WO2008038595A1 - Capteur de quantité physique - Google Patents

Capteur de quantité physique Download PDF

Info

Publication number
WO2008038595A1
WO2008038595A1 PCT/JP2007/068430 JP2007068430W WO2008038595A1 WO 2008038595 A1 WO2008038595 A1 WO 2008038595A1 JP 2007068430 W JP2007068430 W JP 2007068430W WO 2008038595 A1 WO2008038595 A1 WO 2008038595A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
signal
reference signal
resistance
drive
Prior art date
Application number
PCT/JP2007/068430
Other languages
English (en)
French (fr)
Inventor
Yoichi Nagata
Tohru Yanagisawa
Original Assignee
Citizen Holdings Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co., Ltd. filed Critical Citizen Holdings Co., Ltd.
Priority to DE602007013260T priority Critical patent/DE602007013260D1/de
Priority to US12/442,437 priority patent/US8037755B2/en
Priority to EP07807761A priority patent/EP2068119B1/en
Priority to JP2008004489A priority patent/JP2009075060A/ja
Publication of WO2008038595A1 publication Critical patent/WO2008038595A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/097Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by vibratory elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/02Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for altering or correcting the law of variation
    • G01D3/021Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for altering or correcting the law of variation using purely analogue techniques

Definitions

  • the present invention relates to a physical quantity sensor, and more particularly to a configuration of an output circuit of the physical quantity sensor.
  • Patent Document 1 proposes a method for changing the detection sensitivity of a physical quantity sensor in proportion to the change in power supply voltage at which the physical quantity sensor operates. ing.
  • This technique is known as ratiometric, for example.
  • FIG. 17 is a diagram for explaining a schematic configuration of the ratiometric.
  • the sensor 110 and the A / D converter 120 are supplied with a common power supply voltage Vdd.
  • Patent Document 1 makes it possible to adjust the detection sensitivity of a physical quantity sensor by changing the power supply voltage in an example of an angular velocity sensor.
  • the detection sensitivity of the physical quantity sensor changes in proportion to changes in the power supply voltage
  • a ratiometric characteristic of sensor sensitivity against a decrease in the reference voltage for A / D conversion is secured, and an incorrect output level can be obtained. The power to avoid reading is shown.
  • FIG. 18 is a diagram for explaining a configuration example of a physical quantity sensor.
  • a physical quantity sensor 101 includes a sensor element 103 that outputs an output signal corresponding to an external force, and this sensor. It has a drive circuit 104 that generates a drive signal for driving the element 103, and an amplifier circuit 107 that amplifies the output signal of the sensor element 103, and adjusts the output signal based on the power supply voltage Vdd to obtain a ratiometric characteristic.
  • An adjustment circuit 105 is provided.
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-53396 (pages 4-6, Fig. 1)
  • the drive circuit 104 is driven by the voltage power supply 102.
  • the drive circuit 104 is independent of the voltage power supply 102 so that the signal level of the drive signal output from the drive circuit 104 is constant.
  • a reference signal generation circuit 109 is prepared, and the drive circuit 104 forms a drive signal based on the reference signal 109.
  • the reference signal generation circuit 109 does not fluctuate.
  • the reference signal generation circuit 109 is generated by using a reference voltage source such as a bandgap type reference voltage source (see Patent Document 1).
  • the reference signal generation circuit 109 generates a reference signal generated by the reference voltage source. The inventor has confirmed that the signal level fluctuates due to various factors such as temperature, power supply voltage and aging, which are not necessarily constant.
  • an object of the present invention is to solve the conventional problems and to reduce the output level fluctuation of the sensor output with respect to the signal level fluctuation of the reference signal and to make the sensitivity constant in the physical quantity sensor.
  • the physical sensor of the present invention reduces the fluctuation of the output level by adjusting the amplification factor in the signal amplification of the sensor output of the physical quantity sensor due to the fluctuation of the reference signal.
  • the amplification factor characteristic for amplifying the sensor output is opposite to the fluctuation characteristic of the sensor output with respect to the fluctuation of the reference signal. This cancels the fluctuation of the sensor output due to the fluctuation of the illumination signal.
  • a physical sensor of the present invention includes a drive circuit that is driven based on a reference signal, a sensor element that is driven by the drive circuit to convert a physical quantity applied from the outside into an electrical signal, And an amplifier circuit for amplifying the output signal of the sensor element.
  • the drive circuit controls the drive signal of the sensor element so as to become a constant level based on the reference signal.
  • the amplifier circuit provided in the present invention has an amplification factor characteristic that amplifies the output signal in the reverse direction with respect to the fluctuation of the reference signal or the fluctuation of the driving signal of the driving circuit.
  • An object of the present invention is to reduce the fluctuation of the output level of the sensor output with respect to the fluctuation of the signal level of the reference signal.
  • the drive circuit since the drive circuit forms a drive signal based on the reference signal, the drive signal of the drive circuit varies depending on the reference signal. Therefore, the present invention reduces the output level fluctuation of the sensor output with respect to the signal level fluctuation of the reference signal by providing an amplification factor characteristic that amplifies the output signal of the amplifier circuit in the reverse direction with respect to the fluctuation of the reference signal.
  • the amplifier circuit provided in the present invention is not limited to the one that changes the amplification factor according to the change of the reference signal.
  • the amplifier circuit is not limited to the change of the drive signal that changes depending on the reference signal.
  • the output signal may be provided with an amplification factor characteristic for amplifying the output signal in the reverse direction.
  • the amplification factor of the amplifier circuit has a characteristic of amplifying in the opposite direction with respect to the fluctuation of the reference signal or the fluctuation of the driving signal of the driving circuit.
  • This amplification factor characteristic is, for example, a characteristic in which the output signal is increased or decreased in the opposite direction with respect to the increase / decrease direction of the reference signal or the increase / decrease direction of the drive signal of the drive circuit due to the change of the reference signal.
  • the signal output level is controlled to be constant regardless of changes in the reference signal.
  • the amplifying circuit when the output signal fluctuates due to the fluctuation of the reference signal or the driving signal of the driving circuit, the amplifying circuit amplifies the signal in a direction that cancels out the fluctuation of the output signal.
  • the output signal output from can reduce the influence of the fluctuation of the reference signal and the fluctuation of the driving signal of the driving circuit.
  • the amplification circuit included in the physical sensor of the present invention includes an active circuit and a resistance circuit having a plurality of resistance elements, and the amplification factor is determined by the resistance ratio of the resistance elements. Small number of resistance elements At least in part, a variable resistance circuit is formed in which the resistance value is variable by changing the reference signal or the drive signal of the drive circuit.
  • the variable resistance circuit changes the resistance ratio by changing the resistance value of the resistance element, and changes the amplification factor of the amplifier circuit.
  • the amplification factor of the amplifier circuit is changed according to the fluctuation of the reference signal or the driving signal of the driving circuit. be able to.
  • the configuration in which the resistance value of the variable resistance circuit is variable can be realized in a plurality of forms.
  • the first form is a form in which the voltage of the reference signal or drive signal is converted into a frequency, and the resistance value is changed according to this frequency.
  • the second form is a form in which the voltage of the reference signal or drive signal is changed.
  • the third form is a form in which the voltage of the reference signal or the drive signal is converted into a current, and the resistance value is changed by this current.
  • the physical sensor can have a ratiometric characteristic by making the amplification factor of the amplifier circuit proportional to the increase or decrease of the power supply voltage.
  • the first form of the physical sensor of the present invention is a form in which the voltage of the reference signal or drive signal is converted into a frequency, and the resistance value is changed according to this frequency.
  • the level of the reference signal or the drive signal of the drive circuit A first frequency converter that converts the frequency into a frequency, and an amplifier circuit that determines the gain based on the resistance ratio of a plurality of resistance elements that connect the gain to the active circuit.
  • a variable resistance circuit whose resistance value is variable by a noise modulation signal is formed in at least a part of the plurality of resistance elements connected to the active circuit.
  • the amplification factor of the amplifier circuit is changed to the reference signal or the drive circuit drive. Inversely proportional to the increase or decrease of the signal.
  • the physical sensor of the present invention can have a ratiometric characteristic.
  • the ratiometric characteristic can be obtained by multiplying the amplification factor of the amplifier circuit that outputs the output signal with the increase / decrease of the power supply voltage.
  • the physical sensor of the present invention includes a second frequency converter that converts the power supply voltage into a frequency as a configuration that provides this ratiometric characteristic.
  • Active circuit in amplifier circuit A variable resistance circuit is formed in at least a part of the plurality of resistance elements connected to, in which the resistance value is variable by a pulse modulation signal.
  • the physical sensor of the present invention can output an output signal that is not affected by fluctuations in the reference signal and has a ratiometric characteristic.
  • both the variability and ratiometric characteristics of the reference signal can be achieved by adjusting the amplification factor of the amplifier circuit.
  • the variability of the reference signal is determined by the drive signal that depends on the reference signal or the reference signal.
  • the gain is adjusted so as to increase / decrease in the opposite direction to the increase / decrease of the signal, and the ratiometric characteristic is adjusted to be proportional to the increase / decrease of the power supply voltage.
  • both the gains are adjusted by forming a variable resistance circuit whose resistance value is variable by a pulse modulation signal in at least a part of the resistance elements connected to the active circuit constituting the amplification circuit,
  • the resistance value of the variable resistance circuit is made variable based on a reference signal, a drive signal, or a nore modulation signal obtained by converting the power supply voltage with a frequency converter.
  • a second form of the physical sensor of the present invention is a form in which the resistance value is selected and switched according to the voltage of the reference signal or the drive signal, and the amplifier circuit connects the amplification factor to the active circuit.
  • the amplification factor is determined by the resistance ratio of the plurality of resistance elements, and a voltage dividing circuit and a comparison circuit for dividing the reference signal or the drive signal of the drive circuit into a predetermined rank are provided.
  • This configuration can also be the above-described configuration having resistance to fluctuation with reference signals and ratiometric characteristics.
  • a variable resistance circuit in which the resistance value is variable is formed by at least a part of the plurality of resistance elements.
  • the comparison circuit inputs the voltage-divided output of the voltage dividing circuit to one input terminal, and inputs the voltage determined by the power supply voltage to the other input terminal.
  • the variable resistance circuit changes the resistance value according to the output signal of each comparison circuit, thereby making the amplification factor of the amplifier circuit inversely proportional to the increase or decrease of the reference signal or the drive signal of the drive circuit and proportional to the increase or decrease of the power supply voltage.
  • the circuit configuration including the voltage dividing circuit and the comparison circuit makes the gain of the amplifier circuit inversely proportional to the increase or decrease of the reference signal or the drive signal of the drive circuit. Two adjustments can be made, proportional to the increase or decrease of the power supply voltage.
  • the amplification circuit included in the physical sensor of the present invention includes an operational amplifier, an input resistance circuit and a feedback resistance circuit connected to the operational amplifier, and the resistance of the input resistance circuit and the feedback resistance circuit.
  • An inverting amplifier circuit or a non-inverting amplifier circuit that determines the amplification factor according to the ratio is provided.
  • At least one of the input resistor circuit and the feedback resistor circuit is a variable resistor circuit whose resistance value is variable according to the change of the reference signal or the drive signal of the drive circuit, and at least one of the input resistor circuit and the feedback resistor circuit is The resistor element is formed.
  • a third form of the physical sensor of the present invention is a form in which the voltage of the reference signal or the drive signal is converted to a current, and the resistance value is changed by this current.
  • a voltage-current converter that converts the voltage of the drive signal of the drive circuit into a current is provided.
  • the variable resistance circuit changes the resistance value according to the current obtained by conversion with this voltage-current converter.
  • the physical sensor of the present invention can control the output level of the output signal of the amplifier circuit to be constant with respect to the fluctuation of the reference signal.
  • Factors that cause the reference signal to fluctuate include temperature changes in the reference signal, voltage changes in the power supply voltage supplied to the reference signal forming circuit that forms the reference signal, or fluctuations in the output signal level due to changes in the reference signal forming circuit over time, etc. 1S
  • the physical sensor of the present invention can cope with any of these factors.
  • the output level fluctuation of the sensor output with respect to the signal level fluctuation of the reference signal can be reduced, and the output sensitivity can be made constant.
  • FIG. 1 is a schematic block diagram for explaining a schematic configuration of a physical sensor of the present invention.
  • FIG. 2 is a schematic block diagram for explaining a schematic configuration of a physical sensor of the present invention.
  • FIG. 3 is a diagram for explaining a configuration example of an amplifier circuit included in the physical sensor of the present invention. 4] A diagram for explaining a configuration example of an amplifier circuit included in the physical sensor of the present invention. 5) A first embodiment of the physical sensor of the present invention in which the resistance value is changed by voltage / frequency conversion. It is a schematic block diagram for doing.
  • FIG. 6 is a schematic diagram for explaining an operation of canceling and reducing the variation of the reference signal by the inverse characteristic of the amplification factor included in the amplifier circuit.
  • FIG. 7 is a schematic diagram for explaining a configuration example provided with fluctuation resistance and ratiometric characteristics of a reference signal in the first embodiment of the physical sensor of the present invention.
  • FIG. 8 is a schematic diagram for explaining a configuration example provided with fluctuation resistance and ratiometric characteristics of a reference signal in the first embodiment of the physical sensor of the present invention.
  • FIG. 9 is a configuration diagram for explaining a first embodiment of a physical sensor of the present invention.
  • FIG. 10 is a diagram for explaining a relationship between a power supply voltage and an intermediate voltage.
  • FIG. 12 is a diagram for explaining a configuration example for reducing the output level fluctuation of the sensor output with respect to the signal level fluctuation of the reference signal in the first embodiment of the physical sensor of the present invention. 12] The reference signal of the present invention. It is a figure for demonstrating the structural example which reduces the output level fluctuation
  • FIG. 13 is a diagram for explaining a configuration example for reducing the output level fluctuation of the sensor output with respect to the signal level fluctuation of the reference signal and the fluctuation of the power supply voltage in the first embodiment of the physical sensor of the present invention.
  • FIG. 14 is a diagram for explaining a second embodiment of the physical sensor of the present invention in which the variable resistance circuit of the feedback resistor of the operational amplifier (op amp) is variable depending on the reference signal and the power supply voltage. 15] This is a diagram for explaining the relationship between the direction in which the reference signal increases or decreases and the direction in which the amplification factor selected by the switch increases or decreases.
  • FIG. 16 is a diagram for explaining a third of the physical sensor of the present invention that changes the resistance value by converting the voltage of the reference signal or drive signal into a current.
  • FIG. 17 is a diagram for explaining a schematic configuration of a ratio metric.
  • FIG. 18 is a diagram for explaining a configuration example of a physical quantity sensor. Explanation of symbols
  • the voltage of the reference signal and the drive signal is converted into a frequency, and the resistance value is determined by the frequency. 5 to 13 will be described with reference to FIGS. 5 to 13, and a second embodiment in which the resistance value is selected and switched according to the voltage of the reference signal or drive signal will be described with reference to FIGS. A third embodiment in which the voltage of the reference signal or drive signal is converted into a current and the resistance value is changed by this current will be described with reference to FIG.
  • FIGS. 9 to 12 illustrate a detailed configuration of the physical sensor of the present invention for reducing the output level fluctuation of the sensor output with respect to the signal level fluctuation of the reference signal
  • FIGS. These are examples in which the physical sensor of the present invention has both a configuration for stabilizing the output signal level with respect to fluctuations in the reference signal and a configuration for realizing a ratiometric characteristic.
  • FIGS. 1 and 2 are schematic block diagrams for explaining a schematic configuration of the physical sensor of the present invention.
  • the configuration example shown in FIG. 1 is a configuration example for reducing the fluctuation of the output level of the sensor output with respect to the fluctuation of the signal level of the reference signal in the physical sensor of the present invention.
  • the configuration example shown in FIG. In the physical sensor according to the present invention, the reference signal is provided with resistance to fluctuations that suppresses fluctuations in the output level of the sensor output with respect to fluctuations in the signal level of the reference signal, and has a ratiometric characteristic.
  • the physical sensor 1 includes a reference signal generation circuit 9 that generates a reference signal (Vref (c)), and a drive circuit 4 that is driven based on the reference signal (Vref ( ⁇ )).
  • the sensor element 3 is driven by the drive circuit 4 to convert an externally applied physical quantity into an electric signal, and the output signal of the sensor element 3 is amplified and based on the reference signal (Vref ( ⁇ )).
  • an amplification circuit 5 for changing the amplification factor and outputting an output signal corresponding to the variation of the reference signal (Vref ( ⁇ )).
  • the drive circuit 4 controls the drive signal of the sensor element 3 to be at a constant level based on a reference signal (Vref ( ⁇ )) formed independently of the voltage power supply 2.
  • Vref ( ⁇ ) the drive signal is represented by a′Vref (a).
  • “a” is a coefficient representing the relationship between the drive signal and the reference signal (Vrei) in the drive circuit 4.
  • the reference signal (V ref (c) fluctuates due to temperature fluctuations, power supply voltage fluctuations, or aging of the reference signal forming means that forms the reference signal. Since the reference signal Vref can be represented by Vref ( ⁇ ), the reference signal is represented by Vref ( ⁇ ) here.
  • the sensor element 3 is driven by a drive signal a′Vref (a) from the drive circuit 4, and receives an external force.
  • the corresponding output signal is output.
  • S contribution factor of the amplitude of the output signal of the sensor element 3 due to the external force
  • S′a′Vr ef (a) the contribution factor of the amplitude of the output signal of the sensor element 3 due to the external force
  • the amplifier circuit 5 outputs an output signal obtained by amplifying the signal (S'a'V ref (c)) input from the sensor element 3.
  • the amplifier circuit 5 has an amplification factor of "A”. When this happens, the output signal of A'S'a'Vref ( ⁇ ), which is A times the input S'a'Vref ( ⁇ ), is output.
  • the signal level of the output signal is changed to the variation of the reference signal Vref (c) by changing the amplification factor ⁇ based on the variation of the reference signal Vref (a) that varies with the variation parameter "a". Regardless, it can be constant.
  • the amplification circuit 5 changes the amplification factor A so as to be opposite to the fluctuation characteristic of the reference signal Vref (a), thereby changing the signal level of the output signal to the reference signal Vref (a ) Constant regardless of fluctuations.
  • the reference signal fluctuates and the fluctuation of the output signal of the sensor element 3 occurs. Even if it occurs, this fluctuation can be canceled and the fluctuation characteristic of the reference signal Vref (a) can be removed from the output signal.
  • A is the set amplification factor.
  • the amplifier circuit 5 receives the power supply voltage Vdd, adjusts the amplification factor to be proportional to the increase or decrease of the power supply voltage Vdd, and gives the output signal a ratiometric characteristic. This makes it possible to change the detection sensitivity of the physical quantity sensor in proportion to changes in the power supply voltage.
  • a configuration example of an amplifier circuit included in the physical sensor of the present invention will be described with reference to FIGS.
  • the amplifier circuit 5 includes a signal amplifying unit 7 that can increase or decrease the amplification factor.
  • the signal amplifier circuit 7 is composed of an active circuit 71 and a resistor circuit 72 having a plurality of resistance elements, and the amplification factor is determined by the resistance ratio of the resistance elements.
  • a variable resistance circuit 73 is formed in at least one of the resistance elements included in the resistance circuit 72. The variable resistance circuit 73 changes the resistance value according to the reference signal or the drive signal.
  • the signal amplification circuit 7 can increase or decrease the amplification factor by changing the resistance value of the variable resistance circuit 73 in the resistance circuit 72 in the amplification path operation by the resistance circuit 72 and the active circuit 71.
  • the amplification factor can be increased or decreased according to the reference signal or the drive signal.
  • the resistance value of the variable resistance circuit 73 is increased or decreased based on the parameter converted by the conversion unit 6 from the voltage of the reference signal or the drive signal.
  • FIG. 3 (b) shows a configuration in which the resistance value of the variable resistance circuit 7c is increased or decreased in proportion to the increase or decrease in the power supply voltage.
  • the signal amplifying unit 7 connects the active circuit 71 as an operational amplifier, the variable resistance circuit 73 as an input resistance circuit and a feedback resistance circuit, and connects the input resistance circuit and the feedback resistance circuit to the operational amplifier.
  • the inverting amplifier circuit or the non-inverting amplifier circuit can be configured.
  • the amplification factor of the signal amplifier circuit 7 can be determined by the resistance ratio of the input resistor circuit and the feedback resistor circuit.
  • a variable resistor circuit whose resistance value is variable is formed in the resistor element of at least one of the input resistor circuit and the feedback resistor circuit according to the change of the reference signal or the drive signal of the drive circuit.
  • FIG. 4 is a diagram for explaining each form of the conversion circuit.
  • Fig. 4 (a) to Fig. 4 (c) show forms in which the voltage of the reference signal or drive signal is converted into the frequency, resistance, and current parameters, respectively.
  • the frequency converter 61 is used as the converter 6, and the reference signal or The voltage of the drive signal is converted into a frequency parameter, and the resistance value of the variable resistance circuit 73 is increased or decreased according to the frequency.
  • the voltage of the reference signal or the drive signal is converted into a resistance parameter using the voltage / resistance converter 62 as the converter 6, and the resistance of the variable resistor circuit 73 is converted by the resistor. Increase or decrease the value.
  • the voltage of the reference signal or the drive signal is converted into a current parameter using the voltage / current converter 63 as the converter 6, and the variable resistor circuit 73 is converted by the current. Increase or decrease the resistance value.
  • the configuration example shown in FIG. 5 is a configuration example in which the fluctuation of the output level of the sensor output is reduced with respect to the fluctuation of the signal level of the reference signal in the physical sensor of the present invention.
  • the configuration examples shown in FIGS. 7 and 8 show the ratio metric in addition to the fluctuation resistance of the reference signal that reduces the fluctuation of the output level of the sensor output with respect to the fluctuation of the signal level of the reference signal in the physical sensor of the present invention. It is a structural example provided with a characteristic.
  • the configuration example shown in FIG. 5 is an example in which the amplification circuit 5 is configured by the frequency conversion unit 61 and the signal amplification unit 7 in the configuration example shown in FIG. 1, and only the configuration of the amplification circuit 5 is shown in FIG. For this reason, only the configuration of the amplifier circuit 5 will be described here, and the description of the common parts will be omitted.
  • the drive circuit 4 is controlled so that the drive signal of the sensor element 3 becomes a constant level based on the reference signal (Vref ( ⁇ )) formed by the reference signal generation circuit 9 independently of the voltage power supply 2.
  • the sensor element 3 is driven by a drive signal a'Vref (a) from the drive circuit 4, and outputs an output signal S'a'Vrec corresponding to an external force.
  • a is a coefficient representing the relationship between the drive signal and the reference signal
  • S is a contribution factor of the amplitude of the output signal of the sensor element 3 due to the external force.
  • the frequency converter 6 included in the amplifier circuit 5 inputs the voltage of the output signal S'a'Vref ( ⁇ ) of the sensor element 3 and the reference signal Vref ( ⁇ ) or the drive signal a 'Vref (a). Convert to frequency.
  • the frequency converter 61 changes the resistance ratio of the variable resistance circuit to change the amplification factor "A", and multiplies the input 3 '& ⁇ ( «) by 8 to output signal 8'3' & ⁇ ( «) is output.
  • the amplification factor A is based on the fluctuation of the reference signal Vref (a) that fluctuates with the fluctuation parameter "a"! By adjusting, the signal level of the output signal is kept constant regardless of the fluctuation of the reference signal Vref (a). For this purpose, the amplifier circuit 7 adjusts the amplification factor A so that it is opposite to the fluctuation characteristic of the reference signal Vref ( ⁇ ), thereby changing the signal level of the output signal to the fluctuation of the reference signal Vref (a). Regardless of whether or not.
  • FIG. 6 is a schematic diagram for explaining the operation of canceling and reducing the variation of the reference signal by the inverse characteristic of the amplification factor included in the amplifier circuit.
  • FIGS. 6 (a) to 6 (c) show a case where the amplification factor of the amplifier circuit does not change with reference signal fluctuation.
  • Figs. 6 (c!) To (f) show the case where the amplifier circuit has an amplification factor with a reverse characteristic.
  • 6 (a) and 6 (d) show the characteristics of the reference signal Vref) with respect to the fluctuation parameter ⁇
  • FIGS. 6 (b) and 6 (e) show the amplification factor with respect to the fluctuation parameter ⁇ .
  • Fig. 6 (f) shows the output signal for the variation parameter ⁇ .
  • Vref (c) When Vref (c) is changed in inverse proportion to the fluctuation of c, the output signal is amplified with the amplification factor AO regardless of the fluctuation of the reference signal Vref (a), and the influence of the fluctuation parameter ⁇ can be eliminated. .
  • the amplification circuit 5 uses, for example, the frequency conversion unit 61 to change the reference signal Vref ( ⁇ ) in order to change the amplification factor ⁇ of the signal amplification unit 7 according to the reference signal Vref ( ⁇ ) or the drive signal Vref). ⁇ ) or drive signal a′Vref ( ⁇ ) is converted into a frequency signal.
  • the signal amplifying circuit 7 changes the amplification factor by changing the resistance value of the variable resistance circuit connected to the active circuit, using the frequency signal obtained by the conversion of the frequency converting unit 61. This frequency signal
  • the circuit configuration for changing the amplification factor using the signal will be described later using the circuit examples of FIGS.
  • FIGS. 7 and 8 are added to the configuration for reducing the output level fluctuation of the sensor output with respect to the fluctuation of the signal level of the reference signal shown in FIG. 5 in the physical sensor of the present invention.
  • This is a configuration example in which the ratiometric characteristic is realized by changing the amplification factor of the amplifier circuit in proportion to the fluctuation of the power supply voltage.
  • the description of the configuration common to FIG. 5 is omitted.
  • the physical sensor 1 includes a sensor element 3, a drive circuit 4, an amplifier circuit 5, and a reference signal generation circuit 9, similarly to the configuration shown in FIG. be able to.
  • the amplifier circuit 5 is configured to reduce the output level fluctuation of the sensor output with respect to the fluctuation of the reference signal signal level by amplifying the signal with an amplification factor opposite to that of the fluctuation of the reference signal Vref ( ⁇ ), and the power supply voltage Vdd. It has two configurations: a configuration that reduces the output level fluctuation of the sensor output with respect to the fluctuation of the power supply voltage by amplifying the signal with an amplification factor having the characteristics in the same direction as the fluctuation of the fluctuation.
  • the amplifier circuit 5 has a configuration for changing the amplification factor A of the amplifier circuit with an inverse characteristic according to the reference signal Vref ( ⁇ ) or the drive signal a′Vref ( ⁇ ).
  • a first frequency converter 6 ⁇ that converts the reference signal Vref ( ⁇ ) or the drive signal a′Vref ( ⁇ ) into a frequency signal is provided.
  • the first signal amplification unit 7 ⁇ ⁇ changes the resistance value of the variable resistance circuit connected to the active circuit using the frequency signal obtained by the conversion of the first frequency conversion unit 6 ⁇ ⁇ , and thereby the amplification factor is changed. To change.
  • the power supply voltage Vdd is also input to the first frequency converter 6 ⁇ , and the resistance value of the variable resistor circuit connected to the active circuit is changed using the frequency signal converted by the first frequency converter 6 ⁇ .
  • the amplification factor is changed in proportion to the power supply voltage Vdd.
  • the amplification circuit 5 has, for example, a second signal amplification unit 7B as a configuration for changing the amplification factor A of the amplification circuit with the same increase / decrease characteristic in accordance with the power supply voltage Vdd.
  • a second frequency converter 6B for converting the power supply voltage Vdd into a frequency signal is provided.
  • the second signal amplifying unit 7B uses the frequency signal obtained by the conversion of the second frequency conversion unit 6B, and changes the resistance value of the variable resistance circuit connected to the active circuit to change the power supply voltage Vdd. The gain is changed in proportion to.
  • the first amplifier circuit 7A and the second amplifier circuit 7B may be combined into a single amplifier circuit. This single amplifier circuit realizes two functions: the function of changing the amplification factor based on fluctuations in the reference signal or drive signal and the function of changing the amplification factor based on fluctuations in the power supply voltage. A configuration example will be described later with reference to FIGS.
  • FIG. 9 is a block diagram for explaining a configuration example of the physical sensor of the present invention, and will explain the configuration of FIG. 5 in more detail. Note that the entire configuration of the sensor element 3, the drive circuit 4, the amplifier circuit 5, and the reference signal generation circuit 9 has been described with reference to FIG. explain.
  • the sensor element 3 can be constituted by, for example, a piezoelectric vibrator such as a quartz vibrator, and a driving unit 3A that excites and vibrates the piezoelectric vibrator, and a detection unit that changes the vibration state reflecting external force. It can be set as the structure provided with 3B.
  • the driving unit 3A includes a driving leg and driving electrodes provided on the driving leg, and is supplied from the driving circuit 4. It oscillates by being excited by the drive signal generated.
  • the detection unit 3B includes a detection leg and detection electrodes provided on the detection leg.
  • the vibration state of the detection leg is changed by Coriolica generated by the applied external force, and the detection electrode detects this vibration state as a detection signal and outputs it to the amplifier circuit 5 via the detection circuit 8.
  • the drive circuit 4 is a circuit that forms a drive signal for exciting and driving the drive unit 3A of the sensor element 3, and by feedback of the signal from the drive unit 3A and adjusting the phase and amplitude, A drive signal having a predetermined frequency is formed.
  • FIG. 9 shows an example of constant current control in which the current value of the drive signal is controlled to be constant.
  • the current detection circuit 4A detects a current of a signal detected from one electrode of the drive unit 3A, and a control signal that makes the current value of the detection signal constant by an automatic gain adjustment circuit (AGC circuit) 4B.
  • AGC circuit automatic gain adjustment circuit
  • the gain of the variable gain amplifying circuit 4C is adjusted by this control signal.
  • the automatic gain adjustment circuit (AGC circuit) 4B obtains, for example, the effective value circuit 4Ba for obtaining the effective value of the output signal of the galvanic circuit 4A, and the difference between the output of the effective value circuit 4Ba and the reference signal Vref,
  • This difference can be configured by a comparison circuit 4Bb that compares the difference with a set value, whereby the current value of the drive signal is compared with the reference signal, and the current value of the drive signal is determined using the reference signal as a reference signal.
  • the gain of the variable gain amplifier circuit 4C is adjusted so as to be constant.
  • the reference signal (Vref ( ⁇ )) can be configured by the midpoint generator 9 ⁇ and the reference voltage generator 9 ⁇ .
  • the midpoint generator 9 ⁇ and the reference voltage generator 9 ⁇ ⁇ ⁇ ⁇ are supplied with voltage from the voltage source 2.
  • the midpoint generator 9 ⁇ generates Vm from the midpoint of the voltages Vdd and Vss of the voltage power source 2, for example.
  • Vss is the ground voltage
  • the midpoint voltage Vm is V dd / 2.
  • Figure 10 shows this voltage relationship.
  • the reference voltage generation unit 9A generates a voltage independent of the power supply voltage Vdd using the midpoint voltage Vm generated by the midpoint generation unit 9B.
  • the reference voltage generation unit 9A generates a reference signal as a reference signal for making the current of the drive signal formed by the drive circuit 4 constant, but in an actual circuit configuration, the signal level of the reference signal is the temperature or It fluctuates depending on power supply voltage and aging.
  • the fluctuation of the signal level of the reference signal causes the signal level of the drive signal to fluctuate, which causes the signal level of the output signal output via the sensor element 3 and the signal amplifier 7 to fluctuate.
  • the present invention reduces variations in the output signal caused by variations in the reference signal that should be the reference signal.
  • the signal amplifying unit 7 having a variable gain included in the amplifier circuit 5 of the present invention includes at least one of a plurality of resistance elements connected to an active circuit that configures the amplifier circuit. By changing the resistance value of the variable resistor circuit, the amplification factor of the amplifier circuit is changed.
  • FIG. 11A shows an example of an inverting amplifier circuit
  • FIG. 11B shows an example of a non-inverting amplifier circuit.
  • the signs of the inverting amplifier circuit and the non-inverting amplifier circuit are reversed, the magnitude of the amplification factor is determined by the input resistor Rs and the feedback resistor Rf connected to the operational amplifier (op amp). Therefore, the following description is mainly based on the example of the inverting amplifier circuit of FIG.
  • the amplifier circuit 5 includes a frequency converter (linear VCO) 6a that converts the voltage of the reference signal Vref into a frequency, an input resistance 11 of an operational amplifier (op amp) 21, and a feedback resistor.
  • An amplifier circuit 7 formed by connecting 10 is provided.
  • the feedback resistor 10 is formed by the variable resistor circuit 10a, and the resistance value of the variable resistor circuit 10a is changed to the frequency converter (
  • the reference signal Vrere converted to frequency by the linear VCO 6a By changing the reference signal Vrere converted to frequency by the linear VCO 6a, the direction of increase / decrease in the amplification factor and the direction of fluctuation of the reference signal Vref can be adjusted in the opposite direction.
  • the resistance value of the variable resistor circuit 10a is decreased to lower the amplification factor of the signal amplifying unit 7, and conversely, when the reference signal Vrei3 ⁇ 4S is decreased, the variable resistor circuit 10a is decreased.
  • the amplification factor of the signal amplifier 7 is increased.
  • the relationship between the resistance value and the amplification factor of the reference signal, the frequency signal, and the variable resistor circuit is such that the reference signal and the frequency signal have a positive increase characteristic relationship, and the frequency change signal and the resistance value have a negative relationship.
  • the resistance value and the amplification factor are in a positive increase characteristic relationship. Therefore, the reference signal and the amplification factor have a negative increase characteristic relationship.
  • the amplification factor of the amplifier circuit can be made to have a characteristic opposite to that of the reference signal.
  • the increase / decrease characteristic of the resistance value of the variable resistance circuit can be realized by, for example, a configuration in which a so-called switched capacitor circuit that moves charges by switching the connection state of the capacitor is provided in the feedback stage.
  • This switched capacitor circuit has a variable amplification factor based on the pulse modulation signal.
  • An amplifier circuit 7 shown in FIG. 11 (a) has a configuration of an inverting amplifier circuit having an operational amplifier (op-amp) 21.
  • An output terminal and an input terminal (inverting input terminal) of the operational amplifier (op-amp) 21 are In between, a parallel connection of the switched capacitor circuit forming the variable resistor circuit 10a and the filter capacitor 7c is connected as a feedback resistor, and the input resistor 11 is connected to the inverting input terminal of the operational amplifier (op amp) 21.
  • the switched capacitor circuit includes a switch 7a having two contacts and a capacitor 7b.
  • the switch 7a can be composed of a transmission gate (transmission gate) using MOS elements.
  • the contact state of the touch 7a is configured to be switched according to the frequency signal of the frequency converter 6a. That is, the connection state of the capacitor is switched according to the frequency signal.
  • the switch 7a can be manufactured by a semiconductor process, and can be configured on the same semiconductor chip. This makes it possible to match the temperature characteristics of each element.
  • the switched capacitor circuit is composed of a switch 7a and a capacitor 7b.
  • the capacitor 7b accumulates the voltage of the detection output, and then the switch 7a Becomes conductive to the output terminal side, the charge stored in the capacitor 7b is discharged.
  • connection state of the capacitor 7b is switched by switching the switch 7a between the inverting input terminal side and the signal terminal side in accordance with the frequency signal of the frequency converter 6a.
  • f is the average switching frequency of the switch 7a
  • Cs is the capacitance of the capacitor 7b.
  • the signal amplifying unit 7 Since the switched capacitor circuit is equivalent to a resistance element and forms a variable resistance circuit, the signal amplifying unit 7 operates as a first-order low-pass filter (incomplete integration circuit) to which an inverting amplifier circuit is applied.
  • the amplification factor of the signal amplifier 7 is determined by the ratio of the feedback resistance and the input resistance. Therefore, in the configuration described above, the feedback resistor is configured by a switched capacitor circuit, and the equivalent resistance of the switched capacitor circuit is changed according to the frequency of the reference signal Vref, thereby changing the amplification factor of the amplifier circuit. It can be made variable in the opposite direction to the characteristics.
  • the signal amplifying unit 7 using the switched capacitor circuit can obtain high linearity by using a capacitor having no voltage dependency of the capacitance.
  • a capacitor having no voltage dependency of the capacitance For example, a common two-layer What is necessary is just to comprise the capacitor
  • the signal amplifying unit shown in FIG. 11 is configured using an operational amplifier (op amp).
  • the active circuit constituting the power amplifier circuit is not limited to the operational amplifier (op amp), and other elements may be used.
  • Figure 12 shows a configuration example using bipolar transistors and FETs as active circuits.
  • Fig. 127 (a) shows an example of emitter grounding of a bipolar transistor.
  • the gain is expressed as (one R2 / R1).
  • the amplification factor is expressed as (one R2 / R1).
  • the resistor R2 is formed by a variable resistor circuit, and the resistance value of the variable resistor circuit is adjusted by a frequency signal obtained by frequency-converting the reference signal.
  • FIG. 13 (a) is a configuration example that combines the configuration that stabilizes the output signal level with respect to the fluctuation of the reference signal shown in FIG. 11 (a) and the configuration that realizes the ratiometric characteristic.
  • a variable resistor circuit 10c is formed as a feedback resistor of an operational amplifier (op-amp) 21, and a variable resistor circuit lOd is formed as an input resistor.
  • the variable resistance circuit 10c adjusts the resistance value by the frequency signal obtained by converting the voltage of the reference signal Vref by the frequency converter 6a, while the variable resistance circuit 10d converts the voltage of the power supply voltage Vdd by the frequency converter 6b. The resistance value is adjusted by the frequency signal.
  • variable resistance circuit 10c The configuration that stabilizes the output signal level with respect to the variation of the reference signal is configured by the variable resistance circuit 10c, and the output is performed with respect to the variation of the reference signal by the same operation as described in FIG. 11 (a). Stabilize the signal level.
  • the variable resistance circuit 10d on the input resistance side can be composed of a switched capacitor circuit in the same manner as the variable resistance circuit 10c on the feedback resistance side.
  • the switch of the variable resistance circuit 10d can be configured by a transmission gate (transmission gate) using MOS elements, and the switch contact state is configured to be switched according to the frequency signal of the frequency converter 6b. That is, the connection state of the capacitor is switched according to the frequency signal.
  • the switch and the capacitor can be manufactured by a semiconductor process, and can be configured on the same semiconductor chip.
  • One end of the variable resistance circuit lOd capacitor is connected to the midpoint voltage Vm, and the other end is connected to the fixed contact of the switch.
  • One contact of the switch is an input terminal of the amplifier circuit, and a detection signal is input. Connect the other contact of the switch to the inverting input terminal of the operational amplifier (op amp) 21.
  • the capacitor stores the voltage of the detection signal.
  • the switch becomes conductive to the operational amplifier (op amp) 21 side
  • the charge stored in the capacitor is discharged to the filter capacitor by the operational amplifier (op amp) 21.
  • the switch of the variable resistor circuit 10d is switched between the detection signal side and the operational amplifier (op-amp) 21 side, thereby connecting the capacitors. Will be switched.
  • the switched capacitor circuit 10d When the switch performs the above switching operation at high speed, the switched capacitor circuit 10d performs an operation equivalent to a resistance element expressed by the inverse of the product of the average switching frequency f of the switch and the capacitor capacitance C.
  • the frequency converter 6b outputs the frequency signal f corresponding to the voltage of the power supply voltage Vdd
  • the resistance value of the variable resistance circuit 10d is inversely proportional to the power supply voltage Vdd.
  • the amplification factor of the operational amplifier (op-amp) 21 is proportional to (feedback resistance / input resistance)
  • the amplification factor is eventually proportional to the power supply voltage Vdd.
  • non-inverting amplifier circuit of FIG. 13 (b) is configured by connecting the variable resistance circuit 10e in place of the resistance value connected to the negative input of the non-inverting amplifier circuit of FIG. 13 (b). can do.
  • the variable resistance circuit 10e changes the resistance value in the direction opposite to the power supply voltage Vdd by the frequency conversion output of the frequency converter 6b.
  • variable resistance circuit 10b the resistance value is changed in accordance with the voltage Vref of the reference signal by the frequency conversion output of the frequency converter 6a, as in FIG. 11 (b).
  • Figure 14 shows how the feedback resistance of the operational amplifier (op amp) is formed by a variable resistor circuit, and the resistance value of this variable resistor circuit is compared with the divided voltage of the reference signal Vref and the power supply voltage Vdd using a comparator circuit.
  • This is an example of a configuration that is variable by selecting according to a selection signal obtained in this way.
  • FIG. 14 However, for ease of explanation, the description is simplified.
  • the reference signal Vrei ⁇ is divided by the voltage dividing resistor 42 to form stepwise divided voltages VI and V2, and the divided voltages VI and V2 are input to one of the comparison circuits 51 and 52. Enter at the end.
  • the divided voltage V0 of the power supply voltage Vdd is input to the other input terminal of the comparison circuits 51 and 52.
  • the feedback resistor 16 of the operational amplifier (op-amp) 21 constituting the amplifier circuit is formed by a variable resistor circuit, and the resistance value of this variable resistor circuit is based on the comparison results of the comparison circuits 51 and 52 described above. To select.
  • the selector 53 exclusively controls the switches SI, S2 and S3 based on the comparison results of the comparison circuits 51 and 52.
  • Switch S1 is selected when V0 ⁇ V1 ⁇ V2
  • switch S2 is selected when V1 ⁇ V0 ⁇ V2
  • switch S3 is selected when VI ⁇ V2 ⁇ V0.
  • switch S1 When switch S1 is conductive, the value of feedback resistor 16 is small, and the amplification factor of the amplifier circuit is also small.
  • switch S2 When switch S2 is conductive, the value of feedback resistor 16 is medium, and the amplification factor of the amplifier circuit is also medium.
  • switch S3 when the switch S3 becomes conductive, the value of the feedback resistor 16 becomes large, and the amplification factor of the amplifier circuit also becomes large.
  • Figure 15 (a) shows the relationship between the reference signal Vref, the divided voltage V1 to V2 divided by this reference signal Vrei ⁇ , and the relationship with the power supply voltage Vdd to be compared by the comparison circuit. It shows VI and V2 with Vref changing. Note that the divided voltage VO obtained by dividing the power supply voltage Vdd is used as the voltage to be compared by the comparison circuit.
  • the comparison circuits 51 and 52 compare the divided voltages VI and V2 with the power supply voltage Vdd as a threshold value.
  • Vref ⁇ fluctuates and becomes small
  • the selector 53 selects the switch S3 in the range where the larger divided voltage V2 becomes V2 and VO. Select a large value for the feedback resistor. As a result, the amplification factor of the amplifier circuit becomes large.
  • Fig. 15 (b) shows the relationship between the reference signal Vref, the divided voltage V1 to V2 divided by the reference signal Vrei3 ⁇ 4, and the power supply voltage Vdd to be compared by the comparison circuit, and in particular, the power supply voltage Vdd. Show the VO in a state of fluctuating! /
  • the comparison circuits 51 and 52 compare the divided voltages VI and V2 with the power supply voltage Vdd as a threshold value. In the range where the power supply voltage Vdd is low and VO becomes VI, the selector 53 selects the switch S1, and the amplification factor of the amplifier circuit becomes small. In the range where Vdd is medium and V1 ⁇ V0 ⁇ V2, selector 53 selects switch S2, and the amplification factor of the amplifier circuit is medium. In the range where the power supply voltage V dd is high and V2 becomes VO, the selector 53 selects the switch S3 and the amplification factor of the amplifier circuit becomes large.
  • the ratio of the change in the amplification factor of the amplifier circuit with respect to the change in the power supply voltage and the reference signal of the present invention can be arbitrarily determined by the voltage dividing ratio of the voltage dividing resistor and the variable step of the variable resistor.
  • the amplification factor can be changed in proportion to the power supply voltage Vdd, and the amplification factor can be changed in inverse proportion to the reference signal Vref.
  • the amplification factor of the amplifier circuit can be changed almost linearly. That is, according to the configuration of the present invention, the output sensitivity of the physical quantity sensor can A constant ratio characteristic can be given to the change of the power supply voltage while keeping the fluctuation constant.
  • FIG. 16 is a configuration example of the amplifier circuit 5 using a voltage-current conversion circuit (OTA: operational transconductance amplifier).
  • OTA operational transconductance amplifier
  • the OTA 32 constitutes the input resistance of the operational amplifier 31.
  • the OTA 32 functions as a variable resistance circuit in which the transconductance (g m) changes according to the current signal from the voltage / current conversion circuit 33 inputted with the reference signal Vref3 ⁇ 4S.
  • the resistance value Rin of the variable resistance circuit is the reciprocal of the transconductance (gm).
  • the physical quantity sensor of the present invention is applied to a vibration gyro sensor, a vibration acceleration sensor, or the like with a force S.

Description

明 細 書
物理量センサ 技術分野
[0001] 本発明は、物理量センサに関し、特に物理量センサの出力回路の構成に関する。
背景技術
[0002] 現在では、さまざまな種類の物理量センサが利用されている。その中で特に、振動 ジャイロに代表される角速度センサのセンサ出力の補正については多くの提案がな されている。
[0003] 特許文献 1に示した従来技術にお!/、ては、物理量センサの検出感度が、物理量セ ンサの動作する電源電圧の変化に対して比例して変化させるための手法が提案され ている。この手法は例えばレシオメトリックとして知られている。図 17はレシオメトリック の概略構成を説明するための図である。レシオメトリックでは、センサ 110および A/ D変換器 120は共通の電源電圧 Vddの供給を受ける。
[0004] センサ 110のみが電源電圧 Vddの変動に対応して変化し、 A/D変換器 120は電 源電圧 Vddの変動に対応して!/、な!/、場合には、 A/D変換後のディジタル値に相違 力 S生じることになる。また、 A/D変換器 120のみが電源電圧 Vddの変動に対応して 変化し、センサ 110の出力が電源電圧 Vddの変動に依存しない場合においても、 A /D変換後のディジタル値に相違が生じることになる。
[0005] 一方、センサ 110および A/D変換器 120が共に電源電圧 Vddの変動に対応する 場合には、 A/D変換後のディジタル値に相違は生じなレ、。
[0006] 特許文献 1は、角速度センサの例において、電源電圧の変動によって物理量セン サの検出感度を調整可能とする。特に電源電圧の変化に対して物理量センサの検 出感度が比例して変化するようにすることで A/D変換の基準電圧の低下に対する センサ感度のレシオメトリック特性を確保し、誤った出力レベルの読み込みを回避す ること力 S示されている。
[0007] 図 18は、物理量センサの一構成例を説明するための図である。図 18において、物 理量センサ 101は、外力に応じた出力信号を出力するセンサ素子 103と、このセンサ 素子 103を駆動する駆動信号を生成する駆動回路 104と、センサ素子 103の出力信 号を信号増幅する増幅回路 107を有するとともに、電源電圧 Vddに基づいて出力信 号を調整してレシオメトリック特性を持たせる調整回路 105を備える。
特許文献 1:特開 2004— 53396号公報(第 4〜6頁、第 1図)
発明の開示
発明が解決しょうとする課題
[0008] 上記した物理量センサ 101では、駆動回路 104は電圧電源 102で駆動されるが、 この駆動回路 104が出力する駆動信号の信号レベルが一定となるように、この電圧 電源 102とは独立した参照信号生成回路 109を用意し、駆動回路 104はこの参照信 号 109に基づいて駆動信号を形成している。
[0009] この物理量センサ 101において、通常、この参照信号生成回路 109は変動しない ことを前提としている。し力、しながら、この参照信号生成回路 109は、例えばバンドギ ヤップ型基準電圧源 (特許文献 1参照)等の基準電圧源を用いて生成されるが、この 基準電圧源が生成する参照信号の信号レベルは、必ずしも一定ではなぐ温度ゃ電 源電圧や経年変化等の種々の要因によって変動することを発明者は確認した。
[0010] 参照信号生成回路 109の信号レベルが変動した場合には、センサ出力の出カレ ベルが変動し、感度が一定せず変動することになる。
[0011] そこで、物理量センサの検出精度を高めるには、参照信号生成回路 109の信号レ ベルが変動した場合であっても、センサ出力の出力レベルが変動せず一定の感度 が得られる物理量センサが求められる。
[0012] そこで、本発明は従来の問題を解決し、物理量センサにおいて、参照信号の信号 レベル変動に対するセンサ出力の出力レベル変動を低減し、感度を一定とすること を目的とする。
課題を解決するための手段
[0013] 本発明の物理用センサは、参照信号の変動による物理量センサのセンサ出力の信 号増幅において、この増幅率を調整することによって、出力レベルの変動を低減する ものである。そして、この増幅率の調整において、センサ出力を信号増幅する増幅率 特性が、参照信号の変動に対するセンサ出力の変動特性と逆方向とすることで、参 照信号の変動によるセンサ出力の変動を打ち消すものである。
[0014] 本発明の物理用センサは、参照信号に基づいて駆動する駆動回路と、この駆動回 路によって駆動されることで外部から印加された物理量を電気信号に変換するセン サ素子と、このセンサ素子の出力信号を増幅する増幅回路とを有する。駆動回路は 、参照信号に基づレ、てセンサ素子の駆動信号を一定レベルとなるように制御する。 本発明が備える増幅回路は、参照信号の変動、又は、駆動回路の駆動信号の変動 に対して、出力信号を逆方向に増幅する増幅率特性を備える。
[0015] 本発明の目的とするところは、参照信号の信号レベルの変動に対して、センサ出力 の出力レベルの変動を低減することにある。ここで、駆動回路は参照信号に基づい て駆動信号を形成するため、駆動回路の駆動信号は参照信号に依存して変動する 。そこで、本発明は、参照信号の変動に対して増幅回路の出力信号を逆方向に増幅 する増幅率特性を持たせることで、参照信号の信号レベル変動に対するセンサ出力 の出力レベル変動を低減する。
[0016] また、本発明が備える増幅回路は、参照信号の変動に応じて増幅率を変化するも のに限られるものではなぐ参照信号に依存して変化する駆動信号の変動に対して 増幅回路の出力信号を逆方向に増幅する増幅率特性を持たせるようにするようにし てもよい。
[0017] 増幅回路の増幅率は、参照信号の変動、又は、駆動回路の駆動信号の変動に対 して逆方向に増幅する特性を備える。この増幅率特性は、例えば、参照信号の増減 方向、又は、参照信号の変動による駆動回路の駆動信号の増減方向に対して、出 力信号を逆方向に増減する特性であり、増幅回路の出力信号の出力レベルを、参照 信号の変動によらず一定に制御する。
[0018] この構成によって、参照信号の変動や駆動回路の駆動信号の変動によって出力信 号が変動したとき、増幅回路はこの出力信号の変動を相殺される方向に信号増幅す るため、増幅回路から出力される出力信号は、参照信号の変動や駆動回路の駆動 信号の変動による影響を低減させることができる。
[0019] 本発明の物理用センサが備える増幅回路は、能動回路と複数の抵抗素子を有する 抵抗回路とから構成し、抵抗素子の抵抗比によって増幅率を定める。抵抗素子の少 なくとも一部には、参照信号の変動、又は、駆動回路の駆動信号の変動によって抵 抗値を可変とする可変抵抗回路を形成する。
[0020] 可変抵抗回路は、抵抗素子の抵抗値を変えることで抵抗比を変え、増幅回路の増 幅率を変える。可変抵抗回路の抵抗値を、参照信号の変動、又は、駆動回路の駆動 信号の変動によって変えることで、増幅回路の増幅率を参照信号の変動、又は、駆 動回路の駆動信号の変動によって変えることができる。
[0021] この可変抵抗回路の抵抗値を可変とする構成は、複数の形態によって実現するこ と力 Sできる。
[0022] 第 1の形態は、参照信号や駆動信号の電圧を周波数に変換し、この周波数によつ て抵抗値を変える形態であり、第 2の形態は、参照信号や駆動信号の電圧に応じて 抵抗値を選択して切り替える形態であり、第 3の形態は、参照信号や駆動信号の電 圧を電流に変換し、この電流によって抵抗値を変える形態である。
[0023] また、各形態において、増幅回路の増幅率を電源電圧の増減と比例させることによ つて物理用センサにレシオメトリック特性を持たせることができる。
[0024] 本発明の物理用センサの第 1の形態は、参照信号や駆動信号の電圧を周波数に 変換し、この周波数によって抵抗値を変える形態であり、参照信号又は駆動回路の 駆動信号のレベルを周波数に変換する第 1の周波数変換器と、増幅率を能動回路 に接続する複数の抵抗素子の抵抗比によって増幅率を定める増幅回路とを備える。
[0025] この増幅回路において、能動回路に接続する複数の抵抗素子の少なくとも一部に 、 ノ ルス変調信号によって抵抗値を可変とする可変抵抗回路を形成する。この可変 抵抗回路の抵抗値を、第 1の周波数変換器で変換して得られた周波数のノ レス変 調信号によって抵抗値を変えることにより、増幅回路の増幅率を参照信号又は駆動 回路の駆動信号の増減と逆比例させる。
[0026] また、本発明の物理用センサは、レシオメトリック特性を持たせることができる。レシ オメトリック特性は、出力信号を出力する増幅回路の増幅率を、電源電圧の増減と比 ί列させることによって得ること力 Sできる。
[0027] 本発明の物理用センサは、このレシオメトリック特性を持たせる構成として、電源電 圧を周波数に変換する第 2の周波数変換器を備える。増幅回路において、能動回路 に接続する複数の抵抗素子の少なくとも一部に、パルス変調信号によって抵抗値を 可変とする可変抵抗回路を形成する。第 2の周波数変換器で変換して得られた周波 数のノ ルス変調信号によって可変抵抗回路の抵抗値を変えることにより、増幅回路 の増幅率を電源電圧の増減と比例させる。
[0028] したがって、本発明の物理用センサは、参照信号の変動に影響されず、かつ、レシ オメトリック特性を備えた出力信号を出力することができる。そして、参照信号の耐変 動性およびレシオメトリック特性は、ともに増幅回路の増幅率を調整することで行うこと ができ、参照信号の耐変動性については、参照信号や参照信号に依存する駆動信 号の増減と逆方向に増減するように増幅率を調整し、レシオメトリック特性については 、電源電圧の増減と比例するように増幅率を調整する。
[0029] また、両増幅率の調整はともに、増幅回路を構成する能動回路に接続される抵抗 素子の少なくとも一部に、パルス変調信号によって抵抗値を可変とする可変抵抗回 路を形成し、この可変抵抗回路の抵抗値を、参照信号、駆動信号、あるいは電源電 圧を周波数変換器で変換したノ レス変調信号に基づいて可変とする。
[0030] 本発明の物理用センサの第 2の形態は、参照信号や駆動信号の電圧に応じて抵 抗値を選択して切り替える形態であり、増幅回路は、増幅率を能動回路に接続する 複数の抵抗素子の抵抗比によって増幅率を定める構成とするとともに、参照信号又 は駆動回路の駆動信号を所定階数に分圧する分圧回路と比較回路とを備える。この 構成は、上記した、参照信号に対する耐変動性とレシオメトリック特性を備える構成で もめる。
[0031] 第 2の形態は、複数の抵抗素子の少なくとも一部によって、抵抗値を可変とする可 変抵抗回路を形成する。比較回路は、一方に入力端に前記分圧回路の分圧出力を 入力し、他方の入力端に電源電圧で定まる電圧を入力する。可変抵抗回路は、各比 較回路の出力信号によって抵抗値を変えることにより、増幅回路の増幅率を、参照信 号又は駆動回路の駆動信号の増減と逆比例させるとともに、電源電圧の増減と比例 させる。
[0032] この構成によれば、分圧回路と比較回路とを備える回路構成によって、増幅回路の 増幅率に対して、参照信号又は駆動回路の駆動信号の増減と逆比例させるとともに 、電源電圧の増減と比例させるという 2つの調整を行うことができる。
[0033] また、本発明の物理用センサが備える増幅回路は、演算増幅器と、この演算増幅 器に接続される入力抵抗回路および帰還抵抗回路を有し、入力抵抗回路と帰還抵 抗回路の抵抗比によって増幅率を定める反転増幅回路、又は、非反転増幅回路を 備える。入力抵抗回路と帰還抵抗回路の少なくとも一方は、参照信号の変動、又は、 駆動回路の駆動信号の変動によって抵抗値を可変とする可変抵抗回路を、入力抵 抗回路と帰還抵抗回路の少なくとも一方が有する抵抗素子に形成する。可変抵抗回 路の抵抗値を可変とすることによって、入力抵抗回路と帰還抵抗回路の抵抗比を変 えて増幅率を調整する。
[0034] 本発明の物理用センサの第 3の形態は、参照信号や駆動信号の電圧を電流に変 換し、この電流によって抵抗値を変える形態であり、増幅回路は、参照信号の電圧、 又は、駆動回路の駆動信号の電圧を電流に変換する電圧電流変換器を備える。可 変抵抗回路は、この電圧電流変換器で変換して得られた電流により抵抗値を変える
[0035] 本発明の物理用センサは、増幅回路の出力信号の出力レベルを参照信号の変動 に対して一定に制御することができる。この参照信号が変動する要因は、参照信号 の温度変化、参照信号を形成する参照信号形成回路に供給する電源電圧の電圧変 動、あるいは、参照信号形成回路の経年変化による出力信号レベルの変動等がある 1S 本発明の物理用センサは、これら各要因の何れに対しても対応することができる
発明の効果
[0036] 本発明によれば、物理量センサにおいて、参照信号の信号レベル変動に対するセ ンサ出力の出力レベル変動を低減し、出力感度を一定とすることができる。
図面の簡単な説明
[0037] [図 1]本発明の物理用センサの概略構成を説明するための概略ブロック図である。
[図 2]本発明の物理用センサの概略構成を説明するための概略ブロック図である。
[図 3]本発明の物理用センサが備える増幅回路の構成例を説明するための図である 園 4]本発明の物理用センサが備える増幅回路の構成例を説明するための図である 園 5]電圧/周波数変換によって抵抗値を変える本発明の物理用センサの第 1の形 態を説明するための概略構成図である。
[図 6]増幅回路が備える増幅率の逆特性によって、参照信号の変動を相殺して低減 する動作を説明するための概略図である。
園 7]本発明の物理用センサの第 1の形態において、参照信号の耐変動性とレシオメ トリック特性を備える構成例を説明するための概略図である。
園 8]本発明の物理用センサの第 1の形態において、参照信号の耐変動性とレシオメ トリック特性を備える構成例を説明するための概略図である。
[図 9]本発明の物理用センサの第 1の形態を説明するための構成図である。
[図 10]電源電圧と中間電圧との関係を説明するための図である。
園 11]本発明の物理用センサの第 1の形態において、参照信号の信号レベル変動 に対するセンサ出力の出力レベル変動を低減する構成例を説明するための図であ 園 12]本発明の参照信号の信号レベル変動に対するセンサ出力の出力レベル変動 を低減する構成例を説明するための図である。
園 13]本発明の物理用センサの第 1の形態において、参照信号の信号レベル変動 および電源電圧変動に対するセンサ出力の出力レベル変動を低減する構成例を説 明するための図である。
[図 14]演算増幅器 (オペアンプ)の帰還抵抗の可変抵抗回路を参照信号と電源電圧 とで可変とする本発明の物理用センサの第 2の形態を説明するための図である。 園 15]参照信号が増減する方向とスィッチによって選択される増幅率が増減する方 向との関係を説明するための図である。
[図 16]参照信号や駆動信号の電圧を電流に変換して抵抗値を変える本発明の物理 用センサの第 3を説明するための図である。
[図 17]レシオメトリックの概略構成を説明するための図である。
[図 18]物理量センサの一構成例を説明するための図である。 符号の説明
1 物理用センサ
2 電圧電源
3 センサ素子
3A 駆動部
3B 検出部
4 駆動回路
4A 検流回路
4B 自動利得調整回路 (AGC回路) 4C 利得可変増幅回路
5 増幅回路
6 変換部
6A 第 1周波数変換部
6B 第 2周波数変換部
6a, 6b 周波数変換器
7, 7A, 7B 信号増幅部
7a スィッチ
7b, 7c コンデンサ
8 検波回路
9 参照信号
9A 参照電圧生成部
9B 中点生成部
10, 10a, 10b, 10c, 10d 可変抵抗回路 11 入力抵抗
12, 13, 14 抵抗
15 帰還抵抗
16 可変抵抗回路
21 演算増幅器 (オペアンプ) 31 演算増幅器
32 OTA
33 電圧/電流変換回路
41 , 42 分圧抵抗
51 , 52 比較回路
53 セレクタ
61 周波数変換部
62 電圧/抵抗変換部
63 電圧/電流変換部
71 能動回路
72 抵抗回路
73 可変抵抗回路
74 入力抵抗回路、帰還抵抗回路
75 演算増幅器
101 物理用センサ
102 電圧電源
103 センサ素子
104 駆動回路
105 増幅回路
107 信号増幅部
109 参照信号
110 センサ
120 A/D変換器
発明を実施するための最良の形態
[0039] 以下、本発明の物理用センサについて図を用いて詳細に説明する。
[0040] 図 1、 2を用いて本発明の物理用センサの概略構成を説明し、図 3、 4を用いて本発 明の物理用センサが備え増幅回路の概略構成を説明する。
[0041] また、参照信号や駆動信号の電圧を周波数に変換し、この周波数によって抵抗値 を変える第 1の形態について図 5〜図 13を用いて説明し、参照信号や駆動信号の電 圧に応じて抵抗値を選択して切り替える第 2の形態について図 14, 15を用いて説明 し、参照信号や駆動信号の電圧を電流に変換し、この電流によって抵抗値を変える 第 3の形態について図 16を用いて説明する。
[0042] なお、図 9〜図 12は、本発明の物理用センサの、参照信号の信号レベル変動に対 するセンサ出力の出力レベル変動を低減する詳細な構成を説明し、図 13〜図 15は 、本発明の物理用センサにおいて、参照信号の変動に対して出力信号レベルを安 定させる構成と、レシオメトリック特性を実現する構成の両構成を備える例である。
[0043] 図 1 , 2は本発明の物理用センサの概略構成を説明するための概略ブロック図であ る。図 1に示す構成例は、本発明の物理用センサにおいて、参照信号の信号レベル の変動に対してセンサ出力の出力レベルの変動を低減する構成例であり、図 2に示 す構成例は、本発明の物理用センサにおいて、参照信号の信号レベルの変動に対 するセンサ出力の出力レベル変動を抑制するという参照信号の耐変動性を備えると 共に、レシオメトリック特性を備える構成例である。
[0044] 図 1 , 2において、物理用センサ 1は、参照信号 (Vref( c )を生成する参照信号生 成回路 9と、参照信号 (Vref( α ) )に基づいて駆動する駆動回路 4と、この駆動回路 4 によって駆動されることで外部から印加された物理量を電気信号に変換するセンサ 素子 3と、このセンサ素子 3の出力信号を増幅するとともに参照信号 (Vref( α ) )に基 づいて増幅率を変更して、参照信号 (Vref( α ) )の変動に応じた出力信号を出力す る増幅回路 5を備える。
[0045] 駆動回路 4は、電圧電源 2と独立して形成される参照信号 (Vref( α ) )に基づいて、 センサ素子 3の駆動信号が一定レベルとなるように制御する。なお、図 1 , 2では、駆 動信号を a 'Vref( a )で表している。ここで、 "a"は駆動回路 4において、駆動信号と 参照信号 (Vrei ) )との関係を表す係数である。なお、参照信号 (Vref( c )は、温 度変動や電源電圧変動あるいは参照信号を形成する参照信号形成手段の経年変 化等によって変動するため、 " α "を変動パラメータとしたとき、参照信号 Vrefは Vref( α )で表すことができるため、ここでは参照信号を Vref ( α )で表している。
[0046] センサ素子 3は、駆動回路 4からの駆動信号 a 'Vref ( a )によって駆動され、外力に 応じた出力信号を出力する。なお、ここで、外力によるセンサ素子 3の出力信号の振 幅の寄与ファクターを" S"で表したとき、センサ素子 3が出力する出力信号は S'a'Vr ef(a)で表すことができる。
[0047] 増幅回路 5は、センサ素子 3から入力した信号(S'a'Vref(c )を信号増幅した出 力信号を出力する。この増幅回路 5は、増幅率を" A"としたとき、入力した S'a'Vref ( α )を A倍した A'S'a'Vref ( α )の出力信号を出力する。
[0048] ここで、増幅率 Αを、変動パラメータ" a "で変動する参照信号 Vref( a )の変動に基 づいて変更することによって、出力信号の信号レベルを参照信号 Vref(c の変動に かかわらず一定とすることができる。
[0049] このために、増幅回路 5は、その増幅率 Aを参照信号 Vref( a )の変動特性と逆特 性となるように変更することで、出力信号の信号レベルを参照信号 Vref( a )の変動 にかかわらず一定とする。
[0050] ここで、増幅回路 5の増幅率 Aを参照信号 Vref( a )の変動特性と逆特性となるよう に変更することによって、参照信号が変動してセンサ素子 3の出力信号に変動が生 じた場合であってもこの変動を相殺し、出力信号から参照信号 Vref ( a )の変動特性 を除くことができる。
[0051] この逆特性を Vref— α)と表した場合には、増幅回路 5の増幅率 Aは A - Vre '(α ο
)と表される。ここで、 Vref ( a )と Vref— 1 ( a )との間の関係は、 Vref ( a ) .Vref—1 (α) = 1と表すことができるため、増幅回路 5の出力信号 A'S'a'Vref(a)は、
A-S-a-Vref(a)
=A -Vref '(α) -S-a-Vref(a)
ο
=Α -S-a
ο
と表すことができ、参照信号 Vref )に依存しない信号とすることができる。なお、 Aは、設定した増幅率である。
0
[0052] 図 2において、増幅回路 5は電源電圧 Vddを入力し、増幅率を電源電圧 Vddの増 減と比例するようにする調整し、出力信号にレシオメトリック特性を持たせる。これによ つて、物理量センサの検出感度を、電源電圧の変化に比例して変化させることができ [0053] 本発明の物理用センサが備える増幅回路の構成例について、図 3,図 4を用いて 説明する。
[0054] 図 3 (a)、 (b)において、増幅回路 5は、増幅率を増減可能とする信号増幅部 7を備 える。信号増幅回路 7は、能動回路 71と複数の抵抗素子を有する抵抗回路 72とから 構成し、抵抗素子の抵抗比によって増幅率を定める。抵抗回路 72が備える抵抗素子 の少なくとも一つには可変抵抗回路 73が形成される。この可変抵抗回路 73は、参照 信号又は駆動信号に応じて抵抗値を変更する。
[0055] 信号増幅回路 7は、抵抗回路 72と能動回路 71とによる増幅路動作において、抵抗 回路 72中の可変抵抗回路 73の抵抗値を変化させることによって増幅率を増減させる ことができる。この可変抵抗回路 73の抵抗値を、参照信号又は駆動信号に応じて変 えることによって、増幅率を参照信号又は駆動信号に応じて増減させることができる。 可変抵抗回路 73の抵抗値の増減は、変換部 6によって参照信号又は駆動信号の電 圧から変換されたパラメータに基づいて行う。なお、図 3 (b)は可変抵抗回路 7cの抵 抗値を、電源電圧に増減に比例させて増減させる場合の構成を示している。
[0056] この構成によれば、参照信号の信号レベルの変動に対するセンサ出力の出カレべ ル変動を低減するという参照信号の耐変動性を備えと共に、レシオメトリック特性を備 えること力 Sできる。
[0057] 図 3 (c)において、信号増幅部 7は、能動回路 71を演算増幅器とし、可変抵抗回路 73を入力抵抗回路と帰還抵抗回路として、演算増幅器に入力抵抗回路と帰還抵抗 回路を接続してなる反転増幅回路、又は、非反転増幅回路によって構成することが できる。信号増幅回路 7の増幅率は、入力抵抗回路と帰還抵抗回路の抵抗比によつ て定めること力 Sできる。入力抵抗回路と帰還抵抗回路の少なくとも一方が有する抵抗 素子には、参照信号の変動、又は、駆動回路の駆動信号の変動によって抵抗値を 可変とする可変抵抗回路を形成する。
[0058] 図 4は変換回路の各形態を説明するための図である。図 4 (a)〜図 4 (c)は、参照信 号又は駆動信号の電圧をそれぞれ周波数、抵抗、および電流の各パラメータに変換 する形態を示している。
[0059] 図 4 (a)に示す形態では、変換部 6として周波数変換部 61を用いて、参照信号又は 駆動信号の電圧を周波数のパラメータに変換し、周波数によって可変抵抗回路 73の 抵抗値を増減させる。図 4(b)に示す形態では、変換部 6として電圧/抵抗変換部 62 を用いて、参照信号又は駆動信号の電圧を抵抗のパラメータに変換し、抵抗によつ て可変抵抗回路 73の抵抗値を増減させる。また、図 4(c)に示す形態では、変換部 6 として電圧/電流変換部 63を用いて、参照信号又は駆動信号の電圧を電流のパラメ ータに変換し、電流によって可変抵抗回路 73の抵抗値を増減させる。
[0060] 以下、図 4 (a)に示した形態の動作について、図 5〜図 8を用いて説明する。図 5に 示す構成例は、本発明の物理用センサにおいて、参照信号の信号レベルの変動に 対してセンサ出力の出力レベルの変動を低減する構成例である。一方、図 7, 8に示 す構成例は、本発明の物理用センサにおいて、参照信号の信号レベルの変動に対 するセンサ出力の出力レベル変動の低減する参照信号の耐変動性とともに、レシオ メトリック特性を備える構成例である。
[0061] 図 5に示す構成例は、図 1に示した構成例において、周波数変換部 61と信号増幅 部 7によって増幅回路 5を構成する例であり、増幅回路 5の構成についてのみ図 1と 相違するため、ここでは増幅回路 5の構成のみを説明し、共通する部分の説明は省 略する。
[0062] 駆動回路 4は、電圧電源 2と独立して参照信号生成回路 9で形成される参照信号( Vref( α ))に基づいて、センサ素子 3の駆動信号が一定レベルとなるように制御する
[0063] センサ素子 3は、駆動回路 4からの駆動信号 a'Vref( a )によって駆動され、外力に 応じた出力信号 S'a'Vre c を出力する。なお、ここで、 "a"は駆動信号と参照信 号との関係を表す係数であり、 "S"は外力によるセンサ素子 3の出力信号の振幅の 寄与ファクターである。
[0064] 増幅回路 5が備える周波数変換部 6は、センサ素子 3の出力信号 S'a'Vref (α)と 参照信号 Vref ( α )又は駆動信号 a' Vref ( a )の電圧を入力して周波数に変換する。
[0065] 周波数変換部 61は、可変抵抗回路の抵抗比を変更して増幅率" A"を変え、入力し た3'& ^^(«)を八倍して出カ信号八'3'&^^^(«)を出カする。
[0066] 増幅率 Aを、変動パラメータ" a "で変動する参照信号 Vref ( a )の変動に基づ!/、て 調整することによって、出力信号の信号レベルを参照信号 Vref( a )の変動にかかわ らず一定とする。このために、増幅回路 7は、その増幅率 Aを参照信号 Vref( α )の変 動特性と逆特性となるように調整することで、出力信号の信号レベルを参照信号 Vref ( a )の変動にかかわらず一定とする。
[0067] 図 6は、増幅回路が備える増幅率の逆特性によって、参照信号の変動を相殺して 低減する動作を説明するための概略図である。
[0068] 図 6 (a)〜(c)は、参照信号の変動に対して、増幅回路の増幅率が変化しない場合 を示している。一方、図 6 (c!)〜(f)は、増幅回路が逆特性の増幅率を備えている場 合を示している。図 6 (a) ,図 6 (d)は、変動パラメータ αに対する参照信号 Vref ) の特性を示し、図 6 (b) ,図 6 (e)は、変動パラメータ αに対する増幅率を示し、図 6 (c ) ,図 6 (f)は、変動パラメータ αに対する出力信号を示している。
[0069] 参照信号の変動に対して、増幅回路の増幅率が変化しない場合には(図 6 (b) )、 参照信号 Vref ( a )の変動が出力信号に反映されるため、変動パラメータ αに応じて 参照信号 Vref( a )が変動すると(図 6 (a) )、出力信号は参照信号 Vref ( a )の変動に 応じて変動する(図 6 (c) )。
[0070] 一方、増幅回路の増幅率を参照信号の変動に対して変化させた場合には(図 6 (e) )、参照信号 Vref( α )の変動が増幅率の変動によって相殺され(図 6 (f) )、変動パラ メータ αに応じて参照信号 Vref ( a )が変動しても、この参照信号 Vref ( a )の変動に かかわらず、出力信号は不変である(図 6 (f) )。例えば、参照信号 Vref )が、変動 パラメータ αに対して(a a + b)で表される場合(図 6 (d) )には、増幅率 Aを AO/ (a a + b)のように参照信号 Vref( c の変動に対して逆比例させて変化させると、出力 信号は、参照信号 Vref( a )の変動にかかわらず増幅率 AOで増幅され、変動パラメ ータ αによる影響を除くことができる。
[0071] 増幅回路 5は、信号増幅部 7の増幅率 Αを参照信号 Vref ( α )あるいは駆動信号 Vref )に応じて変更させるために、例えば、周波数変換部 61を用いて、参照信号 Vref ( α )あるいは駆動信号 a 'Vref ( α )を周波数信号に変換する。信号増幅回路 7 は、この周波数変換部 61の変換によって得られた周波数信号を用いて、能動回路に 接続された可変抵抗回路の抵抗値を変えることで増幅率を変更する。この周波数信 号を用いて増幅率を変更する回路構成は、図 11 , 12の回路例を用いて後述する。
[0072] 図 7, 8に示す構成例は、本発明の物理用センサにおいて、前記図 5で示した参照 信号の信号レベルの変動に対してセンサ出力の出力レベル変動を低減する構成に 加えて、増幅回路の増幅率を電源電圧の変動に比例して可変としてレシオメトリック 特性を実現する構成例である。なお、ここでは、図 5と共通する構成については説明 を省略する。
[0073] 図 7, 8において、物理用センサ 1は、図 5で示した構成と同様に、センサ素子 3、駆 動回路 4、増幅回路 5、および参照信号生成回路 9を備えた構成とすることができる。 この増幅回路 5は、参照信号 Vref ( α )の変動と逆特性の増幅率で信号増幅すること によって、参照信号の信号レベルの変動に対するセンサ出力の出力レベル変動を 低減する構成と、電源電圧 Vddの変動と同じ方向の特性を有する増幅率で信号増幅 することによって、電源電圧の変動に対するセンサ出力の出力レベル変動を低減す る構成との二つの構成を備える。
[0074] 図 7に示す構成では、増幅回路 5は、増幅回路の増幅率 Aを参照信号 Vref ( α )あ るいは駆動信号 a 'Vref ( α )に応じて逆特性で変更させるための構成として、例えば 、第 1の信号増幅部 7Αに加えて、参照信号 Vref ( α )あるいは駆動信号 a 'Vref ( α ) を周波数信号に変換する第 1周波数変換部 6Αを備える。第 1信号増幅部 7Αは、こ の第 1周波数変換部 6Αの変換で得られた周波数信号を用いて、能動回路に接続さ れた可変抵抗回路の抵抗値を変え、これによつて増幅率を変更する。また、第 1周波 数変換部 6Αには電源電圧 Vddも入力し、この第 1周波数変換部 6Αによって変換さ れた周波数信号を用いて、能動回路に接続された可変抵抗回路の抵抗値を変える ことで電源電圧 Vddに比例して増幅率を変更する。
[0075] 図 8に示す構成では、増幅回路 5は、増幅回路の増幅率 Aを電源電圧 Vddに応じ て同じ増減特性で変更させるための構成として、例えば、第 2の信号増幅部 7Bと、電 源電圧 Vddを周波数信号に変換する第 2の周波数変換部 6Bを備える。第 2の信号 増幅部 7Bは、この第 2の周波数変換部 6Bの変換によって得られた周波数信号を用 V、て、能動回路に接続された可変抵抗回路の抵抗値を変えることで電源電圧 Vddに 比例して増幅率を変更する。 [0076] また、第 1の増幅回路 7Aと第 2の増幅回路 7Bとを組み合わせて一つの増幅回路と する構成とすることもできる。この一つの増幅回路によって、上記した参照信号あるい は駆動信号の変動に基づいて増幅率を変更する機能、および、電源電圧の変動に 基づいて増幅率を変更する機能の 2つの機能を実現する構成例については図 13〜 図 16を用いて後述する。
[0077] 次に、図 9〜図 12を用いて、本発明の物理用センサの、参照信号の信号レベル変 動に対するセンサ出力の出力レベル変動を低減する詳細な構成例について説明す
[0078] 図 9は本発明の物理用センサの構成例を説明するためのブロック図であり、前記し た図 5の構成をより詳細に説明するものである。なお、センサ素子 3、駆動回路 4、増 幅回路 5、および参照信号生成回路 9の全体構成については図 5で説明しているた め、ここでの説明は省略し、各回路の構成例について説明する。
[0079] センサ素子 3は、例えば、水晶振動子等の圧電振動子により構成することができ、 圧電振動子を励振振動させる駆動部 3Aと、外力を反映して振動状態が変化する検 出部 3Bを備える構成とすることができる。圧電振動子が、例えば、複数の脚部を有す る音叉型圧電振動子の構成であるときには、駆動部 3Aは駆動脚およびその駆動脚 に設けた駆動電極により構成し、駆動回路 4から供給される駆動信号によって励振す ることで発振振動する。
[0080] 一方、検出部 3Bは検出脚およびその検出脚に設けた検出電極により構成する。検 出脚は、例えば、印加された外力により生じるコリオリカで振動状態が変化し、検出 電極は、この振動状態を検出信号として検出し、検波回路 8を介して増幅回路 5に出 力する。
[0081] 駆動回路 4は、センサ素子 3の駆動部 3Aを励振駆動させるための駆動信号を形成 する回路であり、駆動部 3Aからの信号をフィードバックして位相および振幅を調整す ることによって、所定周波数の駆動信号を形成する。なお、図 9では、駆動信号の電 流値が一定に制御する定電流制御の例を示している。
[0082] 検流回路 4Aは、駆動部 3Aの一方の電極から検出した信号の電流を検波し、 自動 利得調整回路 (AGC回路) 4Bによってこの検出信号の電流値を一定とする制御信 号を形成し、この制御信号によって利得可変増幅回路 4Cの利得を調整する。ここで 、 自動利得調整回路 (AGC回路) 4Bは、例えば、検流回路 4Aの出力信号の実効値 を求める実効値回路 4Baと、実効値回路 4Baの出力と参照信号 Vrefとの差分を求め 、この差分を設定値と比較する比較回路 4Bbとによって構成することができ、これによ つて、駆動信号の電流値と参照信号とを比較し、参照信号を基準信号として駆動信 号の電流値が一定となるように、利得可変増幅回路 4Cの利得を調整する。
[0083] ここで、参照信号 (Vref( α ) )は、中点生成部 9Βおよび参照電圧生成部 9Αによつ て構成すること力できる。なお、中点生成部 9Βおよび参照電圧生成部 9Αは電圧電 源 2から電圧供給を受ける。中点生成部 9Βは、例えば、電圧電源 2の電圧 Vddと Vss の中点から Vmを生成する。 Vssをグラウンド電圧とした場合には、中点電圧 Vmは、 V dd/2となる。図 10はこの電圧関係を示している。
[0084] 参照電圧生成部 9Aは、中点生成部 9Bで生成した中点電圧 Vmを用いて、電源電 圧 Vddに依存しない電圧を生成する。なお、参照電圧生成部 9Aは、駆動回路 4が形 成する駆動信号の電流を一定とするための基準信号として参照信号を生成するが、 実際の回路構成では、参照信号の信号レベルは温度や電源電圧や経年変化等に 依存して変動する。そして、この参照信号の信号レベルの変動は、駆動信号の信号 レベルを変動させ、センサ素子 3、信号増幅部 7を介して出力される出力信号の信号 レベルを変動させる要因となる。本発明は、この基準信号であるべき参照信号の変 動によって生じる出力信号の変動を低減する。
[0085] 本発明の増幅回路 5が備える、増幅率を可変とする信号増幅部 7は、増幅回路を 構成する能動回路に接続される複数の抵抗素子の少なくとも一つを可変抵抗回路 によって構成し、この可変抵抗回路の抵抗値を可変とすることによって、増幅回路の 増幅率を変更する。
[0086] 以下、参照信号の信号レベル変動に対するセンサ出力の出力レベル変動を低減 する詳細な構成について、図 11、図 12に示す回路構成を用いて説明する。
[0087] なお、図 11 (a)は反転増幅回路の例であり、図 11 (b)は非反転増幅回路の例であ る。なお、反転増幅回路および非反転増幅回路は、符号は逆であるが、増幅率の大 きさは演算増幅器 (オペアンプ)に接続される入力抵抗 Rsと帰還抵抗 Rfによって定ま るため、以下では、主に図 11 (a)の反転増幅回路の例に基づいて説明する。
[0088] 図 11 (a)において、増幅回路 5は、参照信号 Vrefの電圧を周波数に変換する周波 数変換器 (リニア VCO) 6aと、演算増幅器 (オペアンプ) 21の入力抵抗 11と帰還抵 抗 10を接続してなる増幅回路 7を備える。
[0089] ここで、信号増幅部 7の増幅率は(一 Rf/Rs)で定まるため、帰還抵抗 10を可変抵 抗回路 10aで形成し、この可変抵抗回路 10aの抵抗値を周波数変換器 (リニア VCO ) 6aで周波数に変換器した参照信号 Vrere変えることによって、増幅率の増減の方 向と参照信号 Vrefの変動の方向とを逆方向に調整することができる。例えば、参照信 号 Vre S増加した場合には、可変抵抗回路 10aの抵抗値を減少させることで、信号 増幅部 7の増幅率を下げ、逆に、参照信号 Vrei¾S減少した場合には、可変抵抗回路 10aの抵抗値を増加させることで、信号増幅部 7の増幅率を上げる。
[0090] この参照信号と周波数信号と可変抵抗回路との抵抗値と増幅率との関係は、参照 信号と周波数信号とは正の増加特性の関係にあり、周波数変信号と抵抗値とは負の 増加特性の関係にあり、抵抗値と増幅率とは正の増加特性の関係にある。そのため 、参照信号と増幅率とは負の増加特性の関係にとなり、参照信号が増加した場合に は増幅率は減少し、参照信号が減少した場合には増幅率は増加する。したがって、 増幅回路の増幅率を参照信号と逆特性とすることができる。
[0091] この可変抵抗回路の抵抗値の増減特性は、例えば、コンデンサの接続状態を切り 替えることで電荷の移動を行う、いわゆるスィッチトキャパシタ回路を帰還段に備える 構成で実現することができる。このスィッチトキャパシタ回路は、パルス変調信号に基 づレ、て増幅率を可変とする。
[0092] 図 11 (a)に示す増幅回路 7は、演算増幅器 (オペアンプ) 21を有する反転増幅回 路の構成であり、演算増幅器 (オペアンプ) 21の出力端と入力端 (反転入力端子)と の間に、可変抵抗回路 10aを形成するスィッチトキャパシタ回路とフィルタコンデンサ 7cの並列接続を帰還抵抗として接続し、演算増幅器 (オペアンプ) 21の反転入力端 子に入力抵抗 11を接続する。ここで、スィッチトキャパシタ回路は、 2接点を備えたス イッチ 7aとコンデンサ 7bによって構成される。
[0093] スィッチ 7aは MOS素子による伝達ゲート(トランスミッションゲート)で構成でき、スィ ツチ 7aの接点状態は周波数変換器 6aの周波数信号に応じて切り替わるよう構成す る。つまり、周波数信号に応じてコンデンサの接続状態が切り換わる。なお、スィッチ 7aは、コンデンサ 7b, 7cや入力抵抗 11と同様に、半導体プロセスで製造可能であり 、同一の半導体チップ上に構成することができる。これによつて、各素子の温度特性 を合わせることができる。
[0094] コンデンサ 7bの一端は中点電圧 Vmに接続し他端をスィッチ 7aの固定接点へ接続 する。スィッチ 7aはフィルタコンデンサ 7cとともに演算増幅器 (オペアンプ) 21の反転 入力端子と出力端子との間に接続する。演算増幅器 (オペアンプ) 21の非反転入力 端子は中点電圧 Vmに接続する。
[0095] スィッチトキャパシタ回路は、スィッチ 7aとコンデンサ 7bで構成され、スィッチ 7aの 接点が反転入力端子側へ導通する状態では、コンデンサ 7bは検波出力の電圧を蓄 積し、次に、スィッチ 7aが出力端子側へ導通する状態となると、コンデンサ 7bに蓄え た電荷は放電される。
[0096] このように、周波数変換器 6aの周波数信号に応じて、スィッチ 7aを反転入力端側と 信号端側とで切り換えることでコンデンサ 7bの接続状態を切り換える。
スィッチ 7aが上記の切り替え動作を高速に行うことで、スィッチトキャパシタ回路は、 抵抗値力 ¾e = l/ (f ' Cs)で表現できる抵抗素子と等価の動作をする。なお、ここで 、 fはスィッチ 7aの平均切り替え周波数、 Csはコンデンサ 7bの容量である。
[0097] スィッチトキャパシタ回路は抵抗素子と等価であり可変抵抗回路を形成することから 、信号増幅部 7は、反転増幅回路を応用した 1次のローパスフィルタ(不完全積分回 路)として動作し、信号増幅部 7の増幅率は、帰還抵抗と入力抵抗の比で定まる。し たがって、上記した構成において、帰還抵抗をスィッチトキャパシタ回路で構成し、こ のスィッチトキャパシタ回路の等価抵抗を参照信号 Vrefの周波数によって変えること によって、増幅回路の増幅率を参照信号の変動特性と逆方向に可変とすることがで きる。
[0098] なお、スィッチトキャパシタ回路を用いた信号増幅部 7は、コンデンサに、容量の電 圧依存性のないコンデンサを用いることで、高いリニアリティを得ることができる。半導 体チップ上でこのような特性のコンデンサを実現するには、例えば一般的な 2層ポリ シリコンプロセスにより、電極をポリシリコン化したコンデンサを構成すればよい。なお 、図 11 (b)の非反転増幅回路においても同様であるため、ここでの説明は省略する。
[0099] 図 11に示した信号増幅部は演算増幅器 (オペアンプ)を用いた構成である力 増 幅回路を構成する能動回路は演算増幅器 (オペアンプ)に限らず他の素子を用いて もよい。図 12は、能動回路としてバイポーラトランジスタや FETを用いた構成例であ る。図 127 (a)は、バイポーラトランジスタのェミッタ接地の例である。図 12 (a)に示す 構成では、増幅率は(一 R2/R1)で表される。また、図 12 (b)の FETによる構成にお いても、増幅率は(一 R2/R1)で表される。
[0100] そこで、抵抗 R2を可変抵抗回路で形成し、この可変抵抗回路の抵抗値を、参照信 号を周波数変換した周波数信号で調整することで、図 11で示した例と同様に、参照 信号の増減特性と増幅回路の増幅率の増減特性を逆方向として、参照信号の信号 レベル変動に対するセンサ出力の出力レベル変動を低減することができる。
[0101] 図 13 (a)は、前記図 11 (a)で示した参照信号の変動に対して出力信号レベルを安 定させる構成と、レシオメトリック特性を実現する構成を組み合わせた構成例である。 この構成例では、演算増幅器 (オペアンプ) 21の帰還抵抗として可変抵抗回路 10c を形成し、また、入力抵抗として可変抵抗回路 lOdを形成する。可変抵抗回路 10cは 、参照信号 Vrefの電圧を周波数変換器 6aで変換した周波数信号によって抵抗値を 調整し、一方、可変抵抗回路 10dは、電源電圧 Vddの電圧を周波数変換機 6bで変 換した周波数信号によって抵抗値を調整する。
[0102] 参照信号の変動に対して出力信号レベルを安定させる構成は可変抵抗回路 10c で構成され、前記図 11 (a)で説明したと同様の動作によって、参照信号の変動に対 して出力信号レベルを安定させる。入力抵抗側の可変抵抗回路 10dは帰還抵抗側 の可変抵抗回路 10cと同様にスィッチトキャパシタ回路で構成することができる。
[0103] 可変抵抗回路 10dのスィッチは MOS素子による伝達ゲート(トランスミッションゲー ト)で構成でき、スィッチの接点状態は周波数変換器 6bの周波数信号に応じて切り 替わるよう構成する。つまり、周波数信号に応じてコンデンサの接続状態が切り換わ る。なお、スィッチおよびコンデンサは半導体プロセスで製造可能であり、同一の半 導体チップ上に構成することができる。 [0104] 可変抵抗回路 lOdのコンデンサの一端は中点電圧 Vmに接続し、他端をスィッチ の固定接点へ接続する。また、スィッチの一方の接点は増幅回路の入力端子であり 、検出信号が入力する。スィッチの他方の接点は演算増幅器 (オペアンプ) 21の反 転入力端子に接続する。
[0105] スィッチの接点が検出信号側へ導通する状態では、コンデンサが検出信号の電圧 を蓄える。次にスィッチが演算増幅器 (オペアンプ) 21側へ導通する状態となるとコン デンサの蓄えた電荷は演算増幅器 (オペアンプ) 21によってフィルタコンデンサへ放 電される。
[0106] このように、周波数変換器 6bで生成した周波数信号に応じて、可変抵抗回路 10d のスィッチを検出信号側と演算増幅器 (オペアンプ) 21側との間で切り換えることで、 コンデンサの接続状態を切り換えることになる。
[0107] スィッチが上記の切り替え動作を高速に行うことで、スィッチトキャパシタ回路 10dは 、スィッチの平均切り替え周波数 fとコンデンサ容量 Cの積の逆数で表現される抵抗 素子と等価の動作をする。ここで、周波数変換器 6bは、電源電圧 Vddの電圧に応じ た周波数信号 fを出力するため、可変抵抗回路 10dの抵抗値は電源電圧 Vddと逆比 例することになる。演算増幅器 (オペアンプ) 21の増幅率は、(帰還抵抗/入力抵抗 )に比例するため、結局、増幅率は電源電圧 Vddに比例することになる。
[0108] なお、図 13 (b)の非反転増幅回路は、図 13 (b)の非反転増幅回路の負入力に接 続される抵抗値に変えて可変抵抗回路 10eを接続することで構成することができる。 この可変抵抗回路 10eは、周波数変換器 6bの周波数変換出力によって抵抗値を電 源電圧 Vddと逆方向に変化させる。
[0109] 可変抵抗回路 10bについては、図 11 (b)と同様に、周波数変換器 6aの周波数変 換出力によって抵抗値を参照信号の電圧 Vrefに応じて抵抗値を変更する。
[0110] 次に、参照信号や駆動信号の電圧に応じて抵抗値を選択して切り替える第 2の形 態について、図 14, 15を用いて説明する。
[0111] 図 14は、演算増幅器 (オペアンプ)の帰還抵抗を可変抵抗回路で形成し、この可 変抵抗回路の抵抗値を、参照信号 Vrefの分圧と電源電圧 Vddとを比較回路で比較 して得られる選択信号によって選択することによって可変とする構成例である。図 14 では、説明を容易とするため、簡略化して示している。
[0112] この簡易構成では、参照信号 Vrei^分圧抵抗 42で分圧して段階的な分圧電圧 VI 、 V2を形成し、この分圧電圧 VI、 V2を比較回路 51、 52の一方の入力端に入力する 。また、この比較回路 51、 52の他方の入力端には、電源電圧 Vddの分圧電圧 V0を 入力する。
[0113] また、増幅回路を構成する演算増幅器 (オペアンプ) 21の帰還抵抗 16を可変抵抗 回路で形成し、この可変抵抗回路の抵抗値を、前記した比較回路 51、 52の比較結 果に基づいて選択する。
[0114] セレクタ 53は、比較回路 51 , 52の比較結果に基づいて、スィッチ SI , S2, S3を排 他的に導通制御する。スィッチ S 1は V0<V1 <V2のときに選択され、スィッチ S2は V1 <V0<V2のときに選択され、スィッチ S3は VI <V2<V0のときに選択される。
[0115] スィッチ S 1が導通するときは帰還抵抗 16の値は小となり、増幅回路の増幅率も小と なる。スィッチ S2が導通するときは帰還抵抗 16の値は中となり、増幅回路の増幅率も 中となる。また、スィッチ S3が導通するときは帰還抵抗 16の値は大となり、増幅回路 の増幅率も大となる。
[0116] 次に、参照信号が増減する方向と、スィッチによって選択される増幅率が増減する 方向との関係について、図 15を用いて説明する。
[0117] 図 15 (a)は、参照信号 Vrefと、この参照信号 Vrei^分圧した分圧電圧 V1〜V2の 関係、および比較回路で比較する電源電圧 Vddとの関係を示し、特に参照電圧 Vref が変動した状態の VI、 V2を示している。なお、比較回路で比較する電圧は電源電 圧 Vddを分圧した分圧電圧 VOを用いる。
[0118] 比較回路 51、 52は、分圧電圧 VI、 V2を、電源電圧 Vddをしきい値として比較を行 う。ここで、例えば、参照信号 Vref ^変動して小となった場合について説明する。参 照信号 Vref¾S小に変動すると、その分圧電圧 VI、 V2 (V1 <V2)も小さくなり、大き い方の分圧電圧 V2が V2く VOとなる範囲では、セレクタ 53はスィッチ S3を選択し、 帰還抵抗としては大の値を選択する。この結果、増幅回路の増幅率は大となる。
[0119] 参照信号 Vrei¾S変動して小の状態よりも大きい場合について説明する。参照信号 Vre S変動して中の状態にあり、その分圧電圧 VIが VOよりも大きぐ分圧電圧 V2が VOよりも小さい、 V1 <V0 <V2となる範囲では、セレクタ 53はスィッチ S2を選択し、 帰還抵抗としては中の値を選択する。この結果、増幅回路の増幅率は中となる。
[0120] 参照信号 Vref ^変動して大となった場合について説明する。参照信号 Vref ^大に 変動すると、その分圧電圧 VI、 V2 (V1 <V2)も大きくなり、小さい方の分圧電圧 VI 力 SVOく VIとなる範囲では、セレクタ 53はスィッチ S 1を選択し、帰還抵抗としては小 の値を選択する。この結果、増幅回路の増幅率は小となる。
[0121] したがって、参照信号の変動の増減と増幅率の増減とは逆方向に変動することに なる。
[0122] 次に、電源電圧が増減する方向と、スィッチによって選択される増幅率が増減する 方向との関係について、図 15 (b)を用いて説明する。
[0123] 図 15 (b)は、参照信号 Vrefと、この参照信号 Vrei¾分圧した分圧電圧 V1〜V2の 関係、および比較回路で比較する電源電圧 Vddとの関係を示し、特に電源電圧 Vdd が変動した状態の VOを示して!/、る。
[0124] 比較回路 51、 52は、分圧電圧 VI、 V2を、電源電圧 Vddをしきい値として比較を行 う。電源電圧 Vddが低で、 VOく VIとなる範囲では、セレクタ 53はスィッチ S1を選択 し、増幅回路の増幅率は小となる。電源電圧 Vddが中で、 V1 <V0 <V2となる範囲 では、セレクタ 53はスィッチ S2を選択し、増幅回路の増幅率は中となる。電源電圧 V ddが高で、 V2く VOとなる範囲では、セレクタ 53はスィッチ S3を選択し、増幅回路の 増幅率は大となる。
[0125] したがって、電源電圧の変動の増減と増幅率の増減と同方向に変動することになる
[0126] 本発明の電源電圧および参照信号の変化に対する増幅回路の増幅率の変化の割 合は、分圧抵抗の分圧比および可変抵抗の可変ステップによって任意に決定できる 。これにより、電源電圧 Vddに対しては増幅率が比例して変化し、参照信号 Vrefに対 して増幅率が反比例して変化するように構成することが可能である。
[0127] さらに、比較回路および可変抵抗回路の可変ステップ数をさらに増やして分解能を 上げることで、増幅回路の増幅率をほとんど直線的に変化させることも可能である。 すなわち、本発明の構成によれば、物理量センサの出力感度について、参照信号の 変動に対しては一定とするとともに、電源電圧の変化に対してはレシオメトリック特性 を与えることができる。
[0128] 次に、参照信号や駆動信号の電圧を電流に変換し、この電流によって抵抗値を変 える第 3の形態について、図 16を用いて説明する。
[0129] 図 16は、電圧 電流変換回路(OTA : operational transconductance amplifier)を 用いた増幅回路 5の構成例である。
[0130] OTA32は、演算増幅器 31の入力抵抗を構成する。 OTA32は、参照信号 Vref¾S 入力された電圧/電流変換回路 33からの電流信号によってトランスコンダクタンス(g m)が変化する可変抵抗回路として機能する。可変抵抗回路の抵抗値 Rinは、トランス コンダクタンス (gm)の逆数となり、参照信号 VrerCトランスコンダクタンス(gm)を変え ることによって、入力抵抗 Rinと帰還抵抗 Rfとの抵抗比を変え、増幅率を変更する。 産業上の利用可能性
[0131] 本発明の物理量センサは、振動型ジャイロセンサや振動型加速度センサ等に適用 すること力 Sでさる。

Claims

請求の範囲
[1] 参照信号に基づいて駆動する駆動回路と、
この駆動回路によって駆動されることで外部から印加された物理量を電気信号に変 換するセンサ素子と、
このセンサ素子の出力信号を増幅する増幅回路とを有する物理量センサにおいて 前記駆動回路は、前記参照信号に基づ!/、て前記センサ素子の駆動信号を一定レ ベノレとなるように制卸し、
前記増幅回路は、前記参照信号の変動、又は、前記駆動回路の駆動信号の変動 に対して、出力信号を逆方向に増幅する増幅率特性を備えることを特徴とする、物理 量センサ。
[2] 前記増幅回路の増幅率特性は、前記参照信号の増減方向、又は、前記参照信号 の変動による駆動回路の駆動信号の増減方向に対して、出力信号を逆方向に増減 する特性であり、
前記増幅回路の出力信号の出力レベルを、前記参照信号の変動によらず一定に 制御することを特徴とする、請求項 1に記載の物理量センサ。
[3] 前記増幅回路は、能動回路と、複数の抵抗素子を有する抵抗回路とを有し、当該 抵抗素子の抵抗比によって増幅率を定める構成であり、
前記抵抗回路は、前記参照信号の変動、又は、前記駆動回路の駆動信号の変動 によって抵抗値を可変とする可変抵抗回路を、前記抵抗素子の少なくとも一部に備 えることを特徴とする、請求項 1または 2に記載の物理量センサ。
[4] 前記増幅回路は、演算増幅器と、この演算増幅器に接続される入力抵抗回路およ び帰還抵抗回路を有し、当該入力抵抗回路と帰還抵抗回路の抵抗比によって増幅 率を定める反転増幅回路、又は、非反転増幅回路を備え、
前記参照信号の変動、又は、前記駆動回路の駆動信号の変動によって抵抗値を 可変とする可変抵抗回路を、入力抵抗回路と帰還抵抗回路の少なくとも一方が有す る抵抗素子に形成することを特徴とする、請求項 1又は 2に記載の物理量センサ。
[5] 前記参照信号又は駆動回路の駆動信号のレベルを周波数に変換する第 1の周波 数変換器を備え、
前記可変抵抗回路は、前記第 1の周波数変換器で変換して得られた周波数のパ ノレス変調信号によって抵抗値を変えることを特徴とする、請求項 3に記載の物理量セ ンサ。
[6] 電源電圧を周波数に変換する第 2の周波数変換器を備え、
前記可変抵抗回路は、前記第 2の周波数変換器で変換して得られた周波数のパ ルス変調信号によって抵抗値を変えることにより、前記増幅回路の増幅率を、前記電 源電圧の増減と比例させることを特徴とする、請求項 5に記載の物理量センサ。
[7] 前記増幅回路は、増幅率を能動回路に接続する複数の抵抗素子の抵抗比によつ て増幅率を定める構成であり、
前記参照信号又は駆動回路の駆動信号を所定階数に分圧する分圧回路と、比較 回路とを備えるとともに、複数の抵抗素子の抵抗比によって増幅率を定める構成であ り、
前記複数の抵抗素子の少なくとも一部に、抵抗値を可変とする可変抵抗回路を形 成し、
前記比較回路は、一方に入力端に前記分圧回路の分圧出力を入力し、他方の入 力端に電源電圧で定まる電圧を入力し、
前記可変抵抗回路は、各比較回路の出力信号によって抵抗値を変えることにより、 前記増幅回路の増幅率を、前記参照信号又は駆動回路の駆動信号の増減と逆比 例させるとともに、前記電源電圧の増減と比例させることを特徴とする、請求項 1又は 2に記載の物理量センサ。
[8] 前記比較回路の出力信号に応じて抵抗値を選択する抵抗選択回路を備え、
前記可変抵抗回路は、当該抵抗選択回路で選択した抵抗値に変えることを特徴と する、請求項 7に記載の物理量センサ。
[9] 前記参照信号の電圧、又は、前記駆動回路の駆動信号の電圧を電流に変換する 電圧電流変換器を備え、
前記可変抵抗回路は、当該電圧電流変換器で変換して得られた電流により抵抗値 を変えることを特徴とする、請求項 3に記載の物理量センサ。
[10] 前記増幅回路に電源電圧を供給する電源を備え、
前記増幅回路は、増幅率を前記電源電圧の増減と比例させることを特徴とする、請 求項 1から 5のいずれか一つに記載の物理量センサ。
[11] 前記増幅回路の出力信号の出力レベルは、前記参照信号の温度変化に対して一 定に制御することを特徴とする、請求項 1から請求項 10に何れか一つに記載の物理 量センサ。
PCT/JP2007/068430 2006-09-27 2007-09-21 Capteur de quantité physique WO2008038595A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE602007013260T DE602007013260D1 (de) 2006-09-27 2007-09-21 Sensor für physikalische grösse
US12/442,437 US8037755B2 (en) 2006-09-27 2007-09-21 Physical quantity sensor
EP07807761A EP2068119B1 (en) 2006-09-27 2007-09-21 Physical quantity sensor
JP2008004489A JP2009075060A (ja) 2007-09-21 2008-01-11 物理量センサ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006262761A JP5294228B2 (ja) 2006-09-27 2006-09-27 物理量センサ
JP2006-262761 2006-09-27

Publications (1)

Publication Number Publication Date
WO2008038595A1 true WO2008038595A1 (fr) 2008-04-03

Family

ID=39230030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068430 WO2008038595A1 (fr) 2006-09-27 2007-09-21 Capteur de quantité physique

Country Status (5)

Country Link
US (1) US8037755B2 (ja)
EP (1) EP2068119B1 (ja)
JP (1) JP5294228B2 (ja)
DE (1) DE602007013260D1 (ja)
WO (1) WO2008038595A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015146045A1 (ja) * 2014-03-25 2015-10-01 株式会社デンソー 車両用センサ信号処理装置および車両用センサ信号処理プログラム

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101525209B1 (ko) * 2008-11-04 2015-06-05 삼성전자주식회사 모듈 테스트 장치 및 그것을 포함하는 테스트 시스템
JP4996589B2 (ja) * 2008-12-17 2012-08-08 旭化成エレクトロニクス株式会社 感度調整回路
TWI384198B (zh) * 2009-07-09 2013-02-01 Univ Nat Chiao Tung Angle measurement gyroscope system and angle estimation method
JP5083287B2 (ja) * 2009-09-11 2012-11-28 セイコーエプソン株式会社 検出装置、物理量測定装置及び電子機器
JP5560806B2 (ja) * 2010-03-19 2014-07-30 セイコーエプソン株式会社 ジャイロ素子、ジャイロセンサー、および電子機器
US9278845B2 (en) 2010-09-18 2016-03-08 Fairchild Semiconductor Corporation MEMS multi-axis gyroscope Z-axis electrode structure
US9352961B2 (en) 2010-09-18 2016-05-31 Fairchild Semiconductor Corporation Flexure bearing to reduce quadrature for resonating micromachined devices
EP2616771B8 (en) 2010-09-18 2018-12-19 Fairchild Semiconductor Corporation Micromachined monolithic 6-axis inertial sensor
CN103221333B (zh) 2010-09-18 2017-05-31 快捷半导体公司 多晶片mems封装
KR20130052652A (ko) 2010-09-18 2013-05-22 페어차일드 세미컨덕터 코포레이션 미세 전자 기계 시스템을 위한 시일된 패키징
CN103238075B (zh) 2010-09-18 2015-11-25 快捷半导体公司 具有单质量块的微机械三轴加速计
KR101311966B1 (ko) 2010-09-20 2013-10-14 페어차일드 세미컨덕터 코포레이션 감소된 션트 커패시턴스를 갖는 관통 실리콘 비아
KR101332701B1 (ko) 2010-09-20 2013-11-25 페어차일드 세미컨덕터 코포레이션 기준 커패시터를 포함하는 미소 전자기계 압력 센서
WO2012043886A1 (ja) * 2010-09-30 2012-04-05 シチズンホールディングス株式会社 物理量センサ及び乗除算回路
EP2674014B1 (en) * 2011-02-09 2019-06-19 OSRAM GmbH An occupancy sensor
JP2012202872A (ja) * 2011-03-25 2012-10-22 Toshiba Corp センサ制御回路およびセンサシステム
US9062972B2 (en) 2012-01-31 2015-06-23 Fairchild Semiconductor Corporation MEMS multi-axis accelerometer electrode structure
US8978475B2 (en) 2012-02-01 2015-03-17 Fairchild Semiconductor Corporation MEMS proof mass with split z-axis portions
US9488693B2 (en) 2012-04-04 2016-11-08 Fairchild Semiconductor Corporation Self test of MEMS accelerometer with ASICS integrated capacitors
EP2647955B8 (en) 2012-04-05 2018-12-19 Fairchild Semiconductor Corporation MEMS device quadrature phase shift cancellation
EP2647952B1 (en) 2012-04-05 2017-11-15 Fairchild Semiconductor Corporation Mems device automatic-gain control loop for mechanical amplitude drive
EP2648334B1 (en) 2012-04-05 2020-06-10 Fairchild Semiconductor Corporation Mems device front-end charge amplifier
US9069006B2 (en) 2012-04-05 2015-06-30 Fairchild Semiconductor Corporation Self test of MEMS gyroscope with ASICs integrated capacitors
US9625272B2 (en) 2012-04-12 2017-04-18 Fairchild Semiconductor Corporation MEMS quadrature cancellation and signal demodulation
KR101999745B1 (ko) * 2012-04-12 2019-10-01 페어차일드 세미컨덕터 코포레이션 미세 전자 기계 시스템 구동기
DE102013014881B4 (de) 2012-09-12 2023-05-04 Fairchild Semiconductor Corporation Verbesserte Silizium-Durchkontaktierung mit einer Füllung aus mehreren Materialien
US9716477B2 (en) 2012-12-28 2017-07-25 Peregrine Semiconductor Corporation Bias control for stacked transistor configuration
US9413298B2 (en) 2012-12-28 2016-08-09 Peregrine Semiconductor Corporation Amplifier dynamic bias adjustment for envelope tracking
US11128261B2 (en) 2012-12-28 2021-09-21 Psemi Corporation Constant Vds1 bias control for stacked transistor configuration
US9759564B2 (en) 2013-03-15 2017-09-12 Fairchild Semiconductor Corporation Temperature and power supply calibration
FR3004532B1 (fr) * 2013-04-10 2016-12-09 Vishay S A Circuit electrique pour faire fonctionner un capteur ratiometrique
JP6213165B2 (ja) * 2013-11-07 2017-10-18 セイコーエプソン株式会社 検出装置、センサー、電子機器及び移動体
JP6303411B2 (ja) * 2013-11-07 2018-04-04 セイコーエプソン株式会社 検出装置、センサー、電子機器及び移動体
US9835647B2 (en) 2014-03-18 2017-12-05 Fairchild Semiconductor Corporation Apparatus and method for extending analog front end sense range of a high-Q MEMS sensor
US9960737B1 (en) 2017-03-06 2018-05-01 Psemi Corporation Stacked PA power control
US11118906B2 (en) * 2019-03-29 2021-09-14 Property Management Co., Ltd. Oscillator circuit including oscillator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0829179A (ja) * 1994-07-19 1996-02-02 Tokin Corp 圧電振動ジャイロ用駆動検出回路
JPH10153432A (ja) * 1996-11-26 1998-06-09 Ngk Insulators Ltd 振動型ジャイロスコープ
JP2004053396A (ja) 2002-07-19 2004-02-19 Matsushita Electric Ind Co Ltd 角速度センサおよびそれを用いた自動車
JP2006170914A (ja) * 2004-12-17 2006-06-29 Matsushita Electric Works Ltd 角速度検出装置
JP2006170620A (ja) * 2004-12-10 2006-06-29 Denso Corp ジャイロセンサ

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238920A (ja) * 1988-07-29 1990-02-08 Nec Corp 温度補正形増幅回路
JPH057117A (ja) * 1991-06-18 1993-01-14 Fujitsu Ltd ハイパスフイルタ型自動利得制御増幅器
US7786864B1 (en) * 2000-09-08 2010-08-31 Automotive Technologies International, Inc. Vehicular RFID and sensor assemblies
US5998911A (en) 1996-11-26 1999-12-07 Ngk Insulators, Ltd. Vibrator, vibratory gyroscope, and vibration adjusting method
JPH11142160A (ja) * 1997-11-04 1999-05-28 Murata Mfg Co Ltd 振動ジャイロ
JP2000171258A (ja) * 1998-12-04 2000-06-23 Murata Mfg Co Ltd 振動ジャイロ
US7043986B2 (en) * 2003-02-05 2006-05-16 Ngk Insulators, Ltd. Vibrators and vibratory gyroscopes
US7370531B2 (en) * 2004-01-20 2008-05-13 Ngk Insulators, Ltd. Detection circuits, detection method and systems of measuring physical quantities
CN1764823B (zh) * 2004-01-20 2010-10-13 精工爱普生株式会社 物理量测定装置
JP2006023268A (ja) * 2004-06-07 2006-01-26 Seiko Epson Corp ジャイロセンサの感度調整方法
US7124632B2 (en) * 2004-07-26 2006-10-24 Bei Technologies, Inc. Electronically configurable rate sensor circuit and method
WO2006129712A1 (ja) * 2005-06-01 2006-12-07 Citizen Holdings Co., Ltd. 物理量センサ
WO2007094448A1 (ja) * 2006-02-17 2007-08-23 Citizen Holdings Co., Ltd. 物理量センサ
US7526957B2 (en) * 2006-04-18 2009-05-05 Watson Industries, Inc. Vibrating inertial rate sensor utilizing skewed drive or sense elements

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0829179A (ja) * 1994-07-19 1996-02-02 Tokin Corp 圧電振動ジャイロ用駆動検出回路
JPH10153432A (ja) * 1996-11-26 1998-06-09 Ngk Insulators Ltd 振動型ジャイロスコープ
JP2004053396A (ja) 2002-07-19 2004-02-19 Matsushita Electric Ind Co Ltd 角速度センサおよびそれを用いた自動車
JP2006170620A (ja) * 2004-12-10 2006-06-29 Denso Corp ジャイロセンサ
JP2006170914A (ja) * 2004-12-17 2006-06-29 Matsushita Electric Works Ltd 角速度検出装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2068119A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015146045A1 (ja) * 2014-03-25 2015-10-01 株式会社デンソー 車両用センサ信号処理装置および車両用センサ信号処理プログラム
JP2015184207A (ja) * 2014-03-25 2015-10-22 株式会社デンソー 車両用センサ信号処理装置および車両用センサ信号処理プログラム

Also Published As

Publication number Publication date
EP2068119A4 (en) 2010-02-17
JP2008082866A (ja) 2008-04-10
EP2068119B1 (en) 2011-03-16
DE602007013260D1 (de) 2011-04-28
US20100039094A1 (en) 2010-02-18
EP2068119A1 (en) 2009-06-10
US8037755B2 (en) 2011-10-18
JP5294228B2 (ja) 2013-09-18

Similar Documents

Publication Publication Date Title
WO2008038595A1 (fr) Capteur de quantité physique
JP4671305B2 (ja) 物理量センサ
JP5495356B2 (ja) 物理量センサ
JP3964875B2 (ja) 角速度センサ
JP3350040B2 (ja) 温度補償型発振器
US8854125B2 (en) Linear amplifier that perform level shift and method of level shifting
JP2007057340A (ja) 発振回路及び角速度センサ
JP2009075060A6 (ja) 物理量センサ
JP2009075060A (ja) 物理量センサ
JP2006292469A (ja) 容量式物理量センサ
US20180219557A1 (en) Electrical circuit for biasing or measuring current from a sensor
JP2006319388A (ja) 自動利得制御回路及びそれを用いた正弦波発振回路
US20070222532A1 (en) Temperature-compensated crystal oscillator
US20060202743A1 (en) Adaptive input voltage controlled voltage booster
JP5310018B2 (ja) 発振器
JP6032243B2 (ja) 電流電圧変換回路及び自励発振回路
JP2011220764A (ja) 静電容量式物理量センサ回路
JP4994149B2 (ja) 物理量センサ
JP5344955B2 (ja) 固体振動子発振回路およびこれを用いた物理量センサ
JP2009124530A (ja) 圧電発振器
JP2000337982A (ja) 圧力センサ回路
JP2016082472A (ja) 発振器及びそのキャリブレーション方法
JPH11308049A (ja) 水晶発振回路
JP2022041766A (ja) 電圧増幅回路
JP2005027044A (ja) 圧電発振器及び温度補償型圧電発振器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07807761

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007807761

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12442437

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE