JP4671305B2 - 物理量センサ - Google Patents

物理量センサ Download PDF

Info

Publication number
JP4671305B2
JP4671305B2 JP2008500561A JP2008500561A JP4671305B2 JP 4671305 B2 JP4671305 B2 JP 4671305B2 JP 2008500561 A JP2008500561 A JP 2008500561A JP 2008500561 A JP2008500561 A JP 2008500561A JP 4671305 B2 JP4671305 B2 JP 4671305B2
Authority
JP
Japan
Prior art keywords
circuit
physical quantity
amplifier
signal
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008500561A
Other languages
English (en)
Other versions
JPWO2007094448A1 (ja
Inventor
洋一 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd, Citizen Watch Co Ltd filed Critical Citizen Holdings Co Ltd
Publication of JPWO2007094448A1 publication Critical patent/JPWO2007094448A1/ja
Application granted granted Critical
Publication of JP4671305B2 publication Critical patent/JP4671305B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/02Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for altering or correcting the law of variation
    • G01D3/024Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for altering or correcting the law of variation for range change; Arrangements for substituting one sensing member by another

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Technology Law (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Amplifiers (AREA)
  • Gyroscopes (AREA)

Description

本発明は、物理量センサに関し、特に物理量センサの出力レベル変換回路の構成に関する。
現在では、さまざまな種類の物理量センサが利用されている。その中で特に、振動ジャイロに代表される角速度センサのセンサ出力の補正については多くの提案がなされている。
特許文献1に示した従来技術においては、物理量センサの検出感度(スケールファクタ)を、物理量センサの動作する電源電圧の変化に対して比例して変化させるための手法が提案されている。この従来の物理量センサにおいては、図10に示すように、検波回路2によって検波したセンサ素子1の出力信号を、さらに増幅回路6によって増幅出力する構成となっている。
増幅回路6としては、MOS素子7を入力抵抗とし、抵抗素子8を帰還抵抗とした、オペアンプ4による反転増幅回路を用いている。このMOS素子7のゲート電圧を、物理量センサの電源電圧に応じて変化する電圧でバイアスすることで、物理量センサの検出感度が調整可能になっており、特に電源電圧の変化に対して物理量センサの検出感度が比例して変化するようになっている。
この特性はレシオメトリックと呼ばれ、物理量センサの出力信号をセンサ外部でディジタル処理する場合などに有用な特性である。すなわち、このような出力特性を有する物理量センサに、センサの電源電圧に比例して変換分解能が変化するレシオメトリック対応A/D変換回路を組み合わせることによって、ある物理量をセンサに印加した場合のA/D変換後の出力データが、電源電圧変動の影響を受けない構成とすることができる。
特開2004-53396号公報(第4〜6頁、第1図)
従来技術の特許文献1の場合には、増幅回路6の増幅率はMOS素子7と抵抗素子8の抵抗比で決定する。抵抗素子8として、半導体チップ上に構成可能なポリシリコン抵抗や、外付けの抵抗素子を用いることが考えられる。しかしながら、これらの素子は前述のMOS素子7とは電気的特性に相関がないため、増幅回路の増幅率の絶対値誤差が大きくなるばかりでなく、周囲温度の変化によって増幅回路6の増幅率が大きく変化してしまうという問題があった。そのうえMOS素子7の抵抗成分は特性が非線形であるため、増幅回路6への入力信号の大きさによって増幅率が変化してしまい、物理量センサの検出感度の直線性が悪くなるという問題もあった。
本発明は上記の問題点を改善し、従来技術に比べ、検出感度が高精度な物理量センサを提供することを目的とする。
本発明は、上記目的を達成するために、センサ素子の出力信号の信号レベルを調整する調整回路において、増幅率が回路素子特性や周囲温度の特性に依存しない構成とするものである。
上述した従来の増幅回路では、センサ素子の出力信号を増幅する際、電源電圧の変化に対して物理量センサの検出感度を比例させて変化させる構成において、電源電圧の変化分以外の要素によって増幅率が変化することがあり、これが物理量センサの検出感度の精度を悪化する要因となっている。
本発明の物理量センサは、センサ素子の出力信号の増幅において、電源電圧の変化に対して物理量センサの検出感度を比例させて変化させるために、従来のMOS素子のゲート電圧のバイアス電圧を電源電圧に応じて変化させる構成に代えて、センサ素子の出力信号の信号レベルを調整する調整回路を用いる。この調整回路では、出力信号の信号レベルを増幅する増幅回路とは別に、増幅回路の増幅率を設定するための参照増幅回路を用意し、この参照増幅回路によって参照増幅回路自身の増幅率を設定するとともに、この増幅率を増幅回路に連動させる。増幅回路の増幅率を参照増幅回路の増幅率と連動させて設定することによって、回路素子特性に起因する増幅率の変動を抑制することができる。
また、参照増幅回路を用いた増幅率の設定において、電源電圧の変化分以外の温度変化分等の変動要素を除くことによって、電源電圧の変化のみによって増幅率を求める。これによって、電源電圧の変化分以外に起因する増幅率の変動を抑制することができる。
これによって、本発明の物理量センサは、回路素子特性に起因する増幅率の変動、および電源電圧の変化分以外に起因する増幅率の変動を抑制して、回路素子特性や周囲温度等の特性の影響を受けることなく、物理量センサの検出感度を電源電圧の変化に比例させて変化させることができる。
本発明の物理量センサの調整回路は、センサ素子の出力信号を増幅する増幅回路の他に、増幅率が電源電圧に応じて変化する参照増幅回路を用意し、増幅回路の増幅率をこの参照増幅回路の増幅率に連動させる。この増幅率を連動させることで、参照増幅回路で定めた増幅率を増幅回路の増幅率として設定する。
本発明の参照増幅回路は、周囲温度等によって変動する電圧変動分等、電源電圧の変化以外の変動分を除いて、電源電圧の変化のみによって増幅率を設定するため、参照増幅回路で設定される増幅率は電源電圧の変化のみによって定まり、その他の変動分による影響は抑制される。
そして、増幅回路の増幅率は、参照増幅回路と連動して増幅率の比が一定となるように設定する。これにより、増幅回路の増幅率についても、増幅率は電源電圧の変化のみによって定まり、その他の変動分による影響を抑制することができる。
また、この構成によれば、参照増幅回路の増幅率を調整することで、増幅回路の増幅率を自動的に調整できるため、センサ検出感度を所望の値へ動的に調整可能な物理量センサを実現することが可能となる。
また、増幅回路と参照増幅回路は、周囲温度の変化に対して同様の温度特性を有するため、増幅回路の増幅率と参照増幅回路の増幅率を連動させることで、周囲温度による影響を受けることなく、電源電圧の変化に対して物理量センサの検出感度を比例して変化させることができる。
また、本発明の調整回路のより詳細な構成は、上述した参照増幅回路に他に、2種類の参照信号を出力する参照信号生成回路と、参照増幅回路の増幅率を制御する制御回路とを備える。
参照信号生成回路は、電源電圧によらない一定の第1の参照信号と、電源電圧に応じて変化する第2の参照信号とを出力する。
ここで、参照増幅回路は入力した第1の参照信号を増幅して出力する。制御回路は、参照増幅回路の出力と第2の参照信号とが等しくなるように参照増幅回路の増幅率を制御する。制御回路が行う制御動作としては、例えば、参照増幅回路の出力が第2の参照信号よりも高い場合には参照増幅回路の増幅率を下げ、一方、参照増幅回路の出力が第2の参照信号よりも低い場合に参照増幅回路の増幅率を上げるようにフィードバック制御を行う。これによって、電源電圧の電圧変化に応じた増幅率を取得することができる。
また、増幅回路の増幅率は、参照増幅回路の増幅率と連動して増幅率の比が一定となるように設定するため、この参照増幅回路の増幅率を電源電圧に応じて制御する制御することによって、同様に、増幅回路の増幅率についても電源電圧に応じて制御することができる。
この構成によれば、物理量センサの検出感度が電源の電圧に比例するというレシオメトリック特性を高精度に実現できる。
さらに、増幅回路と参照増幅回路とを同一の構成としてもよい。この構成によれば、調整回路の製造誤差を最小限に抑えた、高精度な物理量センサを実現できる。
本発明は、センサ素子を駆動する駆動回路を有し、この駆動回路がセンサ素子を駆動する駆動レベルを、参照信号生成回路に生じる電圧変動と同じ方向に制御することで、参照信号生成回路に生じる電圧変動による影響を相殺して、出力信号を高精度とすることができる。センサ素子の駆動レベルを参照信号生成回路に生じる電圧変動と同じ方向に制御するために、センサ素子の駆動レベルを参照信号生成回路が出力する第1の参照信号に基づいて定める。参照信号生成回路が出力する第1の参照信号は電源電圧によらず一定であるが、実際は電源電圧の変動や周囲温度の変化によって僅かに電圧が変動する。ここで、センサ素子の出力信号と増幅回路の増幅率とを互いに逆方向に増減する関係とすることによって、電圧変動による影響を相殺し、物理量センサの検出レベルを一定とする。
センサ素子の出力信号と増幅回路の増幅率との間において互いに逆方向に増減する関係は、上述した本発明の制御回路の増幅率の制御によって得ることができ、例えば、電圧変動によって駆動レベルが増加した場合には、この駆動レベルの増加によって検出信号が増加する。一方、この第1の参照信号の電圧変動の増加は、増幅回路および参照増幅回路の増幅率を減少させるため、増加した検出信号の増幅率は小さくなり、調整回路から得られる物理量センサの検出感度は一定となる。
増幅回路および参照増幅回路は、何れか一方あるいは両方は複数の形態で実現することができる。
増幅回路あるいは参照増幅回路の第1の形態は、演算増幅器(オペアンプ)によって反転増幅器あるいは非反転増幅器を構成し、この演算増幅器に接続する抵抗素子を、OTA(operational transconductance amplifier(トランスコンダクタンスアンプ):電圧電流変換回路)を用いて抵抗値を可変とする等価抵抗によって構成するものである。この演算増幅器に接続する抵抗を相互コンダクタンスが可変であるトランスコンダクタンスアンプを含む等価抵抗で構成し、このトランスコンダクタンスアンプの相互コンダクタンスを制御回路の出力信号により制御することによって抵抗を可変とし、この抵抗を可変とすることによって増幅率を制御する。なお、反転増幅器あるいは非反転増幅器は、演算増幅器に対して入力抵抗や帰還抵抗を適宜接続することで形成される。
このOTAを用いた第1の形態は、トランスコンダクタンスアンプは直線性が良好となるように動作させることができるため、物理量センサの検出感度を高いリニアリティで出力することができる。また、検波前のセンサ素子から出力された交流信号の処理に適している。
増幅回路あるいは参照増幅回路の第2の形態は、演算増幅器(オペアンプ)によって反転増幅器あるいは非反転増幅器を構成し、この演算増幅器に接続する入力抵抗や帰還抵抗等の抵抗素子をスイッチトキャパシタ回路を用いて抵抗値を可変とする等価抵抗によって構成するものである。
この演算増幅器の入力抵抗又は帰還抵抗、あるいは、入力抵抗と帰還抵抗の両抵抗をスイッチトキャパシタ回路で構成し、このスイッチトキャパシタ回路のスイッチの開閉の切り替え周波数を前記制御回路の出力信号により制御することによって抵抗を可変とし、この抵抗を可変とすることによって増幅率を制御する。
この形態では、制御回路からフィードバック信号をリニアVCOに入力し、リニアVCOによってフィードバック信号の電圧に対応した周波数fのクロック信号が出力される。スイッチトキャパシタ回路は、この周波数fのクロック信号に基づいてスイッチを開閉することによって抵抗を可変とする。
また、帰還抵抗と並列にコンデンサを配置することによって、ローパスフィルタの機能を付加することができる。
このスイッチトキャパシタ回路を用いた第2の形態によれば、直線性が良いうえに出力オフセットが少ない増幅回路を構成することができる。また、検波、平滑化された直流信号の処理に適している。
増幅回路あるいは参照増幅回路の第3の形態は、OTAを用いる形態であり、電圧電流変換回路に電流電圧変換回路を直列に接続して構成し、この電圧電流変換回路を相互コンダクタンスが可変であるトランスコンダクタンスアンプによって構成し、このトランスコンダクタンスアンプの相互コンダクタンスを前記制御回路の出力信号により制御することによって電圧から電流への変換率を可変とし、この電圧電流変換回路で変換した電流を電流電圧変換回路によって電圧に変換することによって増幅率を制御する。
また、本発明の調整回路と検波回路との接続順は、調整回路を検波回路に上流側あるいは下流側の何れの位置に配置する構成とすることができる。
第1の配置形態は、センサ素子と調整回路との間に検波回路を接続する形態であり、調整回路は、検波回路でセンサ素子の検出信号を直流化し、この直流出力の信号レベルを調整する。
また、第2の配置形態は、調整回路の下流側に検波回路を接続する形態であり、調整回路は、センサ素子の交流出力の信号レベルを調整する。検波回路は、調整回路によってレベル調整した出力信号を直流化して出力する。
本発明によれば、調整回路に備えた増幅回路の増幅率を電源電圧に応じて変化させることができ、センサ検出感度が安定かつ高精度なレシオメトリック特性を備えた物理量センサを提供することが可能となる。
本発明の物理量センサの全体構成を示すブロック図である。 本発明の物理量センサの構成形態を説明するためのブロック図である。 本発明の物理量センサの構成形態を説明するためのブロック図である。 本発明の調整回路の概略構成を説明するためのブロック図である。 本発明の増幅回路あるいは参照増幅回路の概略構成を説明するためのブロック図である。 本発明の増幅回路あるいは参照増幅回路の概略構成を説明するためのブロック図である。 本発明の増幅回路あるいは参照増幅回路の概略構成を説明するためのブロック図である。 本発明の増幅回路あるいは参照増幅回路の概略構成を説明するためのブロック図である。 本発明のセンサ素子の駆動形態を説明するためのブロック図である。 従来技術の物理量センサを示す回路図である。
符号の説明
10 センサ素子
11 駆動部
12 検出部
20A,20B 検波回路
20a I−V変換部
20b 検波部
20c LPF部
30 参照信号生成回路
31 基準電圧源
32 基準抵抗
40 I−V変換部
45 LPF回路
50 制御回路
60、60A〜60D 増幅回路
61 オペアンプ
62 帰還抵抗
63 電流−電圧変換回路
64 電圧−電流変換回路
65 リニアVCO
66 スイッチトキャパシタ回路
66c コンデンサ
67 コンデンサ
68 入力抵抗
69 トランスコンダクタンスアンプ
70 参照増幅回路
80 駆動回路
90 中点電圧生成回路
100 調整回路
S1 センサ素子出力
S2A、S2B 検波出力
S31 第1の参照信号
S32 第2の参照信号
S5 制御信号
S6 センサ出力
Vdd 電源電圧
Vm 中点電圧
以下図1〜3を用いて本発明の概略構成を説明し、図4を用いて本発明の調整回路の概略構成を説明し、図5〜8を用いて本発明の増幅回路あるいは参照増幅回路の概略構成を説明し、図9を用いて本発明のセンサ素子の駆動形態を説明する。
まず、図1〜図3を用いて本発明の物理量センサの全体構成について説明する。図1は本発明の物理量センサの全体構成を示すブロック図であり、図2,図3は物理量センサの構成形態を説明するためのブロック図である。
本発明の物理量センサは、センサ素子10と、センサ素子10の検出信号の出力レベルを調整して、物理量センサの検出感度を物理量センサの動作する電源電圧の変化に対して比例して変化させる調整回路100と、交流信号を検波して直流信号を出力する検波回路20とを備える。この構成において、調整回路100と検波回路20の接続順によって、センサ素子10、検波回路20A、調整回路100の順に接続する第1の接続形態と、センサ素子10、調整回路100、検波回路20Bの順に接続する第2の接続形態とすることができる。
図1(a)は第1の接続形態を説明するための図であり、図1(b)は第2の接続形態を説明するための図である。
図1(a)において、物理量センサは、センサ素子10、検波回路20A、調整回路100の順に接続される。なお、ここでは、検波回路20Aは、センサ素子10の検出信号の電流を電圧に変換するI−V変換部20aと、I−V変換部20aで変換した電圧信号を検波する検波部20bと、検波部20bによって必要な信号成分を検波した検出信号を直流化するLPF(ローパスフィルタ)部20cとを含むものとする。この検波回路20Aは、センサ素子10の検出信号を直流化した出力信号を出力する。
図1(a)の構成によれば、検波回路20Aから直流信号が出力されるため、調整回路100は直流信号を信号処理するアナログ回路で構成することができる。
一方、図1(b)において、物理量センサは、センサ素子10、調整回路100、検波回路20Bの順に接続される。なお、ここでは、センサ素子10と調整回路100との間にI−V変換部40を接続し、調整回路100の下流側に検波回路20BとLPF回路45を接続する。I−V変換部40はセンサ素子10の検出信号の電流を電圧に変換し、検波回路20Bは調整回路100の出力から必要な信号成分を検波し、LPF(ローパスフィルタ)回路45は検波回路20Bの検波信号を直流化する。
なお、調整回路100は、図1(a)と同様の構成とし、増幅回路60と参照増幅回路70との増幅率を連動して設定する。この増幅率の設定において、増幅率を電源電圧に比例して設定することによって、物理量センサの検出感度(出力レベル)を電源電圧に比例して増加させ、電源電圧の変化と物理量センサの検出感度とを比例させるレシオメトリック特性を備える。
図1(b)の構成によれば、I−V変換部40から交流信号S4が出力されるため、調整回路100は交流信号を信号処理するアナログ回路で構成することができる。
次に、図1(a)に示す構成例について図2を用いてより詳細に説明する。図2において、10はセンサ素子であり、駆動部11と検出部12とを有する。20Aは検出部12の出力であるセンサ素子出力S1を増幅及び検波する検波回路である。100は調整回路であり、90は中点電圧生成回路である。
さらに、S2Aは検波回路20Aの検波出力、S6は検波回路20Aから出力される検波出力S2Aを調整回路100でレベル変換した物理量センサの出力である。この構成において、物理量センサが備える回路部分、すなわち検波回路20Aと調整回路100と駆動回路80とは、外部から印加する電圧Vdd(例えば5.0V)で動作する。Vddは物理量センサの電源電圧である。
センサ素子10は、例えば音叉形状に形成した圧電材料の表面に金属電極を配して構成した、回転角速度を検知するジャイロ振動子である。センサ素子10は駆動回路80によって発振駆動され、このセンサ素子10が振動中に回転角速度を受けると、微弱な交流信号がセンサ素子出力S1として現れる。
駆動回路80には、センサ素子10の駆動条件を一定化する機能、例えば電源電圧の変動の影響を受けない高精度の定電流源(図示せず)から得る電流値と、センサ素子10の励振電流の実効値とが等しくなるように発振制御する機能を有するものを用いる。あるいは、駆動回路80に、電源電圧の変動の影響を受けず一定の電圧を出力する定電圧回路を用い、この一定電圧を基準にセンサ素子10の励振電流を安定化するような構成でもよい。
検波回路20Aは、センサ素子10から得られたセンサ素子出力S1を検波および増幅し、直流化した信号を出力する回路である。検波回路20Aからは検波出力S2Aが出力される。センサ素子10及び検波回路20Aの構成は、一般に知られている回路であるので説明は省略する。
調整回路100は、検波回路20Aによって検波および増幅された検波出力S2Aを所定のレベル、すなわち物理量センサの検出感度を調整して外部へ物理量センサ出力S6として出力する信号レベル変換回路である。
中点電圧生成回路90は物理量センサに印加する電源電圧の1/2の電圧値を出力する電圧源である。中点電圧生成回路90は検波回路20Aや増幅回路60が動作する際の零点レベルに相当する中点電圧Vm(例えば電源電圧Vddが5.0Vの場合は2.5V)を供給する。
図1(b)に示す構成例について図3を用いてより詳細に説明する。図3において、10はセンサ素子であり、図2と同様に、駆動部11と検出部12とを有する。40はセンサ素子10の出力S1の電流を電圧に変換するI−V変換回路であり、100はI−V変換回路40で電圧変換した出力S4の出力レベルを電源電圧に応じてレベル調整する調整回路であり、20Bは調整回路100の出力S10を検波する検波回路であり、45は検波回路20Bの出力を直流化するLPF回路である。また、90は中点電圧生成回路である。
さらに、S2Bは検波回路20Bの検波出力、S6は検波回路20Bの出力S2BをLPF回路45で直流化したセンサ出力を調整回路100でレベル変換し、検波回路20Bで検波し、LPF回路45で直流化した物理量センサ出力である。この構成において、物理量センサが備える回路部分、すなわち検波回路20Bと調整回路100と駆動回路80とは、外部から印加する電圧Vdd(例えば5.0V)で動作する。Vddは物理量センサの電源電圧である。
なお、センサ素子10、駆動回路80、調整回路100、検波回路20B、および中点電圧生成回路90は、図2における説明と同様であるので、ここでの説明は省略する。
図2,図3に示す本発明の物理量センサの構成において、調整回路100は、この出力信号を増幅する増幅回路60と、増幅回路60の増幅率を設定するための参照増幅回路70および制御回路50を備える。制御回路50は、参照増幅回路70からフィードバック信号を入力して増幅率を設定する。この増幅率の設定において、増幅率を電源電圧に比例して設定する。これによって、物理量センサの検出感度(出力レベル)を電源電圧に比例して増加させ、電源電圧の変化と物理量センサの検出感度とを比例させるレシオメトリック特性を備えることができる。
本発明の調整回路100は、出力信号の信号レベルを調整する増幅回路60と、増幅率を設定するための参照増幅回路70とを用意し、この参照増幅回路70によって増幅率を設定するとともに、この増幅率を増幅回路60に連動させて設定することによって、回路素子特性に起因する増幅率の変動を抑制する。
参照増幅回路70を用いた増幅率の設定において、電源電圧の変化分以外の温度変化分等の変動要素は、制御回路50によって除かれ、電源電圧の変化のみによって増幅率が設定される。これによって、電源電圧に含まれる変動に起因する増幅率の変動を抑制することができる。
これによって、本発明の物理量センサは、回路素子特性に起因する増幅率の変動、および電源電圧以外の変動に起因する増幅率の変動を抑制して、回路素子特性や周囲温度等の特性の影響を受けることなく、物理量センサの検出感度を電源電圧の変化に比例させて変化させることができる。
次に、図4を用いて調整回路100の構成について説明する。図中、30は参照信号生成回路、60は増幅回路、70は参照増幅回路、50は制御回路である。調整回路100は前述の検波回路20A,20Bと同一の半導体チップ上に構成する。
参照信号生成回路30は、第1の参照信号S31を生成する基準電圧源31と、第2の参照信号S32を生成する基準抵抗32とを備える。基準電圧源31は、一定電圧を出力して中点電圧Vmに上乗せし、中点電圧Vmより高い第1の参照信号S31を生成する。一方、基準抵抗32は電源電圧Vddと中点電圧Vmとの間に接続し、電源電圧Vddと中点電圧Vmとを分圧して参照信号S32を生成する。
ここで、第1の参照信号S31は、電源電圧に依存せず一定である。一方、第2の参照信号S32は、電源電圧Vddと中点電圧Vmとを分圧して生成するため、電源電圧に依存する。
ここでは、例えば基準抵抗32の抵抗値の1/2の点の電圧を第2の参照信号S32とする。一方、基準電圧源31の第1の参照信号S31の出力電圧値は1.25Vとし、電源電圧Vddや周囲温度変化によらず一定とする。
増幅回路60は、制御信号端子Cへの信号入力によって増幅率が制御可能な増幅回路である。この増幅回路60の構成例については、後述する。増幅回路60は、センサ素子10から得られた信号を増幅する回路であり、入力信号をSinとし、出力信号としてSoutを出力する。また、参照増幅回路70は物理量センサの増幅率を設定するためのものであり、増幅回路60と同一の構成のものを用いる。参照増幅回路70と増幅回路60との制御信号端子Cには同じ信号を印加し、両増幅回路の増幅率が連動し、増幅率の比が一定となる構成とする。なお、参照増幅回路70は、第1の参照信号S31を入力信号とし、出力信号は制御回路50の一方の入力端子(負入力端)に出力する。
さらに、増幅回路である制御回路50を用いて、参照増幅回路70の出力に応じて参照増幅回路の増幅率を設定するフィードバック系を構成する。このフィードバック系において、参照増幅回路70の出力S7が第2の参照信号S32より高ければ参照増幅回路70の増幅率を下げ、逆に参照増幅回路70の出力S7が第2の参照信号S32より低ければ参照増幅回路70の増幅率を上げるよう構成する。制御回路50が出力するフィードバック信号である制御信号S5は、増幅回路60および参照増幅回路70の制御信号端子Cへ入力する。この構成により、参照増幅回路70の出力と、第2の参照信号S32とを常に等しくすることができる。ここでは、制御回路50は差動増幅器で構成することができる。
図4に示す構成において、第2の参照信号S32は電源電圧Vddの1/2である中点電圧Vmをさらに1/2に分圧した信号であり、電源電圧Vddに比例して変化する。一方の第1の参照信号S31は電源電圧Vddに依存しない一定電圧である。
制御回路50は、この第1の参照信号S31を参照増幅回路70で増幅した信号と第2の参照信号S32とが等しくなるよう動作することから、参照増幅回路70の増幅率は電源電圧Vddに比例して変化する。また、増幅回路60および参照増幅回路70の制御信号端子Cには同じ制御信号S5が入力しているため、増幅回路60の増幅率と参照増幅回路70に増幅率とは連動して設定され、増幅回路60の増幅率も電源電圧Vddに比例するよう動作する。
本例では特に、基準電圧源31の出力電圧値を1.25Vとし、第2の参照信号S32を電源電圧Vddの1/4となるように選んだため、電源電圧Vddが5.0Vの時には第2の参照信号S32が1.25Vとなって、中点電圧Vmを基準とした場合の第1の参照信号S31と等しくなり、制御回路50によって参照増幅回路70の増幅率を1.0とするような制御が行われる。従って、増幅回路60の増幅率も1.0となる。
次に、本発明の物理量センサの動作について説明する。ここでは、図2を例として説明する。
物理量センサに電源電圧Vddを印加すると、駆動回路80はセンサ素子10の駆動部11を所定の電流値で交流駆動を開始する。前記のように駆動回路80の駆動電流は電源電圧変動の影響を受けないので、駆動部11は常に安定した発振状態となる。
この状態で物理量センサに回転角速度を印加すると、回転角速度に応じた振幅を持つ交流信号がセンサ素子出力S1に現れる。このセンサ素子出力S1を検波回路20Aが検波し、所定の直流信号へと変換する。
増幅回路60は所定の増幅率を有する増幅回路として動作し、検波出力S2Aを増幅した角速度信号をセンサ出力S6として出力する。センサ素子10の駆動条件は常に一定であるため、検波出力S2Aの信号は電源電圧Vddの影響を受けず、ある回転角速度の印加に対して信号のレベルは一定となる。
しかしながら、前述のとおり、増幅回路60および参照増幅回路70の増幅率は連動して変化する。両増幅回路の増幅率は電源電圧Vddに比例して変化する。よって物理量センサの電源電圧Vddが増加すると、その変化に比例して物理量センサの検出感度が増加する。この結果、増幅回路60から出力されるセンサ出力S6の出力信号レベルが増加する。すなわち物理量センサは、検出感度がレシオメトリック特性となるようにレベル変換動作することが可能となる。
例として、物理量センサに同じ回転角速度を与えた場合であっても、電源電圧Vddを5%増加させた場合は、センサ出力S6は5%信号レベルが増加する。また、上記とは逆に物理量センサの電源電圧Vddを減少させた場合は、センサ出力S6の信号レベルが電源電圧Vddの減少に比例して低下する。
本例において増幅率の精度は基準電圧源31の絶対電圧値および温度特性によって決定するが、これは既によく知られた定電圧回路技術によって極めて高精度にトリミング可能であるため、参照増幅回路70の増幅率は、温度特性も含めて極めて高精度化が可能となる。さらに増幅回路60および参照増幅回路70とを同一半導体チップ上に同一の構成で形成することにより、半導体製造誤差から生じる増幅率の相対誤差を極小にできるため、参照増幅回路70の増幅率を増幅回路60へ正確に反映させることができる。これらから物理量センサの検出感度の高精度化を実現することが可能となる。
なお、用途によっては、特許文献1と同様に、MOS素子を入力抵抗とし、通常の抵抗素子を帰還抵抗とした反転増幅回路を、増幅回路60および参照増幅回路70として用いることもできる。この場合は、後述するようにOTAを用いた場合と比べて直線性は劣るが、少ない回路素子数で半導体チップを小規模化できる効果がある。当然ながら、MOS素子と抵抗素子との電気的特性の相違や、製造誤差は制御回路50によって打ち消されるため、従来技術での問題を解消できるという効果は維持される。
なお、前述の実施形態における増幅回路60および参照増幅回路70としては、増幅率を連続的に変化できるものを用いたが、増幅率をディジタル的に変化できるものを用いてもよい。その場合は、制御回路50を前記と同じ機能を持つ論理回路で置き換えることにより同等の効果が得られる。
次に、増幅回路60および参照増幅回路70を構成する増幅器の構成例60A〜60Dについて、図5〜図9を用いて説明する。なお、参照増幅回路70の構成は増幅回路60の構成と同様とすることができるため、以下では、増幅回路60について説明し、参照増幅回路70の説明は省略する。
ここで、図5に示す増幅器の構成例60Aは、OTAを用いる構成例であり、電圧電流変換回路に電流電圧変換回路を直列に接続して構成し、この電圧電流変換回路を相互コンダクタンスが可変であるトランスコンダクタンスアンプによって構成し、このトランスコンダクタンスアンプの相互コンダクタンスを前記制御回路の出力信号により制御することによって電圧から電流への変換率を可変とし、この電圧電流変換回路で変換した電流を電流電圧変換回路によって電圧に変換することによって増幅率を制御する。
図6に示す増幅器の構成例60Bは、演算増幅器(オペアンプ)によって反転増幅器あるいは非反転増幅器を構成し、この演算増幅器に接続する入力抵抗や帰還抵抗等の抵抗素子をスイッチトキャパシタ回路を用いた等価抵抗を構成する可変抵抗によって構成するものである。
この演算増幅器の入力抵抗又は帰還抵抗、あるいは、入力抵抗と帰還抵抗の両抵抗をスイッチトキャパシタ回路で構成し、このスイッチトキャパシタ回路のスイッチの開閉の切り替えを前記制御回路の出力信号により制御することによって入力抵抗を可変として増幅率を制御することによって増幅率を制御する。なお、非反転増幅器の場合には、入力抵抗は用いられない。
図7,図8に示す増幅器の構成例60C,60Dは、演算増幅器(オペアンプ)によって反転増幅器あるいは非反転増幅器を構成し、この演算増幅器に接続する入力抵抗や帰還抵抗等の抵抗素子をOTAを用いた等価抵抗を構成する可変抵抗によって構成するものである。この演算増幅器の入力抵抗又は帰還抵抗、あるいは、入力抵抗と帰還抵抗の両抵抗を相互コンダクタンスが可変であるトランスコンダクタンスアンプで構成し、このトランスコンダクタンスアンプの相互コンダクタンスを制御回路の出力信号により制御することによって抵抗を可変とし、この抵抗を可変とすることによって増幅率を制御する。なお、非反転増幅器の場合には、入力抵抗は用いられない。
はじめに、増幅器の構成例60Aについて説明する。
増幅回路60Aは、図5に図示したように、電圧−電流変換回路64と、電流−電圧変換回路63とで構成するとよい。電圧−電流変換回路64には、入力端子間の電位差に比例する電流が高精度で得られるOTA(オペレーショナルトランスコンダクタンスアンプ)69を用いる。OTAにおいては、入力端子間電圧をVinと、出力端子から得られる電流Ioutとの関係を
Iout=gm・Vin
と表すことができる。gmは相互コンダクタンスと呼ばれる比例係数である。特に本例における電圧−電流変換回路64には、制御信号端子Cへ印加する電圧値に応じて、相互コンダクタンスgmが変化するものを用いる。
さらに、電圧−電流変換回路64によって得られた電流出力を、オペアンプ61と帰還抵抗62で構成した電流−電圧変換回路63によって再び電圧信号に変換し直すことで、増幅率を制御可能でかつ線形特性の高い増幅回路を構成できる。
次に、増幅器の構成例60Bについて説明する。図6はオペアンプを用いた反転増幅回路の例であり、入力抵抗の抵抗値を可変とすることで増幅率を変える構成例である。なお、反転増幅回路および非反転増幅回路は、符号は逆であるが、増幅率の大きさは演算増幅器(オペアンプ)に接続される入力抵抗と帰還抵抗によって定まるため、非反転増幅回路についても同様にして構成することができる。また、ここでは、入力抵抗の抵抗値を変えることで増幅率を変える構成を示しているが、帰還抵抗の抵抗値を変えることで増幅率を変える構成とすることもできる。
図6において、増幅回路60Bは演算増幅器(オペアンプ)61と入力抵抗および帰還抵抗によって構成される。入力抵抗は、制御信号S5の電圧を周波数に変換する周波数変換器回路(リニアVCO)65と、この周波数変換器回路(リニアVCO)65で変換された周波数fのクロック信号によってON/OFFの切り替え制御が行われるスイッチトキャパシタ回路66とによって構成され、一方、帰還抵抗は抵抗62とコンデンサ67の並列接続で構成される。ここで、コンデンサ67はローパスフィルタを構成している。
ここで、増幅回路60Bの増幅率は(−帰還抵抗値Rf/入力抵抗値Rs)で定まるため、入力抵抗をスイッチトキャパシタ回路66からなる可変抵抗回路で形成し、この可変抵抗回路の抵抗値を、制御信号S5の電圧信号を周波数変換器回路(リニアVCO)65で周波数信号に変換した信号によって変えることによって、増幅率の増減の方向と制御信号S5の変動の方向とを同じ方向に調整することができる。
例えば、制御信号S5が増加した場合には、可変抵抗(スイッチトキャパシタ回路66)の抵抗値を減少させることで、増幅回路60Bの増幅率を上げ、逆に、制御信号S5が減少した場合には、可変抵抗(スイッチトキャパシタ回路66)の抵抗値を増加させることで、増幅回路60Bの増幅率を下げる。
この参照信号と周波数信号と可変抵抗との抵抗値と増幅率との関係は、制御信号と周波数信号とは正の増加特性の関係にあり、周波数信号と抵抗値とは逆の増加特性の関係にあり、抵抗値と増幅率とは逆の増加特性の関係にある。そのため、制御信号と増幅率とは正の増加特性の関係となり、制御信号が増加した場合には増幅率は増加し、制御信号が減少した場合には増幅率は減少する。したがって、増幅回路の増幅率を制御信号と同じ特性とすることができる。
増幅回路60Bは、可変抵抗回路をスイッチトキャパシタ回路により構成する。スイッチトキャパシタ回路は、コンデンサの接続状態を切り替えることで電荷の移動を行うものであり、パルス変調信号に基づいて増幅率を可変とする。ここでは、スイッチトキャパシタ回路66は、2接点を備えたスイッチとコンデンサによって構成される。
スイッチトキャパシタ回路は、スイッチとコンデンサ66cで構成され、スイッチの接点が検波回路側に接続される状態では、コンデンサ66cは検波出力の入力信号Sinの電圧を蓄積し、次に、スイッチが演算増幅器(オペアンプ)61に接続される状態となると、コンデンサ66cに蓄えた電荷は演算増幅器(オペアンプ)61に反転入力端子に放電される。
スイッチはMOS素子による伝達ゲート(トランスミッションゲート)で構成でき、スイッチの接点状態は周波数変換回路65の周波数信号に応じて切り替わるよう構成することができ、周波数信号に応じてコンデンサの接続状態が切り換わる。なお、スイッチは、帰還抵抗62、スイッチトキャパシタ回路66を構成するコンデンサ66cや帰還抵抗62と並列接続されるコンデンサ67と同様に、半導体プロセスで製造可能であり、同一の半導体チップ上に構成することができる。これによって、各素子の温度特性を合わせることができる。演算増幅器(オペアンプ)61の反転入力端子にはスイッチトキャパシタ回路66を接続し、演算増幅器(オペアンプ)61の非反転入力端子には中点電圧Vmを接続する。
このように、周波数変換回路65の周波数信号に応じて、スイッチを反転入力端側と検波回路側とで切り替えることでコンデンサ66cの接続状態を切り換える。
スイッチが上記の切り替え動作を高速に行うことで、スイッチトキャパシタ回路66は、抵抗値がRe=1/(f・Cs)で表現できる抵抗素子と等価の動作をする。なお、ここで、fはスイッチの平均切り替え周波数、Csはコンデンサ66cの容量である。
スイッチトキャパシタ回路は抵抗素子と等価であり可変抵抗回路を形成することから、増幅回路60Bの増幅率は、帰還抵抗と入力抵抗の比で定まる。したがって、上記した構成において、入力抵抗をスイッチトキャパシタ回路66で構成し、このスイッチトキャパシタ回路66の等価抵抗を制御信号S5の周波数によって変えることによって、増幅回路60Bの増幅率を制御信号S5の変動特性と同じ方向に可変とすることができる。
なお、スイッチトキャパシタ回路を用いた増幅回路60Bは、コンデンサに、容量の電圧依存性のないコンデンサを用いることで、高いリニアリティを得ることができる。半導体チップ上でこのような特性のコンデンサを実現するには、例えば一般的な2層ポリシリコンプロセスにより、電極をポリシリコン化したコンデンサを構成すればよい。
図6に示した増幅回路は演算増幅器(オペアンプ)を用いた構成であるが、増幅回路を構成する能動回路は演算増幅器(オペアンプ)に限らず、バイポーラトランジスタやFET等の他の素子を用いてもよい。
ここでは、演算増幅器(オペアンプ)の入力抵抗を可変抵抗とした例を示しているが、帰還抵抗を可変抵抗とする構成、あるいは、入力抵抗および帰還抵抗の両抵抗を可変抵抗とする構成としてもよい。
次に、増幅器の構成例60C、60Dについて図7、図8を用いて説明する。構成例60C,60Dは、図6に示す構成例60Bと同様にオペアンプを用いて反転増幅回路の例であり、入力抵抗の抵抗値を可変とすることで増幅率を変える構成例である。構成例60C,60Dでは、OTAを用いて可変抵抗を構成する。
可変抵抗は、入力抵抗あるいは帰還抵抗に適用することができる。図7に示す構成例は入力抵抗を可変抵抗で構成した例を示し、図8に示す構成例は帰還抵抗を可変抵抗で構成した例を示している。可変抵抗は、相互コンダクタンスが可変であるトランスコンダクタンスアンプで構成し、このトランスコンダクタンスアンプの相互コンダクタンスを制御回路の制御信号により制御することによって抵抗を可変とし、この抵抗を可変とすることによって増幅率を制御する。
図7に示す構成例60Cの入力抵抗において、トランスコンダクタンスアンプ69の出力端を抵抗68の入力端子側に接続し、トランスコンダクタンスアンプ69の一方の入力端(図7では+端子)を抵抗68の出力端側に接続する。トランスコンダクタンスアンプ69の相互コンダクタンスgmは制御信号S5によって制御される。
増幅器60Cの増幅率は、抵抗68とトランスコンダクタンスアンプ69で定まる入力抵抗値とオペアンプ61の帰還抵抗62の抵抗値との比で定まり、入力抵抗を可変とすることで、増幅率を可変とする。
一方、図8に示す構成例60Dの帰還抵抗において、トランスコンダクタンスアンプ69の出力端を帰還抵抗62の出力端側に接続し、トランスコンダクタンスアンプ69の一方の入力端(図8では+端子側)を帰還抵抗62の入力端側に並列接続する。トランスコンダクタンスアンプ69の相互コンダクタンスgmは制御信号S5によって制御される。
増幅器60Dの増幅率は、抵抗68で定まる入力抵抗値と、オペアンプ61の帰還抵抗62とトランスコンダクタンスアンプ69で定まる帰還抵抗値との比で定まり、帰還抵抗を可変とすることで、増幅率を可変とする。
ただし、この場合のトランスコンダクタンスアンプ69は、図7の場合とは特性が異なる。図7のトランスコンダクタンスアンプ69は、制御信号S5の電圧値が高い場合に入力抵抗が下がる働きをする特性を用いたものであるが、図8は制御信号S5の電圧値が高い場合に帰還抵抗が上がる働きをする特性を用いた例である。
この構成例では、トランスコンダクタンスアンプの直線性が良好となるように動作させることができるため、物理量センサの検出感度を高いリニアリティで出力することができる。また、検波前のセンサ素子から出力された交流信号の処理に適している。
本発明の物理量センサは、センサ素子を駆動する駆動回路の駆動レベルを制御することによって電源電圧の電圧変動による出力の変動を抑制し、高い精度の出力を得ることができる。
この駆動回路の駆動レベル制御は、参照信号生成回路に生じる電圧変動と同じ方向に制御することによって参照信号生成回路に生じる電圧変動による影響を相殺するものであり、センサ素子の駆動レベルを参照信号生成回路に生じる電圧変動と同じ方向に制御するために、センサ素子の駆動レベルを参照信号生成回路が出力する第1の参照信号に基づいて定める。
図9はこの駆動レベル制御の一構成例を説明するための図である。図9に示す構成は、前記した図2に示す回路構成において、参照信号生成回路30が備える基準電圧源31から出力される第1の参照信号S31を制御信号として駆動回路80に入力する。駆動回路80は、参照信号S31に基づいて駆動レベルを定める。
第1の参照信号S31は電源電圧によらず一定であるが、実際は電源電圧の変動や周囲温度の変化によって僅かに電圧変動する。したがって、駆動回路80の駆動レベルを第1の参照信号S31に基づいて定めると、この駆動レベルは電源電圧の変動や周囲温度の変化に応じて電圧変動する。そして、駆動レベルの電圧変動は、検出信号S1のレベルにも変動として現れる。
一方、上述したように、本発明の制御回路50の増幅率制御によって、センサ素子10の検出信号と増幅回路60の増幅率との間には互いに逆方向に増減する関係が得られている。センサ素子10の検出信号を増幅回路60で信号増幅すると、駆動レベルの電圧変動と増幅特性とが逆方向であるため、センサ素子の出力信号と増幅回路の増幅率とが互いに逆方向に増減する関係となり、電圧変動による影響が相殺されて物理量センサの検出レベルが一定となる。
例えば、電圧変動によって駆動レベルが増加した場合には、この駆動レベルの増加によってセンサ素子10の検出信号が増加する。一方、この電圧変動の増加は、増幅回路60および参照増幅回路70の増幅率を減少させるため、増加した検出信号の増幅率は小さくなるため、調整回路100から得られる物理量センサの検出感度は一定となり、参照信号生成回路に生じる電圧変動による出力変動が抑制される。
以上、本発明の実施形態による物理量センサについて説明した。本発明によれば、製造誤差や温度変化の影響を受けにくい安定した検出感度を有する物理量センサが実現できる。その上さらに、センサ検出出力が高い直線性を有する物理量センサも実現できる。
本発明は、振動ジャイロを代表とする角速度センサや磁気センサ、加速度センサなどの幅広い種類の物理量センサの出力信号レベル調整に適用することが可能である。

Claims (9)

  1. 外部から印加された物理量を電気信号に変換するセンサ素子と、
    このセンサ素子の出力信号の信号レベルを調整する調整回路とを有する物理量センサにおいて、
    前記調整回路は、前記センサ素子の出力信号を増幅する増幅回路と、
    電源電圧に依存しない基準電圧源の一定電圧を含む信号を電源電圧に応じて増幅することにより電源電圧に応じた増幅率を設定する参照増幅回路とを備え、
    前記増幅回路の増幅率を前記参照増幅回路の増幅率と連動させて、前記増幅回路と前記参照増幅回路との増幅率の比を一定とすることによって、前記センサ素子の出力信号の信号レベルを調整することを特徴とする物理量センサ。
  2. 請求項1に記載の物理量センサにおいて、
    前記調整回路は、電源電圧に応じて変化する第2の参照信号と、電源電圧に依存しない基準電圧源の一定電圧を含む第1の参照信号と出力する参照信号生成回路と、
    前記参照増幅回路の増幅率を制御する制御回路とを備え、
    前記参照増幅回路は前記第1の参照信号を増幅し、
    前記制御回路は、第2の参照信号と前記参照増幅回路が増幅した第1の参照信号とが等しくなるように参照増幅回路の増幅率を制御し、この参照増幅回路の増幅率を制御することで前記増幅回路の増幅率を電源電圧に応じて制御することを特徴とする物理量センサ。
  3. 請求項2に記載の物理量センサにおいて、
    前記制御回路は、参照増幅回路の出力が前記第2の参照信号よりも高い場合に参照増幅回路の増幅率を下げ、参照増幅回路の出力が前記第2の参照信号よりも低い場合に参照増幅回路の増幅率を上げるフィードバック制御を行うことを特徴とする物理量センサ。
  4. 請求項2または3の何れか一つに記載の物理量センサにおいて、
    前記センサ素子を駆動する駆動回路を有し、
    当該駆動回路が前記センサ素子を駆動する駆動レベルを、前記参照信号生成回路が出力する前記第1の参照信号に基づいて定めることにより、
    当該センサ素子の出力信号と前記増幅回路の増幅率との関係を互いに逆方向に増減する関係とし、物理量センサの検出レベルを一定とすることを特徴とする物理量センサ。
  5. 請求項1から4の何れか一つに記載の物理量センサにおいて、
    前記増幅回路と前記参照増幅回路の少なくとも一方の回路は、演算増幅器に抵抗素子を接続して構成し、
    前記抵抗素子を、相互コンダクタンスが可変であるトランスコンダクタンスアンプを含む等価抵抗で構成し、このトランスコンダクタンスアンプの相互コンダクタンスを前記制御回路の出力信号により制御することによって抵抗を可変とし、この抵抗を可変とすることによって増幅率を制御することを特徴とする物理量センサ。
  6. 請求項1から4の何れか一つに記載の物理量センサにおいて、
    前記増幅回路と前記参照増幅回路の少なくとも一方の回路は演算増幅器に抵抗素子を接続して構成し、
    前記抵抗素子を、スイッチトキャパシタ回路を含む等価抵抗で構成し、このスイッチトキャパシタ回路のスイッチの開閉の切り替えを前記制御回路の出力信号により制御することによって抵抗を可変として増幅率を制御することを特徴とする物理量センサ。
  7. 請求項1から4の何れか一つに記載の物理量センサにおいて、
    前記増幅回路と前記参照増幅回路の少なくとも一方の回路は電圧電流変換回路と電流電圧変換回路とを同順で直列に接続して構成し、
    前記電圧電流変換回路は相互コンダクタンスが可変であるトランスコンダクタンスアンプにより構成し、このトランスコンダクタンスアンプの相互コンダクタンスを前記制御回路の出力信号により制御することによって電圧から電流への変換率を可変とし、
    この電圧電流変換回路で変換した電流を前記電流電圧変換回路によって電圧に変換することによって増幅率を制御することを特徴とする物理量センサ。
  8. 請求項1から7の何れか一つに記載の物理量センサにおいて、
    前記センサ素子と前記調整回路との間に検波回路を備え、
    前記調整回路は、前記検波回路で直流化したセンサ素子の直流出力の信号レベルを調整することを特徴とする物理量センサ。
  9. 請求項1から7の何れか一つに記載の物理量センサにおいて、
    前記調整回路の後に検波回路を備え、
    前記調整回路はセンサ素子の交流出力の信号レベルを調整し、前記検波回路はレベル調整した出力信号を直流化して出力することを特徴とする物理量センサ。
JP2008500561A 2006-02-17 2007-02-16 物理量センサ Expired - Fee Related JP4671305B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006040132 2006-02-17
JP2006040132 2006-02-17
PCT/JP2007/052831 WO2007094448A1 (ja) 2006-02-17 2007-02-16 物理量センサ

Publications (2)

Publication Number Publication Date
JPWO2007094448A1 JPWO2007094448A1 (ja) 2009-07-09
JP4671305B2 true JP4671305B2 (ja) 2011-04-13

Family

ID=38371624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008500561A Expired - Fee Related JP4671305B2 (ja) 2006-02-17 2007-02-16 物理量センサ

Country Status (4)

Country Link
US (1) US8127603B2 (ja)
JP (1) JP4671305B2 (ja)
CN (1) CN101384882B (ja)
WO (1) WO2007094448A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008082866A (ja) * 2006-09-27 2008-04-10 Citizen Holdings Co Ltd 物理量センサ

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009244019A (ja) * 2008-03-31 2009-10-22 Seiko Npc Corp 角速度検出装置
JP4996589B2 (ja) * 2008-12-17 2012-08-08 旭化成エレクトロニクス株式会社 感度調整回路
CN101902851A (zh) * 2009-05-25 2010-12-01 皇家飞利浦电子股份有限公司 发光二极管驱动电路
KR101676003B1 (ko) * 2010-06-09 2016-11-14 삼성전자주식회사 무선주파수인식 태그 및 그것의 신호 수신 방법
JP5510660B2 (ja) * 2010-09-02 2014-06-04 セイコーエプソン株式会社 駆動回路、物理量測定装置
EP2439559B1 (en) * 2010-10-07 2013-05-29 Mettler-Toledo Safeline Limited Method for operating of a metal detection system and metal detection system
DE102011002937A1 (de) * 2011-01-20 2012-07-26 Ford Global Technologies, Llc Partikelsensor, Abgassystem und Verfahren zum Bestimmen von Partikeln im Abgas
EP2562565B1 (en) * 2011-08-24 2014-03-05 Mettler-Toledo Safeline Limited Metal Detection Apparatus
EP2976650B1 (en) * 2013-03-15 2021-05-05 Ilium Technology, Inc. Apparatus and method for measuring electrical properties of matter
FR3004532B1 (fr) * 2013-04-10 2016-12-09 Vishay S A Circuit electrique pour faire fonctionner un capteur ratiometrique
DE102013218973B4 (de) * 2013-09-20 2015-11-19 Albert-Ludwigs-Universität Freiburg Verfahren und Schaltung zur zeitkontinuierlichen Detektion der Position der Sensormasse bei gleichzeitiger Rückkopplung für kapazitive Sensoren
KR102092904B1 (ko) * 2013-11-06 2020-03-24 삼성전자주식회사 스위치드-커패시터 적분기, 이의 동작 방법, 및 이를 포함하는 장치들
JP6213165B2 (ja) * 2013-11-07 2017-10-18 セイコーエプソン株式会社 検出装置、センサー、電子機器及び移動体
JP6492790B2 (ja) * 2015-03-09 2019-04-03 セイコーエプソン株式会社 物理量センサー、電子機器、及び移動体
US10122322B2 (en) * 2015-12-24 2018-11-06 Skyworks Solutions, Inc. Dynamic error vector magnitude correction for radio-frequency amplifiers
US10506318B2 (en) * 2016-02-23 2019-12-10 Infineon Technologies Ag System and method for signal read-out using source follower feedback
CH713460A2 (de) * 2017-02-15 2018-08-15 Digi Sens Ag Schwingsaitensensor und Schwingsaite für einen Schwingsaitensensor.
US10756627B2 (en) * 2017-09-14 2020-08-25 Microchip Technology Incorporated Enhanced switching regulator topology with adaptive duty control and seamless transition of operating modes
CN109916805A (zh) * 2019-04-02 2019-06-21 无锡厦泰生物科技有限公司 一种基于流式细胞仪的流体模块的压力控制电路
US11885645B2 (en) * 2021-06-17 2024-01-30 Allegro Microsystems, Llc Supply voltage configurable sensor
DE102021128249A1 (de) 2021-10-29 2023-05-04 Infineon Technologies Ag Ratiometrische sensorschaltung

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61154213A (ja) * 1984-12-26 1986-07-12 Nec Corp 逆相一次ハイパスフイルタ回路
JPH0946150A (ja) * 1995-07-27 1997-02-14 At & T Ipm Corp ゲイン選択技術
JPH1144540A (ja) * 1997-07-25 1999-02-16 Denso Corp 振動型角速度センサ
JP2004053396A (ja) * 2002-07-19 2004-02-19 Matsushita Electric Ind Co Ltd 角速度センサおよびそれを用いた自動車
JP2005080090A (ja) * 2003-09-02 2005-03-24 Toyota Industries Corp 差動増幅回路の出力電圧制御回路及び電圧検出器
JP2006010408A (ja) * 2004-06-23 2006-01-12 Murata Mfg Co Ltd 振動ジャイロ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3444738A (en) * 1967-08-25 1969-05-20 Honeywell Inc Self-oscillating impedance measuring loop
US5103184A (en) * 1990-11-16 1992-04-07 General Motors Corporation Capacitive fuel composition sensor with ground isolation
DE69622815T2 (de) * 1995-05-30 2002-11-28 Matsushita Electric Ind Co Ltd Drehgeschwindigkeitssensor
JP2004320553A (ja) 2003-04-17 2004-11-11 Asahi Kasei Microsystems Kk 補償回路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61154213A (ja) * 1984-12-26 1986-07-12 Nec Corp 逆相一次ハイパスフイルタ回路
JPH0946150A (ja) * 1995-07-27 1997-02-14 At & T Ipm Corp ゲイン選択技術
JPH1144540A (ja) * 1997-07-25 1999-02-16 Denso Corp 振動型角速度センサ
JP2004053396A (ja) * 2002-07-19 2004-02-19 Matsushita Electric Ind Co Ltd 角速度センサおよびそれを用いた自動車
JP2005080090A (ja) * 2003-09-02 2005-03-24 Toyota Industries Corp 差動増幅回路の出力電圧制御回路及び電圧検出器
JP2006010408A (ja) * 2004-06-23 2006-01-12 Murata Mfg Co Ltd 振動ジャイロ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008082866A (ja) * 2006-09-27 2008-04-10 Citizen Holdings Co Ltd 物理量センサ

Also Published As

Publication number Publication date
US20100102878A1 (en) 2010-04-29
WO2007094448A1 (ja) 2007-08-23
CN101384882A (zh) 2009-03-11
JPWO2007094448A1 (ja) 2009-07-09
CN101384882B (zh) 2011-11-09
US8127603B2 (en) 2012-03-06

Similar Documents

Publication Publication Date Title
JP4671305B2 (ja) 物理量センサ
JP5294228B2 (ja) 物理量センサ
JP5495356B2 (ja) 物理量センサ
US7117714B2 (en) Output amplifier circuit and sensor device using the same
EP2198313B1 (en) Switched capacitor measurement circuit for measuring the capacitance of an input capacitor
JP5827759B2 (ja) 増幅回路及び増幅回路icチップ
KR20030077232A (ko) 적분형 용량-전압 변환장치
JP2007057340A (ja) 発振回路及び角速度センサ
US7671683B2 (en) Semiconductor integrated circuit and method for adjusting a capacitance value of a phase compensating capacitor
JP2006319388A (ja) 自動利得制御回路及びそれを用いた正弦波発振回路
JP2009075060A6 (ja) 物理量センサ
JP2009075060A (ja) 物理量センサ
JP4559805B2 (ja) 物理量センサ
JP4272267B2 (ja) 静電容量型センサ回路
JP4994149B2 (ja) 物理量センサ
JP2006177895A (ja) 静電容量/電圧変換装置および力学量センサ
JP2007205803A (ja) センサ信号処理システムおよびディテクタ
Dutta et al. Low offset, low noise, variable gain interfacing circuit with a novel scheme for sensor sensitivity and offset compensation for MEMS based, Wheatstone bridge type, resistive smart sensor
JP2006033092A (ja) 圧電発振器
JP4178663B2 (ja) 圧力センサ回路
CN112055294B (zh) 电容式mems芯片驱动电路、电容式mems传感器及智能电子设备
EP2995939A1 (en) Temperature / Power controller for mems sensor
JP4374892B2 (ja) 可変容量回路
JPH0572524B2 (ja)
JPH11237254A (ja) 抵抗ブリッジ型センサの温度補償回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110113

R150 Certificate of patent or registration of utility model

Ref document number: 4671305

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees