a sprue 12 formed along the injection direction P of the molten material that the injection port portion 20 injects from the injection port 21.
  • a hollow portion that leads from the inlet 11 to the outlet 13 is formed inside the sprue bush 10 by the spnolet 12.
  • the sprue 12 has a divergent shape that gradually spreads from the inlet 11 toward the outlet 13 in order to prevent material residue from occurring in the sprue 12.
  • the injection port 11 is an opening formed in the pressing surface 10a and into which the molten material is injected. Further, the discharge port 13 is opened toward a runner 40 described later.
  • the sprue bushing 10 has a cylindrical main body water channel 14 (main body water channel 14a and main body water channel 14b) that is a cooling water channel formed along the injection direction P of the molten material.
  • the sprue bush 10 includes a cylindrical flanged water channel 15 (a flanged water channel 15a and a flanged water channel 15b) that is a cooling water channel formed along the supported surface 1 Ob and the supported surface 10c. Have.
  • the water supply port 16a provided in the supported surface 10b and the main body water channel 14a are connected via the flange part water channel 15a.
  • the drainage port 16b provided in the supported surface 10c and the main body waterway 14b are connected via a flanged waterway 15b.
  • the upper mold 31a has a water supply channel 33a for supplying cooling water to the water supply port 16a.
  • the upper mold 31b has a drainage channel 33b for draining the cooling water from the drainage port 16b.
  • a packing member 17a for example, an O-ring or the like
  • the packing member 17a is provided so as to surround the periphery of the water supply port 16a.
  • a packing member 17b (for example, O-ring) is provided between the supported surface 10c and the upper mold 31b to prevent leakage of cooling water drained from the drain port 16b.
  • the packing member 17b is provided so as to surround the periphery of the water supply port 16a.
  • a runner 40 is formed between the lower mold 32 and the upper mold 31a and between the lower mold 32 and the sprue bushing 10. Through the runner 40, the cavity 50 and the sprue 12 formed between the lower mold 32 and the upper mold 31a are connected.
  • the molten material injected by the injection port 20 includes the sprue 12 and the runner.
  • the molten material filled in the cavity 50 through 40 and filled in the cavity 50 is taken out as a molded product after being cooled.
  • the metal is formed as an integral member with a metal having good strength.
  • the main body portion 61 and the flange portion 60 are seamlessly connected. That is, the sprue bushing 10 includes the main body portion 61 and the flange portion 60 as an integral member. Further, the main body water channels 14a, 14b, 14c are formed in the main body portion 61, and the flange portion water channels 15a, 15b are formed in the flange portion 60. Therefore, the cooling water flowing through the main body water channels 14a, 14b, and 14c directly cools the molten material filled in the sprue 12, and the cooling efficiency of the molten material filled in the sprue 12 is improved.
  • flange water channels 15a, 15b connected to the outside of the main body water channels 14a, 14b, 14c and the flange portion 60 are formed along the supported surfaces 16a, 16b. Further, when the injection port of the injection molding machine is pressed against the pressing surface 10a, the supported surfaces 16a and 16b provided on the flange portions 60a and 60b are pressed against the support member, so that the supported surfaces 16a and 16b And the support member are in close contact with each other. Therefore, the main water channels 14a, 14b, 14c and the flange section water The cooling water flowing in the passages 15a and 15b is unlikely to leak along the side surface of the sprue bushing 10, and the cooling water can be prevented from entering the runner or the cavity.
  • the molten material filled in the sprue can be efficiently cooled, and quality deterioration of the molded product can be suppressed.
  • FIG. 5 is a diagram illustrating a method for manufacturing the sprue bushing 10 according to the first embodiment of the present invention.
  • Fig. 14 shows the top and bottom of the spruce bush 10 in Fig. 2 reversed.
  • Fig. 9 (a) (b), 010 (a) (b), Fig. 11 (a) (b), 012 (a) (b), 013 (a) (b) shows the manufacturing process of the spruce bush 10 14 shows a cross-sectional view (FIG. 15), a D cross-sectional view (FIG. 16), an E cross-sectional view (FIG. 17), a F cross-sectional view (FIG.
  • the sprue bushing 10 is made of metal.
  • the metal stereolithography combined processing method means that a metal powder material is converted into a YAG laser or CO laser.
  • Metal stereolithography combined processing apparatus 80 as shown in FIG. 6 is prepared.
  • Metal stereolithography composite processing apparatus 80 includes a work stage 81 that can be moved up and down to hold a work, a metal powder stage 82 that can be moved up and down to hold metal powder 90 arranged with a wall 84 sandwiched between work stage 81, and And a blade 83 disposed on the surface of the metal powder 90.
  • the metal stereolithography combined processing apparatus 80 further includes a light source 86 for irradiating laser light and a processing machine 85.
  • the metal stereolithography combined machining apparatus is not particularly limited to the metal stereolithography combined machining apparatus 80, and various apparatuses can be used.
  • step S10 the metal powder as the material of the sprue bushing 10 is applied over a predetermined thickness.
  • the work stage 81 and the metal powder stage 82 is moved up and down to change the relative position, and the blade 83 is moved when the surface of the metal powder 90 is higher than the upper end of the wall 84.
  • step S20 a laser beam is irradiated from the light source 86 to the region (pattern) defined by the phantom line in FIG. Sinter.
  • the laser beam is not irradiated to the portion to be hollowed (the portion corresponding to the sprue 12, main body water channel 14, flange water channel 15, inlet 11, water supply port 16a, drain port 16b). That is, only the portions corresponding to the flange portion 60 and the main body portion 61 are irradiated with the laser beam.
  • the metal powder 91 is integrated with a portion that has already been sintered by laser light irradiation.
  • step S 10 In the same manner as in step S 10, the metal powder 91 is applied onto the sintered body 10 C, and further, in step S 20, laser light is irradiated according to the pattern corresponding to FIGS. 10 (a) and (b). In this case, the portion corresponding to the sprue 12 and the flange section water channel 15 (the flange section water channel 15a and the flange section water channel 15b) shown in FIG. Only a portion is irradiated with laser light. Then, a sintered body 10D as shown in FIGS. 10 (a) and 10 (b) is obtained. Steps S10 and S20 are repeated to form sintered bodies 10E, 10F, and 10G as shown in FIGS. 11 (a) (b), 12 (a) 03), and 13 (&) (b). Finally, the sprue bushing 10 is obtained.
  • the spnolet 12 the main body water channel 14 (main body water channel 14a and the main body water channel 14b), and the flange section water channel 15 (the flange section water channel 15a and the flange section shown in FIG.
  • the laser beam is irradiated only to the portion corresponding to the flange portion 60 and the main body portion 61 without irradiating the portion corresponding to the partial water channel 15b).
  • step S10 Number of times the processing of step S10 and step S20 is repeated in step S30
  • step S40 the machine 85 in FIG. 7 is operated on the already sintered portion to perform cutting work and / or shape adjustment.
  • step S50 it is determined whether or not the sprue bushing 10 is completed.
  • the series of processing ends, and when the sprue bushing 10 is completed! /, N! /, The processing returns to step S10.
  • the sprue bushing 10 having a complicated shape can be easily manufactured by using the metal stereolithography combined processing method.
  • the sprue bushing 10 includes the flange portion 60 and the main body portion 61 as an integral member. That is, the flange portion 60 and the main body portion 61 are connected seamlessly. Further, the main body water channel 14 is formed in the main body portion 61, and the flange portion water channel 15 is formed in the flange portion 60. Therefore, the cooling power of the cooling water flowing through the main body portion 61 is directly transmitted to the molten material filled in the sprue 12, and the cooling efficiency of the molten material filled in the sprue 12 is improved.
  • a flange portion water channel 15 connected to the main body water channel 14 and the water supply port 16a (or the drain port 16b) is formed along the supported surface 10b (or the supported surface 10c). Further, when the injection port 20 is pressed against the pressing surface 10a, the supported surface 10b (or the supported surface 10c) provided on the flange portion 60 is pressed against the upper mold 31. (Or, the supported surface 10c) and the upper mold 31 are in close contact with each other. Therefore, the cooling water flowing through the main body water channel 14 and the flange portion water channel 15 is unlikely to leak along the side surface of the sprue bushing 10, and the cooling water can be prevented from entering the runner 40 or the cavity 50.
  • the main body water channel 14c having a semicircular arc shape surrounding the sprue 12 over a half circumference is provided on the discharge port 13 side. Yes. That is, the volume of the main body water channel 14 on the discharge port 13 side is larger than the volume of the main body water channel 14 on the injection port 11 side.
  • the main body water channel 14d and the main body water channel 14e have a gradient along the inner wall of the sprue 12 having a divergent shape.
  • the sprue 12 has a divergent shape that gradually widens from the inlet 11 toward the outlet 13. That is, as shown in FIG. 21, the extension line L of the inner wall 12a of the sprue 12 has a gradient ⁇ with respect to a straight line L substantially parallel to the injection direction of the molten material. Also
  • the extension line L of the inner wall 12b of the sprue 12 is a straight line L substantially parallel to the injection direction of the molten material.
  • the main body water channel 14 a has a gradient along the inner wall 12 a of the sprue 12. Specifically, the center line C of the main water channel 14a has a gradient ⁇ with respect to a straight line substantially parallel to the injection direction of the molten material, like the inner wall 12a. That is, the main body waterway 14a and the inner wall 12a of the sprue 12
  • the distance is kept constant.
  • the main body water channel 14b has a gradient along the inner wall 12b of the sprue 12. Specifically, the center line C of the main body channel 14b is substantially flat with the injection direction of the molten material, like the inner wall 12b.
  • the distance to 12b is kept constant.
  • the main body water channel 14a has a gradient along the inner wall 12a of the sprue 12, so that the main body water channel 14a and the inner wall 1 of the sprue 12 are provided.
  • the distance from 2a is kept constant, and it is possible to reduce the cooling unevenness of the molten material filled in the sprue 12 with a force S.
  • the main body water channel 14b has a gradient along the inner wall 12b of the sprue 12, the distance between the main body water channel 14b and the inner wall 12b of the sprue 12 is kept constant, and the melt filled in the sprue 12 is melted. Uneven cooling of the material can be reduced.
  • the main body water channel includes a first main body water channel 14a, a fourth main body water channel 14d, and a fifth main body water channel 14e.
  • the first main body water channel 14a is formed parallel to the central axis of the sprue.
  • One end of the first main body water channel 14a is connected to the water supply port via the flange section water channel, and the other end of the first main body water channel 14a has the cross-sectional shape obtained by going straight in the flow direction of the molten material of the sprue.
  • a sprue defined by a region having a substantially C-shaped cross section including a concentric arc and a circle of the sprue cross section is connected to a fourth main water channel 14d formed so as to surround the sprue on the large diameter side.
  • the other end of the fourth main body water channel 14d is formed so as to be connected to the drain port 16b via a flanged water channel 15b.
  • the third main body water channel 14c that connects the first main body water channel 14a and the second main body water channel 14b has a semicircular arc shape that surrounds the sprue 12 over a half circumference.
  • the fourth main body water channel 14d that connects the first main body water channel 14a and the fifth main body water channel 14e has a substantially arc shape surrounding the sprue 12 over substantially the entire circumference. It has a shape.
  • the fifth main body water channel 14 e has a spiral shape along the sprue 12.
  • the fourth main body water channel 14d has a substantially arcuate shape surrounding the sprue 12 over substantially the entire circumference.
  • the fourth main body water channel 14d that connects the first main body water channel 14a and the fifth main body water channel 14e surrounds the sprue 12 over substantially the entire circumference. It has a substantially arc shape.
  • the fourth main body channel 14d is provided on the outlet 13 side. It has been. That is, the capacity force of the fourth main body water channel 14d provided on the discharge port 13 side is larger than that in the first embodiment described above.
  • the water supply port 16a is formed on the supported surface 10b, and the drain port 16b is a force formed on the supported surface 10c. is not.
  • the water supply port 16a and the drain port 16b may be provided in any part as long as it is a part other than the pressing surface 10a.
  • the main body water channel 14 and the flanged water channel 15 have a cylindrical shape, but are not limited thereto.
  • the shape of the main body water channel 14 may be appropriately changed according to the cooling efficiency of the molten material filled in the sprue 12.
  • the shape of the flange section 15 can be appropriately changed according to the cooling water supply efficiency and cooling water drainage efficiency.
  • the main body water channel 14c that connects the main body water channel 14a and the main body water channel 14b is a force that is provided only on the discharge port 13 side.
  • the number of main body water channels 14c may be plural, and the position of the main body water channels 14c may be provided closer to the inlet 11 than in the first to third embodiments.
  • the support member that supports the sprue bushing 10 is the force S that is the upper mold 31, and is not limited to this. Specifically, a support member that supports the sprue bushing 10 may be provided separately from the upper mold 31.
  • the sprue bushings 10, 101, 102 are manufactured using a metal photo-molding composite processing method, but the present invention is not limited to this. Specifically, the sprue bushing 10, 101, 102 is cut by cutting a metal block to form the sprue bushing 10, 101, 102.
  • the punolet 12, the main body water channel 14, the flanged water channel 15, the injection port 11, the water supply port 16a, and the drain port 16b may be formed by cutting.
  • the sprue bushing 10, main body waterway 14, flange section waterway 15, injection port 11, water supply port 16a and drainage port 16b are placed in the forging furnace, and the material for making up the sprue bushing 10 is added.
  • the sprue 12, the main body water channel 14, the flange part water channel 15, the inlet 11, the water supply port 16 a and the water outlet 16 b may be formed by melting the soot after pouring into the forging furnace.
  • the water supply port 16a and the drain port 16b are formed.
  • the cooling water is not only injected from the water supply port 16a and discharged from the water discharge port 16b, but also injected from the water discharge port 16b and from the water supply port 16a. It may be discharged.
  • a sprue bushing and a method for manufacturing the sprue bushing that can efficiently cool the molten material filled in the sprue and suppress the quality deterioration of the molded product.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

明 細 書
スプルーブッシュ及びその製造方法
技術分野
[0001] 本発明はスプル一ブッシュ及びその製造方法に関する。
背景技術
[0002] 従来、加熱によって溶融された材料 (以下、溶融材料)を金型内に射出することによ つて、製品を成形する射出成形が一般的に広く知られている。
[0003] 具体的には、射出成形に用いられる金型は、溶融材料を射出する射出成形機の射 出口部が押し当てられるスプルーブッシュと、成形品を形成する為の形状部を有する 。金型は、溶融材料が注入される空間であるスプルーを有するスプルーブッシュ、溶 融材料が充填される空間であるキヤビティ、及び、溶融材料の流路であるランナーを 有している。ランナーを介して、スプルーとキヤビティがつながつている。
[0004] このような射出成形用金型では、キヤビティ内に充填された溶融材料が十分に冷却 されて固まった後に、キヤビティから成形品を取り出す。その際、成形品の取り出しは 、スプルー及びランナー内に材料が残ることを防ぐために、スプルー及びランナー内 に充填された溶融材料が十分に冷却されて固まってから行われる。
[0005] 一般的に、単位面積当りの容積は、スプルーやランナーの方がキヤビティよりも大き い。したがって、スプルーやランナー内に充填された溶融材料が固まるまでに必要な 時間は、キヤビティに充填された溶融材料が固まるまでに必要な時間よりも長い。こ のため、スプルーやランナー内に充填された溶融材料が固まるまでに必要な時間の 短縮が生産効率の向上に寄与する。
[0006] これに対して、ランナーなどを形成する部材に冷却水の流路を形成することによつ て、ランナー内などに充填された溶融材料が固まるまでに必要な時間の短縮を図る 射出成形用金型が提案されている(例えば、特許文献 1)。
[0007] ここで、ランナーを形成する部材ゃスプル一ブッシュ(以下、スプルーブッシュ等)を 冷却水によって冷却する場合には、スプルーブッシュ等の冷却効率を上げるために 、スプルーブッシュ等の内部に冷却水の流路を形成することが好ましレ、。 [0008] 一方で、冷却水の流路内で冷却水を循環させるためには、冷却水を給水するため の給水口や冷却水を排水するための排水口が必要となる。また、給水口や排水口は 、スプル一ブッシュ等の内部に形成された冷却水の流路とスプル一ブッシュの外部と をつなぐ必要がある。
[0009] しかしながら、給水口や排水口がスプル一ブッシュの外部に連通して!/、るため、給 水口から給水された冷却水や排水口力 給水された冷却水がスプルーブッシュの外 面に沿って漏れる場合がある。このように、スプルーブッシュの外面に沿って漏れた 冷却水がランナーやキヤビティ内に入り込むと、成形品の品質劣化が起きる。
特許文献 1 :特開 2002— 18909号公報 (請求項 1、図 2など)
発明の開示
[0010] 本発明は、上述した課題を解決するためになされたものであり、スプルー内に充填 された溶融材料を効率的に冷却するとともに、成形品の品質劣化を抑制することを可 能とするスプルーブッシュ及びその製造方法を提供することを目的とする。
[0011] (課題を解決するための手段)
本発明の第 1の特徴は、一端に射出成形機の射出口部に連結可能に形成された 注入口、他端に金型に取付けた際に金型のキヤビティに連結可能に形成された排出 口を有するスプルーを本体内部に備え、スプルーを除く領域の一部に本体水路が埋 設された円柱状のスプルーブッシュ本体と、スプルーブッシュ本体の注入口側端から 張り出し、スプルーブッシュ本体に接続され、本体水路に連続し外部に通ずるフラン ンジ部水路が埋設されたフランンジ部と、を備えるスプルーブッシュであることを要旨 とする。
[0012] 本発明の第 2の特徴は、金属粉末を塗布する工程と、溶融材料の流れ方向の一端 力、ら他端に向かい径が大きくなる中空略円錐状のスプルーが本体内部に設けられ、 スプルーの小径側一端は射出成形機の射出口部に連結可能に注入口が形成され、 スプルーの大径側他端は金型に取付けた際に金型のキヤビティに連結可能に排出 口が形成され、スプルーを除く領域の一部にスプルーの排出口側においてスプルー の周囲を囲むように本体水路が埋設された円柱状のスプルーブッシュ本体、スプル 一ブッシュ本体の注入口側端から張り出しスプルーブッシュ本体に接続され、本体水 路に連続し外部に通ずるようにフランンジ部水路が埋設され、金型に取付けられた際 の被支持面にフランンジ部水路に連続する給水口と排水口が設けられたフランンジ 部、を備えるスプルーブッシュの溶融材料の流れ方向に直行して得られる断面形状 のパターンに基づき、スプルー、本体水路、フランンジ部水路、給水口、排水口に対 応する部分を除レ、て、金属粉末にレーザー光照射による熱加工を行レ、一層一層焼 結させて積み上げて立体形状を形成する工程と、立体形状に切削加工を行う工程と 、を含むスプルーブッシュの製造方法を要旨とする。
図面の簡単な説明
[図 1]本発明の第 1実施形態に係るスプルーブッシュ 10の斜視図である。
[図 2]本発明の第 1実施形態に係るスプルーブッシュ 10の構成を示す断面図である。
[図 3]本発明の第 1実施形態に係るスプルーブッシュ 10の構成を示す断面図である。
[図 4]本発明の第 1実施形態に係るスプルーブッシュ 10の組み付けについて説明す るための断面図である。
[図 5]本発明の第 1実施形態に係るスプルーブッシュ 10の製造方法を示すフロー図 図である。
[図 6]本発明の第 1実施形態に係るスプルーブッシュ 10の製造工程図 (製造装置概 略図)である。
[図 7]本発明の第 1実施形態に係るスプルーブッシュ 10の製造工程図 (製造装置概 略図)である。
[図 8]本発明の第 1実施形態に係るスプルーブッシュ 10の製造工程図である。
[図 9]本発明の第 1実施形態に係るスプルーブッシュ 10の製造工程図((a)上面図、
(b)断面図)である。
[図 10]本発明の第 1実施形態に係るスプルーブッシュ 10の製造工程図((a)上面図 、(b)断面図)である。
[図 11]本発明の第 1実施形態に係るスプルーブッシュ 10の製造工程図((a)上面図 、(b)断面図)である。
[図 12]本発明の第 1実施形態に係るスプルーブッシュ 10の製造工程図((a)上面図 、(b)断面図)である。 [図 13]本発明の第 1実施形態に係るスプルーブッシュ 10の製造工程図((a)上面図 (b)断面図)である。
[図 14]本発明の第 1実施形態に係るスプルーブッシュ 10の製造方法を説明するため の図である。
[図 15]本発明の第 1実施形態に係るスプルーブッシュ 10の断面図である。
[図 16]本発明の第 1実施形態に係るスプルーブッシュ 10の断面図である。
[図 17]本発明の第 1実施形態に係るスプルーブッシュ 10の断面図である。
[図 18]本発明の第 1実施形態に係るスプルーブッシュ 10の断面図である。
[図 19]本発明の第 1実施形態に係るスプルーブッシュ 10の断面図である。
[図 20]本発明の第 2実施形態に係るスプルーブッシュ 10の斜視図である。
[図 21]本発明の第 2実施形態に係るスプルーブッシュ 10の構成を示す断面図である
[図 22]本発明の第 3実施形態に係るスプルーブッシュ 10の斜視図である。
[図 23]本発明の第 3実施形態に係るスプルーブッシュ 10の構成を示す断面図である
[図 24]本発明の第 3実施形態に係るスプルーブッシュ 10の構成を示す断面図である 発明を実施するための最良の形態
以下、本発明の実施形態に係るスプルーブッシュについて、図面を参照しながら説 明するが本発明は実施形態に限定されることはない。なお、以下の図面の記載にお いて、同一又は類似の部分には、同一又は類似の符号を付して説明を省略する。ま た、図面は模式的なものであり、各寸法の比率などは現実のものとは異なることに留 意すべきである。したがって、具体的な寸法などは以下の説明を参酌して判断すベ きである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含 まれていることは勿論である。尚、図 1中、スプルーブッシュ 10内部の配置関係を明 確にする観点より、スプルー 12、本体水路 14a 14b 14c,フランンジ部水路 15a 15b、給水口 16a、排水口 16bを実線で示し、スプルーブッシュ本体 61とフランンジ 部 60を二点鎖線で示す。図 20、図 24においても図 1と同様とする。 [0015] [第 1実施形態]
図 1は本発明の第 1実施形態に係るスプルーブッシュ 10の斜視図を示す。
[0016] 図 1に示すように、第 1実施形態に係るスプルーブッシュ 10は、溶融材料の流れ方 向の一端から他端に向かい径が大きくなる中空略円錐状のスプルー 12が本体内部 に設けられ、スプルー 12の小径側一端は射出成形機の射出口部に連結可能に注 入口 11が形成され、スプルー 12の大径側他端は金型に取付けた際に金型のキヤビ ティに連結可能に排出口 13が形成され、スプルー 12を除く領域の一部にスプルー 1 2の排出口 13側においてスプルー 12の周囲を囲むように本体水路 14a、 14b, 14c が埋設された円柱状のスプルーブッシュ本体 61と、
スプルーブッシュ本体 61の注入口 11側端から張り出しスプルーブッシュ本体 61に 接続され、本体水路 14a、 14b、 14cに連続し外部に通ずるようにフランンジ部水路 1 5a、 15bが埋設され、金型に取付けられた際の被支持面にフランンジ部水路 15a、 1 5bに連続する給水口 16aと排水口 16bが設けられたフランンジ部 60と、を備える。
[0017] 図 2に示すように、本体水路 14は、第 1の本体水路 14a、第 2の本体水路 14b、第 3 の本体水路 14cを備える。第 1の本体水路 14aと第 2の本体水路 14bは、スプルー 1 2の溶融材料の流れ方向の中心軸に平行に形成される。図 3 (a)に示すように、第 1 の本体水路 14aと第 2の本体水路 14bの一端は、それぞれフランンジ部水路 15a, 1 5bを介して給水口 16aもしく排水口 16bにつながっている。図 3 (b)に示すように、第 1の本体水路 14aと第 2の本体水路 14bの他端は、スプルーの排出口 16b側におい てスプル一 12の周囲を囲むように形成された第 3の本体水路 14cで互いにつながつ ている。
[0018] 図 3 (a)に示すように、フランンジ部水路 15aの少なくとも一部は、フランジ部分 60 ( フランジ部分 60a)内に形成されている。また、フランンジ部水路 15aを介して、被支 持面 10bに設けられた給水口 16aと本体水路 14aがつながっている。一方、フランン ジ部水路 15bの少なくとも一部は、フランジ部分 60 (フランジ部分 60b)内に形成され ている。また、フランンジ部水路 15bを介して、被支持面 10cに設けられた排水口 16 bと本体水路 14bがつながって!/、る。
[0019] 図 3 (b)に示すように、本体水路 14cは、本体部分 61 (本体部分 61a及び本体部分 61b)に形成されている。本体水路 14cを介して、本体水路 14aと本体水路 14bがつ ながっている。また、本体水路 14cは、スプルー 12を半周に亘つて囲む半円弧状の 形状を有している。
[0020] (スプル一ブッシュの組み付け)
第 1実施形態に係るスプルーブッシュ 10の実際の使用の状態を示すスプルーブッ シュ 10の組み付け図 4を参照しながら、スプルーブッシュ 10についてより詳細に説明 する。
[0021] 図 4に示すように、スプルーブッシュ 10は、溶融材料を射出する射出口部 20が押し 当てられる押当て面 10aを有する。スプルーブッシュ 10は、被支持面 10b及び被支 持面 10cを介して、上金型 31 (上金型 31a及び上金型 31b)に組み付けられる。被支 持面 10bには、冷却水を給水するための給水口 16aが設けられている。被支持面 10 cには、冷却水を排水するための排水口 16bが設けられている。
[0022] スプルーブッシュ 10は、射出口部 20が射出口 21から射出する溶融材料の射出方 向 Pに沿って形成されたスプル一 12を有する。スプノレー 12により、注入口 11から排 出口 13につながる中空部がスプルーブッシュ 10内部に形成されている。また、スプ ルー 12は、スプルー 12内に材料残りが生じることを防ぐために、注入口 11から排出 口 13に向けて徐々に広がる末広がり形状を有する。
[0023] なお、注入口 11は、押当て面 10aに形成されており、溶融材料が注入される開口 である。また、排出口 13は、後述するランナー 40に向けて開口している。
[0024] スプルーブッシュ 10は、溶融材料の射出方向 Pに沿って形成された冷却水の流路 である筒状の本体水路 14 (本体水路 14a及び本体水路 14b)を有する。
[0025] スプルーブッシュ 10は、被支持面 1 Ob及び被支持面 10cに沿って形成された冷却 水の流路である筒状のフランンジ部水路 15 (フランンジ部水路 15a及びフランンジ部 水路 15b)を有する。フランンジ部水路 15aを介して、被支持面 10bに設けられた給 水口 16aと本体水路 14aがつながっている。フランンジ部水路 15bを介して、被支持 面 10cに設けられた排水口 16bと本体水路 14bがつながっている。
[0026] 上金型 31aは、給水口 16aに冷却水を給水するための給水路 33aを有する。上金 型 31bは、排水口 16bから冷却水を排水するための排水路 33bを有する。 [0027] 被支持面 10bと上金型 31aとの間には、給水口 16aから給水される冷却水の漏れ を防ぐためのパッキング部材 17a (例えば、オーリングなど)が設けられている。パツキ ング部材 17aは、給水口 16aの周囲を囲むように設けられる。一方、被支持面 10cと 上金型 31bとの間には、排水口 16bから排水される冷却水の漏れを防ぐためのパッ キング部材 17b (例えば、オーリングなど)が設けられている。パッキング部材 17bは、 給水口 16aの周囲を囲むように設けられる。
[0028] 下金型 32と上金型 31aとの間及び下金型 32とスプル一ブッシュ 10との間には、ラ ンナー 40が形成される。ランナー 40を介して、下金型 32と上金型 31aとの間に形成 されるキヤビティ 50とスプル一 12がつながっている。
[0029] このように、射出口部 20によって射出される溶融材料は、スプルー 12及びランナー
40を介してキヤビティ 50に充填され、キヤビティ 50内に充填された溶融材料は、冷 却された後に成形品として取り出される。
[0030] また、射出口部 20が押当て面 10aに押し当てられる際にスプルーブッシュ 10に加 えられる圧力が大きいため、フランジ部分 60a、フランジ部分 60b、本体部分 61a及 び本体部分 6 lbは、良好な強度を有する金属によって一体部材として構成されること が好ましい。
[0031] 第 1実施形態に係るスプルーブッシュ 10は、継目なく本体部分 61とフランジ部分 6 0が接続されている。即ちスプルーブッシュ 10は、本体部分 61とフランジ部分 60とを 一体部材として備える。また、本体水路 14a、 14b、 14cは、本体部分 61内に形成さ れており、フランンジ部水路 15a, 15bは、フランジ部分 60内に形成されている。した がって、本体水路 14a、 14b、 14cを流れる冷却水がスプルー 12内に充填される溶 融材料を直接的に冷却し、スプルー 12内に充填される溶融材料の冷却効率が向上 する。
[0032] また、本体水路 14a、 14b, 14c及びフランジ部分 60の外部につながるフランンジ 部水路 15a, 15bが、被支持面 16a, 16bに沿って形成されている。さらに、射出成 形機の射出口部が押当て面 10aに押し当てられると、フランジ部分 60a、 60bに設け られた被支持面 16a, 16bが支持部材に押し付けられるため、被支持面 16a, 16bと 支持部材とが密着する。したがって、本体水路 14a、 14b、 14c及びフランンジ部水 路 15a, 15b内を流れる冷却水がスプルーブッシュ 10の側面に沿って漏れにくく、冷 却水がランナーやキヤビティ内に入り込むことを抑制することができる。
[0033] このように、スプルー内に充填された溶融材料を効率的に冷却するとともに、成形 品の品質劣化を抑制することができる。
[0034] (スプル一ブッシュの製造方法)
次に、スプルーブッシュ 10の製造方法について図面を参照しながらさらに説明する 。図 5は本発明の第 1実施形態に係るスプルーブッシュ 10の製造方法を示すフ口一 図である。図 14は図 2のスプル一ブッシュ 10の天地を逆転させたものである。図 9 (a ) (b)、 010 (a) (b)、図 11 (a) (b)、 012 (a) (b)、 013 (a) (b)はスプル一ブッシュ 1 0の製造工程図を示し、それぞれ図 14のスプル一ブッシュ 10の C断面図(図 15)、 D 断面図(図 16)、 E断面図(図 17)、 F断面図(図 18)、 G断面図(図 19)に対応してい る。なお、第 1実施形態では、スプルーブッシュ 10は金属により構成されている。スプ ルーブッシュ 10が金属光造形複合加工法を用いて製造される例について説明する 。ここで、「金属光造形複合加工法」とは、金属の粉末材料を YAGレーザや COレー
2 ザなどの熱加工で一層一層焼結させて積み上げ、立体形状を形成する金属光造形 加工法において、その工程途中に切削加工を加え、寸法精度や表面粗さを向上さ せた加工法をいう。
[0035] (ィ)まず図 6に示すような金属光造形複合加工装置 80を用意する。金属光造形複 合加工装置 80は、ワークを保持する昇降可能なワークステージ 81と、ワークステージ 81に壁 84を挟んで配置された金属粉末 90を保持する昇降可能な金属粉末ステー ジ 82と、金属粉末 90の表面に配置されたブレード 83とを有する。金属光造形複合 加工装置 80は、図 7に示すようにさらにレーザ光を照射する光源 86と、加工機 85と を有する。尚、金属光造形複合加工装置としては金属光造形複合加工装置 80に特 に制限されることなく種々の装置を用いることができる。
[0036] (口)次に、図 5に示すように、ステップ S10において、スプルーブッシュ 10の材料であ る金属粉末を所定厚みに亘つて塗布する。例えば図 6に示すように、ワークステージ 81及び金属粉末ステージ 82の少なくともいずれか一方を昇降させて相対的位置を 変化させ、壁 84の上端よりも金属粉末 90の表面が高くなつたところでブレード 83を 作動させてワークステージ 81上に金属粉末を塗布する。
[0037] (ハ)ステップ S20において、金属粉末が塗布された所定の部分に図 8 (a)の仮想線 で定義された領域 (パターン)に、光源 86からレーザ光を照射して金属粉末 91を焼 結する。この場合、空洞とすべき部分(上述したスプルー 12、本体水路 14、フランン ジ部水路 15、注入口 11、給水口 16a、排水口 16b)に該当する部分)には、レーザ 光を照射しない。すなわち、フランジ部分 60及び本体部分 61に該当する部分にの みレーザ光を照射する。これによつて、図 9 (a) (b)に示すように、金属粉末 91は、レ 一ザ光の照射によって既に焼結された部分と一体となる。
[0038] (二)ステップ S 10と同様にして金属粉末 91を焼結体 10C上に塗布し、さらにステップ S20で図 10 (a) (b)に対応するパターンに従いレザー光を照射する。この場合、図 1 6に示すスプルー 12及びフランンジ部水路 15 (フランンジ部水路 15a及びフランンジ 部水路 15b)に該当する部分にはレーザ光を照射せずに、フランジ部分 60及び本体 部分 61に該当する部分にのみレーザ光を照射する。そして、図 10 (a) (b)に示すよう な焼結体 10Dを得る。このようなステップ S 10, S20を繰り返して図 11 (a) (b)、図 12 (a) 03)、図13 (&) (b)に示すような焼結体 10E、 10F、 10Gを形成し、最終的にスプ ルーブッシュ 10を得る。
[0039] 図 11 (a) (b)に示す工程においては、図 17に示すスプノレー 12、本体水路 14 (本 体水路 14a及び本体水路 14b)及びフランンジ部水路 15 (フランンジ部水路 15a及 びフランンジ部水路 15b)に該当する部分にはレーザ光を照射せずに、フランジ部分 60及び本体部分 61に該当する部分にのみレーザ光を照射する。
[0040] 図 12 (a) (b)に示す工程においては、図 18に示すスプルー 12及び本体水路 14に 該当する部分にはレーザ光を照射せずに、本体部分 61に該当する部分にのみレー ザ光を照射する。
[0041] 図 13 (a) (b)に示す工程においては、図 19に示すスプルー 12及び本体水路 14 ( 本体水路 14c)に該当する部分にはレーザ光を照射せずに、本体部分 61に該当す る部分にのみレーザ光を照射する。
[0042] (ホ)ステップ S30において、ステップ S 10及びステップ S20の処理を繰り返した回数
(繰り返し回数)が所定回数に亘つて繰り返したか否かを判定する。また、繰り返し回 数が所定回数である場合には、ステップ S40の処理に移り、繰り返し回数が所定回 数未満である場合には、ステップ S 10の処理に戻る。
[0043] (へ)ステップ S40において、既に焼結された部分について図 7の加工機 85を作動さ せて切削加工などを行!/、形状を整える。
[0044] (ト)ステップ S50において、スプルーブッシュ 10が完成したか否かを判定する。スプ ルーブッシュ 10が完成した場合には、一連の処理を終了し、スプルーブッシュ 10が 完成して!/、な!/、場合には、ステップ S10の処理に戻る。
[0045] このように、金属粉末の塗布及び焼結を繰り返すとともに、塗布及び焼結の繰り返 し回数が所定回数となる毎に、既に焼結された部分の形状を整えて、スプルーブッシ ュ 10を製造する。
[0046] 図 15〜図 19に示したように、金属光造形複合加工法を用いることによって、複雑な 形状を有するスプルーブッシュ 10を容易に製造することが可能である。
[0047] (作用及び効果)
本発明の第 1実施形態に係るスプルーブッシュ 10によれば、スプルーブッシュ 10 は、フランジ部分 60と本体部分 61とを一体部材として備える。即ちフランジ部分 60と 本体部分 61は継目なく接続されている。また、本体水路 14は、本体部分 61内に形 成されており、フランンジ部水路 15は、フランジ部分 60内に形成されている。したが つて、本体部分 61を流れる冷却水の冷却力がスプルー 12内に充填される溶融材料 に直接的に伝わり、スプルー 12内に充填される溶融材料の冷却効率が向上する。
[0048] また、本体水路 14及び給水口 16a (又は排水口 16b)につながるフランンジ部水路 15が、被支持面 10b (又は、被支持面 10c)に沿って形成されている。さらに、射出 口部 20が押当て面 10aに押し当てられると、フランジ部分 60に設けられた被支持面 10b (又は、被支持面 10c)が上金型 31に押し付けられるため、被支持面 10b (又は 、被支持面 10c)と上金型 31とが密着する。したがって、本体水路 14及びフランンジ 部水路 15内を流れる冷却水がスプルーブッシュ 10の側面に沿って漏れにくく、冷却 水がランナー 40やキヤビティ 50内に入り込むことを抑制することができる。
[0049] このように、スプルー内に充填された溶融材料を効率的に冷却するとともに、成形 品の品質劣化を抑制することができる。 [0050] また、本発明の第 1実施形態に係るスプルーブッシュ 10によれば、スプルー 12を半 周に亘つて囲む半円弧状の形状を有する本体水路 14cは、排出口 13側に設けられ ている。すなわち、排出口 13側の本体水路 14の容積は、注入口 11側の本体水路 1 4の容積よりも大きい。
[0051] したがって、スプルー 12の容積が大きい排出口 13側において、本体水路 14を流 れる冷却水の流量が増えるため、スプルー 12に充填された溶融材料の冷却効果を 高めること力 Sでさる。
[0052] [第 2実施形態]
本発明の第 2実施形態について第 1実施形態との相違点について主に説明する。
[0053] 第 2実施形態に係るスプレーブッシュ 101では、本体水路 14d、本体水路 14eは、 末広がり形状を有するスプルー 12の内壁に沿った勾配を有する。
[0054] 図 20に示すように、スプルー 12は、注入口 11から排出口 13に向けて徐々に広が る末広がり形状を有する。すなわち、図 21に示すように、スプルー 12の内壁 12aの 延長線 Lは、溶融材料の射出方向と略平行な直線 Lに対して勾配 αを有する。また
1 Ρ
、スプル一 12の内壁 12bの延長線 Lは、溶融材料の射出方向と略平行な直線 Lに
2 P 対して勾配 /3を有する。なお、勾酉己 αと勾酉己 /3は、同一であってもよぐ異なっていて あよい。
[0055] 本体水路 14aは、スプルー 12の内壁 12aに沿った勾配を有する。具体的には、本 体水路 14aの中心線 Cは、内壁 12aと同様に、溶融材料の射出方向と略平行な直 線しに対して勾配 αを有する。すなわち、本体水路 14aとスプル一 12の内壁 12aと
P
の距離が一定に保たれる。
[0056] 同様に、本体水路 14bは、スプルー 12の内壁 12bに沿った勾配を有する。具体的 には、本体水路 14bの中心線 Cは、内壁 12bと同様に、溶融材料の射出方向と略平
2
行な直線 Lに対して勾配 /3を有する。すなわち、本体水路 14bとスプル
P 一 12の内壁
12bとの距離が一定に保たれる。
[0057] (作用及び効果)
本発明の第 2実施形態に係るスプルーブッシュ 10によれば、本体水路 14aがスプ ルー 12の内壁 12aに沿った勾配を有するため、本体水路 14aとスプル一 12の内壁 1 2aとの距離が一定に保たれ、スプルー 12内に充填される溶融材料の冷却むらを低 減すること力 Sできる。同様に、本体水路 14bがスプル一 12の内壁 12bに沿った勾配 を有するため、本体水路 14bとスプル一 12の内壁 12bとの距離が一定に保たれ、ス プル一 12内に充填される溶融材料の冷却むらを低減することができる。
[0058] [第 3実施形態]
以下において、本発明の第 3実施形態について第 1実施形態との相違点について 主に説明する。
[0059] 図 22に示すように、本発明の第 3実施形態に係るスプレーブッシュ 102において、 本体水路は、第 1の本体水路 14a、第 4の本体水路 14d、第 5の本体水路 14eを備え る。第 1の本体水路 14aはスプルーの中心軸に平行に形成されている。第 1の本体 水路 14aの一端は、フランンジ部水路を介して給水口につながり、第 1の本体水路 1 4aの他端は、スプルーの溶融材料の流れ方向に直行して得られる断面形状が前記 スプルー断面の円と同心円の弧を含む断面略 Cの字状の領域で定義されるスプル 一の大径側においてスプルーの周囲を囲むように形成された第 4の本体水路 14dに つながつている。第 4の本体水路 14dの他端はフランンジ部水路 15bを介して排水口 16bにつながるように形成されている。
[0060] 上述した第 1実施形態では、第 1の本体水路 14aと第 2の本体水路 14bとをつなぐ 第 3の本体水路 14cは、スプルー 12を半周に亘つて囲む半円弧状の形状を有する。 これに対して、第 3実施形態では、第 1の本体水路 14aと第 5の本体水路 14eとをつ なぐ第 4の本体水路 14dは、スプルー 12を略全周に亘つて囲む略円弧状の形状を 有する。
[0061] 図 23及び図 24に示すように、第 5の本体水路 14eは、スプルー 12に沿った螺旋状 の形状を有する。また、第 4の本体水路 14dは、スプルー 12を略全周に亘つて囲む 略円弧状の形状を有する。
[0062] (作用及び効果)
本発明の第 3実施形態に係るスプルーブッシュ 10によれば、第 1の本体水路 14aと 第 5の本体水路 14eとをつなぐ第 4の本体水路 14dは、スプルー 12を略全周に亘っ て囲む略円弧状の形状を有する。また、第 4の本体水路 14dは、排出口 13側に設け られている。すなわち、排出口 13側に設けられた第 4の本体水路 14dの容積力 上 述した第 1実施形態と比べて大きい。
[0063] したがって、スプルー 12の容積が大きい排出口 13側において、上述した第 1実施 形態よりも冷却水の流量が増加するため、スプルー 12内に充填される溶融材料の冷 却効果をさらに高めることができる。
[0064] [その他の実施形態]
本発明は実施形態によって説明した力 この開示の一部をなす論述及び図面は、 この発明を限定するものであると理解すべきではない。この開示から当業者には様々 な代替実施形態、実施例及び運用技術が明らかとなろう。
[0065] 例えば、第 1実施形態〜第 3実施形態では、給水口 16aは被支持面 10bに形成さ れており、排水口 16bは被支持面 10cに形成されている力 これに限定さえるもので はない。具体的には、給水口 16a及び排水口 16bは、押当て面 10a以外の部分であ れば、どこの部分に設けられていてもよい。
[0066] 第 1実施形態〜第 3実施形態では、本体水路 14及びフランンジ部水路 15は、筒状 の形状を有しているが、これに限定されるものではない。具体的には、本体水路 14 の形状は、スプルー 12内に充填される溶融材料の冷却効率に応じて適宜変更され てもよい。また、フランンジ部水路 15の形状は、冷却水の給水効率や冷却水の排水 効率に応じて適宜変更されてもょレ、。
[0067] 第 1実施形態〜第 3実施形態では、本体水路 14aと本体水路 14bとをつなぐ本体 水路 14cは、排出口 13側に一つだけ設けられている力 これに限定されるものでは ない。具体的には、本体水路 14cの数は複数であってもよぐ本体水路 14cの位置は 、第 1実施形態〜第 3実施形態よりも注入口 11側に設けられていてもよい。
[0068] 第 1実施形態〜第 3実施形態では、スプルーブッシュ 10を支持する支持部材は上 金型 31である力 S、これに限定されるものではない。具体的には、スプルーブッシュ 10 を支持する支持部材が上金型 31とは別に設けられていてもよい。
[0069] 第 1実施形態〜第 3実施形態では、スプルーブッシュ 10、 101、 102は、金属光造 形複合加工法を用いて製造されるが、これに限定されるものではない。具体的には、 スプルーブッシュ 10、 101、 102を構成するための金属塊を切削することによって、ス プノレー 12、本体水路 14、フランンジ部水路 15、注入口 11、給水口 16a及び排水口 16bを切削によって形成してもよい。また、スプルー 12、本体水路 14、フランンジ部 水路 15、注入口 11、給水口 16a及び排水口 16bに該当する蠟を铸造炉内に配置し た上で、スプルーブッシュ 10を構成するための材料を铸造炉内に流し込んだ後に蠟 を溶かすことによって、スプルー 12、本体水路 14、フランンジ部水路 15、注入口 11 、給水口 16a及び排水口 16bを形成してもよい。
[0070] 第 1実施形態〜第 3実施形態では、給水口 16a及び排水口 16bを形成した。この 場合、冷却水の流れる方向が一方に保たれさえすれば、冷却水は給水口 16aから注 入されて排水口 16b力も排出されるのみならず、排水口 16bから注入され給水口 16 aから排出されても構わない。
[0071] 本出願は、同出願人により先にされた日本国特許出願、すなわち、特願 2006— 2 62536号(出願日平成 18年 9月 27日 )に基づく優先権主張を伴うものであって、こ れらの明細書を参照のためにここに組み込むものとする。
産業上の利用の可能性
[0072] 本発明によれば、スプルー内に充填された溶融材料を効率的に冷却するとともに、 成形品の品質劣化を抑制することを可能とするスプルーブッシュ及びその製造方法 が提供される。

Claims

請求の範囲
[1] 一端に射出成形機の射出口部に連結可能に形成された注入口、他端に金型に取 付けた際に前記金型のキヤビティに連結可能に形成された排出口を有するスプルー を本体内部に備え、前記スプルーを除く領域の一部に本体水路が埋設された円柱 状のスプルーブッシュ本体と、
前記スプルーブッシュ本体の前記注入口側端から張り出し、前記スプルーブッシュ 本体に接続され、前記本体水路に連続し外部に通ずるフランンジ部水路が埋設され を備えることを特徴とするスフ。ルーブッシュ。
[2] 前記フランンジが、前記金型に取付けられた際の被支持面に前記フランンジ部水 路に連続する給水口と排水口が設けられて!/、ることを特徴とする請求項 1記載のスプ ノレ一ブッシュ。
[3] 前記スプルーが、溶融材料の流れ方向の一端から他端に向かい径が大きくなる中 空略円錐状であることを特徴とする請求項 1記載のスプルーブッシュ。
[4] 前記本体水路が、前記スプルーの排出口側において前記スプルーの周囲を囲む ように形成されていることを特徴とする請求項 1記載のスプルーブッシュ。
[5] 前記本体水路が、前記スプルーの溶融材料の流れ方向に直行して得られる断面 形状が前記スプルー断面の円と同心円の弧を含む断面略 Cの字状の領域で定義さ れるように、前記スプルーブッシュ本体の前記排出口側において前記スプルーの周 囲を囲むように形成されてレ、ることを特徴とする請求項 4記載のスプルーブッシュ。
[6] 前記金型側の前記本体水路の容積が、前記注入口側の前記本体水路の容積より も大きレ、ことを特徴とする請求項 1に記載のスプルーブッシュ。
[7] 溶融材料の流れ方向の一端から他端に向かい径が大きくなる中空略円錐状のスプ ルーが本体内部に設けられ、前記スプルーの小径側一端は射出成形機の射出口部 に連結可能に注入口が形成され、前記スプルーの大径側他端は金型に取付けた際 に前記金型のキヤビティに連結可能に排出口が形成され、前記スプルーを除く領域 の一部に前記スプルーの前記排出口側において前記スプルーの周囲を囲むように 本体水路が埋設された円柱状のスプルーブッシュ本体と、 前記スプルーブッシュ本体の前記注入口側端から張り出し前記スプルーブッシュ 本体に接続され、前記本体水路に連続し外部に通ずるようにフランンジ部水路が埋 設され、前記金型に取付けられた際の被支持面に前記フランンジ部水路に連続する 給水口と排水口が設けられたフランンジ部と、を備えることを特徴とするスプルーブッ
[8] 前記本体水路が、第 1の前記本体水路、第 2の前記本体水路、第 3の前記本体水 路を備え、前記第 1の本体水路と前記第 2の本体水路は、前記スプルーの溶融材料 の流れ方向の中心軸に平行に形成され、前記第 1の本体水路と前記第 2の本体水 路の一端は、それぞれ前記フランンジ部水路を介して前記給水口もしく前記排水口 につながり、前記第 1の本体水路と前記第 2の本体水路の他端は、前記スプルーの 前記排出口側において前記スプルーの周囲を囲むように形成された第 3の本体水路 で互いにつながっていることを特徴とする請求項 7記載のスプルーブッシュ。
[9] 前記第 1の本体水路及び前記第 2の本体水路が、前記スプルーの内壁に沿った勾 配を有することを特徴とする請求項 8に記載のスプルーブッシュ。
[10] 前記本体水路が、第 1の前記本体水路、第 4の前記本体水路、第 5の前記本体水 路を備え、前記スプルーの中心軸に平行に第 1の本体水路が形成され、前記第 1の 本体水路の一端は、前記フランンジ部水路を介して前記給水口につながり、前記第 1の本体水路の他端は、前記スプルーの溶融材料の流れ方向に直行して得られる断 面形状が前記スプルー断面の円と同心円の弧を含む断面略 Cの字状の領域で定義 される前記スプルーの大径側において前記スプルーの周囲を囲むように形成された 第 4の本体水路につながり、前記第 4の本体水路の他端は前記フランンジ部水路を 介して前記排水口につながるように形成されていることを特徴とする請求項 7記載の スプルーブッシュ。
[11] 金属粉末を塗布する工程と、
溶融材料の流れ方向の一端から他端に向かい径が大きくなる中空略円錐状のスプ ルーが本体内部に設けられ、前記スプルーの小径側一端は射出成形機の射出口部 に連結可能に注入口が形成され、前記スプルーの大径側他端は金型に取付けた際 に前記金型のキヤビティに連結可能に排出口が形成され、前記スプルーを除く領域 の一部に前記スプルーの前記排出口側において前記スプルーの周囲を囲むように 本体水路が埋設された円柱状のスプルーブッシュ本体、
前記スプルーブッシュ本体の前記注入口側端から張り出し前記スプルーブッシュ 本体に接続され、前記本体水路に連続し外部に通ずるようにフランンジ部水路が埋 設され、前記金型に取付けられた際の被支持面に前記フランンジ部水路に連続する 給水口と排水口が設けられたフランンジ部、を備えるスプルーブッシュの溶融材料の 流れ方向に直行して得られる断面形状のパターンに基づき、前記スプルー、前記本 体水路、前記フランンジ部水路、前記給水口、前記排水口に対応する部分を除いて 、前記金属粉末にレーザー光照射による熱加工を行!、一層一層焼結させて積み上 げて立体形状を形成する工程と、
前記立体形状に切削加工を行う工程と、
を含むことを特徴とするスプルーブッシュの製造方法。
[12] 前記本体水路は、第 1の前記本体水路、第 2の前記本体水路、第 3の前記本体水 路を備え、前記第 1の本体水路と前記第 2の本体水路は、前記スプルーの溶融材料 の流れ方向の中心軸に平行に形成され、前記第 1の本体水路と前記第 2の本体水 路の一端は、それぞれ前記フランンジ部水路を介して前記給水口もしく前記排水口 につながり、前記第 1の本体水路と前記第 2の本体水路の他端は、前記スプルーの 前記排出口側において前記スプルーの周囲を囲むように形成された第 3の本体水路 で互いにつながってレ、ることを特徴とする請求項 11記載のスプルーブッシュの製造 方法。
[13] 前記第 1の本体水路及び前記第 2の本体水路は、前記スプルーの内壁に沿った勾 配を有することを特徴とする請求項 11に記載のスプルーブッシュの製造方法。
[14] 前記本体水路は、第 1の前記本体水路、第 4の前記本体水路、第 5の前記本体水 路を備え、前記スプルーの中心軸に平行に第 1の本体水路が形成され、前記第 1の 本体水路の一端は、前記フランンジ部水路を介して前記給水口につながり、前記第 1の本体水路の他端は、前記スプルーの溶融材料の流れ方向に直行して得られる断 面形状が前記スプルー断面の円と同心円の弧を含む断面略 Cの字状の領域で定義 される前記スプルーの大径側において前記スプルーの周囲を囲むように形成された 第 4の本体水路につながり、前記第 4の本体水路の他端は前記フランンジ部水路を 介して前記排水口につながるように形成されていることを特徴とする請求項 11記載 のスプル一ブッシュの製造方法。
PCT/JP2007/068764 2006-09-27 2007-09-27 Buse de carotte et son procédé de production WO2008038694A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020097006888A KR101425691B1 (ko) 2006-09-27 2007-09-27 스프루 부시 및 그 제조 방법
CN2007800360240A CN101535026B (zh) 2006-09-27 2007-09-27 浇道套及其制造方法
JP2008536414A JP5001289B2 (ja) 2006-09-27 2007-09-27 スプルーブッシュ及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006262536 2006-09-27
JP2006-262536 2006-09-27

Publications (1)

Publication Number Publication Date
WO2008038694A1 true WO2008038694A1 (fr) 2008-04-03

Family

ID=39230129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068764 WO2008038694A1 (fr) 2006-09-27 2007-09-27 Buse de carotte et son procédé de production

Country Status (5)

Country Link
JP (1) JP5001289B2 (ja)
KR (1) KR101425691B1 (ja)
CN (1) CN101535026B (ja)
TW (1) TWI410319B (ja)
WO (1) WO2008038694A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010082331A1 (ja) * 2009-01-15 2010-07-22 株式会社Opmラボラトリー スプルーブッシュ及びスプルーブッシュの製造方法
JP2010194719A (ja) * 2009-02-23 2010-09-09 Sekisou Kanagata Co Ltd スプルーブッシュ及びスプルーブッシュの製造方法
JP2011218735A (ja) * 2010-04-13 2011-11-04 Shin-Nihon Tech Inc 射出成形用スプルーブッシュおよび射出成形型装置
JP2012020485A (ja) * 2010-07-15 2012-02-02 Ngk Insulators Ltd スプルーブッシュとその製造方法
CN103895186A (zh) * 2014-04-15 2014-07-02 昆山市大久电子有限公司 双管式水冷防拉丝浇口套
EP3175966A1 (en) * 2015-12-01 2017-06-07 Taiwan Additive Manufacturing Corporation Air-cooled sprue bush for mold
WO2017110007A1 (ja) * 2015-12-25 2017-06-29 パナソニックIpマネジメント株式会社 金型および金型の製造方法
WO2018003882A1 (ja) 2016-06-29 2018-01-04 パナソニックIpマネジメント株式会社 スプルブッシュ
WO2018003881A1 (ja) 2016-06-29 2018-01-04 パナソニックIpマネジメント株式会社 スプルブッシュおよびその製造方法
US11220032B2 (en) 2016-06-29 2022-01-11 Panasonic Intellectual Property Management Co., Ltd. Sprue-bush and method for manufacturing sprue-bush

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101973108A (zh) * 2010-08-25 2011-02-16 青岛海信模具有限公司 一种能够提高成型产品外观质量的模具结构
KR101125720B1 (ko) * 2011-06-27 2012-03-27 이정우 스프루 부쉬
CN102672893A (zh) * 2012-03-16 2012-09-19 广东步步高电子工业有限公司 一种塑胶模具灌嘴及采用此灌嘴的冷流道塑胶模具
CN102794891A (zh) * 2012-08-29 2012-11-28 昆山市浩坤机械有限公司 一种连接杆塑胶模具的专用进胶管
CN102886877B (zh) * 2012-09-21 2015-07-08 百家丽(中国)照明电器有限公司 一种热咀出料口的冷却结构
CN102990853A (zh) * 2012-09-29 2013-03-27 东莞劲胜精密组件股份有限公司 一种硅胶冷流道射咀及其冷却水道结构
CN102909841B (zh) * 2012-10-26 2015-01-21 东泰精密模具(苏州)有限公司 具有倾斜交替式水路结构的模具镶件及其制造方法
CN103464758B (zh) * 2013-08-26 2016-08-10 苏州米莫金属科技有限公司 一种防止倒流的注射成型模具
JP6217993B2 (ja) * 2016-03-09 2017-10-25 パナソニックIpマネジメント株式会社 スプルブッシュ
CN106738590B (zh) * 2016-12-16 2023-01-17 浙江海峰自动化设备有限公司 一种用于pu材料的浇注头外套
CN107825667A (zh) * 2017-11-27 2018-03-23 杭州先临快速成型技术有限公司 一种浇口套快速冷却水路及其设计方法
CN108297358B (zh) * 2018-01-24 2023-11-24 广东弗伦克智能科技有限公司 热流道热咀外部水套结构
KR102458513B1 (ko) * 2021-01-15 2022-10-26 주식회사 세코닉스 렌즈 금형 구조물

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5539815U (ja) * 1978-09-05 1980-03-14
JPH07227893A (ja) * 1994-02-16 1995-08-29 Meiki Co Ltd ディスク成形品の成形方法
JP2000234103A (ja) * 1999-02-10 2000-08-29 Oki Electric Ind Co Ltd 光造形による金型製造方法
JP2003220634A (ja) * 2002-01-29 2003-08-05 Mitsubishi Materials Corp 成形用金型装置
JP2004195942A (ja) * 2002-12-20 2004-07-15 Mitsubishi Materials Corp 成形用金型装置
JP2005280002A (ja) * 2004-03-29 2005-10-13 Seikoh Giken Co Ltd 金型装置、成形品、その成形方法及び成形機

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2607107B2 (ja) * 1987-12-17 1997-05-07 ティーディーケイ株式会社 光ディスク等用成型装置
US6464485B1 (en) * 1999-06-24 2002-10-15 Pioneer Corporation Ultrasonic injection mold for an optical disk
JP2002326266A (ja) * 2001-04-27 2002-11-12 Ricoh Co Ltd 光ディスク成形金型および光ディスク成形方法
JP2003094440A (ja) * 2001-09-19 2003-04-03 Canon Inc 射出成形用型の製造方法
JP4110856B2 (ja) * 2002-06-28 2008-07-02 松下電工株式会社 成形金型の製造方法
CN1274480C (zh) * 2002-10-22 2006-09-13 朱兴源 压滤机塑料隔膜注塑成型法及设备
US7104782B2 (en) * 2003-06-05 2006-09-12 Husky Injection Molding Systems Ltd. Gate cooling structure in a molding stack
JP2007283503A (ja) * 2006-04-12 2007-11-01 Kanto Itami Denki Kk スプルブッシュ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5539815U (ja) * 1978-09-05 1980-03-14
JPH07227893A (ja) * 1994-02-16 1995-08-29 Meiki Co Ltd ディスク成形品の成形方法
JP2000234103A (ja) * 1999-02-10 2000-08-29 Oki Electric Ind Co Ltd 光造形による金型製造方法
JP2003220634A (ja) * 2002-01-29 2003-08-05 Mitsubishi Materials Corp 成形用金型装置
JP2004195942A (ja) * 2002-12-20 2004-07-15 Mitsubishi Materials Corp 成形用金型装置
JP2005280002A (ja) * 2004-03-29 2005-10-13 Seikoh Giken Co Ltd 金型装置、成形品、その成形方法及び成形機

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102282002B (zh) * 2009-01-15 2014-07-02 株式会社Opm实验室 浇道套及浇道套的制造方法
JPWO2010082331A1 (ja) * 2009-01-15 2012-06-28 株式会社Opmラボラトリー スプルーブッシュ及びスプルーブッシュの製造方法
JP5421294B2 (ja) * 2009-01-15 2014-02-19 株式会社Opmラボラトリー スプルーブッシュの製造方法
WO2010082331A1 (ja) * 2009-01-15 2010-07-22 株式会社Opmラボラトリー スプルーブッシュ及びスプルーブッシュの製造方法
JP2010194719A (ja) * 2009-02-23 2010-09-09 Sekisou Kanagata Co Ltd スプルーブッシュ及びスプルーブッシュの製造方法
JP2011218735A (ja) * 2010-04-13 2011-11-04 Shin-Nihon Tech Inc 射出成形用スプルーブッシュおよび射出成形型装置
JP2012020485A (ja) * 2010-07-15 2012-02-02 Ngk Insulators Ltd スプルーブッシュとその製造方法
CN103895186B (zh) * 2014-04-15 2016-08-17 昆山一邦泰汽车零部件制造有限公司 双管式水冷防拉丝浇口套
CN103895186A (zh) * 2014-04-15 2014-07-02 昆山市大久电子有限公司 双管式水冷防拉丝浇口套
EP3175966A1 (en) * 2015-12-01 2017-06-07 Taiwan Additive Manufacturing Corporation Air-cooled sprue bush for mold
WO2017110007A1 (ja) * 2015-12-25 2017-06-29 パナソニックIpマネジメント株式会社 金型および金型の製造方法
JP6229868B1 (ja) * 2015-12-25 2017-11-15 パナソニックIpマネジメント株式会社 金型および金型の製造方法
KR20180086467A (ko) 2015-12-25 2018-07-31 파나소닉 아이피 매니지먼트 가부시키가이샤 금형 및 금형의 제조 방법
US11173641B2 (en) 2015-12-25 2021-11-16 Panasonic Intellectual Property Management Co., Ltd. Mold and method for manufacturing mold
WO2018003882A1 (ja) 2016-06-29 2018-01-04 パナソニックIpマネジメント株式会社 スプルブッシュ
WO2018003881A1 (ja) 2016-06-29 2018-01-04 パナソニックIpマネジメント株式会社 スプルブッシュおよびその製造方法
US10953580B2 (en) 2016-06-29 2021-03-23 Panasonic Intellectual Property Management Co., Ltd. Sprue-bush
US11220032B2 (en) 2016-06-29 2022-01-11 Panasonic Intellectual Property Management Co., Ltd. Sprue-bush and method for manufacturing sprue-bush

Also Published As

Publication number Publication date
JP5001289B2 (ja) 2012-08-15
TWI410319B (zh) 2013-10-01
KR20090091110A (ko) 2009-08-26
TW200835588A (en) 2008-09-01
JPWO2008038694A1 (ja) 2010-01-28
CN101535026B (zh) 2012-11-21
CN101535026A (zh) 2009-09-16
KR101425691B1 (ko) 2014-08-01

Similar Documents

Publication Publication Date Title
WO2008038694A1 (fr) Buse de carotte et son procédé de production
US8999222B2 (en) Method for manufacturing three-dimensionally shaped object, three-dimensionally shaped object obtained thereby, and method for manufacturing molded article
JP5421294B2 (ja) スプルーブッシュの製造方法
WO2009113370A1 (ja) 多数個取り金型
JP2010121187A (ja) 三次元造形物及びその製造方法
JP5576732B2 (ja) スプルーブッシュとその製造方法
JP6253517B2 (ja) タイヤ加硫金型、及びタイヤ加硫金型の製造方法
JP5442349B2 (ja) 金型の冷却プレート及びその製造方法
WO2017154342A1 (ja) スプルブッシュ
JP6189371B2 (ja) 中空成形品の成形方法
JP2008137275A (ja) 金型装置及び成形品の製造方法
JP6245488B1 (ja) スプルブッシュ
JP2010184401A (ja) カウンタープレッシャー工法用成形型
WO2018003882A1 (ja) スプルブッシュ
KR101554491B1 (ko) 라디에이터 그릴 성형용 사출 성형 금형 및 그 제조 방법
JP7423415B2 (ja) 合成樹脂製品の成形方法及びそれに用いる成形型
JP2013123900A (ja) 射出成形用金型
JP6706803B2 (ja) スプルブッシュ
JP2003011197A (ja) 成形用金型装置
JP6558396B2 (ja) 金型装置及び該金型装置を備えた成形装置
JP5313013B2 (ja) トンネルゲート式成形金型
JP2005119181A (ja) 環状成形品の製造装置、金型および射出成形方法
JP2020066048A (ja) 金型要素及び金型要素の製造方法
CN107639823A (zh) 用于生产模制件的单块工具
JP2005335187A (ja) バルブゲート式金型装置とその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780036024.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07828510

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008536414

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020097006888

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 07828510

Country of ref document: EP

Kind code of ref document: A1