WO2006129712A1 - 物理量センサ - Google Patents

物理量センサ Download PDF

Info

Publication number
WO2006129712A1
WO2006129712A1 PCT/JP2006/310880 JP2006310880W WO2006129712A1 WO 2006129712 A1 WO2006129712 A1 WO 2006129712A1 JP 2006310880 W JP2006310880 W JP 2006310880W WO 2006129712 A1 WO2006129712 A1 WO 2006129712A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
signal
physical quantity
sensor
power supply
Prior art date
Application number
PCT/JP2006/310880
Other languages
English (en)
French (fr)
Inventor
Yoichi Nagata
Original Assignee
Citizen Holdings Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co., Ltd. filed Critical Citizen Holdings Co., Ltd.
Priority to US11/916,221 priority Critical patent/US7788977B2/en
Priority to CN2006800190207A priority patent/CN101184973B/zh
Priority to JP2007519037A priority patent/JP5495356B2/ja
Publication of WO2006129712A1 publication Critical patent/WO2006129712A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/097Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by vibratory elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/02Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for altering or correcting the law of variation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values

Definitions

  • the present invention relates to a physical quantity sensor, and more particularly to a configuration of an output level conversion circuit of the physical quantity sensor.
  • Figs. 15 (a) to 15 (c) are examples in which only the sensor 110 corresponds to the power supply voltage Vref, and the output of the sensor 110 (Fig. 15 (a)) is a fluctuation of the power supply voltage Vref (here, it is reduced). ).
  • the AZD converter 120 responds to the fluctuation of the power supply voltage Vref, so that a difference occurs in the digital value after AZD conversion ( Fig. 15 (b), (c)) 0
  • FIGS. 15 (c!) To (f) are examples in which only the AZD converter 120 corresponds to the power supply voltage Vref, and the output of the sensor 110 (FIG. 15 (d)) is the power supply voltage Vref. It does not depend on fluctuations. When the output of this sensor 110 is output by the AZD converter 120, the AZD converter 120 responds to fluctuations in the power supply voltage Vref, so that there is a difference in the digital value after AZD conversion. (Fig. 15 (e), (f)).
  • FIGS. 15 (g) to (i) the sensor 110 and the A / D converter 120 are both powered.
  • the A, D converter 120 also supports the fluctuation of the power supply voltage Vref, so there is no difference in the digital value after AZ D conversion. (Fig. 15 (h), (i)).
  • the output signal of the sensor element 1 detected by the detection circuit 2 is further amplified and output by the amplifier circuit 6.
  • an inverting amplifier circuit using an operational amplifier 4 in which the MOS element 7 is an input resistor and the resistor element 8 is a feedback resistor is used.
  • the detection sensitivity of the physical quantity sensor can be adjusted. The detection sensitivity changes in proportion.
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-53396 (pages 4-6, Fig. 1)
  • the resistance component of the MOS element 7 is generally non-linear, and the input voltage is extremely small! / In some cases, it does not operate as a force linear resistance element. RU Therefore, when the amplitude of the input signal to the amplifier circuit 6 is large, that is, the output signal from the sensor element 1 is large, the signal range is small, and the amplification rate of the amplifier circuit 6 differs depending on the signal range. As a result, the linearity of the detection sensitivity of the physical quantity sensor cannot be obtained. As a result, there is a problem that the ratiometric characteristic is not good.
  • An object of the present invention is to improve the above-described problems and obtain a ratiometric characteristic with a good detection sensitivity of a physical quantity sensor.
  • the physical quantity sensor of the present invention generates a pulse modulation signal based on the power supply voltage, and makes the amplification factor of the amplifier circuit variable by this pulse modulation signal. It has linearity and can obtain highly accurate detection sensitivity. Further, detection sensitivity with desired characteristics can be obtained by using a pulse modulation signal.
  • the pulse modulation may be pulse width modulation for modulating the pulse width or pulse period modulation for modulating the pulse period.
  • Pulse width modulation can also be expressed as a duty ratio that is the ratio of the time width during which a pulse is output and the time width during which no pulse is output.
  • the relationship between the pulse width or pulse period that determines the modulation amount of the pulse modulation and the power supply voltage can be arbitrarily determined
  • the relationship between the power supply voltage and the output signal obtained by the amplifier circuit is Based on the modulation relationship, the modulation can be arbitrarily determined not only by the linearity relationship but also by a predetermined functional relationship.
  • the amplifier circuit has a configuration capable of changing the amplification factor by the switching control of the switch, and the amplification factor can be changed by the pulse modulation by performing the switching control of the switch by the pulse modulation signal. it can.
  • the relationship between the power supply voltage and the output signal obtained by the amplifier circuit can be arbitrarily determined based on this pulse modulation based on the modulation relationship, and the relationship between the power supply voltage and the sensitivity characteristic is excellent in linearity. In addition to setting, it can be set to a predetermined relationship.
  • the physical quantity sensor of the present invention includes a sensor circuit that converts a physical quantity applied from the outside into an electric signal and outputs a detection signal, and an adjustment circuit that adjusts the detection signal of the sensor circuit force to a predetermined signal. Prepare.
  • the adjustment circuit of the present invention includes a pulse generation circuit that generates a pulse modulation signal based on a power supply voltage that drives the adjustment circuit, and an amplification factor for the detection signal from the sensor circuit using the pulse modulation signal. And amplifying circuit for amplifying the output signal so that the detection sensitivity of the output signal output by the amplifier circuit is variable according to the power supply voltage.
  • the pulse width with respect to the power supply voltage and the pulse frequency can be determined not only by a linear function but also by a predetermined function. Predetermined When the function is a linear function, the pulse generation circuit generates a pulse modulation signal having a pulse width or a pulse frequency proportional to the power supply voltage.
  • the pulse generation circuit generates a pulse modulation signal by modulating the pulse width or pulse frequency determined by a predetermined function by pulse modulation based on the power supply voltage. Since pulse modulation can be performed without depending on the amplitude of the detection signal to be amplified, high detection sensitivity can be obtained with high reality, and detection sensitivity with desired characteristics can be obtained. it can.
  • one configuration of the amplifier circuit can be configured by an inverting amplifier whose amplification factor is determined by the resistance value ratio of the input resistor circuit and the feedback resistor circuit.
  • this inverting amplifier at least one of the input resistor circuit and the feedback resistor circuit is a variable resistor circuit whose resistance value is variable by a pulse modulation signal, and the amplifier circuit uses the resistance value of the variable resistor circuit as a pulse modulation signal. The gain is made variable by making it variable.
  • This variable resistance circuit can be formed of a switched capacitor circuit.
  • the switched capacitor circuit makes the equivalent resistance variable by switching the switch to the capacitor using a pulse modulation signal.
  • variable resistance circuit can be composed of a resistor and a switch.
  • the equivalent resistance is made variable by intermittently switching this switch with a pulse modulation signal.
  • variable resistance circuit connects two switches with a capacitor in between, and switches between the two switches to charge / discharge the capacitor, and switch the switch to change the pulse width of the pulse modulation signal.
  • the equivalent resistance can be made variable based on the duty ratio.
  • an amplifier circuit having another configuration can be a gain adjustment circuit in which two voltage-current conversion circuits are connected with a switch interposed therebetween.
  • This gain adjustment circuit opens and closes the switch based on the pulse modulation signal. Changing the open / close state of the switch based on the pulse modulation signal changes the transfer function of the gain adjustment circuit. Since the gain of the gain adjustment circuit depends on the transfer function of the gain adjustment circuit, the gain is made variable by making the transfer function variable according to the pulse modulation signal.
  • a pulse generation circuit that generates a pulse modulation signal for example, applies a triangular wave having a constant amplitude. Compared with a predetermined threshold value, a pulse can be generated with a large or small period with respect to the threshold value, and a power supply voltage can be used as the threshold value.
  • the physical quantity sensor of the present invention can employ the following structure in order to achieve the above object.
  • a sensor element that converts an externally applied physical quantity into an electrical signal, a detection circuit that amplifies and detects an output signal of the sensor element, and an output signal of the detection circuit power by applying a power source is a predetermined signal.
  • the adjustment circuit includes an amplifying circuit including a switched capacitor circuit that moves charges by switching a connection state of the capacitor, and a clock generation circuit that generates a clock signal. And have.
  • the clock generation circuit is controlled according to the power supply voltage, and the detection sensitivity of the output signal output from the amplifier by the clock signal generated by this clock generation circuit is made variable according to the power supply voltage.
  • the output from the amplifier circuit included in the adjustment circuit can be converted into a sensor output with high linearity characteristics.
  • a physical quantity sensor with high sensor detection sensitivity can be realized.
  • the adjustment circuit includes a clock generation circuit that generates a clock signal, and the switched capacitor circuit switches the connection state of the capacitor according to the clock signal.
  • a dedicated clock generation circuit for generating a clock signal for switching the switched capacitor circuit can be provided, and the switched capacitor circuit can be driven with high accuracy.
  • the clock signal is a periodic signal having a predetermined pulse width, a predetermined duty ratio, or a predetermined pulse frequency.
  • the pulse width, duty ratio, or frequency is set to the power supply voltage. It is made variable according to the above.
  • the clock generation circuit is controlled according to the voltage of the power supply.
  • the output signal output from the amplifier circuit is made proportional to the voltage of the power supply.
  • the clock generation circuit includes an oscillation circuit that outputs an oscillation signal, and a control circuit that adjusts and outputs the output signal of the oscillation circuit to a predetermined frequency division ratio.
  • the clock generation circuit includes an oscillation circuit.
  • This oscillation circuit is composed of a voltage controlled oscillation circuit in which the frequency of the output signal changes according to the voltage input of the power supply. With this configuration, so-called ratiometric output in which the detection sensitivity of the physical quantity sensor is proportional to the voltage of the power supply can be realized easily and with high accuracy including temperature characteristics.
  • the clock generation circuit includes an oscillation circuit including a capacitor.
  • the capacitor of this oscillation circuit has the same structure as the capacitor provided in the amplifier circuit. With this configuration, the capacitance ratio can be made constant, so that the amplification factor of the amplification circuit can be highly accurate.
  • the clock generation circuit includes an oscillation circuit including a resistance element.
  • the resistance element of the oscillation circuit can have the same structure as the resistance element provided in the amplifier circuit. With this configuration, the resistance ratio can be made constant, so that the amplification factor of the amplifier circuit can be highly accurate.
  • the physical quantity sensor of the present invention includes a sensor element that converts an externally applied physical quantity into an electrical signal, a drive circuit that drives the sensor element, and a detection that amplifies and detects the output signal of the sensor element.
  • a physical quantity sensor having a circuit and an adjustment circuit that adjusts an output signal of the detection circuit force to a predetermined signal by applying power.
  • the drive circuit includes a constant voltage circuit that outputs a constant voltage that serves as a reference for the drive conditions of the sensor element.
  • the adjustment circuit also includes an amplifier circuit including a switched capacitor circuit that moves charges by switching the connection state of the capacitor, and a clock generation circuit that generates a clock signal.
  • the clock generation circuit is controlled according to the voltage of the power supply, and the detection sensitivity of the output signal output from the amplification circuit power by the clock signal generated by the clock generation circuit is made variable according to the voltage of the power supply.
  • the drive circuit can stably drive the sensor element without depending on changes in the power supply voltage, and the output from the amplifier circuit can be converted into a sensor output with high linearity characteristics and the power supply voltage. Proportional ratiometric characteristics can be realized.
  • a physical quantity sensor with high sensor detection sensitivity can be provided.
  • the physical quantity sensor of the present invention includes a sensor element that converts an externally applied physical quantity into an electrical signal, a detection means that amplifies and detects an output signal of the sensor element, and an output signal of the detection means is a predetermined signal.
  • Adjust A physical quantity sensor comprising an adjusting means for outputting, wherein the adjusting means comprises a clock generating means having an oscillation circuit, and an amplifying means for performing an amplifying operation in accordance with a clock signal of the clock generating means. It is characterized by output level conversion.
  • the output from the amplifier circuit provided in the adjustment circuit can be a sensor output with high linearity characteristics, it is possible to provide a physical quantity sensor with high sensor detection sensitivity. .
  • FIG. 1 is a block diagram showing an overall configuration of a physical quantity sensor of the present invention.
  • FIG. 2 is a diagram illustrating an example of a pulse modulation signal by a pulse generation circuit.
  • FIG. 3 is a diagram for explaining the relationship between the power supply voltage Vref of the power supply and the output of the amplifier circuit.
  • FIG. 4 is a block diagram showing an overall configuration of an embodiment of a physical quantity sensor of the present invention.
  • FIG. 5 is a block diagram showing an overall configuration of another embodiment of the physical quantity sensor of the present invention.
  • FIG. 6 is a circuit diagram showing a configuration of an amplification circuit of the physical quantity sensor of the present invention.
  • FIG. 7 is a circuit diagram showing a configuration of a clock generation circuit of the physical quantity sensor of the present invention.
  • FIG. 8 is a circuit diagram showing another configuration of the amplification circuit of the physical quantity sensor of the present invention.
  • FIG. 9 is a circuit diagram showing another configuration of the amplification circuit of the physical quantity sensor of the present invention.
  • FIG. 10 is a diagram showing a configuration example of two switch mechanisms.
  • FIG. 11 is a diagram showing a schematic configuration of an amplification factor variable circuit.
  • FIG. 12 is a configuration diagram illustrating a configuration example of a pulse modulation circuit.
  • FIG. 13 is a signal diagram illustrating a configuration example of a pulse modulation circuit.
  • FIG. 14 is a diagram for explaining a schematic configuration of a ratio metric.
  • FIG. 15 is a diagram for explaining a schematic configuration of a ratio metric.
  • FIG. 16 is a diagram for explaining a conventional physical quantity sensor.
  • Pulse generator A Clock generator a Triangular wave generator b Comparator
  • FIGS. 1 to 3 [Description of schematic configuration of physical quantity sensor: FIGS. 1 to 3]
  • FIG. 1 is a block diagram showing the overall configuration of the physical quantity sensor of the present invention.
  • a physical quantity sensor 1 includes a sensor circuit 110 that outputs a signal corresponding to a physical quantity, and an adjustment circuit 100 that performs signal processing such as amplification on the output signal of the sensor circuit 110.
  • the physical quantity sensor 1 is connected to a power source 200 and an AZD transformation 120.
  • a ZD conversion circuit 120 receives the analog signal processed by adjustment circuit 100 and converts it into a digital signal.
  • the sensor circuit 110, the adjustment circuit 100, and the AZD conversion circuit 120 are supplied with the power supply voltage Vref from the power supply 200, and the AZD conversion circuit 120 performs A / D conversion based on the power supply voltage Vref.
  • the adjustment circuit 100 includes a pulse generation circuit 30 and an amplification circuit 60, and is driven by a power source 200.
  • the amplifier circuit 60 includes an amplification factor variable circuit 60a.
  • the pulse generation circuit 30 generates a pulse modulation signal obtained by modulating the pulse width and pulse frequency according to the power supply voltage. Note that the pulse width can be determined by the duty ratio, which is the ratio of the pulse ON and OFF time width.
  • the amplification factor variable circuit 60a makes the amplification factor of the amplification circuit 60 variable based on the pulse modulation signal generated by the pulse generation circuit 30.
  • the sensor circuit 110 and the adjustment circuit 100 are driven by the same power source. However, the present invention is not limited to this and may be driven by separate power sources. .
  • FIG. 2 shows an example of a pulse modulation signal by the pulse generation circuit 30.
  • Fig. 2 (a) is an example of PWM (pulse width modulation) that modulates the pulse width according to the voltage value of the power supply voltage Vref.
  • FIG. 2 (b) is an example of PFM (pulse frequency modulation) that modulates the pulse frequency according to the voltage value of the power supply voltage Vref. For example, a predetermined frequency according to the voltage value of the power supply voltage Vref is shown. The number of pulses generated during period interval T is set.
  • PFM pulse frequency modulation
  • the adjustment circuit 100 of the present invention has a ratiometric characteristic proportional to the power supply voltage with respect to the sensor output of the sensor circuit 110 by changing the amplification factor according to the fluctuation of the power supply voltage Vref. Can be made.
  • the relationship between the power supply voltage Vref of the power supply 200 and the output of the amplifier circuit 60 in the adjustment circuit 100 can have an arbitrary characteristic in addition to providing linearity.
  • This electric The relationship between the source voltage Vref and the output can be determined by the pulse modulation characteristics of the pulse generation circuit 30, and the opposing relationship between the power supply voltage Vref and the pulse width and pulse frequency can be expressed in the form of a conversion function or conversion table. Can be stored in advance in a recording medium such as a ROM.
  • the pulse generation circuit 30 can obtain the pulse modulation signal corresponding to the value of the power supply voltage Vref by using the conversion table in addition to obtaining the value of the power supply voltage Vref inputted to the conversion function.
  • Fig. 3 (a) is an example in which linearity is provided between the power supply voltage Vref of the power supply and the output of the amplifier circuit. With respect to the fluctuation of the quasi-voltage Vref of the power supply at a certain input voltage Vin, The amplifier circuit outputs with linearity.
  • Figures 3 (b) and 3 (c) are examples in which a predetermined functional relationship is provided between the power supply voltage Vref of the power supply and the output of the amplifier circuit. On the other hand, the amplifier circuit outputs with a predetermined functional relationship.
  • the noise generation circuit 30 considers the characteristics of the amplifier circuit 60.
  • a predetermined functional relationship is set so that desired characteristics can be obtained. For example, when linearity is provided between the power supply voltage Vref of the power supply and the output of the amplifier circuit, if the amplifier circuit 60 has non-linearity, the pulse generation circuit 30 cancels this non-linearity. Do the modulation of the noise.
  • FIG. 4 is a block diagram showing the overall configuration of an embodiment of the physical quantity sensor of the present invention.
  • reference numeral 10 denotes a sensor element, which has a drive unit 11 and a detection unit 12.
  • Reference numeral 20 denotes a detection circuit that amplifies and detects the sensor element output S1 from the detection unit 11. Further, the drive unit 11 is driven by a drive circuit 80.
  • the sensor circuit 110 can be configured by the sensor element 10, the detection circuit 20, and the drive circuit 80. 20 and the drive circuit 80 may be configured separately from the sensor circuit 110.
  • the detection circuit 20 may be incorporated in the adjustment circuit 100
  • the drive circuit 80 may be incorporated in a circuit configuration related to voltage together with the midpoint voltage generation circuit 70 and the like.
  • Reference numeral 100 denotes an adjustment circuit, which includes an amplifier circuit 60 and a clock generation circuit 30A.
  • the clock generation circuit 30A includes an oscillation circuit 40 and constitutes the pulse generation circuit 30 shown in FIG.
  • Reference numeral is a clock generating means 60 is an amplifying means, 100 is an adjusting means, 80 is a drive circuit for driving the drive unit 11 of the sensor element 10, and 70 is an operation of the detection circuit 20 and the amplification circuit 60. For example, it outputs a voltage value that is half the power supply voltage.
  • reference numeral S1 is an output of the sensor element detection unit 12
  • reference numeral S2 is a detection output of the detection circuit 20
  • reference numeral S3 is a clock signal of the clock generation circuit 30A
  • reference numeral S4 is an output of the oscillation circuit 40.
  • the oscillation output, symbol S6, is the sensor output output from the physical quantity sensor.
  • the circuit portion of this physical quantity sensor, that is, the detection circuit 20, the adjustment circuit 100, and the drive circuit 80 operate with a voltage Vdd (for example, 5.0 V) applied from the outside.
  • Vdd is the power supply voltage of the physical quantity sensor.
  • the sensor element 10 can be, for example, a gyro vibrator that detects a rotational angular velocity.
  • a metal electrode is arranged on the surface of a piezoelectric material formed in a tuning fork shape. can do.
  • the sensor element 10 is driven to oscillate by a drive circuit 80.
  • a weak AC signal appears as the sensor element output S1.
  • the drive circuit 80 has a function for keeping the drive condition of the sensor element 10 constant, for example, a current value obtained from a high-accuracy constant current source (not shown) that is not affected by fluctuations in the power supply voltage, A sensor element having a function of controlling oscillation so that the effective value of the excitation current of the sensor element 10 is equal is used.
  • the drive circuit 80 may be configured to use a constant voltage circuit that outputs a constant voltage without being affected by fluctuations in the power supply voltage, and to stabilize the excitation current of the sensor element 10 based on this constant voltage. Yo ⁇ .
  • the detection circuit 20 is a circuit that detects and amplifies the sensor element output S1 obtained from the sensor element 10 and outputs a DC signal.
  • the detection output S2 is output from the detection circuit 20. It is. Since the configurations of the sensor element 10 and the detection circuit 20 are generally known circuits, description thereof is omitted.
  • the adjustment circuit 100 is a signal level conversion circuit that adjusts the detection output S2 detected and amplified by the detection circuit 20 to a predetermined level, that is, adjusts the detection sensitivity of the physical quantity sensor and outputs it as the physical quantity sensor output S 6 to the outside. is there.
  • the adjustment circuit 100 includes a clock generation circuit 30A and an amplification circuit 60.
  • the clock generation circuit 30A is a circuit corresponding to the pulse generation circuit 30 in FIG. 1, and generates and outputs a clock signal corresponding to the voltage applied to the power supply circuit.
  • the amplifying circuit 60 is an amplifying circuit provided with a so-called switched capacitor circuit 61 (FIG. 6) in the input stage that moves charges by switching the connection state of the capacitors.
  • the switched capacitor circuit 61 is a circuit corresponding to the gain variable circuit 60a in FIG. 1, and the gain is variable based on a clock signal corresponding to the pulse modulation signal.
  • the clock generation circuit 30 A includes an oscillation circuit 40.
  • the oscillation circuit 40 can be configured by a voltage controlled oscillation circuit (VCO) whose output frequency changes in proportion to an applied voltage (for example, the power supply voltage Vref).
  • VCO voltage controlled oscillation circuit
  • the clock generation circuit 30A outputs a clock signal S3 having a frequency proportional to the applied voltage.
  • the clock generation circuit 30A includes a control circuit 50 in addition to the oscillation circuit 40, and divides the oscillation output oscillated by the oscillation circuit 40 to make the number of output pulses per unit time variable. Can do.
  • Figure 5 shows an example configuration. The configuration shown in FIG. 5 is the same as the configuration shown in FIG. 4 except that the clock generation circuit 30A includes a control circuit 50 in addition to the oscillation circuit 40, and the control signal (S5) is input to the control circuit 50 from the outside. Since it is the same, description of other configurations is omitted.
  • the control circuit 50 is a logic circuit that divides the oscillation output S4 and outputs it as a clock signal S3.
  • the frequency dividing ratio of the control circuit 50 is configured to be selectively set by the digital input S5 from the rational number ratios prepared in advance. Since the control circuit 50 can be easily realized by a rate multiplier circuit capable of switching the number of output pulses within a unit time, a detailed description thereof is omitted.
  • the configurations of the oscillation circuit 40 and the amplification circuit 60 will be described later.
  • the midpoint voltage generation circuit 70 outputs a 1Z2 voltage value of the power supply voltage applied to the physical quantity sensor. It is a voltage source to be applied.
  • the midpoint voltage generation circuit 70 supplies a midpoint voltage Vm for the detection circuit 20 and the amplification circuit 60 to operate. For example, when the power supply voltage Vdd is 5.0V, the midpoint voltage generation circuit 70 generates and outputs 2.5V as the midpoint voltage Vm.
  • An amplifier circuit 60 shown in FIG. 6 is an example including a switched capacitor circuit as a circuit configuration in which the gain is variable.
  • the amplifier circuit 60 has a configuration of an inverting amplifier circuit having an operational amplifier 69.
  • a parallel connection of a feedback resistor 68 and a filter capacitor 6 7 is connected between an output terminal and an input terminal (inverting input terminal) of the operational amplifier 69, and
  • a switched capacitor circuit 61 is connected to the same input terminal (inverting input terminal) of the operational amplifier 69 as an input resistor.
  • the switched capacitor circuit 61 is configured by a switch 6 la having two contacts and a capacitor 6 lb.
  • the switch 61a can be composed of a transmission gate (transmission gate) using MOS elements.
  • the contact state of the switch 6 la is configured to be switched according to the clock signal S3. That is, the connection state of the capacitor 61b is switched according to the clock signal S3.
  • the capacitor 6 lb and the feedback resistor 68 can also be manufactured by a semiconductor process, and are configured on the same semiconductor chip as the switch 6 la.
  • One end of the capacitor 61b is connected to the midpoint voltage Vm, and the other end is connected to the fixed contact of the switch 61a.
  • One contact of the switch 61a is an input terminal of the amplifier circuit 60 and is connected to the detection output S2.
  • the other contact of switch 61a is connected to the inverting input terminal of operational amplifier 69.
  • Both the feedback resistor 68 and the filter capacitor 67 are connected between the inverting input terminal and the output terminal of the operational amplifier 69.
  • the non-inverting input terminal of operational amplifier 69 is connected to the midpoint voltage Vm.
  • the switched capacitor circuit 61 includes a switch 61a and a capacitor 61b.
  • the capacitor 61b stores the voltage of the detection output S2.
  • the switch 61a becomes conductive to the operational amplifier 69
  • the charge stored in the capacitor 61b is discharged to the feedback resistor 68 and the filter capacitor 67 by the operational amplifier 69.
  • the switch 61a corresponds to the clock signal S3 generated by the clock generation circuit 30A. Is switched between the detection output S2 side and the operational amplifier 69 side to switch the connection state of the capacitor 61b.
  • the clock generator circuit 30A is provided exclusively to drive the switched capacitor circuit 61 with high accuracy. Can do.
  • the switched capacitor circuit 61 Since the switch 6 la performs the above switching operation at high speed, the switched capacitor circuit 61 has a resistance value of Re,
  • f is the average switching frequency of switch 6 la
  • Cs is the capacity of capacitor 6 lb.
  • the amplifier circuit 60 Since the switched capacitor circuit 61 is equivalent to a resistance element, the amplifier circuit 60 operates as a first-order low-pass filter (incomplete integration circuit) to which an inverting amplifier circuit is applied.
  • the amplification factor of the amplifier circuit 60 is determined by the ratio of the feedback resistance and the input resistance. Therefore, in the configuration described above, the amplification factor of the amplifier circuit can be made variable by configuring the input resistance with a switched capacitor circuit and changing the equivalent resistance of the switched capacitor circuit according to the frequency of the clock signal S3. . Therefore, by changing the frequency of the clock signal according to the power supply voltage, the amplification factor of the amplifier circuit can be made variable according to the power supply voltage.
  • the amplifier circuit 60 using the switched capacitor circuit 61 can obtain a high linearity by using a capacitor having no voltage dependency of the capacitance as the capacitor 61b.
  • the capacitor 61b having a polysilicon-like electrode may be formed by, for example, a general two-layer polysilicon process.
  • the input resistance of the operational amplifier 69 is configured by an equivalent resistance by the switched capacitor circuit 61.
  • the feedback resistor 38 of the operational amplifier 69 is similarly equivalent by the switched capacitor circuit. You may comprise by resistance.
  • the amplification factor of the amplifier circuit 60 is determined by the ratio of the feedback resistance and the input resistance as described above, the feedback resistance is configured by a switched capacitor circuit, and the equivalent resistance of the switched capacitor circuit is defined as the clock signal S3.
  • the gain of the amplifier circuit can be changed by changing the frequency. Can be strange. This configuration is not shown. Therefore, by changing the frequency of the clock signal according to the power supply voltage, the amplification factor of the amplifier circuit can be made variable according to the power supply voltage.
  • either one of the feedback resistor and the input resistor is constituted by a switched capacitor circuit, and both resistors are constituted by a switched capacitor circuit.
  • the oscillation circuit 40 includes inverters 41 to 43, an oscillation capacitor 44, a constant voltage circuit 45 that is a constant voltage source, and a noise voltage generation circuit 46.
  • the bias voltage generation circuit 46 includes a reference resistor 47, a comparator 48, and a current control element 49.
  • the constant voltage circuit 45 is a voltage regulator that outputs a predetermined constant voltage (for example, 2.0 V) by applying the power supply voltage Vdd of the physical quantity sensor.
  • the inverters 41 to 43 are logic inverting circuits that operate with the constant voltage Vreg that is the output of the constant voltage circuit 45.
  • the inverter 41 is connected to the inverter 43 in series, and the output of the inverter 43 is further connected to the input terminal of the inverter 41 via the oscillation capacitor 44.
  • Inverter 42 connects both input and output terminals to the input terminal of inverter 41.
  • the inverter 42 is an inverter that enables control of output characteristics.
  • the inverter 42 is configured to be able to control the current value that goes in and out (sink, source) to and from the output terminal.
  • the current control of the inverter 42 is performed when the bias voltage generation circuit 46 inputs the bias voltage Vr.
  • the output of the inverter 43 is the oscillation output S4 of the oscillation circuit 40. As will be described in detail later, this configuration changes the oscillation frequency of the oscillation output S4 according to the power supply voltage Vdd of the physical quantity sensor.
  • the bias voltage generation circuit 46 connects the reference resistor 47 between the power supply voltage of the physical quantity sensor (between Vdd and ground) via the current control element 49, and further applies an appropriate voltage dividing point on the reference resistor 47. It is configured by connecting a comparator 48 that controls the current control element 49 so that the voltage and the midpoint voltage Vm are equal. The output of the comparator 48 is connected to the current control signal input of the inverter 42 as the bias voltage Vr, and the bias voltage Vr is also connected to the current control signal input of the current control element 49. [0079] When the power supply voltage Vdd of the physical quantity sensor changes, the midpoint voltage Vm also changes.
  • the current control element 49 is controlled by the comparator 48, and the current control element 49 has a current proportional to the power supply voltage Vdd. Flows. This control information is transmitted to the inverter 42 by the bias voltage Vr, and the current value flowing into and out of the output terminal of the inverter 42 is also set to a value proportional to the power supply voltage Vdd of the physical quantity sensor.
  • the oscillation circuit 40 Since the current value set in the inverter 42 corresponds to the charging / discharging current of the oscillation capacitor 44, the oscillation circuit 40 thereby causes the oscillation time constant to depend on the capacitance value of the oscillation capacitor 44 and the current value set in the inverter 42. That is, the oscillation frequency is determined. Therefore, with this configuration, the oscillation circuit 40 operates as a voltage controlled oscillation circuit in which the frequency of the oscillation output S4 is proportional to the power supply voltage value applied to the physical quantity sensor.
  • the time constant for generating the oscillation output S4 can be expressed by the capacitance value of the oscillation capacitor 44 and the resistance value of the reference resistor 47 that determines the charge / discharge current value of the oscillation capacitor 44.
  • R is the resistance value of the reference resistor 47
  • C is the capacitance value of the oscillation capacitor 44
  • the symbol means that the left side is proportional to the right side.
  • the oscillation capacitor 44 has the same structure as the capacitor 61b in the amplifier circuit 60 described above, and is configured on the same semiconductor chip so that the capacitance ratio is constant.
  • the reference resistor 47 has the same structure as the feedback resistor 68 of the amplifier circuit 60 and is configured to have a certain resistance ratio. As will be described in detail later, this makes it possible to increase the accuracy of the amplification factor of the amplifier circuit 60.
  • the drive circuit 80 starts the AC drive of the vibration unit 11 of the sensor element 10 with a predetermined current value. Since the drive current of the drive circuit 80 is not affected by fluctuations in the power supply voltage, the vibration unit 11 is always in a stable oscillation state.
  • the oscillation circuit 40 provided in the clock generation circuit 30A oscillates at a predetermined frequency fo as described above.
  • the oscillation output of this oscillation frequency fo is output as a clock signal.
  • the control circuit 50 can divide the oscillation output S4 by the division ratio specified by the digital input S5, and output the divided signal as the clock signal S3.
  • the oscillation output S4 is divided by 2 (frequency is 0.5 times).
  • the amplification circuit 60 operates as a low-pass filter having a predetermined amplification factor by the clock signal S3, and outputs an angular velocity signal obtained by amplifying the detection output S2 from the sensor output S6. Since the driving condition of the sensor element 10 is always constant, the signal of the detection output S2 is not affected by the power supply voltage Vdd, and the signal level becomes constant with respect to application of a certain rotational angular velocity. However, as described above, the amplification factor of the amplifier circuit 60 varies depending on the frequency of the clock signal S3.
  • the original signal of the clock signal S3 is the oscillation output S4 of the oscillation circuit 40.
  • the oscillation frequency of the oscillation circuit 40 varies in proportion to the power supply voltage of the physical quantity sensor. . Therefore, by controlling the clock generation circuit 30A so that the frequency of the clock signal S3 is proportional to the power supply voltage Vdd, the sensor output S6 output from the amplifier circuit 60 by the clock signal S3 may be proportional to the power supply voltage Vdd. it can.
  • the detection sensitivity of the physical quantity sensor increases in proportion to the change of the power supply voltage due to the above configuration.
  • the output signal of the sensor output S6 output from the amplifier circuit 60 increases. That is, the physical quantity sensor performs level conversion operation so that the detection sensitivity has a ratiometric characteristic.
  • the frequency division ratio of the control circuit 50 is fixed to 2 frequency division, but the frequency division ratio of the control circuit 50 can be selected by the digital input S5.
  • Amplification circuit 60 switches
  • the chitocapacitor circuit 61 can change the amplification factor according to the average switching frequency.
  • control circuit 50 is a logic circuit and the frequency division ratio can be set very precisely, a highly accurate analog circuit for fine adjustment of the detection sensitivity in the physical quantity sensor is not necessary.
  • Rf is the resistance value of the feedback resistor 68
  • Re is the equivalent resistance value of the switched capacitor circuit 61
  • Cs is the capacitance of the capacitor 61b
  • fo is the frequency of the oscillation output S4
  • R is the resistance value of the reference resistor 47
  • C is the capacitance value of the oscillation capacitor 44.
  • the amplification factor of the amplifier circuit 60 is determined by the capacitance ratio (CsZC) of the capacitor Cs of the capacitor 6 lb and the capacitor C of the oscillation capacitor 44, the resistance value Rf of the feedback resistor 68, and the resistance value R of the reference resistor 47. It can be seen that this depends on the resistance ratio (RfZR). In the semiconductor manufacturing process, even if there is a manufacturing error between lots or chips, it is known that the relative error within the same chip is extremely small (less than 1%).
  • Capacitors and resistance elements used in the present invention are of different sizes but have the same structure formed on the same chip. Therefore, the relative error between the capacitance Cs of the capacitor 61b and the capacitance C of the oscillation capacitance 44, and the resistance value Rf of the feedback resistor 68 and the resistance value R of the reference resistor 47 is expected to be extremely small!
  • the In the above amplification factor equation, the capacitance Cs and capacitance C, and the resistance value Rf and resistance value R are expressed in the numerator and denominator, respectively. Since the errors cancel each other, the amplification circuit 60 of the present invention maintains the gain value with high accuracy even if the absolute value error of the capacitor occurs.
  • the frequency of the oscillation output S4 decreases as the resistance value of the reference resistor 47 increases.
  • the resistance value of the feedback resistor 68 is also increased at the same rate, so that the influence on the amplifier circuit 60 is offset and increased.
  • the amplification factor of the width circuit 60 is a constant value.
  • the amplification factor of the amplifier circuit 60 is constant even when the sheet resistance of the resistance element is low or when there is a manufacturing error in the capacitor capacity of the capacitor. Furthermore, this characteristic is the same even when the value of the resistive element or capacitor changes due to the ambient temperature change of the physical quantity sensor.
  • the oscillation capacitor 44 provided in the oscillation circuit 40 and the capacitor 61b of the switched capacitor circuit 61 provided in the amplifier circuit 60 are of the same structure configured on the same chip, and By using the same structure in which the reference resistor 47 provided in the oscillation circuit 40 and the feedback resistor 68 provided in the amplifier circuit 60 are configured on the same chip, even if an absolute value error of the capacitor or resistance element occurs The amplification factor value is maintained with high accuracy.
  • resistive element 8 for determining the amplification factor of the amplifier circuit 6
  • a polysilicon resistor that can be configured on a semiconductor chip or an externally attached element is used. It is conceivable to use a resistive element.
  • the present invention is not limited to this.
  • the oscillation circuit 40 having a simpler configuration may be used.
  • the oscillation frequency of the oscillation circuit 40 is constant regardless of the power supply voltage Vdd.
  • the resistance element added above the same structure as the reference resistor 47 the amplification factor of the amplification circuit 60 is given. Semiconductor manufacturing errors and temperature characteristics can be offset, and the amplification factor of the amplifier circuit 60 can be stabilized.
  • the configuration example of the amplifier circuit shown in FIG. 8 is a configuration in which a variable resistor by opening and closing of a switch is used instead of a switched capacitor circuit as a variable resistance of an inverting amplifier circuit using the above-described operational amplifier.
  • a variable resistor 62 is connected as an input resistance connected to the inverting input terminal of the operational amplifier 69 that constitutes the inverting amplifier circuit 60A.
  • a feedback resistor 68 and a capacitor 67 are connected in parallel between the output terminal and the inverting input terminal of the operational amplifier 69, and the sensor output S6 is also output from the output terminal force of the operational amplifier 69.
  • the variable resistor 62 includes a series connection circuit of a resistor 62b and a switch 62a and a parallel connection of the resistor 62c, and is connected to the inverting input terminal of the operational amplifier 69 as an input resistor.
  • the switch 62a is composed of a transmission gate (transmission gate), and the opening / closing control is performed by a pulse modulation signal from the pulse generation circuit 30.
  • the switch 62a forms an equivalent resistance by controlling opening and closing with a pulse modulation signal, and the equivalent resistance value can be determined by an average value of the duty ratio of the pulse modulation signal.
  • the amplification factor of the amplifier circuit can be made variable in the same manner as in the configuration example described above, and the pulse modulation signal can be changed to the change of the power supply voltage. By changing it accordingly, the sensor detection output can have a ratiometric characteristic or high linearity characteristics.
  • the configuration example of the amplifier circuit shown in Fig. 9 is a gain adjustment circuit with a filter function that uses a voltage-to-current converter (OTA: operational transconductance amplifier), and the two voltage-current converters are switched. It is configured by interposing and connecting.
  • the gain adjustment circuit 63 of the amplifier circuit 60B is configured by connecting voltage-current conversion circuits 63b and 63c with a switch 63a and a capacitor 63d interposed therebetween, and the switch 63a is connected to a pulse from the pulse generation circuit 30. Open / close control is performed by a modulation signal. Let d be the duty ratio of ONZOFF that is controlled to open and close.
  • the positive terminal of the voltage-current converter 63b receives the detection output S2 and converts it to a current with a voltage difference from the negative terminal multiplied by the conversion coefficient gml.
  • the switch 63a charges this current to the capacitor 63d according to the pulse frequency or duty ratio of the pulse modulation signal.
  • the voltage-current conversion circuit 63b converts the voltage accumulated in the capacitor 63d into a current having a magnitude multiplied by the conversion coefficient -gm2 and outputs the current.
  • the transfer function of the amplifier circuit 60B is represented by (gmlZgm2) ⁇ (lZ (l + s (CZgm2))) ′ d.
  • d is determined by the ON / OFF pulse duty ratio of the switch 63a
  • the amplification factor of the amplification circuit 60B is made variable by changing the pulse modulation signal from the pulse generation circuit 30 according to the power supply voltage.
  • the switch 63a can be constituted by a transmission gate.
  • the amplification factor variable circuit is configured by one switch, and the amplification factor is made variable by switching the switch with a pulse modulation signal from the pulse generation circuit 30.
  • This switch configuration is not limited to one switch, but can also be composed of two switches.
  • Fig. 10 (a) shows a configuration example of one switch mechanism indicated by 61a in Fig. 6.
  • Figure 10 (a) consists of switch 64 with two transmission gates (transmission gates). The two transmission gates (transmission gates) are alternately turned on and off by a switching signal SW to charge and discharge the capacitor 61b, and an equivalent resistance is formed by adjusting the signal switching according to the frequency.
  • FIG. 10 (b) shows another configuration example of one switch mechanism.
  • switch 65 is composed of two photo MOS transistors.
  • the two photo MOSs 65 charge and discharge the capacitor 6 lb by alternately controlling the light emission of the light emitting diodes by the switching signal SW, and form an equivalent resistance by adjusting this signal switching according to the frequency.
  • FIG. 11 shows different examples of the variable gain circuit.
  • FIG. 11 (a) shows a configuration with one switch mechanism, which corresponds to the configuration of the switched capacitor circuit 61 shown in FIG. 6 and FIGS. 10 (a) and 10 (b). In this configuration, an equivalent resistance is formed by switching between the input terminal (in) and the output terminal (out) with a single switch mechanism via a capacitor, and adjusting this switching according to the frequency.
  • FIG. 11 (b) shows a configuration with two switch mechanisms.
  • two switch mechanisms with capacitors are provided between the input terminal (in) and the output terminal (out), and switching between the two switch mechanisms is adjusted according to the frequency to form an equivalent resistance.
  • FIG. 11 (b) can be realized by providing two switch mechanisms shown in FIG. 10 (a) or FIG. 10 (b).
  • the noise generation circuit 30 includes a triangular wave generator 30a, a comparator 30b, and a resistor 30c.
  • This resistor 30c outputs the power supply voltage in a divided manner, and the resistance value and the voltage dividing ratio can be arbitrarily set.
  • the comparator 30b compares the triangular wave signal having a constant amplitude value generated from the triangular wave generator 30a with the voltage value set by the resistor 30c, and generates a pulse signal. Accordingly, the comparator 30b compares the triangular wave signal having a constant amplitude value that does not change according to the power supply voltage with the threshold voltage that changes according to the power supply voltage and the value voltage.
  • Fig. 13 (a) is an example of generating a pulse signal, and shows the triangular wave signal Va generated by the triangular wave generator 30a and the threshold voltages Vb, Vc, Vd formed by the resistor 30c. Yes.
  • the comparator 30b compares the triangular wave signal Va with the threshold voltages Vb, Vc, Vd, and forms a noise signal according to the magnitude.
  • Figure 13 (b) shows a pulse signal obtained by comparing the triangular wave signal Va with the threshold voltage Vb.When the threshold voltage Vb is 1Z2 of the amplitude of the triangular wave signal Va, the duty ratio is 0. 5 pulse signals are obtained.
  • Figure 13 (c) shows a pulse signal obtained by comparing the triangular wave signal Va with the threshold voltage!
  • a pulse modulation signal corresponding to the power supply voltage can be formed.
  • the physical quantity sensor according to the embodiment of the present invention has been described above. According to the present invention, it is possible to simultaneously provide a linearity characteristic and a ratiometric characteristic of sensor detection output, which have been difficult in the prior art. Furthermore, it is possible to obtain a physical quantity sensor that can adjust the detection sensitivity with high accuracy without being affected by manufacturing errors and temperature changes.
  • the present invention can be applied to output signal level adjustment of a wide variety of physical quantity sensors such as an angular velocity sensor represented by a vibration gyro, a magnetic sensor, and an acceleration sensor.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Technology Law (AREA)
  • Gyroscopes (AREA)
  • Measuring Fluid Pressure (AREA)
  • Amplifiers (AREA)

Abstract

外部から印加された物理量を電気信号に変換して検出信号を出力するセンサ回路と、このセンサ回路からの検出信号を所定の信号に調整する調整回路と、この調整回路の信号から出力信号を形成する出力回路とを有し、センサ回路と出力回路とを共通の電源電圧で駆動する。調整回路は、電源電圧に基づいてパルス変調信号を生成するパルス生成回路と、センサ回路からの検出信号を、パルス変調信号により増幅率を可変として増幅する増幅回路を有し、出力信号の検出感度を電源電圧に応じて可変とする。この構成により、調整回路に備えた増幅回路からの出力をリニアリティ特性の高いセンサ出力にでき、その結果、センサ検出感度が高精度な物理量センサを実現でき、物理量センサの検出感度の良好なレシオメトリック特性、高いリニアリティ、所望の特性の検出感度を得る。

Description

明 細 書
物理量センサ
技術分野
[0001] 本発明は、物理量センサに関し、特に物理量センサの出力レベル変換回路の構成 に関する。
背景技術
[0002] 現在では、さまざまな種類の物理量センサが利用されている。その中で特に、振動 ジャイロに代表される角速度センサのセンサ出力の補正については多くの提案がな されている。
[0003] 特許文献 1に示した従来技術にぉ 、ては、物理量センサの検出感度が、物理量セ ンサの動作する電源電圧の変化に対して比例して変化させるための手法が提案され ている。この手法は例えばレシオメトリックとして知られている。図 14、図 15はレシオメ トリックの概略構成を説明するための図である。レシオメトリックでは、センサ 110およ び AZD変翻 120は共通の電源電圧 Vrefの供給を受ける。図 15 (a)〜(d)と図 15 (d)〜(f)は、センサ 110あるいは AZD変換器 120の!、ずれか一方のみにつ!ヽて電 源電圧 Vrefに対応させた場合を示して 、る。
[0004] 図 15 (a)〜(c)は、センサ 110のみが電源電圧 Vrefに対応する例であり、センサ 11 0の出力(図 15 (a) )は電源電圧 Vrefの変動(ここでは低下)によって低下する。この センサ 110の出力を AZD変換器 120で信号出力を行う場合、 AZD変換器 120は 電源電圧 Vrefの変動に対応して 、な 、ため、 AZD変換後のディジタル値に相違が 生じることになる(図 15 (b)、 (c) )0
[0005] また、図 15 (c!)〜 (f)は、 AZD変換器 120のみが電源電圧 Vrefに対応する例であ り、センサ 110の出力(図 15 (d) )は電源電圧 Vrefの変動に依存しない。このセンサ 1 10の出力を AZD変換器 120で信号出力を行う場合、 AZD変換器 120は電源電 圧 Vrefの変動に対応して ヽるため、 AZD変換後のディジタル値に相違が生じること になる(図 15 (e)、(f) )。
[0006] これに対して、図 15 (g)〜(i)は、センサ 110および A/D変換器 120が共に電源 電圧 Vrefに対応する例であり、センサ 110の出力(図 15 (d) )は電源電圧 Vrefの変動 (ここでは低下)によって低下する。このセンサ 110の出力を AZD変翻 120で信号 出力を行う場合、 A,D変換器 120も電源電圧 Vrefの変動に対応しているため、 AZ D変換後のディジタル値に相違は生じな 、ことになる(図 15 (h)、(i) )。
[0007] 図 16に示す従来の物理量センサにおいては、検波回路 2によって検波したセンサ 素子 1の出力信号を、さらに増幅回路 6によって増幅出力する構成となっている。
[0008] 増幅回路 6としては、 MOS素子 7を入力抵抗とし、抵抗素子 8を帰還抵抗とした、ォ ぺアンプ 4による反転増幅回路を用いている。この MOS素子 7のゲート電圧を、物理 量センサの電源電圧に応じて変化する電圧でバイアスすることで、物理量センサの 検出感度が調整可能になっており、特に電源電圧の変化に対して物理量センサの 検出感度が比例して変化するようになって 、る。
特許文献 1 :特開 2004— 53396号公報 (第 4〜6頁、第 1図)
発明の開示
発明が解決しょうとする課題
[0009] し力しながら、 MOS素子 7による抵抗成分には一般的に非線形性があり、入力電 圧が極めて小さ!/、場合でし力線形抵抗素子として動作しな 、ことが知られて 、る。し たがって、この増幅回路 6への入力信号の振幅が大きい場合には、すなわちセンサ 素子 1からの出力信号が大き 、信号範囲と小さ 、信号範囲とでは、増幅回路 6の増 幅率が異なってしまい、物理量センサの検出感度のリニアリティ(直線性)が得られな いため、その結果、レシオメトリック特性が良好とならないという問題があった。
[0010] また、センサ素子の特性や、物理量センサに求められる出力特性によっては、電源 電圧と検出感度との間に直線性の他に、所望の関係が求められる場合がある。しか しながら、上記した MOS素子 7を用いた増幅回路では、増幅率は MOS素子の特性 に依存するため、所望の感度特性を得ることができない。
[0011] 本発明は上記の問題点を改善し、物理量センサの検出感度の良好なレシオメトリツ ク特性を得ることを目的とする。
[0012] また、従来技術に比べ、高いリニアリティを有し検出感度が高精度な物理量センサ を提供することを目的とする。 [0013] また、物理量センサにおいて、所望の特性の検出感度を得ることを目的とする。 課題を解決するための手段
[0014] 本発明の物理量センサは、電源電圧に基づいてパルス変調信号を生成し、このパ ルス変調信号によって増幅回路の増幅率を可変とするものであり、パルス変調信号 を用いることによって、高いリニアリティを有し、高精度の検出感度を得ることができる 。また、パルス変調信号を用いることによって、所望の特性の検出感度を得ることがで きる。
[0015] パルス変調は、パルスの幅を変調するパルス幅変調、あるいはパルスの周期を変 調するパルス周期変調とすることができる。パルス幅変調は、パルスが出力される時 間幅とパルスが出力されない時間幅の比率のデューティー比で表すこともできる。
[0016] パルス変調の変調量を定めるパルス幅あるいはパルス周期と電源電圧との関係は 任意に定めることができるため、電源電圧と増幅回路で得られる出力信号との間の関 係は、このパルス変調に変調関係に基づいて、直線性の関係に限らず所定の関数 関係で任意に定めることができる。
[0017] また、増幅回路は、スィッチの開閉制御によって増幅率を変えることができる構成を 備え、このスィッチの開閉制御をパルス変調信号によって行うことで、パルス変調によ り増幅率を変えることができる。
[0018] したがって、電源電圧と増幅回路で得られる出力信号との間の関係は、このパルス 変調に変調関係に基づいて任意に定めることができ、電源電圧と感度特性との関係 を直線性良く設定する他、所定の関係に設定することができる。
[0019] 本発明の物理量センサは、外部から印加された物理量を電気信号に変換して検出 信号を出力するセンサ回路と、このセンサ回路力 の検出信号を所定の信号に調整 する調整回路とを備える。
[0020] さらに、本発明の調整回路は、この調整回路を駆動する電源電圧に基づいてパル ス変調信号を生成するパルス生成回路と、センサ回路からの検出信号を、パルス変 調信号により増幅率を可変として増幅する増幅回路を有し、増幅回路力 出力される 出力信号の検出感度を電源電圧に応じて可変とする。また、電源電圧に対するパル ス幅ゃパルス周波数は、線形関数に限らず所定の関数で定めることができる。所定 関数を線形関数とする場合には、パルス生成回路は電源電圧に比例したパルス幅 又はパルス周波数のパルス変調信号を生成する。
[0021] ノ ルス生成回路は、電源電圧に基づくパルス変調によって、所定の関数で定めら れたパルス幅又はパルス周波数に変調してパルス変調信号を生成する。パルス変調 は、増幅しょうとする検出信号の振幅に依存することなく行うことができるため、高いリ -ァリティで高精度の検出感度を得ることができる他、所望の特性の検出感度を得る ことができる。
[0022] また、増幅回路の一構成は、入力抵抗回路と帰還抵抗回路の抵抗値比によって増 幅率が定まる反転増幅器で構成することができる。この反転増幅器において、入力 抵抗回路と帰還抵抗回路の少なくとも一方の抵抗回路は、パルス変調信号によって 抵抗値を可変とする可変抵抗回路であり、増幅回路は前記可変抵抗回路の抵抗値 をパルス変調信号により可変とすることによって増幅率を可変とする。
[0023] この可変抵抗回路は、スィッチトキャパシタ回路で構成することができる。スィッチト キャパシタ回路は、コンデンサに対するスィッチの切り替えをパルス変調信号で行うこ とにより等価抵抗を可変とする。
[0024] また、可変抵抗回路は、抵抗とスィッチとで構成することができる。このスィッチをパ ルス変調信号で断続することにより等価抵抗を可変とする。
[0025] また、さらに、可変抵抗回路は、 2つのスィッチをコンデンサを挟んで接続し、この 2 つのスィッチを切り替えることによってコンデンサに対する充放電を行 \ヽ、スィッチの 切り替えをパルス変調信号のパルス幅やデューティー比に基づいて行うことにより等 価抵抗を可変とする。
[0026] また、他の構成の増幅回路は、 2つの電圧—電流変換回路をスィッチを挟んで接 続するゲイン調整回路とすることができる。このゲイン調整回路は、パルス変調信号 によるスィッチを開閉する。スィッチの開閉状態をパルス変調信号に基づいて変える ことによって、ゲイン調整回路の伝達関数が変化する。ゲイン調整回路の増幅率は、 ゲイン調整回路の伝達関数に依存するため、パルス変調信号によって伝達関数を可 変とすることで増幅率を可変とする。
[0027] パルス変調信号を生成するパルス生成回路は、例えば、振幅が一定の三角波を所 定のしき 、値と比較し、このしき 、値に対する大ある 、は小の期間でパルスを生成す る構成とすることができ、このしき!ヽ値として電源電圧を用いることができる。
[0028] また、本発明の物理量センサは、上記目的を達成するために、以下のような構造を 採用することができる。
[0029] 外部から印加された物理量を電気信号に変換するセンサ素子と、このセンサ素子 の出力信号を増幅および検波する検波回路と、電源を印加することにより検波回路 力 の出力信号を所定の信号に調整する調整回路とを有する物理量センサにおい て、前記調整回路は、コンデンサの接続状態を切り替えることで電荷の移動を行うス イッチトキャパシタ回路を備えた増幅回路とクロック信号を発生するクロック生成回路 とを有する。クロック生成回路を電源電圧に応じて制御し、このクロック生成回路で生 成されるクロック信号により増幅器から出力される出力信号の検出感度を、電源電圧 に応じて可変とする。
[0030] この構成により、調整回路に備えた増幅回路からの出力をリニアリティ特性の高い センサ出力にできるので、その結果、センサ検出感度が高精度な物理量センサを実 現できる。
[0031] また、調整回路は、クロック信号を発生するクロック生成回路を備え、スィッチトキヤ パシタ回路は、クロック信号によってコンデンサの接続状態を切り換える。この構成に より、スィッチトキャパシタ回路の切り換えを行う為のクロック信号を生成するクロック生 成回路を専用に設け、スィッチトキャパシタ回路を高精度に駆動することができる。こ こで、クロック信号は、所定のパルス幅や所定のデューティー比、又は所定のパルス 周波数を持つ周期信号であり、本発明の物理量センサでは、このパルス幅やデュー ティー比、あるいは周波数を電源電圧に応じて可変とするものである。
[0032] また、クロック生成回路を電源の電圧に応じて制御する。クロック生成回路で生成さ れるクロック信号によって増幅回路を制御することにより、増幅回路から出力される出 力信号を電源の電圧に比例させる。この構成により、物理量センサの検出感度が電 源の電圧に比例する、いわゆるレシオメトリック特性を実現できる。
[0033] また、クロック生成回路は、発振信号を出力する発振回路と、この発振回路の出力 信号を所定の分周比に調整し出力する制御回路とを備えた構成とする。この構成に より、クロック信号の平均周波数を高精度に調整することが可能となり、これによりセン サ素子の製造誤差に起因する物理量センサの検出感度誤差を容易に調整できる。
[0034] また、クロック生成回路は発振回路を有する。この発振回路は、電源の電圧入力に 応じて出力信号の周波数が変化する電圧制御発振回路で構成する。この構成により 、物理量センサの検出感度が電源の電圧に比例する、いわゆるレシオメトリック出力 を、温度特性も含め容易にかつ高 、精度で実現することが可能となる。
[0035] また、クロック生成回路はコンデンサを備えた発振回路を有する。この発振回路のコ ンデンサは、増幅回路に設けたコンデンサと同一構造である。この構成により、容量 比を一定にできるので、増幅回路の増幅率の高精度化が実現できる。
[0036] また、クロック生成回路は抵抗素子を備えた発振回路を有する。発振回路の抵抗素 子は、増幅回路に設けた抵抗素子と同一構造とすることができる。この構成により、抵 抗比を一定にできるので、増幅回路の増幅率の高精度化が実現できる。
[0037] 本発明の物理量センサは、外部から印加された物理量を電気信号に変換するセン サ素子と、このセンサ素子を駆動する駆動回路と、前記センサ素子の出力信号を増 幅および検波する検波回路と、電源を印加することにより前記検波回路力 の出力 信号を所定の信号に調整する調整回路とを有する物理量センサである。駆動回路は 、センサ素子の駆動条件の基準となる一定電圧を出力する定電圧回路を有する。ま た、調整回路は、コンデンサの接続状態を切り替えることで電荷の移動を行うスィッチ トキャパシタ回路を備えた増幅回路と、クロック信号を発生するクロック生成回路とを 有する。クロック生成回路を電源の電圧に応じて制御し、クロック生成回路で生成さ れるクロック信号によって増幅回路力 出力される出力信号の検出感度を電源の電 圧に応じて可変とする。
[0038] この構成により、駆動回路がセンサ素子を電源電圧の変化に依存せず安定に駆動 することができ、更に、増幅回路からの出力をリニアリティ特性の高いセンサ出力にで きると共に電源電圧に比例するレシオメトリック特性を実現できる。その結果、センサ 検出感度が高精度な物理量センサを提供できる。本発明の物理量センサは、外部か ら印加された物理量を電気信号に変換するセンサ素子と、該センサ素子の出力信号 を増幅および検波する検波手段と、該検波手段の出力信号を所定の信号に調整し 出力する調整手段とからなる物理量センサであって、前記調整手段は、発振回路を 備えたクロック生成手段と、前記クロック生成手段のクロック信号によって増幅動作を 行う増幅手段とを備え、前記検波手段の出力をレベル変換して出力することを特徴と する。
発明の効果
[0039] 本発明によれば、調整回路に備えた増幅回路からの出力をリニアリティ特性の高い センサ出力とすることができるので、センサ検出感度が高精度な物理量センサを提供 することが可能となる。
図面の簡単な説明
[0040] [図 1]本発明の物理量センサの全体構成を示すブロック図である。
[図 2]パルス生成回路によるパルス変調信号の一例を示す図である。
[図 3]電源の電源電圧 Vrefと増幅回路の出力との間の関係を説明するための図であ る。
[図 4]本発明の物理量センサの一実施形態の全体構成を示すブロック図である。
[図 5]本発明の物理量センサの他の実施形態の全体構成を示すブロック図である。
[図 6]本発明の物理量センサの増幅回路の構成を示す回路図である。
[図 7]本発明の物理量センサのクロック生成回路の構成を示す回路図である。
[図 8]本発明の物理量センサの増幅回路の別の構成を示す回路図である。
[図 9]本発明の物理量センサの増幅回路の別の構成を示す回路図である。
[図 10]2つのスィッチ機構の構成例を示す図である。
[図 11]増幅率可変回路の概略構成を示す図である。
[図 12]パルス変調回路の構成例を説明する構成図である。
[図 13]パルス変調回路の構成例を説明する信号図である。
[図 14]レシオメトリックの概略構成を説明するための図である。
[図 15]レシオメトリックの概略構成を説明するための図である。
[図 16]従来の物理量センサを説明するための図である。
符号の説明
[0041] 10 センサ素子 駆動部
検出部
検波回路
パルス生成回路A クロック生成回路a 三角波生成器b 比較器
c 抵抗器
発振回路
、 42、 43 インバータ 発振容量
定電圧回路
バイアス電圧生成回路 基準抵抗
比較器
電流制御素子 制御回路
, 60A, 60B 増幅回路a 増幅率可変回路 スィッチトキャパシタ回路a スィッチ
b コンデンサ
可変抵抗器
a スィッチ
b, 62b 抵抗
伝達ゲート
a スィッチ
b、 63c TOC 63d コンデンサ
64、 65、 66 スィッチ
67 フィルタコンデンサ
68 帰還抵抗
69 オペアンプ
70 中点電圧生成回路
80 駆動回路
100 調整回路
110 センサ回路
120 AZD変換回路
200 電源
S1 センサ素子出力
S2 検波出力
S3 クロック信号
S4 発振出力
S5 ディジタル入力
S6 センサ出力
Vdd 電源電圧
Vm 中点電圧
Vr バイアス電圧
Vreg 定電圧
Vref 電源電圧
発明を実施するための最良の形態
[0042] [物理量センサの概略構成の説明:図 1〜図 3]
以下図面 1〜図 3を用いて本発明の物理量センサとその周辺構成を説明する。図 1 は本発明の物理量センサの全体構成を示すブロック図である。
[0043] 図 1において、物理量センサ 1は、物理量に応じた信号を出力するセンサ回路 110 と、センサ回路 110の出力信号に対して増幅等の信号処理を施す調整回路 100とを 備える。この物理量センサ 1には、電源 200と AZD変翻 120が接続されている。 A ZD変換回路 120は、調整回路 100で処理したアナログ信号を受けてディジタル信 号に変換する。センサ回路 110と調整回路 100と AZD変換回路 120とは、電源 200 から電源電圧 Vrefの供給を受け、 AZD変換回路 120は電源電圧 Vref〖こ基づ!/、て A ZD変換を行う。
[0044] 調整回路 100は、パルス生成回路 30と増幅回路 60を備え、電源 200により駆動さ れる。増幅回路 60は増幅率可変回路 60aを備える。パルス生成回路 30は、電源電 圧に応じてパルス幅やパルス周波数を変調したノ ルス変調信号を生成する。なお、 パルス幅はパルスのオンとオフの時間幅の比率であるデューティー比により定めるこ とができる。増幅率可変回路 60aは、パルス生成回路 30で生成したパルス変調信号 に基づいて増幅回路 60の増幅率を可変とする。なお、図 1に示す実施形態では、セ ンサ回路 110と調整回路 100とが同一の電源で駆動する例を示しているが、本発明 はこれに限らずそれぞれ別々の電源によって駆動してもよい。
[0045] 図 2は、パルス生成回路 30によるパルス変調信号の一例を示している。図 2 (a)は、 電源電圧 Vrefの電圧値に応じてパルス幅を変調する PWM (pulse width modulatio n)の例であり、電源電圧 Vrefの電圧値に応じたデューティー比(例えば、 Ton/T)が 設定される。なお、 T=Ton+Toffとしている。
[0046] また、図 2 (b)は、電源電圧 Vrefの電圧値に応じてパルス周波数を変調する PFM ( pulse frequency modulation)の例であり、例えば、電源電圧 Vrefの電圧値に応じて 、所定周期間隔 Tの間に発生するパルスの個数が設定される。
[0047] 上記した構成によれば、電源電圧 Vref〖こ基づいてパルス幅やパルス周波数を変調 したパルス変調信号を生成し、生成したパルス変調信号に基づ ヽて増幅率を可変と することによって、センサ出力を電源電圧 Vrefに基づいて増幅することができる。この ように、本発明の調整回路 100は、電源電圧 Vrefの変動に応じた増幅率の変更を行 うことによって、センサ回路 110のセンサ出力に対して、電源電圧に比例するレシオメ トリック特性を持たせることができる。
[0048] なお、ここで、調整回路 100における電源 200の電源電圧 Vrefと増幅回路 60の出 力との間の関係は、直線性を持たせる他に、任意の特性とすることができる。この電 源電圧 Vrefと出力との間の関係は、パルス生成回路 30によるパルス変調特性で定 めることができ、電源電圧 Vrefとパルス幅やパルス周波数との対向関係を、変換関数 や変換テーブルの形態で予め ROM等の記録媒体に記憶させておくことができる。 パルス生成回路 30は、変換関数に入力した電源電圧 Vrefの値を入力することで取 得する他、変換テーブルを用いて電源電圧 Vrefの値に対応するパルス変調信号を 得ることができる。
[0049] 図 3 (a)は、電源の電源電圧 Vrefと増幅回路の出力との間に直線性を持たせる例 であり、ある入力電圧 Vinにおいて、電源の準電圧 Vrefの変動に対して、増幅回路は 直線性を有して出力する。図 3 (b) , (c)は、電源の電源電圧 Vrefと増幅回路の出力 との間に所定の関数関係を持たせる例であり、ある入力電圧 Vinにおいて、電源の準 電圧 Vrefの変動に対して、増幅回路は所定の関数関係を有して出力する。
[0050] なお、この電源の電源電圧 Vrefと増幅回路の出力との間の関係は増幅回路 60の 特性にも依存するため、ノ ルス生成回路 30は、この増幅回路 60の特性を考慮して、 所望の特性が得られるように所定の関数関係を設定する。例えば、電源の電源電圧 Vrefと増幅回路の出力との間に直線性を持たせる場合に、増幅回路 60が非直線性 を有しているときには、パルス生成回路 30はこの非直線性を相殺するようなノ ルス変 調を行う。
[0051] [物理量センサの一実施形態の説明:図 4〜図 6]
次に、図 4面〜図 6を用いて本発明の物理量センサの一実施形態を説明する。図 4 は本発明の物理量センサの一実施形態の全体構成を示すブロック図である。
[0052] [全体の構成説明:図 4]
まず、図 4を用いて本発明の物理量センサの実施形態の全体構成について説明す る。なお、ここでは、前記図 1で示した構成図において、センサ回路 110と調整回路 1 00について示している。
[0053] 図 4において、 10はセンサ素子であり、駆動部 11と検出部 12とを有する。符号 20 は検出部 11からのセンサ素子出力 S1を増幅及び検波する検波回路である。また、 駆動部 11は駆動回路 80によって駆動される。ここで、センサ回路 110は、これらのセ ンサ素子 10、検波回路 20、駆動回路 80によって構成することができるが、検波回路 20や駆動回路 80はセンサ回路 110と別構成とすることもできる。例えば、検波回路 2 0は調整回路 100内に組み込む構成としてもよぐまた、駆動回路 80は中点電圧生 成回路 70等とともに、電圧に関連する回路構成に組み込んでも良い。
[0054] また、符号、 100は調整回路であり、増幅回路 60とクロック生成回路 30Aとを備え ている。クロック生成回路 30Aは、発振回路 40を備え、図 1で示したパルス生成回路 30を構成する。なお、符号はクロック生成手段 60は増幅手段、 100は調整手段、 80 は、センサ素子 10の駆動部 11を駆動するための駆動回路であり、符号 70は、検波 回路 20や増幅回路 60が動作するための電圧源であり、例えば、電源電圧の 1/2の 電圧値を出力する。
[0055] さらに、図 4において、符号 S1はセンサ素子の検出部 12の出力、符号 S2は検波 回路 20の検波出力、符号 S3はクロック生成回路 30Aのクロック信号、符号 S4は発 振回路 40の発振出力、符号 S6は物理量センサから出力されるセンサ出力である。こ の物理量センサの回路部分、すなわち検波回路 20と調整回路 100と駆動回路 80と は、外部から印加する電圧 Vdd (例えば 5. 0V)で動作する。 Vddは物理量センサの 電源電圧である。
[0056] センサ素子 10は、例えば、回転角速度を検知するジャイロ振動子とすることができ 、このジャイロ振動子の場合には、音叉形状に形成した圧電材料の表面に金属電極 を配して構成することができる。センサ素子 10は駆動回路 80によって発振駆動され 、このセンサ素子 10が振動中に回転角速度を受けると、微弱な交流信号がセンサ素 子出力 S1として現れる。
[0057] 駆動回路 80には、センサ素子 10の駆動条件を一定ィ匕する機能、例えば電源電圧 の変動の影響を受けな 、高精度の定電流源 (図示せず)から得る電流値と、センサ 素子 10の励振電流の実効値とが等しくなるように発振制御する機能を有するものを 用いる。あるいは、駆動回路 80に、電源電圧の変動の影響を受けず一定の電圧を 出力する定電圧回路を用い,この一定電圧を基準にセンサ素子 10の励振電流を安 定ィ匕するような構成でもよ ヽ。
[0058] 検波回路 20は、センサ素子 10から得られたセンサ素子出力 S1を検波および増幅 し、直流化した信号を出力する回路である。検波回路 20から検波出力 S2が出力さ れる。センサ素子 10及び検波回路 20の構成は、一般に知られている回路であるの で説明は省略する。
[0059] 調整回路 100は、検波回路 20によって検波および増幅された検波出力 S2を所定 のレベル、すなわち物理量センサの検出感度を調整して外部へ物理量センサ出力 S 6として出力する信号レベル変換回路である。調整回路 100は、クロック生成回路 30 Aと増幅回路 60とで構成する。なお、クロック生成回路 30Aは、図 1中のパルス生成 回路 30に対応する回路であり、電源回路力 印加される電圧に応じたクロック信号を 生成して出力する。増幅回路 60は、コンデンサの接続状態を切り替えることで電荷の 移動を行う、いわゆるスィッチトキャパシタ回路 61 (図 6)を入力段に備えた増幅回路 である。このスィッチトキャパシタ回路 61は、図 1中の増幅率可変回路 60aに対応す る回路であり、パルス変調信号に相当するクロック信号に基づいて増幅率を可変とす る。
[0060] ここで、クロック生成回路 30Aは発振回路 40を備える。この発振回路 40は、出力周 波数が印加電圧 (例えば、電源電圧 Vref)に比例して変化する形式の電圧制御発振 回路 (VCO)によって構成することができる。これによつて、クロック生成回路 30Aから は、印加電圧に比例した周波数を持つクロック信号 S3が出力される。
[0061] また、クロック生成回路 30Aは、発振回路 40に加えて制御回路 50を備え、発振回 路 40の発振した発振出力を分周して、単位時間当たりの出力パルス数を可変とする ことができる。図 5は構成例について示している。図 5に示す構成は、クロック生成回 路 30Aが発振回路 40に加えて制御回路 50を備え、この制御回路 50に対して外部 から制御信号 (S5)が入力する以外は図 4に示す構成と同様であるため、その他の構 成については説明を省略する。
[0062] 制御回路 50は、発振出力 S4を分周し、クロック信号 S3として出力する論理回路で ある。制御回路 50の分周比は、予め用意した有理数比のうちからディジタル入力 S5 によって選択的に設定可能な構成とする。制御回路 50は、単位時間内の出力パル ス数を切り替え可能であるレートマルチプライヤ回路で容易に実現できるため、詳細 な説明は省略する。発振回路 40および増幅回路 60の構成については後述する。
[0063] 中点電圧生成回路 70は物理量センサに印加する電源電圧の 1Z2の電圧値を出 力する電圧源である。中点電圧生成回路 70は、検波回路 20や増幅回路 60が動作 するための中点電圧 Vmを供給する。例えば、電源電圧 Vddが 5. 0Vの場合は、中 点電圧生成回路 70は中点電圧 Vmとして 2. 5Vを生成して出力する。
[0064] [増幅回路 60の構成説明:図 6]
次に、図 6を用いて増幅回路 60の構成例について説明する。図 6に示す増幅回路 60は、増幅率を可変とする回路構成としてスィッチトキャパシタ回路を備える例であ る。増幅回路 60は、オペアンプ 69を有する反転増幅回路の構成であり、オペアンプ 69の出力端と入力端 (反転入力端子)との間に、帰還抵抗 68とフィルタコンデンサ 6 7の並列接続を接続し、オペアンプ 69の同入力端 (反転入力端子)に入力抵抗とし てスィッチトキャパシタ回路 61を接続する。ここで、スィッチトキャパシタ回路 61は、 2 接点を備えたスィッチ 6 laとコンデンサ 6 lbによって構成される。
[0065] スィッチ 61aは MOS素子による伝達ゲート(トランスミッションゲート)で構成できる。
特に、スィッチ 6 laの接点状態はクロック信号 S3に応じて切り替わるよう構成する。つ まり、クロック信号 S3に応じてコンデンサ 61bの接続状態が切り換わる。さらに、コン デンサ 6 lbや帰還抵抗 68も同様に半導体プロセスで製造可能であり、スィッチ 6 laと 同一の半導体チップ上に構成する。
[0066] コンデンサ 61bの一端は中点電圧 Vmに接続し他端をスィッチ 61aの固定接点へ 接続する。スィッチ 61aの一方の接点は増幅回路 60の入力端子であり、検波出力 S 2が接続する。スィッチ 61aの他方の接点はオペアンプ 69の反転入力端子に接続す る。帰還抵抗 68およびフィルタコンデンサ 67は共にオペアンプ 69の反転入力端子と 出力端子との間に接続する。オペアンプ 69の非反転入力端子は中点電圧 Vmに接 続する。
[0067] スィッチトキャパシタ回路 61は、スィッチ 61a及びコンデンサ 61bで構成する。スイツ チ 61aの接点が検波出力 S2側へ導通する状態では、コンデンサ 61bが検波出力 S2 の電圧を蓄える。次にスィッチ 61aがオペアンプ 69側へ導通する状態となるとコンデ ンサ 61bの蓄えた電荷はオペアンプ 69によって帰還抵抗 68およびフィルタコンデン サ 67へ放電される。
[0068] このように、クロック生成回路 30Aで生成したクロック信号 S3に応じて、スィッチ 61a を検波出力 S2側とオペアンプ 69側とに切り換えることで、コンデンサ 61bの接続状 態を切り換えることになる。この構成において、スィッチトキャパシタ回路 61の切り換 えを行う為のクロック信号 S3を生成するために、クロック生成回路 30Aを専用に設け ることにより、スィッチトキャパシタ回路 61を高精度に駆動することができる。
[0069] スィッチ 6 laが上記の切り替え動作を高速に行うことで、スィッチトキャパシタ回路 6 1は、抵抗値が次式の Re、すなわち
Re= l/ (f -Cs)
で表現できる抵抗素子と等価の動作をする。なお、ここで、 fはスィッチ 6 laの平均 切り替え周波数、 Csはコンデンサ 6 lbの容量である。
[0070] スィッチトキャパシタ回路 61は抵抗素子と等価であることから、増幅回路 60は、反 転増幅回路を応用した 1次のローパスフィルタ (不完全積分回路)として動作する。増 幅回路 60の増幅率は、帰還抵抗と入力抵抗の比で定まる。したがって、上記した構 成において、入力抵抗をスィッチトキャパシタ回路で構成し、このスィッチトキャパシタ 回路の等価抵抗をクロック信号 S3の周波数によって変えることによって、増幅回路の 増幅率を可変とすることができる。したがって、クロック信号の周波数を電源電圧に応 じて変えることにより、増幅回路の増幅率を電源電圧に応じて可変とすることができる
[0071] 尚、スィッチトキャパシタ回路 61を用いた増幅回路 60は、コンデンサ 61bに、容量 の電圧依存性のな ヽコンデンサを用いることで、高 ヽリニアリティを得ることができる。 半導体チップ上でこのような特性のコンデンサを実現するには、例えば一般的な 2層 ポリシリコンプロセスにより、電極をポリシリコンィ匕したコンデンサ 61bを構成すればよ い。
[0072] また、上記した例では、オペアンプ 69の入力抵抗をスィッチトキャパシタ回路 61に よる等価抵抗で構成する例を示している力 オペアンプ 69の帰還抵抗 38についても 同様にスィッチトキャパシタ回路による等価抵抗で構成してもよい。
[0073] 増幅回路 60の増幅率は、上記したように帰還抵抗と入力抵抗の比で定まるため、 帰還抵抗をスィッチトキャパシタ回路で構成し、このスィッチトキャパシタ回路の等価 抵抗をクロック信号 S3の周波数によって変えることによって、増幅回路の増幅率を可 変とすることができる。なお、この構成については図示していない。したがって、クロッ ク信号の周波数を電源電圧に応じて変えることにより、増幅回路の増幅率を電源電 圧に応じて可変とすることができる。
[0074] なお、帰還抵抗と入力抵抗の何れか一方をスィッチトキャパシタ回路で構成する他 、両抵抗をスィッチトキャパシタ回路で構成としてもょ 、。
[0075] [発振回路 40の構成説明:図 7]
次に、図 7を用いて、電圧制御発振回路の例である発振回路 40の構成について簡 単に説明する。発振回路 40はインバータ 41〜43と、発振容量 44と、定電圧源であ る定電圧回路 45と、ノィァス電圧生成回路 46とで構成する。バイアス電圧生成回路 46は、基準抵抗 47と、比較器 48と、電流制御素子 49とで構成する。
[0076] 定電圧回路 45は物理量センサの電源電圧 Vddの印加により、所定の一定電圧 (例 えば 2. 0V)を出力する電圧レギユレータである。インバータ 41〜43は、定電圧回路 45の出力である定電圧 Vregによって動作する論理反転回路である。インバータ 41 はインバータ 43へ直列に接続し、さらにインバータ 43の出力を発振容量 44を介して インバータ 41の入力端子に接続した環状構成とする。インバータ 42は入出力端子を 共にインバータ 41の入力端子へ接続する。
[0077] 特に、インバータ 42は出力特性を制御可能とするインバータである。すなわち、ィ ンバータ 42は、出力端子へ出入り(シンク、ソース)する電流値を制御可能な構成で ある。インバータ 42の電流制御は、バイアス電圧生成回路 46がバイアス電圧 Vrを入 力することで行う。インバータ 43の出力は発振回路 40の発振出力 S4である。詳細は 後述するが、本構成により物理量センサの電源電圧 Vddに応じて発振出力 S4の発 振周波数が変化する。
[0078] バイアス電圧生成回路 46は、基準抵抗 47を電流制御素子 49を介して物理量セン サの電源電圧間 (Vdd—接地間)に接続し、さらに基準抵抗 47上の適当な分圧点の 電圧と中点電圧 Vmが等しくなるよう電流制御素子 49を制御する比較器 48を接続す ることで構成する。比較器 48の出力はバイアス電圧 Vrとしてインバータ 42の電流制 御信号入力へ接続し、さら〖こ、バイアス電圧 Vrは電流制御素子 49の電流制御信号 入力にも接続する。 [0079] 物理量センサの電源電圧 Vddが変化すると、中点電圧 Vmも変化するため、電流 制御素子 49は比較器 48によって電流制御がなされ、電流制御素子 49には電源電 圧 Vddに比例した電流が流れる。この制御情報はバイアス電圧 Vrによってインバー タ 42に伝達し、インバータ 42の出力端子に出入りする電流値も物理量センサの電源 電圧 Vddに比例した値に設定される。
[0080] インバータ 42に設定した電流値は発振容量 44の充放電電流に相当するため、こ れにより発振回路 40は、発振容量 44の容量値と、インバータ 42に設定した電流値 によって発振時定数、すなわち発振周波数が決定する。したがって、この構成により 、発振回路 40は物理量センサへ印加する電源電圧値に対して発振出力 S4の周波 数が比例し、電圧制御発振回路として動作する。
[0081] 発振出力 S4を発生するための時定数は、発振容量 44の容量値と、発振容量 44の 充放電電流値を決める基準抵抗 47の抵抗値とによって表すことができ、発振出力 S 4の周波数 は
foocf
∞1/ (R-C)
となる。なお、 Rは基準抵抗 47の抵抗値であり、 Cは発振容量 44の容量値であり、 記号 は左辺が右辺に比例することを意味する。
[0082] なお、発振容量 44には、前述の増幅回路 60におけるコンデンサ 61bと同一構造の ものを用い、容量比が一定となるように同一半導体チップ上に構成する。同じく基準 抵抗 47についても増幅回路 60の帰還抵抗 68と同一構造のものを用い、一定の抵 抗比に構成する。詳細は後述するが、これにより増幅回路 60の増幅率の高精度化 が実現可能となる。
[0083] [物理量センサの動作説明:図 4〜図 7]
次に、本発明の物理量センサの動作について説明する。
[0084] 物理量センサに電源電圧 Vddを印加すると、駆動回路 80はセンサ素子 10の振動 部 11を所定の電流値で交流駆動を開始する。駆動回路 80の駆動電流は電源電圧 変動の影響を受けないので振動部 11は常に安定した発振状態となる。
この状態で物理量センサに回転角速度を印加すると、回転角速度に応じた振幅を もつ交流信号がセンサ素子出力 SIに現れる。このセンサ素子出力 S1を検波回路 2 0が検波し、所定の直流信号へと変換する。
[0085] クロック生成回路 30Aに備えた発振回路 40は、前述したとおりに所定の周波数 fo で発振する。この発振周波数 foの発振出力はクロック信号として出力される。また、制 御回路 50がディジタル入力 S5で指定された分周比で発振出力 S4を分周し、この分 周された信号をクロック信号 S3として出力することもできる。ここでは単純ィ匕のため発 振出力 S4を 2分周 (周波数が 0. 5倍)するものとする。
[0086] クロック信号 S3によって増幅回路 60は所定の増幅率を有するローパスフィルタとし て動作し、検波出力 S2を増幅した角速度信号をセンサ出力 S6から出力する。セン サ素子 10の駆動条件は常に一定であるため、検波出力 S2の信号は電源電圧 Vdd の影響を受けず、ある回転角速度の印加に対して信号のレベルは一定となる。し力 ながら、前述の通り、増幅回路 60の増幅率はクロック信号 S3の周波数によって変化 する。
[0087] クロック信号 S3の元の信号は発振回路 40の発振出力 S4であり、発振回路 40は物 理量センサの電源電圧に対して発振周波数が比例して変化するのは前述したとおり である。したがって、クロック信号 S3の周波数が電源電圧 Vddに比例するようにクロッ ク生成回路 30Aを制御することにより、クロック信号 S3により増幅回路 60から出力さ れるセンサ出力 S6は電源電圧 Vddに比例することができる。
[0088] 例えば、物理量センサの電源電圧が増加すると、上記構成によって、物理量センサ の検出感度は電源電圧の変化に比例して増加する。この結果、増幅回路 60から出 力されるセンサ出力 S6の出力信号が増加する。すなわち物理量センサは、検出感 度がレシオメトリック特性となるようにレベル変換動作する。
[0089] 例として、物理量センサに同じ回転角速度を与えた場合であっても、電源電圧 Vdd を 5%増加させた場合は、センサ出力 S6は 5%信号レベルが増加する。また、上記と は逆に物理量センサの電源電圧 Vddを減少させた場合は、センサ出力 S6の出カレ ベルが電源電圧 Vddの減少分に比例して低下する。
[0090] なお、上記の説明では制御回路 50の分周比は 2分周に固定としたが、制御回路 5 0の分周比はディジタル入力 S5によって選択することができる。増幅回路 60のスイツ チトキャパシタ回路 61は、平均的な切り替え周波数によって増幅率を変えることがで きる。
[0091] その為、ディジタル入力 S5によって分周比に適切な値を選ぶことによって、センサ 素子 10の製造誤差に起因する物理量センサの検出感度誤差を調整することが可能 である。制御回路 50は論理回路であり、分周比は極めて精密に設定できるため、物 理量センサにおける検出感度の微調整のための高精度なアナログ回路は不要であ る。
[0092] ところで、本発明の物理量センサにおいて、増幅回路 60の増幅率は、発振出力 S4 の周波数とコンデンサ 61bの容量値と、帰還抵抗 68の抵抗値とで決定するが、増幅 回路 60はオペアンプ 69を用いた反転増幅回路であることから、この直流増幅率 Kは K=—帰還抵抗値,入力抵抗値
= -Rf/Re
Rf/ (l/ (Cs-fo) )
(Rf/R) - (Cs/C)
と表すことができる。
[0093] なお、 Rfは帰還抵抗 68の抵抗値であり、 Reはスィッチトキャパシタ回路 61の等価 抵抗値である。また、 Csはコンデンサ 61bの容量であり、 foは発振出力 S4の周波数 であり、 Rは基準抵抗 47の抵抗値であり、 Cは発振容量 44の容量値である。
[0094] すなわち増幅回路 60の増幅率は、コンデンサ 6 lbの容量 Csと発振容量 44の容量 Cとの容量比(CsZC)と、帰還抵抗 68の抵抗値 Rfと基準抵抗 47の抵抗値 Rとの抵 抗比 (RfZR)に依存することが分かる。半導体製造プロセスにおいては、ロット間や チップ間における製造誤差があっても、同一チップ内の相対的な誤差は極めて小さ いことが知られている(1%未満)。
[0095] 本発明に用いるコンデンサや抵抗素子には、サイズは異なるが同一チップ上に構 成した同一構造のものを用いている。そのため、コンデンサ 61bの容量 Csと発振容 量 44の容量 C、および帰還抵抗 68の抵抗値 Rfと基準抵抗 47の抵抗値 Rとのそれぞ れの相対的な誤差は極めて小さ!、と予想される。上記で表される増幅率の式にお!、 て、容量 Csと容量 C、および抵抗値 Rfと抵抗値 Rは、それぞれ分子および分母に現 れて、その誤差は互いに相殺されるため、本発明の増幅回路 60においては、仮にコ ンデンサゃ抵抗の絶対値誤差が生じても、増幅率の値は高精度に維持される。
[0096] 例えば、製造誤差力 抵抗素子のシート抵抗が高めに形成されたチップでは、基 準抵抗 47の抵抗値が高くなることで発振出力 S4の周波数は低くなる。この結果、ス イッチトキャパシタ回路 61の等価抵抗値は大きくなるが、これと同じ割合で帰還抵抗 68の抵抗値も高く形成されているので、これらの増幅回路 60への影響は相殺し、増 幅回路 60の増幅率は一定の値となる。
[0097] これは、抵抗素子のシート抵抗が低めの場合や、コンデンサのシート容量の製造誤 差がある場合についても増幅回路 60の増幅率が一定であることは明らかである。さら に、この特性は物理量センサの周囲温度変化による抵抗素子やコンデンサの値の変 化が生じた場合でも同様である。
[0098] このように、本発明では発振回路 40に設けた発振容量 44と増幅回路 60に設けた スィッチトキャパシタ回路 61のコンデンサ 61bとを同一チップ上に構成した同一構造 のものを用い、また、発振回路 40に設けた基準抵抗 47と増幅回路 60に設けた帰還 抵抗 68とを同一チップ上に構成した同一構造のものを用いたことで、コンデンサや 抵抗素子の絶対値誤差が生じても、増幅率の値は高精度に維持される。
[0099] 従来技術の特許文献 1の場合には、増幅回路 6の増幅率を決定するもう一方の回 路要素 (抵抗素子 8)として、半導体チップ上に構成可能なポリシリコン抵抗や、外付 けの抵抗素子を用いることが考えられる。
[0100] し力しながら、これらの素子は前述の MOS素子 7とは電気的特性に相関がないた め、増幅回路の増幅率の絶対値誤差が大きいば力りでなぐ周囲温度の変化によつ て増幅回路 6の増幅率が大きく変化してしまうという問題が発生する力 上述したよう に、本発明では、このような従来技術の問題は解消できる。
[0101] なお、上記の発振回路 40には電圧制御発振回路を用いることとしたが、これに限 定されない。物理量センサの出力レベルを電源電圧 Vddに対して変化させない場合 は、発振回路 40にはより単純な構成のものを用いてもよい。例えば、上記の実施形 態中の発振回路 40におけるインバータ 42を使用せず、インバータ 41の入出力端子 間に抵抗素子を接続することで構成できる、一般的な CR発振回路を用いることも可 能である。
[0102] この場合、発振回路 40の発振周波数は電源電圧 Vddによらず一定であるが、上記 で付加した抵抗素子を基準抵抗 47と同一構造にすることで、増幅回路 60の増幅率 に与える半導体の製造誤差や温度特性を相殺でき、増幅回路 60の増幅率の安定 化が可能となる。
[0103] [増幅回路の別の構成例の説明:図 8, 9]
以下、図 8,図 9を用いて増幅回路の別の構成例について説明する。
[0104] 図 8に示す増幅回路の構成例は、上記したオペアンプを用いた反転増幅回路の可 変抵抗として、スィッチトキャパシタ回路に代えて、スィッチの開閉による可変抵抗器 を用いる構成である。図 8において、反転増幅回路 60Aを構成するオペアンプ 69の 反転入力端子に接続する入力抵抗として、可変抵抗器 62を接続する。なお、ォペア ンプ 69の出力端子と反転入力端子との間には、帰還抵抗 68とコンデンサ 67とが並 列に接続され、オペアンプ 69の出力端子力もセンサ出力 S6が出力される。
[0105] 可変抵抗器 62は、抵抗 62bとスィッチ 62aとの直列接続回路と抵抗 62cとの並列接 続で構成され、オペアンプ 69の反転入力端子に入力抵抗として接続する。スィッチ 6 2aは、伝達ゲート(トランスミッションゲート)で構成され、ノ ルス生成回路 30からのパ ルス変調信号によって開閉制御が行われる。スィッチ 62aは、パルス変調信号によつ て開閉制御することによって等価抵抗を形成し、その等価抵抗値はパルス変調信号 のデューティー比の平均値で定めることができる。
[0106] この可変抵抗器 62の抵抗値を可変とすることで、前記した構成例と同様にして、増 幅回路の増幅率を可変とすることができ、パルス変調信号を電源電圧の変化に応じ て変えることによって、センサ検出出力をレシオメトリック特性としたり、高いリニアリテ ィ特'性を得ることがでさる。
[0107] 図 9に示す増幅回路の構成例は、電圧 電流変換回路(OTA: operational transc onductance amplifier)を用いたフィルタ機能付きのゲイン調整回路であり、 2つの電 圧—電流変換回路をスィッチを挟んで接続することで構成する。増幅回路 60Bのゲ イン調整回路 63は、電圧—電流変換回路 63bと 63cをスィッチ 63aおよびコンデン サ 63dを挟んで接続して構成され、スィッチ 63aをパルス生成回路 30からのパルス 変調信号によって開閉制御する。開閉制御された ONZOFFのデューティー比を dと する。電圧 電流変換回路 63bの正端子は検波出力 S2を入力し、負端子との電圧 差に変換係数 gmlを乗じた大きさの電流に変換する。スィッチ 63aは、この電流をパ ルス変調信号のパルス周波数あるいはデューティー比に応じてコンデンサ 63dに充 電する。電圧—電流変換回路 63bは、このコンデンサ 63dに蓄積された電圧を変換 係数- gm2を乗じた大きさの電流に変換して出力する。
[0108] この増幅回路 60Bの伝達関数は、(gmlZgm2) · ( lZ ( l + s (CZgm2) ) ) 'dで 表される。なお、ここで dはスィッチ 63aのオンオフのパルスデューティー比によって定 めるため、パルス生成回路 30からのパルス変調信号を電源電圧に応じて変えること によって、増幅回路 60Bの増幅率を可変とすることができる。なお、スィッチ 63aは伝 達ゲート(トランスミッションゲート)で構成することができる。
[0109] [スィッチ機構の説明:図 10,図 11]
上記した増幅回路の各構成例では、増幅率可変回路を 1つのスィッチによって構 成し、このスィッチをパルス生成回路 30からのパルス変調信号で切り替えることによ つて増幅率を可変としている。このスィッチ構成は、 1つのスィッチに限らず、 2つのス イッチで構成することもできる。図 10 (a)は図 6の 61aで示した 1つのスィッチ機構の 構成例である。図 10 (a)はスィッチ 64を 2つの伝達ゲート(トランスミッションゲート)で 構成する。 2つの伝達ゲート(トランスミッションゲート)は、切り替え信号 SWによって 交互にオンオフすることで、コンデンサ 61bへの充放電を行い、この信号切り替えを 周波数によって調整することで、等価抵抗を形成する。
[0110] 図 10 (b)は、 1つのスィッチ機構の別の構成例である。図 10 (b)はスィッチ 65を 2つ のフォト MOSで構成する。 2つのフォト MOS65は、切り替え信号 SWによって交互に 発光ダイオードを発光制御することで、コンデンサ 6 lbへの充放電を行い、この信号 切り替えを周波数によって調整することで、等価抵抗を形成する。
[0111] また、スィッチ機構としては、前記した伝達ゲート(トランスミッションゲート)やフォト MOSの他に、図 10 (c)に示すような電磁リレー 66を用いてもよい。電磁リレー 66は 、切り替え信号 SWによって電磁コイルを駆動することで、スィッチのオンオフ制御を 行う。 [0112] 図 11は、増幅率可変回路の異なる例を示している。図 11 (a)は 1つのスィッチ機構 による構成を示し、前記図 6に示すスィッチトキャパシタ回路 61の構成、および図 10 (a) , (b)に相当する。この構成では、入力端子 (in)と出力端子 (out)との間を、コン デンサを介して 1つのスィッチ機構で切り替え、この切り替えを周波数によって調整す ることで、等価抵抗を形成する。
[0113] これに対して、図 11 (b)は、 2つのスィッチ機構による構成を示して 、る。この構成 では、入力端子 (in)と出力端子 (out)との間にコンデンサを備える 2つのスィッチ機 構を設け、この 2つスィッチ機構の切り替えを周波数によって調整することで、等価抵 抗を形成する。なお、図 11 (b)は、図 10 (a)または図 10 (b)で示したスィッチ機構を 2つ設ければ実現できる。
[0114] [パルス変調回路の構成例の説明:図 12,図 13]
ノ ルス生成回路 30において、パルス幅(デューティー比)を可変とするパルス変調 回路の構成例について図 12,図 13を用いて説明する。図 12において、ノ ルス生成 回路 30は、三角波生成器 30aと、比較器 30bと、抵抗器 30cを備える。この抵抗器 3 0cは、電源電圧を分圧出力するものであり、抵抗値とその分圧比とを任意に設定で きる。比較器 30bは、三角波生成器 30aから発生した一定振幅値の三角波信号を抵 抗器 30cで設定した電圧値とを比較し、パルス信号を生成する。したがって、比較器 30bは電源電圧に応じて変化しない一定振幅値の三角波信号と、電源電圧に応じ て変化するしき!、値電圧とを比較する。
[0115] 図 13 (a)は、パルス信号を作り出す一例であり、三角波生成器 30aが発生する三 角波信号 Vaと、抵抗器 30cで形成するしきい値電圧 Vb, Vc, Vdを示している。比較 器 30bは、三角波信号 Vaとしきい値電圧 Vb, Vc, Vdとを比較し、大小に応じてノ ル ス信号を形成する。図 13 (b)は、三角波信号 Vaとしきい値電圧 Vbとの比較によって 得られるパルス信号であり、しきい値電圧 Vbが三角波信号 Vaの振幅の 1Z2である 場合には、デューティー比が 0. 5 のパルス信号が得られる。図 13 (c)は、三角波信 号 Vaとしき!/、値電圧 Vcとの比較によって得られるパルス信号であり、しき!/、値電圧 V cが三角波信号 Vaの振幅の 1Z2より大である場合には、得られるパルス信号のデュ 一ティー比は、 0. 5より小さな値となる。また、図 13 (d)は、三角波信号 Vaとしきい値 電圧 Vdとの比較によって得られるパルス信号であり、しき ヽ値電圧 Vdが三角波信号 Vaの振幅の 1Z2より小である場合には、得られるパルス信号のデューティー比は、 0 . 5より大きな値となる。
[0116] したがって、抵抗器 30cで形成するしき ヽ値電圧を電源電圧と連動して定めること によって、電源電圧に応じたパルス変調信号を形成することができる。
[0117] 以上、本発明の実施形態による物理量センサについて説明した。本発明によれば 、従来は難し力つたセンサ検出出力の高いリニアリティ特性とレシオメトリック特性とを 同時に持たせることが可能となる。その上さらに、製造誤差や温度変化の影響も受け にくぐ検出感度を高精度に調整可能な物理量センサを得ることができる。
産業上の利用可能性
[0118] 本発明は、振動ジャイロを代表とする角速度センサや磁気センサ、加速度センサな どの幅広い種類の物理量センサの出力信号レベル調整に適用することが可能であ る。

Claims

請求の範囲
[1] 外部力 印加された物理量を電気信号に変換して検出信号を出力するセンサ回路 と、
前記センサ回路力 の検出信号を所定の信号に調整する調整回路と、を有する物 理量センサにおいて、
前記調整回路は、
この調整回路を駆動する電源電圧に基づいてパルス変調信号を生成するパルス 生成回路と、
センサ回路力 の検出信号を、パルス変調信号により増幅率を可変として増幅する 増幅回路とを有し、
前記増幅回路から出力される出力信号の検出感度を前記電源電圧に応じて可変 とすることを特徴とする、物理量センサ。
[2] 前記ノ ルス生成回路は、電源電圧に基づいて所定の関数で定められたパルス幅 又はパルス周波数を変調してパルス変調信号を生成することを特徴とする、請求項 1 に記載の物理量センサ。
[3] 前記所定関数は線形関数であり、前記パルス生成回路は電源電圧に比例したパ ルス幅又はパルス周波数のパルス変調信号を生成することを特徴とする、請求項 2に 記載の物理量センサ。
[4] 前記増幅回路は、入力抵抗回路と帰還抵抗回路の抵抗値比によって増幅率が定 まる反転増幅器であり、
前記入力抵抗回路と帰還抵抗回路の少なくとも一方の抵抗回路は、パルス変調信 号によって抵抗値を可変とする可変抵抗回路であり、
増幅回路は前記可変抵抗回路の抵抗値をパルス変調信号により可変とすることに よって増幅率を可変とすることを特徴とする、請求項 1から 3の何れか一項に記載の 物理量センサ。
[5] 前記可変抵抗回路は、スィッチトキャパシタ回路で構成し、コンデンサに対するスィ ツチの切り替えをパルス変調信号で行うことにより等価抵抗を可変とすることを特徴と する、請求項 4に記載の物理量センサ。
[6] 前記可変抵抗回路は、抵抗とスィッチとで構成し、前記スィッチをパルス変調信号 で断続することにより等価抵抗を可変とすることを特徴とする、請求項 4に記載の物理 量センサ。
[7] 前記可変抵抗回路は、 2つのスィッチをコンデンサを挟んで接続し、当該 2つのスィ ツチの切り替えによるコンデンサの充放電により等価抵抗を可変とすることを特徴とす る、請求項 4に記載の物理量センサ。
[8] 前記可変抵抗回路は、 2つのフォトトランジスタをコンデンサを挟んで接続し、当該 2 つのフォトトランジスタの切り替えによるコンデンサの充放電により等価抵抗を可変と することを特徴とする、請求項 4に記載の物理量センサ。
[9] 前記増幅回路は、 2つの電圧—電流変換回路をスィッチを挟んで接続するゲイン 調整回路であり、
前記ゲイン調整回路は、パルス変調信号によるスィッチの開閉によってゲイン調整 回路の伝達関数を可変として増幅率を可変とすることを特徴とする、請求項 2又は 3 に記載の物理量センサ。
[10] 前記パルス生成回路は、振幅が一定の三角波を所定のしきい値と比較し、当該し き 、値に対する大ある!、は小の期間でパルスを生成する回路であり、当該しき 、値と して電源電圧を用いることを特徴とする、請求項 1から 9の少なくとも何れか一項に記 載の物理量センサ。
[11] 外部力 印加された物理量を電気信号に変換するセンサ素子と、このセンサ素子 の出力信号を増幅および検波する検波回路と、電源を印加することにより前記検波 回路からの出力信号を所定の信号に調整する調整回路とを有する物理量センサに おいて、
前記調整回路は、コンデンサの接続状態を切り替えることで電荷の移動を行うスィ ツチトキャパシタ回路を備えた増幅回路とクロック信号を発生するクロック生成回路と を有し、
前記電源電圧に応じて前記クロック生成回路を制御し、前記クロック生成回路で生 成される前記クロック信号により前記増幅器から出力される出力信号の検出感度を、 前記電源電圧に応じて可変とすることを特徴とする物理量センサ。
[12] 前記出力信号の検出感度は、前記電源電圧に比例することを特徴とする請求項 1
1に記載の物理量センサ。
[13] 前記クロック生成回路は、発振信号を出力する発振回路を備えたことを特徴とする 請求項 11に記載の物理量センサ。
[14] 前記発振回路の出力信号を所定の分周比に調整し出力する制御回路を備えたこ とを特徴とする請求項 13に記載の物理量センサ。
[15] 前記クロック生成回路は発振回路を有し、この発振回路は前記電源の電圧入力に 応じて出力信号の周波数が変化する電圧制御発振回路で構成されたことを特徴と する請求項 12に記載の物理量センサ。
[16] 前記クロック生成回路はコンデンサを備えた発振回路を有し、この発振回路の前記 コンデンサは、前記増幅回路に設けたコンデンサと同一構造であることを特徴とする 請求項 11に記載の物理量センサ。
[17] 前記クロック生成回路は抵抗素子を備えた発振回路を有し、前記発振回路の前記 抵抗素子は、前記増幅回路に設けた抵抗素子と同一構造であることを特徴とする請 求項 11に記載の物理量センサ。
[18] 外部から印加された物理量を電気信号に変換するセンサ素子と、このセンサ素子 を駆動する駆動回路と、前記センサ素子の出力信号を増幅および検波する検波回 路と、電源を印加することにより前記検波回路力 の出力信号を所定の信号に調整 する調整回路とを有する物理量センサにおいて、
前記駆動回路は、前記センサ素子の駆動条件の基準となる一定の電圧を出力する 定電圧回路を有し、
前記調整回路は、コンデンサの接続状態を切り替えることで電荷の移動を行うスィ ツチトキャパシタ回路を備えた増幅回路とクロック信号を発生するクロック生成回路と を有し、
前記電源の電圧に応じて前記クロック生成回路を制御し、前記クロック生成回路で 生成される前記クロック信号により前記増幅回路から出力される出力信号の検出感 度を、前記電源電圧に応じて可変とすることを特徴とする物理量センサ。
PCT/JP2006/310880 2005-06-01 2006-05-31 物理量センサ WO2006129712A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/916,221 US7788977B2 (en) 2005-06-01 2006-05-31 Physical quantity sensor
CN2006800190207A CN101184973B (zh) 2005-06-01 2006-05-31 物理量传感器
JP2007519037A JP5495356B2 (ja) 2005-06-01 2006-05-31 物理量センサ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005160956 2005-06-01
JP2005-160956 2005-06-01

Publications (1)

Publication Number Publication Date
WO2006129712A1 true WO2006129712A1 (ja) 2006-12-07

Family

ID=37481641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/310880 WO2006129712A1 (ja) 2005-06-01 2006-05-31 物理量センサ

Country Status (4)

Country Link
US (1) US7788977B2 (ja)
JP (1) JP5495356B2 (ja)
CN (1) CN101184973B (ja)
WO (1) WO2006129712A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007292680A (ja) * 2006-04-27 2007-11-08 Epson Toyocom Corp 振動ジャイロセンサ
JP2008082866A (ja) * 2006-09-27 2008-04-10 Citizen Holdings Co Ltd 物理量センサ
JP2008122186A (ja) * 2006-11-10 2008-05-29 Seiko Epson Corp 検出装置、センサ及び電子機器
JP2008122185A (ja) * 2006-11-10 2008-05-29 Seiko Epson Corp 検出装置、センサ及び電子機器
JP2009031007A (ja) * 2007-07-24 2009-02-12 Seiko Epson Corp 発振駆動回路、発振駆動装置、物理量測定回路、物理量測定装置および電子機器
JP2011058990A (ja) * 2009-09-11 2011-03-24 Seiko Epson Corp 検出装置、物理量測定装置及び電子機器
JP2011058991A (ja) * 2009-09-11 2011-03-24 Seiko Epson Corp 検出装置、物理量測定装置及び電子機器
JP2012202872A (ja) * 2011-03-25 2012-10-22 Toshiba Corp センサ制御回路およびセンサシステム
JP2013029526A (ja) * 2006-12-20 2013-02-07 Seiko Epson Corp 振動ジャイロセンサ
JP2016133470A (ja) * 2015-01-22 2016-07-25 セイコーエプソン株式会社 回路装置、電子機器、移動体及び物理量検出装置の製造方法
EP2319971A4 (en) * 2008-09-01 2018-02-14 Panasonic Corporation Washing machine
JP2019128326A (ja) * 2018-01-26 2019-08-01 株式会社東芝 検出器

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011102062A1 (ja) 2010-02-17 2011-08-25 株式会社村田製作所 振動型慣性力センサ
DE102010010409A1 (de) * 2010-03-05 2011-09-08 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Betreiben einer Energiespeicheranordnung und Energiespeicheranordnung
JP5717376B2 (ja) * 2010-03-31 2015-05-13 シチズンホールディングス株式会社 物理量センサ
CN101819047B (zh) * 2010-04-13 2012-01-25 浙江大学 一种评测光纤陀螺电源敏感性的装置及方法
JP5548531B2 (ja) * 2010-06-17 2014-07-16 アズビル株式会社 デュアル物理量センサ
DE102010030843A1 (de) * 2010-07-02 2012-01-05 Robert Bosch Gmbh Temperaturerfassungsvorrichtung mit einer Diode und einem Analog-Digital-Wandler
US9525925B2 (en) * 2011-02-25 2016-12-20 Infineon Technologies Ag Sensor with movable part and biasing
JP5975601B2 (ja) * 2011-02-25 2016-08-23 セイコーエプソン株式会社 検出回路、物理量検出装置、角速度検出装置、集積回路装置及び電子機器
JP5638419B2 (ja) 2011-02-25 2014-12-10 セイコーエプソン株式会社 信号処理回路、物理量検出装置、角速度検出装置、集積回路装置及び電子機器
JP5752441B2 (ja) * 2011-02-25 2015-07-22 セイコーエプソン株式会社 駆動回路、物理量検出装置、角速度検出装置、集積回路装置及び電子機器
US9310240B2 (en) * 2011-03-22 2016-04-12 Seiko Epson Corporation Circuit device, integrated circuit and detection device
US9735673B2 (en) 2011-03-30 2017-08-15 Infineon Technologies Ag Burst-mode operation of a switching converter
JP2013046496A (ja) * 2011-08-24 2013-03-04 Fujitsu Semiconductor Ltd 制御回路、電源装置及び電源の制御方法
CN103472277A (zh) * 2013-09-12 2013-12-25 昆山新金福精密电子有限公司 一种电压表电路
DE102013113053B4 (de) * 2013-11-26 2019-03-28 Schott Ag Treiberschaltung mit einer Halbleiterlichtquelle sowie Verfahren zum Betrieb einer Treiberschaltung
CN104848847B (zh) * 2014-02-19 2017-11-03 无锡华润上华科技有限公司 一种陀螺仪传感器控制电路和电子装置
JP6299322B2 (ja) * 2014-03-25 2018-03-28 セイコーエプソン株式会社 物理量検出センサー、電子機器、移動体および電子回路
FR3020680B1 (fr) * 2014-05-02 2017-11-24 Michelin & Cie Systeme d'evaluation de l'etat d'un pneumatique
US9374101B2 (en) * 2014-10-21 2016-06-21 Electronics And Telecommunications Research Institute Sensor device including high-resolution analog to digital converter
FR3030374B1 (fr) 2014-12-17 2017-01-13 Michelin & Cie Procede de detection et d'alerte de l'etat de sous-gonflage d'un pneumatique
FR3030744A1 (fr) * 2014-12-17 2016-06-24 Michelin & Cie Systeme d'evaluation de l'etat d'un pneumatique
CN104567850B (zh) * 2015-02-02 2018-02-09 杭州士兰微电子股份有限公司 相移电路及其控制方法、以及mems陀螺仪驱动电路
KR101650012B1 (ko) * 2015-06-22 2016-08-22 (주)엘센 센서 장치 및 센싱 방법
CN106052844B (zh) * 2016-05-19 2019-11-05 杭州电子科技大学 一种基于外部中断的振动信号调理电路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61154213A (ja) * 1984-12-26 1986-07-12 Nec Corp 逆相一次ハイパスフイルタ回路
JPH0946150A (ja) * 1995-07-27 1997-02-14 At & T Ipm Corp ゲイン選択技術
JP2001227983A (ja) * 1999-12-23 2001-08-24 Texas Instr Inc <Ti> 信号処理回路
JP2004053396A (ja) * 2002-07-19 2004-02-19 Matsushita Electric Ind Co Ltd 角速度センサおよびそれを用いた自動車

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0672899B2 (ja) * 1988-04-01 1994-09-14 株式会社日立製作所 加速度センサ
JPH01265710A (ja) * 1988-04-18 1989-10-23 Nec Corp スイッチトキャパシタ型オートボリウム回路
US4932261A (en) * 1988-06-20 1990-06-12 Triton Technologies, Inc. Micro-machined accelerometer with tilt compensation
US5365768A (en) * 1989-07-20 1994-11-22 Hitachi, Ltd. Sensor
US5006487A (en) * 1989-07-27 1991-04-09 Honeywell Inc. Method of making an electrostatic silicon accelerometer
EP0459723B1 (en) * 1990-05-30 1996-01-17 Hitachi, Ltd. Semiconductor acceleration sensor and vehicle control system using the same
JPH057117A (ja) * 1991-06-18 1993-01-14 Fujitsu Ltd ハイパスフイルタ型自動利得制御増幅器
FR2689627B1 (fr) * 1992-04-07 1997-06-20 Sextant Avionique Perfectionnement aux micro-capteurs pendulaires asservis.
EP0590658A1 (fr) * 1992-10-02 1994-04-06 CSEM, Centre Suisse d'Electronique et de Microtechnique S.A. Dispositif de mesure d'une force
JP3216455B2 (ja) * 1994-12-22 2001-10-09 株式会社村田製作所 容量型静電サーボ加速度センサ
DE19806752B4 (de) * 1998-02-18 2004-03-25 Conti Temic Microelectronic Gmbh Offsetregelung
JP3324527B2 (ja) * 1998-10-07 2002-09-17 日本電気株式会社 利得制御回路及びその制御方法
JP3514240B2 (ja) * 2001-02-19 2004-03-31 株式会社村田製作所 加速度センサ
JP4861566B2 (ja) * 2001-05-08 2012-01-25 富士通セミコンダクター株式会社 スイッチド・キャパシタ・フィルタ回路
US7287429B2 (en) * 2004-03-25 2007-10-30 Denso Corporation Capacitive acceleration sensor system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61154213A (ja) * 1984-12-26 1986-07-12 Nec Corp 逆相一次ハイパスフイルタ回路
JPH0946150A (ja) * 1995-07-27 1997-02-14 At & T Ipm Corp ゲイン選択技術
JP2001227983A (ja) * 1999-12-23 2001-08-24 Texas Instr Inc <Ti> 信号処理回路
JP2004053396A (ja) * 2002-07-19 2004-02-19 Matsushita Electric Ind Co Ltd 角速度センサおよびそれを用いた自動車

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007292680A (ja) * 2006-04-27 2007-11-08 Epson Toyocom Corp 振動ジャイロセンサ
JP2008082866A (ja) * 2006-09-27 2008-04-10 Citizen Holdings Co Ltd 物理量センサ
US7845227B2 (en) 2006-11-10 2010-12-07 Seiko Epson Corporation Detection device, sensor, and electronic instrument
JP2008122185A (ja) * 2006-11-10 2008-05-29 Seiko Epson Corp 検出装置、センサ及び電子機器
JP2008122186A (ja) * 2006-11-10 2008-05-29 Seiko Epson Corp 検出装置、センサ及び電子機器
JP2013029526A (ja) * 2006-12-20 2013-02-07 Seiko Epson Corp 振動ジャイロセンサ
JP2009031007A (ja) * 2007-07-24 2009-02-12 Seiko Epson Corp 発振駆動回路、発振駆動装置、物理量測定回路、物理量測定装置および電子機器
US7808334B2 (en) 2007-07-24 2010-10-05 Seiko Epson Corporation Oscillation driver circuit, oscillation driver device, physical quantity measurement circuit, physical quantity measurement device, and electronic instrument
EP2319971A4 (en) * 2008-09-01 2018-02-14 Panasonic Corporation Washing machine
JP2011058990A (ja) * 2009-09-11 2011-03-24 Seiko Epson Corp 検出装置、物理量測定装置及び電子機器
JP2011058991A (ja) * 2009-09-11 2011-03-24 Seiko Epson Corp 検出装置、物理量測定装置及び電子機器
JP2012202872A (ja) * 2011-03-25 2012-10-22 Toshiba Corp センサ制御回路およびセンサシステム
JP2016133470A (ja) * 2015-01-22 2016-07-25 セイコーエプソン株式会社 回路装置、電子機器、移動体及び物理量検出装置の製造方法
JP2019128326A (ja) * 2018-01-26 2019-08-01 株式会社東芝 検出器

Also Published As

Publication number Publication date
CN101184973B (zh) 2012-06-13
JP5495356B2 (ja) 2014-05-21
US7788977B2 (en) 2010-09-07
JPWO2006129712A1 (ja) 2009-01-08
CN101184973A (zh) 2008-05-21
US20100011856A1 (en) 2010-01-21

Similar Documents

Publication Publication Date Title
JP5495356B2 (ja) 物理量センサ
JP4671305B2 (ja) 物理量センサ
JP5294228B2 (ja) 物理量センサ
JP4670406B2 (ja) 温度補償型圧電発振器
US6628163B2 (en) Circuit for tuning an active filter
JP4089672B2 (ja) 発振回路及びこの発振回路を有する半導体装置
EP2198313B1 (en) Switched capacitor measurement circuit for measuring the capacitance of an input capacitor
JP2007057340A (ja) 発振回路及び角速度センサ
JP2007124394A (ja) 発振器
CN112886957B (zh) 高压放大器及其高压产生电路
US20080218027A1 (en) Circuit and Method for Controlling a Piezoelectric or Electrostrictive Actuator
JP2009075060A6 (ja) 物理量センサ
JP2009075060A (ja) 物理量センサ
KR100834590B1 (ko) 셔터용 액튜에이터 구동 회로 및 셔터용 액튜에이터 장치
JP2006033092A (ja) 圧電発振器
JP4416577B2 (ja) シャッタ用アクチュエータ駆動回路及びシャッタ用アクチュエータ装置
CN112015223B (zh) 用于半导体集成电路的基准电流源
JP4994149B2 (ja) 物理量センサ
JPH07297641A (ja) クロック発振器
JP2704132B2 (ja) スイッチング電源
JPH09261012A (ja) 電圧制御発振器及びその発振方法
JPH0510845B2 (ja)
JPH0897636A (ja) 温度補償型発振器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680019020.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007519037

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11916221

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06756813

Country of ref document: EP

Kind code of ref document: A1