WO2017154342A1 - スプルブッシュ - Google Patents

スプルブッシュ Download PDF

Info

Publication number
WO2017154342A1
WO2017154342A1 PCT/JP2017/000869 JP2017000869W WO2017154342A1 WO 2017154342 A1 WO2017154342 A1 WO 2017154342A1 JP 2017000869 W JP2017000869 W JP 2017000869W WO 2017154342 A1 WO2017154342 A1 WO 2017154342A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
raw material
material resin
sprue bush
cooling medium
Prior art date
Application number
PCT/JP2017/000869
Other languages
English (en)
French (fr)
Inventor
阿部 諭
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to KR1020187025870A priority Critical patent/KR20180111953A/ko
Priority to EP17762689.2A priority patent/EP3427915A4/en
Priority to US16/083,340 priority patent/US20190061217A1/en
Priority to CN201780015597.9A priority patent/CN108778668A/zh
Publication of WO2017154342A1 publication Critical patent/WO2017154342A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles
    • B29C45/2701Details not specific to hot or cold runner channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/007Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles
    • B29C45/2737Heating or cooling means therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles
    • B29C45/2725Manifolds
    • B29C2045/2733Inserts, plugs, bushings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles
    • B29C2045/2766Heat insulation between nozzle and mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a sprue bush. More specifically, the present invention relates to a sprue bush used for a mold.
  • the injection molding method is a method for obtaining a molded product from a molten raw material resin using an injection molding die.
  • a mold cavity 203 ′ composed of one mold (core mold) 201 ′ of the injection mold 200 ′ and the other mold (cavity mold) 202 ′.
  • the molten raw material resin is injected into (see FIG. 9A).
  • the injected molten raw resin is subjected to cooling and solidification in the mold cavity 203 'to form a molded product.
  • Injection of molten raw material resin into the mold cavity 203 ' is generally performed via the sprue bush 100'.
  • a raw resin flow path 10 ' is provided in the sprue bush 100' used in the injection mold 200 '.
  • the raw material resin flow path 10 ′ extends from one end portion 10 a ′ into which the molten raw material resin is introduced to the other end portion 10 b ′ leading to the mold cavity 203 ′.
  • the raw material resin flow path 10 ′ is tapered to facilitate removal of the molded product. Specifically, the width dimension W ′ of the raw material resin flow path 10 ′ gradually increases as it extends from the one end 10a ′ to the other end 10b ′. As shown in FIG. 9A, the width W 1 ′ on the upstream side 10A ′ of the raw material resin flow path 10 ′ is relatively small, whereas the width on the downstream side 10B ′ of the raw material resin flow path 10 ′. The dimension W 2 ′ is relatively large.
  • the tapered raw material resin flow path 10 ' is preferable from the viewpoint of taking out a molded product, but is not necessarily preferable from the viewpoint of cooling and solidifying the molten raw material resin.
  • the tapered raw material resin flow path 10 ' becomes longer, the influence on the downstream side of the relatively large width dimension W' increases accordingly, and the molten raw material resin becomes difficult to cool and solidify.
  • the time required from the injection of the molten raw material resin to the removal of the molded product increases, resulting in a longer molding cycle. Therefore, as shown in FIG. 9B, a cooling medium flow path 20 'may be provided around the raw resin flow path 10'.
  • the cooling medium When the cooling medium is caused to flow through the cooling medium flow path 20 ′, the cooling heat of the cooling medium is transmitted to the molten raw material resin in the raw material resin flow path 10 ′ due to the sprue bush 100 ′ being made of a metal member.
  • the molten raw material resin in the raw material resin flow path 10 ′ tends to be cooled and solidified more easily on the upstream side 10A ′ than on the downstream side 10B ′ due to the relatively small width dimension of the upstream side 10A ′. Have.
  • the raw material resin flow path 10 ' may be substantially blocked.
  • the molten raw material resin cannot be suitably injected through the raw material resin flow path 10 ', and a predetermined amount of the molten raw material resin cannot be filled into the mold cavity 203'. Therefore, it becomes impossible to finally obtain a molded product having a desired shape.
  • an object of the present invention is to provide a sprue bush that can more suitably cool the molten raw material resin in the raw material resin flow path.
  • a sprue bush having a raw material resin flow path and a cooling medium flow path provided around the raw material resin flow path, A sprue bush is provided in which a low heat transfer portion is provided in a local region between the upstream portion of the raw material resin flow channel and the cooling medium flow channel, which is relatively smaller in heat transfer than a region other than the local region.
  • the molten raw material resin in the raw material resin flow path can be more suitably cooled.
  • Sectional drawing which showed typically the sprue bush which concerns on one Embodiment of this invention
  • Sectional view schematically showing a sprue bush having a hollow portion in a vacuum state Sectional drawing which showed typically the sprue bush which has a hollow part used as a heat carrier flow path
  • Sectional drawing which showed typically the sprue bush which has a hollow part in which the powder body was provided
  • Sectional drawing which showed typically the sprue bush which has a cooling-medium flow path provided with the coating layer Sectional drawing
  • FIG. c) During lamination Sectional drawing schematically showing a conventional sprue bush (FIG. 9A: no cooling medium flow path, FIG. 9B:
  • the sprue bush 100 is a metal member composed of a flange portion 101 and a base portion 102 integrated with the flange portion 101, as shown in FIG. As shown in the figure, the sprue bush 100 includes a raw material resin flow channel 10 and a cooling medium flow channel 20 provided around the raw material resin flow channel 10.
  • the raw resin flow path 10 of the sprue bush 100 extends from one end 10a where the molten raw resin is introduced to the other end 10b which communicates with the mold cavity. Based on the flow of the molten raw material resin at the time of molding, the one end portion 10a corresponds to the “upstream side” end portion, and the other end portion 10b corresponds to the “downstream side” end portion.
  • the raw material resin flow path 10 is tapered. More specifically, the raw material resin flow path 10 is configured such that the width dimension W gradually increases as it extends from the one end 10a to the other end 10b. In other words, the width W 1 of the upstream side 10A of the starting resin channel 10 whereas relatively small, the width W 2 of the downstream side 10B of the starting resin channel 10 is relatively large.
  • the cooling medium flow path 20 of the sprue bush 100 is a flow path for flowing the cooling medium, and is a flow path contributing to cooling of the molten raw material resin in the raw material resin flow path 10. That is, at the time of molding, the molten raw material resin in the raw material resin flow channel 10 is subjected to a temperature drop due to the cooling medium flowing through the cooling medium flow channel 20.
  • the “cooling medium” here refers to a fluid that can give a cooling effect to the molten raw material resin in the raw material resin flow path 10, and is, for example, cooling water or a cooling gas.
  • the “upstream side of the raw material resin flow path” refers to a portion located on the proximal side with respect to the one end portion 10a into which the molten raw material resin is introduced.
  • the “downstream side of the raw material resin flow path” in this specification refers to a portion located on the distal side with respect to the one end portion 10a into which the molten raw material resin is introduced.
  • the boundary between the upstream side and the downstream side of the raw material resin flow path is not particularly limited, but is, for example, “a half-division point of the entire longitudinal dimension of the raw material resin flow path”.
  • the “upstream side of the raw material resin flow path” is, for example, a region extending from one end portion 10a of the raw material resin flow path 10 to the “half-division point of the entire longitudinal dimension of the raw material resin flow path 10”. Equivalent to.
  • the “downstream side of the raw material resin flow path” corresponds to, for example, a region extending from the “half-division point of the entire longitudinal dimension of the raw material resin flow path 10” to the other end portion 10 b of the raw material resin flow path 10.
  • the local region 100A between the upstream side 10A of the raw material resin flow channel 10 and the cooling medium flow channel 20 is more relative to the region 100B than the local region 100A. Therefore, a low heat transfer portion 30 with a small heat transfer is provided. That is, the low heat transfer portion 30 of the sprue bushing of the present invention has a local or limited form between the raw material resin flow path 10 and the cooling medium flow path 20.
  • the “low heat transfer portion” is a portion of the sprue bush that reduces or inhibits the phenomenon in which the cooling heat caused by the cooling medium in the cooling medium flow path 20 is transmitted to the molten raw resin in the raw resin flow path 10. Is actually referring to.
  • the cooling heat due to the cooling medium in the cooling medium flow path 20 is reduced. It becomes difficult to transmit to the upstream side 10A.
  • the difficulty in transmitting the cooling heat to the upstream side 10A means that the cooling of the molten raw material resin on the upstream side 10A is more suitably suppressed. Therefore, the phenomenon that the molten raw material resin is cooled and solidified on the upstream side 10A prior to the downstream side 10B is less likely to occur, and blockage of the raw material resin flow path 10 can be prevented.
  • the molten raw material resin can be more suitably injected through the raw material resin flow path 10. Therefore, in the sprue bush 100 of the present invention, a predetermined amount of molten raw material resin can be filled in the mold cavity, and a molded product having a desired shape can be finally obtained.
  • the sprue bush 100 according to an embodiment of the present invention can be manufactured by using a “powder sintering lamination method” described later.
  • the present invention is not limited to this, and only a part of the sprue bush 100 can be formed by a powder sintering lamination method, and the remaining part can be manufactured by cutting a metal structure prepared in advance.
  • Examples of the “part of the sprue bush” include the base 102 (or a part thereof) of the sprue bush (see FIG. 1).
  • Examples of the “remaining portion of the sprue bush” include a flange portion 101 of the sprue bush (or a portion obtained by adding a part of the base portion 102 thereto) (see FIG. 1).
  • the “powder sintering lamination method” used for the production of a sprue bush is a method capable of producing a three-dimensional shaped object by irradiating a powder material with a light beam.
  • a powder layer formation and a solidified layer formation are alternately and repeatedly performed based on the following steps (i) and (ii) to produce a three-dimensional shaped object.
  • the obtained three-dimensional shaped object can be used as a sprue bush or a part thereof.
  • An example is a powder sintering lamination method in which a metal powder is used as a powder material, and a three-dimensional shaped product manufactured thereby is used as a sprue bush or a part thereof.
  • the squeezing blade 23 is moved to form a powder layer 22 having a predetermined thickness on the modeling plate 21 (see FIG. 8A).
  • a light beam L is applied to a predetermined portion of the powder layer 22 to form a solidified layer 24 from the powder layer 22 (see FIG. 8B).
  • a new powder layer is formed on the obtained solidified layer and irradiated with a light beam again to form a new solidified layer.
  • the solidified layer 24 is laminated (see FIG. 8C), and finally, a three-dimensional structure composed of the laminated solidified layer 24 is formed.
  • a shaped object can be obtained.
  • a non-irradiated portion where a light beam is not partially irradiated when forming a solidified layer is used.
  • the predetermined regions serving as the raw material resin flow path and the cooling medium flow path are not irradiated with the light beam and are not irradiated.
  • the raw material resin flow path 10 and the cooling medium flow path 20 will be obtained in the sprue bush 100 used as a three-dimensional shaped molded article.
  • a part of the sprue bush 100 (for example, the base 102 of the sprue bush) is formed by the powder sintering lamination method
  • the remaining part of the sprue bush (for example, the flange part 101 of the sprue bush) is formed.
  • a part of the raw material resin flow path 10 and a part of the cooling medium flow path 20 may be formed in the metal structure using a cutting tool.
  • an end mill can be used as the cutting tool.
  • the end mill may be a cemented carbide two-blade ball end mill.
  • a part of the raw material resin flow path 10 formed in the part of the sprue bush and a part of the raw material resin flow path 10 formed in the remaining part of the sprue bush are connected to each other. Further, a part of the cooling medium flow path 20 formed in the part of the sprue bush and a part of the cooling medium flow path 20 formed in the remaining part of the sprue bush are also connected to each other.
  • a desired sprue bush can be obtained by combining the precursors of the sprue bushes with each other.
  • the low heat transfer section provided in the sprue bush is roughly divided into two specific modes.
  • the first specific mode is a mode using a hollow part.
  • the low heat transfer portion is formed of a hollow portion.
  • the hollow portion may be (1) used in a vacuum state, (2) used as a heat medium flow path for flowing a heat medium, or (3) used as a space for providing a powder body.
  • the hollow portion When used in a vacuum state, since there are few gas molecules that transmit heat in the hollow portion, the hollow portion can be suitably functioned as a “heat insulating region”. Further, (2) in the case of the heat medium flow path, heat conduction by the cooling medium in the cooling medium flow path is reduced by the heat generated from the heat medium, so that the hollow portion is “cooled”. It can function suitably as a “heat conduction lowering region”. (3) When the powder body is provided, since the powder particles are in “point” contact with each other in the hollow portion and the heat conduction of the powder body is relatively low, the hollow portion is referred to as a “cooling heat conduction lowering region”. It can function suitably.
  • the second specific mode is a mode in which the material of the sprue bush is locally changed.
  • the low heat transfer portion is made of a porous material. Due to the presence of a large number of voids in the porous material, the cooling heat caused by the cooling medium in the cooling medium flow path is reduced by the porous material. Therefore, such a porous material can be suitably functioned as a “cooling heat conduction lowering region”.
  • At least one of the above-described two specific embodiments can suitably realize the “low heat transfer portion provided locally between the upstream side of the raw material resin flow path and the cooling medium flow path”. This will be described in detail below.
  • the “hollow part” refers to a spatial region of the sprue bush 100 formed at least between the upstream side 10A of the raw material resin flow channel 10 and the cooling medium flow channel 20.
  • the cooling of the molten raw material resin on the upstream side 10A of the raw material resin flow path 10 is more suitably suppressed, and the molten raw material resin is cooled on the upstream side 10A before the downstream side 10B.
  • the phenomenon of solidification is less likely to occur. That is, the blockage of the raw material resin flow path 10 can be prevented more suitably.
  • the hollow part 40 may be in a vacuum state (see FIG. 3).
  • the “vacuum state” here refers to a spatial state at a pressure lower than atmospheric pressure.
  • the hollow part 40 is in a state with relatively little air. That is, the hollow portion 40 has fewer gas molecules that transmit heat.
  • the cooling heat resulting from the cooling medium of the cooling medium flow path 20 to the upstream side 10A of the raw material resin flow path 10 due to that.
  • This means that the cooling of the molten raw material resin on the upstream side 10A is more suitably suppressed. Therefore, the phenomenon that the molten raw material resin is cooled and solidified on the upstream side 10A prior to the downstream side 10B is less likely to occur, and blockage of the raw material resin flow path 10 can be more suitably prevented.
  • the hollow portion 40 does not need to be in a completely vacuum state, and may be one in which air has entered from the outside. Air has a lower thermal conductivity than metal materials.
  • the thermal conductivity of a metal material for example, iron material
  • the thermal conductivity of air is about 0.02 W ⁇ m ⁇ 1 ⁇ K. -1 . Therefore, even if air unintentionally enters the hollow portion, the cooling heat from the cooling medium is reduced due to the presence of the hollow portion 40.
  • the hollow portion 40 in a vacuum state can be obtained by the following method, for example. First, when forming a solidified layer by a powder sintering lamination method, a hollow region is formed by finally removing the powder in a local region without irradiating a certain local region with a light beam. It is not limited to this, You may form a hollow part by giving a cutting process with respect to a local area
  • the heat medium flow path hollow part 40 may be a heat medium flow path 40a as shown in FIG. 4, for example.
  • a part of the heat medium flow path 40a is positioned between the upstream side 10A of the raw material resin flow path 10 and the cooling medium flow path 20 (see FIG. 4).
  • the “heat medium flow path” here refers to a flow path for flowing the heat medium.
  • the heat medium may be a fluid such as hot water, steam or hot air.
  • the cooling medium flows through the cooling medium flow path 20 and the heat medium flows through the heat medium flow path 40a. Since at least a part of the heat medium flow path 40a is positioned between the upstream side 10A of the raw material resin flow path 10 and the cooling medium flow path 20, the cooling heat caused by the cooling medium in the cooling medium flow path 20 is heat. It is reduced in the area of the medium flow path 40a and its vicinity. That is, the cooling heat of the cooling medium flow path 20 is not easily transmitted to the upstream side 10 ⁇ / b> A of the raw material resin flow path 10. Thereby, the phenomenon that the molten raw material resin is cooled and solidified on the upstream side 10A prior to the downstream side 10B is less likely to occur, and blockage of the raw material resin flow path 10 can be more suitably prevented.
  • the heat medium flow path 40a can be suitably obtained by connecting a heat medium pipe provided with a fluid pump or the like to the hollow part 40, for example.
  • a powder body may be used.
  • the powder body 50 may be provided in the hollow portion 40.
  • the “powder body” here refers to an aggregate of powder particles made of at least one of metal powder and resin powder, for example.
  • the metal powder may be, for example, an iron-based metal powder having an average particle size of about 5 ⁇ m to 100 ⁇ m.
  • the resin powder may be nylon, polypropylene, ABS, or the like having an average particle size of about 30 ⁇ m to 100 ⁇ m.
  • the hollow body 40 When the hollow body 40 is provided with a powder body, the effect of improving the structural strength of the sprue bush 100 can be achieved. Since the hollow portion 40 forms a “space” inside the sprue bush, it can be said that the presence of the hollow portion 40 is generally not preferable in terms of the structural strength of the sprue bush 100.
  • the powder body 50 when the powder body 50 is provided in the hollow portion 40, the strength reduction caused by the hollow portion 40 can be compensated. That is, the powder body 50 provided in the hollow portion 40 can function as a reinforcing material having a structural strength.
  • the hollow portion 40 is filled with more powder body 50.
  • the hollow part 40 filled with the powder body 50 can be obtained through implementation of the powder sintering lamination method. Specifically, when the solidified layer is formed by the powder sintering lamination method, the region where the powder body is provided is not irradiated with a light beam, and is set as a non-irradiated portion. Then, if the powder in the non-irradiated part is not removed and left to the end, the hollow part 40 in which the powder body 50 is provided in the sprue bush 100 can be obtained.
  • the present invention is not limited thereto, and a hollow region 40 is formed by cutting a local region where the metal structure is present, and powder is supplied to the hollow portion 40, so that “the hollow provided with the powder body 50 is provided. Part 40 "can also be obtained.
  • the low heat transfer unit 30 may be made of a porous material 60.
  • the “porous material” as used herein refers to a porous material having a large number of minute voids (that is, pores).
  • the average dimension of each void is not particularly limited, but is preferably about 10 nm to 1 mm, more preferably about 20 nm to 500 nm, for example, about 100 nm.
  • the air is substantially present in the gap of the porous material 60.
  • the thermal conductivity of the air is smaller than the thermal conductivity of the metal material, the cooling heat from the cooling medium in the cooling medium flow path 20 is reduced by the porous material 60 in which air exists. That is, it becomes difficult for the cooling heat to be transmitted from the cooling medium flow path 20 to the upstream side 10A of the raw material resin flow path 10, and the phenomenon that the molten raw material resin is cooled and solidified on the upstream side 10A before the downstream side 10B is less likely to occur.
  • the porous material 60 provided as the low heat transfer unit 30 may be obtained through a powder sintering lamination method.
  • a region composed of the porous material 60 can be obtained by controlling the irradiation condition of the light beam. More specifically, when the irradiation energy of the light beam is lowered with respect to a part of the region that becomes the solidified layer, the sintered density of the part can be relatively reduced. For example, the sintered density can be 40% to 90%. Such a region of the solidified layer having a low sintered density can be used as the region of the porous material 60.
  • a sintered density by the irradiation energy of the light beam as low as about 2 ⁇ 3J / mm 2 can be about 70-80%.
  • the region of the porous material 60 can also be formed by such factors.
  • the first and second specific modes described above are related to the low heat transfer section provided between the upstream side of the raw material resin flow path and the cooling medium flow path. Can also reduce “heat transfer to the upstream side of the raw material resin flow path”.
  • Cooling medium flow path Coating layer formation
  • the sprue bush 100 shown in FIG. 7 has a coating layer 70. More specifically, the coating layer 70 is provided on at least a part 20 ⁇ / b> A of the inner wall surface of the cooling medium flow path 20.
  • the “coating layer” refers to a layer that covers at least a part of the inner wall surface of the cooling medium flow path 20.
  • “At least a part 20A of the inner wall surface of the cooling medium flow path 20” particularly refers to the inner wall surface proximal to the upstream side 10A of the raw material resin flow path 10, as shown in FIG.
  • the coating layer 70 is preferably a layer made of a low thermal conductivity material.
  • the low thermal conductivity material used for the coating layer 70 is not particularly limited, and examples thereof include an epoxy resin and a silicone resin.
  • the coating layer 70 of the low thermal conductivity material is provided on at least a part 20 ⁇ / b> A of the inner wall surface of the cooling medium flow path 20, the cooling heat caused by the cooling medium in the cooling medium flow path 20 is coated. Will be reduced at layer 70. Specifically, due to the coating layer 70 being made of a low thermal conductivity material, it becomes difficult for cooling heat to be transmitted to the upstream side 10 ⁇ / b> A of the raw material resin flow path 10. Therefore, the cooling of the molten raw material resin on the upstream side 10A is more suitably suppressed, and the phenomenon that the molten raw material resin is cooled and solidified on the upstream side 10A before the downstream side 10B is less likely to occur.
  • the sprue bush according to an embodiment of the present invention can be used for injection of molten raw material resin into a mold cavity constituted by a core side mold and a cavity side mold of an injection mold. .
  • Raw material resin flow path 10A Upstream side 20 of raw material resin flow path Cooling medium flow path 30
  • Low heat transfer section 40 Hollow section 40a Heat medium flow path 50
  • Powder body 60 Porous material

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Powder Metallurgy (AREA)

Abstract

原料樹脂流路内の溶融原料樹脂をより好適に冷却できるスプルブッシュを提供するために、本発明の一実施形態では、原料樹脂流路およびその周囲に設けられた冷却媒体流路を有して成るスプルブッシュであって、原料樹脂流路の上流側部分と冷却媒体流路との間の局所領域において、その局所領域以外の領域よりも相対的に小さい熱伝達となる低熱伝達部が設けられたスプルブッシュが提供される。

Description

スプルブッシュ
 本発明は、スプルブッシュに関する。より詳細には、本発明は、金型に使用されるスプルブッシュに関する。
 日本の「ものづくり」産業を支えてきた技術の一つに、金型を用いた成形技術がある。かかる成形技術としては、加圧成形法、射出成形法および押出成形法などが挙げられる。これら成形法のうち、射出成形法は、射出成形用金型を用いて溶融原料樹脂から成形品を得る方法である。
 射出成形法においては、射出成形用金型200’の一方の金型(コア側金型)201’と他方の金型(キャビティ側金型)202’とから構成された金型キャビティ203’内に溶融原料樹脂が射出される(図9(A)参照)。射出された溶融原料樹脂は金型キャビティ203’で冷却固化に付され、成形品となる。金型キャビティ203’内への溶融原料樹脂の射出は、一般にスプルブッシュ100’を介して行われる。
 図9(A)に示すように、射出成形用金型200’に用いられるスプルブッシュ100’には原料樹脂流路10’が設けられている。かかる原料樹脂流路10’は、溶融原料樹脂が導入される一端部10a’から金型キャビティ203’内へと通じる他端部10b’にまで延在している。
 原料樹脂流路10’には、成形品を取り出し易くするためにテーパが付けられている。具体的には、原料樹脂流路10’は、その一端部10a’から他端部10b’へと延在するにつれて幅寸法W’が漸次大きくなっている。図9(A)に示すように、原料樹脂流路10’の上流側10A’の幅寸法W’は相対的に小さいのに対して、原料樹脂流路10’の下流側10B’の幅寸法W’は相対的に大きくなっている。
 テーパが付けられた原料樹脂流路10’は、成形品の取出しの点で好ましいものの、溶融原料樹脂の冷却固化の点からは必ずしも好ましいといえない。例えばテーパが付けられた原料樹脂流路10’が長くなると、それに伴って相対的に大きい幅寸法W’の下流側の影響が大きくなり、溶融原料樹脂が冷却固化しにくくなる。溶融原料樹脂が冷却固化しにくいと、溶融原料樹脂の射出から成形品の取出しまでに要する時間が増し、結果として成形サイクルが長くなってしまう。それゆえ、図9(B)で示されるように原料樹脂流路10’の周囲に冷却媒体流路20’が設けられることがある。
国際公開2008-038694号公報
 しかしながら、冷却媒体流路20’が設けられたスプルブッシュ100’(図9(B)参照)においては、以下の問題が生じ得る。
 冷却媒体流路20’に冷却媒体を流すと、スプルブッシュ100’が金属部材から成ることに起因して、冷却媒体の冷却熱が原料樹脂流路10’内の溶融原料樹脂へ伝わる。しかしながら、かかる原料樹脂流路10’内の溶融原料樹脂は、上流側10A’の幅寸法が相対的に小さいことに起因して下流側10B’よりも上流側10A’で冷却固化し易い傾向を有する。
 下流側10B’よりも先に上流側10A’で溶融原料樹脂が冷却固化すると、原料樹脂流路10’が実質的に閉塞してしまう虞がある。この場合、原料樹脂流路10’を介して溶融原料樹脂を好適に射出することができず、金型キャビティ203’内に所定量の溶融原料樹脂を充填できなくなる。よって、最終的には所望形状の成形品を得ることができなくなる。
 本発明は、かかる事情に鑑みて為されたものである。すなわち、本発明の目的は、原料樹脂流路内の溶融原料樹脂をより好適に冷却できるスプルブッシュを提供することである。
 上記目的を達成するために、本発明の一実施形態では、
 原料樹脂流路およびその原料樹脂流路の周囲に設けられた冷却媒体流路を有して成るスプルブッシュであって、
 原料樹脂流路の上流側部分と冷却媒体流路との間の局所領域において、その局所領域以外の領域よりも相対的に小さい熱伝達となる低熱伝達部が設けられているスプルブッシュが提供される。
 本発明のスプルブッシュでは、原料樹脂流路内の溶融原料樹脂をより好適に冷却することができる。
本発明の一実施形態に係るスプルブッシュを模式的に示した断面図 中空部から成る領域を有して成るスプルブッシュを模式的に示した断面図 真空状態の中空部を有して成るスプルブッシュを模式的に示した断面図 熱媒体流路として用いる中空部を有して成るスプルブッシュを模式的に示した断面図 粉末体が設けられた中空部を有して成るスプルブッシュを模式的に示した断面図 ポーラス材から成る領域を有して成るスプルブッシュを模式的に示した断面図 コーティング層が設けられた冷却媒体流路を有して成るスプルブッシュを模式的に示した断面図 粉末焼結積層法が実施される光造形複合加工のプロセス態様を模式的に示した断面図(図8(a):粉末層形成時、図8(b):固化層形成時、図8(c):積層途中) 従来のスプルブッシュを模式的に示した断面図(図9(A):冷却媒体流路無し、図9(B):冷却媒体流路有り)
 以下では、図面を参照して本発明の一実施形態をより詳細に説明する。図面における各種要素の形態および寸法は、あくまでも例示にすぎず、実際の形態および寸法を反映するものではない。
 本発明の一実施形態に係るスプルブッシュ100は、図1に示すように、フランジ部101とそれと一体化した基部102とから構成された金属部材である。かかるスプルブッシュ100は、図示するように、原料樹脂流路10およびその周囲に設けられた冷却媒体流路20を内部に有して成る。
 スプルブッシュ100の原料樹脂流路10は、溶融原料樹脂が導入される一端部10aから金型キャビティ内に通じる他端部10bにまで延在している。成形時の溶融原料樹脂の流れに基づくと、一端部10aは“上流側”の端部に相当し、他端部10bは“下流側”の端部に相当する。溶融原料樹脂の冷却固化で得られる成形品の取り出しを容易にするため、原料樹脂流路10にはテーパが付けられている。より具体的には、原料樹脂流路10は、その一端部10aから他端部10bへと延在するにつれて幅寸法Wが漸次大きくなるように構成されている。つまり、原料樹脂流路10の上流側10Aの幅寸法Wは相対的に小さいのに対して、原料樹脂流路10の下流側10Bの幅寸法Wは相対的に大きくなっている。
 スプルブッシュ100の冷却媒体流路20は、冷却媒体を流すための流路であって、原料樹脂流路10内の溶融原料樹脂の冷却に資する流路である。つまり、成形時においては冷却媒体流路20を流れる冷却媒体に起因して原料樹脂流路10内の溶融原料樹脂が降温に付されることになる。ここでいう「冷却媒体」とは、原料樹脂流路10内の溶融原料樹脂に対して冷却効果を与えることができる流体のことを指しており、例えば冷却水または冷却ガスなどである。
 本明細書において「原料樹脂流路の上流側」とは、溶融原料樹脂が導入される一端部10aに対して近位側に位置する部分を指す。一方、本明細書において「原料樹脂流路の下流側」とは、溶融原料樹脂が導入される一端部10aに対して遠位側に位置する部分を指す。原料樹脂流路の上流側と下流側との境界は、特に限定されるものではないが、例えば“原料樹脂流路の長手寸法全体の半分割ポイント”である。より具体的に例示すれば、「原料樹脂流路の上流側」は、例えば原料樹脂流路10の一端部10aから“原料樹脂流路10の長手寸法全体の半分割ポイント”にまで至る領域に相当する。その一方、「原料樹脂流路の下流側」は、例えば“原料樹脂流路10の長手寸法全体の半分割ポイント”から原料樹脂流路10の他端部10bにまで至る領域に相当する。
 本発明のスプルブッシュ100では、図1に示すように、原料樹脂流路10の上流側10Aと冷却媒体流路20との間の局所領域100Aに、その局所領域100A以外の領域100Bよりも相対的に小さい熱伝達の低熱伝達部30が設けられている。すなわち、本発明のスプルブッシュの低熱伝達部30は、原料樹脂流路10と冷却媒体流路20との間にて局所的または限定的な形態となっている。本明細書において「低熱伝達部」とは、スプルブッシュにおいて、冷却媒体流路20の冷却媒体に起因する冷却熱が原料樹脂流路10内の溶融原料樹脂へと伝わる現象を減じるまたは阻害する部分のことを実質的に指している。
 本発明のスプルブッシュ100では、原料樹脂流路10の上流側10Aと冷却媒体流路20との間に低熱伝達部30が存在するので、冷却媒体流路20の冷却媒体に起因する冷却熱が上流側10Aに伝達しにくくなる。冷却熱が上流側10Aに伝達しにくいことは、上流側10Aにおける溶融原料樹脂の冷却がより好適に抑制されることを意味している。したがって、下流側10Bよりも先に上流側10Aで溶融原料樹脂が冷却固化するといった現象が生じにくくなり、原料樹脂流路10の閉塞が防止され得る。
 原料樹脂流路10の閉塞が防止されると、原料樹脂流路10を介して溶融原料樹脂をより好適に射出することができる。したがって、本発明のスプルブッシュ100においては、金型キャビティ内に所定量の溶融原料樹脂を充填でき、最終的に所望形状の成形品を得ることができる。
 以下、本発明の一実施形態に係るスプルブッシュの製造方法について詳述する。本発明の一実施形態に係るスプルブッシュ100は、後述する“粉末焼結積層法”を利用して製造することができる。これに限定されず、スプルブッシュ100の一部のみを粉末焼結積層法で形成し、残りの部分は予め用意した金属構造体に対して切削加工を施すことを通じてスプルブッシュを製造することもできる。かかる「スプルブッシュの一部」としては、例えばスプルブッシュの基部102(またはその一部分)を挙げることができる(図1参照)。「スプルブッシュの残りの部分」としては、例えばスプルブッシュのフランジ部101(またはそれに対して基部102の一部分を加えた部分)を挙げることができる(図1参照)。
 スプルブッシュの製造に用いられる“粉末焼結積層法”は、光ビームを粉末材料に照射することを通じて三次元形状造形物を製造できる方法である。粉末焼結積層法では、以下の工程(i)および(ii)に基づいて粉末層形成と固化層形成とを交互に繰り返し実施して三次元形状造形物を製造する。
 (i)粉末層の所定箇所に光ビームを照射し、かかる所定箇所の粉末を焼結又は溶融固化させて固化層を形成する工程。
 (ii)得られた固化層の上に新たな粉末層を形成し、同様に光ビームを照射して更なる固化層を形成する工程。
 このような製造技術に従えば、複雑な三次元形状造形物を短時間で製造することが可能となる。粉末材料として無機質の金属粉末を用いる場合、得られる三次元形状造形物をスプルブッシュまたはその一部分として用いることができる。
 粉末材料として金属粉末を用い、それによって製造される三次元形状造形物をスプルブッシュまたはその一部として用いる場合の粉末焼結積層法を例にとる。図8に示すように、まず、スキージング・ブレード23を動かして造形プレート21上に所定厚みの粉末層22を形成する(図8(a)参照)。次いで、粉末層22の所定箇所に光ビームLを照射して粉末層22から固化層24を形成する(図8(b)参照)。引き続いて、得られた固化層の上に新たな粉末層を形成して再度光ビームを照射して新たな固化層を形成する。このようにして粉末層形成と固化層形成とを交互に繰り返し実施すると固化層24が積層することになり(図8(c)参照)、最終的には積層化した固化層24から成る三次元形状造形物を得ることができる。
 三次元形状造形物としてのスプルブッシュ100内に原料樹脂流路10および冷却媒体流路20(図1参照)を設けるには、例えば固化層形成時に光ビームが部分的に照射されない非照射部を形成する。より具体的には、粉末焼結積層法で固化層を形成する際、原料樹脂流路および冷却媒体流路となる所定領域は光ビームを照射せず非照射部とする。そして、かかる非照射部に存在する粉末を最終的に除去すると、三次元形状造形物として用いるスプルブッシュ100において原料樹脂流路10および冷却媒体流路20が得られることになる。
 なお、上述したように、粉末焼結積層法でスプルブッシュ100の一部(例えば、スプルブッシュの基部102)を形成する場合、スプルブッシュの残りの部分(例えば、スプルブッシュのフランジ部101)に対しては金属構造体に切削工具を用いて原料樹脂流路10の一部分および冷却媒体流路20の一部分を形成してよい。切削工具としては例えばエンドミルを用いることができる。エンドミルは超硬素材の2枚刃ボールエンドミルであってよい。スプルブッシュの前記一部に形成した原料樹脂流路10の一部分とスプルブッシュの前記残りの部分に形成した原料樹脂流路10の一部分とは相互に連結される。また、スプルブッシュの前記一部に形成した冷却媒体流路20の一部分とスプルブッシュの前記残りの部分に形成した冷却媒体流路20の一部分も相互に連結される。このようにしてスプルブッシュの前駆体同士を互いに合わせることによって、所望のスプルブッシュを得ることができる。
[低熱伝達部の具体的態様]
 以下では、低熱伝達部の具体的態様について説明する。
 スプルブッシュに設けられる低熱伝達部は大きく2つの具体的態様に分けられる。
 第1の具体的態様は中空部を利用する態様である。かかる態様では、低熱伝達部が中空部から成る。中空部は、(1)真空状態で用いたり、(2)熱媒体を流すための熱媒体流路として用いたり、あるいは、(3)粉末体を設ける空間として用いたりしてよい。
 (1)真空状態で用いる場合、熱を伝える気体分子が中空部に少ないので、かかる中空部を“断熱領域”として好適に機能させることができる。また、(2)熱媒体流路の場合、熱媒体から生じる温熱によって冷却媒体流路の冷却媒体による熱伝導が熱媒体流路およびその近傍で低下することになるので、かかる中空部を“冷却熱伝導低下領域”として好適に機能させることができる。(3)粉末体を設ける場合、中空部では粉末粒子同士が相互に“点”接触となって粉末体の熱伝導が相対的に低くなるので、かかる中空部を“冷却熱伝導低下領域”として好適に機能させることができる。
 第2の具体的態様は、スプルブッシュの材質を局所的に変える態様である。
 例えば、第2の具体的態様に従ったスプルブッシュでは、低熱伝達部がポーラス材から成る。ポーラス材には多数の空隙が存在することに起因して、冷却媒体流路の冷却媒体に起因する冷却熱がポーラス材で減じられることになる。よって、かかるポーラス材を“冷却熱伝導低下領域”として好適に機能させることができる。
 本発明においては、上記の2つの具体的態様の少なくとも一方によって「原料樹脂流路の上流側と冷却媒体流路との間に局所的に設けられる低熱伝達部」を好適に具現化できる。以下それについて詳述する。
[(1)低熱伝達部:中空部]
 本発明の一実施形態に係るスプルブッシュ100では、図2に示すように、低熱伝達部が中空部40から成る。ここでいう「中空部」とは、原料樹脂流路10の上流側10Aと冷却媒体流路20との間に少なくとも形成されるスプルブッシュ100の空間領域を指している。かかる中空部40を低熱伝達部として用いることで、冷却媒体流路20の冷却媒体から生じる冷却熱を中空部40で伝わりにくくする。かかる冷却熱が中空部40で伝わりにくいと、原料樹脂流路10の上流側10Aにおける溶融原料樹脂の冷却がより好適に抑制され、下流側10Bよりも先に上流側10Aで溶融原料樹脂が冷却固化する現象が生じにくくなる。つまり、原料樹脂流路10の閉塞がより好適に防止され得る。
中空部:真空状態
 中空部40は、真空状態にしてよい(図3参照)。ここでいう「真空状態」とは大気圧より低い圧力の空間状態を指す。中空部40が真空状態となる場合、中空部40は、相対的に空気が少ない状態となる。すなわち、中空部40には、熱を伝える気体分子が少なくなっている。中空部40に熱を伝える気体分子が少ないと、それに起因して、冷却媒体流路20の冷却媒体に起因する冷却熱が原料樹脂流路10の上流側10Aへと伝わりにくくなる。これは、上流側10Aにおける溶融原料樹脂の冷却がより好適に抑制されることを意味している。したがって、下流側10Bよりも先に上流側10Aで溶融原料樹脂が冷却固化する現象が生じにくくなり、原料樹脂流路10の閉塞がより好適に防止され得る。
 中空部40は、完全な真空状態である必要がなく、外部から空気が入り込んだものであってもよい。空気は金属材よりも小さい熱伝導率を有する。例示すると、室温下で金属材(例えば鉄材)の熱伝導率が約80W・m-1・K-1であるのに対して、空気の熱伝導率は約0.02W・m-1・K-1である。そのため、意図せず空気が中空部に入り込んだとしても、冷却媒体からの冷却熱は中空部40の存在に起因して減じられる。
 真空状態の中空部40は、例えば、次のような方法により得ることができる。まず、粉末焼結積層法で固化層を形成する際、ある局所領域に光ビームを照射せず、かかる局所領域の粉末を最終的に除去して中空部を形成する。これに限定されず、金属構造体のある局所領域に対して切削加工を施すことで中空部を形成してよい。中空部の形成後、外部との連通箇所45(図3参照)からいわゆる“真空引き”を行うと、真空状態の中空部40を得ることができる(なお、真空状態を維持するために連通箇所45には封止処理を適宜施してよい)。
中空部:熱媒体流路
 中空部40は、例えば図4に示すように熱媒体流路40aとなっていてもよい。図示する態様では、原料樹脂流路10の上流側10Aと冷却媒体流路20との間において熱媒体流路40aの一部が位置付けられている(図4参照)。ここでいう「熱媒体流路」とは、熱媒体を流すための流路のことを指している。熱媒体は、温水、蒸気または熱風などの流体であってよい。
 中空部40が熱媒体流路40aとなるスプルブッシュ100では、冷却媒体流路20に冷却媒体が流されると共に熱媒体流路40aに熱媒体が流される。熱媒体流路40aの少なくとも一部が原料樹脂流路10の上流側10Aと冷却媒体流路20との間に位置付けられているので、冷却媒体流路20の冷却媒体に起因する冷却熱は熱媒体流路40aの領域およびその近傍で減じられる。つまり、冷却媒体流路20の冷却熱が原料樹脂流路10の上流側10Aへと伝わりにくくなる。これにより、下流側10Bよりも先に上流側10Aで溶融原料樹脂が冷却固化する現象が生じにくくなり、原料樹脂流路10の閉塞がより好適に防止され得る。
 なお、熱媒体流路40aは、例えば、熱媒体源に接続され、流体ポンプなどを備える熱媒体管を中空部40に接続することによって好適に得ることができる。
中空部:粉末体充填
 本発明の一実施形態に係るスプルブッシュ100では粉末体が用いられてもよい。図5に示すように、例えば中空部40に粉末体50が設けられていてよい。ここでいう「粉末体」とは、例えば金属粉末および樹脂粉末の少なくとも一方から成る粉末粒子の集合体を指す。金属粉末は、例えば平均粒径5μm~100μm程度の鉄系金属粉末であってよい。また、樹脂粉末は、平均粒径30μm~100μm程度のナイロン、ポリプロピレンまたはABSなどであってよい。
 中空部40に粉末体50が設けられている場合、中空部40では粉末粒子同士が相互に“点”接触することに起因して熱伝導が相対的に低くなる。これにより、冷却媒体流路20の冷却媒体に起因する冷却熱が粉末体50で減じられることになる。つまり、冷却媒体流路20から原料樹脂流路10の上流側10Aへと冷却熱が伝わりにくくなる。これによって、下流側10Bよりも先に上流側10Aで溶融原料樹脂が冷却固化する現象が生じにくくなり、原料樹脂流路10の閉塞がより好適に防止され得る。
 中空部40に粉末体が設けられている場合、スプルブッシュ100の構造強度が向上する効果も奏され得る。中空部40はスプルブッシュ内部で“空間”を成すので、スプルブッシュ100の構造強度の点では中空部40の存在は一般に好ましくないといえる。この点、図5に示すように、中空部40に粉末体50が設けられると、中空部40に起因する強度低下を補うことができる。つまり、中空部40に設けられた粉末体50は、構造強度の補強材として機能させることができる。このように構造強度を好適に補う観点からいえば、中空部40に粉末体50がより多く充填されていることが好ましい。
 粉末体50が充填された中空部40は、粉末焼結積層法の実施を通じて得ることができる。具体的には、粉末焼結積層法で固化層を形成する際に粉末体を設ける領域に光ビームを照射せず、非照射部とする。そして、かかる非照射部の粉末を除去せず敢えて最後まで残存させると、スプルブッシュ100内に粉末体50が設けられた中空部40を得ることができる。これに限定されず、金属構造体のある局所領域に対して切削加工を施して中空部40を形成し、かかる中空部40に対して粉末を供給することで「粉末体50が設けられた中空部40」を得ることもできる。
[(2)低熱伝達部:ポーラス材]
 本発明の一実施形態に係るスプルブッシュ100では、例えば図6に示すように、低熱伝達部30がポーラス材60から成っていてもよい。ここでいう「ポーラス材」とは多数の微小な空隙(すなわち、孔)を備えた多孔質材のことを指している。各空隙の平均寸法は、特に限定されるものではないが、好ましくは10nm~1mm程度、より好ましくは20nm~500nm程度、例えば約100nmである。
 ポーラス材60の空隙には実質的に空気が存在している。上述したように空気の熱伝導率は金属材の熱伝導率よりも小さいので、冷却媒体流路20の冷却媒体からの冷却熱は、空気が存在するポーラス材60で減じられる。つまり、冷却媒体流路20から原料樹脂流路10の上流側10Aへと冷却熱が伝わりにくくなり、下流側10Bよりも先に上流側10Aで溶融原料樹脂が冷却固化する現象が生じにくくなる。
 低熱伝達部30として設けるポーラス材60は、粉末焼結積層法を通じて得てよい。粉末焼結積層法で固化層を形成する際、光ビームの照射条件を制御することによってポーラス材60から成る領域を得ることができる。より具体的には、固化層となる領域の一部に対して、光ビームの照射エネルギーを低くすると、かかる一部の焼結密度を相対的に小さくすることができる。例えば焼結密度を40%~90%とすることができる。このような低い焼結密度の固化層の領域はポーラス材60の領域として利用できる。一例を挙げると、例えば光ビームの照射エネルギーを約2~3J/mmと低くすることで焼結密度を70~80%程度にすることができる。(1)光ビームの照射エネルギーを低くすることの他に、(2)光ビームの走査速度を上げる、(3)光ビームの走査ピッチを拡げる、(4)光ビームの集光径を大きくすることなどによってもポーラス材60の領域を形成することができる。
 以上の如く説明してきた第1および第2の具体的態様は、原料樹脂流路の上流側と冷却媒体流路との間に設けられた低熱伝達部に関するものであったが、例えば下記の態様によっても“原料樹脂流路の上流側への熱伝達”を減じることができる。
冷却媒体流路:コーティング層形成
 図7に示されるスプルブッシュ100はコーティング層70を有している。より具体的にはコーティング層70は冷却媒体流路20の内壁面の少なくとも一部20Aに設けられている。ここでいう「コーティング層」とは、冷却媒体流路20の内壁面の少なくとも一部を被覆する層のことを指している。「冷却媒体流路20の内壁面の少なくとも一部20A」は図7に示すように原料樹脂流路10の上流側10Aに近位する内壁面を特に指している。コーティング層70は低熱伝導率材料から成る層であることが好ましい。コーティング層70に用いられる低熱伝導率材料としては、特に限定されるものではないがエポキシ樹脂およびシリコーン樹脂などを挙げることができる。
 図7に示すように冷却媒体流路20の内壁面の少なくとも一部20Aに低熱伝導率材料のコーティング層70が設けられていると、冷却媒体流路20の冷却媒体に起因する冷却熱がコーティング層70で減じられることになる。具体的には、コーティング層70が低熱伝導率材料から成ることに起因して、原料樹脂流路10の上流側10Aに冷却熱が伝わりにくくなる。したがって、上流側10Aの溶融原料樹脂の冷却がより好適に抑制され、下流側10Bよりも先に上流側10Aで溶融原料樹脂が冷却固化する現象が生じにくくなる。
 以上、本発明の一実施形態に係るスプルブッシュについて説明してきたが、本発明はこれに限定されることなく、特許請求の範囲に規定される発明の範囲から逸脱することなく種々の変更が当業者によってなされると理解されよう。
 本発明の一実施形態に係るスプルブッシュは、射出成形用金型のコア側金型とキャビティ側金型とから構成された金型キャビティ内への溶融原料樹脂の射出のために用いることができる。
関連出願の相互参照
 本出願は、日本国特許出願第2016-046210号(出願日:2016年3月9日、発明の名称:「スプルブッシュ」)に基づくパリ条約上の優先権を主張する。当該出願に開示された内容は全て、この引用により、本明細書に含まれるものとする。
100   スプルブッシュ
100A  局所領域(原料樹脂流路の上流側部分と冷却媒体流路との間の局所領域)
100B  局所領域以外の領域
10    原料樹脂流路
10A   原料樹脂流路の上流側
20    冷却媒体流路
30    低熱伝達部
40    中空部
40a   熱媒体流路
50    粉末体
60    ポーラス材

Claims (6)

  1. 原料樹脂流路および該原料樹脂流路の周囲に設けられた冷却媒体流路を有して成るスプルブッシュであって、
    前記原料樹脂流路の上流側部分と前記冷却媒体流路との間の局所領域において、該局所領域以外の領域よりも相対的に小さい熱伝達となる低熱伝達部が設けられている、スプルブッシュ。
  2. 前記低熱伝達部が中空部から成る、請求項1に記載のスプルブッシュ。
  3. 前記中空部が真空状態となっている、請求項2に記載のスプルブッシュ。
  4. 前記中空部が熱媒体流路となっている、請求項2に記載のスプルブッシュ。
  5. 前記中空部に粉末体が設けられている、請求項2に記載のスプルブッシュ。
  6. 前記低熱伝達部がポーラス材から成る、請求項1に記載のスプルブッシュ。
PCT/JP2017/000869 2016-03-09 2017-01-12 スプルブッシュ WO2017154342A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187025870A KR20180111953A (ko) 2016-03-09 2017-01-12 스프루 부싱
EP17762689.2A EP3427915A4 (en) 2016-03-09 2017-01-12 MOULE NOZZLE
US16/083,340 US20190061217A1 (en) 2016-03-09 2017-01-12 Sprue-bush
CN201780015597.9A CN108778668A (zh) 2016-03-09 2017-01-12 浇道套

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-046210 2016-03-09
JP2016046210A JP6217993B2 (ja) 2016-03-09 2016-03-09 スプルブッシュ

Publications (1)

Publication Number Publication Date
WO2017154342A1 true WO2017154342A1 (ja) 2017-09-14

Family

ID=59789130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000869 WO2017154342A1 (ja) 2016-03-09 2017-01-12 スプルブッシュ

Country Status (6)

Country Link
US (1) US20190061217A1 (ja)
EP (1) EP3427915A4 (ja)
JP (1) JP6217993B2 (ja)
KR (1) KR20180111953A (ja)
CN (1) CN108778668A (ja)
WO (1) WO2017154342A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151343A1 (ja) * 2018-01-31 2019-08-08 パナソニックIpマネジメント株式会社 射出成形用金型装置および射出成形用金型装置を用いて成形品を製造するための方法
KR102293892B1 (ko) 2018-09-19 2021-08-24 주식회사 엘지화학 황-탄소 복합체의 제조방법, 그에 의해 제조된 황-탄소 복합체, 상기 황-탄소 복합체를 포함하는 양극, 및 상기 양극을 포함하는 리튬 이차 전지
JP6867360B2 (ja) * 2018-12-10 2021-04-28 リョービ株式会社 ダイカスト用部品

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0334808A (ja) * 1989-06-19 1991-02-14 General Motors Corp <Gm> プラスチック製品成形用工具
JP2001293754A (ja) * 2000-04-14 2001-10-23 Ricoh Co Ltd 光ディスク成形金型
JP2003112246A (ja) * 2001-10-03 2003-04-15 Japan Steel Works Ltd:The 金属合金射出成形用金型
JP2011218735A (ja) * 2010-04-13 2011-11-04 Shin-Nihon Tech Inc 射出成形用スプルーブッシュおよび射出成形型装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5831723A (ja) * 1981-08-21 1983-02-24 Hitachi Ltd 低発泡樹脂構造体の成形方法
JPS6349919U (ja) * 1986-09-18 1988-04-05
JP2007283503A (ja) * 2006-04-12 2007-11-01 Kanto Itami Denki Kk スプルブッシュ
CN101535026B (zh) * 2006-09-27 2012-11-21 日本碍子株式会社 浇道套及其制造方法
JP5421294B2 (ja) * 2009-01-15 2014-02-19 株式会社Opmラボラトリー スプルーブッシュの製造方法
JP5124743B1 (ja) * 2012-01-20 2013-01-23 ロイアルエンジニアリング株式会社 射出成形用ブッシュ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0334808A (ja) * 1989-06-19 1991-02-14 General Motors Corp <Gm> プラスチック製品成形用工具
JP2001293754A (ja) * 2000-04-14 2001-10-23 Ricoh Co Ltd 光ディスク成形金型
JP2003112246A (ja) * 2001-10-03 2003-04-15 Japan Steel Works Ltd:The 金属合金射出成形用金型
JP2011218735A (ja) * 2010-04-13 2011-11-04 Shin-Nihon Tech Inc 射出成形用スプルーブッシュおよび射出成形型装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3427915A4 *

Also Published As

Publication number Publication date
JP2017159555A (ja) 2017-09-14
EP3427915A4 (en) 2019-02-20
KR20180111953A (ko) 2018-10-11
JP6217993B2 (ja) 2017-10-25
US20190061217A1 (en) 2019-02-28
EP3427915A1 (en) 2019-01-16
CN108778668A (zh) 2018-11-09

Similar Documents

Publication Publication Date Title
JP5776004B2 (ja) 三次元形状造形物の製造方法および三次元形状造形物
JP5653657B2 (ja) 三次元形状造形物の製造方法、得られる三次元形状造形物および成形品の製造方法
KR101521481B1 (ko) 3차원 형상 조형물의 제조 방법 및 이로부터 얻어지는 3차원 형상 조형물
WO2010098479A1 (ja) 三次元形状造形物の製造方法およびそれから得られる三次元形状造形物
WO2017154342A1 (ja) スプルブッシュ
WO2008038694A1 (fr) Buse de carotte et son procédé de production
JP2010121187A (ja) 三次元造形物及びその製造方法
KR102300955B1 (ko) 형상적응형 냉각채널이 적용된 주조 금형
KR102300954B1 (ko) 주조 금형 내부의 냉각채널 형성방법
JP6706803B2 (ja) スプルブッシュ
JP6964266B2 (ja) スプルブッシュ
JP6245488B1 (ja) スプルブッシュ
JP6249261B1 (ja) スプルブッシュおよびその製造方法
JP6960614B2 (ja) スプルブッシュ
WO2019151343A1 (ja) 射出成形用金型装置および射出成形用金型装置を用いて成形品を製造するための方法
US20210283680A1 (en) Method for casting metals with melting points greater than 200° celsius using a plastic mold which mold conforms to the shape of the object to be cast used in conjunction with rapid cooling
WO2018101256A1 (ja) 金型およびその製造方法
JPWO2018003883A1 (ja) 複数のスプルブッシュの製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187025870

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187025870

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017762689

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017762689

Country of ref document: EP

Effective date: 20181009

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17762689

Country of ref document: EP

Kind code of ref document: A1