WO2008038337A1 - Optical electric field receiver and optical transmission system - Google Patents

Optical electric field receiver and optical transmission system Download PDF

Info

Publication number
WO2008038337A1
WO2008038337A1 PCT/JP2006/319021 JP2006319021W WO2008038337A1 WO 2008038337 A1 WO2008038337 A1 WO 2008038337A1 JP 2006319021 W JP2006319021 W JP 2006319021W WO 2008038337 A1 WO2008038337 A1 WO 2008038337A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
signal
phase
electric field
receiver
Prior art date
Application number
PCT/JP2006/319021
Other languages
English (en)
French (fr)
Inventor
Nobuhiko Kikuchi
Original Assignee
Hitachi Communication Technologies, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Communication Technologies, Ltd. filed Critical Hitachi Communication Technologies, Ltd.
Priority to PCT/JP2006/319021 priority Critical patent/WO2008038337A1/ja
Priority to JP2008536218A priority patent/JP4755690B2/ja
Priority to CN2006800556514A priority patent/CN101507149B/zh
Priority to EP06810546.9A priority patent/EP2071747B1/en
Priority to US12/439,705 priority patent/US8184992B2/en
Publication of WO2008038337A1 publication Critical patent/WO2008038337A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/613Coherent receivers including phase diversity, e.g., having in-phase and quadrature branches, as in QPSK coherent receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/616Details of the electronic signal processing in coherent optical receivers
    • H04B10/6161Compensation of chromatic dispersion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/616Details of the electronic signal processing in coherent optical receivers
    • H04B10/6163Compensation of non-linear effects in the fiber optic link, e.g. self-phase modulation [SPM], cross-phase modulation [XPM], four wave mixing [FWM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/65Intradyne, i.e. coherent receivers with a free running local oscillator having a frequency close but not phase-locked to the carrier signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03012Arrangements for removing intersymbol interference operating in the time domain
    • H04L25/03019Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception
    • H04L25/03057Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception with a recursive structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • H04L27/223Demodulation in the optical domain

Definitions

  • the present invention relates to an optical information transmission technology, and more particularly to an optical electric field receiver, an optical multilevel signal receiver, and an optical transmission system suitable for receiving multilevel optical information transmitted by an optical fiber. .
  • the amount of information (transmission capacity) that can be transmitted by a single optical fiber has been expanded by the increase in the number of wavelengths to be multiplexed and the speed of modulation of optical signals.
  • the signal modulation method is used, and by packing a large number of optical signals in a limited frequency band, the utilization efficiency of the frequency band is made high. There is a need to.
  • Multi-level modulation technology which has been widely used in the 1960s, enables high-efficiency transmission with a frequency utilization efficiency exceeding 10 or more.
  • Multi-level modulation is considered promising for optical fiber transmission, and many studies have been made on conventional power.
  • FIG. 1 are diagrams showing features of various known modulation methods applicable to optical transmission.
  • the phase point of light modulation (complex representation of the light electric field at the identification time) is plotted on the phase plane (on the IQ plane).
  • BASK binary amplitude modulation
  • a 4-value phase is used to transmit 2-bit information (11, 10, 01, 00) in one symbol by using a 4-value phase angle (0, ⁇ / 2, ⁇ , 1 ⁇ 2).
  • the modulation (QPSK) is shown.
  • (C) shows 16-value quadrature amplitude modulation (16 QAM) widely used in wireless communication.
  • the phase points are arranged in a grid, enabling one symbol to transmit four bits of information.
  • the values of the upper 2 bits (11 ⁇ , 10 ⁇ , 01 ⁇ , Q) in the Q axis coordinate and the values of the lower 2 bits (xxl l, ⁇ 10, xx01, xxOO) in the I axis coordinate are expressed.
  • This arrangement of phase points is known to have high reception sensitivity because the distance between phase points can be increased, but a practical example in the field of optical communication has not been reported yet.
  • (D) shows 16-value amplitude phase modulation (16APSK) in which the phase point of binary amplitude modulation and the phase point of octal phase modulation are arranged concentrically
  • (E) shows the relationship between amplitude and phase. ing.
  • variable chromatic dispersion compensator placed at the optical signal receiving end.
  • Adaptive compensation technology to control automatically to become is considered! Scold.
  • the variable wavelength dispersion compensators leave many problems in terms of device size, complexity, cost, control speed, and the like.
  • an electrical adaptive equalization circuit such as a feedforward equalization circuit (FFE) or a decision feedback equalization circuit (DFE) is disposed in an electric circuit portion of an optical signal receiver, or a maximum likelihood estimation circuit Electrical stage compensation techniques to estimate received symbols in MLSE are under consideration.
  • FFE feedforward equalization circuit
  • DFE decision feedback equalization circuit
  • the chromatic dispersion compensation in the electrical stage according to the prior art is imperfect for shaping the eye opening of the received light waveform. Therefore, the compensation effect also effectively expands the wavelength dispersion resistance of the receiver by 1.5 to 2 times, for example, by extending the transmission distance to 1 Okm for ordinary optical fiber transmission of 4 OGbit Z seconds. It was inadequate.
  • the coherent light electric field reception system requires a local oscillation laser light source 130 having substantially the same wavelength as the transmission light source.
  • the output light (local light) 132 from the laser light source 130 is split into two local light 132-1 and 132-2 by the optical splitter 102, and input to the coherent optical electric field receivers 135-1 and 135-2. Ru.
  • the coherent optical field receiver 135-1 includes an optical phase diversity circuit 136 and a digital arithmetic circuit 141.
  • the optical phase diversity circuit 136 outputs 1 (in-phase) component output light consisting of in-phase components of the local light and the optical multilevel signal from the P polarization component 133 and the local light 132-1 of the input multilevel signal.
  • 137 and a Q (quadrature) component output light 138 consisting of orthogonal components of local light and multilevel optical signal, the I component output light 137 is output to the balance type optical receiver 105-1 as the Q component output light 138 Supplies the balanced optical receiver 105-2.
  • the analog electrical signals output from the noise type optical receivers 105-1 and 105-2 are time-sampled by A / D conversions 106-1 and 1062, respectively, and converted into digital signals.
  • the optical field of the received signal is defined as r (n) exp ( ⁇ ( ⁇ )), and local light 132-1 and 132-2 are obtained.
  • the optical field of is expressed as exp (- ⁇ (n)).
  • r is the amplitude of the photoelectric field
  • is the phase of the optical field
  • n is the sampling time
  • the amplitude of the local light 132 is assumed to be a constant value “1”.
  • ⁇ (n) indicates the random phase noise inherent to the laser light source and the phase fluctuation caused by the difference frequency component of the local light and the signal light.
  • the transmission light source on the transmitter side also has phase noise, it is ignored here for the sake of simplicity.
  • ⁇ ′ ( ⁇ ) ⁇ ( ⁇ ) + ⁇ ( ⁇ )
  • all constants such as conversion efficiency are “1”.
  • phase variation ⁇ ( ⁇ ), ⁇ ′ ( ⁇ ) ⁇ ((). Therefore, when a coherent photoelectric field receiver is used, all the information (here, both I and Q components) indicating the optical electric field r (n) eX p (n)) is direct from the received optical multilevel signal 123. Force that can be easily obtained and that multi-level optical signal reception should be possible. In fact, the influence of the phase fluctuation ⁇ (n) of the local light 132 can not be ignored.
  • the symbol determination circuit 143 compares which I and Q components outputted from each digital arithmetic circuit 141 with the phase point arrangement shown in FIG. 1 (C) to accurately determine which symbol has been transmitted. It discriminates and outputs the reproduction multi-value digital signal 144.
  • the coherent optical field receiver By using the above-described coherent optical field receiver, it is possible to compensate for signal degradation due to wavelength dispersion or the like by arithmetic processing and generate all the electric field information necessary for identification of multilevel signals. In fact, even complex multi-level signals can be received. Further, in the coherent optical field receiver, by performing correction processing on the input signal by the inverse function of the propagation function of the optical fiber transmission line in the digital operation circuit 141, linear deterioration due to wavelength dispersion etc. is theoretically obtained. There is a great advantage that the compensation can be made completely and the amount of compensation is not limited.
  • FIG. 3 (B) shows a configuration diagram of a conventional optical multilevel signal receiver for receiving amplitude phase modulated light represented by Non-Patent Document 2
  • FIG. 3 (A) shows An example of an eight-value amplitude phase modulated light (8APSK) in which eight phase points of four values of phase and two values of amplitude are arranged concentrically is shown.
  • 8APSK eight-value amplitude phase modulated light
  • differential codes are generally used for modulation of phase components.
  • 3-bit information in each symbol is associated with the amplitude 2 value and the phase difference value 0, ⁇ / 2, ⁇ , 1 ⁇ / 2 of the immediately preceding symbol.
  • An optical multilevel signal receiver that receives an 8APSK signal is a non-coherent system that does not detect an optical electric field, and as shown by ( ⁇ ) in FIG. 3, the input optical APSK signal 124 is an optical branch circuit. It is branched into three light signals at 150. Among them, two optical signals are input to the optical delay detectors 104-1 and 104-2, and the remaining one optical signal is input to the optical intensity receiver 151.
  • the optical delay detectors 1 04-1 and 104-2 respectively provide a first optical signal that delays the symbol time ⁇ ⁇ ⁇ ⁇ to the input signal.
  • the output light of the optical delayed detector 104-1 having a + ⁇ / 4 phase shifter has a large output intensity when the phase difference between the received symbol and the immediately preceding symbol becomes SO or + ⁇ 2, The output intensity decreases when the phase difference becomes ⁇ ⁇ 2 or ⁇ .
  • the output light of the optical delay detector 104-1 is received by the balanced receiver 105-1, and the output is subjected to binary judgment by the binary judgment circuit 152-1 to obtain a binary reproduced digital signal of one bit. 153-1 is obtained.
  • the output light of the optical differential detector 104-2 having a ⁇ / 4 phase shifter has a large output intensity when the phase difference force SO or ⁇ 2 between the received symbol and the immediately preceding symbol, and the phase difference The output intensity decreases when ⁇ ⁇ 2 or ⁇ .
  • the output light of the optical delay detector 104-2 is input to the binary determination circuit 152-2 via the balanced receiver 105-2, so that the other 1 bit of binary contained in the phase component is obtained.
  • the playback digital signal 153-2 is played back.
  • the light intensity receiver 151 converts the light intensity (the square of the optical electric field amplitude) of the received signal into an electrical signal.
  • the output of the light intensity receiver 151 is judged by the binary judgment circuit 152-3, and the binary reproduced digital signal 153-3 for one bit contained in the light amplitude component is reproduced. Since this optical multilevel signal receiver uses optical delayed detection, it has the advantage of eliminating the need for a local oscillation light source that is almost free from the effects of phase variation ⁇ ( ⁇ ) and polarization dependence. It is applied to the reception of APSK signal up to
  • Fig. L shows the configuration of the optical transmission system that transmits and receives binary intensity modulation light.
  • the optical transmitter (Low Cost Transmitter) shown here is an optical signal output from the DFB laser that is converted to a lObitzs optical intensity modulator (MZM) or an electroabsorption modulator (EAM). It is externally modulated by an information signal (bit width lOOps) and output to an optical fiber transmission line (Fiber Link).
  • the modulated light transmitted through the above optical fiber transmission line has a narrow bandwidth. After being cut out with a filter, it is received by an optical receiver consisting of four parts A to D. This light receiver has the effect of acquiring the light intensity waveform (AM component) and the light frequency change (FM component) waveform, combining this in the receiver, and performing electrical dispersion compensation.
  • AM component the light intensity waveform
  • FM component light frequency change
  • a frequency waveform (FM waveform: VF) can be obtained by dividing the calculation result of the difference component (VI ⁇ V2) by the intensity waveform (VA).
  • an AM modulator is used to intensity modulate the electric sine wave signal of the intermediate frequency F (F> 10 GHz) obtained by the microwave transmitter with the above AM wave form VA, and further, an FM modulator
  • the optical electric field waveform is reproduced in a pseudo manner in the receiver.
  • the resulting intermediate frequency electrical signal is then passed through a microwave dispersive transmission line (Dispersive Transmission Line) having a dispersion characteristic opposite to that of the optical transmission line to cause waveform deterioration caused by dispersion. After compensation (dispersion compensation), it is received by square detection.
  • Non-Patent Document 1 R. A. Griffin, et. Al, “lOGb / s Optical Differential Quadrature Phase Shift Key (DQPSK) Transmission using GaAs / AlGaAs Integration, OFC2002, paper PD-FD6, 2003
  • Non Patent Literature 2 Kenro Sekine, Nobuhiko Kikuchi, Shinya Sasaki, Shigenori Hayase an d Chie Hasegawa, "Proposal and Demonstration of 10- Gsymbol / sec 16 -ary (40 Gbit / s) Optical Modulation I Demodulation Scheme," paper We3. 4.5, ECOC 2004, 200 4
  • Non-Patent Document 3 MG Taylor, "Coherent detection method using DSP to demodulate signal and for equivalence equalization of propagation impairments, "paper We4.P. ll 1, ECOC 2003, 2003
  • Non-Patent Document 4 A. D. Ellis etc, "Receiver-side electronic dispersion compensation using passive optical field detection for low cost 10 Gbit / s 600 km reach applications, Paper OTuE4, Optical Fiber Conference (OFC) 2006
  • An object of the present invention is to provide a simple practical optical field receiver and an optical multilevel signal receiver which do not require a local oscillation light source having no polarization dependence and have a simple structure.
  • the coherent optical electric field receiver described in FIG. 2 is in principle polarization dependent, and the coherent optical electric field receiver 135-1 can not operate when the P polarization component described above is lost due to polarization fluctuation. It becomes. Therefore, in the coherent optical electric field reception system shown in FIG. 2, a coherent optical electric field receiver 135-1 receiving the P polarization component 133 of the optical multilevel signal and a coherent optical electric field receiver receiving the S polarization component
  • the symbol determination circuit 143 selects one of these two receivers and determines a symbol as a polarization diversity configuration.
  • the multilevel optical receiver described in FIG. 3 only the binary determination of the intensity and the relative phase difference of the received signal is performed, and detection of all the information of the optical electric field, for example, The combination of the amplitude value and the absolute phase value necessary for the determination of the 16QAM signal of 1 (C) can not be performed.
  • the optical delay detectors used in these systems are for detecting an intensity signal that changes according to the relative phase difference between two consecutive symbols on the time axis. , Because the absolute phase of each symbol can not be detected.
  • the determination is limited to two values, it is impossible to perform eight-value detection of relative phase difference, etc., which is necessary for determination of the 16APSK signal in FIG. 1 (D).
  • FIG. 3 In the example of FIG.
  • a second object of the present invention is to realize an optical field receiver which detects the entire information of the optical field in a noncoherent manner and compensates for linear degradation occurring during transmission.
  • differential detection when the optical signal has an amplitude modulation component, the output signal intensity is changed by the amplitude modulation component, so if it is not a coherent optical reception system using a local oscillation light source, optical electric field information is obtained. It is believed that no. If a multilevel modulated optical signal including conventional binary amplitude modulation can be received and all electric field information can be obtained, in the receiver's electrical circuit stage, the linear degradation occurring during transmission can be calculated. It is possible to compensate, for example, to realize a high degree of dispersion compensation.
  • Non-Patent Document 4 shows an optical receiver that solves the above problems with a simple configuration! Because, while using a waveform with low measurement accuracy, that is, the frequency waveform of the optical signal, even if chromatic dispersion compensation of the intensity modulation signal is actually possible, information is placed on the phase of the optical signal. It is considered difficult.
  • Non-Patent Document 4 does not describe measures against these problems, and there are technically unresolved points.
  • the present invention is to solve the above problems and to provide a simple and practical optical field receiver and an optical multilevel signal receiver.
  • the received optical signal is branched into two, one as an optical intensity receiver and the other as an optical delay amount Td.
  • the signal is input to the delay detector, and the electric field information (amplitude and phase) of the light signal is calculated from the output signals of these two receivers.
  • the amplitude is calculated by calculating the square root of the light intensity signal AM (t) in an arithmetic circuit !:
  • the signal dQ (t) from which the delay detector power is obtained is divided by the amplitude product r (t) r (t + T) to normalize it, and the phase rotation occurring during the time Td is performed by performing an inverse sine operation.
  • the electric field information is obtained by calculating an amount and further sequentially accumulating the amount of phase rotation.
  • a balanced optical receiver is particularly suitable as a receiver connected to the optical delay detector.
  • each of the two optical outputs of the optical delay line detector Another light intensity receiver may be connected, and the obtained difference component and sum component may be subjected to operations as shown in the following embodiments.
  • the optical electric field receiver and the optical multilevel signal receiver according to the present invention digitize each signal using a high-speed AZD converter, and realize complex arithmetic processing by digital arithmetic. Very effective in terms of ease and flexibility.
  • the sampling interval Tsa of the AZD converter needs to be equal to or sufficiently smaller than Td because the phase difference of the light electric field must be sequentially calculated at the time interval Td. If the signal band is small, even if Tsa is slightly larger than Td and phase change is roughly calculated, the force that may operate due to the correlation between the two even in that case, the theoretical limit is Tsa ⁇ It is 2Td.
  • phase rotation amount generated within the time Td by the inverse sine function it is essential to limit the phase rotation amount to ⁇ / 2 or less.
  • This can be solved, for example, by making both the sampling interval Tsa of the AZD transformation and the delay time Td of the delay detector small and observing the phase rotation frequently, but in this case the high speed of the AZD transformation.
  • the limit (the current sampling interval is 25ps minimum) is an obstacle. This obstacle can be solved by combining the optical field receiver according to the invention with light modulation with a limited amount of phase rotation between samples at the transmitter side.
  • the optical field receiver according to the present invention has, for example, binary or multi-level phase modulation, multi-level amplitude phase modulation, or non-cheep or small-char binary or multi-level intensity modulation in which the amount of phase rotation is limited to ⁇ 2 or the like.
  • the combination with is effective.
  • the extinction ratio of the transmission optical signal is intentionally made larger than 0.15, and is deteriorated from the limit value (9 to: LO dB) of the extinction ratio in a normal optical transmitter.
  • the application range of the present invention can be further expanded by reducing the intensity of the optical signal to zero or expanding the wavelength dispersion range in which the amount of phase rotation exceeds 90 degrees.
  • optical electric field compensation when optical electric field information is calculated two or more times in one symbol, complete optical electric field compensation can be performed in which the inverse calculation of the propagation characteristics of the transmission path is performed on the calculated optical electric field information. It becomes.
  • transmission characteristics such as wavelength dispersion resistance of the receiver can be significantly improved by providing an adaptive or fixed compensation circuit against degradation such as wavelength dispersion and filtering characteristics.
  • the phase shift of the delay detector, the asymmetry of the dQ waveform, the offset, etc. A slight shift in parameters such as the sampling timing of the optical signal branched into two may cause a large drift in the reproduced phase information. In order to prevent this, it is effective to automatically stabilize these parameters so that the time variation of the reproduction phase information and the vertical asymmetry of the output waveform are eliminated.
  • the control terminal connected to the optical network Then, the total chromatic dispersion of the optical fiber along the optical signal path is calculated, and this value is transmitted to the optical transmission device on the optical signal receiving side, and the optical electric field compensation circuit of the optical electric field receiver and the optical multilevel signal receiver.
  • the compensation amount as the initial value of the compensation amount, it is possible to set the optimal compensation amount.
  • the recomputed amount of compensation can be quickly set in the optical field compensation circuit, eliminating the need for the adaptive compensation type optical field compensation circuit. It is possible to shorten the lead-in time to the optimum state in adaptive compensation control.
  • the optical delay detector since the optical delay detector is used, it is independent of the polarization state of the input light, and unlike the conventional coherent detection method, a local oscillation light source is not required. Configuration is simplified. Also, in the conventional non-coherent multilevel optical receiver, the circuit scale became larger as the number of multilevels of the received signal increased, but the optical field receiver and multilevel optical receiver of the present invention Since two-dimensional coordinate information on the phase plane of the received light electric field can be directly reproduced, it is possible to use a practical hardware scale even if the number of light modulation signals is increased to improve transmission efficiency. There is an advantage that the symbol of the received signal can be determined. Further, according to the present invention, since electric field calculation and multilevel judgment of the received optical signal can be performed by an electrical digital circuit, it is possible to adapt to optical signals having different multilevel numbers and modulation schemes with the same receiver configuration. It is possible to
  • phase modulation is particularly suitable for long distance transmission because it is more resistant to the nonlinear effects of optical fibers, which is a problem in optical fiber transmission where the reception sensitivity is higher than intensity modulation.
  • Transmission efficiency! Multi-value transmission can also be realized.
  • the receiver size is only about three times that of conventional binary intensity modulation (1.5 times of binary phase modulation, or about 2Z3 of quaternary phase modulation), the number of multi-values can be increased. Even in the case of optical transmission with a small amount of transmission, the transmission efficiency with respect to the hardware scale of the receiver can be reduced. The transmission efficiency can be improved as compared to the conventional four-value phase modulation transmission by performing four-value transmission in which the amount of transmission information is doubled in the present invention.
  • the present invention is applicable to, for example, an optical electric field waveform measuring apparatus, an optical space transmission apparatus, and the like, in addition to a receiver for optical fiber communication.
  • FIG. 4 shows a first embodiment of an optical field receiver 100 according to the present invention and an optical transmission system using the same.
  • Fig. 4 (A) is a block diagram of the optical transmission system, where the path of the optical signal is indicated by a thick line, and the path of the electrical signal is indicated by a thin line.
  • the optical transmitter 300 is a transmitter of binary phase modulation light, and the unmodulated laser light output from the laser light source 301 is input to the optical phase modulator 303. Then, a binary digital information signal 302 of symbol velocity R is applied to the modulation terminal to perform phase modulation, and it is output as a transmission light signal 305 (optical electric field E (n)).
  • FIG. 4 (C) shows the phase waveform of the transmission light signal 305.
  • the phase of the optical signal transitions around the symbol boundary and takes either m or s at the center of the symbol.
  • the phase interval (modulation amplitude) is ⁇ 2.
  • the symbol rate R is equal to the bit rate Rb.
  • the transmission optical signal 305 is transmitted through the optical fiber transmission line 304, and is subjected to transmission deterioration due to wavelength dispersion of the optical fiber, etc., and then is input to the optical field receiver 100 of the present invention as the input optical signal 101.
  • the input optical signal 101 is branched into two optical signal paths 103-1 and 103-2 by the optical branching circuit 150, and is input to the optical delay detector 104 and the optical intensity receiver 151.
  • Optical delay detector 1 04 has a first optical path for delaying the input signal at symbol time TZ2 and a second optical path with a phase shifter of phase angle ⁇ 2 such that the phases are mutually shifted between the two optical paths.
  • the delay amount Td is a time interval of phase regeneration of the optical field in the present invention.
  • phase amount of the phase shifter refers strictly to the phase delay amount of the path on the delay side through which the delayed optical electric field passes
  • the sign of the phase amount and the path to be arranged may be different. Only the sign of the output signal is inverted, and the correction can be easily performed by performing the sign inversion operation of the electric signal or the complex conjugate operation of the regenerated optical field. Therefore, in the following description, it is assumed that the sign of the phase amount and the path to be arranged do not matter.
  • the two optical signals output from the optical delay detector 104 are differentially received by the optical balanced receiver (photodetector) 105 and converted into an electrical signal, and then the AZD converter 106-1 Converted to digital signal.
  • the light signal received by the light intensity receiver 151 is converted into an electrical signal, and then converted into a digital signal by the AZD converter 106-2.
  • a sampling clock 107 is supplied to each of the A and D conversion circuits 106-1 and 106-2 from a clock oscillator 310 with a frequency of 2ZT, and digital sampling is performed in two cycles per symbol.
  • a part of the output signal of the optical balanced receiver 105 is supplied to the clock oscillator 310, and the clock component is extracted in synchronization with the timing of the phase transition of the received optical signal. .
  • digital sampling can always be performed at a desired timing (such as the center and border of the symbol) in the symbol of the received optical signal.
  • the digital signals output from the AZD conversions 106-1 and 106-2 are input to the delay adjustment circuits 108-1 and 108-2, respectively, and the timing difference between the two signal paths is detected by the optical delay detector. After adjusting so as to be equal to or less than the delay time Td of 104, it is supplied to the electric field calculation unit 111 as the dQ signal 311 and the AM signal 312.
  • FIG. 5 (A) shows an example of time waveforms of these electric reception signals.
  • the number of a sample point at a certain time t is n
  • ⁇ ( ⁇ ) ⁇ ( ⁇ -1).
  • the AM signal 312 is input to the square operation circuit 112 of the electric field operation unit 111, and an amplitude r (n) 320 of the reproduction light electric field is obtained as an output of the square operation circuit 112.
  • the square operation circuit 112 may be configured by a digital operation circuit, for example, a square root data is stored in advance in a memory, and a configuration in which a table search is substituted.
  • the configuration may be realized by an analog circuit or the like.
  • the dQ signal 311 the information of the n-th sample and the n-first sample immediately before it are mixed as shown in the above equation.
  • the past amplitude information obtained by delaying the dQ signal 311 by the division circuit 313-1 and the amplitude information r (n) by the delay circuit 314 by the time Td TZ2! : Divide by (n-1) and divide the output of divider circuit 313-1 Divider circuit 313-2 Amplitude information!
  • the y signal 315 is input to an inverse sine operation circuit 316 and converted into a phase difference signal ( ⁇ ) 317 by performing an inverse sine (arcsin) operation.
  • is the phase difference of the optical field between the sample points
  • the delay addition circuit 318 adds the phase ⁇ (n ⁇ 1) of the immediately preceding reception symbol to the phase difference ⁇ .
  • the phase ⁇ (n) 321 of the reproduction light electric field can be obtained.
  • the delay and addition circuit 318 may set an appropriate initial phase (for example, 0) and start the operation.
  • the transmitting side uses multi-level phase modulation etc., and if there is a need S to determine the absolute phase, learning from the fixed pattern in the transmission phase modulation waveform, correctness of recognition of the reception pattern or header, etc. If you estimate the phase angle,.
  • Such determination of the initial phase and the initial amplitude is a common problem in the optical communication field and the wireless communication field. Therefore, in addition to the above-mentioned solutions, other methods known in the field of communication can be applied to the optical field receiver of the present invention. For example, using a technique such as differential modulation in which a reference signal having a known phase angle or amplitude value is periodically or intermittently inserted into the transmission signal, or the determination of the initial phase or initial amplitude is unnecessary. It is also good. In addition, it is possible to adjust the initial phase and amplitude by adaptively learning the statistical distribution force of the reproduced phase point so that normal reception becomes possible. As described above, when the phase difference between the sample points of the optical field is calculated using the inverse sine operation, the change of the phase angle can be calculated only within the range of ⁇ 90 degrees at the maximum. This is one of the essential features of the present invention.
  • FIG. 5 (B) shows the state of the amplitude r (n) 320 and the phase ⁇ ( ⁇ ) 321 of the light electric field thus regenerated.
  • the received optical signal should be passed through a sufficiently narrow optical filter, or the received signal or regenerated electric field signal should be sufficient.
  • a high frequency component may be removed by passing through a narrow antialiasing filter (low pass filter).
  • these regenerated optical electric field signals are input to the orthogonal conversion circuit 322, converted into electric field signals 323 in rectangular coordinates, and then corrected by the inverse characteristic of the propagation function of the transmission path.
  • the compensation arithmetic circuit 324 can completely compensate for linear dispersion such as wavelength dispersion of optical fibers and optical components and band limitation of optical components.
  • the compensated electric field signal 325 is input to a detection / identification / reproduction circuit 326, is a detection method corresponding to the modulation method of the information signal in the optical transmitter 300, is detected 'detected, and output as a digital information signal. Ru. Since the electric field information to be input is a two-sample symbol in the case of this embodiment, the detection and identification regeneration circuit 326 resamples as needed, as in the identification regeneration unit of a normal receiver. A function, clock extraction function, determination function of eye opening maximum point, etc. should be used to perform identification at the optimum identification time when the eye opening is maximum.
  • binary phase modulation of modulation degree ⁇ ⁇ 2 is performed on the transmission side, so as a detection method, for example, electrical delay detection with a symbol time ⁇ as a delay time (phase difference 0 ), And the output signal is subjected to binary judgment to reproduce a binary digital signal.
  • a detection method for example, electrical delay detection with a symbol time ⁇ as a delay time (phase difference 0 )
  • the output signal is subjected to binary judgment to reproduce a binary digital signal.
  • the phase change in Td will be ⁇ ⁇ 4, which is sufficiently within the above-mentioned limit. Since the phase rotation is also increased by the application of wavelength dispersion or the like as described later, the above limitation needs to be satisfied including this increase.
  • Td delay of optical delaying delay detector
  • FIG. 4 (A) in the coupling between the optical components on the optical signal path 103, the coupling by the optical fiber between the optical components, the coupling by the Balta optical element space beam, the coupling between the integrated optical components.
  • Various connection forms such as coupling by waveguides can be adopted.
  • the combination of the optical delay detector 104 and the balanced receiver 105 has the advantage that the amplitude of the detector output signal can be doubled and unnecessary DC signals can be removed.
  • a normal light intensity detector can be applied instead of the nonreensive receiver 105.
  • light intensity receivers are respectively disposed at the two outputs of the optical delay detector, and then the electric signals are subtracted from each other to detect the difference.
  • Transmission type is desirable. Difference detection may be realized by digital operation after digitally sampling the output of each light intensity receiver!
  • the delay adjustment circuits 108-1 and 108-2 make the signal propagation times in the two signal paths between the optical branch circuit 150 which is the branch point of the optical signal and the electric field calculation unit 111 coincide with each other, It is for adjusting the timing.
  • These delay adjustment circuits can be realized, for example, by digital buffer circuits using oversampling. However, if the two signal path lengths are completely matched at the manufacturing stage, the delay adjustment circuits 108-1 and 108-2 can be omitted.
  • the fine adjustment of the signal timing may be controlled, for example, by the application timing of the sampling clock supplied to the AZD converters 106-1 and 106 2.
  • digital delay adjustment circuit 108-1 (108-2) is placed after AZD converter 106-1 (106-2), and an analog delay line as a force delay adjustment circuit
  • the arrangement may be reversed by using.
  • the AZD transformation 106 may be omitted, and the electric field operation unit 111 and part or all of the operation functions of the subsequent processing may be realized by an analog circuit.
  • some of the advantages of the present invention are lost, such as complicated configuration and complicated adjustment.
  • the electric field calculation unit 111 is an example of polar coordinate (r (n), ⁇ (n)) type implementation, it may be orthogonal coordinate (I (n), Q (n)) type.
  • a coordinate conversion circuit may be inserted to obtain ⁇ ( ⁇ ) and AQ (n) from r (n) and ⁇ , and I (n) and Q (n) may be sequentially calculated.
  • the rotation operation of the angle ⁇ is required, and sin (A) ⁇ ⁇ 5 ( ⁇ ) is necessary among them.
  • the former may use the y signal as it is, and the latter may be calculated by calculation such as sqrt (l ⁇ y 2 ).
  • the functions of the electric field calculation unit 111 can be realized by, for example, an FPGA, an ASIC, a DSP, or a processor whose function can be reconfigured.
  • the whole of the electric field calculation unit 111 or the calculation function part inside it (for example, the division circuit 313, the square calculation circuit 112, the inverse sine calculation circuit 316, etc.) is realized by a dedicated digital calculation circuit, a table search method or an analog circuit.
  • AGC automatic gain control
  • the order and configuration of the calculation may be changed as appropriate.
  • a configuration in which the order of the two divider circuits 313 is reversed a configuration in which the configuration of the divider circuit 313 is calculated with the reciprocal of the amplitude information and then multiplied by dQ, first by r (n)! : It is possible to calculate the product of (n – 1) and divide it by dQ.
  • a division error may occur or a fatal problem may occur in which the result is infinite.
  • the delay time of the delay circuit 314 needs to be substantially equal to the delay time Td of the optical delay detector 104.
  • the time delay corresponds to just one sample.
  • the delay time of the delay circuit 314 needs to be approximately equal to Td at all times. is there
  • the inverse sine operation circuit 316 deviates from the range + 1 to 1 of the range force arcsin of the input y signal 315 due to noise of an optical signal or an electric circuit, an operation error, a characteristic error of the circuit, etc. There is a possibility that the operation can not be performed.
  • the arcsin function is substituted by an approximation function which is Taylor expanded to a certain degree, or a limiter characteristic is provided such that the input signal does not deviate from the domain of +1 to -1.
  • Taylor expansion up to the fifth order arcsin function y + y 3/6 + y 5 '3/40
  • deviations domain does not occur, it can be approximated with sufficient accuracy.
  • the compensation function implemented in the circuit 324 has a function to simultaneously compensate for a plurality of deterioration factors which may be any deterioration compensation function as long as it can compensate for linear deterioration of the optical signal. It does not matter. Also, as in the case of the self-phase modulation effect, which is a non-linear effect of an optical fiber, some degree of compensation is possible even if the deterioration is not necessarily linear.
  • the deterioration in this case is that the phase of the light signal rotates in proportion to the light intensity. Therefore, the amount of rotation of the force phase, such as the amplitude and arrangement of the phase point obtained by the electric field regeneration, is estimated. Inverse compensation should be done so that
  • FIG. 6 shows an example of experimental results verifying the operation of the present invention.
  • the optical transmitter adopts one that generates binary phase modulation light with modulation degree ⁇ ⁇ 2
  • the transmission path is 160 km of normal dispersion fiber, and the chromatic dispersion amount is 2720 psZ nm.
  • the processing after the electric field regeneration unit 111 was realized on a personal computer in a simulated manner.
  • FIG. 6 shows an example of the waveforms of the actual AM signal 312 and the dQ signal 311 which are digitized.
  • optical phase modulation does not have an intensity modulation component, but since the phase modulation is converted to intensity modulation by wavelength dispersion of the optical fiber, an intensity modulation component is generated at the switching point of the bit phase.
  • (B) shows the I and Q components after reproduction 'dispersion compensation (by numerical calculation:-272 Ops Z nm!), And rectangular transition accompanying phase modulation can be observed.
  • (C) is an intensity waveform diagram showing an electric field amplitude 320 of reproduction light
  • (D) is a diagram in which the reproduction light electric field 323 is plotted on a phase plane. Although a trace on a quarter circle phase plane close to that shown in Fig. 4 (B) is obtained, amplitude changes that do not originally exist appear in both (C) and (D), and significant deterioration is observed.
  • (E) shows a differential detection waveform in the case where the detection detection of the one symbol time T is performed by the direct detection / identification / reproduction circuit 326 without passing the reproduction light electric field 323 through the compensation operation circuit 324. Almost no eye opening is obtained.
  • (F), (G), and (H) are the cases where the inverse function (wavelength dispersion equivalent to 1 2720 ps Z nm) of the transfer function of the optical fiber is applied by the compensation operation circuit 324 respectively!
  • Examples of electric field amplitude, optical electric field phase, and delayed detection waveform are shown.
  • the amplitude fluctuation of the optical field after compensation is suppressed to be extremely small as in (F), and the trace on the phase plane is almost completely in agreement with FIG. 4 (B) as in (G). , It can be seen that the transmission light electric field can be correctly reproduced.
  • (H) is a differential detection waveform in the case of performing differential detection for one symbol time by the direct detection / discrimination / reproduction circuit 326 after dispersion compensation, and a binary eye opening was obtained extremely clearly.
  • the principles and effects of the present invention have been experimentally demonstrated.
  • FIG. 7 shows a second embodiment of an optical field receiver 100 according to the present invention and an optical transmission system using this optical field receiver.
  • the optical transmitter 300 generates binary intensity modulated light as the transmission optical signal 305 by applying the binary digital information signal 302 to the optical intensity modulator 329.
  • the optical electric field receiver of the present invention when the intensity of the optical signal becomes approximately 0, the reproduction of the optical electric field becomes difficult, so that the extinction ratio of the optical signal in the transmission optical signal 305 is 0.1 to 0.3. Are intentionally degraded.
  • the input optical signal 101 input to the optical field receiver 100 is branched into two by the optical branching circuit 150 as in the first embodiment.
  • the clock oscillator 310 freely oscillates at a frequency four times the optical symbol speed.
  • the sampling interval Tsa of the AZD converter 106-1 is TdZ2, which is substantially double oversampling.
  • the other branched optical signal is converted to an electrical signal by the optical intensity receiver 151, then converted to a digital signal by the AZD converter 106-2, and converted to a digital signal by the AZD converter 106-2. It is converted.
  • the phase change ⁇ of the optical signal is calculated by using the delay time Td of the optical delay detector 104 as the calculation interval of the electric field calculation unit 111. Therefore, in the present embodiment, the digital signal of the interval TdZ2 output from the AZD converter 106-1 (106-2) is downsampled by 1Z2 times by the resampling circuit 332-1 (332-2), and the electric field calculation unit The sampling interval of the dQ signal 311 and AM signal 312 input to 111 is made equal to Td.
  • the resampling circuit 332-1 (332-2) makes it possible to change the sampling timing of the output signal and finely adjust the cycle. Therefore, clock oscillator 310 oscillates freely Even in the state where the oscillation frequency or timing is out of phase with the timing of the input optical signal 101, correction can be made so as to coincide with each other at the time of resampling. If it is not necessary to consider the avoidance of zero hit, which will be described later, the electric field regeneration will not be disturbed even if the frequency of the clock oscillator and the frequency of the input optical signal are shifted. In this case, processing such as electric field regeneration 'compensation is performed while the timing and period of the symbol of the sampling point and the information signal are shifted, and symbol timing extraction is performed in the identification' determination processing of the last digital signal. do it.
  • variable optical delay circuit 330 and the variable high frequency delay circuit 331 are provided in order to match the input timings of the dQ signal 311 and the AM signal 312 to the electric field operation unit 111.
  • the arrival timing is physically delayed.
  • the delay adjustment circuit may be provided with any combination of variable or fixed delay means in at least one of the path of the dQ signal 311 and the path of the AM signal 312 which may be an optical circuit or an electric circuit.
  • the electric field calculation unit 111 calculates the reproduction light electric field 333 in polar coordinates.
  • the calculation result is converted to an optical field of orthogonal coordinate display by the orthogonal transformation circuit 322, compensated for transmission deterioration by the compensation circuit 324, and then input to the decision feedback equalization circuit 334 to determine the received symbol and remove intersymbol interference.
  • the waveform equalization operation is performed by digital filtering.
  • the optical signal is intensity modulated !
  • square wave detection or envelope detection of the optical signal is performed in the decision feedback equalization circuit 334, and then the FFE (forward direction A compensation operation is performed using a feedback equalization circuit and a discrimination circuit 'DFE (decision feedback equalization) circuit'.
  • optimization compensation is performed such that the eye opening amount is maximized, or the mean square residue of the signal after compensation and the discrimination result is minimized.
  • the eye opening amount 350 obtained from the decision feedback equalization circuit 334 is input to the compensation amount optimization circuit 328, and the designated value of the compensation amount (for example, the chromatic dispersion amount) is added to the compensation circuit 324 Compensation amount input terminal 207-1 is input.
  • the compensation amount optimization circuit 328 it is possible to always automatically control to the optimum compensation amount by changing the compensation amount so that the eye opening amount 350 is maximum.
  • the compensation amount may be set by inputting an appropriate compensation amount to the compensation amount input terminal 207-2 as well. For example, the distance of the optical fiber transmission line If the chromatic dispersion amount corresponding to that is known, the opposite amount may be set as the compensation amount.
  • FIG. 7 (B) shows the phase point arrangement of the optical signal when a 10 Gbit Z second binary intensity modulated light (extinction ratio 10%) is input as the transmission light.
  • Figure 7 (C) shows the results of the simulation of the optical electric field distribution after this optical waveform was transmitted for 180 km by a normal dispersion fiber.
  • (A), (8) and (C) of FIG. 8 respectively show the transmission light intensity waveform, the reception waveform and the state of sampling in the second embodiment.
  • the light intensity is modulated so that it is a shift between the mark (m) and the space (s) at the center of each symbol. If waveform deterioration occurs due to such as, the received waveform is distorted as shown in FIG.
  • points such as the point P and the point Q become points where the optical signal intensity becomes close to zero. Even though the light intensity is not completely zero in practice, the noise of the light signal creates the danger of approaching zero. In this specification, this phenomenon is called "zero hit".
  • the calculation error of the division in the electric field calculation unit 111 rapidly increases, and the phase error of the reproduction light may abnormally increase, or the phase itself may become uncomputable.
  • oversampling is performed with the sampling rate of the AZD converter increased, and a sampling point that does not hit zero during resampling is extracted to obtain an electric field calculator 111.
  • the method to input to is effective.
  • FIG. (C) shows an example in which double oversampling is performed, and an AM signal and dQ signal are shown.
  • zero hits occur at the center and boundary of the waveform that matches even sampling points (open circles). ing.
  • an interpolation operation may be performed at the time of resampling, and a new sampling point may be generated between the two.
  • Two electric field operation circuits using even and odd samples may be provided, and the one without zero hit may be appropriately selected to generate the output electric field.
  • the zero hit occurs due to the influence of noise etc., it is also effective to recover from the estimation of the electric field phase after the zero hit.
  • FIG. 9 shows the verification results of the application area of the present invention, and using optical transmission simulation, the minimum value of the light intensity of the binary intensity modulation signal of 1 OG bit and Z seconds and the time Td (in this example) The amount of phase rotation occurring between 50 ps) and.
  • zero hit occurs when the minimum strength is ⁇ 0 (about 0.05 for practical use), and when the maximum amount of phase rotation exceeds 0.5 (about 0.4 for practical use), the phase rotation is calculated. In either case, the invention is not applicable. That is, the range of the amount of chromatic dispersion in which these phenomena do not occur is the application range of the present invention.
  • the wavelength dispersion range applicable in this example is about ⁇ 1100 ps Z nm for the extinction ratio 0.1 and larger than ⁇ 6000 psZ nm for the extinction ratio 0.3, and it is also possible to use extinction without using light. By intentionally degrading the ratio, it can be seen that the scope of application is further greatly expanded.
  • the detection limit of the zero hit and the amount of phase rotation can be achieved by employing a non-cheep intensity modulated light on the transmission side, degrading the extinction ratio, or limiting the phase modulation with a limited amount of phase rotation as described above. It is greatly eased by adopting.
  • FIG. 10 (A) shows a third embodiment of an optical transmission system using the optical field receiver 100 according to the present invention and the present optical field receiver.
  • a four-value optical amplitude / phase modulator is used as the optical transmitter 300.
  • two sets of binary digital information signals 302-1 and 302-2 are input to the optical intensity modulator 329 and the optical phase modulator 309, respectively, and the intensity and phase are modulated to binary values to obtain four-value amplitudes.
  • a phase modulated transmission optical signal 305 is generated.
  • FIG. 10 (B) shows an example of phase point arrangement of four-value amplitude ⁇ phase modulated light.
  • FIGS. 10 (C) and 10 (D) show examples of other phase point arrangements having the same effect.
  • the amplitude is ternary, but can be generated by using a ternary coder on the modulator side.
  • D since the phase point interval is maximized, this is the best 4-value phase point arrangement from the viewpoint of reception sensitivity. This arrangement can also be easily generated by using an appropriate encoder. It is possible. Note that an orthogonal Mach-Zehnder optical modulator having two modulation electrodes and capable of generating an arbitrary phase point arrangement is effective for generating such an arbitrary multilevel optical signal. Furthermore, in the present invention, the multi-value number (the number of phase points) may be further increased as compared with the example shown here.
  • the present embodiment is an example in which the delay amount Td of the delay detector is 1Z4 of the symbol time T, and the sampling interval of the A / D conversion 106 is also TZ4.
  • the resampling circuit 332-1 (332-2) has a function to recover only the sampling timing which does not change the sampling rate, and as a result, even if the clock oscillator 310 is in the free oscillation state, it is always Proper sampling timing can be maintained.
  • the phase 321 of the reproduction optical field is extracted from the electric field operation unit 111, and averaging processing is performed by the averaging circuit 340, and the automatic control circuit 341 performs light processing so that the average value becomes zero.
  • the phase shift amount of the delay detector 104 and the delay amount of the variable high frequency delay circuit 331-1 are automatically controlled.
  • noise for example, fluctuation of the optical phase
  • the optical electric field phase reproduced by the optical electric field calculation unit 111 causes a temporal fluctuation.
  • the average value of the phase of the reproduction electric field may be calculated, and automatic control may be performed so that this value is always zero or a constant value.
  • the compensation method is not limited to the present embodiment. For example, a method of simply removing a slow variation of the reproduction light phase 320 with a high pass filter in the electric field calculation circuit 111, a subtracter of the DC component of the dQ signal Other methods, such as providing A non-linear adaptive filter circuit or the like may be provided to remove waveform asymmetry due to the electrical circuit characteristics.
  • phase error component is calculated based on the past phase determination result, and the relatively slow phase error component is removed. I can leave it.
  • the calculated phase point should be compared with the search distance of the ideal phase point arrangement as shown in FIG. 11B, and the closest phase point may be determined as a received symbol.
  • the effects of noise and operation errors accumulate, and in the worst case, error propagation may occur over a long time.
  • a method of preventing such error propagation for example, there is application of coding such as differential coding to amplitude and phase, and insertion of a known reference code periodically on the transmission side. Also, apply statistical distribution of reception phase points, and apply a method such as sequential decision feedback from a specific phase point position.
  • the minimum distance rule is applied to the determination of received symbols, but other known symbol determination methods used for multilevel signals in the wireless communication field may be applied.
  • MLSE that prioritizes either phase or amplitude radius or uses the electric field state of multiple consecutive symbols, maximum likelihood determination (Viterbi decoding), soft decision F EC (prefix error correction), trellis code
  • Viterbi decoding maximum likelihood determination
  • Soft decision F EC prefix error correction
  • trellis code It is also possible to apply techniques such as D Z decoding and processing.
  • a non-Euclidean distance corresponding to noise generation factors (noise of the optical amplifier, thermal noise, crosstalk, etc.) is defined in advance, and this is used as the determination criterion.
  • the symbol determination circuit may be, for example, an analog type structure in which a plurality of matched filters corresponding to each symbol are arranged in parallel, a filter with the largest output is selected, and an input symbol is specified.
  • FIG. 11 (A) shows a fourth embodiment of an optical field receiver 100 according to the present invention and an optical transmission system using this optical field receiver.
  • the binary digital information signal 302 is input to the error correction code-added color circuit 343, and an error correction code of 7% overhead is added to the input power.
  • the optical transmitter 300 is of the differential optical phase modulation type, performs code encoding using a differential encoding circuit 346, and outputs an output signal to two optical phase modulators 303-1 and 303-2. By inputting, five phase points of 72 degree interval shown in Fig. 11 (B) are generated.
  • binary differential phase modulation is performed depending on whether the phase power of a certain symbol + 72 degrees has changed or-72 degrees has changed.
  • the phase from the previous sample point Since only changes are limited, differential phase modulation with such limited phase rotation can be received without problems.
  • the number and interval of phase points can be arbitrarily changed.
  • the optical transmitter 300 may be applied with multilevel differential optical phase modulation or the like that permits movement between a plurality of symbols.
  • the present embodiment is an example in which the delay amount Td of the optical delay line detector 104 of the optical field receiver 100 is made equal to the symbol interval T.
  • Td the delay amount of the optical delay line detector 104 of the optical field receiver 100
  • the above-mentioned wavelength dispersion compensation function is lost, it is possible to receive various binary 'multi-level modulation' with a simple configuration.
  • the light intensity receiver 151 is provided, compensation of phase point deviation and the like due to the optical fiber nonlinear effect can be realized.
  • the symbol rate may be effectively increased in the code circuit 343.
  • waveform acquisition is performed while the sampling rate of the AZD converter is fixed, and retiming in the resampling circuit 332-1 or the decision feedback equalization circuit 334 is performed. It is a problem if it is corrected in the process.
  • the sampling interval is TZ2 with respect to the symbol interval T of the original information signal
  • the Nyquist theorem is not satisfied if the symbol rate circuit 343 increases the symbol rate by 7%. Force Not always. This is because, in normal light modulation, the frequency band occupied by the signal is smaller than the reciprocal of the symbol rate (1ZT), and is usually in the range of 2ZT to 1Z ⁇ . It is because there is room. Also, the delay amount Td of the delay detector is not strictly an integral multiple of the sampling interval Tsa, and there is no problem even if it is slightly deviated. If the deviation is about 10 to 20%, the waveform correlation is sufficient.
  • a feedforward equivalent circuit (FFE) circuit 352-1 (352-2) is disposed immediately after the AZD converter 106-1 (106-2), and a digital filter is used. It performs equalization processing of the electrical signal waveform. That is, high-speed optical receivers such as the balanced optical receiver 105 and the optical intensity receiver 151, and electrical wiring and components such as the delay circuit individually have frequency characteristics, and the transfer characteristics are necessarily flat. There is no limit. Therefore, an FFE circuit or DFE circuit, which is an adaptive filter, is inserted, and the eye opening obtained from the decision feedback circuit at the subsequent stage By adaptively compensating so as to maximize, it is possible to remove intersymbol interference and errors in frequency characteristics so that the best waveform can be always obtained.
  • FFE feedforward equivalent circuit
  • the least square deviation from the signal after determination may be used, or correction information etc. obtained from the impulse response force measured in advance may be fixedly set. Absent.
  • the sampling rate of the AZD variable twice or more the digital signal satisfies the Nyquist theorem, and it is possible to obtain good equalization characteristics in the FFE circuit 352. become.
  • one resampling circuit 332-1 performs resampling of 1Z 2 times, and the other resampling circuit 332-2 performs resampling of 1 time.
  • the phase component after reproduction may be oversampled twice as much in the electric field reproducing unit 111 to match the sampling rates of both. In this case, there is a ⁇ ⁇ IJ point that the information loss of the amplitude component decreases.
  • transmission is performed by inputting the digital information signal obtained from the decision feedback equalization circuit 334 to the error correction circuit 344 and performing error correction processing based on the FEC information previously written in the header portion. I am trying to improve the characteristics.
  • FIG. 12 shows a fifth embodiment of an optical transmission system using the optical field receiver 100 according to the present invention and the present optical field receiver.
  • the optical transmitter 300 marks the two sets of binary digital information signals 302-1 and 302-2 into the two-line optical position modulators 303-1 and 303-2.
  • the transmission optical signal 305 of four-value phase modulation is generated.
  • optical field receiver 100 of the present embodiment instead of branching the input optical signal into two optical signal paths, two optical intensity receivers 151-1, 151 connected to the optical delay detector 104. — Use the 2 to achieve the purpose function of the present invention!
  • the electrical signal output from the light intensity receiver 151-1 (151-2) is sampled by the AZD converter 106-1 (106-2) and converted to digital information, and then the same as in the fourth embodiment.
  • a waveform is equalized by a feed forward equalization (FFE) circuit 352-1 (352-2), and is input to the electric field regeneration unit 111.
  • FFE feed forward equalization
  • a signal equivalent to the output signal of balanced reception is obtained by taking the difference between the output signals of the FFE circuits 352-1 and 352-2 by the subtraction circuit 354 (r (n) r ( n ⁇ l) sin ( ⁇ ⁇ )) is generated.
  • the addition circuit 353 obtains the amplitude product r (n) r (n-1) by adding the above two signals. Therefore, when the output signal of the divider 354 is divided by the above amplitude product by the divider 313, the y signal sin ( ⁇ ) is obtained, and the phase component of the optical electric field is processed in the same manner as in the first embodiment. It can be played back.
  • the amplitude component! (n) r (n-1) is input to the electric field amplitude determination circuit 355, and in the electric field amplitude determination circuit 355, the input signal is sequentially divided by the previously determined amplitude value r (n-1).
  • r (n) can be obtained.
  • the force initial value that requires the initial value of r (n) can be specified, for example, by using a known specific pattern in the header portion of the optical signal, estimation by learning, or the like. In such successive division, since calculation errors are easily accumulated, it is desirable to perform feedback compensation so that the amplitude always has an appropriate value, for example, using decision feedback so that the amplitude value does not have a large error. ,.
  • Non-Patent Document 4 Although the configuration of the present embodiment is similar in appearance to the configuration of Non-Patent Document 4, the present invention is based on phase detection, whereas Non-Patent Document 4 performs frequency detection.
  • the basic principle is that the principle of electric field regeneration, its operation, characteristics, and the range of parameters differ greatly.
  • a circuit such as an amplitude estimation circuit 355 is required.
  • the amount of delay of the optical interferometer (optical delay circuit) that is required is 5 ps in Non-Patent Document 4.
  • the value is 50 ps, which is about 10 times the value.
  • Non-Patent Document 4 are largely different in terms of performance, and in the present embodiment, in order to sequentially compare the phase, the detection accuracy of the amount of phase rotation is high. It is possible to apply On the other hand, in the present embodiment, the phase rotation amount at time Td is limited to ⁇ / 2, and is not restricted in Non-Patent Document 4. As a result, the optical field receiver 100 of this embodiment is combined with phase modulation in which the amount of phase rotation on the transmission side is limited. There are specific limitations such as matching.
  • FIG. 13 shows an embodiment of a wavelength division multiplexing optical transmission system to which the optical electric field receiver of the present invention is applied.
  • a wavelength division multiplexing transmission apparatus 220A is an optical transmitter 226-1A coupled to a wavelength multiplexer 223A. 226-3A and an optical field receiver 200-1A-200-3A of the present invention coupled to wavelength splitter 224A.
  • the wavelength division multiplexing transmission device 220B includes the optical transmitters 226-1B to 226-3B coupled to the wavelength multiplexer 223B, and the optical electric field receiver 200-1B to the present invention coupled to the wavelength demultiplexer 224B. And 200-3B.
  • the wavelength division multiplexing transmission devices 220A and 220B are connected by the upstream optical transmission path and the downstream optical transmission path.
  • the upstream optical transmission path consists of optical finos 206-1 to 206-3 and optical amplifiers 225-1 and 22 5-2
  • the downstream optical transmission path consists of optical finos 206-4 to 206-6 and optical amplifiers It is strong with 225-3 and 225-4.
  • the optical transmitters 226-1 A to 226-3 A of the wavelength multiplexing transmission apparatus 220 A transmit optical signals at different wavelengths ⁇ 1 to ⁇ 3 respectively. These optical signals are multiplexed by the wavelength multiplexer 223, output to the upstream optical transmission line, and separated for each wavelength by the wavelength demultiplexer 224 of the opposing optical transmission apparatus 220, and the optical electric field receiver 200 — 1 ⁇ 200200 3 ⁇ is input. On the other hand, the optical transmitters 226-1 ⁇ to 226-3 ⁇ of the wavelength multiplexing transmission apparatus 220 also transmit optical signals at different wavelengths ⁇ 1 to ⁇ 3.
  • optical signals are multiplexed by the wavelength multiplexer 223, output to the downstream optical transmission line, and separated for each wavelength by the wavelength demultiplexer 224 of the optical transmission device 220, and the optical electric field receiver 200-1 1 It is input to ⁇ 200-3.
  • the upstream optical transmission path and the downstream optical transmission path may have different multiplexed optical wavelengths.
  • the wavelength multiplexing transmission apparatus 220 comprises the terminal control section 221 (221) and the database 222 (222)! / Scold.
  • the optical transmitters 226-1 to 226-3 (226-1 to 226-3) and the optical electric field receiver 200-1 to 200-3 (200-1 to 200-3) transmission data is transmitted from the outside. Although input and output data are output to the outside, they are omitted in the figure.
  • a database 222 ⁇ (222 ⁇ ) stores a data table indicating the amount of chromatic dispersion of each optical fiber forming the optical transmission path, corresponding to the reception wavelengths ⁇ 1 to 33. Ru.
  • FIG. 14 shows a flowchart of the compensation amount setting routine executed by the station control unit 221A (221B). This routine is executed at start-up Z reset of the wavelength multiplexing transmission apparatus, or when the transmitter / receiver 226 (226-1A to 226-3A) and 200 (200-1A to 200-3A) are switched on.
  • the terminal control unit 221 A reads the chromatic dispersion data table from the database 222 A, and sets the parameter i for specifying the wavelength channel to an initial value “1” (step 601).
  • the terminal control unit 221 A determines the reception optical transmission path from the chromatic dispersion of each optical fiber corresponding to the wavelength ⁇ i of the i-th channel indicated by the chromatic dispersion data table.
  • the total wavelength dispersion Di of all the optical fibers along the downstream optical transmission line is calculated (step 603).
  • the compensation amount “ ⁇ Di” is set to the terminal 207 of the optical electric field receiver 200-1A of the i-th channel (wavelength i), and the optical electric field receiver 200-1A is activated.
  • the optical field receivers 200-1A to 200-3A can estimate the wavelength dispersion compensation amount with high accuracy from the time of startup, adaptive control becomes unnecessary. Even if adaptive control is used, it is possible to shift to the optimal control state in a short time, and to prevent malfunction.
  • FIG. 15 shows an example of an optical network configuration comprising a plurality of optical add-drop devices (ADM) 230-1 to 230-4 to which the optical field receiver of the present invention is applied.
  • Optically dropped devices 230-1 to 230-4 are connected in a ring shape by optical fiber transmission lines 206-1 to 206-4.
  • the optical signal path may be dynamically changed.
  • the control console 231 connected to the drop unit 230-1 optimizes the dispersion compensation amount in the optical receiver 200 which is affected by the path change.
  • a database 222 is a database 222 in which the chromatic dispersion value for each wavelength is recorded for all the optical fibers constituting the network.
  • the control console 231 accesses the database 222, calculates the total chromatic dispersion value according to the new optical signal path and the used wavelength, and transmits this to the new path via the network.
  • the dispersion compensation amount is distributed to the optical receiver 200 (200-1 to 200-3) connected to the optical add-drop device (230-2 to 230-4) which is the terminal of the
  • the optical signal of wavelength 3 output from the optical transmitter 200-3 is input to the optical add-drop unit 230-4, and the three optical signals along the optical path 232-3. It reaches the optical electric field receiver 200-3 connected to the optical add-drop device 230-3 via the fiber transmission path 206-1 and 206-2 and 206-3.
  • the control console 231 reads the chromatic dispersion amount of the optical fiber transmission path 206-1, 206-2, 206-3 corresponding to the wavelength 3 from the database 222, and
  • the optical electric field receiver 200-3 is notified of the compensation amount setting signal determined from the total value through a communication path 233-3 indicated by a broken line.
  • the compensation amount setting signal is input to the compensation amount setting terminal 207-3, whereby the dispersion compensation value optimum for the electric field compensation circuit 202 of the photoelectric field receiver 200-3 is set.
  • the control console even when the light path on the optical network is switched, the control console immediately sets an appropriate compensation amount to the optical field receiver 200-3 which is the end of the light path. It is possible to significantly reduce the interruption time of communication. If the accuracy of the dispersion compensation value set from the control component is insufficient, this value may be used as the initial value and optimized by adaptive control.
  • the present invention can be applied to the reception and transmission deterioration compensation of an intensity modulation signal and a binary phase modulation signal in the optical communication field, and the reception and transmission deterioration compensation of a multilevel modulation signal.
  • FIG. 1 An explanatory view of a modulation method applicable to optical transmission.
  • FIG. 2 A block diagram (A) showing an example of a conventional coherent optical field receiver and a diagram (B) showing the influence of phase fluctuation.
  • FIG. 3 Phase arrangement of an 8-ary amplitude phase modulation (APSK) signal (A) and a block diagram of a conventional optical multilevel signal receiver for receiving 8APSK signals (B).
  • APSK 8-ary amplitude phase modulation
  • FIG. 6 Experimental results of the first embodiment, wherein the received electric waveform (A), the equivalent optical electric field waveform in which the received waveform is reproduced in the electric domain, and (C) the intensity waveform after the reproduction, (D ) Optical field waveform after reproduction, (E) Delayed detection waveform after reproduction, (F) Intensity waveform after dispersion compensation, (G) Optical electric field waveform after dispersion compensation, and Delayed detection waveform after dispersion compensation.
  • a configuration diagram showing a second embodiment of the optical transmission system according to the present invention (A), a phase arrangement of transmission light (B), and a diagram showing phase distribution of transmission light (C).
  • FIG. 10 A configuration of a third embodiment of an optical transmission system using an optical field receiver according to the present invention.
  • FIG. 12 A configuration diagram showing a fifth embodiment of the optical transmission system using the optical field receiver according to the present invention.
  • FIG. 13 is a configuration diagram showing one embodiment of a wavelength division multiplexing optical transmission system to which the optical field receiver of the present invention is applied.
  • FIG. 13 is a flowchart of a compensation amount setting routine executed by the station control unit.
  • FIG. 15 is a block diagram showing an embodiment of an optical network having a plurality of ADMs using the optical field receiver according to the present invention. Explanation of sign
  • 100 optical field receiver
  • 101 input optical signal
  • 102 optical branch circuit
  • 103 optical signal path
  • 104 optical delay detector
  • 105 balanced optical receiver
  • 106 AZD converter
  • 107 sampling clock
  • Optical multilevel signal 124 Optical APSK signal
  • 130 local oscillation laser light source
  • 131 polarization separation circuit
  • 132 local light emission
  • 133 P polarization component of optical multilevel signal
  • 134 S polarization component of optical multilevel signal
  • 135 coherent optical field receiver
  • 136 phase diversity circuit
  • 137 1 component output light
  • 138 Q component output light
  • 150 light branching circuit
  • 151 light intensity receiver
  • 152 binary judgment circuit
  • 300 light transmitter of the present invention
  • 301 laser light source
  • 313 divider
  • 314 delay circuit
  • 315 y signal
  • 322 orthogonal transformation circuit
  • 323 received electric field signal (rectangular coordinate representation)
  • 324 compensation operation circuit
  • 325 electric field signal after compensation
  • variable optical delay circuit 331: variable high frequency delay circuit
  • 332 Resampling circuit
  • 333 Regenerated light electric field (polar coordinate display)
  • 334 Decision feedback equalization circuit
  • 343 Error correction code-added color circuit
  • 344 Error correction circuit
  • 345 Digital information signal after error correction
  • 346 Differential encoding circuit
  • 353 addition circuit
  • 354 subtraction circuit
  • 355 electric field amplitude determination circuit
  • 200 optical electric field receiver
  • 206 optical fiber transmission line
  • 207 compensation amount input terminal
  • 221 terminal control unit
  • 222 database
  • 223 wavelength multiplexer
  • 224 wavelength demultiplexer
  • 225 optical amplifier
  • 226 optical transmitter of the present invention
  • 230 optical add-drop device
  • 231 control console

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Nonlinear Science (AREA)
  • Power Engineering (AREA)
  • Optical Communication System (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

明 細 書
光電界受信器および光伝送システム
技術分野
[0001] 本発明は、光情報伝送技術に関し、更に詳しくは、光ファイバで伝送される多値光 情報の受信に適した光電界受信器、光多値信号受信器および光伝送システムに関 する。
背景技術
[0002] 近年、一本の光ファイバで伝送可能な情報量 (伝送容量)は、多重化される波長数 の増加や光信号の変調速度の高速ィ匕によって拡大し続けてきた力 略 10T (テラ) bi tZsで限界に達した感がある。伝送容量の拡大が困難になった大きな理由は、光伝 送に使用可能な波長帯域が、光ファイバアンプの波長帯域 (C、 L、 Sバンドを合わせ て約 80nm= ΙΟΤΗζ相当)で制限される限界域に到達した力もである。このような状 況において、光ファイバの伝送容量を更に大きくするためには、信号変調方式をェ 夫し、限られた周波数帯域に多数の光信号を詰め込むことによって、周波数帯域の 利用効率を高くする必要がある。
[0003] 無線通信の世界では、 1960年代力も普及した多値変調技術によって、周波数利 用効率が 10を越えるような高効率の伝送が可能となっている。多値変調は、光フアイ バ伝送においても有望視され、従来力も多くの検討がされてきた。例えば、 R. A. Grif nn, et. ai., lOGb/s Optical Differential Quadrature Phase Shift Key (DQPb ) Trans mission using GaAs/AlGaAs Integration," OFC2002, paper PD- FD6, 2002 (非特許 文献 1)では、 4値位相変調を行う QPSK (Quadrature Phase Shift Keying)が報告さ れ、 Kenro Sekine, Nobuhiko Kikuchi, Shinya Sasaki, Shigenori Hayase and Chie Has egawa, "Proposal and Demonstration of 10— Gsymbol/sec 16— ary (40 Gbit/s) Optical Modulation I Demodulation Scheme," paper We3.4.5, ECOC 2004, 2004 (非特許 文献 2)では、 4値の振幅変調と 4値の位相変調とを組み合わせた 16値の振幅'位相 変調が報告されている。
[0004] 図 1の (A)〜(D)は、光伝送に適用可能な公知の各種変調方式の特徴を示した図 であり、位相面 (IQ平面上)に光変調の位相点 (識別時刻における光電界の複素表 示)がプロットされている。
(A)は、広く用いられている 2値振幅変調(BASK)を示す。 BASKでは、位相は利 用せず、振幅の強弱のみで 1ビットの情報が伝送される。
(B)は、 4値の位相角(0、 π /2、 π 、 一 π Ζ2)を用いることによって、 1シンボルで 2ビットの情報(11、 10、 01、 00)を伝送する 4値位相変調(QPSK)を示している。
[0005] (C)は、無線で広く用いられている 16値直交振幅変調(16QAM)を示す。 16QA Μでは、位相点が格子状に配置され、 1シンボルで 4ビットの情報伝送が可能となる。
[0006] 図示した例では、 Q軸座標で上位 2ビット(11χχ、 10χχ、 01χχ、 ΟΟχχ)の値、 I軸座標 で下位 2ビット(xxl l、 χχ10、 xx01、 xxOO)の値が表現されている。この位相点配置は、 位相点間の距離を大きくできるため、受信感度が高いことが知られているが、光通信 分野での実現例は、未だに報告されていない。
(D)は、 2値振幅変調の位相点と 8値位相変調の位相点が同心円状に配置された 16値振幅位相変調(16APSK)を示し、(E)は、振幅と位相の関係を示している。
[0007] このように、従来力も多値信号の様々な位相点配置が検討されて 、るが、多値数の 増加に伴って受信器が複雑化する。また、多値数が増加すると、位相成分を検出す るための光遅延検波における符号間干渉が増えるため、受信感度などの特性が急 速に悪ィ匕するという問題がある。
[0008] 一方、光伝送容量を拡大するために、各波長(チャネル)の変調速度を lOGbitZ 秒〜 40GbitZ秒程度に高速ィ匕する検討もなされている。し力しながら、変調速度を このように高速ィヒすると、光ファイバの持つ波長分散や、自己位相変調効果などの非 線形効果によって、伝送品質が大きく劣化する。光伝送の場合、波長分散の影響で 、光伝送距離が信号ビットレートの 2乗分の 1で急減する。そのため、 lOGbitZ秒以 上の光伝送においては、光信号受信端や光中継器に、伝送路で発生する波長分散 を補償するための分散補償器が必要となる。例えば、 40GbitZ秒の光伝送では、波 長分散に対する耐力が、通常分散ファイバで僅か 5km分程度しかないため、光信号 受信端に配置された可変波長分散補償器によって、信号品質の劣化が最小となるよ うに自動的に制御する適応補償技術が検討されて!ヽる。 [0009] し力しながら、可変波長分散補償器は、装置のサイズ、複雑さ、コスト、制御速度な どの点で多くの解決課題を残している。近年では、光信号受信機の電気回路部に、 フィードフォワード等化回路 (FFE)または判定帰還等化回路 (DFE)などの電気的 な適応等化回路を配置した構成や、最尤推定回路 (MLSE)で受信シンボルを推定 する電気段補償技術が検討されている。但し、従来技術による電気段での波長分散 補償は、受信光波形のアイ開口を整形するだけの不完全なものなつている。そのた め、補償効果も、受信器の波長分散耐カを実効的に 1. 5〜2倍に拡大し、例えば、 4 OGbitZ秒の通常の光ファイバ伝送で伝送距離を 1 Okmまで延ばす程度の不十分 なものであった。
[0010] 上述した問題を解決し得る従来技術の一つとして、例えば、 M. G. Taylor, "Cohere nt detection metnod using DSP to demodulate signal and for subsequent equalization of propagation impairments," paper We4.P.l l l, ECOC 2003, 2003 (非特許文献 3) で報告されたコヒーレント光電界受信システムがある。コヒーレント光電界受信システ ムでは、図 2の(A)に示すように、光ファイバ伝送路で伝送された光多値信号 123が 、偏波分離回路 131によって、水平 (P)偏波成分 133と垂直 (S)偏波成分 134とに 分離され、それぞれコヒーレント光電界受信器 135— 1、 135— 2に入力される。
[0011] コヒーレント光電界受信システムには、送信光源と略同一の波長をもつ局部発振レ 一ザ光源 130を必要とする。上記レーザ光源 130からの出力光(局発光) 132は、光 スプリッタ 102で 2つの局発光 132—1と 132— 2に分離され、コヒーレント光電界受 信器 135— 1と 135— 2に入力される。
[0012] コヒーレント光電界受信器 135— 1は、光位相ダイバーシティ回路 136とデジタル演 算回路 141とを備えている。光位相ダイバーシティ回路 136は、入力された光多値信 号の P偏波成分 133と局発光 132— 1から、局発光と光多値信号との同相成分よりな る 1 (同相)成分出力光 137と、局発光と光多値信号との直交成分よりなる Q (直交)成 分出力光 138を生成し、 I成分出力光 137はバランス型光受信器 105— 1に、 Q成分 出力光 138はバランス型光受信器 105— 2に供給する。ノ ランス型光受信器 105— 1、 105— 2から出力されたアナログ電気信号は、それぞれ A/D変翻106— 1、 1 06 2で時間サンプリングされ、デジタル信号に変換される。 [0013] 以下の説明では、図 1の (E)に示すように、受信信号の光電界を r(n)exp( φ (η))と定 義し、局発光 132—1、 132— 2の光電界を exp (- θ (n))と表記する。ここで、 rは光電 界の振幅、 φは光電界の位相、 nはサンプリング時刻を示しており、局発光 132の振 幅は一定値「1」と仮定している。また、 θ (n)は、レーザ光源が本質的に持っているラ ンダムな位相雑音や、局発光と信号光の差周波成分によって生じる位相変動を示し ている。尚、送信機側の送信光源も位相雑音を持っているが、ここでは、説明を簡単 化するため無視されている。
[0014] 各バランス型光受信器 105— 1、 105— 2は、入力された光多値信号を局発光でホ モダイン検波し、それぞれ局発光を基準にした光多値信号の光電界の同相成分と直 交成分を出力する。従って、 AZD変換器 106— 1の出力信号 140— 1は、 I'(n)=r(n )cos( (i) '(η))、 AZD変翻 106— 2の出力電気信号 140— 2は、 Q'(n)=r(n)sin( φ '(η ;))となる。但し、ここでは、簡単化のために φ '(η)= φ (η) + θ (η)とし、変換効率などの 定数は全て「1」としてある。
[0015] ここで、位相変動 θ (η)を無視すると、 φ '(η)= φ (η)となる。従って、コヒーレント光電 界受信器を用いた場合、受信した光多値信号 123から、光電界 r(n)eXp (n))を示す 全ての情報 (ここでは I、 Q両成分)が直接的、且つ簡単に得られ、多値光信号受信 が可能となるはずである力 実際には、局発光 132の位相変動 θ (n)の影響を無視で きない。
[0016] 例えば、受信した光多値信号力 図 1の(C)に示した 16値直交変調(16Q AM)で 多値変調されていたと仮定すると、位相変動 θ (n)があった場合、受信信号の位相点 配置は、等化的に図 2の(B)に示すように、理想的な位置から θ (n)だけ回転する。そ の結果、上述した Γ(η)と Q'(n)からは、どのシンボル (位相点)が送信されたかを識別 できなくなる。
[0017] デジタル演算回路 141は、 AZD変換器 106— 1、 106— 2の出力信号から、位相 点のゆっくりとした回転成分 (〜数 100MHz)を検出し、この回転成分を位相変動 Θ ( n)と見做して AZD変翻の出力信号力も演算処理で除去し、正しい同相成分 I(n) =r(n)cos( φ (η》、直交成分 Q(n)=r(n)sin( φ (η))を示す出力信号 142— 1、 142— 2を シンボル判定回路 143に出力する。 [0018] バランス型光受信器 105— 2も、バランス型光受信器 105— 1と同様の動作で、出 力信号 142— 3、 142— 4として、正しい同相成分 I(n)=r(n)cos( φ (n))、直交成分 Q(n) φ (η))を出力する。シンボル判定回路 143は、上記各デジタル演算回路 14 1から出力された I、 Q成分を図 1 (C)に示した位相点配置と比較することによって、ど のシンボルが伝送されたかを高精度に判別し、再生多値デジタル信号 144を出力す る。
[0019] 上述したコヒーレント光電界受信器を利用すれば、波長分散などに起因した信号劣 化を演算処理で補償して、多値信号の識別に必要な全ての電界情報を生成できる ため、原理的には、どのように複雑な多値信号でも受信可能となる。また、上記コヒー レント光電界受信器には、デジタル演算回路 141で、入力信号に光ファイバ伝送路 の伝搬関数の逆関数による補正処理を行うことにより、波長分散などによる線形劣化 を理論的には完全に補償でき、補償量にも制限が無いと言う大きな利点がある。但し 、現時点では、 lOGbitZ秒以上の信号処理性能をもつような小型の高速デジタル 演算回路 141が巿場に提供されて 、な 、ため、上述したデジタル処理型のコヒーレ ント光電界受信器は、高速の AZD変換器を用いて取り込んだ電気信号 140— 1、 1 40— 2をコンピュータでオフライン演算して、その効果を検証中の段階にある。
[0020] 一方、図 3の(B)は、非特許文献 2に代表される従来の振幅位相変調光受信用の 光多値信号受信器の構成図を示し、図 3の (A)は、位相 4値、振幅 2値の 8個の位相 点が同心円上に配置された 8値の振幅位相変調光(8APSK)の 1例を示して 、る。 8 APSK信号のように、位相成分が等間隔に分割される光変調では、通常、位相成分 の変調に差動符号ィ匕が用いられる。本例では、振幅 2値と、直前シンボルとの位相差 力 0、 π /2、 π 、 一 π /2の何れ力になる位ネ目 4値に対応付けて、各シンポノレで 3 ビットの情報を伝送する。
[0021] 8APSK信号を受信する光多値信号受信器は、光電界を検出しない非コヒーレント 方式であり、図 3の(Β)に示すように、入力された光 APSK信号 124は、光分岐回路 150で 3つの光信号に分岐される。そのうち、 2つの光信号が光遅延検波器 104—1 と 104— 2に、残る 1つの光信号が光強度受信器 151に入力される。光遅延検波器 1 04— 1と 104— 2は、それぞれ入力信号にシンボル時間 Τの遅延を与える第 1の光パ スと、 π /4位相シフタまたは + π /4位相シフタをもつ第 2の光パスと力もなり、受信 した光多値信号の状態 (シンボル)を時刻 Τだけ前に受信したシンボルと干渉させて 、位相変調成分を光強度信号に変換する。
[0022] + π /4位相シフタをもつ光遅延検波器 104— 1の出力光は、受信シンボルと直前 のシンボルとの位相差力 SOまたは + π Ζ2となった時に出力強度が大となり、位相差 がー π Ζ2または πとなった時に出力強度が小となる。光遅延検波器 104— 1の出 力光をバランス型受信器 105— 1で受信し、その出力を 2値判定回路 152— 1で 2値 判定することによって、 1ビット分の 2値再生デジタル信号 153— 1が得られる。
[0023] π /4位相シフタをもつ光遅延検波器 104— 2の出力光は、受信シンボルと直前 のシンボルとの位相差力 SOまたは π Ζ2となった時に出力強度が大となり、位相差 が π Ζ2または πとなった時に出力強度が小となる。光遅延検波器 104— 2の出力 光をバランス型受信器 105— 2を介して 2値判定回路 152— 2に入力することによつ て、位相成分に含まれる他の 1ビット分の 2値再生デジタル信号 153— 2が再生され る。
[0024] 光強度受信器 151は、受信信号の光強度 (光電界振幅の二乗)を電気信号に変換 する。光強度受信器 151の出力は、 2値判定回路 152— 3で判定され、光振幅成分 に含まれる 1ビット分の 2値再生デジタル信号 153— 3が再生される。この光多値信号 受信器は、光遅延検波を用いているため、位相変動 θ (η)の影響と偏波依存性が殆 どなぐ局部発振光源が不要となる等の利点があり、 16値までの APSK信号の受信 に適用されている。
[0025] また、 A.D. Ellis etc、 'Receiver-side electronic dispersion compensation using passi ve optical field detection for low cost 10Gbit/ s 600 km reach applications"、 Paper O TuE4、 Optical Fiber Conference(OFC)2006 (非特許文献 4)の Fig.lには、 2値強度変 調光を送受信するの光伝送システムの構成が示されている。
[0026] ここに示された光送信器 (Low Cost Transmitter)は、 DFBレーザから出力された光 信号をマツハツ ンダ型光強度変調器 (MZM)もしくは電界吸収型光変調器 (EAM )で lOGbitZsの情報信号 (ビット幅 lOOps)により外部変調し、光ファイバ伝送路 (Fi ber Link)に出力している。上記光ファイバ伝送路で伝送された変調光は、狭帯域フ ィルタで切り出した後、 A〜Dの 4部分よりなる光受信器で受信される。この光受信器 は、光強度波形 (AM成分)と光周波数変化 (FM成分)の波形を取得し、これを受信 器内部で合成し、電気的に分散補償をする効果を持つ。
[0027] 受信器の A部は、遅延量 T= 5psの非対称マッハツエンダ型光干渉計と、その 2つ の出力ポートに結合された 2つの光検出器(出力電圧 VI、 V2)力も構成されている。 この光干渉計は、光周波数周期 200GHz ( = 1/T)で周期的な通過特性を持って おり、干渉計の位相を 90度に設定することによって、光周波数弁別器として作用して いる。このため、 B部で 2つの光検出器の出力信号の和成分 (VI +V2)を演算し、受 信光の強度波形 (AM波形 VA)を得ることができる。
[0028] 一方、差成分 (VI— V2)の演算結果を強度波形 (VA)で除算することにより、周波 数波形 (FM波形: VF)を得ることができる。 C部では、 AM変調器を用いて、マイクロ 波発信器カゝら得られた中間周波数 F (F > 10GHz)の電気正弦波信号を上記 AM波 形 VAで強度変調し、更に、 FM変調器を用いて上記 FM波形 VFで変調すること〖こ よって、受信器内で擬似的に光電界波形を再生している。得られた中間周波数の電 気信号は、この後、光伝送路とは逆の分散特性を持つマイクロ波分散性伝送路 (Dis persive Transmission Line)を通過させることによって、分散によって生じた波形劣化 を補償 (分散補償)した後、二乗検波して受信される。
[0029] 上記の発表は、原理提案のみであり、実際にこのような構成を実現できることを完 全に実証したものではないが、この発表に従えば、波長分散によって劣化した光信 号の波長分散補償が可能となる。
[0030] 非特許文献 1 : R. A. Griffin, et. al, "lOGb/s Optical Differential Quadrature Phase Shift Key (DQPSK) Transmission using GaAs/AlGaAs Integration, OFC2002, pape r PD-FD6, 2003
非特許文献 2 : Kenro Sekine, Nobuhiko Kikuchi, Shinya Sasaki, Shigenori Hayase an d Chie Hasegawa, "Proposal and Demonstration of 10— Gsymbol/sec 16— ary (40 Gbit /s) Optical Modulation I Demodulation Scheme," paper We3.4.5, ECOC 2004, 200 4
非特許文献 3 : M. G. Taylor, "Coherent detection method using DSP to demodulate signal and for subsequent equalization of propagation impairments," paper We4.P. l l 1, ECOC 2003, 2003
非特許文献 4 : A. D. Ellis etc, " Receiver-side electronic dispersion compensation us ing passive optical field detection for low cost 10Gbit/ s 600 km reach applications , Paper OTuE4, Optical Fiber Conference (OFC) 2006
発明の開示
発明が解決しょうとする課題
[0031] 本発明の目的は、偏波依存性がなぐ局部発振光源を必要とせず、また構造の簡 素な実用的な光電界受信器および光多値信号受信器を提供することにある。
[0032] 光ファイバ伝送では、伝送光信号の偏波の状態が、時間的に大きく変動することが 知られている。図 2で説明したコヒーレント光電界受信器は、原理的に偏波依存性が あり、偏波の変動によって前述した P偏波成分が失われると、コヒーレント光電界受信 器 135— 1は、動作不能となってしまう。そこで、図 2に示したコヒーレント光電界受信 システムでは、光多値信号の P偏波成分 133を受信するコヒーレント光電界受信器 1 35— 1と、 S偏波成分を受信するコヒーレント光電界受信器 135— 2とを用意し、シン ボル判定回路 143が、これら 2つの受信器の一方を選択してシンボル判定する偏波 ダイバーシティ構成として 、る。
[0033] 更に、コヒーレント光電界受信システムには、波長が受信光と略合致した局部発振 光源 130を必要とするため、波長管理が複雑になるという問題がある。また、偏波ダ ィバーシティ構成を採用することにより、偏波状態が変動しても入力光信号の受信が 可能となるが、この場合、偏波分離回路 131ゃ光スプリッタ 102等の余分な光部品が 必要となり、受信器のハードウェア規模が大きくなるという実用上の大きな問題がある
[0034] 一方、図 3で説明した多値光受信器では、受信信号の強度と相対位相差をそれぞ れ 2値判定しているだけであり、光電界の全情報の検出、例えば、図 1 (C)の 16QA M信号の判定に必要となる振幅値と絶対位相値の組み合わせを行うことはできない 。何故なら、これらの方式で使用されている光遅延検波器は、時間軸上で連続した 2 つのシンボルの相対位相差に応じて変化する強度信号を検出するためのものであり 、各シンボルの絶対位相を検出することはできないためである。また、判定が 2値に 限られるため、図 1 (D)の 16APSK信号の判定に必要となる相対位相差の 8値検出 などを行うこともできない。図 3の例では、受信信号強度の 2値判定と相対位相差の 2 値判定とを組み合わせる構造となって 、るために、シンボルの多値数が 2の N乗で増 カロした場合、原則として、 N組の受信回路を必要とし、受信器の構成が複雑化する。
[0035] 本発明の第 2の目的は、非コヒーレント方式で光電界の全情報を検出し、伝送中に 生じた線形劣化を補償する光電界受信器を実現することにある。一般に、遅延検波 では、光信号が振幅変調成分を持つと、出力信号強度が振幅変調成分によって変 動するため、局部発振光源を用いたコヒーレント光受信方式でなければ、光電界情 報を得ることはできないと考えられている。もし、従来の 2値振幅変調を含む多値変調 された光信号を受信し、全ての電界情報を得ることができれば、受信器の電気回路 段において、伝送中に生じた線形劣化を演算処理で補償し、例えば、高度の分散補 償を実現できる。
[0036] 非特許文献 4は、簡素な構成で上記の課題を解決する光受信器を示して!/ヽる。し 力しながら、光信号の周波数波形という測定精度の低い波形を用いているため、仮 に、強度変調信号の波長分散補償が実際に可能であったとしても、光信号の位相に 情報を載せることは困難と考えられる。
[0037] その理由は、周波数は位相の微分であるため、遅い位相変化に対しては周波数変 ィ匕が小となり、検出感度が極端に悪くなるためである。同時に、光変調や伝送劣化に よって、光信号の位相が急激に回転する箇所では大きな周波数変化が生じる可能 性があるが、この場合でも、光周波数波形を劣化なく取り込むためには、光周波数測 定のダイナミックレンジの拡大が必要となる。ダイナミックレンジを拡大するためには、 光周波数弁別器として作用する光干渉計の周波数周期を大きくする (文献 4では、 F SR= 200GHz)、すなわち、遅延時間 Tを 5psと非常に小さくする必要がある。これ は、光周波数弁別器の周波数一光強度変換効率を更に低下させ、測定精度が更に 劣化する要因となる。
[0038] また、光信号の変調や伝送劣化によって、光強度がゼロに近づ!、た場合、光周波 数波形 VFの演算において、除算の分母がゼロに近づき、測定誤差が更に急増し、 ついには測定できなくなるという問題がある。し力しながら、非特許文献文献 4には、 これらの問題についての対策は記述されておらず、技術的にも未解決な点が残って いる。
本発明は、上記の問題点を解決し、簡素な実用的な光電界受信器および光多値 信号受信器を提供することにある。
課題を解決するための手段
[0039] 上記目的を達成するため、本発明の光電界受信器および光多値信号受信器では 、受信した光信号を 2分岐し、一方を光強度受信器に、他方を遅延量 Tdの光遅延検 波器に入力し、これら 2つの受信器の出力信号から、光信号の電界情報 (振幅と位相 )を算出する。
[0040] 具体的には、演算回路で光強度信号 AM(t)の平方根を計算することによって振幅!:
(t)を得る。また、遅延検波器力も得られた信号 dQ(t)を振幅積 r (t)r(t+T)で除算して 正規化し、逆正弦演算を行うことによって、時間 Td間に生じた位相回転量を算出し、 更に、この位相回転量を逐次累積することによって、上記電界情報を得る。上記構成 によれば、ホモダイン検波を行っていないため、局部発振光源が不要となる。また、 光遅延検波器には偏波依存性がないため、偏波依存性のない光電界受信器を実現 できる。
[0041] 上記構成にお!、て、例えば、遅延時間 Tdを光信号のシンボル長 T ( = 1/R)の半 分以下に設定すると、 1シンボルに最低 2回の光電界情報を得ることができ、ナイキス ト定理を満たす完全な電界情報が得られ、波長分散補償などの線形補償が完全に 行えるようになる。但し、 2値 ·多値変調信号のシンボル判定のみを行う場合は、 Td= Tであっても構わない。 Tdを小とし過ぎると、位相検出感度が劣化するため、 Tdの現 実的な範囲は TZ5= (1/(5R))となる (Rは、シンボル速度)。このとき、位相検出感 度は 1Z5程度に劣化している。
[0042] 光遅延検波器に接続する受信器としては、特にバランス型光受信器が適して 、る。
本受信器であれば、光信号の不要な直流成分が除去できるため、理想的な演算が 可能となる。
[0043] 尚、上記構成のバリエーションとして、光遅延検波器の 2つの光出力にそれぞれ個 別の光強度受信器を接続し、得られた差成分と和成分に、以下の実施例に示すよう な演算を行ってもよい。
[0044] 上記本発明の光電界受信器および光多値信号受信器は、例えば、各信号を高速 の AZDコンバータを用いてデジタルィ匕し、複雑な演算処理はデジタル演算で実現 すると、構成の容易さと柔軟性の点で極めて有効である。上記構成では、光電界の 位相差を時間間隔 Tdで順次に計算する必然性から、 AZD変換器のサンプリング間 隔 Tsaを Tdと同程度かそれより十分小とする必要がある。信号帯域が小さければ、 T saを Tdよりも多少大きくし、位相変化を荒く算出しても、両者に相関があるために動 作する場合がある力 その場合でも、理論的な限界は Tsa≤2Tdである。
[0045] 時間 Td内に生じた位相回転量を逆正弦関数で算出するためには、位相回転量を π Ζ2以下に制限することが必須となる。これは、例えば、 AZD変翻のサンプリン グ間隔 Tsaと遅延検波器の遅延時間 Tdを共に小とし、位相回転を頻繁に観測するこ とによって解決できるが、この場合、 AZD変 の高速ィ匕の限界 (現在のサンプリン グ間隔は、 25psが最小)が障害となる。この障害は、本発明の光電界受信器を、送 信側でサンプル間の位相回転量を制限した光変調と組み合わせることによって解決 できる。本発明の光電界受信器は、例えば、位相回転量を π Ζ2などに制限した 2値 、または多値位相変調や、多値振幅位相変調、無チヤープまたは小チヤープの 2値 · 多値強度変調との組み合わせが有効である。
[0046] また、実施例で後述するように、送信光信号の消光比を意図的に 0. 15より大とし、 通常の光送信器における消光比の限界値(9〜: LOdB)より劣化させることよって、光 信号の強度がゼロとなったり、位相回転量が 90度を越える波長分散範囲を拡大すれ ば、本発明の適用範囲を更に広げることができる。
[0047] 本発明において、 1シンボル中に 2回以上の光電界情報を算出する構成にすると、 算出した光電界情報に対して伝送路の伝搬特性の逆演算を行う完全な光電界補償 が可能となる。この場合、波長分散やフィルタリング特性などの劣化に対する適応型 もしくは固定型の補償回路を備えることによって、受信器の波長分散耐カなどの伝送 特性を大幅に改善することが可能となる。
[0048] 尚、本発明にお ヽては、遅延検波器の位相ずれ、 dQ波形の非対称性やオフセット 、 2つに分岐した光信号のサンプリングタイミングなどのパラメータに僅かなずれがあ ると、再生した位相情報に大きなドリフトを生じる可能性がある。これを防ぐためには、 再生位相情報の時間変動や出力波形の上下非対称性がなくなるように、これらのパ ラメータを自動的に安定ィ匕する構成が有効である。
[0049] 例えば、本発明の光電界受信器および光多値信号受信器が、光ネットワークを構 成する光伝送装置に付随して配置される場合、光ネットワークに接続された制御端 末によつて、光信号経路に沿った光ファイバの総波長分散量を算出し、この値を光 信号受信側の光伝送装置に送信し、光電界受信器および光多値信号受信器の光 電界補償回路に補償量の初期値として与えることによって、最適な補償量の設定が 可能となる。この方式によれば、光ネットワーク内での光信号経路が変更された場合 、再計算された補償量を光電界補償回路に迅速に設定できるため、適応補償型の 光電界補償回路を不要にしたり、適応補償制御における最適状態への引き込み時 間を短縮することが可能となる。
発明の効果
[0050] 本発明では、光遅延検波器を用いているため、入力光の偏波状態に無依存であり 、従来のコヒーレント検波方式と異なって、局部発振光源を必要としていないため、受 信器の構成が簡単になる。また、従来の非コヒーレント型の多値光受信器では、受信 信号の多値数の増加と共に回路規模が大形ィ匕したが、本発明の光電界受信器およ び多値光受信器は、受信光電界の位相面上の 2次元座標情報を直接的に再生でき るため、伝送効率を向上させるために光変調信号の多値数を大きくした場合でも、実 用的なハードウ ア規模で受信信号のシンボルを判定きるという利点がある。また、 本発明によれば、受信光信号の電界演算や多値判定を電気的なデジタル回路で実 行できるため、同一の受信器構成で、多値数や変調方式の異なる光信号に適合す ることが可能となる。
[0051] また、本発明では、光信号の位相変化を高精度に算出できるため、非特許文献 4 で問題となる 2値や多値の位相変調に適用できる。位相変調は強度変調に比べて受 信感度が高ぐ光ファイバ伝送で問題となる光ファイバの非線形効果に対する耐力が 高いため、特に長距離伝送に適している。位相領域を活用することによって、更に伝 送効率のよ!、多値伝送も実現可能となる。
[0052] また、本発明では、受信器規模が従来の 2値強度変調の 3倍程度 (2値位相変調の 1. 5倍、また 4値位相変調の 2Z3程度)で済むため、多値数の少ない光伝送におい ても、受信器のハードウェア規模に対する伝送効率が低下しにく 、と 、う効果がある 。本発明で伝送情報量が 2倍となる 4値伝送を行えば、従来の 4値位相変調伝送より も伝送効率を向上できる。本発明は、光ファイバ通信用の受信器以外に、例えば、光 電界波形測定装置や光空間伝送装置などにも適用可能である。
発明を実施するための最良の形態
[0053] 以下、本発明の幾つかの実施例を図面を参照して説明する。
実施例 1
[0054] 図 4は、本発明による光電界受信器 100と、これを用いた光伝送システムの第 1実 施例を示す。図 4 (A)は、光伝送システムの構成図であり、光信号の経路は太線、電 気信号の経路は細線で示してある。
[0055] 本実施例にお!、て、光送信器 300は、 2値の位相変調光の送信器であり、レーザ 光源 301から出力される無変調のレーザ光を光位相変調器 303に入力し、その変調 端子にシンボル速度 Rの 2値デジタル情報信号 302を印加して位相変調を行 、、送 信光信号 305 (光電界 E(n))として出力している。光位相変調器 303は、図 4 (B)の位 相点配置が示すように、情報信号のマークおよびスペースに対応する位相点間の位 相角が θ = π Ζ2となるように、レーザ光を変調する。
[0056] 図 4 (C)は、送信光信号 305の位相波形を示す。光信号の位相は、シンボル境界 を中心に遷移し、シンボル中央で mまたは sのどちらかの値をとる。その位相間隔(変 調振幅)は π Ζ2である。各シンボルの間隔 Τは、シンボル速度 Rの逆数であり、 Τ= 1ZRとなる。本実施例では、 2値変調を行っているため、シンボル速度 Rはビットレー ト Rbと等しくなる。送信光信号 305は、光ファイバ伝送路 304を伝送され、光ファイバ の波長分散などで伝送劣化を受けた後、入力光信号 101として、本発明の光電界受 信器 100に入力される。
[0057] 入力光信号 101は、光分岐回路 150によって 2つの光信号経路 103— 1と 103— 2 に分岐され、光遅延検波器 104と光強度受信器 151に入力される。光遅延検波器 1 04は、入力信号にシンボル時間 TZ2の遅延を与える第 1の光パスと、 2つの光パス で位相が互いに π Ζ2ずれるように位相角 π Ζ2の位相シフタをもつ第 2の光パス と力 なり、位相シフトした光多値信号の光電界を遅延量 Td=TZ2だけ前の受信光 電界と干渉させている。この遅延量 Tdは、本発明での光電界の位相再生の時間間 隔となる。
[0058] 尚、位相シフタの位相量は、厳密には、遅延された光電界が通過する遅延側のパ スの位相遅延量を指すが、位相量の符号や配置されるパスが異なっても出力信号の 符号が反転するだけであり、電気信号の符号反転操作や再生された光電界の複素 共役演算などを行えば簡単に修正できる。よって、以下の説明では、位相量の符号 や配置されるパスはどちらでも構わないものとする。
[0059] 光遅延検波器 104から出力された 2つの光信号は、光バランス型受信器 (光検出 器) 105で差動受信され、電気信号に変換された後、 AZD変換器 106— 1でデジタ ル信号に変換される。また、光強度受信器 151で受信された光信号も同様に、電気 信号に変換された後、 AZD変 106— 2でデジタル信号に変換される。 A,D変 換回路 106— 1、 106— 2には、周波数 2ZTのクロック発振器 310から、それぞれサ ンプリングクロック 107が供給されており、 1シンボル当たり 2回の周期でデジタルサン プリングを行う。本例では、クロック発振器 310には、光バランス型受信器 105の出力 信号の一部が供給されており、受信光信号の位相遷移のタイミングに同期して、クロ ック成分を抽出している。このようにすれば、常に、受信光信号のシンボル中の所望 のタイミング(シンボル中央と境界など)で、デジタルサンプリングを行うことができる。
[0060] AZD変翻 106— 1、 106— 2から出力されたデジタル信号は、それぞれ遅延調 整回路 108— 1、 108— 2に入力され、 2つの信号経路のタイミングのずれを光遅延 検波器 104の遅延時間 Td以下となるように調整した後、 dQ信号 311、 AM信号 312 として、電界演算部 111に供給される。
[0061] 図 5 (A)は、これらの電気受信信号の時間波形の 1例を示している。ここでは、或る 時刻 tのサンプル点の番号を nとし、受信した光信号をE(t)=E(n)=r(n)exp ( φ (n) ) で表している。この場合、 AM信号および dQ信号は、それぞれ、 AM(n)=r2(n)、 dQ( n)=r(n)r(n- l)sin( A φ )と書ける。ここで、 Δ φ = φ (η)— φ (η— 1)である。 [0062] AM信号 312は、電界演算部 111の平方演算回路 112に入力され、平方演算回 路 112の出力として、再生光電界の振幅 r(n)320が得られる。平方演算回路 112は、 デジタル演算回路で構成してもよいが、例えば、予め平方根データをメモリに格納し 、テーブル検索で代用する構成や。アナログ回路などで実現する構成であってもよ い。
[0063] 一方、 dQ信号 311には、上式のように n番目とその直前の n— 1番目のサンプルの 情報が混在している。本実施例では、 dQ信号 311を除算回路 313— 1で、振幅情報 r(n)を遅延回路 314で時間 Td=TZ2だけ遅延した過去の振幅情報!: (n— 1)で除算 し、除算回路 313— 1の出力を除算回路 313— 2で振幅情報!: (n)で除算することによ つて、 y信号 315を得ている。この結果、 y=sin( A φ )となる。
[0064] y信号 315は、逆正弦演算回路 316に入力され、逆正弦 (arcsin)演算を行うことに よって、位相差信号(Δ φ ) 317に変換される。前述のように、 Δ φは、サンプル点間 の光電界の位相差であるため、遅延加算回路 318で、位相差 Δ φに直前受信シン ボルの位相 φ (n- 1)を加算することによって、再生光電界の位相 φ (n)321を得るこ とがでさる。
[0065] 一般に、光信号の位相は、光源の位相雑音や光ファイバの長さの温度変化などに よって、時間的にゆっくりと変動するため、光信号の初期位相 φ (0)は不定である。こ のため、遅延加算回路 318では、適当な初期位相(例えば、 0)を設定して演算を開 始すればよい。送信側で多値位相変調などを用いており、絶対位相を確定する必要 力 Sある場合は、送信位相変調波形中の固定パターンから学習したり、受信パターン やヘッダの認識の正誤などから正 、位相角を推定すればょ 、。
[0066] このような初期位相や初期振幅の判定は、光通信分野、無線通信分野で共通の課 題となる。従って、本発明の光電界受信器には、上述した解決法以外に、これらの通 信分野で公知となっている他の手法を適用可能である。例えば、送信信号内に、既 知の位相角または振幅値をもつ参照信号を周期的または間歇的に挿入したり、初期 位相や初期振幅の判定が不要となる差動変調などの技術を用いてもよい。また、正 常な受信が可能となるように、再生された位相点の統計分布力 適応学習的に初期 位相や振幅を調整してもよ ヽ。 尚、上述したように、光電界のサンプル点間の位相差を逆正弦演算を用いて算出 すると、位相角の変化が最大でも ±90度の範囲でしか計算できない。これは、本発 明の本質的な特徴の 1つである。
[0067] 図 5 (B)は、このようにして再生された光電界の振幅 r(n)320と、位相 φ (η)321の様 子を示している。本実施例の電界演算部 111では、間隔 Td=TZ2毎に逐次電界再 生演算を行って 、るため、 1シンボル時間 Tあたり 2点の電界情報を得ることができる 。すなわち、ナイキスト定理によれば、受信光電界信号がシンボル速度以上の周波 数成分を含まなければ、この受信器内でデジタル信号として再生された光電界は、 受信光電界の全ての情報を保持することになる。もし、光ファイバの非線形効果や他 の波長の光信号の漏れこみにより、上記ナイキスト定理の仮定が破れる場合、受信 光信号を十分に狭い光フィルタに通すか、受信信号や再生電界信号を十分に狭い アンチエイリアジングフィルタ (低域通過フィルタ)に通して、高周波成分を除去すれ ばよい。
[0068] 次いで、これらの再生光電界信号を直交変換回路 322に入力し、直交座標表現の 電界信号 323に変換した後、これを伝送路の伝播関数の逆特性で補正する補償演 算回路 324に入力する。補償演算回路 324は、光ファイバや光部品の波長分散、光 部品の帯域制限などの線形劣化を完全に補償することができる。
[0069] 補償後の電界信号 325は、検波 ·識別再生回路 326に入力され、光送信器 300に おける情報信号の変調方式に対応した検波方式で、検波'識別されてデジタル情報 信号として出力される。入力される電界情報は、本実施例の場合、 2サンプル シン ボルとなっているため、検波 ·識別再生回路 326には、通常の受信器の識別再生部 のように、必要に応じてリサンプリング機能、クロック抽出機能、アイ開口最大点の判 定機能などをもたせて、アイ開口が最大となる最適識別時刻で識別を行なえばょ ヽ。
[0070] 本実施例では、送信側で変調度 π Ζ2の 2値位相変調を施して 、るので、検波方 式としては、例えば、シンボル時間 Τを遅延時間とした電気遅延検波 (位相差 0)を施 し、出力信号を 2値判定して、 2値デジタル信号を再生すればよい。尚、このように電 気遅延検波で情報信号を再生する場合には、送信側で差動符号ィ匕を行っておくの が適切である。 [0071] 前述したように、本発明の光電界受信器で受信可能な光信号は、時間 Td間の位 相回転量が最大でも士 π Ζ2内のものである。このため、光位相変調器 329では、位 相変調量(= 1シンボル時間の位相回転量)を π Ζ2としている。この結果、位相計算 の間隔 Tdがシンボル時間の 1Z2であれば、 Td内の位相変化は士 π Ζ4となり、上 記の制限内に十分に収まることになる。位相回転は、後述するように、波長分散の印 加などによっても増加するので、上記制限は、この増加分も含めて満たされている必 要がある。
[0072] 位相回転角が更に大きい光信号を受信する必要がある場合は、 Td (光遅延検波 器の遅延量)を小とし、位相回転量の計算間隔を小としてもよい。但し、本発明では、 AZD変^^のサンプリング間隔 (Tsa)を Tdと同程度か、これよりも小とする必要が あるため、 Tdをあまり小とすると、サンプリング速度や電界演算の速度が高速になつ て構成が複雑ィ匕する。従って、例えば、 10Gシンボル Z秒の光信号の分散補償を行 う場合、 Tdを〜 50ps程度とし、 1シンボル中に最低 2回の電界サンプルを得るべきで ある。この際、必要となるサンプリング時間は 50psであり、 2倍のオーバーサンプリン グを行うと 25ps程度であり、現在の AZD変換器で実現可能なレベルになる。
[0073] 非特許文献 4では、遅延検波器の遅延量を僅か 5psとして 、る。この場合、上述し た本発明のルールに従うと、サンプリング間隔を Tsa = 2. 5ps以下、すなわち、 A/ D変換器のサンプリング速度を 400GHz以上にする必要があり、現在の技術では実 現不可能と思われる。このことからも、本発明と非特許文献 4が異なる技術であること がわカゝる。
[0074] 図 4 (A)において、光信号経路 103上の光部品間の結合には、光部品間の光ファ ィバによる結合、バルタ光学素子空間ビームによる結合、集積化された光部品間の 導波路による結合など、各種の接続形態を採用できる。特に、図示したように、光遅 延検波器 104とバランス型受信器 105とを組み合わせると、検波器出力信号の振幅 を倍加し、不要な直流信号を除去できる利点がある。尚、一部制限は生じるものの、 ノ ランス型受信器 105の代わりに、通常の光強度検出器を適用することもできる。そ の場合、不要成分の除去という観点からは、光遅延検波器の 2つの出力にそれぞれ 光強度受信器を配置し、その後で電気信号同士の減算を行い、差分を検出するバラ ンス型受信形態が望ましい。差分の検出は、それぞれの光強度受信器の出力をデジ タルサンプリング化した後に、デジタル演算で実現しても構わな!/、。
[0075] 遅延調整回路 108— 1と 108— 2は、光信号の分岐点となる光分岐回路 150と、電 界演算部 111との間の 2つの信号経路における信号伝搬時間を一致させ、演算タイ ミングを合わせるためのものである。これらの遅延調整回路は、例えば、オーバーサ ンプリングを用いたデジタルバッファ回路などでも実現できる。但し、製造段階で 2つ の信号経路長を完全に一致する構成を採用した場合、遅延調整回路 108— 1、 108 —2は省略できる。信号タイミングの微調整は、例えば、 AZD変換器 106— 1、 106 2に供給されるサンプリングクロックの印加タイミングで制御するようにしてもょ 、。
[0076] 図 4 (A)では、 AZD変換器 106— 1 (106— 2)の後に、デジタル遅延調整回路 10 8—1 (108— 2)を配置している力 遅延調整回路としてアナログ遅延線を使用し配 置を逆にしてもよい。 AZD変翻 106を省略し、電界演算部 111やその後の処理 の一部または全ての演算機能をアナログ回路で実現してもよい。但し、この場合は、 構成が複雑ィ匕し、調整が複雑になるなど、本発明の一部の利点は失われる。
[0077] また、電界演算部 111は極座標 (r(n)、 φ (n))型の実装例としたが、直交座標 (I(n) 、 Q(n))型とすることもできる。この場合、座標変換回路を挿入して r(n)と Δ から、 Δΐ(η)と A Q(n)を求め、逐次 I(n)と Q(n)を演算する構成とすればよい。本構成におい ては角度 Δ φの回転演算が必要となり、その中で sin( A ) ^οο5 ( Δ φ )が必要とな る。前者は y信号をそのまま利用し、後者は sqrt(l— y2)などの演算で算出する構成 としても構わない。
[0078] 電界演算部 111の機能は、例えば、 FPGA、 ASIC, DSP、または機能を再構成 可能なプロセッサで実現できる。電界演算部 111の全体、またはその内部の演算機 能部分 (例えば、除算回路 313、平方演算回路 112、逆正弦演算回路 316など)は、 専用のデジタル演算回路、テーブル検索方式やアナログ回路で実現してもよい。電 界演算部 111の内部には、必要に応じて、他の機能回路、例えば、信号の振幅や強 度を正規化する自動利得制御 (AGC)回路や、エラー時の例外処理機能 (例えば r(n ) = 0時の除算禁止機能など)を備えてもよ!、。
[0079] 電界演算部 111で充分な計算速度が得られない場合には、例えば、計算処理を並 列展開したり、電界データ列を複数のパケットに時分割して複数の電界演算部で処 理し、複数の演算結果を合成するようにしてもよい。尚、このように電界データ列を分 割して処理した場合、各データ列の連結部分で、光電界位相が連続するように調整 する必要がある力 これは、例えば、時分割する際にデータ列間に数ビットの重複部 分を持たせ、重複ビットの位相が一致するように補正するなどの処理で解決できる。
[0080] また、結果的に同じ演算結果が得られれば、演算順序や構成を適宜変更しても構 わない。例えば、 2個の除算回路 313の順序を逆にした構成、除算回路 313の構成 を振幅情報の逆数を演算した後に dQと乗算する構成、最初に乗算回路によって r(n) と!: (n— 1)の積を算出し、これで dQを除算する構成などが考えられる。尚、雑音や、 後述する電界振幅のゼロヒットなどによって、瞬間的に振幅情報がゼロとなった時、 除算エラーが生じたり、結果が無限大となる致命的な問題が生じる可能性があるが、 これを避けるために、 y信号 315の範囲が + 1〜― 1になるように制限を設けたり、ゼ 口除算エラーを外部に出力する構成を採用することも可能である。
[0081] 本発明においては、遅延回路 314の遅延時間は、光遅延検波器 104の遅延時間 Tdに略一致させる必要がある。本実施例では、サンプリング間隔 Tsa=Td= (T/2 )となっているため、時間遅延が丁度 1サンプル分に相当している。本明細書では、 光遅延検波器 104の遅延時間 Tdが異なる幾つかの実施例を示すが、全ても実施例 において、遅延回路 314の遅延時間は、常に Tdに略一致するようにする必要がある
[0082] 逆正弦演算回路 316では、光信号や電気回路の雑音、演算誤差、回路の特性誤 差などによって、入力される y信号 315の範囲力 arcsinの定義域 + 1〜1を逸脱し、 演算が実行不能となる可能性が考えられる。これを避けるためには、例えば、 arcsin 関数を一定の次数までテーラー展開した近似関数で代用したり、入力信号が + 1〜 —1の定義域を逸脱しないように、リミッタ特性を持たせるなどの方法がある。例えば、 arcsin関数の 5次までのテーラー展開 (y+y3/6+y5' 3/40)を用いれば、定義域 の逸脱は発生せず、十分な精度で近似できる。
[0083] 補償演算回路 324に実装する補償機能は、光信号の線形劣化を補償できれば、ど のような劣化補償機能であってもよぐ複数の劣化要因を同時に補償する機能を備 えていても構わない。また、光ファイバの非線形効果である自己位相変調効果のよう に、必ずしも線形ではない劣化であっても、或る程度の補償が可能である。この場合 の劣化は、光信号の位相が光強度に比例して回転するものであるから、電界再生に よって得られた位相点の振幅や配置など力 位相の回転量を推定し、位相点配置が 適正となるように逆補償を行えばよい。
[0084] 図 6は、本発明の動作を検証した実験結果の一例を示す。実験にお!ヽては、光信 号のシンボル速度を 5Gシンボル Z秒 (T= 200ps)とし、光送信器には、変調度 π Ζ 2の 2値位相変調光を生成するものを採用し、伝送路は 160kmの通常分散ファイバ 、波長分散量は 2720psZnmである。また、光遅延検波器 104の遅延量は、 Td=T Z2= 100psとした。全体の構成は、図 4 (A)と略同一であるが、サンプリングには高 速のデジタルオシロスコープを利用し、サンプリング間隔は、 Tdの 1Z2の 50ps (サン プリング速度 Tsa= 20Gサンプル Z秒)、電界再生部 111以降の処理は、パソコン上 で模擬的に実現した。
[0085] 図 6において、(A)は、デジタル化された実際の AM信号 312と dQ信号 311の波 形の 1例を示す。本来、光位相変調は、強度変調成分を持たないが、光ファイバの波 長分散によって位相変調が強度変調に変換されるため、ビット位相の切り替え点で、 強度変調成分が発生している。(B)は、再生'分散補償後 (数値演算によって— 272 OpsZnmを印力!])の I、 Q成分であり、位相変調に伴う矩形の遷移が観測できる。
[0086] (C)は、再生光の電界振幅 320を示す強度波形図、(D)は、再生光電界 323を位 相面にプロットした図である。概ね図 4 (B)に近い 4分の一円状の位相面上のトレース が得られているものの、 (C)、 (D)ともに、本来は存在しない振幅変化が現れ、大きな 劣化が見られる。(E)は、再生光電界 323を補償演算回路 324を通さずに、直接検 波 ·識別再生回路 326で 1シンボル時間 Tの遅延検波を行った場合の遅延検波波形 を示す。アイ開口が殆んど得られな 、ほどに劣化して 、る。
[0087] これに対し、 (F)、 (G)、 (H)は、それぞれ補償演算回路 324で光ファイバの伝達 関数の逆関数(一 2720psZnm相当の波長分散)を印力!]した場合の、電界振幅、光 電界位相、遅延検波波形の例を示す。補償後の光電界の振幅変動は、(F)のように 極めて小に抑圧され、位相面上のトレースも、 (G)のように略完全に図 4 (B)と合致し 、送信光電界が正しく再現できていることがわかる。(H)は、分散補償後に直接検波 •識別再生回路 326で 1シンボル時間の遅延検波を行った場合の遅延検波波形であ り、 2値のアイ開口が極めて明瞭に得られた。このように、本発明の原理と効果は実験 的にも実証されている。
実施例 2
[0088] 図 7は、本発明による光電界受信器 100と、この光電界受信器を用いた光伝送シス テムの第 2実施例を示す。
本実施例では、光送信器 300は、 2値デジタル情報信号 302を光強度変調器 329 に印加することによって、送信光信号 305として、 2値強度変調光を生成している。本 発明の光電界受信器では、光信号の強度が略 0となると、光電界の再生が困難とな るため、送信光信号 305では、予め光信号の消光比を 0. 1〜0. 3に意図的に劣化 させている。
[0089] 光電界受信器 100に入力された入力光信号 101は、実施例 1と同様、光分岐回路 150で 2分岐される。分岐された一方の光信号は、遅延量 Td=TZ2の光遅延検波 器 104とバランス型受信器 105によって電気信号に変換された後、 AZD変 10 6—1でデジタル信号に変換される。本実施例では、クロック発振器 310は、光シンポ ル速度の 4倍の周波数で自由発振している。この結果、 AZD変換器 106— 1のサン プリング間隔 Tsaは TdZ2となり、実質 2倍オーバーサンプリングとなる。
[0090] 分岐された他方の光信号は、光強度受信器 151によって電気信号に変換された後 、 AZD変翻 106— 2でデジタル信号に変換され、 AZD変翻 106— 2でデジタ ル信号に変換される。
本実施例では、光遅延検波器 104の遅延時間 Tdを電界演算部 111の演算間隔と して、光信号の位相変化 Δ φを算出している。従って、本実施例では、 AZD変換機 106— 1 (106— 2)から出力される間隔 TdZ2のデジタル信号を再サンプリング回路 332- 1 (332- 2)で 1Z2倍にダウンサンプリングし、電界演算部 111に入力される dQ信号 311と AM信号 312のサンプリング間隔が Tdに等しくなるようにしている。
[0091] 尚、再サンプリング回路 332— 1 (332— 2)では、出力信号のサンプリングタイミン グの変更、周期の微調整を可能にしている。従って、クロック発振器 310が自由発振 状態であり、その発振周波数やタイミングが入力光信号 101のタイミングとずれてい たとしても、再サンプリング時に、両者が合致するように補正できる。後述するゼロヒッ トの回避などを考慮する必要がなければ、クロック発振器と入力光信号の周波数ゃタ イミングがずれていても、電界再生に支障は生じない。この場合、サンプリング点と情 報信号のシンボルのタイミングや周期がずれたまま、電界再生'補償などの処理を行 い、最後のデジタル信号の識別'判定処理の際に、シンボルタイミングの抽出を実行 すればよい。
[0092] また、本実施例では、 dQ信号 311と AM信号 312の電界演算部 111への入力タイ ミングを一致させるために、可変光遅延回路 330、可変高周波遅延回路 331を設け 、 AM信号の到着タイミングを物理的に遅延させる構成としている。遅延調整回路は 、光回路、電気回路の何れであってもよぐ dQ信号 311の経路と AM信号 312の経 路の少なくとも一方に、可変もしくは固定の遅延手段を自由な組み合わせで配置で きる。
[0093] 電界演算部 111は、極座標の再生光電界 333を演算する。演算結果は、直交変換 回路 322で直交座標表示の光電界に変換し、補償回路 324で伝送劣化を補償した 後、判定帰還等化回路 334に入力され、受信シンボルの判定、符号間干渉の除去 など、デジタルフィルタリングによる波形の等化動作が行われる。
[0094] 本実施例では、光信号は強度変調されて!、るため、判定帰還等化回路 334内では 、先ず、光信号の二乗検波もしくは包絡線検波などを行い、次いで、 FFE (前方向帰 還等化)回路と識別回路 'DFE (判定帰還等化)回路などで補償動作を行う。この時 、アイ開口量が最大となるように、または補償後の信号と識別結果の平均二乗残渣が 最小となるように、最適化補償が行われる。
[0095] 本実施例では、判定帰還等化回路 334から得られるアイ開口量 350を補償量最適 化回路 328に入力し、補償量の指定値 (例えば、波長分散量)を補償回路 324の補 償量入力端子 207— 1に入力している。補償量最適化回路 328では、アイ開口量 35 0が最大となるように補償量を変化させることによって、常に最適な補償量に自動制 御することが可能となる。尚、補償量は、補償量入力端子 207— 2に外部力も適切な 補償量を入力して、設定する形態としてもよい。例えば、光ファイバ伝送路の距離や 、それに応じた波長分散量が判明している場合には、その逆の量を補償量として設 定すればよい。
[0096] 図 7 (B)は、送信光として 10Gビット Z秒の無チヤープの 2値強度変調光(消光比 1 0%)を入力した場合の光信号の位相点配置を示している。図 7 (C)は、この光波形 を通常分散ファイバで 180km伝送した後の光電界分布のシミュレーションで結果を 示す。
[0097] 光ファイバ伝送後には、図(C)に示すように、複雑な位相回転と強度変化を生じる 。この程度の波長分散であれば、光信号の振幅はゼロになることはなぐまた、光信 号の位相回転角は、どのサンプル点間でも 2Ζ3 π程度に収まっている。このような 光変調であれば、本発明が十分に適用可能となる。従来の光ファイバ伝送技術にお いては、光信号の電界再生という概念は殆んど存在していない。このため、位相回転 量が制限される本発明のような形態であっても、実用的な光電界再生や波長分散の 補償が行えると 、うことは全く知られておらず、これは本発明にお 、て初めて指摘さ れた概念である。
[0098] 図 8の (A)、 (Β)、 (C)は、それぞれ上記第 2実施例における送信光強度波形、受 信波形、サンプリングの様子を示している。 (Α)に示すように、送信波形では、各シン ボルの中央で、光強度がマーク(m)とスペース(s)の 、ずれかとなるように変調され ているが、光ファイバ伝送によって波長分散などで波形劣化が生じると、受信波形は 、図(B)のように歪む。特に、波長分散量がある程度以上大となると、点 Pや点 Qのよ うに、光信号強度がゼロに近くなる点が生じる。実際には光強度が完全にはゼロにな らなくても、光信号の雑音によって、ゼロに近接する危険が生じる。本明細書では、こ の現象を「ゼロヒット」と呼ぶことにする。
[0099] ゼロヒットが生じると、電界演算部 111における除算の計算誤差が急増し、再生光 の位相誤差が異常に増大したり、位相そのものが算出不能となる可能性がある。ゼロ ヒットを避けるには、例えば、本実施例のように、 AZD変換器のサンプリング速度を 高めたオーバーサンプリングを行い、再サンプリングの際にゼロヒットしないサンプリン グ点を抽出して、電界演算部 111に入力する方法が有効である。
[0100] 例えば、図(C)は、 2倍のオーバーサンプリングを行った例であり、 AM信号、 dQ信 号には、それぞれ 1シンボル当たり 4つのサンプリング点(白丸と黒丸)がある。一般に 、波形のゼロヒットは、ビットレートの 2倍の周期の間隔で発生することが多ぐ本例で は、ゼロヒットは、偶サンプリング点(白丸)に合致する波形の中央および境界で発生 している。この場合、奇サンプリング点(黒丸)のみを抽出し、これを電界演算に利用 することによって、上述したゼロヒットによる問題を避けることが可能となる。
[0101] 尚、偶、奇両方のサンプリング点でゼロヒットが生じた場合は、再サンプリング時に 補間演算を行い、両者の中間に新たなサンプリング点を生成すればよい。偶、奇そ れぞれのサンプルを利用する 2つの電界演算回路を設け、ゼロヒットしない方を適宜 選択して、出力電界を生成してもよい。また、雑音などの影響によりゼロヒットが生じた 場合には、ゼロヒット終了後に改めて電界位相の推定から開始する回復法も有効で ある。
[0102] 図 9は、本発明の適用領域の検証結果であり、光伝送シミュレーションを用いて、 1 OGビット Z秒の 2値強度変調信号の光強度の最小値と、時間 Td (本例では 50ps)と の間に生じる位相回転量を調べたものである。
(A)は、 α = 1の光信号を通常分散ファイバ 180km (波長分散量 3000psZnm) 伝送した場合であり、太線 (マークレベルの平均値を 1に正規ィ匕したもの)で示すよう に、光強度波形が略ゼロとなる点が生じていること、および、点線 (単位は πラジアン )で示すように、時間 Td間の位相回転量が ± 0. 5を超過し、本発明を適用できなくな つていることが半 Uる。
[0103] (B)は、 oc = 1の 2値強度変調光に印加する波長分散を変化させ、光信号の最小 強度 (太線)と、 Td間に生じる最大の位相回転量をプロットしたものである。本図では 、最小強度が〜ゼロ(実用上 0.05程度)となると、ゼロヒットが発生し、最大位相回転 量が 0. 5 (実用上は 0. 4程度)を超えると、位相回転量の算出ができなくなり、どちら の場合にも、本発明が適用不能となっている。すなわち、これらの現象が発生しない 波長分散量の範囲が、本発明の適用範囲となる。
[0104] 本図では、送信光信号の消光比をパラメータとしてあるが、消光比が 0. 1の場合、 適用範囲は波長分散がたかだか— 1000〜 + 500psZnmとなる。この範囲は、略 α = 1の 10Gビット Ζ秒 2値強度変調光の波長分散耐力と等しぐ本発明を適用する利 点はほとんど見られない。し力しながら、意図的に消光比を 0. 3に劣化させ、スぺー スレベルを持ち上げた場合は、ゼロヒットが生じに《なると共に、位相回転量が減少 し、適用可能な波長分散範囲が、— 1700〜4000psZnmと極めて大きくなることが わかる。このように、本発明では、送信光の消光比を劣化させることによって、適用範 囲を大きく拡大できる。
[0105] (C)は、 oc =0の無チヤープ 2値強度変調光に印加する波長分散を変化させた場 合の最小強度 (太線)と、最大位相回転量をプロットしたものである。本例で適用可能 な波長分散範囲は、消光比 0. 1の場合は ± 1100psZnm程度、消光比 0. 3の場合 で ± 6000psZnmより大となり、無チヤ一プ光を使うことによって、また、消光比を意 図的に劣化させることによって、適用範囲が更に大きく拡大することがわかる。
このように、ゼロヒットや位相回転量の検出制限は、送信側で無チヤープ強度変調 光を採用したり、消光比を劣化させたり、上述した例のように位相回転量を制限した 位相変調を採用することによって大きく緩和される。
実施例 3
[0106] 図 10 (A)は、本発明による光電界受信器 100と本光電界受信器を用いた光伝送 システムの第 3実施例を示す。本実施例では、光送信器 300として、 4値の光振幅' 位相変調器を用いている。例えば、 2組の 2値デジタル情報信号 302— 1、 302- 2 をそれぞれ光強度変調器 329と光位相変調器 309に入力し、強度と位相をそれぞれ 2値に変調して、 4値振幅 ·位相変調の送信光信号 305を生成している。
[0107] 図 10 (B)は、 4値振幅 ·位相変調光の位相点配置の一例を示す。本発明に適用す る場合、前述の実施例と同様に、位相点間の最大位相遷移 Θを一定値以下に制限 するのが望ましい。シンボル間に 2点の位相測定を行う場合、 Θの範囲は、理論上は πとなるが、現実的には、光ファイバ伝送による位相回転量の増大や雑音の影響を 考慮して、 π Ζ2程度に抑えるのが適切である。
[0108] 尚、図 10の(C)と(D)は、同様の効果を持つ他の位相点配置の例を示す。
(C)では、振幅が 3値になっているが、変調器側で 3値符号化器を用いれば生成可 能である。(D)は、位相点間隔が最大となっているため、受信感度の観点からは、最 も良好な 4値位相点配置である。この配置も適切な符号化器を用いることで簡易に生 成可能である。尚、このような任意の多値光信号の生成には、 2つの変調電極を持ち 、任意の位相点配置を生成できる直交型のマッハツエンダ光変調器が有効である。 また、本発明では、ここに示した例よりも更に多値数 (位相点の数)を増やしても構わ ない。
[0109] 本実施例は、遅延検波器の遅延量 Tdをシンボル時間 Tの 1Z4とした例であり、 A /D変翻106のサンプリング間隔も TZ4としている。この結果、従前の実施例に比 ベて、位相回転量の算出間隔 Tdが 1Z2となるため、より大きな位相回転量を検出で きるようになつている。再サンプリング回路 332— 1 (332— 2)は、サンプリング速度は 変えることなぐサンプリングタイミングのみを取り直す機能を持っており、これによつ て、クロック発信器 310が自由発振状態であっても、常に適切なサンプリングタイミン グを維持することができる。
[0110] 本実施例では、電界演算部 111から再生光電界の位相 321を抽出し、平均化回路 340で平均処理を行い、その平均値がゼロとなるように、自動制御回路 341で、光遅 延検波器 104の位相シフト量と可変高周波遅延回路 331— 1の遅延量を自動制御し ている。本発明では、送信光源や光増幅器に起因する雑音 (例えば、光位相の変動 )、もしくは dQ信号の直流オフセットや AM信号とのタイミングのずれ、光遅延検波器 104の位相シフト量の π Ζ2(もしくは π Ζ2)力 のずれなどが生じると、光電界演 算部 111で再生される光電界位相が時間的に変動する要因となってしまう。
[0111] これらを抑圧するためには、例えば、再生電界の位相の平均値を算出し、この値が 常にゼロないしは一定値となるように、自動制御すればよい。尚、補償方法は、本実 施例に限られず、例えば、再生光位相 320のゆっくりした変動分を単に電界演算回 路 111内部のハイパスフィルタで除去する手法や、 dQ信号の直流成分の減算器を 設けるなど、他の方法も採用できる。電気回路特性による波形の非対称性を取り除く ため、非線形適応フィルタ回路などを設けても構わな ヽ。
[0112] 尚、雑音などによる位相揺らぎは、完全に抑圧することは不可能である、本実施例 のような多値信号の判定において、位相揺らぎの影響を抑えるためには、前述した遅 延検波が有効である。また、本実施例の判定帰還等化回路 334では、過去の位相判 定結果に基づいて位相誤差成分を演算し、比較的ゆっくりした位相の誤差成分を除 去できる。その結果、求めた位相点と、図 11の(B)のような理想的な位相点配置のュ ークリツド距離を比較し、最も近 ヽ位相点を受信シンボルと判定すればょ ヽ。
[0113] 本発明のように、光電界情報を逐次算出する方式では、雑音や演算誤差の影響が 累積し、最悪の場合は、長時間にわたって誤り伝播を引き起こす可能性がある。この ような誤り伝播を防止する方法としては、例えば、振幅や位相への差動符号化などの 符号化の適用、送信側での定期的な既知参照符号の挿入などがある。また、受信位 相点の統計分布や、特定の位相点位置からの逐次判定帰還などの手法を適用して ちょい。
[0114] ここに示した実施例では、受信シンボルの判定に最小距離ルールを適用したが、 無線通信分野において多値信号用として使用されている公知の他のシンボル判定 法を適用してもよい。例えば、位相と振幅半径の何れかを優先的に判定したり、連続 する複数シンボルの電界状態を利用する MLSE、最尤判定 (ビタビ復号)、軟判定 F EC (前置誤り訂正)、トレリス符号ィ匕 Z復号ィ匕処理などの手法も適用可能である。ま た、単純な二乗距離の判定に代えて、例えば、雑音発生要因(光アンプの雑音や熱 雑音、クロストークなど)に応じた非ユークリッド的な距離を予め定義しておき、これを 判定基準に適用してもよい。尚、シンボル判定回路は、例えば、各シンボルに対応し た複数のマッチドフィルタを並列配置しておき、出力が最大となるフィルタを選択して 、入力シンボルを特定するアナログ型の構造でもよ 、。
実施例 4
[0115] 図 11の (A)は、本発明による光電界受信器 100と、この光電界受信器を用いた光 伝送システムの第 4実施例を示す。本実施例の光送信器 300では、 2値デジタル情 報信号 302を誤り訂正符号付カ卩回路 343に入力し、オーバーヘッド 7%の誤り訂正 符号を印力 tlしている。光送信器 300は、差動光位相変調型のものであり、差動符号 化回路 346を用いて符号ィ匕を行い、出力信号を 2個の光位相変調器 303— 1、 303 —2に入力することによって、図 11 (B)に示す 72度間隔の 5つの位相点を生成して いる。
[0116] 本実施例では、或るシンボルの位相状態力 + 72度変化したか— 72度変化した かによつて、 2値の差動位相変調を行う。本発明では、直前のサンプル点からの位相 変化にのみ制限があるため、このように位相回転量を制限した差動位相変調であれ ば問題なく受信できる。尚、位相点の数や間隔は、任意に変更可能である。光送信 器 300には、複数のシンボル間の移動を許可した多値差動光位相変調などを適用し ても構わない。
[0117] 本実施例は、光電界受信器 100の光遅延検波器 104の遅延量 Tdをシンボル間隔 Tと等しくした例である。この構成では、前述した波長分散の補償機能は失われるが 、簡易な構成で、様々な 2値 '多値変調の受信を行うことができる。また、光強度受信 器 151を備えているため、光ファイバ非線形効果による位相点のずれなどの補償が 実現可能である。
[0118] 本実施例のように、 FECなどを適用した場合には、例えば、符号ィ匕回路 343でシン ボルレートが実効的に増加してしまうことがある。この場合、シンボルレートが或る程 度の増加であれば、 AZDコンバータのサンプリングレートを固定したまま波形取得 を行っておき、再サンプリング回路 332— 1や判定帰還等化回路 334内部でのリタイ ミング処理にぉ 、て補正すれば問題な 、。
[0119] 例えば、元の情報信号のシンボル間隔 Tに対して、サンプリング間隔が TZ2とした 場合、符号ィ匕回路 343で 7%のシンボルレート増加が生じると、ナイキスト定理を満た さないように見える力 必ずしもそうではない。これは、通常の光変調では、信号の占 める周波数帯域はシンボルレートの逆数(1ZT)よりは小であり、通常 2ZTから 1Z Τの範囲であるため、多少のシンボルレート増に対しては余裕があるためである。また 、遅延検波器の遅延量 Tdも、厳密にサンプリング間隔 Tsaの整数倍になっておらず 、多少ずれていても問題はない。 10〜20%程度のずれであれば、波形相関が十分 にあるからである。
[0120] また、本実施例では、 AZD変換器 106— 1 (106— 2)の直後に、フィードフォヮ一 ド等ィ匕 (FFE)回路 352— 1 (352— 2)を配置し、デジタルフィルタによって電気信号 波形の等化処理を行っている。すなわち、バランス型光受信器 105や光強度受信器 151などの高速光受信器と、遅延回路などの電気配線や部品は、個々に周波数特 性を持っており、伝達特性が必ずしもフラットであるとは限らない。そこで、適応フィル タである FFE回路や DFE回路を挿入し、後段の判定帰還回路から得られるアイ開口 が最大となるように適応補償することによって、符号間干渉や周波数特性の誤差を除 去し、常に最良の波形が得られるようにすることができる。
[0121] 尚、伝達特性の適応補償には、判定後の信号との最小二乗偏差を利用してもよい し、予め測定したインパルスレスポンス力も得た補正情報などを固定的に設定しても 構わない。この際、本実施例のように、 AZD変 のサンプリング速度を 2倍以上と すること〖こよって、デジタル信号がナイキスト定理を満たすようになり、 FFE回路 352 で良好な等化特性が得られるようになる。
[0122] 本実施例では、一方の再サンプリング回路 332—1では、 1Z2倍の再サンプリング を行い、他方の再サンプリング回路 332— 2では、 1倍の再サンプリングを行っている 。これは、位相成分については、再生間隔 Td (本実施例では、 Td=T)に制限される 力 振幅成分については制限が存在しないからである。この後、例えば、電界再生部 111内部で再生後の位相成分に 2倍のオーバーサンプリングを行って、両者のサン プリングレートを合致させてもよい。この場合、振幅成分の情報欠落が少なくなるとい ぅ禾 IJ点がある。
[0123] 本実施例では、判定帰還等化回路 334から得られたデジタル情報信号を誤り訂正 回路 344に入力し、予めヘッダ部に書き込んだ FEC情報に基づいて誤り訂正処理を 行うことによって、伝送特性の改善を図っている。
実施例 5
[0124] 図 12は、本発明による光電界受信器 100と、本光電界受信器を用いた光伝送シス テムの第 5実施例を示す。本実施例では、光送信器 300が、 2組の 2値デジタル情報 信号 302—1、 302— 2をそれぞれ 2糸且の光位ネ目変調器 303— 1、 303— 2に印カロす ることによって、 4値位相変調の送信光信号 305を生成している。
[0125] 本実施例の光電界受信器 100では、入力光信号を 2つの光信号経路に分岐する 代わりに、光遅延検波器 104に接続された 2個の光強度受信器 151— 1、 151— 2を 用いて、本発明の目的機能を達成して!/、る。光強度受信器 151— 1 (151— 2)から 出力される電気信号は、 AZD変換器 106— 1 (106— 2)でサンプリングされ、デジタ ル情報に変換した後、第 4実施例と同様に、フィードフォワード等化 (FFE)回路 352 - 1 (352- 2)で波形等化して、電界再生部 111に入力される。 [0126] 電界再生部 111では、減算回路 354で、 FFE回路 352—1、 352— 2の出力信号 の差分を取ることによって、バランス型受信の出力信号と等価な信号 (r(n)r(n— l)sin ( Δ φ ) )を生成している。また、加算回路 353では、上記 2つの信号を加算することに よって、振幅積 r(n)r(n— 1)を得ている。従って、除算器 313によって、除算器 354の 出力信号を上記振幅積で除算すると、 y信号 sin( Δ φ )が得られ、以下、第 1実施例 と同様の処理で、光電界の位相成分を再生できる。
[0127] 一方、振幅成分!: (n)r(n— 1)を電界振幅判定回路 355に入力し、電界振幅判定回 路 355の内部で、入力信号を前回判定した振幅値 r(n— 1)で逐次除算することによ つて、 r(n)を得ることができる。この演算では、 r(n)の初期値が必要となる力 初期値 は、例えば、光信号のヘッダ部に既知の特定パターンを使ったり、学習による推定な どによって特定できる。このような逐次除算は、計算誤差が累積し易いため、振幅値 が大きな誤差を持たないように、例えば、判定帰還を用いて、振幅が常に適切な値に なるようにフィードバック補償することが望ま 、。
[0128] 本実施例の構成は、非特許文献 4の構成と一見に類似したものとなっているが、本 発明が位相検出を基本としているのに対して、非特許文献 4では周波数検出を基本 としており、電界再生の原理や、その動作、特性、パラメータの範囲が大きく異なって いる。
[0129] 例えば、図 12の構成では、受信した光信号の振幅情報を推定するために、振幅推 定回路 355などの回路が必要となっている。また、同じシンボルレート(例えば、 10G シンボル Z秒)の信号を受信する場合でも、必要となる光干渉計 (光遅延回路)の遅 延量 Td力 非特許文献 4では 5psとなっているのに対して、本発明では、 50psと凡そ 10倍の値となっている。既に説明したように、必要となるサンプリング周期にも明らか な差異がある。
[0130] 本実施例と非特許文献 4では、性能の面でも大きく異なっており、本実施例では、 位相を逐次比較するために、位相回転量の検出精度が高ぐ 4値位相変調などへの 適用が可能になっている。一方で、本実施例では、時間 Tdの位相回転量力 士 π Ζ2に制限されており、非特許文献 4には現れない制約を受けている。この結果、本 実施例の光電界受信器 100は、送信側での位相回転量を制限した位相変調と組み 合わせるなど、特有の制限が生じている。
実施例 6
[0131] 図 13は、本発明の光電界受信器を適用した波長多重光伝送系の 1実施例を示す 波長多重伝送装置 220Aは、波長合波器 223Aに結合された光送信器 226— 1A 〜226— 3Aと、波長分波器 224Aに結合された本発明の光電界受信器 200— 1A 〜200— 3Aとを含む。また、波長多重伝送装置 220Bは、波長合波器 223Bに結合 された光送信器 226— 1B〜226— 3Bと、波長分波器 224Bに結合された本発明の 光電界受信器 200— 1B〜200— 3Bとを含む。
[0132] 波長多重伝送装置 220A、 220Bは、上り光伝送路と下り光伝送路によって接続さ れて ヽる。上り光伝送路は、光ファイノ 206— 1〜206— 3と、光増幅器 225— 1、 22 5— 2力らなり、下り光伝送路は、光ファイノ 206— 4〜206— 6と、光増幅器 225— 3 、 225— 4と力らなっている。
[0133] 波長多重伝送装置 220Aの光送信器 226— 1 A〜226— 3Aは、それぞれ異なる 波長 λ 1〜え 3で光信号を送信する。これらの光信号は、波長合波器 223Αで合波 した後、上り光伝送路に出力され、対向する光伝送装置 220Βの波長分波器 224Β で波長毎に分離して、光電界受信器 200— 1Β〜200— 3Βに入力される。一方、波 長多重伝送装置 220Βの光送信器 226 - 1Β〜226 - 3Βも、それぞれ異なる波長 λ 1〜え 3で光信号を送信する。これらの光信号は、波長合波器 223Βで合波した後、 下り光伝送路に出力され、光伝送装置 220Αの波長分波器 224Αで波長毎に分離し て、光電界受信器 200— 1Α〜200— 3Αに入力される。尚、上り光伝送路と下り光伝 送路では、多重化される光波長が異なって 、てもよ 、。
[0134] 波長多重伝送装置 220Α(220Β)は、端局制御部 221Α(221Β)と、データベース 222Α(222Β)を備えて!/ヽる。光送信器 226 - 1 Α〜226 - 3Α(226 - 1Β〜226 - 3Β)および光電界受信器 200— 1Α〜200— 3Α(200— 1Β〜200— 3Β)には、外 部から送信データが入力され、また受信データが外部に出力されるがが、図面では 省略してある。データベース 222Α(222Β)には、受信波長 λ 1〜え 3と対応して、光 伝送路を形成する各光ファイバの波長分散量を示すデータテーブルが記憶されてい る。
[0135] 図 14は、局制御部 221 A (221B)で実行される補償量設定ルーチンのフローチヤ ートを示す。このルーチンは、波長多重伝送装置の起動 Zリセット時、または送受信 器 226 (226— 1A〜226— 3A)、 200 (200— 1A〜200— 3A)力ジセッ卜された時に 実行される。
[0136] 端局制御部 221Aは、データベース 222Aから波長分散量データテーブルを読み 出し、波長チャネルを特定するためのパラメータ iを初期値「1」に設定する (ステップ 6 01)。端局制御部 221Aは、パラメータ iの値をチェックし (ステップ 602)、パラメータ i 力 光ファイバ伝送路に多重化されるチャネル数 N (図 21では N = 3)を超えた場合、 このルーチンを終了する。
[0137] ノ メータ iが N以下の場合、端局制御部 221Aは、波長分散量データテーブルが 示す第 iチャネルの波長 λ iと対応する各光ファイバの波長分散量から、受信光伝送 路 (端局制御部 221— 1の場合は下り光伝送路)に沿った全光ファイバの総波長分 散量 Diを算出する (ステップ 603)。この後、第 iチャネル (波長え i)の光電界受信器 2 00 - 1Aの端子 207に補償量「― Di」を設定し、光電界受信器 200 - 1Aを起動する。 端局制御部 221Aは、ノ メータ iの値をインクリメント (i=i+ l)して、パラメータ 、 多重化チャネル数 Nを超えるまで、ステップ 602〜604を繰り返す。
[0138] 本実施例によれば、光電界受信器 200— 1A〜200— 3Aは、起動時から波長分 散補償量を高精度で推定できるため、適応制御が不要となる。仮に、適応制御を使 用した場合であっても、短時間で最適な制御状態に遷移でき、誤動作を防止するこ とが可能となる。
実施例 7
[0139] 図 15は、本発明の光電界受信器を適用した複数の光アツドドロップ装置 (ADM) 2 30— 1〜230— 4からなる光ネットワーク構成の 1実施例を示す。光アツドドロップ装 置 230— 1〜230— 4は、光ファイバ伝送路 206— 1〜206—4でリング状に接続され ている。
[0140] 光アツドドロップ装置や光クロスコネクトを用いた光ネットワークでは、光信号経路が 動的に変更される可能性がある。本実施例では、光信号経路の変更時に、光アツドド ロップ装置 230— 1に接続された制御コンソール 231によって、経路変更の影響を受 ける光受信器 200における分散補償量を適正化する。 222は、ネットワークを構成し て 、る全光ファイバにつ 、て、波長毎の波長分散値を記録したデータベース 222で ある。光信号経路が変更された時、制御コンソール 231は、データベース 222をァク セスし、新たな光信号経路と使用波長に応じた総波長分散値を算出し、これをネット ワーク経由で、新経路の終端となる光アツドドロップ装置(230— 2〜230— 4)に接続 された光受信器 200 (200—1〜200— 3)に分散補償量として配信する。
[0141] 例えば、図 15において、光送信器 200— 3から出力される波長え 3の光信号は、光 アツドドロップ装置 230— 4に入力され、光経路 232— 3に沿った 3つの光ファイバ伝 送路 206— 1、 206— 2、 206— 3を経由して、光アツドドロップ装置 230— 3に接続さ れた光電界受信器 200— 3に到達して ヽる。光経路 232— 3が新たな経路の場合、 制御コンソール 231は、データベース 222から、波長え 3と対応する光ファイバ伝送 路 206— 1、 206— 2、 206— 3の波長分散量を読み出し、その合計値から決まる補 償量の設定信号を破線で示す通信経路 233— 3で光電界受信器 200— 3に通知す る。補償量設定信号は、補償量設定端子 207— 3に入力され、これによつて、て光電 界受信器 200— 3の電界補償回路 202に最適な分散補償値が設定される。
[0142] 本実施例によれば、光ネットワーク上での光経路が切り替わった場合でも、制御コ ンソールから、光経路の終端となる光電界受信器 200— 3に適切な補償量を即座に 設定できるため、通信の中断時間を大幅に削減することが可能となる。尚、制御コン ノールから設定した分散補償値の精度が不十分な場合、この値を初期値として、適 応制御によって最適化すればよい。
産業上の利用可能性
[0143] 本発明は、光通信分野における強度変調信号や 2値位相変調信号の受信と伝送 劣化の補償、多値変調信号の受信と伝送劣化の補償に適用できる。
図面の簡単な説明
[0144] [図 1]光伝送に適用可能な変調方式の説明図。
[図 2]従来のコヒーレント光電界受信器の 1例を示す構成図 (A)と、位相変動の影響 を示す図 (B)。 [図 3]8値振幅位相変調 (APSK)信号の位相点配置 (A)と、従来の 8APSK信号受 信用の光多値信号受信器の構成図 (B)。
圆 4]本発明による光伝送システムの第 1実施例を示す構成 (A)と位相変調光の位 相点配置 (B)と、位相変調光の位相波形 (C)を示す図。
圆 5]第 1実施例における電気受信信号 (A)と再生電界信号 (B)の変化を示す図。
[図 6]第 1実施例の実験結果であり、受信電気波形 (A)、受信波形を電気領域で再 生'補償した等価的な光電界波形、(C)再生後の強度波形、(D)再生後の光電界波 形、(E)再生後の遅延検波波形、(F)分散補償後の強度波形、(G)分散補償後の 光電界波形、分散補償後の遅延検波波形を示す。
圆 7]本発明による光伝送システムの第 2実施例を示す構成図 (A)と送信光の位相 点配置 (B)と、伝送光の位相点配置 (C)を示す図。
圆 8]第 2実施例における送信光強度波形 (A)と受信波形 (B)、およびサンプリング の様子を示す説明図。
圆 9]本発明の適用領域の検証結果を示す図であり、光強度変調光(α = 1)のファ ィバ伝送後の波形と位相回転量 (Α)、 α = 1の場合の伝送後の最小光強度と最大 位相回転量 (B)、 a =0の場合の伝送後の最小光強度と最大位相回転量 (C)を示 す説明図。
圆 10]本発明による光電界受信器を用いた光伝送システムの第 3実施例を示す構成 図 (A)と、本実施例で用いる 4値送信光信号の位相点配置図 (B)、 (C)、 (D)。 圆 11]本発明による光電界受信器を用いた光伝送システムの第 4実施例を示す構成 図 (A)と、本実施例で用いる 3値送信光信号の位相点配置図 (B)。
圆 12]本発明による光電界受信器を用いた光伝送システムの第 5実施例を示す構成 図。
[図 13]本発明の光電界受信器を適用した波長多重光伝送系の 1実施例を示す構成 図。
[図 14]図 13にお 、て局制御部が実行する補償量設定ルーチンのフローチャート。
[図 15]本発明による光電界受信器を用いた複数 ADM力もなる光ネットワーク 1実施 例を示す構成図。 符号の説明
100:光電界受信器、 101:入力光信号、 102:光分岐回路、
103:光信号経路、 104:光遅延検波器、 105:バランス型光受信器、 106:AZD変換器、 107:サンプリングクロック、
108:遅延調整回路、 111:電界演算部、 112:平方演算回路、
123:光多値信号、 124:光 APSK信号、
130:局部発振レーザ光源、 131:偏波分離回路、 132:局発光、 133:光多値信号の P偏波成分、 134:光多値信号の S偏波成分、 135:コヒーレント光電界受信器、 136:位相ダイバーシティ回路、 137:1成分出力光、 138:Q成分出力光、
140:AZD変換器の出力信号、 141:デジタル演算回路、
142:演算回路の出力信号、
143:シンボル判定回路、 144:再生多値デジタル信号、
150:光分岐回路、 151:光強度受信器、 152:2値判定回路、
153: 2値再生デジタル信号、
300:本発明の光送信器、 301:レーザ光源、
302: 2値デジタル情報信号、 303:光位相変調器、
304:光ファイバ伝送路、 305:送信光信号、
310:クロック発振器、 311:dQ信号、 312: AM信号、
313:除算器、 314:遅延回路、 315:y信号、
316:逆正弦演算回路、 317:位相差信号(Δ φ)、 318:遅延加算回路、
320:再生光電界の振幅、 321:再生光電界の位相、
322:直交変換回路、 323:受信電界信号 (直交座標表現)、
324:補償演算回路、 325:補償後の電界信号、
326:検波 ·識別再生回路、 327:デジタル情報信号、
328:補償量最適化回路、 329:光強度変調器、
330:可変光遅延回路、 331:可変高周波遅延回路、
332:再サンプリング回路、 333:再生光電界 (極座標表示)、 334:判定帰還等化回路、
340:平均化回路、 341:自動制御回路、 342:制御信号、
343:誤り訂正符号付カ卩回路、 344:誤り訂正回路、
345:誤り訂正後のデジタル情報信号、 346:差動符号化回路、
350:アイ開口量、 351:最小二乗制御回路、
352:フィードフォワード等化(FFE)回路、
353:加算回路、 354:減算回路、 355:電界振幅判定回路、
200:光電界受信器、 206:光ファイバ伝送路、 207:補償量入力端子、
220:光波長多重伝送装置、
221:端局制御部、 222:データベース、 223:波長合波器、
224:波長分波器、 225:光増幅器、 226:本発明の光送信器、 230:光アツドドロップ装置、 231:制御コンソール、
232:光信号の経路、 233:補償量設定信号の通信経路、

Claims

請求の範囲
[1] シンボル速度 Rの情報信号で変調された光信号を受信する光電界受信器であって 受信した光信号を第 1、第 2の光信号に分岐する光分岐器と、
上記第 1の光信号を遅延時間 Tdで遅延検波し、かつ上記第 1の光信号の位相を
+ 90度または 90度シフトする光遅延検波器と、
上記遅延検波器力 出力された上記第 1の光信号を受信して、第 1の電気信号に 変換する第 1の光受信器と、
上記第 2の光信号を受信して、第 2の電気信号に変換する第 2の光受信器と、 上記第 1及び第 2の電気信号から、上記受信した光信号の光電界の振幅及び位相
、または同相成分及び直交成分を算出する演算回路を有し、
上記光遅延検波器の遅延時間 Tdが、 Td≥ 1/ (5R)であり、
上記光分岐器力 演算回路までの上記第 1及び第 2の光信号の伝搬時間差が、上 記遅延時間 Td以下であることを特徴とする光電界受信器。
[2] 前記第 1の光受信器が、バランス型光受信器であることを特徴とする請求項 1に記 載の光電界受信器。
[3] 前記演算回路が、前記第 1の光受信器力 出力される第 1の光信号の振幅 dQ(t)を 、前記第 2の光受信器力 出力される第 2の光信号の振幅 AM(t)と、これより時間 Tだ け過去の第 2の光信号 AM(t-T)と力も得られる量(sqrt(AM(t)) · sqrt(AM(t-T))で除 算することによって正規化した後、逆正弦演算することによって、前記受信光信号の 位相を算出することを特徴とする請求項 1に記載の光電界受信器。
[4] シンボル速度 Rの情報信号で変調された光信号を受信する光電界受信器であって 受信した光信号を第 1、第 2の光信号に分岐する光分岐器と、
上記第 1の光信号を遅延時間 Tdで遅延検波し、上記第 1の光信号の位相を + 90 度または 90度シフトする光遅延検波器と、
上記遅延検波器力 出力された上記第 1の光信号を受信して、第 1の電気信号に 変換する第 1の光受信器と、 上記第 2の光信号を受信して、第 2の電気信号に変換する第 2の光受信器と、 上記第 1、第 2の電気信号の差成分及び和成分から、上記受信光信号の光電界の 振幅及び位相、または同相成分及び直交成分を算出する演算回路とを有し、 上記光遅延検波器の遅延時間 Tdが、 Td≥ 1/ (5R)であり、
上記光分岐器から演算回路までの上記第 1、第 2の光信号の伝搬時間差が、上記 遅延時間 Td以下であることを特徴とする光電界受信器。
[5] 前記第 1、第 2の受信器で受信した第 1、第 2の光信号をデジタル信号に変換する
AZD変 を備え、
上記 AZD変換器のサンプリング時間 Tsaが、 2Td以下であり、
前記演算回路が、デジタル演算回路、 IC回路、またはプログラムのうちの何れかに よって構成されていることを特徴とする請求項 1または請求項 4に記載の光電界受信
[6] 前記演算回路で算出した光信号の光電界の振幅及び位相、または同相成分及び 直交成分の情報信号に対して、前記光信号の伝送路の伝搬特性の逆演算を行う光 電界補償回路と、
上記光電界補償回路の補償量が一定、または上記光信号の受信状態が最適とな るように、該補償量を自動制御するための手段とを備えたことを特徴とする請求項 1ま たは請求項 4に記載の光電界受信器。
[7] 前記演算回路で算出した光信号の光電界の振幅及び位相、または同相成分及び 直交成分の情報信号に対して、前記光信号の伝送路の伝搬特性の逆演算を行う光 電界補償回路と、
上記光電界補償回路の補償量、補償アルゴリズム、または初期設定値を外部から 設定するための手段を備えたことを特徴とする請求項 1または請求項 4に記載の光電 界受 1目器。
[8] 前記光電界補償回路が、前記光信号の伝送路の伝搬特性のうち、波長分散特徴 、高次の波長分散特性、光ファイバ非線形効果、または該伝送路の波長帯域制限の うち少なくとも一つを補償することを特徴とする請求項 6または請求項 7に記載の光電 界受 1目器。
[9] 前記バランス型光受信器での作動出力信号もしくは 2つの出力信号の差成分の時 間平均値がゼロ、前記算出された光電界の振幅と位相、もしくは同相成分と直交成 分から再生された電界信号の波形が上下対称、または該再生された電界信号の位 相成分の時間変動が最小となるように、前記光遅延検波器の位相量、上記第 1、第 2 の光信号のうち少なくとも一方の伝送路の長さ、上記第 1、第 2の電気信号のうちの 少なくとも一方の位相、または該電気信号のオフセット量、利得、線形'非線形適応 補償回路の係数を安定ィヒ制御するための手段を備えたことを特徴とする請求項 2ま たは請求項 4に記載の光電界受信器。
[10] 請求項 1または請求項 4に記載の光電界受信器と、前記シンボル速度 Rの情報信 号で変調された光信号を送出する光送信器とを備え、
上記光信号の変調時の消光比が 0. 15より大きぐ
上記光信号の上記時間 Td内での位相回転量が 90度以下であることを特徴とする 光伝送装置。
[11] 前記光信号の変調方式が、 2値の光強度変調、 2値の位相変調、または多値の振 幅及び位相変調のうちいずれか一つであることを特徴とする請求項 10に記載の光伝 送装置。
PCT/JP2006/319021 2006-09-26 2006-09-26 Optical electric field receiver and optical transmission system WO2008038337A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2006/319021 WO2008038337A1 (en) 2006-09-26 2006-09-26 Optical electric field receiver and optical transmission system
JP2008536218A JP4755690B2 (ja) 2006-09-26 2006-09-26 光電界受信器および光伝送システム
CN2006800556514A CN101507149B (zh) 2006-09-26 2006-09-26 光场接收器以及光传输系统
EP06810546.9A EP2071747B1 (en) 2006-09-26 2006-09-26 Optical electric field receiver and optical transmission system
US12/439,705 US8184992B2 (en) 2006-09-26 2006-09-26 Optical field receiver and optical transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/319021 WO2008038337A1 (en) 2006-09-26 2006-09-26 Optical electric field receiver and optical transmission system

Publications (1)

Publication Number Publication Date
WO2008038337A1 true WO2008038337A1 (en) 2008-04-03

Family

ID=39229785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319021 WO2008038337A1 (en) 2006-09-26 2006-09-26 Optical electric field receiver and optical transmission system

Country Status (5)

Country Link
US (1) US8184992B2 (ja)
EP (1) EP2071747B1 (ja)
JP (1) JP4755690B2 (ja)
CN (1) CN101507149B (ja)
WO (1) WO2008038337A1 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008271524A (ja) * 2007-03-29 2008-11-06 Fujitsu Ltd 光dqpsk受信器及び、異常検出制御方法
US7602322B2 (en) 2007-02-16 2009-10-13 Fujitsu Limited Analog-to-digital conversion controller, optical receiving device, optical receiving method, and waveform-distortion compensating device
JP2009296597A (ja) * 2008-06-06 2009-12-17 Fujitsu Ltd 適応的等化器及びその方法
JP2010004245A (ja) * 2008-06-19 2010-01-07 Fujitsu Ltd 光受信装置およびデジタル受信回路
JP2010028795A (ja) * 2008-06-18 2010-02-04 Hitachi Communication Technologies Ltd バランス補償型光バランスド受信器及び光iq受信器
JP2010130322A (ja) * 2008-11-27 2010-06-10 Fujitsu Ltd 通信システム
US20100150577A1 (en) * 2008-12-16 2010-06-17 Essiambre Rene-Jean Communication System and Method With Signal Constellation
WO2010082344A1 (ja) * 2009-01-16 2010-07-22 三菱電機株式会社 光変復調システム、光伝送システムおよび光変復調方法
WO2010082339A1 (ja) * 2009-01-16 2010-07-22 三菱電機株式会社 光伝送システム、送信装置および受信装置
WO2011083575A1 (ja) * 2010-01-07 2011-07-14 株式会社日立製作所 光伝送システム
JP2011160028A (ja) * 2010-01-29 2011-08-18 Sumitomo Osaka Cement Co Ltd 光受信器
JP2011527026A (ja) * 2008-06-30 2011-10-20 アルカテル−ルーセント ユーエスエー インコーポレーテッド 高次変調のための光変調器
WO2012004890A1 (ja) * 2010-07-09 2012-01-12 株式会社日立製作所 光受信器及び光伝送システム
JP2012510762A (ja) * 2008-12-03 2012-05-10 シエナ ルクセンブルグ エス.アー.エール.エル 光通信システムにおけるサイクルスリップの影響を修正する方法、及びコヒーレント受信機
JP2014068072A (ja) * 2012-09-24 2014-04-17 Oki Electric Ind Co Ltd 光信号品質評価装置及び光信号品質評価方法
WO2014132305A1 (ja) 2013-02-26 2014-09-04 日本電気株式会社 波長分割多重光送信装置及び波長分割多重光送信方法
JP2016513421A (ja) * 2013-02-25 2016-05-12 アルカテル−ルーセント コヒーレント検波を用いるm−pam光学システムのためのレベルスペーシング
WO2016125485A1 (ja) * 2015-02-03 2016-08-11 日本電気株式会社 信号処理装置及び信号処理方法
CN112400284A (zh) * 2018-06-29 2021-02-23 思科技术公司 硅光子学中的消光比改进
CN115225246A (zh) * 2022-07-11 2022-10-21 北京邮电大学 相位调制双向时间同步装置、方法和系统

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9312964B2 (en) * 2006-09-22 2016-04-12 Alcatel Lucent Reconstruction and restoration of an optical signal field
WO2009088089A1 (ja) * 2008-01-10 2009-07-16 Nippon Telegraph And Telephone Corporation 光遅延干渉回路
EP2109272B1 (en) * 2008-04-10 2018-10-31 Xieon Networks S.à r.l. Method and device for phase recovery and communication system comprising such device
JP5059949B2 (ja) * 2008-11-28 2012-10-31 株式会社日立製作所 光電界送信器及び光伝送システム
EP2230782A1 (en) 2009-03-19 2010-09-22 Alcatel Lucent Monitoring of non-linear distortions in a fiber-optic transmission system
KR101382619B1 (ko) * 2009-07-24 2014-04-07 한국전자통신연구원 광 송신 장치 및 방법과 광 수신 장치 및 방법
US8295712B2 (en) * 2009-09-14 2012-10-23 Alcatel Lucent Optical device and method for optical frequency modulation to optical amplitude modulation conversion
KR20110103345A (ko) * 2010-03-12 2011-09-20 한국전자통신연구원 편광 특성 조절 장치 및 이를 포함한 극초단 초고출력 펄스 레이저 발생기
US8831439B2 (en) * 2010-10-05 2014-09-09 Infinera Corporation Upsampling optical transmitter
CN102142902B (zh) * 2010-11-19 2013-12-18 华为技术有限公司 一种实现直接检测和相干检测的方法和装置
US8625997B2 (en) * 2010-12-30 2014-01-07 Infinera Corporation Method and apparatus for local optimization of an optical transmitter
JP5736837B2 (ja) * 2011-02-23 2015-06-17 富士通株式会社 光受信装置
WO2012117951A1 (ja) * 2011-03-01 2012-09-07 日本電気株式会社 光受信器および光受信方法
ES2442778T3 (es) * 2011-08-01 2014-02-13 Huawei Technologies Co. Ltd. Dispositivo receptor coherente y método de compensación de la dispersión cromática
WO2012103832A2 (zh) 2012-03-21 2012-08-09 华为技术有限公司 信号处理方法、光接收机以及光网络系统
US9176279B2 (en) * 2012-04-25 2015-11-03 Hewlett-Packard Development Company, L.P. Analyzing light by mode interference
CN104429002B (zh) * 2012-05-16 2017-09-19 瑞典爱立信有限公司 确定光通信网络中的光通信路径的特性
CN103199940B (zh) * 2012-12-04 2016-06-01 华中科技大学 一种实现光的soqpsk调制的方法及系统
JP6024531B2 (ja) 2013-03-12 2016-11-16 富士通株式会社 周波数誤差推定装置及び方法、周波数誤差補償装置、並びに、光受信機
US8822959B1 (en) * 2013-08-28 2014-09-02 Sandia Corporation Method and apparatus for optical phase error correction
JP6135415B2 (ja) * 2013-09-11 2017-05-31 富士通株式会社 非線形歪み補償装置及び方法並びに光受信器
JP6176012B2 (ja) 2013-09-11 2017-08-09 富士通株式会社 非線形歪み補償装置及び方法並びに通信装置
US9692543B2 (en) * 2013-10-09 2017-06-27 Nippon Telegraph And Telephone Corporation Optical transmission system
CN104065419A (zh) * 2014-05-22 2014-09-24 北京邮电大学 基于载波带处理的微波光子系统交调失真抑制方法及系统
JP2016025497A (ja) * 2014-07-22 2016-02-08 日本電気株式会社 光受信器および光受信方法
CN105610517B (zh) * 2014-11-14 2018-05-08 中兴通讯股份有限公司 相干光接收机的迭代后均衡
CN104467969B (zh) * 2014-12-10 2017-03-22 北京理工大学 分数阶傅里叶变换测量光纤链路色散的方法
CN104932112B (zh) * 2015-06-26 2017-10-20 中国科学院上海光学精密机械研究所 一种实时光场重构结构和重构方法
CN104967480B (zh) * 2015-07-15 2016-12-07 北京理工大学 采用分数阶傅里叶变换监测光纤链路非线性效应的方法
WO2017144187A1 (en) * 2016-02-26 2017-08-31 Telefonaktiebolaget Lm Ericsson (Publ) Chromatic dispersion compensation
EP3217575A1 (en) * 2016-03-08 2017-09-13 Xieon Networks S.à r.l. Adaptive constellation diagram reducing the impact of phase distortions
JP6862751B2 (ja) * 2016-10-14 2021-04-21 富士通株式会社 距離測定装置、距離測定方法及びプログラム
WO2018084106A1 (ja) * 2016-11-02 2018-05-11 日本電気株式会社 デジタルコヒーレント受信器およびそのスキュー調整方法
JP2019009647A (ja) * 2017-06-26 2019-01-17 富士通株式会社 送信装置、受信装置及び推定方法
US10725156B2 (en) * 2017-09-07 2020-07-28 Raytheon Company LADAR system supporting doublet waveform for sequential in-phase (I) and quadrature (Q) processing
CN108155950B (zh) * 2017-12-27 2019-09-13 福州大学 一种增益自适应的高速型零差检测系统
US10601520B2 (en) 2018-02-07 2020-03-24 Infinera Corporation Clock recovery for digital subcarriers for optical networks
US11368228B2 (en) 2018-04-13 2022-06-21 Infinera Corporation Apparatuses and methods for digital subcarrier parameter modifications for optical communication networks
US11095389B2 (en) 2018-07-12 2021-08-17 Infiriera Corporation Subcarrier based data center network architecture
US11075694B2 (en) 2019-03-04 2021-07-27 Infinera Corporation Frequency division multiple access optical subcarriers
US11258528B2 (en) 2019-09-22 2022-02-22 Infinera Corporation Frequency division multiple access optical subcarriers
US11336369B2 (en) 2019-03-22 2022-05-17 Infinera Corporation Framework for handling signal integrity using ASE in optical networks
US11032020B2 (en) 2019-04-19 2021-06-08 Infiriera Corporation Synchronization for subcarrier communication
US11418263B2 (en) * 2019-04-22 2022-08-16 Cable Television Laboratories, Inc. Systems and methods for optical full-field transmission using photonic integration
US11838105B2 (en) 2019-05-07 2023-12-05 Infinera Corporation Bidirectional optical communications
US11476966B2 (en) 2019-05-14 2022-10-18 Infinera Corporation Out-of-band communication channel for subcarrier-based optical communication systems
US11190291B2 (en) 2019-05-14 2021-11-30 Infinera Corporation Out-of-band communication channel for subcarrier-based optical communication systems
US11095374B2 (en) 2019-05-14 2021-08-17 Infinera Corporation Out-of-band communication channel for sub-carrier-based optical communication systems
US11239935B2 (en) 2019-05-14 2022-02-01 Infinera Corporation Out-of-band communication channel for subcarrier-based optical communication systems
US11296812B2 (en) 2019-05-14 2022-04-05 Infinera Corporation Out-of-band communication channel for subcarrier-based optical communication systems
US11489613B2 (en) 2019-05-14 2022-11-01 Infinera Corporation Out-of-band communication channel for subcarrier-based optical communication systems
US11483257B2 (en) 2019-09-05 2022-10-25 Infinera Corporation Dynamically switching queueing schemes for network switches
EP4042607A1 (en) 2019-10-10 2022-08-17 Infinera Corporation Network switches systems for optical communications networks
US11356180B2 (en) 2019-10-10 2022-06-07 Infinera Corporation Hub-leaf laser synchronization
CA3157060A1 (en) 2019-10-10 2021-04-15 Infinera Corporation Optical subcarrier dual-path protection and restoration for optical communications networks
US11121769B2 (en) 2019-11-18 2021-09-14 Ciena Corporation Fast estimation of chromatic dispersion
US10819432B1 (en) * 2019-11-18 2020-10-27 Ciena Corporation Fast estimation of chromatic dispersion
US11374655B1 (en) * 2021-06-10 2022-06-28 Cisco Technology, Inc. Configurable link extender in small form factor
CN113346959B (zh) * 2021-06-28 2022-04-26 烽火通信科技股份有限公司 对合成单边带信号光强度信息的色散补偿方法与系统
US11652547B2 (en) * 2021-09-24 2023-05-16 Huawei Technologies Co., Ltd. Method and systems to identify types of fibers in an optical network

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0371729A (ja) * 1989-08-11 1991-03-27 Fujitsu Ltd コヒーレント光通信用受信装置
JP2001251250A (ja) * 2000-03-06 2001-09-14 Nippon Telegr & Teleph Corp <Ntt> 光伝送装置および光伝送システム
WO2005088876A1 (ja) * 2004-03-17 2005-09-22 Nippon Telegraph And Telephone Corporation 光伝送システム、光伝送システムの光送信装置及び光受信装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5115332A (en) * 1989-07-20 1992-05-19 Fujitsu Limited Receiver for coherent optical communication
WO2003028267A1 (en) * 2001-09-26 2003-04-03 Celight, Inc. Mitigating nonlinear transmission impairments in fiber-optic communications systems
US7460793B2 (en) * 2002-12-11 2008-12-02 Michael George Taylor Coherent optical detection and signal processing method and system
US7315575B2 (en) * 2004-03-08 2008-01-01 Nortel Networks Limited Equalization strategy for dual-polarization optical transport system
CN100399727C (zh) * 2004-08-27 2008-07-02 电子科技大学 一种光突发模式接收机
JP4170298B2 (ja) * 2005-01-31 2008-10-22 富士通株式会社 差分4位相偏移変調方式に対応した光受信器および光受信方法
JP4516907B2 (ja) * 2005-08-26 2010-08-04 富士通株式会社 光受信装置およびその制御方法
JP4768421B2 (ja) * 2005-12-06 2011-09-07 富士通株式会社 Dqpsk光受信器
WO2007132503A1 (ja) 2006-05-11 2007-11-22 Hitachi Communication Technologies, Ltd. 光電界受信器、光多値信号受信器および光伝送システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0371729A (ja) * 1989-08-11 1991-03-27 Fujitsu Ltd コヒーレント光通信用受信装置
JP2001251250A (ja) * 2000-03-06 2001-09-14 Nippon Telegr & Teleph Corp <Ntt> 光伝送装置および光伝送システム
WO2005088876A1 (ja) * 2004-03-17 2005-09-22 Nippon Telegraph And Telephone Corporation 光伝送システム、光伝送システムの光送信装置及び光受信装置

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
KENRO SEKINE ET AL.: "Proposal and Demonstration of 10-Gsymbol/sec 16-ary (40 Gbit/s) Optical Modulation / Demodulation Scheme", WE3.4.5, ECOC, pages 2004
KIKUCHI N. ET AL.: "Jiko Homodyne Kansho ni yoru Iso Hencho.Tachi Henchoko no Denkai Hakei Kansokuho", 2006 NEN THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS SOGO TAIKAI, SHADAN HOJIN THE INSTITUTE ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS, TSUSHIN 2-B-10-58, 8 March 2006 (2006-03-08), pages 378, XP003022496 *
M.G.TAYLOR: "Coherent Detection Method Using DSP to Demodulate Signal and for Subsequent Equalization of Propagation Impairments", WE4.P.111, ECOC 2003, 2003
NOBUYUKI KIKUCHI ET AL.: "Study on Cross-Phase Modulation (XPM) Effect on Amplitude and Differentially Phase-Modulated Multilevel Signals in DWDM Transmission", IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 17, no. 7, July 2005 (2005-07-01), pages 1549 - 1551, XP003022493 *
See also references of EP2071747A4
SEKINE K. ET AL.: "Hikari 16-chi Shinpuku Iso Hencho Hoshiki (16APSK) no Kento", IEICE TECHNICAL REPORT, SHADAN HOJIN THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS, OCS2005-8, 15 April 2005 (2005-04-15), pages 29 - 34, XP003022495 *
SEKINE S. ET AL.: "40Gbit/s, 16-ary (4bit/symbol) optical modulation/demodulation scheme", ELECTRONICS LETTERS, vol. 41, no. 7, 31 March 2005 (2005-03-31), pages 1 - 2, XP003022494 *

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7602322B2 (en) 2007-02-16 2009-10-13 Fujitsu Limited Analog-to-digital conversion controller, optical receiving device, optical receiving method, and waveform-distortion compensating device
JP2008271524A (ja) * 2007-03-29 2008-11-06 Fujitsu Ltd 光dqpsk受信器及び、異常検出制御方法
JP2008271536A (ja) * 2007-03-29 2008-11-06 Fujitsu Ltd 光受信器装置及び,異常検出制御方法
US8787437B2 (en) 2008-06-06 2014-07-22 Fujitsu Limited Adaptive equalizer and method thereof
JP2009296597A (ja) * 2008-06-06 2009-12-17 Fujitsu Ltd 適応的等化器及びその方法
JP2010028795A (ja) * 2008-06-18 2010-02-04 Hitachi Communication Technologies Ltd バランス補償型光バランスド受信器及び光iq受信器
US8340533B2 (en) 2008-06-18 2012-12-25 Hitachi, Ltd. Optical balanced receiver and IQ receiver with balanced compensation
JP2010004245A (ja) * 2008-06-19 2010-01-07 Fujitsu Ltd 光受信装置およびデジタル受信回路
JP2011527026A (ja) * 2008-06-30 2011-10-20 アルカテル−ルーセント ユーエスエー インコーポレーテッド 高次変調のための光変調器
JP2010130322A (ja) * 2008-11-27 2010-06-10 Fujitsu Ltd 通信システム
US8611446B2 (en) 2008-11-27 2013-12-17 Fujitsu Limited Communication system using initial likelihood information for performing maximum likelihood sequence estimation (MLSE)
JP2012510762A (ja) * 2008-12-03 2012-05-10 シエナ ルクセンブルグ エス.アー.エール.エル 光通信システムにおけるサイクルスリップの影響を修正する方法、及びコヒーレント受信機
JP2014014111A (ja) * 2008-12-03 2014-01-23 Ciena Luxembourg Sarl 光通信システムにおけるサイクルスリップの影響を修正する方法、及びコヒーレント受信機
US20100150577A1 (en) * 2008-12-16 2010-06-17 Essiambre Rene-Jean Communication System and Method With Signal Constellation
WO2010082344A1 (ja) * 2009-01-16 2010-07-22 三菱電機株式会社 光変復調システム、光伝送システムおよび光変復調方法
WO2010082339A1 (ja) * 2009-01-16 2010-07-22 三菱電機株式会社 光伝送システム、送信装置および受信装置
JP4987127B2 (ja) * 2009-01-16 2012-07-25 三菱電機株式会社 光伝送システム、送信装置および受信装置
US20120281988A1 (en) * 2010-01-07 2012-11-08 Hitachi, Ltd. Optical Transmission System
WO2011083575A1 (ja) * 2010-01-07 2011-07-14 株式会社日立製作所 光伝送システム
US8693886B2 (en) 2010-01-07 2014-04-08 Hitachi, Ltd. Optical transmission system
JP5511849B2 (ja) * 2010-01-07 2014-06-04 株式会社日立製作所 光伝送システム
JP2011160028A (ja) * 2010-01-29 2011-08-18 Sumitomo Osaka Cement Co Ltd 光受信器
WO2012004890A1 (ja) * 2010-07-09 2012-01-12 株式会社日立製作所 光受信器及び光伝送システム
JP5406989B2 (ja) * 2010-07-09 2014-02-05 株式会社日立製作所 光受信器及び光伝送システム
US8855503B2 (en) 2010-07-09 2014-10-07 Hitachi, Ltd. Optical receiver and optical transmission system
JP2014068072A (ja) * 2012-09-24 2014-04-17 Oki Electric Ind Co Ltd 光信号品質評価装置及び光信号品質評価方法
JP2016513421A (ja) * 2013-02-25 2016-05-12 アルカテル−ルーセント コヒーレント検波を用いるm−pam光学システムのためのレベルスペーシング
WO2014132305A1 (ja) 2013-02-26 2014-09-04 日本電気株式会社 波長分割多重光送信装置及び波長分割多重光送信方法
US9680598B2 (en) 2013-02-26 2017-06-13 Nec Corporation Wavelength division multiplexing optical transmission apparatus and wavelength division multiplexing optical transmission method
WO2016125485A1 (ja) * 2015-02-03 2016-08-11 日本電気株式会社 信号処理装置及び信号処理方法
JPWO2016125485A1 (ja) * 2015-02-03 2017-11-24 日本電気株式会社 信号処理装置及び信号処理方法
CN112400284A (zh) * 2018-06-29 2021-02-23 思科技术公司 硅光子学中的消光比改进
CN112400284B (zh) * 2018-06-29 2024-01-12 思科技术公司 硅光子学中的消光比改进
CN115225246A (zh) * 2022-07-11 2022-10-21 北京邮电大学 相位调制双向时间同步装置、方法和系统
CN115225246B (zh) * 2022-07-11 2023-12-01 北京邮电大学 相位调制双向时间同步装置、方法和系统

Also Published As

Publication number Publication date
CN101507149B (zh) 2011-12-28
JPWO2008038337A1 (ja) 2010-01-28
EP2071747B1 (en) 2015-02-18
EP2071747A1 (en) 2009-06-17
US8184992B2 (en) 2012-05-22
EP2071747A4 (en) 2013-01-16
US20100021179A1 (en) 2010-01-28
CN101507149A (zh) 2009-08-12
JP4755690B2 (ja) 2011-08-24

Similar Documents

Publication Publication Date Title
WO2008038337A1 (en) Optical electric field receiver and optical transmission system
JP4791536B2 (ja) 光電界受信器、光多値信号受信器および光伝送システム
US7555227B2 (en) Polarization compensation in a coherent optical receiver
JP4648093B2 (ja) 光伝送装置および集積回路装置
JP5406989B2 (ja) 光受信器及び光伝送システム
US7630650B2 (en) Multi-level modulation receiving device
US8655196B2 (en) Phase control circuit and method for optical receivers
WO2012073590A1 (ja) 光伝送システム、光送信装置および光受信装置
JP2009027525A (ja) 光伝送システムおよび光伝送方法
JP2004511128A (ja) 符号分割多重光通信のためのシステム及び方法
JP5068240B2 (ja) 光伝送方式、送信器及び受信器
JP5088174B2 (ja) 復調回路
US8165477B2 (en) Light receiving apparatus using DQPSK demodulation method, and DQPSK demodulation method
JP5063478B2 (ja) 波長分散測定装置、及び光信号受信装置
JP5813331B2 (ja) 光受信器
JP5523582B2 (ja) 光伝送システム、光送信装置および光受信装置
Sun et al. Timing synchronization in coherent optical transmission systems
Noé et al. Realtime digital signal processing in coherent optical PDM-QPSK and PDM-16-QAM transmission
JP5600620B2 (ja) 偏光多重位相変調光評価方法および装置
JP2007088776A (ja) 位相情報発生装置、位相情報発生方法、送信機および受信機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680055651.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06810546

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12439705

Country of ref document: US

Ref document number: 2006810546

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008536218

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE