WO2018003881A1 - スプルブッシュおよびその製造方法 - Google Patents

スプルブッシュおよびその製造方法 Download PDF

Info

Publication number
WO2018003881A1
WO2018003881A1 PCT/JP2017/023811 JP2017023811W WO2018003881A1 WO 2018003881 A1 WO2018003881 A1 WO 2018003881A1 JP 2017023811 W JP2017023811 W JP 2017023811W WO 2018003881 A1 WO2018003881 A1 WO 2018003881A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
raw material
downstream
sprue bush
material resin
Prior art date
Application number
PCT/JP2017/023811
Other languages
English (en)
French (fr)
Inventor
渡辺 真也
阿部 諭
田中 健一
幹夫 森
内野々 良幸
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2017536050A priority Critical patent/JP6249261B1/ja
Priority to CN201780040551.2A priority patent/CN109414845B/zh
Priority to US16/313,781 priority patent/US11220032B2/en
Priority to EP17820235.4A priority patent/EP3479983B1/en
Publication of WO2018003881A1 publication Critical patent/WO2018003881A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles
    • B29C45/2737Heating or cooling means therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3842Manufacturing moulds, e.g. shaping the mould surface by machining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2905/00Use of metals, their alloys or their compounds, as mould material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a sprue bush and a manufacturing method thereof. More specifically, the present invention relates to a sprue bush used for a mold and a method for manufacturing the same.
  • the injection molding method is a method of obtaining a molded product from a molten resin raw material using an injection molding die.
  • a mold cavity 203 ′ composed of one mold (core mold) 201 ′ of the injection mold 200 ′ and the other mold (cavity mold) 202 ′.
  • the molten resin raw material is injected into (see FIG. 11).
  • the injected molten resin material is cooled and solidified in the mold cavity 203 'to form a molded product.
  • Injection of the molten resin material into the mold cavity 203 ' is generally performed via the sprue bush 100'.
  • a raw material resin flow path 10 ' is provided in the sprue bush 100' used in the injection mold 200 '.
  • the raw material resin flow path 10 ′ extends from the upstream start end 10 a ′ into which the molten resin raw material is introduced to the downstream end 10 b ′ leading to the mold cavity 203 ′.
  • the raw material resin flow path 10 ′ is tapered to facilitate removal of the molded product. Specifically, the width dimension W ′ of the raw material resin flow path 10 ′ gradually increases as it extends from the upstream start end 10a ′ to the downstream end 10b ′. As shown in FIG. 11, the width dimension W 1 ′ on the upstream side 10 ⁇ ′ of the raw material resin flow path 10 ′ is relatively small, whereas the width dimension W 2 on the downstream side 10 ⁇ ′ of the raw material resin flow path 10 ′. 'Is relatively large.
  • the tapered raw material resin flow path 10 ′ is preferable from the viewpoint of taking out the molded product, but is not necessarily preferable from the viewpoint of cooling and solidifying the molten resin raw material.
  • the tapered raw material resin flow path 10 ′ becomes longer, the influence on the downstream side of the relatively large width dimension W ′ increases accordingly, and the molten resin raw material becomes difficult to cool and solidify. If the molten resin raw material is difficult to cool and solidify, the time required from injection of the molten raw material resin to removal of the molded product increases, resulting in a longer molding cycle. Therefore, as shown in FIG. 11, a cooling medium flow path 20 'in the form of a straight pipe may be provided around the raw material resin flow path 10'.
  • the tapered raw material resin flow path 10 ′ gradually increases in width dimension W ′ toward the downstream side, the relative surface area of the portion having a relatively small width dimension is thereby caused. In particular, the surface area of the portion having a large width dimension is increased. When the surface area is increased, a region for transmitting the cooling heat necessary for cooling and solidifying the molten resin material in a portion having a relatively large width dimension is increased. Therefore, in the cooling medium flow path 20 ′ in the straight pipe form, the cooling heat of the cooling medium through the cooling medium flow path 20 ′ due to the form is sufficient for the molten resin raw material in the portion having a relatively large width dimension. There is a risk of not being transmitted to. Therefore, there is a possibility that the molten resin raw material in the raw material resin flow path 10 ′ cannot be suitably cooled and solidified as a whole.
  • the objective of this invention is providing the sprue bush which can cool the molten resin raw material in a raw material resin flow path suitably as a whole, and its manufacturing method.
  • a method for producing a sprue bush is manufactured by providing a shaping part on the base part provided with the raw material resin flow path and the cooling medium flow path, The modeling part is provided with a downstream raw material resin flow path corresponding to a downstream region of the raw resin flow path of the sprue bush, and is positioned around the downstream raw material resin flow path and downstream of the cooling medium flow path of the sprue bush.
  • a sprue bushing manufacturing method is provided in which a downstream cooling medium flow path portion corresponding to a side region is provided, and a downstream cooling medium flow path portion is provided so as to surround the downstream raw material resin flow path portion.
  • a sprue bush provided with a raw material resin flow channel and a cooling medium flow channel positioned around the raw material resin flow channel
  • the sprue bush is composed of a base and a shaping part provided on the base,
  • the base has an upstream raw material resin flow path portion corresponding to an upstream region of the raw material resin flow channel, and is positioned around the upstream raw material resin flow passage portion, and an upstream cooling medium corresponding to an upstream region of the cooling medium flow passage Has a flow channel
  • the modeling portion has a downstream raw material resin flow path portion corresponding to a downstream region of the raw material resin flow channel, and is positioned around the downstream raw material resin flow passage portion, and downstream cooling corresponding to a downstream region of the cooling medium flow channel.
  • a sprue bush is provided that has a medium flow path portion, and the downstream cooling medium flow path portion of the modeling section is provided so as to surround the downstream raw material resin flow path portion.
  • the molten resin raw material in the raw material resin flow path can be suitably cooled as a whole.
  • the perspective view which showed the sprue bush of this invention typically A flow diagram schematically showing a method for producing a sprue bush of the present invention
  • Cross-sectional views schematically showing a process aspect of stereolithography combined processing in which the powder sintering lamination method is performed (FIG. 3A: when forming a powder layer
  • FIG. 3B when forming a solidified layer
  • FIG. 3A when forming a powder layer
  • FIG. 3B when forming a solidified layer
  • Sectional drawing which showed typically the aspect which forms a modeling part on a base
  • subjects a base to rough surface processing typically Sectional drawing which showed typically the aspect which attaches
  • the perspective view which showed typically the sprue bush which concerns on another embodiment of this invention.
  • Sectional drawing which showed typically the sprue bush which concerns on another embodiment of this invention.
  • the present invention is based on the technical idea that the finally obtained sprue bush is composed of at least two parts (base part and modeling part).
  • the base substantially refers to an existing sprue bush. Since the base substantially refers to an existing sprue bush, the base can be used as an injection molding part without providing another part (modeling part) on the base itself. Nevertheless, the present invention is characterized in that the sprue bush finally obtained is composed of at least two parts (a base part and a modeling part).
  • the sprue bush 100 is obtained by combining a base portion 100A and a modeling portion 100B configured to be positioned on the base portion 100A.
  • surface cutting may be performed after the modeling part 100B is positioned on the base part 100A.
  • the sprue bush 100 includes a raw material resin flow channel 10 and a cooling medium flow channel 20 provided around the raw material resin flow channel 10.
  • the raw material resin flow path 10 is configured such that the width dimension gradually increases from the upstream start end 10a toward the downstream end 10b from the viewpoint of easy removal of the finally obtained molded product.
  • the “cooling medium flow path 20 of the sprue bush 100” is a flow path for flowing the cooling medium, and is a flow path for cooling the molten resin raw material in the raw material resin flow path 10. That is, at the time of molding, the molten resin raw material in the raw material resin flow channel 10 is subjected to a temperature drop due to the cooling medium flowing through the cooling medium flow channel 20.
  • the “cooling medium” here refers to a fluid that can give a cooling effect to the molten resin material in the material resin flow path 10, and is, for example, cooling water or a cooling gas.
  • the “upstream side of the raw material resin flow path 10” here refers to a portion located on the proximal side with respect to the upstream start end 10a into which the molten resin raw material is introduced.
  • the “downstream side of the raw material resin flow path 10” here refers to a portion located on the distal side with respect to the upstream start end 10a into which the molten resin raw material is introduced.
  • the boundary between the upstream side and the downstream side of the raw material resin flow path 10 is not particularly limited, but refers to, for example, a half of the height of the sprue bush of the present invention.
  • the “upstream side of the raw material resin flow channel 10” is, for example, from the upstream start end 10 a of the raw material resin flow channel 10 to “a portion that is a half of the height of the sprue bush of the present invention”. It corresponds to the area that goes up to.
  • the “downstream side of the raw material resin flow path 10” corresponds to, for example, a region extending from “a portion that is a half of the height of the sprue bushing of the present invention” to the downstream end 10 b of the raw material resin flow path 10. To do.
  • the base portion 100 ⁇ / b> A is located around the upstream raw material resin flow channel portion 10 ⁇ / b> A corresponding to the upstream region of the raw material resin flow channel 10 and the upstream raw material resin flow channel portion 10 ⁇ / b> A, and corresponds to the upstream region of the cooling medium flow channel 20.
  • An upstream cooling medium flow path portion 20A is provided.
  • the upstream cooling medium flow path portion 20A of the base portion 100A is a straight pipe-shaped flow path disposed around the upstream raw material resin flow path portion 10A.
  • the modeling portion 100B is located around the downstream raw material resin flow channel portion 10B corresponding to the downstream region of the raw material resin flow channel 10 and the downstream raw material resin flow channel portion 10B, and corresponds to the downstream region of the cooling medium flow channel 20
  • the downstream cooling medium flow path portion 20B is provided.
  • the upstream raw material resin flow path part 10A in the base part 100A and the downstream raw material resin flow path part 10B in the modeling part 100B are connected to each other, and the upstream cooling medium in the base part 100A.
  • the modeling unit 100B can be positioned on the base 100A so that the channel unit 20A and the downstream cooling medium channel unit 20B in the modeling unit 100B are connected to each other.
  • the raw material resin flow path 10 inside the sprue bush 100 can be configured such that the width dimension gradually increases from the upstream side 10a to the downstream side 10b, and therefore, the downstream raw material resin flow path is caused thereby.
  • the molten resin material in the part 10B is less likely to be cooled and solidified than the molten resin material in the upstream material resin flow path part 10A. Therefore, it may be necessary to suitably cool and solidify the molten resin raw material in the downstream raw material resin flow path portion 10B.
  • the downstream cooling medium flow channel portion 20B positioned around the downstream raw material resin flow channel portion 10B which may be a portion where the molten resin raw material is difficult to be cooled and solidified, is provided as the downstream raw material resin flow channel portion 10B. Configured to surround. Although not particularly limited, the downstream cooling medium flow path portion 20B may be configured to have a spiral structure.
  • the “downstream cooling medium flow path portion 20 ⁇ / b> B” referred to here indicates one having a dimension of less than half the height of the sprue bush 100 of the present invention. That is, the modeling part 100B may be configured to have a dimension (longitudinal dimension) that is less than half the height dimension of the sprue bush 100 (see FIG. 1).
  • the configuration in which the downstream cooling medium flow path portion 20B surrounds the downstream raw material resin flow path portion 10B is due to the fact that the width dimension of the raw material resin flow path 10 gradually increases from the upstream side toward the downstream side. This is because the molten resin material in the passage 10 is less likely to be cooled and solidified as it goes downstream.
  • the downstream cooling medium flow path portion 20B is provided so as to surround the downstream raw material resin flow path portion 10B, the cooling heat of the cooling medium flowing through the downstream cooling medium flow path portion 20B is downstream from any direction in plan view. It becomes possible to use with respect to the molten resin raw material in the raw material resin flow-path part 10B.
  • the cooling heat of the cooling medium flowing in the downstream cooling medium flow path portion 20B can be suitably transmitted to the molten resin raw material in the downstream raw material resin flow path portion 10B which is relatively difficult to cool and solidify. obtain.
  • the molten resin raw material in downstream raw material resin flow-path part 10B can be cooled and solidified suitably. Therefore, due to this, the time required from the start of injection of the molten resin raw material to the removal of the molded product can be reduced, and as a result, the molding cycle can be shortened.
  • the sprue bush 100 can take the following aspects.
  • the separation distance M between the downstream end surface 101 of the sprue bush 100 and the most downstream portion 20a of the cooling medium flow path 20 is the separation distance between the raw resin flow path 10 and the cooling medium flow path 20. It is smaller than S (see FIG. 7).
  • the downstream end surface 101 of the sprue bush 100 means substantially the entire end surface of the sprue bush 100 that is in direct contact with the mold (specifically, the runner portion R formed in the mold). And includes the “downstream end 10b of the raw material resin flow channel 10”.
  • the “most downstream portion of the cooling medium flow path” here refers to a portion of the cooling medium flow path 20 that is closest to the downstream end face 101 of the sprue bush 100 (see FIG. 7).
  • the “separation distance S” here refers to the portion of the cooling medium flow path 20 closest to the raw material resin flow path 10 in the downstream region 100Y of the sprue bush 100 and the closest distance side. And the distance between the raw material resin flow path 10 facing each other. That is, the “separation distance S” substantially refers to the shortest width dimension between the raw material resin flow path 10 and the cooling medium flow path 20.
  • the separation distance M between the downstream end surface 101 of the sprue bush 100 and the most downstream portion 20a of the cooling medium flow path 20 is such that the raw material resin flow path 10 and the cooling medium flow path 20 It is characterized by being smaller than the separation distance S.
  • the separation distance S between the raw material resin flow path 10 and the cooling medium flow path 20 makes it easy to transfer the cooling heat of the cooling medium flowing in the cooling medium flow path 20 to the molten resin raw material in the raw material resin flow path 10. Therefore, it can be generally controlled to be relatively small.
  • the separation distance M is further smaller than the separation distance S. This means that the most downstream portion 20 a of the cooling medium flow path 20 is positioned “more” closer to the downstream end face 101 of the sprue bush 100.
  • the cooling heat of the cooling medium flowing through the cooling medium flow path 20 can be suitably transmitted from the position of the most downstream portion 20a to the downstream end face 101 of the sprue bush 100. Since this cooling heat can be suitably transmitted to the downstream end surface 101 of the sprue bush 100, it is preferable for the molten resin raw material located at the downstream end 10b of the raw material resin flow path 10 that is most difficult to cool due to this. You can tell. Therefore, the molten resin raw material located at the downstream end 10b of the raw material resin flow path 10 can be suitably cooled and solidified.
  • the sprue bush 100 can be disposed so as to be in contact with the injection mold, the cooling heat of the cooling medium flowing through the cooling medium flow path 20 is injected into the injection mold (specifically, the injection mold). It can be suitably transmitted to the runner part R) of the molding die. Thereby, the molten resin raw material inside the injection mold located near the contact area with the sprue bush 100 can be suitably cooled and solidified.
  • the separation distance M between the downstream end surface 101 of the sprue bush 100 and the most downstream portion 20a of the cooling medium flow path 20 is 0.1 mm to 5 mm, preferably 0.5 mm to 2 mm. Good.
  • the distance M between the downstream end surface 101 of the sprue bush 100 and the most downstream portion 20a of the cooling medium flow path 20 may be a relatively small value of 0.1 mm to 5 mm. Therefore, the cooling heat of the cooling medium flowing through the cooling medium flow path 20 can be suitably transmitted from the position of the most downstream portion 20a to the downstream end surface 101 of the sprue bush 100. Since this cooling heat can be suitably transmitted to the downstream end surface 101 of the sprue bush 100, it is preferable for the molten resin raw material located at the downstream end 10b of the raw material resin flow path 10 that is most difficult to cool due to this. You can tell.
  • the formation region of the downstream end surface 101 of the sprue bush 100 may be made of a material different from the material constituting the other region other than the formation region (or made of the different material). May be).
  • the “formation region of the downstream end surface 101 of the sprue bush 100” refers to the downstream end surface 101 of the sprue bush 100 and the vicinity of the downstream end surface 101 (not particularly limited). As an example, it refers to a region including a region between the downstream end surface 101 of the sprue bush 100 and the most downstream portion 20a of the cooling medium flow path 20 / a region on the surface of the downstream end surface 101).
  • the most downstream portion 20a of the cooling medium flow path 20 is sprung.
  • An embodiment in which the bush 100 is disposed closer to the downstream end surface 101 of the bush 100 is shown.
  • this aspect is not limited to this.
  • the material included in the formation region of the downstream end surface 101 of the sprue bush 100 is, for example, a group consisting of Ag, Cu, Al, Ni, and the like, which are materials having relatively high thermal conductivity. There may be mentioned at least one selected. Among these, it is preferable that Al is contained in the formation region of the downstream end surface 101 of the sprue bush 100.
  • Fe is given as an example.
  • the formation region of the downstream end face 101 of the sprue bush 100 containing a material having a relatively high thermal conductivity forms a “powder sintering lamination method” (a forming part of the sprue bush 100 including the formation region, which will be described later). For this purpose). That is, while forming a modeling part by the “sintered powder lamination method”, a part that becomes a “formation region of the downstream end surface 101 of the sprue bush 100”, which is a component of the modeling part, The material used in the portion other than the “formation region of the downstream end face 101” is changed.
  • the formation region is not limited to this, and the formation region is made of a material (Ag, Cu, Al, Ni, or the like) having a relatively high thermal conductivity on the surface region corresponding to the downstream end surface 101 of the sprue bush 100. It may be provided by separately welding at least one selected from the group, preferably Al).
  • the formation region of the downstream end surface 101 of the sprue bush 100 is more than the other region other than the formation region. It can function suitably as a “high thermal conductivity region” having a relatively high thermal conductivity. If such a formation region suitably functions as a “high heat conduction region”, it is possible to effectively transfer cooling heat from the position of the most downstream portion 20a to the downstream end surface 101 of the sprue bush 100 due to this. .
  • the cooling heat can be effectively transmitted to the downstream end surface 101, the melting located at the downstream end 10b of the raw material resin flow path 10 that is most difficult to cool in the region of the downstream end surface due to that.
  • the cooling heat of the cooling medium can be effectively transmitted to the resin raw material.
  • the molten resin raw material located in the downstream terminal 10b of the raw material resin flow path 10 which is hard to cool most can be cooled and solidified effectively.
  • the cooling heat can be effectively transmitted to the runner portion R of the injection mold in contact with the sprue bush 100. That is, the molten resin material inside the injection mold located near the contact area with the sprue bush 100 can be effectively cooled and solidified.
  • the separation distance S between the raw material resin flow path 10 and the cooling medium flow path 20 is substantially constant in any of the longitudinal directions of the raw material resin flow path 10. (See FIG. 8).
  • the cooling heat of the cooling medium flowing downstream of the cooling medium channel 20 is It can be applied to the molten resin raw material in the downstream side of the raw material resin flow channel 10 from any direction in a plan view.
  • the separation distance S between the raw material resin flow channel 10 and the cooling medium flow channel 20 surrounding the raw material resin flow channel 10 is substantially constant in any of the longitudinal directions of the raw material resin flow channel 10.
  • the distance between the downstream side of the cooling medium flow path 20 provided so as to surround the raw material resin flow path 10 in plan view and the downstream side of the raw material resin flow path 10 can be made substantially equal at any point.
  • the cooling heat of the cooling medium flowing in the downstream side of the cooling medium flow path 20 can be uniformly transmitted to any point in the downstream side of the raw material resin flow path 10.
  • the molten resin raw material in the downstream side of the raw material resin flow path 10 which is relatively difficult to cool and solidify can be uniformly melted and solidified.
  • the pitch of the cooling medium flow path 20 in a cross-sectional view may gradually decrease toward the downstream end surface 101 of the sprue bush 100 (see FIG. 9).
  • the raw material resin flow path 10 is configured such that the width dimension gradually increases toward the downstream end 101 of the sprue bush 100. As the width dimension increases, the surface area of the cooling medium flow path 20 can increase. . For this reason, it may be difficult to suitably transmit the cooling heat of the cooling medium flowing through the cooling medium flow path 20 to the molten resin material. In particular, this can become more prominent toward the downstream end face 101 of the sprue bush 100, that is, toward the downstream end 10 b of the raw material resin flow path 10.
  • the pitch of the cooling medium flow path 20 in a cross-sectional view is configured to gradually decrease toward the downstream end surface 101 of the sprue bush 100.
  • the cooling medium flow path 20 is arranged “densely” in a sectional view.
  • the cooling heat of the cooling medium can be intensively transmitted to the vicinity of the downstream end 10 b and the downstream end 10 b of the raw material resin flow path 10.
  • cooling heat can be effectively transmitted to the molten resin raw material located in the vicinity of the downstream end 10b and the downstream end 10b.
  • the separation distance S between the raw material resin flow path 10 and the cooling medium flow path 20 is substantially constant in any of the longitudinal directions of the raw material resin flow path 10.
  • the pitch of the cooling medium flow path 20 in a cross-sectional view may gradually decrease toward the downstream end face 101 of the sprue bush 100 (see FIG. 10).
  • This aspect relates to the above-mentioned characteristics relating to “substantially constant separation distance S between raw material resin flow path 10 and cooling medium flow path 20 in downstream area 100Y” and “downstream end face 101 of sprue bush 100”. This is a combination of the characteristics relating to “gradual reduction of the pitch of the coolant flow path 20 as it goes to”. This combination is advantageous in that this aspect has both the following first and second effects.
  • the raw material resin flow path 10 is surrounded in a plan view.
  • the distance between the downstream side of the provided coolant flow path 20 and the downstream side of the raw material resin flow path 10 can be made substantially equal at any point. Thereby, the cooling heat of the cooling medium flowing on the downstream side of the cooling medium flow path 20 can be uniformly transmitted to any point in the downstream side of the raw material resin flow path 10. As a result, it is possible to uniformly melt and solidify the molten resin raw material in the downstream side of the raw material resin flow path 10 that is relatively difficult to cool and solidify. Second, due to the feature relating to “gradual reduction of the pitch of the cooling medium flow path 20 toward the downstream end surface 101 of the sprue bush 100”, in the vicinity of the downstream end surface 101 of the sprue bush 100 in a cross-sectional view.
  • the cooling medium flow path 20 is arranged “densely”. Thereby, the cooling heat of the cooling medium can be intensively transmitted to the vicinity of the downstream end 10 b and the downstream end 10 b of the raw material resin flow path 10. Thereby, cooling heat can be effectively transmitted to the molten resin raw material located in the vicinity of the downstream end 10b and the downstream end 10b.
  • a base portion 100A having an upstream raw material resin flow passage portion 10A extending so as to penetrate from the upstream start end 10Aa to the downstream end 10Ab is prepared.
  • the upstream raw resin flow passage portion 10A may be configured such that the width dimension gradually increases as it goes downstream.
  • the base 100A is subjected to cutting so that the upstream cooling medium flow path portion 20A is formed inside the base 100A.
  • the base portion 100A is subjected to cutting to form an upstream cooling medium passage portion 20A in the form of a straight pipe around the upstream raw material resin passage portion 10A.
  • the upstream cooling medium flow path portion 20A is provided upstream. You may position so that it may extend substantially in parallel with the extension direction of 10 A of raw material resin flow-path parts.
  • an opening for allowing the cooling medium to flow in and / or out may be provided on the upstream side portion of the base portion 100A. That is, in detail, the cooling medium flow path 20A may take a structure that continues from the opening to a straight pipe portion disposed around the raw material resin flow path 10A.
  • an end mill can be used, for example.
  • examples of the end mill include a two-blade ball end mill made of a carbide material.
  • a modeling part 100B positioned on the base part 100A is formed.
  • the modeling part 100B can be formed by, for example, a “powder sintering lamination method”.
  • the “powder sintering lamination method” used for forming the modeling part 100B is a method capable of manufacturing a three-dimensional shaped object by irradiating a powder material with a light beam.
  • a powder layer formation and a solidified layer formation are alternately and repeatedly performed based on the following steps (i) and (ii) to produce a three-dimensional shaped object.
  • the obtained three-dimensional shaped object can be used as the modeling part 100B.
  • a three-dimensional shaped object is manufactured using a metal powder as a powder material by a powder sintering lamination method.
  • the squeezing blade 23 is moved to form a powder layer 22 having a predetermined thickness on the modeling plate 21 (see FIG. 3A).
  • a light beam L is applied to a predetermined portion of the powder layer 22 to form a solidified layer 24 from the powder layer 22 (see FIG. 3B).
  • a new powder layer is formed on the obtained solidified layer and irradiated with a light beam again to form a new solidified layer.
  • the solidified layer 24 is laminated (see FIG. 3C), and finally, a three-dimensional structure composed of the laminated solidified layer 24 is formed.
  • a shaped object can be obtained.
  • the downstream raw material resin flow channel portion 10B and the downstream cooling medium flow channel portion around the downstream raw material resin flow channel portion 10B are respectively formed inside.
  • the modeling part 100B is formed by a powder sintering lamination method.
  • the raw material resin flow path 10 inside the sprue bush 100 finally obtained can be configured such that its width dimension gradually increases from the upstream side toward the downstream side (see FIG. 2D).
  • the raw resin flow path 10 inside the finally obtained sprue bush 100 can be configured such that its width dimension gradually increases from the upstream side to the downstream side.
  • This molten resin raw material can be difficult to cool and solidify. Therefore, it is necessary to be able to suitably cool and solidify the molten resin raw material in the downstream side of the raw material resin flow path 10 of the sprue bush 100, that is, in the downstream raw material resin flow path portion 10B.
  • the downstream cooling medium flow is formed so as to surround the downstream resin resin flow channel portion 10B on the downstream side of the raw material resin flow channel 10, which may be a portion where the molten resin raw material is relatively difficult to cool and solidify.
  • a road portion 20B is provided.
  • a downstream cooling medium flow path portion 20B having a spiral structure may be provided.
  • the “downstream cooling medium flow path portion 20 ⁇ / b> B” herein refers to one having a dimension that is less than half the height of the sprue bush 100 of the present invention. That is, the modeling part 100B may be provided on the base part 100A so as to have a dimension (longitudinal dimension) less than half the height dimension of the sprue bush 100 (FIGS. 1, 2C, and 2D). )reference).
  • the width dimension of the raw material resin flow path 10 in the sprue bush 100 is configured to gradually increase from the upstream side toward the downstream side, and as a result, the molten resin in the raw material resin flow path 10 is formed. This is because it is difficult to solidify by cooling as the raw material goes downstream. If the downstream cooling medium flow path part 20B is provided so as to surround the downstream raw material resin flow path part 10B, the cooling heat of the cooling medium flowing through the downstream cooling medium flow path part 20B can be transferred from any direction in plan view. It can be used for the molten resin material in the passage 10B.
  • the cooling heat of the cooling medium flowing in the downstream cooling medium flow path portion 20B can be suitably transmitted to the molten resin raw material in the downstream raw material resin flow path portion 10B which is relatively difficult to cool and solidify. obtain.
  • the molten resin raw material in downstream raw material resin flow-path part 10B can be cooled and solidified suitably. Therefore, due to this, the time required from the start of injection of the molten resin raw material to the removal of the molded product can be reduced, and as a result, the molding cycle can be shortened.
  • the following modes can be adopted.
  • a non-irradiated portion that is not partially irradiated with a light beam is formed.
  • the downstream raw material resin flow channel portion 10B and the downstream cooling medium flow channel portion 20B provided so as to surround the downstream raw material resin flow channel portion 10B are predetermined.
  • the non-irradiation part is formed by not irradiating the region with the light beam.
  • the powder that may exist in the non-irradiated part is finally removed.
  • the downstream raw material resin flow path part 10B and the downstream cooling medium flow path part 20B provided so as to surround the downstream raw material resin flow path part 10B can be formed inside the modeling part 100B.
  • the sprue bush 100 can be finally obtained by positioning the modeling part 100B on the base part 100A. Specifically, the upstream raw material resin flow path part 10A of the base 100A and the downstream raw material resin flow path part 10B of the modeling part 100B are connected to each other, and the upstream cooling medium flow path part 20A of the base part 100A and the downstream raw material resin By positioning the modeling part 100B on the base part 100A so that the downstream cooling medium flow path part 20B provided so as to surround the flow path part 10B is mutually connected, the sprue bush 100 can be finally obtained. .
  • the modeling part 100B obtained by the powder sintering lamination method has a relatively rough surface.
  • the modeling part 100B has a surface with a surface roughness of about several hundred ⁇ m Rz.
  • Such surface roughness is due to the fact that the powder adheres to the surface of the solidified layer forming the modeling part 100B.
  • the energy of the light beam is converted into heat, whereby the powder at a predetermined position of the powder layer irradiated with the light beam is sintered or melted and solidified. At this time, since the powder temperature around the predetermined portion can also rise, the surrounding powder adheres to the surface of the solidified layer.
  • the surface of the sprue bush 100 of the present invention obtained by positioning the modeling part 100B on the base 100A, particularly the surface of the installation region of the modeling part 100B, may be subjected to cutting (see FIG. 6).
  • the manufacturing method of the present invention may take the following aspects.
  • modeling part 100B may be formed on base 100A, and modeling part 100B may be positioned on base 100A.
  • a base 100 ⁇ / b> A including an upstream raw material resin flow path portion 10 ⁇ / b> A and an upstream cooling medium flow path portion 20 ⁇ / b> A is fixed on the modeling plate 21.
  • the powder is formed on the fixed base portion 100A so that the downstream raw material resin flow passage portion and the downstream cooling medium flow passage portion provided so as to surround the downstream raw material resin flow passage portion are formed inside.
  • the modeling part 100B can be formed by a sintering lamination method. Thereby, the sprue bush 100 of the present invention can be formed.
  • the upstream raw material resin flow path part 10A of the base part 100A and the downstream raw material resin flow path part of the modeling part 100B are connected to each other, and the upstream cooling medium flow path part 20A of the base part 100A and the downstream cooling medium of the modeling part 100B It is preferable to form the modeling part 100B on the base part 100A so that the flow path parts are connected to each other.
  • a solidified layer (a constituent element of the modeling part 100B) is formed by irradiating a predetermined portion of the powder layer located on the base part 100A with the light beam L.
  • the connection strength between the solidified layer obtained from the melted and solidified metal powder and the base portion 100A can be improved.
  • the formation method in the powder sintering lamination method of the downstream raw material resin flow path part of the modeling part 100B and the downstream cooling medium flow path part provided so as to surround the downstream raw material resin flow path part is Not described in this paragraph.
  • the surface 101A on which the formation of the modeling part of the base 100A is performed may be subjected to roughening.
  • a base portion 100 ⁇ / b> A having an upstream raw material resin flow path portion 10 ⁇ / b> A and an upstream cooling medium flow path portion 20 ⁇ / b> A inside is fixed on the modeling plate 21.
  • the surface 101A of the base portion 100A on which the modeling portion is provided is subjected to roughing by cutting using the cutting tool 4. It's okay.
  • the surface 101A of the base 100A may be, for example, the top surface of the base 100A.
  • the surface 101A of the base 100A on which the modeling part is provided may be subjected to roughening by moving the cutting tool 4 in the horizontal direction and performing cutting.
  • the cutting tool 4 for example, an end mill can be used.
  • examples of the end mill include a two-blade ball end mill made of a carbide material.
  • the surface 101A of the base 100A on which the modeling part is provided may be subjected to roughing by blasting, laser processing, or the like. When the rough surface processing is performed, the roughness of the surface 101A can be increased. Therefore, the surface area of the surface 101A of the base portion 100A on which the modeling portion is provided can be increased compared to that before the rough surface processing.
  • the contact area between the solidified layer and the surface 101A of the base 100A on which the modeling part is provided can be relatively increased.
  • the roughness of the surface 101A of the base 100A where the modeling part is provided can be increased, the solidified layer formed on the surface 101A of the base 100A where the modeling part is provided fits the surface 101A of the base 100A. Can be formed. Thereby, the connection intensity
  • the modeling part 100B may be formed at a place other than on the base 100A, and the formed modeling part 100B may be installed on the base 100A (see FIG. 1).
  • the modeling part 100B provided with the downstream raw material resin flow path part 10B and the downstream cooling medium flow path part 20B provided so as to surround the downstream raw material resin flow path part 10B is disposed at a place other than on the base part 100A. And formed in advance by a powder sintering lamination method. After forming the modeling part 100B by the powder sintering lamination method, the modeling part 100B and the base part 100A are connected to each other (see FIG. 1). Specifically, the modeling part 100B and the base part 100A are mutually connected so that the formed modeling part 100B is positioned on the base part 100A provided with the upstream raw material resin flow path part 10A and the upstream cooling medium flow path part 20A. Can be connected.
  • the sprue bush 100 of the present invention can be formed.
  • the base portion 100A needs to be cut to form an upstream cooling medium passage portion 20A in the form of a straight pipe around the upstream raw material resin passage portion 10A.
  • the modeling part 100B is formed independently, it is possible to simultaneously form the upstream cooling medium flow path part 20A in the form of a straight pipe and the modeling part 100B. Such simultaneous formation may make it possible to shorten the manufacturing time of the sprue bush 100 of the present invention as a whole.
  • the base prior to providing the shaped part on the base, the base may be subjected to machining to reduce the height of the base.
  • the sprue bush of the present invention can be formed by positioning the base portion and the shaping portion on the base portion. Since the base substantially refers to an existing sprue bush, the base can be used as an injection molding part without providing another part (modeling part) on the base itself. Therefore, if the modeling part is positioned on the base part without particularly processing the base part, the dimensions of the sprue bush of the present invention finally obtained as a whole can be larger than desired. Therefore, it is preferable that an existing sprue bush used as a base is subjected to a cutting process and adjusted so that its size is reduced as compared with that before the cutting process.
  • the base that is, the existing sprue bush
  • the base portion generally includes a flange portion and an extension portion provided on the flange portion, and the base portion is cut so that the longitudinal dimension of the extension portion is reduced.
  • the size of the base portion may be reduced by attaching to.
  • the size of the base portion should be determined in consideration of the size of the finally obtained sprue bushing of the present invention. Thereby, if the shaping
  • First aspect A method for producing a sprue bush,
  • the sprue bush is manufactured by providing a shaping part on the base part provided with the raw material resin flow path and the cooling medium flow path,
  • the modeling part is provided with a downstream raw material resin flow path corresponding to a downstream region of the raw resin flow path of the sprue bush, and is positioned around the downstream raw material resin flow path, and is a cooling medium for the sprue bush
  • a method for producing a sprue bush wherein a downstream cooling medium flow path portion corresponding to a downstream region of the flow path is provided, and the downstream cooling medium flow path portion is provided so as to surround the downstream raw material resin flow path portion.
  • Second aspect Said 1st aspect WHEREIN: The manufacturing method of a sprue bush which provides the said shaping
  • Third aspect In the first aspect or the second aspect, a method for manufacturing a sprue bush, wherein the modeling part is provided on the base by forming the modeling part on the base.
  • Fourth aspect Said 3rd aspect WHEREIN: Prior to formation of the said modeling part, the manufacturing method of a sprue bush which attach
  • the manufacturing method of the sprue bush which forms the said modeling part in places other than on the said base, and installs this formed said modeling part on this base.
  • Sixth aspect The method of manufacturing a sprue bush according to any one of the first to fifth aspects, wherein the height of the base is reduced by subjecting the base to cutting prior to providing the modeling part on the base.
  • Seventh aspect The method of manufacturing a sprue bush according to any one of the first to sixth aspects, wherein the shaped part is formed by a powder sintering lamination method.
  • a sprue bush provided with a raw material resin flow channel and a cooling medium flow channel positioned around the raw material resin flow channel
  • the sprue bush is composed of a base part and a modeling part provided on the base part
  • the base portion has an upstream raw material resin flow channel portion corresponding to an upstream region of the raw material resin flow channel, is located around the upstream raw material resin flow channel portion, and corresponds to an upstream region of the cooling medium flow channel.
  • the shaping portion has a downstream raw material resin flow path portion corresponding to a downstream area of the raw material resin flow path, is located around the downstream raw material resin flow path portion, and is located in a downstream area of the cooling medium flow path.
  • a sprue bush having a corresponding downstream cooling medium flow path section, and the downstream cooling medium flow path section of the modeling section provided so as to surround the downstream raw material resin flow path section.
  • Ninth aspect In the eighth aspect, in the downstream region of the sprue bush, the separation distance between the raw material resin flow path and the cooling medium flow path is substantially constant in any of the longitudinal directions of the raw material resin flow path.
  • Tenth aspect The sprue bush according to the eighth aspect or the ninth aspect, wherein the modeling portion is configured to have a dimension that is less than a half of a height dimension of the sprue bush.
  • a sprue bush according to an embodiment of the present invention is inserted into a mold cavity composed of one mold (core mold) and the other mold (cavity mold) of an injection mold. It can be used to guide the molten resin raw material injected from the injection machine.
  • Sprue bush 100A Base part 100B Modeling part 101A Surface of base part on which the modeling part is provided 10 Sprue raw material resin flow path 10A Upstream raw material resin flow path part 10B Downstream raw material resin flow path part 20 Sprue cooling medium flow path 20A Upstream cooling Medium flow path section 20B Downstream cooling medium flow path section

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

原料樹脂流路内の溶融樹脂原料を全体として好適に冷却可能なスプルブッシュの製造方法を提供するために、本発明の一実施形態では、スプルブッシュの製造方法であって、原料樹脂流路および冷却媒体流路を備えた基部上に対して造形部を設けてスプルブッシュを製造しており、造形部には、スプルブッシュの原料樹脂流路の下流側領域に相当する下流原料樹脂流路部を設けると共に、下流原料樹脂流路部の周囲に位置し、スプルブッシュの冷却媒体流路の下流側領域に相当する下流冷却媒体流路部を設け、および下流原料樹脂流路部を取り囲むように下流冷却媒体流路部を設ける、スプルブッシュの製造方法が提供される。

Description

スプルブッシュおよびその製造方法
 本発明は、スプルブッシュおよびその製造方法に関する。より詳細には、本発明は、金型に使用されるスプルブッシュおよびその製造方法に関する。
 日本の「ものづくり」産業を支えてきた技術の一つに、金型を用いた成形技術がある。かかる成形技術としては、加圧成形法、射出成形法および押出成形法などが挙げられる。これら成形法のうち、射出成形法は、射出成形用金型を用いて溶融樹脂原料から成形品を得る方法である。
 射出成形法においては、射出成形用金型200’の一方の金型(コア側金型)201’と他方の金型(キャビティ側金型)202’とから構成された金型キャビティ203’内に溶融樹脂原料が射出される(図11参照)。射出された溶融樹脂原料は金型キャビティ203’で冷却固化に付され、成形品となる。金型キャビティ203’内への溶融樹脂原料の射出は、一般にスプルブッシュ100’を介して行われる。
 図11に示すように、射出成形用金型200’に用いられるスプルブッシュ100’には原料樹脂流路10’が設けられている。かかる原料樹脂流路10’は、溶融樹脂原料が導入される上流側始端10a’から金型キャビティ203’内へと通じる下流側末端10b’にまで延在している。
 原料樹脂流路10’には、成形品を取り出し易くするためにテーパが付けられている。具体的には、原料樹脂流路10’は、その上流側始端10a’から下流側末端10b’へと延在するにつれて幅寸法W’が漸次大きくなっている。図11に示すように、原料樹脂流路10’の上流側10α’の幅寸法W’は相対的に小さいのに対して、原料樹脂流路10’の下流側10β’の幅寸法W’は相対的に大きくなっている。
 テーパが付けられた原料樹脂流路10’は、成形品の取出しの点で好ましいものの、溶融樹脂原料の冷却固化の点からは必ずしも好ましいといえない。例えばテーパが付けられた原料樹脂流路10’が長くなると、それに伴って相対的に大きい幅寸法W’の下流側の影響が大きくなり、溶融樹脂原料が冷却固化しにくくなる。溶融樹脂原料が冷却固化しにくいと、溶融原料樹脂の射出から成形品の取出しまでに要する時間が増し、結果として成形サイクルが長くなってしまう。それゆえ、図11に示されるように原料樹脂流路10’の周囲に直管形態の冷却媒体流路20’が供されることがある。
国際公開2008-038694号公報
 しかしながら、直管形態の冷却媒体流路20’を内部に備えたスプルブッシュ100’では、以下の問題が依然として生じ得る。
 具体的には、テーパが付けられた原料樹脂流路10’は下流側に向かうにつれて幅寸法W’が漸次大きくなるため、それに起因して相対的に幅寸法が小さな箇所の表面積よりも相対的に幅寸法が大きな箇所の表面積が大きくなる。表面積が大きくなると、相対的に幅寸法が大きな箇所内の溶融樹脂原料を冷却固化するために必要な冷却熱を伝えるための領域が大きくなる。そのため、直管形態の冷却媒体流路20’では、その形態に起因して当該冷却媒体流路20’を通じる冷却媒体の冷却熱が相対的に幅寸法の大きな箇所内の溶融樹脂原料に十分に伝わらないおそれがある。それ故、原料樹脂流路10’内の溶融樹脂原料を全体として好適に冷却固化できないおそれがある。
 本発明は、かかる事情に鑑みて為されたものである。すなわち、本発明の目的は、原料樹脂流路内の溶融樹脂原料を全体として好適に冷却可能なスプルブッシュおよびその製造方法を提供することである。
 上記目的を達成するために、本発明の一実施形態では、
スプルブッシュの製造方法であって、
 原料樹脂流路および冷却媒体流路を備えた基部上に対して造形部を設けてスプルブッシュを製造しており、
 造形部には、スプルブッシュの原料樹脂流路の下流側領域に相当する下流原料樹脂流路部を設けると共に、下流原料樹脂流路部の周囲に位置し、スプルブッシュの冷却媒体流路の下流側領域に相当する下流冷却媒体流路部を設け、および
 下流原料樹脂流路部を取り囲むように下流冷却媒体流路部を設ける、スプルブッシュの製造方法が提供される。
 また、上記目的を達成するために、本発明の一実施形態では、
 原料樹脂流路および原料樹脂流路の周囲に位置する冷却媒体流路を備えたスプルブッシュであって、
 スプルブッシュが、基部と基部上に設けられた造形部とから構成されており、
 基部は、原料樹脂流路の上流側領域に相当する上流原料樹脂流路部を有すると共に、上流原料樹脂流路部の周囲に位置し、冷却媒体流路の上流側領域に相当する上流冷却媒体流路部を有しており、
 造形部は、原料樹脂流路の下流側領域に相当する下流原料樹脂流路部を有すると共に、下流原料樹脂流路部の周囲に位置し、冷却媒体流路の下流側領域に相当する下流冷却媒体流路部を有しており、および
 造形部の下流冷却媒体流路部は、下流原料樹脂流路部を取り囲むように設けられている、スプルブッシュが提供される。
 本発明のスプルブッシュによれば、原料樹脂流路内の溶融樹脂原料を全体として好適に冷却可能である。
本発明のスプルブッシュを模式的に示した斜視図 本発明のスプルブッシュの製造方法を模式的に示したフロー図 粉末焼結積層法が実施される光造形複合加工のプロセス態様を模式的に示した断面図(図3(a):粉末層形成時、図3(b):固化層形成時、図3(c):積層途中) 基部上にて造形部を形成する態様を模式的に示した断面図 基部を粗面加工に付す態様を模式的に示した断面図 本発明のスプルブッシュの表面を切削加工に付す態様を模式的に示した断面図 本発明の別の実施形態に係るスプルブッシュを模式的に示した斜視図 本発明の更に別の実施形態に係るスプルブッシュを模式的に示した断面図 本発明の更に別の実施形態に係るスプルブッシュを模式的に示した断面図 本発明の更に別の実施形態に係るスプルブッシュを模式的に示した断面図 従来のスプルブッシュを模式的に示した断面図
 以下、図面を参照して本発明の一実施形態を詳細に説明する。図面における各種要素の形態および寸法は、あくまでも例示にすぎず、実際の形態および寸法を反映するものではない。
 本発明は、最終的に得られるスプルブッシュを少なくとも2つのパーツ(基部および造形部)から構成するといった技術的思想に基づく。ここでいう基部とは、既存のスプルブッシュを実質的に指す。基部は既存のスプルブッシュを実質的に指すため、基部それ自体に別のパーツ(造形部)を敢えて設けなくとも、基部を射出成形用部品として用いることができ得る。それにもかかわらず、本発明は、最終的に得られるスプルブッシュを少なくとも2つのパーツ(基部および造形部)から敢えて構成している点に特徴を有する。
 本発明の一実施形態に係るスプルブッシュ100は、図1に示すように、基部100Aと、基部100A上に位置付けられるように構成される造形部100Bとを組み合わすことで得られる。なお、図1では図示していないが、造形部100Bが基部100A上に位置付けられた後に、表面切削加工が施されてよい。かかるスプルブッシュ100は、図示するように、原料樹脂流路10およびその周囲に設けられた冷却媒体流路20を内部に有して成る。当該原料樹脂流路10は、最終的に得られる成形品の取出し易さの観点から上流側始端10aから下流側末端10bへ向かうにつれ幅寸法が漸次大きくなるように構成されている。
 ここでいう「スプルブッシュ100の冷却媒体流路20」とは、冷却媒体を流すための流路であって、原料樹脂流路10内の溶融樹脂原料を冷却させるための流路である。つまり、成形時においては冷却媒体流路20を流れる冷却媒体に起因して原料樹脂流路10内の溶融樹脂原料が降温に付されることになる。ここでいう「冷却媒体」とは、原料樹脂流路10内の溶融樹脂原料に対して冷却効果を与えることができる流体のことを指しており、例えば冷却水または冷却ガスなどである。ここでいう「原料樹脂流路10の上流側」とは、溶融樹脂原料が導入される上流側始端10aに対して近位側に位置する部分を指す。一方、ここでいう「原料樹脂流路10の下流側」とは、溶融樹脂原料が導入される上流側始端10aに対して遠位側に位置する部分を指す。原料樹脂流路10の上流側と下流側との境界は、特に限定されるものではないが、例えば本発明のスプルブッシュの高さの2分の1なる部分を指す。より具体的に例示すれば、「原料樹脂流路10の上流側」は、例えば原料樹脂流路10の上流側始端10aから“本発明のスプルブッシュの高さの2分の1なる部分”にまで至る領域に相当する。その一方、「原料樹脂流路10の下流側」は、例えば“本発明のスプルブッシュの高さの2分の1なる部分”から原料樹脂流路10の下流側末端10bにまで至る領域に相当する。
 基部100Aは、原料樹脂流路10の上流側領域に相当する上流原料樹脂流路部10A、および上流原料樹脂流路部10Aの周囲に位置し、冷却媒体流路20の上流側領域に相当する上流冷却媒体流路部20Aを備えている。基部100Aの上流冷却媒体流路部20Aは、上流原料樹脂流路部10Aの周囲に配置された直管形態の流路である。
 造形部100Bは、原料樹脂流路10の下流側領域に相当する下流原料樹脂流路部10B、および下流原料樹脂流路部10Bの周囲に位置し、冷却媒体流路20の下流側領域に相当する下流冷却媒体流路部20Bを備えている。本発明のスプルブッシュ100では、基部100A内の上流原料樹脂流路部10Aと造形部100B内の下流原料樹脂流路部10Bとが相互に連結されるように、および基部100A内の上流冷却媒体流路部20Aと造形部100B内の下流冷却媒体流路部20Bとが相互に連結されるように、造形部100Bが基部100A上に位置付けられ得る。
 上述のように、スプルブッシュ100内部の原料樹脂流路10はその幅寸法が上流側10aから下流側10bへと向かうにつれ漸次大きくなるように構成され得るため、それに起因して下流原料樹脂流路部10B内の溶融樹脂原料は上流原料樹脂流路部10A内の溶融樹脂原料よりも冷却固化しにくい。そのため、下流原料樹脂流路部10B内の溶融樹脂原料を好適に冷却固化できるようにする必要があり得る。そこで、本発明の一実施形態では、溶融樹脂原料が冷却固化しにくい部分であり得る下流原料樹脂流路部10Bの周囲に位置する下流冷却媒体流路部20Bが、下流原料樹脂流路部10Bを取り囲むように構成される。特に限定されるものではないが、下流冷却媒体流路部20Bは螺旋構造を有するように構成されてよい。ここでいう「下流冷却媒体流路部20B」は、本発明のスプルブッシュ100の高さの2分の1未満の寸法を有するものを指す。つまり、造形部100Bは、スプルブッシュ100の高さ寸法の2分の1未満の寸法(長手寸法)を有するように構成されていてよい(図1参照)。
 下流冷却媒体流路部20Bが下流原料樹脂流路部10Bを取り囲む構成は、原料樹脂流路10の幅寸法が上流側から下流側へと向かうにつれ漸次大きくなることに起因して、原料樹脂流路10内の溶融樹脂原料が下流側に向かうにつれ冷却固化しにくいことを考慮したものである。下流冷却媒体流路部20Bが下流原料樹脂流路部10Bを取り囲むように設けられていると、下流冷却媒体流路部20Bを流れる冷却媒体の冷却熱を、平面視においていずれの方向からも下流原料樹脂流路部10B内の溶融樹脂原料に対して供することが可能となる。そのため、これに起因して、下流冷却媒体流路部20Bを流れる冷却媒体の冷却熱を、下流原料樹脂流路部10B内の相対的に冷却固化しにくい溶融樹脂原料に好適に伝えることができ得る。これにより、下流原料樹脂流路部10B内の溶融樹脂原料を好適に冷却固化でき得る。従って、これに起因して溶融樹脂原料の射出開始から成形品の取出しまでに要する時間を減じることができ、その結果として成形サイクルを短くすることができる。
 本発明の一実施形態に係るスプルブッシュ100は、下記態様を採り得る。
 一態様では、スプルブッシュ100の下流側末端面101と冷却媒体流路20の最下流部分20aとの間の離隔距離Mが、原料樹脂流路10と冷却媒体流路20との間の離隔距離Sよりも小さくなっている(図7参照)。
 ここでいう「スプルブッシュ100の下流側末端面101」とは、金型(具体的には金型内に形成されたランナー部R)と直接的に接するスプルブッシュ100の端面の実質的に全体を指し、「原料樹脂流路10の下流側末端10b」を含むものである。ここでいう「冷却媒体流路の最下流部分」とは、冷却媒体流路20のうち、スプルブッシュ100の下流側末端面101に最直近で向かう合う部分を指す(図7参照)。又、ここでいう「離隔距離S」とは、スプルブッシュ100の下流側領域100Yにて、冷却媒体流路20のうち原料樹脂流路10に対して最直近側の部分と、当該最直近側の部分と向かい合う原料樹脂流路10との間の距離を指す。すなわち、「離隔距離S」とは、原料樹脂流路10と冷却媒体流路20との最短の幅寸法を実質的に指す。
 本態様は、上述のように、スプルブッシュ100の下流側末端面101と冷却媒体流路20の最下流部分20aとの間の離隔距離Mが原料樹脂流路10と冷却媒体流路20との間の離隔距離Sよりも小さいことを特徴とする。原料樹脂流路10と冷却媒体流路20との間の離隔距離Sは、原料樹脂流路10内の溶融樹脂原料に対して冷却媒体流路20内を流れる冷却媒体の冷却熱を伝え易くするため、一般的に相対的に小さくなるよう制御され得る。本態様では、当該離隔距離Sよりも離隔距離Mが更により小さくなるよう構成されている。この事は、冷却媒体流路20の最下流部分20aがスプルブッシュ100の下流側末端面101に“より”近接して位置付けられていることを意味する。
 そのため、冷却媒体流路20に流す冷却媒体の冷却熱を、かかる最下流部分20aの位置からスプルブッシュ100の下流側末端面101に好適に伝えることができ得る。かかる冷却熱をスプルブッシュ100の下流側末端面101に好適に伝えることができ得るため、それに起因して最も冷却しにくい原料樹脂流路10の下流側末端10bに位置する溶融樹脂原料に好適に伝えることができ得る。従って、原料樹脂流路10の下流側末端10bに位置する溶融樹脂原料を好適に冷却固化でき得る。更に、スプルブッシュ100は射出成形用金型に接するように配置され得るため、冷却媒体流路20に流す冷却媒体の冷却熱を、スプルブッシュ100と接する射出成形用金型(具体的には射出成形用金型のランナー部R)に好適に伝えることができ得る。これにより、スプルブッシュ100との接触領域近傍に位置する射出成形用金型内部の溶融樹脂原料も好適に冷却固化でき得る。
 なお、上記のスプルブッシュ100の下流側末端面101と冷却媒体流路20の最下流部分20aとの間の離隔距離Mは、0.1mm~5mm、好ましくは0.5mm~2mmとなっていてよい。
 スプルブッシュ100の下流側末端面101と冷却媒体流路20の最下流部分20aとの間の距離Mは0.1mm~5mmと相対的に小さい値であり得る。そのため、冷却媒体流路20に流す冷却媒体の冷却熱を、かかる最下流部分20aの位置からスプルブッシュ100の下流側末端面101に好適に伝えることができ得る。かかる冷却熱をスプルブッシュ100の下流側末端面101に好適に伝えることができ得るため、それに起因して最も冷却しにくい原料樹脂流路10の下流側末端10bに位置する溶融樹脂原料に好適に伝えることができ得る。
 一態様では、スプルブッシュ100の下流側末端面101の形成領域が、当該形成領域以外の他の領域を構成する材料とは異なる材料を含んで成っていてよい(又は当該異なる材料から構成されていてよい)。なお、ここでいう「スプルブッシュ100の下流側末端面101の形成領域」とは、スプルブッシュ100の下流側末端面101と当該下流側末端面101の近傍部分(特に限定されるものではないが、一例としてスプルブッシュ100の下流側末端面101と冷却媒体流路20の最下流部分20aとの間の領域/当該下流側末端面101の面上領域)とを含む領域を指す。
 上記では、最も冷却しにくい原料樹脂流路10の下流側末端10bに位置する溶融樹脂原料に冷却媒体の冷却熱を好適に伝えるための態様として、冷却媒体流路20の最下流部分20aをスプルブッシュ100の下流側末端面101に“より”近接して配置する態様を示した。しかしながら、かかる態様はこれに限定されない。例えば、スプルブッシュ100の下流側末端面101の形成領域が当該形成領域以外の他の領域を構成する材料とは異なる材料を含む態様が挙げられる。
 具体的には、スプルブッシュ100の下流側末端面101の形成領域に含まれる材料としては、一例として熱伝導率が相対的に高い材料であるAg、Cu、Al、およびNi等から成る群から選択される少なくとも1種が挙げられる。この中でも、スプルブッシュ100の下流側末端面101の形成領域にAlが含まれることが好ましい。一方、スプルブッシュ100の下流側末端面101の形成領域以外の領域に含まれる材料としては、一例としてFeが挙げられる。
 上記熱伝導率が相対的に高い材料を含むスプルブッシュ100の下流側末端面101の形成領域は、後述する“粉末焼結積層法”(当該形成領域を含むスプルブッシュ100の造形部を形成するために用いられる方法)にて形成することができる。つまり、“粉末焼結積層法”にて造形部を形成する間にて、造形部の構成要素である「スプルブッシュ100の下流側末端面101の形成領域」と成る部分と、「スプルブッシュ100の下流側末端面101の形成領域」と成る以外の部分とで用いる材料を変える。なお、これに限定されず、当該形成領域は、スプルブッシュ100の下流側末端面101に対応する面領域上に熱伝導率が相対的に高い材料(Ag、Cu、Al、およびNi等から成る群から選択される少なくとも1種、好ましくはAl)を別途溶接することで供されてもよい。
 以上により、熱伝導率が相対的に高い材料が局所的に用いられると、これに起因して、スプルブッシュ100の下流側末端面101の形成領域は、当該形成領域以外の他の領域よりも熱伝導率が相対的に高い“高熱伝導領域”として好適に機能し得る。かかる形成領域が“高熱伝導領域”として好適に機能すると、これに起因して最下流部分20aの位置からスプルブッシュ100の下流側末端面101に対して冷却熱を効果的に伝えることができ得る。下流側末端面101に対して冷却熱を効果的に伝えることができると、それに起因して下流側末端面の領域にある最も冷却しにくい原料樹脂流路10の下流側末端10bに位置する溶融樹脂原料に対しても冷却媒体の冷却熱を効果的に伝えることが可能となる。これにより、最も冷却しにくい原料樹脂流路10の下流側末端10bに位置する溶融樹脂原料を効果的に冷却固化でき得る。又、かかる形成領域が“高熱伝導領域”として好適に機能すると、これに起因して最下流部分20aの位置からスプルブッシュ100の下流側末端面101に対して効果的に伝えられ得る冷却熱を、スプルブッシュ100と接する射出成形用金型に効果的に伝えることが可能となる。より具体的には、当該冷却熱をスプルブッシュ100と接する射出成形用金型のランナー部Rに効果的に伝えることができ得る。つまり、スプルブッシュ100との接触領域近傍に位置する射出成形用金型内部の溶融樹脂原料も効果的に冷却固化できる。
 一態様では、スプルブッシュ100の下流側領域100Yにおいて、原料樹脂流路10と冷却媒体流路20との間の離隔距離Sが原料樹脂流路10の長手方向のいずれにおいても略一定となっていてよい(図8参照)。
 スプルブッシュ100の下流側領域100Yにおいて、冷却媒体流路20の下流側が原料樹脂流路10を取り囲むように構成されていると、冷却媒体流路20の下流側を流れる冷却媒体の冷却熱を、平面視においていずれの方向からも原料樹脂流路10の下流側内の溶融樹脂原料に対して供することができ得る。この場合において、原料樹脂流路10と、当該原料樹脂流路10を取り囲む冷却媒体流路20との離隔距離Sが原料樹脂流路10の長手方向のいずれにおいても略一定となっていると、平面視で原料樹脂流路10を取り囲むように設けられた冷却媒体流路20の下流側と原料樹脂流路10の下流側との間の距離をいずれのポイントでも略等しくし得る。そのため、これに起因して、原料樹脂流路10の下流側内のいずれのポイントにも冷却媒体流路20の下流側を流れる冷却媒体の冷却熱を均一に伝えることができ得る。これにより、相対的に冷却固化しにくい原料樹脂流路10の下流側内の溶融樹脂原料を均一に溶融固化でき得る。
 一態様では、スプルブッシュ100の下流側領域100Yでは、断面視における冷却媒体流路20のピッチが、スプルブッシュ100の下流側末端面101に向かうにつれて漸次小さくなっていてよい(図9参照)。
 原料樹脂流路10はスプルブッシュ100の下流側末端101に向かうにつれて幅寸法が漸次大きくなるように構成されているところ、当該幅寸法が大きくなるにつれて、冷却媒体流路20の表面積が大きくなり得る。そのため、それに起因して冷却媒体流路20に流す冷却媒体の冷却熱を溶融樹脂原料に好適に伝えることができにくくなり得る。特に、この事はスプルブッシュ100の下流側末端面101、すなわち原料樹脂流路10の下流側末端10bに向かうにつれ顕著となり得る。
 そこで、本態様では、スプルブッシュ100の下流側領域100Yでは断面視における冷却媒体流路20のピッチが、スプルブッシュ100の下流側末端面101に向かうにつれて漸次小さくなるよう構成されている。かかる構成を採ることにより、スプルブッシュ100の下流側末端面101の近傍において、断面視にて冷却媒体流路20が“密”に配置されることとなる。これにより、冷却媒体の冷却熱を、原料樹脂流路10の下流側末端10bおよび下流側末端10bの近傍に集中的に伝えることができ得る。これにより、下流側末端10bおよび下流側末端10bの近傍内部に位置する溶融樹脂原料に対して冷却熱を効果的に伝えることができ得る。
 一態様では、スプルブッシュ100の下流側領域100Yにおいて、原料樹脂流路10と冷却媒体流路20との間の離隔距離Sが原料樹脂流路10の長手方向のいずれにおいても略一定となっており、かつスプルブッシュ100の下流側領域100Yでは断面視における冷却媒体流路20のピッチが、スプルブッシュ100の下流側末端面101に向かうにつれて漸次小さくなっていてよい(図10参照)。
 本態様は、上述の「下流側領域100Yにて原料樹脂流路10と冷却媒体流路20との間の離隔距離Sの略一定性」に関する特徴と、「スプルブッシュ100の下流側末端面101に向かうにつれての冷却媒体流路20のピッチの漸次低減」に関する特徴とを組み合わせたものである。かかる組合せにより、本態様は、下記の第1の効果と第2の効果の両方が奏される点で有利である。第1に、「下流側領域100Yにて原料樹脂流路10と冷却媒体流路20との間の離隔距離Sの略一定性」に関する特徴により、平面視で原料樹脂流路10を取り囲むように設けられた冷却媒体流路20の下流側と原料樹脂流路10の下流側との間の距離をいずれのポイントでも略等しくし得る。これにより、原料樹脂流路10の下流側内のいずれのポイントにも冷却媒体流路20の下流側を流れる冷却媒体の冷却熱を均一に伝えることができ得る。その結果、相対的に冷却固化しにくい原料樹脂流路10の下流側内の溶融樹脂原料を均一に溶融固化でき得る。第2に、「スプルブッシュ100の下流側末端面101に向かうにつれての冷却媒体流路20のピッチの漸次低減」に関する特徴により、スプルブッシュ100の下流側末端面101の近傍において、断面視にて冷却媒体流路20が“密”に配置されることとなる。これにより、冷却媒体の冷却熱を、原料樹脂流路10の下流側末端10bおよび下流側末端10bの近傍に集中的に伝えることができ得る。これにより、下流側末端10bおよび下流側末端10bの近傍内部に位置する溶融樹脂原料に対して冷却熱を効果的に伝えることができ得る。
 以下、本発明のスプルブッシュの製造方法について説明する。
<1.基部の用意>
 図2(a)に示すように、上流側始端10Aaから下流側末端10Abまで貫通するように延在する上流原料樹脂流路部10Aを内部に備えた基部100Aを用意する。ここでいう「基部100A」とは、既存のスプルブッシュを実質的に指す。また、上流原料樹脂流路部10Aは、下流側に向かうにつれ幅寸法が漸次大きくなるように構成されていてよい。
 図2(b)に示すように、上流冷却媒体流路部20Aが基部100Aの内部に形成されるように、基部100Aを切削加工に付す。具体的には、基部100Aを切削加工に付して、上流原料樹脂流路部10Aの周囲に直管形態の上流冷却媒体流路部20Aを内部に形成する。特に限定されるものでないが、上流冷却媒体流路部20Aに流す冷却媒体熱を上流原料樹脂流路部10A中の原料樹脂に均一に供する観点から、当該上流冷却媒体流路部20Aを、上流原料樹脂流路部10Aの延在方向に対して略平行に延在するように位置付けてよい。又、特に限定されるものではないが、冷却媒体を流入および/または流出させるための開口部が基部100Aの上流側の側部に供されてよい。つまり、詳細には、冷却媒体流路20Aは、当該開口部から、原料樹脂流路10Aの周囲に配置される直管部分まで連続する構造を採ってよい。切削加工するための切削工具としては、例えばエンドミルを用いることができ得る。特に限定されるものではないが、エンドミルとしては、例えば超硬素材の二枚刃ボールエンドミル等を挙げることができ得る。以上により、上流原料樹脂流路部10Aおよび下流冷却媒体流路部20Aを内部に備えた基部100Aを用意する。
<2.造形部の形成>
 本発明の一実施形態では、図2(c)に示すように基部100A上に位置付けられる造形部100Bを形成する。当該造形部100Bは例えば“粉末焼結積層法”で形成することができ得る。
 造形部100Bの形成に用いられる“粉末焼結積層法”とは、光ビームを粉末材料に照射することを通じて三次元形状造形物を製造できる方法である。粉末焼結積層法では、以下の工程(i)および(ii)に基づいて粉末層形成と固化層形成とを交互に繰り返し実施して三次元形状造形物を製造する。
 (i)粉末層の所定箇所に光ビームを照射し、かかる所定箇所の粉末を焼結又は溶融固化させて固化層を形成する工程。
 (ii)得られた固化層の上に新たな粉末層を形成し、同様に光ビームを照射して更なる固化層を形成する工程。
 このような製造技術に従えば、複雑な三次元形状造形物を短時間で製造することが可能となる。粉末材料として金属粉末を用いる場合、得られる三次元形状造形物を造形部100Bとして用いることができ得る。
 粉末焼結積層法で、粉末材料として金属粉末を用いて三次元形状造形物を製造する場合を例にとる。図3に示すように、まず、スキージング・ブレード23を動かして造形プレート21上に所定厚みの粉末層22を形成する(図3(a)参照)。次いで、粉末層22の所定箇所に光ビームLを照射して粉末層22から固化層24を形成する(図3(b)参照)。引き続いて、得られた固化層の上に新たな粉末層を形成して再度光ビームを照射して新たな固化層を形成する。このようにして粉末層形成と固化層形成とを交互に繰り返し実施すると固化層24が積層することになり(図3(c)参照)、最終的には積層化した固化層24から成る三次元形状造形物を得ることができ得る。
 特に、本発明の一実施形態では、図2(c)に示すように、下流原料樹脂流路部10Bおよび当該下流原料樹脂流路部10Bの周囲に下流冷却媒体流路部がそれぞれ内部に形成されるように、造形部100Bを粉末焼結積層法で形成する。なお、最終的に得られるスプルブッシュ100内部の原料樹脂流路10はその幅寸法が上流側から下流側へと向かうにつれ漸次大きくなるように構成され得る(図2(d)参照)。この場合、最終的に得られるスプルブッシュ100内部の原料樹脂流路10はその幅寸法が上流側から下流側へと向かうにつれ漸次大きくなるように構成され得るため、それに起因して、下流側内の溶融樹脂原料は冷却固化しにくくなり得る。そのため、最終的に得られるスプルブッシュ100の原料樹脂流路10の下流側、すなわち下流原料樹脂流路部10B内の溶融樹脂原料を好適に冷却固化でき得るようにする必要がある。
 そこで、本発明の一実施形態では、溶融樹脂原料が相対的に冷却固化しにくい部分であり得る原料樹脂流路10の下流側、すなわち下流原料樹脂流路部10Bを取り囲むように下流冷却媒体流路部20Bを設ける。特に限定されるものではないが、螺旋構造を有する下流冷却媒体流路部20Bを設けてよい。ここでいう「下流冷却媒体流路部20B」とは、本発明のスプルブッシュ100の高さの2分の1未満の寸法を有するものを指す。つまり、スプルブッシュ100の高さ寸法の2分の1未満の寸法(長手寸法)を有するように造形部100Bを基部100A上に設けてよい(図1、図2(c)および図2(d)参照)。
 この事は、スプルブッシュ100内部の原料樹脂流路10の幅寸法が上流側から下流側へと向かうにつれ漸次大きくなるように構成されており、それに起因して原料樹脂流路10内の溶融樹脂原料が下流側に向かうにつれ冷却固化しにくいことを考慮したものである。下流原料樹脂流路部10Bを取り囲むように下流冷却媒体流路部20Bを設けると、下流冷却媒体流路部20Bを流れる冷却媒体の冷却熱を、平面視においていずれの方向からも下流原料樹脂流路部10B内の溶融樹脂原料に対して供することができ得る。そのため、これに起因して、下流冷却媒体流路部20Bを流れる冷却媒体の冷却熱を、下流原料樹脂流路部10B内の相対的に冷却固化しにくい溶融樹脂原料に好適に伝えることができ得る。これにより、下流原料樹脂流路部10B内の溶融樹脂原料を好適に冷却固化でき得る。従って、これに起因して溶融樹脂原料の射出開始から成形品の取出しまでに要する時間を減じることができ、その結果として成形サイクルを短くすることができる。
 また、上述の下流原料樹脂流路部10B、および当該下流原料樹脂流路部10Bを取り囲むように設けられる下流冷却媒体流路部20Bを形成するために、以下の態様を採り得る。まず、固化層を形成する際に光ビームが部分的に照射されない非照射部を形成する。具体的には、粉末焼結積層法で固化層を形成する際、下流原料樹脂流路部10Bおよび当該下流原料樹脂流路部10Bを取り囲むように設けられる下流冷却媒体流路部20Bとなる所定領域には光ビームを照射しないことで非照射部を形成する。非照射部を形成した後、かかる非照射部に存在し得る粉末を最終的に除去する。これにより、造形部100Bの内部に下流原料樹脂流路部10Bおよび当該下流原料樹脂流路部10Bを取り囲むように設けられる下流冷却媒体流路部20Bが形成され得る。
<3.基部上への造形部の位置付け>
 本発明の一実施形態では、基部100A上に造形部100Bを位置付けることで、最終的にスプルブッシュ100を得ることができ得る。具体的には、基部100Aの上流原料樹脂流路部10Aと造形部100Bの下流原料樹脂流路部10Bとが相互に連結され、および基部100Aの上流冷却媒体流路部20Aと、下流原料樹脂流路部10Bを取り囲むように設けられる下流冷却媒体流路部20Bとが相互に連結されるように基部100A上に造形部100Bを位置付けることで、最終的にスプルブッシュ100を得ることができ得る。
<4.切削加工の実施>
最後に、図2(d)に示すように、基部100A上に造形部100Bを位置付けることで得られる本発明のスプルブッシュ100の表面、特に造形部100Bの設置領域の表面を切削加工に付すことがよい。
 粉末焼結積層法で得られる造形部100Bは、比較的粗い表面を有している。例えば、造形部100Bは数百μmRz程度の表面粗さの表面を有している。かかる表面粗さは、造形部100Bを成す固化層の表面に粉末が付着することに起因している。固化層形成の際には光ビームのエネルギーが熱に変換されることによって光ビームが照射される粉末層の所定箇所の粉末が焼結又は溶融固化する。この際、かかる所定箇所の周辺の粉末温度も上昇し得るため、当該周辺の粉末が固化層の表面に付着してしまう。このように付着粉末に起因して造形部100B(三次元形状造形物)に表面粗さがもたらされることになる。従って、基部100A上に造形部100Bを位置付けることで得られる本発明のスプルブッシュ100の表面、特に造形部100Bの設置領域の表面を切削加工に付すことがよい(図6参照)。
 なお、本発明の製造方法は、以下の態様を採ってよい。
 一態様では、造形部100Bの形成を基部100A上にて実施して、基部100A上に造形部100Bを位置付けてよい。
 具体的には、図4に示すように、造形プレート21上に上流原料樹脂流路部10Aおよび上流冷却媒体流路部20Aを内部に備えた基部100Aを固定する。基部100Aを固定した後、固定した基部100A上にて、下流原料樹脂流路部および当該下流原料樹脂流路部を取り囲むように設けられる下流冷却媒体流路部が内部に形成されるように粉末焼結積層法で造形部100Bを形成し得る。これにより、本発明のスプルブッシュ100が形成され得る。この時、基部100Aの上流原料樹脂流路部10Aと造形部100Bの下流原料樹脂流路部とが相互に連結され、および基部100Aの上流冷却媒体流路部20Aと造形部100Bの下流冷却媒体流路部とが相互に連結されるように基部100A上にて造形部100Bを形成することがよい。
 造形部100Bの形成を基部100A上にて実施する場合、基部100A上に位置する粉末層の所定箇所に光ビームLを照射することで固化層(造形部100Bの構成要素)が形成される。この場合、光ビームLの照射により、基部100A上にて金属粉末が溶融固化するため、溶融固化した金属粉末から得られる固化層と基部100Aとの接続強度が向上され得る。なお、説明の重複を避けるため、造形部100Bの下流原料樹脂流路部および当該下流原料樹脂流路部を取り囲むように設けられる下流冷却媒体流路部の粉末焼結積層法での形成方法は本段落では記載しない。
 一態様では、基部100A上での造形部の形成に先立って、基部100Aのうち造形部の形成が実施される面101Aを粗面加工に付してよい。
 特に限定されるものではないが、例えば、図5に示すように、造形プレート21上に上流原料樹脂流路部10Aおよび上流冷却媒体流路部20Aを内部に備えた基部100Aを固定する。基部100Aを固定した後、固定した基部100A上に造形部を形成するに先立って、造形部が設けられる基部100Aの面101Aを、切削工具4を用いて切削することで粗面加工に付してよい。基部100Aの面101Aとしては、例えば基部100Aの天面であってよい。具体的には、切削工具4を水平方向に動かして切削することで造形部が設けられる基部100Aの面101Aを粗面加工に付してよい。切削工具4としては、例えばエンドミルを用いることができ得る。特に限定されるものではないが、エンドミルとしては、例えば超硬素材の二枚刃ボールエンドミル等を挙げることができ得る。これに限定されず、例えば、造形部が設けられる基部100Aの面101Aをブラスト処理、レーザー処理等して、粗面加工に付してよい。粗面加工に付すと、当該面101Aの粗さが大きくなり得るため、これに起因して造形部が設けられる基部100Aの面101Aの表面積を粗面加工前と比べて大きくし得る。そのため、基部100A上に造形部を形成するために基部100A上に固化層を形成する段階において、当該固化層と造形部が設けられる基部100Aの面101Aとの接触領域を相対的に大きくし得る。また、造形部が設けられる基部100Aの面101Aの粗さが大きくなり得るため、造形部が設けられる基部100Aの面101A上に形成される固化層が、基部100Aの面101Aに嵌合するように形成され得る。これにより、全体として基部100Aと造形部との接続強度がより向上され得る。
 一態様では、基部100A上以外の場所で造形部100Bを形成し、形成した造形部100Bを基部100A上に設置してよい(図1参照)。
 具体的には、下流原料樹脂流路部10Bおよび当該下流原料樹脂流路部10Bを取り囲むように設けられる下流冷却媒体流路部20Bを内部に備えた造形部100Bを、基部100A上以外の場所で粉末焼結積層法で予め形成しておく。粉末焼結積層法で造形部100Bを形成した後、当該造形部100Bと基部100Aとを相互に接続させる(図1参照)。具体的には、形成した造形部100Bが上流原料樹脂流路部10Aおよび上流冷却媒体流路部20Aを内部に備えた基部100A上に位置付けられるように、当該造形部100Bと基部100Aとを相互に接続させ得る。なお、基部100A上には、形成した造形部100Bをロウ付け等により設置固定することが好ましい。これにより、本発明のスプルブッシュ100が形成され得る。基部100Aについては、切削加工を施して上流原料樹脂流路部10Aの周囲に直管形態の上流冷却媒体流路部20Aを内部に形成する必要がある。これにつき、本態様では、造形部100Bを独立して形成することから、直管形態の上流冷却媒体流路部20Aの形成と、造形部100Bとの形成を同時併行で行うことができ得る。かかる同時併行の形成により、全体として本発明のスプルブッシュ100の製造時間を短縮することが可能となり得る。
 一態様では、基部上に造形部を設けるに先立って、基部を切削加工に付して基部の高さ寸法を減じてよい。
 上述のように本発明のスプルブッシュは、基部と基部上に造形部を位置付けることで形成され得る。基部は既存のスプルブッシュを実質的に指すため、基部それ自体に別のパーツ(造形部)を敢えて設けなくとも、基部を射出成形用部品として用いることができ得る。そのため、基部を特に加工することなく、基部上に造形部を位置付けると、全体として最終的に得られる本発明のスプルブッシュの寸法が所望のものと比べて大きくなり得る。そこで、基部として用いる既存のスプルブッシュを切削加工に付して、切削加工前と比べてその寸法が減じられるように調節することがよい。具体的には、基部、すなわち既存のスプルブッシュは概してフランジ部と当該フランジ部上に設けられた延在部を備えているところ、当該延在部の長手寸法が小さくなるように基部を切削加工に付すことで、基部の寸法を小さくしてよい。基部の寸法をどの程度小さくするかについては、最終的に得られる本発明のスプルブッシュのサイズを考慮の上決定することがよい。これにより、寸法が調節された基部上に造形部を位置付けると、全体として最終的に得られる本発明のスプルブッシュの寸法を所望の寸法にすることができ得る。
 以上、本発明の一実施形態に係るスプルブッシュおよびその製造方法について説明してきたが、本発明はこれに限定されることなく、特許請求の範囲に規定される発明の範囲から逸脱することなく種々の変更が当業者によってなされると理解されよう。
 なお、上述のような本発明の一実施形態は、次の好適な態様を包含している。
第1態様
スプルブッシュの製造方法であって、
 原料樹脂流路および冷却媒体流路を備えた基部上に対して造形部を設けて前記スプルブッシュを製造しており、
 前記造形部には、前記スプルブッシュの原料樹脂流路の下流側領域に相当する下流原料樹脂流路部を設けると共に、該下流原料樹脂流路部の周囲に位置し、該スプルブッシュの冷却媒体流路の下流側領域に相当する下流冷却媒体流路部を設け、および
 前記下流原料樹脂流路部を取り囲むように前記下流冷却媒体流路部を設ける、スプルブッシュの製造方法。
第2態様
 上記第1態様において、前記スプルブッシュの高さ寸法の2分の1未満の寸法を有するように前記造形部を前記基部上に設ける、スプルブッシュの製造方法。
第3態様
 上記第1態様又は第2態様において、前記造形部の形成を前記基部上で実施することによって前記基部上に前記造形部を設ける、スプルブッシュの製造方法。
第4態様
 上記第3態様において、前記造形部の形成に先立って、前記造形部が設けられる前記基部の面を粗面加工に付す、スプルブッシュの製造方法。
第5態様
 上記第1態様又は第2態様において、前記基部上以外の場所で前記造形部を形成し、該形成した該造形部を該基部上に設置する、スプルブッシュの製造方法。
第6態様
 上記第1態様~第5態様のいずれかにおいて、前記基部上に前記造形部を設けるに先立って、前記基部を切削加工に付して該基部の高さ寸法を減じる、スプルブッシュの製造方法。
第7態様
 上記第1態様~第6態様のいずれかにおいて、粉末焼結積層法で前記造形部を形成する、スプルブッシュの製造方法。
第8態様
原料樹脂流路および該原料樹脂流路の周囲に位置する冷却媒体流路を備えたスプルブッシュであって、
 前記スプルブッシュが、基部と該基部上に設けられた造形部とから構成されており、
 前記基部は、原料樹脂流路の上流側領域に相当する上流原料樹脂流路部を有すると共に、該上流原料樹脂流路部の周囲に位置し、前記冷却媒体流路の上流側領域に相当する上流冷却媒体流路部を有しており、
 前記造形部は、前記原料樹脂流路の下流側領域に相当する下流原料樹脂流路部を有すると共に、該下流原料樹脂流路部の周囲に位置し、前記冷却媒体流路の下流側領域に相当する下流冷却媒体流路部を有しており、および
 前記造形部の前記下流冷却媒体流路部は、前記下流原料樹脂流路部を取り囲むように設けられている、スプルブッシュ。
第9態様
 上記第8態様において、前記スプルブッシュの前記下流側領域において、前記原料樹脂流路と前記冷却媒体流路との間の離隔距離が前記原料樹脂流路の長手方向のいずれにおいても略一定となっている、スプルブッシュ。
第10態様
 上記第8態様又は第9態様において、前記造形部は、前記スプルブッシュの高さ寸法の2分の1未満の寸法を有するように構成されている、スプルブッシュ。
 本発明の一実施形態に係るスプルブッシュは、射出成形用金型の一方の金型(コア側金型)と他方の金型(キャビティ側金型)とから構成される金型キャビティ内へ、射出機から射出された溶融樹脂原料を導くために用いられ得る。
関連出願の相互参照
 本出願は、日本国特許出願第2016-129264号(出願日:2016年6月29日、発明の名称:「スプルブッシュおよびその製造方法」)に基づくパリ条約上の優先権を主張する。当該出願に開示された内容は全て、この引用により、本明細書に含まれるものとする。
100   スプルブッシュ
100A  基部
100B  造形部
101A  造形部が設けられる基部の面
10    スプルブッシュの原料樹脂流路
10A   上流原料樹脂流路部
10B   下流原料樹脂流路部
20    スプルブッシュの冷却媒体流路
20A   上流冷却媒体流路部
20B   下流冷却媒体流路部

Claims (10)

  1.  スプルブッシュの製造方法であって、
     原料樹脂流路および冷却媒体流路を備えた基部上に対して造形部を設けて前記スプルブッシュを製造しており、
     前記造形部には、前記スプルブッシュの原料樹脂流路の下流側領域に相当する下流原料樹脂流路部を設けると共に、該下流原料樹脂流路部の周囲に位置し、該スプルブッシュの冷却媒体流路の下流側領域に相当する下流冷却媒体流路部を設け、および
     前記下流原料樹脂流路部を取り囲むように前記下流冷却媒体流路部を設ける、スプルブッシュの製造方法。
  2.  前記スプルブッシュの高さ寸法の2分の1未満の寸法を有するように前記造形部を前記基部上に設ける、請求項1に記載のスプルブッシュの製造方法。
  3.  前記造形部の形成を前記基部上で実施することによって前記基部上に前記造形部を設ける、請求項1に記載のスプルブッシュの製造方法。
  4.  前記造形部の形成に先立って、前記造形部が設けられる前記基部の面を粗面加工に付す、請求項3に記載のスプルブッシュの製造方法。
  5.  前記基部上以外の場所で前記造形部を形成し、該形成した該造形部を該基部上に設置する、請求項1に記載のスプルブッシュの製造方法。
  6.  前記基部上に前記造形部を設けるに先立って、前記基部を切削加工に付して該基部の高さ寸法を減じる、請求項1に記載のスプルブッシュの製造方法。
  7.  粉末焼結積層法で前記造形部を形成する、請求項1に記載のスプルブッシュの製造方法。
  8.  原料樹脂流路および該原料樹脂流路の周囲に位置する冷却媒体流路を備えたスプルブッシュであって、
     前記スプルブッシュが、基部と該基部上に設けられた造形部とから構成されており、
     前記基部は、原料樹脂流路の上流側領域に相当する上流原料樹脂流路部を有すると共に、該上流原料樹脂流路部の周囲に位置し、前記冷却媒体流路の上流側領域に相当する上流冷却媒体流路部を有しており、
     前記造形部は、前記原料樹脂流路の下流側領域に相当する下流原料樹脂流路部を有すると共に、該下流原料樹脂流路部の周囲に位置し、前記冷却媒体流路の下流側領域に相当する下流冷却媒体流路部を有しており、および
     前記造形部の前記下流冷却媒体流路部は、前記下流原料樹脂流路部を取り囲むように設けられている、スプルブッシュ。
  9.  前記スプルブッシュの前記下流側領域において、前記原料樹脂流路と前記冷却媒体流路との間の離隔距離が前記原料樹脂流路の長手方向のいずれにおいても略一定となっている、請求項8に記載のスプルブッシュ。
  10.  前記造形部は、前記スプルブッシュの高さ寸法の2分の1未満の寸法を有するように構成されている、請求項8に記載のスプルブッシュ。
PCT/JP2017/023811 2016-06-29 2017-06-28 スプルブッシュおよびその製造方法 WO2018003881A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017536050A JP6249261B1 (ja) 2016-06-29 2017-06-28 スプルブッシュおよびその製造方法
CN201780040551.2A CN109414845B (zh) 2016-06-29 2017-06-28 浇道套及其制造方法
US16/313,781 US11220032B2 (en) 2016-06-29 2017-06-28 Sprue-bush and method for manufacturing sprue-bush
EP17820235.4A EP3479983B1 (en) 2016-06-29 2017-06-28 Sprue bush and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-129264 2016-06-29
JP2016129264 2016-06-29

Publications (1)

Publication Number Publication Date
WO2018003881A1 true WO2018003881A1 (ja) 2018-01-04

Family

ID=60786394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023811 WO2018003881A1 (ja) 2016-06-29 2017-06-28 スプルブッシュおよびその製造方法

Country Status (4)

Country Link
EP (1) EP3479983B1 (ja)
JP (1) JP6964266B2 (ja)
CN (1) CN109414845B (ja)
WO (1) WO2018003881A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110355361B (zh) * 2019-06-24 2021-12-21 共享智能铸造产业创新中心有限公司 模具冷却流道的设计方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06158113A (ja) * 1992-11-25 1994-06-07 Osaka Prefecture 粉末冶金法による中空形状品の製造方法
JP2003220634A (ja) * 2002-01-29 2003-08-05 Mitsubishi Materials Corp 成形用金型装置
WO2008038694A1 (fr) 2006-09-27 2008-04-03 Ngk Insulators, Ltd. Buse de carotte et son procédé de production
JP2016002698A (ja) * 2014-06-17 2016-01-12 三菱鉛筆株式会社 粉末焼結積層造形法によって形成された筆記ボール及び該筆記ボールを有した筆記具

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1241479A (zh) * 1998-06-25 2000-01-19 住友电木株式会社 成形金属模与成形方法
JP5421294B2 (ja) * 2009-01-15 2014-02-19 株式会社Opmラボラトリー スプルーブッシュの製造方法
JP2010194719A (ja) * 2009-02-23 2010-09-09 Sekisou Kanagata Co Ltd スプルーブッシュ及びスプルーブッシュの製造方法
JP5477739B2 (ja) * 2009-09-25 2014-04-23 国立大学法人金沢大学 研磨材混合流体研磨装置及び研磨方法
JP5576732B2 (ja) * 2010-07-15 2014-08-20 日本碍子株式会社 スプルーブッシュとその製造方法
KR101125720B1 (ko) * 2011-06-27 2012-03-27 이정우 스프루 부쉬
CN103495734B (zh) * 2013-09-03 2015-07-22 广州中国科学院先进技术研究所 一种基于3d打印技术具有环形水路的冷却装置
JP2015074185A (ja) * 2013-10-10 2015-04-20 株式会社メイク スプル−ブッシュ温度調節用金型部品
JP2015224363A (ja) * 2014-05-27 2015-12-14 大同特殊鋼株式会社 金型用鋼及び金型

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06158113A (ja) * 1992-11-25 1994-06-07 Osaka Prefecture 粉末冶金法による中空形状品の製造方法
JP2003220634A (ja) * 2002-01-29 2003-08-05 Mitsubishi Materials Corp 成形用金型装置
WO2008038694A1 (fr) 2006-09-27 2008-04-03 Ngk Insulators, Ltd. Buse de carotte et son procédé de production
JP2016002698A (ja) * 2014-06-17 2016-01-12 三菱鉛筆株式会社 粉末焼結積層造形法によって形成された筆記ボール及び該筆記ボールを有した筆記具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3479983A4

Also Published As

Publication number Publication date
JP2018020577A (ja) 2018-02-08
CN109414845A (zh) 2019-03-01
EP3479983B1 (en) 2021-08-04
EP3479983A4 (en) 2019-06-12
EP3479983A1 (en) 2019-05-08
CN109414845B (zh) 2022-07-08
JP6964266B2 (ja) 2021-11-10

Similar Documents

Publication Publication Date Title
WO2010098479A1 (ja) 三次元形状造形物の製造方法およびそれから得られる三次元形状造形物
WO2011155568A1 (ja) 三次元形状造形物の製造方法、得られる三次元形状造形物および成形品の製造方法
JP2011256434A (ja) 三次元形状造形物の製造方法およびそれから得られる三次元形状造形物
JP2010121187A (ja) 三次元造形物及びその製造方法
WO2017154342A1 (ja) スプルブッシュ
WO2018003881A1 (ja) スプルブッシュおよびその製造方法
JP6245488B1 (ja) スプルブッシュ
JP6249261B1 (ja) スプルブッシュおよびその製造方法
WO2018003882A1 (ja) スプルブッシュ
WO2018003883A1 (ja) 複数のスプルブッシュの製造方法
JP6249262B1 (ja) 複数のスプルブッシュの製造方法
CA2804645C (en) Method for manufacturing an injection molded product
JP6928819B2 (ja) 射出成形用金型装置および射出成形用金型装置を用いて成形品を製造するための方法
JP6706803B2 (ja) スプルブッシュ
CN109080055A (zh) 用于模压淬火工具的成形工具部件的制造方法
WO2022009369A1 (en) Moulding tool with heat sink
JP2019166685A (ja) 複数の金型部品を製造するための方法
JP2020066048A (ja) 金型要素及び金型要素の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017536050

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820235

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017820235

Country of ref document: EP

Effective date: 20190129