WO2007132503A1 - 光電界受信器、光多値信号受信器および光伝送システム - Google Patents

光電界受信器、光多値信号受信器および光伝送システム Download PDF

Info

Publication number
WO2007132503A1
WO2007132503A1 PCT/JP2006/309498 JP2006309498W WO2007132503A1 WO 2007132503 A1 WO2007132503 A1 WO 2007132503A1 JP 2006309498 W JP2006309498 W JP 2006309498W WO 2007132503 A1 WO2007132503 A1 WO 2007132503A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
signal
electric field
delay
symbol
Prior art date
Application number
PCT/JP2006/309498
Other languages
English (en)
French (fr)
Inventor
Nobuhiko Kikuchi
Original Assignee
Hitachi Communication Technologies, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Communication Technologies, Ltd. filed Critical Hitachi Communication Technologies, Ltd.
Priority to EP06732529A priority Critical patent/EP2017980A4/en
Priority to CN2006800545488A priority patent/CN101438517B/zh
Priority to JP2008515391A priority patent/JP4791536B2/ja
Priority to US12/300,212 priority patent/US8873968B2/en
Priority to PCT/JP2006/309498 priority patent/WO2007132503A1/ja
Publication of WO2007132503A1 publication Critical patent/WO2007132503A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/67Optical arrangements in the receiver
    • H04B10/671Optical arrangements in the receiver for controlling the input optical signal
    • H04B10/672Optical arrangements in the receiver for controlling the input optical signal for controlling the power of the input optical signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0008Synchronisation information channels, e.g. clock distribution lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0075Arrangements for synchronising receiver with transmitter with photonic or optical means

Definitions

  • Optical electric field receiver, optical multilevel signal receiver, and optical transmission system are Optical electric field receiver, optical multilevel signal receiver, and optical transmission system
  • the present invention relates to an optical information transmission technique, and more particularly to an optical electric field receiver, an optical multilevel signal receiver, and an optical transmission system suitable for receiving multilevel optical information transmitted through an optical fiber. .
  • Multi-level modulation technology which was popular in the 1960s, has enabled high-efficiency transmission with a frequency utilization efficiency exceeding 10. Multi-level modulation is considered promising in optical fiber transmission, and many studies have been made on its conventional power. For example, RA Grif nn, et.
  • Non-Patent Document 1 QPSK (Quadrature Phase Shift Keying) with phase modulation was reported, Kenro Sekine, Nobuhiko Kikuchi, Shinya Sasaki, Shigenori Hayase and Chie Has egawa, "Proposal and Demonstration of 10— Gsymbol / sec 16—ary (40 Gbit / s ) Optical Modulation I Demodulation Scheme, "paper We3.4.5, ECOC 2004, 2004 (Non-Patent Document 2) reported 16-level amplitude 'phase modulation that combines 4-level amplitude modulation and 4-level phase modulation. ing.
  • FIGS. 1A to 1D are diagrams showing characteristics of various known modulation schemes applicable to optical transmission.
  • the phase point of light modulation (complex display of the optical electric field at the identification time) is plotted on the phase plane (on the IQ plane).
  • BASK binary amplitude modulation
  • (B) is a quaternary phase that transmits 2-bit information (11, 10, 01, 00) in one symbol by using quaternary phase angles (0, ⁇ / 2, ⁇ , 1 ⁇ ⁇ 2). Modulation (QPSK) is shown.
  • (C) shows 16-value quadrature amplitude modulation (16QAM) widely used in radio.
  • 16QA IV the phase points are arranged in a grid pattern, and 4 bits of information can be transmitted with one symbol.
  • the upper 2 bits (11 ⁇ , 10 ⁇ , 01 ⁇ , ⁇ ) are represented by the Q axis coordinates
  • the lower 2 bits xxl l, ⁇ 10, xx01, xxOO
  • This phase point arrangement is known to have high reception sensitivity because the distance between the phase points can be increased, but an implementation example in the optical communication field has not yet been reported.
  • (D) shows 16-value amplitude phase modulation (16APSK) in which the phase point of binary amplitude modulation and the phase point of 8-value phase modulation are arranged concentrically, and (E) shows the amplitude and phase. Showing the relationship.
  • the tolerance to wavelength dispersion is usually only about 5 km with a dispersion fiber, so signal quality degradation is minimized by a tunable dispersion compensator placed at the optical signal receiving end.
  • Adaptive compensation technology that automatically controls the system is being studied! Speak.
  • the tunable dispersion compensator still has many problems to be solved in terms of the size, complexity, cost, and control speed of the device.
  • an electrical adaptive equalization circuit such as a feedforward equalization circuit (FFE) or a decision feedback equalization circuit (DFE) is arranged in an electric circuit section of an optical signal receiver, or a maximum likelihood estimation circuit ( Electric stage compensation technology that estimates received symbols by MLSE) is being studied.
  • the chromatic dispersion compensation at the electrical stage according to the prior art is incomplete so as to shape the eye opening of the received light waveform. Therefore, the compensation effect also effectively increases the chromatic dispersion resistance of the receiver to 1.5 to 2 times, for example, to extend the transmission distance to 1 Okm with normal optical fiber transmission of 4 OGbitZ seconds. It was insufficient.
  • Non-Patent Document 3 an optical multilevel signal 123 transmitted through an optical fiber transmission line is converted into a horizontal (P) polarization component 133 by a polarization separation circuit 131. Separated into vertical (S) polarization component 134 and input to coherent optical field receivers 135-1 and 135-2, respectively.
  • the coherent optical electric field reception system requires a local oscillation laser light source 130 having substantially the same wavelength as the transmission light source.
  • the output light (local light) 132 from the laser light source 130 is separated into two local light sources 132-1 and 132-2 by the optical splitter 102 and input to the coherent optical field receivers 135-1 and 135-2.
  • the coherent optical electric field receiver 135-1 includes an optical phase diversity circuit 136 and a digital arithmetic circuit 141.
  • the optical phase diversity circuit 136 outputs a 1 (in-phase) component output light consisting of the in-phase components of the local light and the optical multilevel signal from the P polarization component 133 and the local light 132-1 of the input optical multilevel signal.
  • 137 and the Q (orthogonal) component output light 138 consisting of the orthogonal components of the local light and the optical multilevel signal, and the I component output light 137 is sent to the balanced optical receiver 105-1 and the Q component output light 138. Supplies to the balanced optical receiver 105-2.
  • the analog electrical signals output from the non-reflex type optical receivers 105-1, 105-2 are time-sampled by the A / D converters 106-1, 1062, respectively, and converted into digital signals.
  • the optical electric field of the received signal is defined as r (n) exp ( ⁇ ( ⁇ )), and local light is emitted. Is expressed as exp (- ⁇ (n)).
  • r is the amplitude of the photoelectric field
  • is the phase of the optical field
  • n is the sampling time
  • the amplitude of the local light 132 is assumed to be a constant value “1”.
  • ⁇ (n) represents the random phase noise inherent in the laser light source and the phase fluctuation caused by the difference frequency component between the local light and the signal light.
  • the transmitter light source on the transmitter side also has phase noise, but is ignored here for simplicity.
  • phase variation ⁇ ( ⁇ ) ⁇ ( ⁇ ).
  • ⁇ ′ ( ⁇ ) ⁇ ( ⁇ ). Therefore, when a coherent photoelectric field receiver is used, all information (here, I and Q components) indicating the optical electric field r (n) eX p (n)) is directly obtained from the received optical multilevel signal 123.
  • the influence of the phase fluctuation ⁇ (n) of the local light 132 cannot be ignored. For example, assuming that the received optical multilevel signal is multilevel modulated by 16-level quadrature modulation (16QAM) shown in (C) of FIG.
  • the digital arithmetic circuit 141 detects a slow rotational component (up to several hundred MHz) of the phase point from the output signals of the AZD converters 106-1 and 106-2, and uses this rotational component as the phase fluctuation ⁇ (n ),
  • the output signals 142-1 and 142-2 indicating ( ⁇ ( ⁇ )) are output to the symbol determination circuit 143.
  • the balanced optical receiver 105-2 operates in the same manner as the balanced optical receiver 105-1,
  • the symbol determination circuit 143 compares the I and Q components output from each digital arithmetic circuit 141 with the phase point arrangement shown in FIG. Discriminate and output playback multilevel digital signal 144.
  • the digital arithmetic circuit 141 performs a correction process on the input signal by the inverse function of the propagation function of the optical fiber transmission line, so that linear degradation due to chromatic dispersion or the like is theoretically reduced. There is a great advantage that it can be completely compensated and the compensation amount is not limited.
  • FIG. 3 shows a configuration diagram of a conventional optical multilevel signal receiver for receiving amplitude-phase modulated light represented by Non-Patent Document 2, and (A) in FIG.
  • 8-level amplitude-phase modulated light 8APSK
  • 8APSK 8-level amplitude-phase modulated light
  • differential code is usually used for modulation of phase components.
  • 3 bits of information are stored in each sym- ponole in association with the binary 4 values that have the amplitude of 2 and the phase difference between the previous symbol and 0, ⁇ / 2, ⁇ , or 1 ⁇ / 2. Is transmitted.
  • An optical multilevel signal receiver that receives an 8APSK signal is a non-coherent method that does not detect an optical electric field.
  • an input optical APSK signal 124 is an optical branch circuit.
  • the signal is split into three optical signals. Of these, two optical signals are input to the optical delay detectors 104-1 and 104-2, and the remaining optical signal is input to the optical intensity receiver 151.
  • Optical delay detectors 10 04-1 and 104-2 each have a first optical path that gives a delay of symbol time ⁇ to the input signal and a second ⁇ / 4 phase shifter or + ⁇ / 4 phase shifter. Receive light path and power The state (symbol) of the received optical multilevel signal is interfered with the symbol received before time T.
  • the phase modulation component is converted into a light intensity signal.
  • the output light of the optical delay detector 104-1 with a + ⁇ / 4 phase shifter has a high output intensity when the phase difference between the received symbol and the immediately preceding symbol becomes SO or + ⁇ ⁇ 2, and the level is high.
  • the output intensity decreases when the phase difference is - ⁇ ⁇ 2 or ⁇ .
  • the output light from the optical delay detector 104-1 is received by the balanced receiver 105-1, and the binary output of the output is determined by the binary decision circuit 152-1. 153-1 is obtained.
  • the output light of the optical delay detector 104-2 with a ⁇ / 4 phase shifter has a large output intensity when the phase difference power SO between the received symbol and the immediately preceding symbol becomes SO or ⁇ ⁇ 2, and the phase difference is The output intensity decreases when ⁇ ⁇ 2 or ⁇ .
  • the optical intensity receiver 151 converts the optical intensity of the received signal (the square of the optical electric field amplitude) into an electrical signal.
  • the output of the light intensity receiver 151 is judged by a binary judgment circuit 152-3, and a binary reproduced digital signal 153-1 for one bit included in the optical amplitude component is reproduced. Since this optical multilevel signal receiver uses optical delay detection, it has the advantage of eliminating the need for a local oscillation light source that eliminates the effects of phase fluctuation ⁇ ( ⁇ ) and polarization dependence. This is applied to the reception of up to APSK signals.
  • Non-patent Document 4 Multi-symbol Phase Estimation, “proc. ECOC '05, We4P 118, 25—29 September 20 05, Glasgow, Scotland, 2005 (Non-patent Document 4) shows a receiver of binary phase-modulated light.
  • This receiver applies a decision feedback method used in wireless communication in order to receive a binary differential phase modulation (DPSK) input optical signal 159 with high sensitivity.
  • the input signal is split into two optical signals and input to the optical delay detectors 104-1 and 104-2.
  • the optical delay detectors 104-1 and 104-2 have a first optical path that gives a delay of symbol time T to the input signal, and a phase shifter with a phase angle of 0 or a ⁇ / 2 phase shifter, as in FIG.
  • the second light path It has become.
  • ⁇ (n) is the phase modulation component
  • the optical electric field of the binary phase modulation signal is expressed as exp ( ⁇ ( ⁇ )).
  • the outputs of the optical delay detectors 104-1 and 104-2 are respectively input to the balanced receivers 105-1 and 105-2, the output signals of the two balanced receivers are cos (A ⁇ ( ⁇ )) , Sin (A ⁇ ( ⁇ )).
  • ⁇ ( ⁇ ) ( ⁇ ) ⁇ ( ⁇ 1) and the amplitude component is constant, it is specified as “1”.
  • the receiver shown in Fig. 4 employs a decision feedback method.
  • phase difference information cos ⁇ ⁇ ( ⁇ -1), sin A ⁇ ( ⁇ -By multiplying binary digital information output from the binary decision circuit 152 by 1), the differential phase modulation component (“0” or “ ⁇ ”) is eliminated and only the error component is extracted. Yes.
  • a four-quadrant multiplier 156 From the extracted error component and the new phase difference information ⁇ ( ⁇ ), a four-quadrant multiplier 156 generates a compensation signal, and inputs the compensation signal to the weighting circuits 155-1, 155-2.
  • the weighted compensation signal to the received signal by the adder circuits 154-1 and 154-2, the influence of the previous bit (symbol) is partially removed.
  • Non-Patent Document 1 RA Griffin, et. Al, "lOGb / s Optical Differential Quadrature Phase Shift Key (DQPSK) Transmission using GaAs / AlGaAs Integration, OFC2002, paper PD-FD6, 2003
  • Non-Patent Document 2 Kenro Sekine, Nobuhiko Kikuchi, Shinya Sasaki, Shigenori Hayase an d Chie Hasegawa, "Proposal and Demonstration of 10— Gsymbol / sec 16— ary (40 Gbit / s) Optical Modulation I Demodulation Scheme," paper We3. 4.5, ECOC 2004, 200 4
  • Non-Patent Document 3 M. G. Taylor, "Coherent detection method using DSP to demodulate signal and for subsequent equalization of propagation impairments, paper We4.P.l l 1, ECOC 2003, 2003
  • Non-Patent Document 4 S Calabro, "Improved Detection of Differential Phase Shift Keying Through Multi-symbol Phase Estimation," proc. ECOC '05, We4P 118, 25—29 September 2005, Glasgow, Scotland, 2005
  • a first object of the present invention is to provide a practical optical electric field receiver and optical multilevel signal receiver that do not require a local oscillation light source having no polarization dependency.
  • a second object of the present invention is to provide a photoelectric field receiver capable of detecting all electric field information (received symbol amplitude value, phase angle, or inter-symbol phase difference) of an optical multilevel modulation signal required for symbol determination, and It is to provide an optical multilevel signal receiver.
  • the coherent optical field receiver described in Fig. 2 is in principle polarization dependent, and if the P-polarized component described above is lost due to fluctuations in polarization, the coherent optical field receiver 135-1 cannot operate. End up. Therefore, in the coherent optical electric field receiving system shown in FIG. 2, the coherent optical electric field receiver 1 35-1 that receives the P-polarized component 133 of the optical multilevel signal and the coherent optical electric field receiver that receives the S-polarized component. 135-2 is prepared, and a symbol determination circuit 143 selects one of these two receivers to determine a symbol, and has a polarization diversity configuration.
  • the coherent optical electric field reception system requires a local oscillation light source 130 having a wavelength substantially matching that of the received light, so that there is a problem that wavelength management becomes complicated.
  • a polarization diversity configuration it becomes possible to receive an input optical signal even if the polarization state fluctuates. In this case, however, the polarization separation circuit 131 and the extra optical components such as the optical splitter 102 are used. Is necessary, and the hardware scale of the receiver increases.
  • the received signal strength and relative phase difference are each subjected to binary determination.
  • the optical delay detector used in these methods is for detecting an intensity signal that changes in accordance with the relative phase difference between two consecutive symbols on the time axis. This is because the absolute phase cannot be detected.
  • the eight-value detection of the relative phase difference required for the determination of the 16AP SK signal in FIG. 1 (D) cannot be performed.
  • a third object of the present invention is to provide a highly versatile optical field receiver, an optical multilevel signal receiver, and an optical transmission system that can be applied to a plurality of types of optical modulation schemes having different multilevel values. It is to provide.
  • the coherent optical field receiver has an advantage for this problem.
  • non-coherent receivers such as the optical multilevel signal receiver described in FIG. 3 and the decision feedback type multilevel phase modulation receiver described in FIG. Therefore, when the number of multilevel symbols increases by 2 to the Nth power, N sets of receiver circuits are required as a general rule.
  • the structure of the vessel becomes complicated. This configuration complexity is a serious problem in practical use in an optical multilevel signal receiver that is desired to increase the number of multilevels in the future.
  • these non-coherent receivers have a problem that they lack generality because the receiver structure changes depending on the modulation method and phase point arrangement of the received optical signal.
  • Non-Patent Document 2 four-level intensity multi-level modulation signals are received by one optical intensity receiver.
  • a fourth object of the present invention is to realize an optical electric field receiver that detects all information of an optical electric field in a non-coherent manner and compensates for linear degradation that occurs during transmission.
  • the optical signal has an amplitude modulation component
  • the output signal intensity varies depending on the amplitude modulation component. Therefore, the optical electric field information cannot be obtained unless it is a coherent optical reception system using a local oscillation light source. It is believed that. If a conventional multi-level modulated optical signal including binary amplitude modulation can be received and all electric field information can be obtained, the receiver's electrical circuit stage computes linear degradation that occurs during transmission. For example, advanced dispersion compensation can be realized.
  • the received optical signals are input to a pair of optical delay detectors whose phases are shifted from each other by 90 degrees.
  • the delayed detection output is converted into an electric signal, and optical electric field information is calculated using an electric field calculation unit.
  • two delayed detection signals indicating an orthogonal component X component and y component (or I component and Q component) of a complex signal are generated from a pair of optical delay detectors.
  • the electric field calculation unit calculates the phase component (inter-symbol phase difference) of the complex signal, and subtracts the phase angle of the immediately preceding symbol calculated in the past from the calculated phase component. Is calculated.
  • the amplitude value of the complex signal is calculated from the two delayed detection signals, and the amplitude value of the received symbol is calculated by dividing this value by the amplitude value of the symbol just calculated in the past.
  • the amplitude value of the received symbol may be calculated based on the output of a light intensity detector provided separately from the optical delay detector.
  • the optical electric field receiver and the optical multi-level signal receiver of the present invention determine the inter-symbol phase difference received symbol calculated by the electric field calculation unit.
  • a multi-level symbol determination circuit is provided.
  • the optical electric field receiver and optical multilevel signal receiver of the present invention Includes a multi-value symbol determination circuit that determines a received symbol from the amplitude value and phase component (inter-symbol phase difference or symbol phase angle) of the optical electric field calculated by the electric field calculation unit, or the in-phase component and the orthogonal component.
  • the force that causes fluctuations in the phase and amplitude at low speed is a problem.
  • This fluctuation component is used for multilevel symbol determination, for example, by adopting a technique such as decision feedback calculation. Can be removed.
  • the delay time T of the optical delay detector and the sampling time of the AZD converter are set to lZ2f (f is the maximum frequency of the input optical signal). Ingredients)
  • f is the maximum frequency of the input optical signal.
  • the optical electric field compensation circuit performs an inverse operation on the propagation characteristics of the optical transmission line with respect to the regenerated optical electric field signal, chromatic dispersion can be more completely compensated.
  • it is necessary to specify the amount of chromatic dispersion to be compensated in the optical electric field compensation circuit but if the chromatic dispersion value is known, a fixed compensation value should be specified in advance. If the chromatic dispersion value is unknown, An adaptive compensation type optical electric field compensation circuit whose compensation value is automatically changed according to the reception state may be employed.
  • the compensation value can be set with an external device force for the optical electric field compensation circuit.
  • the control terminal connected to the optical network is used. Then, the total chromatic dispersion amount of the optical fiber along the optical signal path is calculated, and this value is transmitted to the optical transmission device on the optical signal receiving side, and the optical electric field compensation circuit of the optical electric field receiver and the optical multilevel signal receiver.
  • the optimal compensation amount can be set. According to this method, when the optical signal path in the optical network is changed, the recalculated compensation amount can be quickly set in the optical electric field compensation circuit, so that an adaptive compensation type optical electric field compensation circuit can be dispensed with. At the time of pulling in the optimum state in adaptive compensation control It is possible to shorten the interval.
  • the present invention uses an optical delay detector and is independent of the polarization state of the input light. Unlike the conventional coherent detection method, the present invention does not require a local oscillation light source. Becomes easier.
  • the circuit scale has been increased as the number of received signals increases, but the optical electric field receiver and multilevel optical receiver of the present invention are Since the two-dimensional coordinate information on the phase plane of the received optical electric field can be directly reproduced, even if the number of optical modulation signals is increased to improve transmission efficiency, the received signal can be obtained on a practical hardware scale. There is an advantage in that it is possible to determine the symbols.
  • the electric field calculation and multilevel determination of the received optical signal can be performed by an electrical digital circuit, so that the same receiver configuration can be applied to optical signals having different multilevel numbers and modulation methods. It is possible to
  • FIG. 5 shows a first embodiment of the optical electric field receiver 100 according to the present invention.
  • the optical signal path is indicated by a thick line
  • the electrical signal path is indicated by a thin line.
  • ⁇ ⁇ ⁇ ( ⁇ (input optical signal 101 represented by n ", like the conventional decision feedback type multilevel phase modulation receiver described in FIG. 4, two optical signals by an optical branching circuit 102 And is input to the optical delay detectors 104-1 and 104- 2.
  • the optical delay detectors 104-1 and 104-2 have a first optical path that gives a delay of symbol time T to the input signal, and State (symbol) of a phase-shifted optical multilevel signal consisting of a phase shifter with a phase angle of 0 or a second optical path with a phase shifter of ⁇ / 2 so that the phase is shifted by ⁇ / 2 between the two detectors Is interfered with the symbol received before time ⁇ .
  • optical signals output from the optical delay detectors 104-1 and 104-2 are converted into electrical signals by optical balanced receivers (photodetectors) 105-1 and 105-2, respectively, and then converted to AZD. Converted to a digital signal in 106-1 and 106-2.
  • the digital signals output from AZD 106- 1 and 106--2 are the delay adjustment circuits 108-1 and 108-2, respectively. After adjusting the deviation of the path timing to the symbol time T or less, it is supplied to the electric field calculation unit 111 as the electrical reception signals 110 1 and 110-2.
  • these signals are input to the electric field calculation unit 111, the previous n-1st symbol information is removed, and only the nth received symbol information is extracted, and the reproduced optical electric field signal 117 is obtained.
  • the reproduction optical electric field signal 117-1 indicates the electric field amplitude r (n)
  • the reproduction optical electric field signal 117-1 indicates the phase angle ⁇ (n).
  • the electric field calculation unit 111 includes a square calculation circuit 112 for calculating the amplitude r (n) r (nl) of the delay detection signal from the electrical reception signals 110-1 and 110-2.
  • the arc tangent calculation circuit 113 for calculating the phase difference ⁇ ( ⁇ ) of the delayed detection signal from the electrical reception signals 11 0-1 and 110-2, and the delay division circuit 115 connected to the square calculation circuit 112 And a delay addition circuit 116 connected to the arctangent calculation circuit 113.
  • the delay division circuit 115 removes the amplitude r (nl) component of the immediately preceding received symbol from the amplitude r (n) r (nl), thereby reproducing the reproduction optical electric field indicating the electric field amplitude r (n) of the received symbol.
  • the delay addition circuit 116 removes the phase component ⁇ (n-1) of the received symbol immediately before the phase difference ⁇ (n) force, thereby reproducing the reproduced photoelectric signal indicating the phase angle ⁇ (n) of the received symbol.
  • 117 Outputs 2
  • the optical electric field receiver shown here includes a multi-level symbol determination circuit for determining the bit values corresponding to the reproduction optical electric field signals r (n) and ⁇ ( ⁇ ) after the electric field calculation unit 111.
  • a multi-level symbol determination circuit for determining the bit values corresponding to the reproduction optical electric field signals r (n) and ⁇ ( ⁇ ) after the electric field calculation unit 111.
  • an optical multilevel signal receiver can be configured.
  • the delay time and sampling time of the optical delay detectors 104-1 and 104-2 are set to 1Z2 or less of the symbol time ⁇ , and the compensation calculation circuit corrects the reproduced optical electric field signal with the inverse characteristic of the propagation function of the transmission line.
  • FIG. 6 is an explanatory diagram of the operation timing of the optical electric field receiver of the first embodiment.
  • the A / D converter circuits 106-1 and 106-2 receive the output signals of the optical balanced receivers 105-1 and 105-2 at the desired period and timing determined by the sampling clocks 107-1 and 107-2, respectively. AZD conversion.
  • FIG. 6 (A) shows changes in the electrical reception signal 110-1 (x component) and the electrical reception signal 110-2 (y component) input to the electric field calculation unit 111
  • FIG. ) Shows changes in the reproduction electric field signal 117-1 (amplitude component r) and the reproduction electric field signal 117-2 (phase component ⁇ ) output from the electric field calculation unit 111.
  • the frequency of the sampling clock is matched with the symbol rate of the received optical multilevel signal, and the received signal is sampled at the center timing of each symbol period.
  • the square operation circuit 112 calculates the square root of the sum of squares of the input signals x and y in the symbol period, thereby eliminating the cosine term and the sine term, and calculating the product of amplitudes r (n) r (nl ) Indicating signal 114-1 is output.
  • the arc tangent calculation circuit 113 calculates the arc tangent tan-Ky / x of the input signals x and y, thereby calculating a complex signal (hereinafter referred to as “delayed detection signal”) having the input signals x and y as orthogonal components.
  • the signal 114-2 indicating the phase difference ⁇ (for example, ⁇ ⁇ ⁇ ) is output.
  • the delay division circuit 115 divides the amplitude product r (n) r (nl) output from the square operation circuit 112 by the amplitude r (nl) of the immediately preceding symbol, thereby obtaining the amplitude r (n) of the received symbol. Can be calculated. Also, in the delay addition circuit, the phase angle ⁇ ( ⁇ ) of the received symbol can be calculated by adding the phase ⁇ ( ⁇ -1) of the immediately preceding symbol to ⁇ ( ⁇ ) output from the arctangent calculation circuit 113. . As described above, in this embodiment, the optical electric field information indicating the amplitude value and the phase angle can be extracted from the input optical signal 101 using the optical delay detection type optical receiver which is a non-coherent receiver.
  • the coupling between the optical components on the optical signal path 103 includes coupling between the optical components by an optical fiber, coupling by a Balta optical element space beam, and between integrated optical components.
  • Various connection forms such as coupling by a waveguide can be adopted.
  • the optical delay detector 104 and the balanced receiver 105 are combined, the amplitude of the detector output signal There is an advantage that unnecessary DC signals can be removed.
  • a normal light intensity detector can be applied.
  • the delay adjustment circuits 108-1 and 108-2 match the signal propagation times in the two signal paths between the optical branching circuit 102 and the electric field calculation unit 111, and match the calculation timings of the X component and the y component. For example, it can be realized by a nother circuit. However, the delay adjustment circuits 108-1 and 108-2 can be omitted if a circuit configuration in which the two signal path lengths can be completely matched at the manufacturing stage is adopted. Also, instead of using the delay adjustment circuits 108-1, 108-2, the relative phase of the X and y components can be changed by another method, for example, the sampling supplied to the AZD converters 106-1, 106-2. Control according to the application timing of clocks 107-1 and 107-2.
  • an analog delay line is used as a force delay adjustment circuit in which the digital delay adjustment circuit 108-1 (108-2) is placed after the AZD converter 106-1 (106-2). Thereafter, a circuit configuration in which the AZD converter 106 is arranged may be employed. Also, omit the AZD converter 106, and implement some or all of the calculation functions of the electric field calculation unit 111 with analog circuits.
  • the polar coordinate (r (n), ⁇ (n)) calculation type electric field calculation unit 111 is used, but the electric field calculation unit 111 includes orthogonal coordinates (I ( n), Q (n)) arithmetic type can also be applied. In this case, a coordinate conversion circuit is used as necessary.
  • the function of the electric field calculation unit 111 can be realized by, for example, an FPGA, an ASIC, a DSP, or a processor whose function can be reconfigured.
  • the calculation procedure to be performed by the electric field calculation unit 111 includes various nominations and approximate calculation methods different from those in the embodiment according to the purpose. Further, a configuration may be adopted in which output values calculated in advance are stored in memory corresponding to different input signal values, and calculation results are obtained in a table lookup format according to the input signal values.
  • the electric field calculation unit 111 may be provided with other functional circuits, for example, an automatic gain control (AGC) circuit for normalizing the amplitude and intensity of the signal as necessary.
  • AGC automatic gain control
  • N data is divided into 3 series of data packets (data blocks), and each data packet is arranged in parallel.
  • the reproduction electric field signal processed in step 3 and output from each electric field calculation unit may be combined by the packet combining circuit 121.
  • the electric field data string is divided and processed in this way, it is necessary to adjust so that the optical electric field phase is continuous at the connection portion of each data packet.
  • the problem can be solved by providing an overlapping part of the bits and correcting so that the phases of the overlapping bits match.
  • FIG. 8 shows an optical multilevel signal receiver using the optical electric field receiver 100 shown in FIG. 5 as a second embodiment of the present invention.
  • the second embodiment is characterized in that when the optical multilevel signal 123 including the phase variation ⁇ (n) is received, the influence of the phase variation ⁇ (n) can be removed from the reproduced multilevel digital signal. To do.
  • the received optical multilevel signal 123 includes an optical branching circuit 102, an optical delay detector 104 (104-1, 10 4 2), and an optical balanced receiver 105 (105-1, 105-2). , AZD change ⁇ 106 (106 1, 106-2), delay adjustment circuit 108 (108-1, 108-2), and electric field receiver 111 similar to that shown in FIG.
  • the electric field calculation unit 11 1 reproduces the reproduction electric field signal 117-1 indicating the amplitude component r (n) and the reproduction indicating the phase component ⁇ ′ ( ⁇ ) affected by the phase fluctuation ⁇ (n).
  • Electric field signal 117-2 is output.
  • These reproduction electric field signals 117-1 and 117-2 are input to a symbol determination unit 176 independent of phase fluctuation.
  • the symbol determination unit 176 also has the power of the symbol determination circuit 143, the phase fluctuation estimation circuit 174, the delay circuits 157-1 and 157-1, and the subtraction circuit 171.
  • the symbol determination circuit 143 includes a reproduction electric field signal 117-1 (amplitude component r (n)) and a reproduction electric field signal 172 (with phase fluctuation component ⁇ (n) removed from the reproduction electric field signal 117-2 by decision feedback described later.
  • the phase component ⁇ ( ⁇ )) is input, and the symbol determination result is output as a reproduced multilevel digital signal 144.
  • the operation of the symbol determination unit 176 when the received optical multilevel signal 123 is a 16QAM signal will be described with reference to FIG. [0065]
  • the correctness of the 16QAM signal! / And the phase point are at the positions indicated by white circles in FIG. 9 (A).
  • the optical electric field information at time n output from the electric field calculation unit 111 indicates a phase point indicated by a black circle in FIG. 9 (A).
  • the phase shift of the optical signal due to the phase fluctuation of the light source in the transmitter, noise, waveform distortion, etc., ⁇ (n) causes a rotational shift in the phase plane, and the phase point observed on the receiver is correct. It is shifted from the phase point.
  • the phase fluctuation estimation circuit 174 uses the phase point information of the past (time n-1) to determine the time n.
  • the phase fluctuation estimated value 175 (0 (n)) is calculated, and the subtraction circuit 171 removes the phase fluctuation estimated value ⁇ ( ⁇ ) from the phase component ⁇ ′ ( ⁇ ) at time n, thereby obtaining the correct phase.
  • the angle ⁇ ( ⁇ ) 17 2 is calculated.
  • Symbol determination circuit 143 selects the most reliable received symbol from amplitude information r (n) and phase information ⁇ ( ⁇ ) of the received signal. Simply put, the distance between each symbol position (white circle) in the 16QAM signal and the phase point (black circle) indicated by the received signal is calculated, and the symbol with the closest distance is determined as the received symbol. The symbol determination circuit 143 outputs a 4-bit digital value assigned to the received symbol as V /! And a 16-QAM signal as a reproduction multilevel digital signal 144. In this example, a symbol indicated by a double circle is determined as a received symbol, the phase angle is ⁇ ( ⁇ ), and the output digital value is “1011”.
  • the phase fluctuation estimation circuit 174 determines the reception signal phase ⁇ ′ ( ⁇ ) one symbol period before and one symbol period before through the delay circuits 157-1 and 157-2. Phase angle ⁇ (n-1) is
  • the phase of the received photoelectric field can be calculated with high accuracy even under the influence of the phase noise of the light source and the optical amplifier noise.
  • the phase variation-independent symbol determination unit 176 force phase variation is removed by decision feedback, but the decision feedback technique can also be applied to correct amplitude calculation errors and other errors.
  • the distance between the input phase point and the symbol position determined by the symbol determination unit 176 is calculated, and the phase angle and symbol amplitude are adjusted so that the average value is minimized.
  • the optimum reception state can be maintained by adjusting the frequency.
  • the best reception sensitivity can be maintained by dynamically adapting to waveform degradation.
  • the phase angle ⁇ ′ ( ⁇ ) indicated by the reproduction optical electric field signal 117-2 is set to an N-fold circuit (or the optical field phase term exp ⁇ ′ ( ⁇ ) Input to the Nth power circuit), the phase modulation component (the phase point interval is ⁇ ⁇ ) can be eliminated, and the phase fluctuation component can be estimated easily. If this estimated value is averaged over the past ⁇ bit period and subtracted from the detected phase angle ⁇ ′ ( ⁇ ), the fluctuation component can be removed.
  • phase modulation interval is unequal as in the 16QAM signal
  • the phase points at the four corners at which the amplitude is maximum for example, the points "1111” and "0000” shown in FIG.
  • the average position of the specific phase point may be tracked in time, and the deviation amount may be estimated as the phase fluctuation.
  • Other methods known in the wireless communication field may be applied to estimate the phase variation component.
  • the effects of noise and calculation errors accumulate, and in the worst case, there is a possibility of causing error propagation over a long period of time.
  • Examples of methods for preventing such error propagation include application of encoding such as differential encoding to amplitude and phase, and insertion of a known reference code periodically on the transmission side. It is also possible to apply methods such as prevention of divergence and attenuation of amplitude values by normal amplitude calculation, statistical distribution of received phase points, and sequential decision feedback from specific phase point positions.
  • the minimum distance rule is applied to the determination of the received symbol, but other known symbol determination methods used for multilevel signals in the wireless communication field may be applied. .
  • MLSE using the electric field state of multiple consecutive symbols, preferential determination of either phase or amplitude radius, maximum likelihood determination (Viterbi decoding), soft decision FEC (prefix error correction), trellis code Techniques such as ⁇ Z decoding ⁇ ⁇ processing are also applicable.
  • a non-Euclidean distance corresponding to the noise generation factor optical amplifier noise, thermal noise, crosstalk, etc.
  • the symbol determination circuit may have an analog structure in which, for example, a plurality of matched filters corresponding to each symbol are arranged in parallel, a filter with the maximum output is selected, and an input symbol is specified.
  • FIG. 10 shows an example of the initial phase determination method employed in the second embodiment.
  • Fig. 10 (A) shows the transmitted optical field
  • Fig. 10 (B) shows the symbol (phase point) arrangement of the 16QAM signal.
  • the two corners “1111” and “0000” that are symmetrical to each other are used as known data, and five symbols “1111” are used prior to user information.
  • “0000”, “1111”, “0000”, “0000” is transmitted as a known data pattern. Since these symbols are not amplitude-modulated, the amplitude of the reproduction optical electric field is a force that makes the amplitude value of the first symbol unknown, as shown in FIG. Therefore, on the receiving side, the reproduction electric field intensity may be corrected so that the amplitude values after the second symbol become the radii of symbols “1111” and “0000” in the 16QAM signal.
  • phase angle ⁇ ⁇ 4 of the symbol “00 00” or the phase angle ⁇ 3 ⁇ ⁇ 4 of the symbol “1111” should ideally be detected as the phase angle. is there.
  • the phase angle of the first symbol is indefinite
  • the phase angle ⁇ ⁇ (indefinite value) of the first symbol is used as the initial phase
  • the same phase angle appears continuously for 2 bits during the reception period of the known data pattern only when the 4th and 5th symbols are received.
  • the phase angle detected at this time corresponds to the phase angle of the symbol “0000”. Therefore, the value of the phase angle detected in the fourth and fifth symbols, the phase angle ⁇ ⁇ 4 and force that the symbol “0000” should have, and the phase shift amount (initial phase angle ⁇ 0) can be specified.
  • the detected phase angle of the fifth symbol indicated by a black circle in the third quadrant and the normal phase angle ⁇ ⁇ 4 that the symbol “0000” should have The detection phase angle can be corrected by calculating the difference ⁇ 0 and subtracting ⁇ 0 from the phase angle of the reproduced optical field detected thereafter.
  • Determination of the initial phase and initial amplitude is a common problem in the optical communication field and the wireless communication field.
  • a reference signal having a known phase angle or amplitude value is inserted into the transmitted signal periodically or intermittently, or using a technique such as differential modulation that makes it unnecessary to determine the initial phase or initial amplitude. Also good.
  • the initial phase and amplitude may be adjusted adaptively by the statistical distribution power of the reconstructed phase points so that normal reception is possible.
  • FIG. 11 shows an optical multilevel signal receiver having a configuration in which a light intensity receiving function and a clock extracting function are added as a third embodiment of the optical electric field receiver of the present invention.
  • the input optical multilevel signal 123 is branched into three optical signals by the optical branch circuit 150.
  • the first and second optical signals are input to the optical delay detectors 104-1 and 104-2, respectively, and the third optical signal is input to the optical intensity receiver 151.
  • the outputs of the optical delay detectors 104-1 and 10 4-2 are converted into electrical signals by the optical balanced receivers 105 (105-1, 105-2), as in Fig. 8, and the AZD conversion 106 (106 — 1, 106-2) and the delay adjustment circuit 108 (108-1, 108-2) to the electric field calculation unit 111.
  • Output of light intensity receiver 151 The force signal is converted into a digital signal by the AZD converter 106-3, adjusted in timing by the delay adjustment circuit 108-3, and then input to the electric field calculation unit 111.
  • the output of the delay adjustment circuit 108-3 indicates the square value r 2 (n) of the intensity r (n) of the nth symbol.
  • the square root circuit 160 provided in the electric field calculation unit 11 1 calculates the square root of the output signal 110-3 from the delay adjustment circuit 108-3, thereby calculating the amplitude value r (n ) According to the above configuration, the optical electric field amplitude r (n) can be obtained more easily and more accurately than the optical electric field receiver of the first embodiment shown in FIG. Propagation measures become unnecessary.
  • a part of the output signal of the light intensity receiver 151 is input to the clock extraction circuit 161, and a clock signal having a frequency f corresponding to the reciprocal of the symbol rate (1ZT) is extracted.
  • This is supplied to A / D conversion 106-1, 106-2, 106-3.
  • the clock signal generation timing is adjusted so that the AZD converter samples the input signal at the center of each symbol period.
  • the clock extraction circuit 161 may be supplied with the output of the non-lance type receiver 105-1 or 105-2 instead of the output of the light intensity receiver 151. Further, the clock extraction circuit 161 may be provided individually for each photodetector, or a dedicated photodetector for clock extraction may be prepared.
  • FIG. 12 shows an optical multilevel signal receiver provided with a decision feedback equalization circuit as a fourth embodiment of the present invention.
  • a clock having a frequency f that is twice (or higher) the symbol rate (1ZT) of the input optical multilevel signal 123 is generated from the clock source 191 and is converted into an AZD conversion 106 —1, 106 — Sampling clocks 107-1 and 107-2 are supplied to 2.
  • a / D converters ⁇ 106-1, 106-2 perform sampling regardless of timing synchronization with the input symbol in response to the sampling clock.
  • the outputs of the AZD converters 106-1 and 106-2 are input to the resampling circuits 192-1 and 192-2 via the delay adjustment circuits 108-1 and 108-2, respectively.
  • Each re-sample The sampling circuit interpolates the input data string according to the Nyquist theorem and can reproduce the sampling points at any timing.
  • resampling is performed so that the sampling point is positioned at the center of each symbol period.
  • Sampling timing can be adjusted using, for example, a data transition point discriminating circuit or a maximum eye opening detection circuit.
  • the orthogonal electric field conversion circuit 198 connected to the electric field calculation unit 111 converts the coordinates of the optical electric field output from the electric field calculation unit 111 into the orthogonal coordinates based on the polar coordinates, and then the optical electric field.
  • the value is supplied to the symbol determination unit 176 independent of the phase fluctuation through the determination feedback equalization circuit 193.
  • the equalizer circuit 193 performs waveform equalization using decision feedback.
  • a pre-error correction code (FEC) used in a known high-speed optical signal is mounted, and error correction of the reproduced multilevel digital signal 144 is performed. It is possible to further improve the performance.
  • FEC pre-error correction code
  • FIG. 13 shows an optical multilevel signal receiver for optical APSK signals as a fifth embodiment of the present invention.
  • the optical multilevel signal receiver of the fifth embodiment uses optical delay detection for the optical APSK signal 124.
  • Devices 104-1 and 104-2 receive differential signals, and input the output signals of delay adjustment circuits 108-1 and 108-2 to automatic gain control circuits (AGC) 195-1 and 195-2 to obtain the average intensity. Is normalized so that is constant. By providing AGC195-1 and 195-2, the reception characteristics can be stabilized even if the reception intensity of the input optical signal 124 varies.
  • AGC automatic gain control circuits
  • the output signals x and y of the AGC 195-1 and 195-2 are supplied in parallel to the square operation circuit 112 and the arctangent operation circuit 113 of the optical electric field operation unit 111, respectively.
  • the optical electric field calculation unit 111 calculates the amplitude r (n) of the received optical electric field calculated by the square calculation circuit 112 and the delay division circuit 115 as the first signal 117-1, and the inter-symbol phase difference ⁇ calculated by the arctangent calculation circuit 113. ( ⁇ ) is output to the second signal 117-2 and the symbol determination circuit 143.
  • Fig. 14 (A) shows the phase point arrangement of a 16-value APSK signal with a binary amplitude ("1" and "a") and an 8-level phase.
  • the APSK signal has a concentric phase point arrangement as shown by the broken line. Therefore, the APSK signal can increase the resistance against phase fluctuation by applying differential reception to the phase component, so that the removal of the phase fluctuation becomes unnecessary.
  • FIG. 14B is a code table for differential phase modulation showing the correspondence between the value of the phase difference ⁇ (n) and the three information bits D3, D2, and D1.
  • the symbol determination circuit 143 determines the strength of the amplitude r (n) input as the first signal 1 17-1 and determines the value of the phase difference ⁇ input as the second signal as shown in FIG. Use the reverse key table to decode.
  • information bit D4 is amplitude-modulated according to the working amplitude modulation coding table shown in FIG. That is, when the information bit D4 is “0”, the amplitude of the n-th symbol is made the same as the immediately preceding (n ⁇ 1) symbol, and when the information bit D4 power is “1”, the immediately preceding (n— 1) Amplitude value obtained by inverting symbol amplitude r (n—1) (If the amplitude r (n-1) force S of the previous symbol S is “1”, then “a” and r (n-1) is “a”. In this case, “1”).
  • the delay division circuit 115 is omitted from the optical electric field calculation unit 111 by applying a differential sign to the amplitude on the transmission side, and the output signal 114-1: r (of the square calculation circuit 112 is omitted. It is also possible to adopt a configuration in which n) r (n-1) is directly input to the symbol determination circuit 143.
  • FIG. 15 shows an optical multilevel signal receiver for an N-level optical phase modulation signal as a sixth embodiment of the present invention.
  • the N-value optical phase modulation signal 197 is differentially received, thereby making it unnecessary to determine the amplitude of the received light, and the electric field calculation unit 111 shown in FIG. 13 includes the square calculation circuit 112 and the delay division circuit 115. Omitted and only the arc tangent calculation circuit 113 is left.
  • the reception sensitivity can be improved by reducing the influence of the phase fluctuation by using the decision feedback circuit described in FIGS.
  • the sixth embodiment is similar to the conventional binary phase modulation light receiver shown in FIG. 4 at first glance, but the receiver in FIG. Cos (A ⁇ ( ⁇ )) output from the balanced receiver 105-1 is input to a binary determination circuit 152 that is limited to a signal and serves as a symbol determination circuit. Therefore, the receiver according to the prior art generates the inter-symbol phase difference ⁇ ( ⁇ ) based on the x and y components of the complex signal output from the non-lance type receiver, as in this embodiment, The digital value of the received symbol is not judged by the value of ⁇ ( ⁇ ). According to this embodiment, even when a multi-level phase modulation signal having two or more values is received, the digital value of the received symbol can be easily obtained by using the value of ⁇ ( ⁇ ) generated by the electric field calculation unit 111. Can be determined.
  • FIG. 16 shows a complete optical field receiver 200 that captures all the information of an optical electric field as a seventh embodiment of the present invention.
  • the complete optical electric field receiver 200 shown here directly samples the optical electric field of the input optical signal 101 at a rate twice the symbol rate, thereby obtaining the information possessed by the optical electric field. Capture all.
  • the delay amounts of the optical delay detectors 201-1 and 202-2 are 1Z2 of the symbol period T, and are input to the AZD variable ⁇ 106.
  • the operations from the optical delay detectors 204-1, 204-2 to the electric field calculation unit 111 are similar to those in the first embodiment.
  • the electric field signals 117-1 and 117-2 output from the electric field calculation unit 111 are subjected to compensation calculation by the electric field compensation circuit 202, and the electric field signals 2 03-1 and 203-2 after the compensation are optically transmitted. As the output of the multi-level signal receiver.
  • (A) and (B) of Fig. 17 show the sampling timings of the electric reception signals x and y and the reproduction electric field signals r (n) and ⁇ (, respectively. n ⁇ l indicates the order of time-series samples at intervals of TZ2, not symbol numbers.
  • the delay amount of the optical delay detectors 201-1, 202-2 is TZ2, so the optical delay Detection is performed between received symbols shifted by a half symbol on the time axis, and as a result, electric field information can be obtained sequentially for each half symbol as a reproduction electric field signal as shown in FIG.
  • FIG. 18 is an explanatory diagram of the case where the complete optical field receiver 200 of the seventh embodiment is applied to compensation for optical multilevel signal degradation due to chromatic dispersion in the transmission path.
  • the transmitted optical field 204 from the optical multilevel signal transmitter 210 has a ternary amplitude level as indicated by the amplitude eye pattern in the frame 501.
  • the optical electric field 204 undergoes waveform degradation corresponding to the chromatic dispersion amount j8, and the amplitude eye pattern of the optical electric field received by the multilevel signal receiver 200 is shown in a frame 502. It deteriorates greatly.
  • the chromatic dispersion of the transmission path 206 affects the transmission optical field 204 as linear degradation indicated by the transfer function exp ( ⁇ j ⁇ ⁇ 2 ).
  • the complete optical electric field receiver 200 receives the transmission optical electric field 204 whose waveform has deteriorated, and the electric field calculation unit 208 calculates the reproduction optical electric field signal 117.
  • the electric field calculation unit 208 is a circuit from the optical delay detectors 204-1 and 204-2 to the electric field calculation unit 111 shown in FIG. It corresponds to the road part.
  • the sampling points of AZD transformations 106-1 and 106-2 are adjusted to be located at the center of each symbol.
  • the output 117 (r (n) and ⁇ ( ⁇ )) of the electric field calculation unit 208 is supplied to the electric field compensation circuit 202, and has a transfer function exp G iS ⁇ 2 having characteristics opposite to those of the transfer path 205. ).
  • This compensation is an operation in the frequency domain and can be realized by FFT or convolution.
  • the electric field compensation circuit 202 can dynamically change the transfer function by setting the compensation amount j8 for the external force through the compensation amount input terminal 207 as well.
  • the electric field signal 203 compensated for the waveform deterioration is output from the electric field compensation circuit 202, so that the determination process of the multi-level signal can be performed at the sampling timing that matches the center of each symbol.
  • the electric field compensation circuit 202 can compensate for, for example, band degradation of an optical transmitter or receiver, band reduction by narrowband optical filtering, influence of filter ripple, and the like.
  • the electric field compensator 202 is configured with a digital calculator. Or DSP.
  • the electric field compensator 202 omits a part of the compensation processing to save power consumption and computing power according to the degree of degradation of the received signal, or when there are multiple signal degradation factors, Alternatively, the compensation mode corresponding to the highest deterioration factor may be selectively executed, or a plurality of compensation modes may be executed in duplicate.
  • the sampling frequency is 2 of the maximum frequency component of the signal based on Nyquist's theorem, based on the Nyquist theorem, with the sampling interval of AZD transformation 106 and the delay amount of optical delay detector 104 as 1Z2 of the symbol length. It is required to be more than twice. Therefore, when the transmission signal includes a modulation component that is faster than the symbol rate, higher-speed sampling is required. Conversely, when the effective band of the optical electric field is low, such as a duobinary signal, the sampling rate is reduced. Can be lowered.
  • the sampling rate must be slightly higher than TZ2.
  • the sampling rate of the AZD converter 106 is doubled as the symbol rate.
  • the output signal of the optical delay detector 104 is one symbol. Since it is a composite signal with the previous electric field, complete electric field information cannot be obtained by simply sampling at high speed. This problem can be solved by interleaved sampling described later.
  • FIG. 19 shows an adaptive compensation type photoelectric receiver suitable for compensating for a self-phase modulation effect, which is a kind of nonlinear effect generated in an optical fiber, as a modification of the complete optical field receiver 200 described above.
  • the structure of is shown.
  • complete electric field information is not necessarily required for compensation of the self-phase modulation effect, the other types of optical electric field receivers described in the first to sixth embodiments are applied to the adaptive compensation type. But ...
  • the optical multilevel signal transmitter 210 transmits an 8-level APSK signal to the optical fiber.
  • the phase point arrangement of the transmission light electric field 204 is a quaternary phase point arranged radially on a concentric circle of binary amplitude.
  • the phase point arrangement of the optical electric field that has passed through the optical fiber is such that the phase point on the outer concentric circle rotates more than the phase point on the inner concentric circle, as indicated by the black circle in the frame 512, and the phase is changed at the inner and outer circumferences Deviation occurs in point arrangement.
  • the self-phase modulation effect is a nonlinear effect. However, the effect can be counteracted by multiplying the received signal by the inverse operator exp (—jar (n) 2 ).
  • the deviation minimizing control circuit 212 automatically sets the value of the compensation amount a to be applied to the compensation amount input terminal 207 of the electric field compensation circuit 202 so that the error of the compensated electric field signal output from the electric field compensator 202 is minimized.
  • Adaptive compensation is realized by controlling the system.
  • the quadrature circuit 211 causes the phase of each phase point to be quadrupled. For example, it should always be a constant value. However, if the phase point shifts due to the self-phase modulation effect, the output of the quadruple circuit will vary for each symbol.
  • the phase point arrangement of the electric field signal 203 output from the electric field compensation circuit 202 can always be corrected to the optimum arrangement.
  • the signal degradation due to the self-phase modulation effect is the same for the optical signal other than the APSK signal, and the adaptive compensation type optical electric field receiver according to the present invention can be applied to other modulation systems.
  • FIG. 20 shows an embodiment in which the complete optical field receiver 200 according to the present invention is applied to wavelength dispersion compensation of a binary intensity modulation signal.
  • Ordinary binary modulation is used when the light intensity at the space level with an extinction ratio of about 10 dB is low. If the extinction ratio is about this level, the electric field amplitude ratio is about 3, so that the signal level has no operational problem for the optical electric field receiver 200 of the present invention. However, if the extinction ratio is very high (for example, about 20 dB), or if the light intensity at the sampling point decreases to near zero due to waveform deterioration that occurs in the optical fiber transmission line, the optical electric field receiver 200 operates normally. There is a possibility that will not.
  • This embodiment is characterized in that, in order to operate the optical electric field receiver 200 normally when the extinction ratio is very high, the space level is intentionally set high and the extinction ratio is deteriorated.
  • the optical electric field 205 received by the optical electric field receiver 200 due to the chromatic dispersion of the optical fiber is as shown in the frame 522. Deteriorates greatly.
  • the electric field calculation unit 208 of the optical electric field receiver 200 shifts the sampling point from the center of the symbol as indicated by the white circle of the reproduction optical electric field signal 117 shown in the frame 523, and the symbol width is 25%. By setting the time point to 75%, the sampled optical electric field intensity is unlikely to become zero.
  • the influence of the chromatic dispersion is compensated by calculating the transfer function having the opposite characteristic to the chromatic dispersion in the electric field compensation circuit 202 with respect to the output signal 117 from the electric field calculation unit 208.
  • An electric field signal is obtained.
  • the signal waveform reproduced from the electric field signal 203 output from the electric field compensation circuit 202 is: Since the sampling points are shifted, in this embodiment, the amplitude signal r (n) is input to the re-sampling circuit 192, and the sample value at the center of the symbol waveform is determined by the binary determination circuit 152. A reproduced binary digital signal 153 is obtained.
  • the output of the resampling circuit 192 is branched to the eye opening detection circuit 214, and the eye opening detection circuit 214 detects the size of the eye opening of the signal after electric field compensation.
  • the eye dispersion detection result is input to the control circuit 215, and the control circuit 215 controls the compensation amount of the electric field compensation circuit 202 so as to maximize the value of the eye opening, thereby realizing adaptive dispersion compensation.
  • the complete optical electric field receiver according to the present invention functions as a coherent receiver, and can compensate for chromatic dispersion dynamically and without limitation by arithmetic processing using an electric circuit.
  • the complete optical electric field receiver according to the present invention is applied to reception of various optical signals such as binary intensity-modulated light other than multilevel signals, duobinary signals, and binary phase-modulated signals. it can .
  • various optical signals such as binary intensity-modulated light other than multilevel signals, duobinary signals, and binary phase-modulated signals. it can .
  • a wavelength dispersion compensator is unnecessary and the optical transmission distance can be greatly increased.
  • the optical signal intensity is always “0” between bits.
  • the original signal waveform can be reduced by reducing the extinction ratio of RZ modulation or shifting the sampling timing. It can be played back.
  • FIG. 21 shows an embodiment of a wavelength division multiplexing optical transmission system to which the optical electric field receiver of the present invention is applied.
  • a wavelength division multiplexing transmission apparatus 220A is an optical transmitter 226-1A coupled to a wavelength multiplexer 223A. 226-3A and optical field receivers 200-1A to 200-3A of the present invention coupled to wavelength demultiplexer 224A.
  • the wavelength multiplexing transmission device 220B includes optical transmitters 226-1B to 226-3B coupled to the wavelength multiplexer 223B and an optical electric field receiver 200-1B to the present invention coupled to the wavelength demultiplexer 224B. 200—Including 3B.
  • the wavelength division multiplexing transmission apparatuses 220A and 220B are connected by an upstream optical transmission path and a downstream optical transmission path.
  • the upstream optical transmission line consists of optical finos 206-1 to 206-3 and optical amplifiers 225-1, 22 5-2, and the downstream optical transmission line consists of optical fines 206-4 to 206-6 and optical amplifiers. 225-3, 225-4, and so on.
  • the optical transmitters 226-1A to 226-3A of the wavelength division multiplexing transmission device 220A are different from each other. An optical signal is transmitted at wavelengths ⁇ 1 to 3. These optical signals are multiplexed by the wavelength multiplexer 223 ⁇ , then output to the upstream optical transmission line, separated for each wavelength by the wavelength demultiplexer 224 ⁇ of the opposite optical transmission device 220 ⁇ , and the optical electric field receiver 200 — 1 ⁇ ⁇ 200— It is input in 3 ⁇ .
  • the optical transmitters 226-1 to 226-3 of the wavelength multiplexing transmission apparatus 220 also transmit optical signals at different wavelengths ⁇ 1 to 3 respectively.
  • optical signals are combined by the wavelength multiplexer 223 ⁇ , then output to the downstream optical transmission line, separated for each wavelength by the wavelength demultiplexer 224 ⁇ of the optical transmission device 220 ⁇ , and the optical electric field receiver 200-1 ⁇ ⁇ 200—Entered in 3 ⁇ .
  • the upstream optical transmission line and the downstream optical transmission line may have different optical wavelengths to be multiplexed.
  • the wavelength multiplexing transmission device 220 includes a terminal control unit 221 (221) and a database 222 (222)! / Speak.
  • the optical transmitters 226-1 ⁇ to 226-3 ⁇ (226 -1 ⁇ to 226-3 ⁇ ) and the optical electric field receivers 200-1 ⁇ to 200 ⁇ 3 ⁇ (200 ⁇ 1 ⁇ to 200 ⁇ 3 ⁇ ) receive transmission data from the outside. It is input and the received data is output to the outside, but it is omitted in the figure.
  • a data table indicating the chromatic dispersion amount of each optical fiber forming the optical transmission line is stored in correspondence with the reception wavelengths ⁇ 1 to 3.
  • FIG. 22 shows a flowchart of a compensation amount setting routine executed by the station control unit 221 A (221B). This routine is executed when the wavelength multiplex transmission device is activated or reset, or when the transmitter / receiver 226 (226-1A to 226-3A) or 200 (200-1A to 200-3A) is reset.
  • Terminal station controller 221A reads the chromatic dispersion amount data table from database 222A, and sets parameter i for specifying the wavelength channel to an initial value "1" (step 601).
  • the terminal station controller 221 A determines the received optical transmission line from the chromatic dispersion amount of each optical fiber corresponding to the wavelength ⁇ i of the i-th channel indicated by the chromatic dispersion amount data table.
  • the total wavelength dispersion amount Di of all the optical fibers along the terminal station control unit 221-1 is calculated (step 603).
  • the compensation amount “ ⁇ Di” is set to the terminal 207 of the optical field receiver 200-1A of the i-th channel (wavelength i), and the optical field receiver 200-1A is activated.
  • the optical electric field receivers 200-1A to 200-3A can estimate the wavelength dispersion compensation amount with high accuracy from the time of startup, and thus no adaptive control is required. Even if adaptive control is used, it is possible to transition to an optimal control state in a short time and to prevent malfunction.
  • FIG. 23 shows an embodiment of an optical network configuration including a plurality of optical add / drop devices (ADMs) 230-1 to 230-4 to which the optical electric field receiver of the present invention is applied.
  • the optical head drop devices 230-1 to 230-4 are connected in a ring shape by optical fiber transmission lines 206-1 to 206-4.
  • the optical signal path may be dynamically changed.
  • the dispersion compensation amount in the optical receiver 200 affected by the path change is optimized by the control console 231 connected to the optical drop apparatus 230-1.
  • 222 is a database 222 in which chromatic dispersion values for each wavelength are recorded for all optical fibers constituting the network.
  • the control console 231 accesses the database 222, calculates the total chromatic dispersion value according to the new optical signal path and the used wavelength, and uses this value via the network as the new path. This is distributed as a dispersion compensation amount to the optical receiver 200 (200-1 to 200-3) connected to the optical add-drop device (230-2 to 230-4) that is the end of the network.
  • the optical signal of wavelength 3 output from the optical transmitter 200-3 is input to the optical add / drop device 230-4, and the three optical signals along the optical path 232-3 It reaches the optical field receiver 200-3 connected to the optical drop device 230-3 via the fiber transmission paths 206-1, 206-2, 206-3.
  • the control console 231 reads out the chromatic dispersion amount of the optical fiber transmission paths 206-1, 1, 206-2, 206-3 corresponding to the wavelength 3 from the database 222.
  • the compensation setting signal determined from the total value is sent to the optical electric field receiver 200-3 through the communication path 23-3 shown by the broken line.
  • the compensation amount setting signal is input to the compensation amount setting terminal 207-3, and thus the photoelectric amount setting signal is An optimum dispersion compensation value is set in the electric field compensation circuit 202 of the field receiver 200-3.
  • FIG. 24 shows another embodiment of the optical multilevel signal receiver to which the optical electric field receiver according to the present invention is applied.
  • the optical multilevel signal 123 is received by the optical delay detectors 201-1 and 201-2 of the complete optical electric field receiver described in FIG. 16, and the output of the electric field calculation unit 111 is used as the electric field compensation circuit 202.
  • the phase fluctuation component is removed and the symbol of the multilevel signal is determined by inputting the electric field signals 203-1 and 203-2 after the electric field compensation to the symbol judgment unit 176 independent of the phase fluctuation. .
  • a highly functional optical multilevel modulation signal receiver can be configured by connecting a symbol determination circuit, an equalization circuit such as FFE or DFE, an error correction circuit, etc., downstream of the optical electric field receiver. Is possible.
  • FIG. 25 shows still another embodiment of the optical multilevel signal receiver to which the optical electric field receiver of the present invention is applied.
  • the signal 203-1 indicating the amplitude component r (n)
  • the signal 203-2 which is directly input to the determination unit 176 and indicates the phase component ⁇ (n), is input to the delay detection circuit 234 in the electrical domain, and the differential phase signal ⁇ (n) output from the delay detection circuit 234 Is supplied to the phase fluctuation independent symbol determination unit 176, thereby removing the phase fluctuation component and determining the symbol of the multilevel signal.
  • the electric field compensation circuit 202 In order to perform complete dispersion compensation in the electric field compensation circuit 202, it is necessary to reproduce all-optical electric field information r (n) and ⁇ (n) in advance by the electric field calculation unit 111 in the previous stage. However, when a signal to which delay detection is applicable, such as an APSK signal, is used as a received signal, the electric field compensation circuit 202 compensates for it. Of the compensated electric field signal, the phase component ⁇ i (n) is input to the delay detection circuit 234 in the electrical domain, and the differential phase signal ⁇ ⁇ ( ⁇ ) is calculated and applied to symbol determination. This makes it possible to eliminate the effects of phase fluctuations.
  • a signal to which delay detection is applicable such as an APSK signal
  • FIG. 26 shows an optical multilevel signal receiver to which interleave sampling is applied as a fourteenth embodiment of the present invention.
  • an optical delay detector 244-1 having a delay amount of 3 mm
  • three AZD conversions 1 06—1 ⁇ to 106—3 ⁇ and 106—1 ⁇ to 106—3 ⁇ are connected to the balanced optical receivers 105-1 and 105-2 respectively.
  • Three pairs of A ZD conversion outputs “xl, yl”, “x2, y2”, and “x3, y3” are respectively applied to the electric field calculation unit 111 1 to 11 1 3!
  • the output signals 117-1 to 117-3 of L 11 3 are respectively input to symbol determination units 176-1 to 176-3 independent of phase fluctuations. By interleaving these three symbol judgment units, the circuit speed required for symbol judgment can be reduced to 1Z3.
  • [0128] 240 is a frequency-divided clock source that generates a clock with a frequency of 1Z3T in synchronization with the received symbol timing.
  • delay circuit 157 With delay time T and 2T, the phase difference of symbol time T A three-phase clock signal sequence with is generated.
  • Three sets of AZD converters 106—iA, 106—iB (i l to 3) use these three-phase clock signals as sampling clocks, and output signals from balanced optical receivers 105-1, 105-2 Digitally.
  • the delayed detection signals output from balanced optical receivers 105-1 and 105-2 are these three sets of AZD variation ⁇ , as shown by black circles, double circles, and white circles in Fig. 27 In addition, they are sampled by interleaving into three sequences on the time axis.
  • the electric field calculation units 111-1 to L-11-3 perform the reproduction calculation of the optical electric field independently of each other. Can be executed.
  • the regenerated optical electric field signals 1171 to 117-3 are subjected to phase fluctuation removal and symbol determination by individual symbol determination units 176-1 to 176-3, respectively.
  • the three digital signals output from the symbol determination unit 176-1 to 176-3 are combined by a multiplexing circuit 243 and reproduced multi-value digital Signal 144 is output.
  • the three series of phase points interleaved on the time axis are individually processed by the electric field calculation units 1111-1111 and correlated with each other. If the signal is supplied to the symbol determination circuits 176-1 to 176-3 without any error, there is a possibility of errors in phase and amplitude.
  • the reproduction optical electric field signals 117-1 to 117-3 are branched to the electric field synchronization circuit 241, the average amplitude and average phase of the same phase point are compared with each other, and the difference is used as the correction signal 242.
  • This is supplied to the symbol determination unit 176-1 to 176-3.
  • Each symbol determination unit 176 performs normalization of the input signal amplitude and correction of the reference phase so that the amplitude and phase reference of the three systems of output signals always match according to the correction signal.
  • the correction signal 242 is supplied to the electric field calculation units 111 1 to 111 3 instead of being supplied to the symbol determination unit 176, and each of the electric field calculation units 111 1 to 111 3 receives each output signal (reproduced optical electric field signal).
  • 117— 1 to 1 17-3 Try to correct it.
  • the number of interleavings and the sampling rate can be arbitrarily selected.
  • the delay time of the optical delay detectors 201-1 and 201-2 is T and the sampling rate is 1ZT. If you do.
  • the optical electric field receiver of the present invention uses an optical delay detector, and therefore does not depend on the polarization state of the input light and requires a local oscillation light source. do not do.
  • the optical multilevel signal receiver shown in the embodiment can directly reproduce the two-dimensional coordinate information of the optical signal phase point in the electric field arithmetic circuit that processes the output signal of the optical delay detector.
  • the symbol decision circuit connected to the arithmetic circuit enables batch judgment of multi-level symbols, and the optical multi-level signal receiver with a large multi-level number such as 32-value and 64-value with high transmission efficiency is comparatively small hardware. Can be realized on a scale.
  • electric field calculation and multi-value determination can be executed by an electric digital circuit, so an adaptive receiver according to transmission line loss, signal SN ratio, deterioration factor, etc. can be easily obtained. realizable.
  • an electric field compensation circuit is connected to an optical electric field receiver, linear transmission degradation such as chromatic dispersion and band degradation can be completely compensated theoretically, and the adaptive content can be changed dynamically. Dispersion compensation can also be realized.
  • the present invention can be applied to, for example, an optical electric field waveform measuring apparatus and an optical space transmission apparatus in addition to a receiver for optical fiber communication.
  • a receiver in the field of wireless communication generally uses a local oscillator and is configured to coherently receive an orthogonal component of an input electric field. This corresponds to the coherent optical transmission method shown in FIG. 2 in this specification.
  • the polarization dependency of the received signal and the cost of the local oscillator do not matter, so such a coherent electric field receiver can be configured relatively easily.
  • the present invention obtains the same effect as coherent detection using an optical delay detector without using a local oscillator, and has a different problem from that of a receiver in the wireless communication field.
  • Delay detectors are also used in the wireless communication field. However, in the wireless communication field, it is common to generate a baseband signal by coherent quadrature detection using a local oscillator and apply delayed detection to the baseband signal.
  • the optical delay detection of the present invention is applied to a complex optical signal that cannot be orthogonally separated, and has a different effect from the delay detection in wireless communication.
  • the present invention can be applied to multi-value modulation signal reception with high transmission efficiency in the optical communication field.
  • FIG. 1 An explanatory diagram of a modulation method applicable to optical transmission.
  • FIG. 2 A configuration diagram (A) showing an example of a conventional coherent optical field receiver and a diagram (B) showing the effect of phase fluctuation.
  • FIG. 3 Phase point arrangement (A) of 8-level amplitude phase modulation (APSK) signal and configuration diagram (B) of a conventional 8-APSK signal receiving optical multilevel signal receiver.
  • APSK 8-level amplitude phase modulation
  • FIG. 5 is a configuration diagram showing a first embodiment of an optical electric field receiver according to the present invention.
  • FIG. 6 Diagram showing changes in electrical reception signal (A) and reproduction electric field signal (B) in the first embodiment. 7] Configuration diagram when the electric field calculation unit 111 in the first embodiment is parallelized.
  • ⁇ 11 Configuration of optical multilevel signal receiver showing the third embodiment of the optical electric field receiver according to the present invention.
  • ⁇ 12 Optical multilevel signal receiver showing the fourth embodiment of the optical electric field receiver according to the present invention.
  • Configuration Diagram 13 Configuration diagram of an optical APSK signal receiver showing a fifth embodiment of the optical electric field receiver according to the present invention.
  • Configuration diagram of an optical signal receiver for an N-value optical phase modulation signal showing a fifth embodiment of the optical electric field receiver according to the present invention.
  • FIG. 16 is a configuration diagram of a complete optical field receiver showing a sixth embodiment of the optical field receiver according to the present invention.
  • FIG. 19 is a configuration diagram of an adaptive compensation type optical electric field receiver showing an eighth embodiment of the optical electric field receiver according to the present invention.
  • FIG. 20 is a configuration diagram of a photoelectric field receiver for a binary intensity modulation signal, showing a ninth embodiment of the optical electric field receiver according to the present invention.
  • FIG. 23 A configuration diagram of an optical network such as a plurality of ADM cards, showing an eleventh embodiment of an optical electric field receiver according to the present invention.
  • FIG. 24 is a configuration diagram of an optical multilevel signal receiver showing a twelfth embodiment of the optical electric field receiver according to the present invention.
  • FIG. 25 is a configuration diagram of an optical multilevel signal receiver showing a thirteenth embodiment of an optical electric field receiver according to the present invention.
  • FIG. 26 is a block diagram of an interleave sampling type optical multilevel signal receiver showing a fourteenth embodiment of the optical electric field receiver according to the present invention.
  • FIG. 27 is an explanatory diagram of an interleave operation in the fourteenth embodiment.
  • Optical field receiver 101: Input optical signal
  • 102 Optical branch circuit
  • 103 Optical signal path
  • 10 Optical delay detector
  • 105 Balanced optical receiver
  • 106 AZD conversion
  • 107 Sampler 108: Delay adjustment circuit
  • 109 Electrical signal path
  • 111 Electric field calculation unit
  • 112 Square calculation circuit
  • 113 Inverse tangent calculation circuit
  • 115 Delay division circuit
  • 121 Packet synthesis circuit, 123: Optical multilevel signal, 124: Optical APSK signal, 130: Local oscillation laser light source, 131: Polarization separation circuit, 132: Local light emission, 133: P polarization of optical multilevel signal Component, 13 4: S polarization component of optical multilevel signal, 136: phase diversity circuit, 137: 1 component output light, 1 38: Q component output light, 141: digital operation circuit, 143: symbol judgment circuit, 144: Reproduction Multilevel digital signal, 150: Optical branch circuit, 151: Optical intensity receiver, 152: Binary decision circuit, 1 53: Binary reproduction digital signal, 154: Adder, 155: Weighting circuit, 156: Four quadrant multiplication 157: delay circuit, 158: multiplication circuit, 159: binary differential phase modulated light, 160: square root circuit, 161: clock extraction circuit, 171: subtraction circuit, 174: phase fluctuation estimation circuit, 175: phase fluctuation Estimated value, 176: Symbol variation circuit independent

Abstract

 受信した光多値信号を第1、第2の光信号に分岐する光分岐器と、上記第1の光信号を遅延時間T(T=シンボル時間)で遅延検波する第1の光遅延検波器と、上記第1の光遅延検波器と90度ずれた光位相差で、上記第2の光信号を遅延時間Tで遅延検波する第2の光遅延検波器と、上記第1、第2の遅延検波器から出力される複素信号のx成分、y成分を示す遅延検波信号をそれぞれ電気的信号に変換する第1、第2の光受信器と、上記第1、第2の光受信器の出力信号から、シンボル時間T毎に、上記複素信号で表される受信シンボルの振幅値と位相角を示す第1、第2の再生信号を生成する電界演算部とからなる光電界受信器。

Description

明 細 書
光電界受信器、光多値信号受信器および光伝送システム
技術分野
[0001] 本発明は、光情報伝送技術に関し、更に詳しくは、光ファイバで伝送される多値光 情報の受信に適した光電界受信器、光多値信号受信器および光伝送システムに関 する。
背景技術
[0002] 近年、一本の光ファイバで伝送可能な情報量 (伝送容量)は、多重化される波長数 の増加や光信号の変調速度の高速ィ匕によって拡大し続けてきた力 略 10T (テラ) bi tZsで限界に達した感がある。伝送容量の拡大が困難になった大きな理由は、光伝 送に使用可能な波長帯域が、光ファイバアンプの波長帯域 (C、 L、 Sバンドを合わせ て約 80nm= ΙΟΤΗζ相当)で制限される限界域に到達した力もである。このような状 況において、光ファイバの伝送容量を更に大きくするためには、信号変調方式をェ 夫し、限られた周波数帯域に多数の光信号を詰め込むことによって、周波数帯域の 利用効率を高くする必要がある。
[0003] 無線通信の世界では、 1960年代力も普及した多値変調技術によって、周波数利 用効率が 10を越えるような高効率の伝送が可能となっている。多値変調は、光フアイ バ伝送においても有望視され、従来力も多くの検討がされてきた。例えば、 R. A. Grif nn, et. ai., lOGb/s Optical Differential Quadrature Phase Shift Key (DQPb ) Trans mission using GaAs/AlGaAs Integration," OFC2002, paper PD- FD6, 2003 (非特許 文献 1)では、 4値位相変調を行う QPSK (Quadrature Phase Shift Keying)が報告さ れ、 Kenro Sekine, Nobuhiko Kikuchi, Shinya Sasaki, Shigenori Hayase and Chie Has egawa, "Proposal and Demonstration of 10— Gsymbol/sec 16— ary (40 Gbit/s) Optical Modulation I Demodulation Scheme," paper We3.4.5, ECOC 2004, 2004 (非特許 文献 2)では、 4値の振幅変調と 4値の位相変調とを組み合わせた 16値の振幅'位相 変調が報告されている。
[0004] 図 1の (A)〜(D)は、光伝送に適用可能な公知の各種変調方式の特徴を示した図 であり、位相面 (IQ平面上)に光変調の位相点 (識別時刻における光電界の複素表 示)がプロットされている。
[0005] (A)は、広く用いられて ヽる 2値振幅変調(BASK)を示す。 BASKでは、位相は利 用せず、振幅の強弱のみで 1ビットの情報が伝送される。
(B)は、 4値の位相角(0、 π /2、 π 、 一 π Ζ2)を用いることによって、 1シンボルで 2ビットの情報(11、 10、 01、 00)を伝送する 4値位相変調(QPSK)を示している。
[0006] (C)は、無線で広く用いられている 16値直交振幅変調(16QAM)を示す。 16QA Μでは、位相点が格子状に配置され、 1シンボルで 4ビットの情報伝送が可能となる。 図示した例では、 Q軸座標で上位 2ビット(11χχ、 10χχ、 01χχ、 ΟΟχχ)の値、 I軸座標で 下位 2ビット(xxl l、 χχ10、 xx01、 xxOO)の値が表現されている。この位相点配置は、位 相点間の距離を大きくできるため、受信感度が高いことが知られているが、光通信分 野での実現例は、未だに報告されていない。
[0007] (D)は、 2値振幅変調の位相点と 8値位相変調の位相点が同心円状に配置された 16値振幅位相変調(16APSK)を示し、(E)は、振幅と位相の関係を示している。
[0008] このように、従来力も多値信号の様々な位相点配置が検討されて 、るが、多値数の 増加に伴って受信器が複雑化する。また、多値数が増加すると、位相成分を検出す るための光遅延検波における符号間干渉が増えるため、受信感度などの特性が急 速に悪ィ匕するという問題がある。
[0009] 一方、光伝送容量を拡大するために、各波長(チャネル)の変調速度を lOGbitZ 秒〜 40GbitZ秒程度に高速ィ匕する検討もなされている。し力しながら、変調速度を このように高速ィヒすると、光ファイバの持つ波長分散や、自己位相変調効果などの非 線形効果によって、伝送品質が大きく劣化する。光伝送の場合、波長分散の影響で 、光伝送距離が信号ビットレートの 2乗分の 1で急減する。そのため、 lOGbitZ秒以 上の光伝送においては、光信号受信端や光中継器に、伝送路で発生する波長分散 を補償するための分散補償器が必要となる。例えば、 40GbitZ秒の光伝送では、波 長分散に対する耐力が、通常分散ファイバで僅か 5km分程度しかないため、光信号 受信端に配置された可変波長分散補償器によって、信号品質の劣化が最小となるよ うに自動的に制御する適応補償技術が検討されて!ヽる。 [0010] し力しながら、可変波長分散補償器は、装置のサイズ、複雑さ、コスト、制御速度な どの点で多くの解決課題を残している。近年では、光信号受信機の電気回路部に、 フィードフォワード等化回路 (FFE)または判定帰還等化回路 (DFE)などの電気的 な適応等化回路を配置した構成や、最尤推定回路 (MLSE)で受信シンボルを推定 する電気段補償技術が検討されている。但し、従来技術による電気段での波長分散 補償は、受信光波形のアイ開口を整形するだけの不完全なものなつている。そのた め、補償効果も、受信器の波長分散耐カを実効的に 1. 5〜2倍に拡大し、例えば、 4 OGbitZ秒の通常の光ファイバ伝送で伝送距離を 1 Okmまで延ばす程度の不十分 なものであった。
[0011] 上述した問題を解決し得る従来技術の一つとして、例えば、 M. G. Taylor, "Cohere nt detection metnod using DSP to demodulate signal and for subsequent equalization of propagation impairments," paper We4.P.l l l, ECOC 2003, 2003 (非特許文献 3) で報告されたコヒーレント光電界受信システムがある。コヒーレント光電界受信システ ムでは、図 2の(A)に示すように、光ファイバ伝送路で伝送された光多値信号 123が 、偏波分離回路 131によって、水平 (P)偏波成分 133と垂直 (S)偏波成分 134とに 分離され、それぞれコヒーレント光電界受信器 135— 1、 135— 2に入力される。
[0012] コヒーレント光電界受信システムには、送信光源と略同一の波長をもつ局部発振レ 一ザ光源 130を必要とする。上記レーザ光源 130からの出力光(局発光) 132は、光 スプリッタ 102で 2つの局発光 132—1と 132— 2に分離され、コヒーレント光電界受 信器 135— 1と 135— 2に入力される。
[0013] コヒーレント光電界受信器 135— 1は、光位相ダイバーシティ回路 136とデジタル演 算回路 141とを備えている。光位相ダイバーシティ回路 136は、入力された光多値信 号の P偏波成分 133と局発光 132— 1から、局発光と光多値信号との同相成分よりな る 1 (同相)成分出力光 137と、局発光と光多値信号との直交成分よりなる Q (直交)成 分出力光 138を生成し、 I成分出力光 137はバランス型光受信器 105— 1に、 Q成分 出力光 138はバランス型光受信器 105— 2に供給する。ノ ランス型光受信器 105— 1、 105— 2から出力されたアナログ電気信号は、それぞれ A/D変翻106— 1、 1 06 2で時間サンプリングされ、デジタル信号に変換される。 [0014] 以下の説明では、図 1の (E)に示すように、受信信号の光電界を r(n)exp( φ (η))と定 義し、局発光 132—1、 132— 2の光電界を exp (- θ (n))と表記する。ここで、 rは光電 界の振幅、 φは光電界の位相、 nはサンプリング時刻を示しており、局発光 132の振 幅は一定値「1」と仮定している。また、 θ (n)は、レーザ光源が本質的に持っているラ ンダムな位相雑音や、局発光と信号光の差周波成分によって生じる位相変動を示し ている。尚、送信機側の送信光源も位相雑音を持っているが、ここでは、説明を簡単 化するため無視されている。
[0015] 各バランス型光受信器 105— 1、 105— 2は、入力された光多値信号を局発光でホ モダイン検波し、それぞれ局発光を基準にした光多値信号の光電界の同相成分と直 交成分を出力する。従って、 AZD変換器 106— 1の出力信号 140— 1は、 I'(n)=r(n )cos( (i) '(η))、 AZD変翻 106— 2の出力電気信号 140— 2は、 Q'(n)=r(n)sin( φ '(η ;))となる。但し、ここでは、簡単化のために φ '(η)= φ (η) + θ (η)とし、変換効率などの 定数は全て「1」としてある。
[0016] ここで、位相変動 θ (η)を無視すると、 φ '(η)= φ (η)となる。従って、コヒーレント光電 界受信器を用いた場合、受信した光多値信号 123から、光電界 r(n)eXp (n))を示す 全ての情報 (ここでは I、 Q両成分)が直接的、且つ簡単に得られ、多値光信号受信 が可能となるはずである力 実際には、局発光 132の位相変動 θ (n)の影響を無視で きない。例えば、受信した光多値信号が、図 1の(C)に示した 16値直交変調(16QA M)で多値変調されていたと仮定すると、位相変動 θ (n)があった場合、受信信号の 位相点配置は、等化的に図 2の (B)に示すように、理想的な位置から θ (n)だけ回転 する。その結果、上述した Γ(η)と Q'(n)からは、どのシンボル (位相点)が送信されたか を識別できなくなる。
[0017] デジタル演算回路 141は、 AZD変換器 106— 1、 106— 2の出力信号から、位相 点のゆっくりとした回転成分 (〜数 100MHz)を検出し、この回転成分を位相変動 Θ ( n)と見做して AZD変翻の出力信号力も演算処理で除去し、正しい同相成分 I(n) =r(n)cos( φ (η》、直交成分 Q(n)=r(n)sin( φ (η))を示す出力信号 142— 1、 142— 2を シンボル判定回路 143に出力する。
[0018] バランス型光受信器 105— 2も、バランス型光受信器 105— 1と同様の動作で、出 力信号 142— 3、 142— 4として、正しい同相成分 I(n)=r(n)cos( φ (n))、直交成分 Q(n) φ (η))を出力する。シンボル判定回路 143は、上記各デジタル演算回路 14 1から出力された I、 Q成分を図 1 (C)に示した位相点配置と比較することによって、ど のシンボルが伝送されたかを高精度に判別し、再生多値デジタル信号 144を出力す る。
[0019] 上述したコヒーレント光電界受信器を利用すれば、波長分散などに起因した信号劣 化を演算処理で補償して、多値信号の識別に必要な全ての電界情報を生成できる ため、原理的には、どのように複雑な多値信号でも受信可能となる。また、上記コヒー レント光電界受信器には、デジタル演算回路 141で、入力信号に光ファイバ伝送路 の伝搬関数の逆関数による補正処理を行うことにより、波長分散などによる線形劣化 を理論的には完全に補償でき、補償量にも制限が無いと言う大きな利点がある。但し 、現時点では、 lOGbitZ秒以上の信号処理性能をもつような小型の高速デジタル 演算回路 141が巿場に提供されて 、な 、ため、上述したデジタル処理型のコヒーレ ント光電界受信器は、高速の AZD変換器を用いて取り込んだ電気信号 140— 1、 1 40— 2をコンピュータでオフライン演算して、その効果を検証中の段階にある。
[0020] 一方、図 3の(B)は、非特許文献 2に代表される従来の振幅位相変調光受信用の 光多値信号受信器の構成図を示し、図 3の (A)は、位相 4値、振幅 2値の 8個の位相 点が同心円上に配置された 8値の振幅位相変調光(8APSK)の 1例を示して 、る。 8 APSK信号のように、位相成分が等間隔に分割される光変調では、通常、位相成分 の変調に差動符号ィ匕が用いられる。本例では、振幅 2値と、直前シンボルとの位相差 力 0、 π /2、 π 、 一 π /2の何れ力になる位ネ目 4値に対応付けて、各シンポノレで 3 ビットの情報を伝送する。
[0021] 8APSK信号を受信する光多値信号受信器は、光電界を検出しない非コヒーレント 方式であり、図 3の(Β)に示すように、入力された光 APSK信号 124は、光分岐回路 150で 3つの光信号に分岐される。そのうち、 2つの光信号が光遅延検波器 104—1 と 104— 2に、残る 1つの光信号が光強度受信器 151に入力される。光遅延検波器 1 04— 1と 104— 2は、それぞれ入力信号にシンボル時間 Τの遅延を与える第 1の光パ スと、 π /4位相シフタまたは + π /4位相シフタをもつ第 2の光パスと力もなり、受信 した光多値信号の状態 (シンボル)を時刻 Tだけ前に受信したシンボルと干渉させて
、位相変調成分を光強度信号に変換する。
[0022] + π /4位相シフタをもつ光遅延検波器 104— 1の出力光は、受信シンボルと直前 のシンボルとの位相差力 SOまたは + π Ζ2となった時に出力強度が大となり、位相差 がー π Ζ2または πとなった時に出力強度が小となる。光遅延検波器 104— 1の出 力光をバランス型受信器 105— 1で受信し、その出力を 2値判定回路 152— 1で 2値 判定することによって、 1ビット分の 2値再生デジタル信号 153— 1が得られる。
[0023] π /4位相シフタをもつ光遅延検波器 104— 2の出力光は、受信シンボルと直前 のシンボルとの位相差力 SOまたは π Ζ2となった時に出力強度が大となり、位相差 が π Ζ2または πとなった時に出力強度が小となる。光遅延検波器 104— 2の出力 光をバランス型受信器 105— 2を介して 2値判定回路 152— 2に入力することによつ て、位相成分に含まれる他の 1ビット分の 2値再生デジタル信号 153— 2が再生され る。
[0024] 光強度受信器 151は、受信信号の光強度 (光電界振幅の二乗)を電気信号に変換 する。光強度受信器 151の出力は、 2値判定回路 152— 3で判定され、光振幅成分 に含まれる 1ビット分の 2値再生デジタル信号 153— 3が再生される。この光多値信号 受信器は、光遅延検波を用いているため、位相変動 θ (η)の影響と偏波依存性が殆 どなぐ局部発振光源が不要となる等の利点があり、 16値までの APSK信号の受信 に適用されている。
[0025] 図 4ίま、 ¾ し aiabro, 'Improved Detection of Differential Phase Shift Keying Through
Multi-symbol Phase Estimation," proc. ECOC '05, We4P 118, 25—29 September 20 05, Glasgow, Scotland, 2005 (非特許文献 4)に示された 2値位相変調光の受信器を 示す。
[0026] この受信器は、 2値差動位相変調 (DPSK)の入力光信号 159を高感度受信する ために、無線通信で用いられる判定帰還方式を適用している。本例では、入力信号 を 2つの光信号に分岐して、光遅延検波器 104— 1と 104— 2に入力する。光遅延検 波器 104— 1と 104— 2は、図 5と同様、入力信号にシンボル時間 Tの遅延を与える 第 1の光パスと、位相角 0の位相シフタまたは π /2位相シフタをもつ第 2の光パスとか らなっている。
[0027] ここでは、位相変調成分を φ (n)とし、 2値位相変調信号の光電界を exp( φ (η))で表 す。光遅延検波器 104— 1、 104— 2の出力をそれぞれバランス型受信器 105— 1、 105— 2〖こ入力すると、 2つのバランス型受信器の出力信号は、 cos(A φ (η))、 sin(A φ (η))と表される。但し、 Δ (η)= (η)- (η-1)であり、振幅成分は一定となるため 、「1」に規格ィ匕されている。
[0028] ノランス型受信器 105— 1の出力 cos(A φ (n》の値は、もし雑音がなければ、差動 位相変調 Δ φに対応して、 Δ () =0の場合は「1」、 Δ φ = πの場合は「一 1」となり、 DPSK信号の情報値と対応した値となる。そのため、通常の DPSK受信器では、原 理的に、バランス型光受信器 105— 1の出力を 2値判定回路 152に直接入力して、 2 値再生デジタル信号 153 ( Δ φ =0の時は「1」、 Δ φ = πの時は「ー1」)が得られる。
[0029] し力しながら、このような遅延検波において、光信号に雑音や符号間干渉があると、 直前のシンボルで位相 φ (η-1)がばらつき、 Δ φ (η)の判定に誤差が発生する。このよ うな Δ φ (η)の判定誤差を低減するために、図 4に示した受信器では、判定帰還方式 を採用している。
具体的には、遅延回路 157— 1、 157— 2と乗算器 158— 1、 158— 2を用いて、直 前のシンボルの位相差情報 cos Δ φ (η- 1)、 sin A φ (η- 1)に、 2値判定回路 152から出 力された 2値デジタル情報を乗算することによって、差動位相変調成分(「0」または「 π」)を消去し、誤差成分のみを抽出している。抽出された誤差成分と新たな位相差 情報 φ (η)から、 4象限乗算器 156で補償信号を生成し、補償信号を重み付け回路 1 55— 1、 155— 2に入力する。重み付けされた補償信号を加算回路 154— 1、 154— 2で受信信号に加えることによって、前ビット (シンボル)の影響を部分的に除去する。 これによつて、加算回路 154— 1、 154— 2から正確度を増した 2値差動位相変調成 分 cos( A φ ί(η》、 8ίη( Δ φ i(n》が得られるため、 2値判定結果の誤差成分を低減し、 受信感度を向上できる。
[0030] 上述した 2値位相変調光受信器は、構造の対称性から、比較的容易に 4値の差動 位相変調信号受信に拡張できる。しかしながら、位相変調と振幅変調との組合せに よる 4値以上の光多値信号受信への拡張は困難である。 [0031] 非特許文献 1 : R. A. Griffin, et. al, "lOGb/s Optical Differential Quadrature Phase Shift Key (DQPSK) Transmission using GaAs/AlGaAs Integration, OFC2002, pape r PD-FD6, 2003
非特許文献 2 : Kenro Sekine, Nobuhiko Kikuchi, Shinya Sasaki, Shigenori Hayase an d Chie Hasegawa, "Proposal and Demonstration of 10— Gsymbol/sec 16— ary (40 Gbit /s) Optical Modulation I Demodulation Scheme," paper We3.4.5, ECOC 2004, 200 4
非特許文献 3 : M. G. Taylor, "Coherent detection method using DSP to demodulate signal and for subsequent equalization of propagation impairments, paper We4.P.l l 1, ECOC 2003, 2003
非特許文献 4 : S Calabro, "Improved Detection of Differential Phase Shift Keying Thr ough Multi-symbol Phase Estimation," proc. ECOC '05, We4P 118, 25—29 Septemb er 2005, Glasgow, Scotland, 2005
発明の開示
発明が解決しょうとする課題
[0032] 本発明の第 1の目的は、偏波依存性がなぐ局部発振光源を必要としない実用的な 光電界受信器および光多値信号受信器を提供することにある。
本発明の第 2の目的は、シンボル判定に必要な光多値変調信号の全ての電界情 報 (受信シンボルの振幅値、位相角、またはシンボル間位相差)を検出可能な光電 界受信器および光多値信号受信器を提供することにある。
[0033] 光ファイバ伝送では、伝送光信号の偏波の状態が、時間的に大きく変動することが 知られている。図 2で説明したコヒーレント光電界受信器は、原理的に偏波依存性が あり、偏波の変動によって前述した P偏波成分が失われると、コヒーレント光電界受信 器 135— 1は、動作不能となってしまう。そこで、図 2に示したコヒーレント光電界受信 システムでは、光多値信号の P偏波成分 133を受信するコヒーレント光電界受信器 1 35— 1と、 S偏波成分を受信するコヒーレント光電界受信器 135— 2とを用意し、シン ボル判定回路 143が、これら 2つの受信器の一方を選択してシンボル判定する偏波 ダイバーシティ構成として 、る。 [0034] 更に、コヒーレント光電界受信システムには、波長が受信光と略合致した局部発振 光源 130を必要とするため、波長管理が複雑になるという問題がある。また、偏波ダ ィバーシティ構成を採用することにより、偏波状態が変動しても入力光信号の受信が 可能となるが、この場合、偏波分離回路 131ゃ光スプリッタ 102等の余分な光部品が 必要となり、受信器のハードウェア規模が大きくなるという実用上の大きな問題がある
[0035] 一方、図 3で説明した多値光受信器や、図 4で説明した判定帰還型の多値位相変 調受信器では、受信信号の強度と相対位相差をそれぞれ 2値判定して 、るだけであ り、光電界の全情報の検出、例えば、図 1 (C)の 16QAM信号の判定に必要となる振 幅値と絶対位相値の組み合わせを行うことはできない。何故なら、これらの方式で使 用されて 、る光遅延検波器は、時間軸上で連続した 2つのシンボルの相対位相差に 応じて変化する強度信号を検出するためのものであり、各シンボルの絶対位相を検 出することはできないためである。また判定が 2値に限られるため、図 1 (D)の 16AP SK信号の判定に必要となる相対位相差の 8値検出などを行うこともできない。
[0036] 本発明の第 3の目的は、多値数の異なる複数種類の光変調方式に応用可能な汎 用性の高!ヽ光電界受信器、光多値信号受信器および光伝送システムを提供すること にある。
コヒーレント光電界受信器は、この課題に対しても利点がある。し力しながら、図 3で 説明した光多値信号受信器や、図 4で説明した判定帰還型多値位相変調受信器の ように、非コヒーレント型の受信器では、受信信号強度の 2値判定と相対位相差の 2 値判定とを組み合わせる構造となって 、るために、シンボルの多値数が 2の N乗で増 カロした場合、原則として、 N組の受信回路を必要とし、受信器の構成が複雑化する。 この構成複雑ィ匕は、将来的に更に多値数の増加が望まれる光多値信号受信器にお いて、実用上の大きな問題となる。また、これらの非コヒーレント型の受信器は、受信 する光信号の変調方式や位相点配置に依存して受信器の構造が変わるため、汎用 性に欠けるという問題もある。非特許文献 2では、 4値の強度多値変調信号を 1つの 光強度受信器で受信しているが、多値アナログ信号は、電気回路段での劣化が大き くなるため、光信号の 4値以上の多値ィ匕は容易でな 、。 [0037] 本発明の第 4の目的は、非コヒーレント方式で光電界の全情報を検出し、伝送中に 生じた線形劣化を補償する光電界受信器を実現することにある。一般に遅延検波で は、光信号が振幅変調成分を持つと、出力信号強度が振幅変調成分によって変動 するため、局部発振光源を用いたコヒーレント光受信方式でなければ、光電界情報 を得ることはできないと考えられている。もし、従来の 2値振幅変調を含む多値変調さ れた光信号を受信し、全ての電界情報を得ることができれば、受信器の電気回路段 において、伝送中に生じた線形劣化を演算処理で補償し、例えば、高度の分散補償 を実現できる。
課題を解決するための手段
[0038] 上記目的を達成するため、本発明の光電界受信器および光多値信号受信器では 、受信光信号を位相が互いに 90度ずれた 1対の光遅延検波器に入力し、それぞれ の遅延検波出力を電気信号に変換し、電界演算部を用いて光電界情報を算出する 。上記構成によれば、ホモダイン検波を行っていないため、局部発振光源が不要で あり、また、光遅延検波器には偏波依存性がないため、偏波依存性のない光電界受 信器を実現できる。
[0039] 具体的に説明すると、本発明では、 1対の光遅延検波器から、複素信号の直交成 分 X成分と y成分 (または I成分と Q成分)を示す 2つの遅延検波信号を発生し、電界 演算部で上記複素信号の位相成分 (シンボル間位相差)を算出し、算出された位相 成分から、過去に算出した直前シンボルの位相角を減算することによって、受信シン ボルの位相角を算出する。また、上記 2つの遅延検波信号から、複素信号の振幅値 を算出し、この値を過去に算出した直前のシンボルの振幅値で除算することで、受信 シンボルの振幅値を算出する。
尚、受信シンボルの振幅値は、光遅延検波器とは別に設けた光強度検出器の出力 に基いて演算してもよい。これらの演算は、光遅延検波器の出力信号を電気的なァ ナログ信号に変換し、これを AZD変 でデジタル変換することによって、電気的 なデジタル演算処理回路で実現することができる。
[0040] 受信光信号が多値位相変調信号の場合、本発明の光電界受信器および光多値信 号受信器は、電界演算部で算出したシンボル間位相差力 受信シンボルを判定する 多値シンボル判定回路を備える。また、受信光信号が、例えば、 QAM信号や APS K信号のように、振幅変調と位相変調を組み合わせた光多値変調信号の場合、本発 明の光電界受信器および光多値信号受信器は、電界演算部で算出された光電界の 振幅値と位相成分 (シンボル間位相差またはシンボル位相角)、または同相成分と直 交成分から、受信シンボルを判定する多値シンボル判定回路を備える。このような光 多値信号の受信においては、位相や振幅の低速度の変動が問題となる力 この変動 成分は、多値シンボル判定に、例えば、判定帰還演算などの手法を採用することに よって除去できる。
[0041] 本発明の 1実施例では、ナイキストの定理を満たすように、光遅延検波器の遅延時 間 Tと、 AZD変換器のサンプリング時間をそれぞれ lZ2f (fは入力光信号の持つ最 高周波数成分)以下にする。これによつて、デジタル光電界信号として、時間領域も 含めて入力光波形の完全な複製を再生でき、波長分散などに起因した波形劣化に よる光伝送距離の制限を緩和することが可能になる。
[0042] また、再生された光電界信号に対して、例えば、光電界補償回路で光伝送路伝搬 特性の逆演算を行えば、波長分散をより完全に補償することが可能となる。この場合 、補償すべき波長分散量を光電界補償回路に指定する必要があるが、波長分散値 が既知の場合は固定の補償値を予め指定すればよぐ波長分散値が不明の場合は 、受信状態に応じて補償値が自動的に変更される適応補償型の光電界補償回路を 採用すればよい。また、波長分散量の補償値や適切な補償アルゴリズムを外部装置 で判定できる場合は、光電界補償回路に対し外部装置力もて補償値を設定できる。
[0043] 例えば、本発明の光電界受信器および光多値信号受信器が、光ネットワークを構 成する光伝送装置に付随して配置される場合、光ネットワークに接続された制御端 末によつて、光信号経路に沿った光ファイバの総波長分散量を算出し、この値を光 信号受信側の光伝送装置に送信し、光電界受信器および光多値信号受信器の光 電界補償回路に補償量の初期値として与えることによって、最適な補償量の設定が 可能となる。この方式によれば、光ネットワーク内での光信号経路が変更された場合 、再計算された補償量を光電界補償回路に迅速に設定できるため、適応補償型の 光電界補償回路を不要にしたり、適応補償制御における最適状態への引き込み時 間を短縮することが可能となる。
発明の効果
[0044] 本発明は、光遅延検波器を用いているため、入力光の偏波状態に無依存であり、 従来のコヒーレント検波方式と異なり、局部発振光源を必要としていないため、受信 器の構成が簡単になる。また、従来の非コヒーレント型の多値光受信器では、受信信 号の多値数の増加と共に回路規模が大形ィ匕したが、本発明の光電界受信器および 多値光受信器は、受信光電界の位相面上の 2次元座標情報を直接的に再生できる ため、伝送効率を向上させるために光変調信号の多値数を大きくした場合でも、実 用的なハードウ ア規模で受信信号のシンボルを判定きるという利点がある。また、 本発明によれば、受信光信号の電界演算や多値判定を電気的なデジタル回路で実 行できるため、同一の受信器構成で、多値数や変調方式の異なる光信号に適合す ることが可能となる。
発明を実施するための最良の形態
[0045] 以下、本発明の幾つかの実施例を図面を参照して説明する。
実施例 1
[0046] 図 5は、本発明による光電界受信器 100の第 1実施例を示す。図 5において、光信 号の経路は太線で、電気信号の経路は細線で示してある。
式 η)ΘΧρ( φ (n》で表される入力光信号 101は、図 4で説明した従来の判定帰還型 の多値位相変調受信器と同様、光分岐回路 102によって 2つの光信号に分岐され、 光遅延検波器 104— 1と 104— 2に入力される。光遅延検波器 104— 1と 104— 2は 、入力信号にシンボル時間 Tの遅延を与える第 1の光パスと、 2つの検波器で位相が 互いに π /2ずれるように、位相角 0の位相シフタまたは π /2位相シフタをもつ第 2の 光パスとからなり、位相シフトした光多値信号の状態 (シンボル)を時刻 Τだけ前に受 信したシンボルと干渉させて 、る。
[0047] 光遅延検波器 104— 1、 104— 2から出力された光信号は、それぞれ光バランス型 受信器 (光検出器) 105— 1、 105— 2で電気信号に変換した後、 AZD変翻106 —1、 106— 2でデジタル信号に変換される。 AZD変翻 106— 1、 106— 2から出 力されたデジタル信号は、それぞれ遅延調整回路 108— 1、 108— 2で、 2つの信号 経路のタイミングのずれをシンボル時間 T以下に調整した後、電気的受信信号 110 1、 110— 2として電界演算部 111に供給される。
[0048] 電気的受信信号 110— 1、 110— 2は複素信号であり、光遅延検波の原理から、そ れぞれ x=r(n)r(n- l)cos( A φ (n))、 y=r(n)r(n- l)sin( A φ (n))と書ける。ここで、 Δ (η) = (η)- (η-1)である。上記直交成分 χ、 yから明らかなように、電気的受信信号 11 0—1、 110— 2には、 n番目の受信シンボル情報と、その直前の n—l番目の受信シ ンボル情報とが混在している。そこで、本実施例では、これらの信号を電界演算部 11 1に入力し、直前の n— 1番目のシンボル情報を除去し、 n番目の受信シンボル情報 のみを抽出して、再生光電界信号 117—1、 117— 2として出力する。本例では、再 生光電界信号 117—1は電界振幅 r(n)、再生光電界信号 117— 2は位相角 φ (n)を 示す。
[0049] 電界演算部 111は、具体的には、電気的受信信号 110— 1、 110— 2から遅延検 波信号の振幅 r(n)r(n-l)を算出するための平方演算回路 112と、電気的受信信号 11 0—1、 110— 2から遅延検波信号の位相差 Δ φ (η)を算出するための逆正接演算回 路 113と、平方演算回路 112に接続された遅延除算回路 115と、逆正接演算回路 1 13に接続された遅延加算回路 116とからなる。
[0050] 遅延除算回路 115は、振幅 r(n)r(n-l)から直前受信シンボルの振幅 r(n-l)成分を除 去することによって、受信シンボルの電界振幅 r(n)を示す再生光電界信号 117— 1を 出力する。一方、遅延加算回路 116は、位相差 Δ φ (n)力 直前受信シンボルの位 相成分 φ (n-1)を除去することによって、受信シンボルの位相角 φ (n)を示す再生光電 界信号 117— 2を出力する。
[0051] ここに示した光電界受信器は、電界演算部 111の後段に、再生光電界信号 r(n)と φ (η)と対応するビット値を判定するための多値シンボル判定回路を接続することによ つて、光多値信号受信器を構成できる。また、光遅延検波器 104— 1、 104— 2の遅 延時間とサンプリング時間をシンボル時間 Τの 1Z2以下としておき、再生光電界信 号を伝送路の伝播関数の逆特性で補正する補償演算回路を設けることによって、波 長分散などに起因する信号の劣化を完全に補償する光電界受信器および光多値信 号受信器を構成することができる。 [0052] 図 6は、上記第 1実施例の光電界受信器の動作タイミングの説明図である。
A/D変換回路 106— 1、 106— 2は、それぞれサンプリングクロック 107— 1、 107 —2で決まる所望の周期とタイミングで、光バランス型受信器 105— 1、 105— 2の出 力信号を AZD変換する。
[0053] 図 6 (A)は、電界演算部 111に入力される電気的受信信号 110—1 (x成分)と電気 的受信信号 110— 2 (y成分)の変化を示し、図 6 (B)は、電界演算部 111から出力さ れる再生電界信号 117- 1 (振幅成分 r)と再生電界信号 117- 2 (位相成分 φ )の変 化を示している。ここでは、サンプリングクロックの周波数を受信光多値信号のシンポ ルレートに一致させ、各シンボル期間の中央のタイミングで受信信号をサンプリングし ている。
[0054] 平方演算回路 112は、シンボル周期で入力信号 x、 yの二乗和の平方根を計算す ること〖こよって、余弦項と正弦項を消去し、振幅の積 r(n)r(n-l)を示す信号 114—1を 出力する。また、逆正接演算回路 113は、入力信号 x、 yの逆正接 tan-Ky/x)を計算 することによって、入力信号 x、 yを直交成分とする複素信号 (以下、「遅延検波信号」 と呼ぶ)の位相差 Δ φ (例えば、 πく Δ φ≤ π )を示す信号 114— 2を出力する。
[0055] これらの信号は、それぞれ遅延除算回路 115と遅延加算回路 116に入力される。
電界演算部 111が正常に動作していれば、前のシンボル周期で、直前シンボルの電 界情報 r(n-l)と φ (η-1)の値が判明しているはずである。従って、遅延除算回路 115 において、平方演算回路 112から出力された振幅積 r(n)r(n-l)を直前シンボルの振 幅 r(n-l)で除算することによって、受信シンボルの振幅 r(n)を算出できる。また、遅延 加算回路において、逆正接演算回路 113から出力された Δ φ (η)に直前シンボルの 位相 φ (η-1)を加算することによって、受信シンボルの位相角 φ (η)を算出できる。この ように、本実施例では、非コヒーレント受信器である光遅延検波型の光受信器を用い て、入力光信号 101から振幅値と位相角を示す光電界情報を抽出できる。
[0056] 尚、図 5において、光信号経路 103上の光部品間の結合には、光部品間の光ファ ィバによる結合、バルタ光学素子空間ビームによる結合、集積化された光部品間の 導波路による結合など、各種の接続形態を採用できる。また、図示したように、光遅 延検波器 104とバランス型受信器 105とを組み合わせると、検波器出力信号の振幅 を倍加し、不要な直流信号を除去できる利点がある。但し、バランス型受信器 105の 代わりに、通常の光強度検出器を適用することもできる。
[0057] 遅延調整回路 108— 1と 108— 2は、光分岐回路 102と電界演算部 111との間の 2 つの信号経路における信号伝搬時間を一致させ、 X成分と y成分の演算タイミングを 合わせるためのものであり、例えば、ノ ッファ回路で実現できる。但し、 2つの信号経 路長を製造段階で完全に一致可能な回路構成を採用した場合、遅延調整回路 108 —1、 108— 2は省略できる。また、遅延調整回路 108— 1、 108— 2を使用する代わ りに、 X成分と y成分の相対的位相を別の方法、例えば、 AZD変換器 106— 1、 106 —2に供給されるサンプリングクロック 107— 1と 107— 2の印加タイミングによって制 御するようにしてちょい。
[0058] 図 5では、 AZD変換器 106— 1 (106— 2)の後に、デジタル遅延調整回路 108— 1 (108— 2)を配置している力 遅延調整回路としてアナログ遅延線を使用し、その 後に AZD変換器 106を配置した回路構成としてもよい。また、 AZD変換器 106を 省略して、電界演算部 111の一部または全ての演算機能をアナログ回路で実現して ちょい。
[0059] ここに示した実施例では、極座標 (r(n)、 φ (n))演算型の電界演算部 111が使用さ れているが、電界演算部 111としては、直交座標(I(n)、 Q(n))演算型のものを適用す ることもできる。この場合、必要に応じて、座標変換回路が使用される。
電界演算部 111の機能は、例えば、 FPGA、 ASIC, DSP、または機能を再構成可 能なプロセッサで実現できる。この場合、電界演算部 111で行うべき演算の手順ゃ演 算方法には、その目的に応じて、実施例とは異なった各種のノリエーシヨンや近似計 算法がある。また、異なる入力信号値と対応して、予め演算しておいた出力値をメモ リに記憶しておき、入力信号値に応じてテーブルルックアップ形式で演算結果を求め る構成としてもよい。電界演算部 111の内部には、必要に応じて他の機能回路、例え ば、信号の振幅や強度を正規化する自動利得制御 (AGC)回路が備えられて ヽても よい。
[0060] 1つの電界演算部 111では、充分な計算速度が得られない場合には、例えば、図 7 に示すように、電界データ列をパケット分割回路 120に入力し、時系列の順に、 1〜 N、 N+ 1〜2N、 2N+ 1〜3Nのように、 Nデータずつ 3系列のデータパケット(デー タブロック)に分割し、各データパケットを並列配置された 3つの電界演算部 111—1 〜111 3で処理し、各電界演算部から出力された再生電界信号をパケット合成回 路 121で合成するようにしてもよい。尚、このように電界データ列を分割して処理した 場合、各データパケットの連結部分で、光電界位相が連続するように調整する必要 があるが、これは、例えば、前後のデータパケットに数ビットの重複部分を持たせ、重 複ビットの位相が一致するように補正することによって解決できる。
実施例 2
[0061] 図 8は、本発明の第 2実施例として、図 5に示した光電界受信器 100を利用した光 多値信号受信器を示す。
送信光源や光増幅器で雑音が発生すると、これらの雑音 (例えば、位相変動)は、 光電界受信器で再生された光電界位相の変動要因となる。第 2実施例は、位相変動 θ (n)を含む光多値信号 123を受信した場合に、再生多値デジタル信号から位相変 動 θ (n)の影響を除去できるようにしたことを特徴とする。
[0062] 受信した光多値信号 123は、光分岐回路 102と、光遅延検波器 104 (104— 1、 10 4 2)と、光バランス型受信器 105 (105— 1、 105— 2)と、 AZD変^^ 106 (106 1、 106— 2)と、遅延調整回路 108 (108— 1、 108— 2)と、電界演算部 111とから なる図 1と同様の光電界受信器によって処理される。本実施例では、電界演算部 11 1からは、振幅成分 r(n)を示す再生電界信号 117— 1と、位相変動 θ (n)の影響を受 けた位相成分 φ '(η)を示す再生電界信号 117— 2とが出力される。これらの再生電界 信号 117— 1、 117— 2は、位相変動無依存のシンボル判定部 176に入力される。
[0063] シンボル判定部 176は、シンボル判定回路 143と、位相変動推定回路 174と、遅延 回路 157— 1、 157— 2と、減算回路 171と力もなつている。シンボル判定回路 143に は、再生電界信号 117— 1 (振幅成分 r(n))と、後述する判定帰還によって再生電界 信号 117— 2から位相変動成分 θ (n)を除去した再生電界信号 172 (位相成分 φ (η)) が入力され、シンボル判定結果が再生多値デジタル信号 144として出力される。
[0064] 受信光多値信号 123が 16QAM信号の場合のシンボル判定部 176の動作を図 9 を参照して説明する。 [0065] 16QAM信号の正し!/、位相点は、図 9(A)で白丸で示した位置にある。ここでは、電 界演算部 111から出力された時刻 nの光電界情報が、図 9(A)に黒丸で示した位相 点を示していると仮定する。送信装置における光源の位相揺らぎや、雑音、波形歪な どに起因した光信号の位相変動 θ (n)によって、位相面に回転ずれが発生し、受信 装置側で観測される位相点は、正しい位相点からずれたものとなる。このままでは、 観測された位相点が 16QAM信号のどのシンボルに相当するかを判定できないため 、本実施例では、位相変動推定回路 174で、過去(時刻 n-1)の位相点情報から時刻 nの位相変動の推定値 175 ( 0 (n))を算出し、減算回路 171で、時刻 nの位相成分 φ '(η)から上記位相変動の推定値 θ (η)を除去することによって、正しい位相角 φ (η)17 2を算出している。
[0066] 上記推定値 θ (η)の除去によって、位相点の配置は、図 9(C)のように修正される。シ ンボル判定回路 143は、受信信号の振幅情報 r(n)と位相情報 φ (η)から、最も確から しい受信シンボルを選択する。簡単に言えば、 16QAM信号における各シンボル位 置(白丸)と受信信号が示す位相点 (黒丸)との距離を算出し、距離が最も近!ヽシンポ ルを受信シンボルと判定すればよい。シンボル判定回路 143は、 16QAM信号にお V、て受信シンボルに割り当てられて!/、る 4ビットのデジタル値を再生多値デジタル信 号 144として出力する。本例では、二重丸で示したシンボルが受信シンボルと判定さ れ、位相角は φ (η)、出力デジタル値は「1011」となる。
D
[0067] 位相変動推定回路 174には、遅延回路 157— 1と 157— 2を介して、 1シンボル周 期前の受信信号位相 φ '(η-Ι)と、 1シンボル周期前に判定された位相角 φ (n-1)とが
D
入力されている。この場合、雑音による受信電界のランダムばらつき(図 9 (A)におけ る黒丸と二重丸の距離)を無視すれば、 1シンボル周期前の位相変動成分 Θ (n-1)は 、図 9 (B)に示すように、 θ (η-1)= φ '(η-Ι)- φ (η- 1)と算出できる。実際には、位相
D
変動成分 Θの変化速度は、シンボル速度 (ギガへルツ以上)に比べて非常に遅いた め(メガヘルツ程度)、過去 Νシンボル (Ν = 2〜数千程度)に亘つて θ (η- 1)の時間平 均値を算出することによって、ランダム雑音の影響を平均的に除去できる。すなわち 、位相変動の推定値 θ (η)を θ (η)=∑{ φ,(n- k)— φ (n- k)}ZN (但し、 k= l、 2...N)と
D
すればよい。 [0068] 本実施例によれば、光源の位相雑音や光アンプ雑音などの影響下でも、受信光電 界の位相を高精度に算出できる。図 8では、位相変動無依存のシンボル判定部 176 力 位相変動を判定帰還によって除去しているが、判定帰還技術は、振幅演算誤差 、その他の誤差の補正にも適用できる。例えば、過去 Nビット期間に亘つて、入力さ れた位相点とシンボル判定部 176が判定したシンボル位置との距離を算出し、その 平均値が最小になるように、位相角やシンボル振幅を動的に調整することによって、 最適な受信状態を維持することができる。逆に、入力位相点の分布に応じて、判定 基準となるシンボル位置を動かすことにより、例えば、波形劣化に動的に適合して、 最良の受信感度を維持することもできる。
[0069] 再生光電界信号 117— 2からの位相変動の除去方法には、実施例で示した方法 以外に、様々なノリエーシヨンが存在する。例えば、 N値の位相変調信号を受信する 場合、再生光電界信号 117— 2が示す位相角 φ '(η)を N倍回路 (または、光電界の 位相項 exp φ '(η)を入力とする N乗回路)に入力することによって、位相変調成分 (位 相点の間隔は π ΖΝ)を消去し、位相変動成分を簡単に推定することが可能となる。 この推定値を過去 Μビット期間に亘つて平均化しておき、検出された位相角 φ '(η)か ら差し引くと、変動成分を除去できる。
[0070] また、 16QAM信号のように位相変調間隔が不等間隔の場合でも、振幅が最大と なる 4隅の位相点、例えば、図 1 (C)に示した点「1111」、「0000」、「1100」、「0011」の 位相角のみを抽出し、それらの位相角を 4倍回路に入力して平均化することによって 、上記と同様に、位相変動成分を推定することが可能である。特定位相点の平均位 置を時間的に追跡しておき、そのずれ量を位相変動と推定しても構わない。位相変 動成分の推定には、無線通信分野で公知のその他の手法を適用してもよい。
[0071] 尚、上記実施例のように、光電界情報を逐次算出する方式では、雑音や演算誤差 の影響が累積し、最悪の場合は、長時間にわたって誤り伝播を引き起こす可能性が ある。このような誤り伝播を防止する方法としては、例えば、振幅や位相への差動符 号化などの符号化の適用、送信側での定期的な既知参照符号の挿入などがある。ま た、振幅の正規ィ匕演算による振幅値の発散や減衰の防止、あるいは、受信位相点の 統計分布や、特定の位相点位置からの逐次判定帰還などの手法を適用してもよ ヽ。 [0072] ここに示した実施例では、受信シンボルの判定に最小距離ルールを適用したが、 無線通信分野において多値信号用として使用されている公知の他のシンボル判定 法を適用してもよい。例えば、位相と振幅半径の何れかを優先的に判定したり、連続 する複数シンボルの電界状態を利用する MLSE、最尤判定 (ビタビ復号)、軟判定 F EC (前置誤り訂正)、トレリス符号ィ匕 Z復号ィ匕処理などの手法も適用可能である。ま た、単純な二乗距離の判定に代えて、例えば、雑音発生要因(光アンプの雑音や熱 雑音、クロストークなど)に応じた非ユークリッド的な距離を予め定義しておき、これを 判定基準に適用してもよい。尚、シンボル判定回路は、例えば、各シンボルに対応し た複数のマッチドフィルタを並列配置しておき、出力が最大となるフィルタを選択して 、入力シンボルを特定するアナログ型の構造でもよ 、。
[0073] 図 10は、上記第 2実施例で採用される初期位相判定方法の 1例を示す。
逐次再生された光電界は、最初のシンボルの振幅情報と位相情報が不定となって いるため、再生値が入力光信号の真の光電界と合致しない。この問題は、送信光信 号 (ここに示した例では、 16QAM信号)の先頭に、受信器側で既知となっている特 殊なデータパターンを挿入しておくことにより解決できる。
[0074] 図 10 (A)は、送信光電界を示し、図 10 (B)は 16QAM信号のシンボル (位相点) 配置を示す。ここでは、図 10 (B)のシンボル配置において、互いに対称位置にある 2 つのコーナー「1111」、 「0000」のシンボルを既知データとして使用し、ユーザ情報に 先立って、 5個のシンボル「1111」、 「0000」、 「1111」、 「0000」、 「0000」からなる既知デ 一タパターンを送信している。これらのシンボルは振幅変調されていないため、再生 光電界の振幅は、図 10 (C)に示すように、第 1シンボルの振幅値は不明となる力 第 2シンボル以降は一定値となる。従って、受信側で、第 2シンボル以降の振幅値が、 1 6QAM信号におけるシンボル「1111」、 「0000」の半径となるように、再生電界強度を 補正すればよい。
[0075] 上記既知データパターンの受信期間中は、位相角として、理想的にはシンボル「00 00」の位相角 π Ζ4、またはシンボル「1111」の位相角ー3 π Ζ4が検出されるはずで ある。しかしながら、実際には、第 1シンボルの位相角が不定であるため、第 2シンポ ル以降は、第 1シンボルの位相角 φ θ (不定値)を初期位相として、 π Ζ4変調また は 3 π Ζ4変調された位相角が現れる。ここに示した例では、既知データパターン の受信期間中に、同一位相角が 2ビット連続して現れるのは、第 4、第 5シンボルの受 信時だけである。また、このとき検出される位相角は、シンボル「0000」の位相角と対 応する。従って、第 4、第 5シンボルで検出された位相角の値と、シンボル「0000」が 本来持つべき位相角 π Ζ4と力 、位相のずれ量 (初期位相角 φ 0)を特定できる。
[0076] すなわち、図 10 (D)に示した位相点配置において、第 3象限に黒丸で示した第 5シ ンボルの検出位相角と、シンボル「0000」が持つべき正規の位相角 π Ζ4との差 φ 0 を算出し、その後に検出された再生光電界の位相角から φ 0を差し引くことによって、 検出位相角の補正が可能となる。
[0077] 既知データパターンとして、例えば、図 10 (B)に示した「0000」と「0011」のように、非 対称な位置関係にある 2つのシンボルを使用すれば、図 10 (C)の第 4、第 5シンボル にょうに同一符号を連続させなくても、初期位相を判別することが可能となる。
[0078] 初期位相や初期振幅の判定は、光通信分野、無線通信分野で共通の課題となる。
従って、本発明の光電界受信器には、上述した解決法以外に、これらの通信分野で 公知となっている他の手法を適用可能である。例えば、送信信号内に、既知の位相 角または振幅値をもつ参照信号を周期的または間歇的に挿入したり、初期位相や初 期振幅の判定が不要となる差動変調などの技術を用いてもよい。また、正常な受信 が可能となるように、再生された位相点の統計分布力 適応学習的に初期位相や振 幅を調整してもよい。
実施例 3
[0079] 図 11は、本発明の光電界受信器の第 3実施例として、光強度受信機能とクロック抽 出機能を追加した構成の光多値信号受信器を示す。
本実施例では、入力光多値信号 123が、光分岐回路 150で 3つの光信号に分岐さ れる。第 1、第 2の光信号は、それぞれ光遅延検波器 104—1、 104— 2に入力され、 第 3の光信号は、光強度受信器 151に入力されている。光遅延検波器 104— 1、 10 4— 2の出力は、図 8と同様、光バランス型受信器 105 (105— 1、 105— 2)で電気信 号に変換され、 AZD変翻 106 (106— 1、 106-2)、遅延調整回路 108 (108— 1、 108— 2)を介して、電界演算部 111に供給されている。光強度受信器 151の出 力信号は、 AZD変換器 106— 3でデジタル信号に変換し、遅延調整回路 108— 3 でタイミング調整した後、電界演算部 111に入力されて 、る。
[0080] 遅延調整回路 108— 1、 108— 2から、第 nシンボルの直交成分 x、 yを示す出力信 号 110— 1、 110— 2が出力された時、遅延調整回路 108— 3の出力信号 110— 3は 、第 nシンボルの強度 r(n)の二乗値 r2(n)を示している。本実施例では、電界演算部 11 1に設けた平方根回路 160で、遅延調整回路 108— 3からの出力信号 110— 3の平 方根を演算することによって、第 nシンボルの振幅値 r(n)を得る。上記構成によれば、 図 5に示した第 1実施例の光電界受信器よりも簡単、且つ高精度に、光電界振幅 r(n) を得ることができ、振幅の初期値推定や、誤り伝播対策が不要になる。
[0081] 図 11に示した実施例では、光強度受信器 151の出力信号の一部をクロック抽出回 路 161に入力し、シンボルレートの逆数(1ZT)に相当する周波数 fのクロック信号を 抽出し、これを A/D変翻 106— 1、 106— 2、 106— 3に供給している。クロック信 号の発生タイミングは、各シンボル期間の中央で AZD変換器が入力信号をサンプリ ングするように調整される。これによつて、光多値信号 123にタイミングジッタやクロッ ク速度の変動があっても、常に最適な信号受信が行える。尚、クロック抽出回路 161 には、光強度受信器 151の出力に代えて、ノ《ランス型受信器 105— 1または 105— 2 の出力を供給してもよい。また、クロック抽出回路 161は、各光検出器に個別に設け てもよく、クロック抽出に専用の光検出器を用意してもよい。
実施例 4
[0082] 図 12は、本発明の第 4実施例として、判定帰還等化回路を備えた光多値信号受信 器を示す。
本実施例では、クロック源 191から、入力光多値信号 123のシンボルレート(1ZT) の 2倍 (またはそれ以上)の周波数 fをもつクロックを発生し、これを AZD変翻 106 —1、 106— 2にサンプリングクロック 107—1、 107— 2として供給している。 A/D変 ^106- 1, 106— 2は、上記サンプリングクロックに応答して、入力シンボルとのタ イミング同期に関係なぐサンプリングを行う。
[0083] AZD変換器 106— 1、 106— 2の出力は、それぞれ遅延調整回路 108— 1、 108 —2を介して、再サンプリング回路 192— 1、 192— 2に入力されている。各再サンプリ ング回路は、ナイキストの定理よつて入力データ列の補間を行い、任意のタイミングで サンプリング点を再生できる。ここでは、サンプリング点が各シンボル期間の中央に位 置するように、再サンプリングする。サンプリングのタイミングは、例えば、データ遷移 点の判別回路や、アイ開口の最大点の検出回路を用いて調整できる。
[0084] このように、入力光多値信号 123のシンボルレートの倍速度でサンプリングを行った 場合、電界波形の詳細な情報が得られるため、演算処理の過程にフィードフォワード 等化 (FFE)や判定帰還 (DFE)等化などを用いた等化回路 193を設けることによつ て、波形劣化を効率的に補償することが可能となる。これは、高速の無線信号ゃ光受 信器で利用されている適応波形等化と同じ技術であり、符号間干渉や、偏波モード 分散 (PMD)、波長分散、自己位相変調効果などによる波形劣化の部分的な改善を 可能にする。尚、サンプリングレートがシンボルレートと同じ場合に、このような等化回 路を適用すると、倍周波数サンプリングの場合に比較して、改善量が限定される。
[0085] 第 4実施例では、電界演算部 111に接続された直交座標変換回路 198によって、 電界演算部 111から出力された光電界の座標を極座標カゝら直交座標に変換した後 、光電界値を判定帰還等化回路 193を介して位相変動無依存のシンボル判定部 17 6に供給して 、る。シンボル判定部 176から得られた判定帰還信号 194をフィードバ ックすることによって、等化回路 193で判定帰還を用いた波形等化が行われる。 尚、通常の波形等化と同様、本実施例でも、公知の高速光信号で用いられる前置 誤り訂正符号 (FEC)を実装して、再生多値デジタル信号 144の誤り訂正を行うこと によって、性能を更に改善することが可能である。
実施例 5
[0086] 図 13は、本発明の第 5実施例として、光 APSK信号用の光多値信号受信器を示す 第 5実施例の光多値信号受信器は、光 APSK信号 124を光遅延検波器 104— 1、 104— 2で差動受信し、遅延調整回路 108— 1、 108— 2の出力信号を自動利得制 御回路 (AGC) 195— 1、 195— 2に入力して、平均強度が一定となるように正規化し ている。 AGC195— 1、 195— 2を設けることによって、入力光信号 124の受信強度 が変動しても、受信特性を安定化できる AGC195— 1、 195— 2の出力信号 x、 yは、光電界演算部 111の平方演算回路 1 12と逆正接演算回路 113にそれぞれ並列的に供給されて 、る。光電界演算部 111 は、平方演算回路 112と遅延除算回路 115によって算出した受信光電界の振幅 r(n) を第 1信号 117—1、逆正接演算回路 113によって算出したシンボル間位相差 Δ φ ( η)を第 2信号 117— 2と、シンボル判定回路 143に出力する。
[0087] 図 14 (A)は、振幅が 2値(「1」と「a」)、位相が 8値の 16値 APSK信号の位相点配置 を示している。 APSK信号は、破線で示すように、同心円状の位相点配置を持って いる。従って、 APSK信号は、位相成分に差動受信を適用することによって、位相変 動耐カを増大できるため、位相変動の除去が不要になる。
[0088] 図 14 (B)は、位相差 Δ φ (n)の値と、 D3、 D2、 D1の 3情報ビットとの対応関係を示 す差動位相変調用の符号ィ匕テーブルである。シンボル判定回路 143は、第 1信号 1 17— 1として入力された振幅 r(n)の強弱を判定すると共に、第 2信号として入力された 位相差 Δ φの値を図 14 (B)の符号ィ匕テーブルを逆に用いて複号ィ匕する。
[0089] 送信側では、図 14 (C)に示す作動振幅変調用の符号化テーブルに従って、情報 ビット D4を振幅変調するものとする。すなわち、情報ビット D4が「0」の場合は、第 nシ ンボルの振幅を直前の第(n— 1)シンボルと同一にし、情報ビット D4力「1」の場合は 、直前の第 (n— 1)シンボルの振幅 r(n— 1)を反転した振幅値(直前シンボルの振幅 r (n- 1)力 S「1」であれば「a」、 r(n- 1)が「a」の場合には「1」)とする。
[0090] 受信側で得られる!: (n)r(n— 1)の大きさは、図 14 (D)の差動振幅変調用の復号ィ匕 テーブルに示すように、「1」、「a」、 [a2]の 3通りがあり得る。このうち、振幅が「a」にな るのは、第 nシンボルと直前の第 (n—l)シンボルとが異なる場合のみである。従って 、振幅が「a」の場合には、情報ビット D4は「1」、それ以外の場合、情報ビット D4は「0 」と判定できる。このように位相、振幅の差動受信は、誤り伝播を防ぐ効果があり、本 発明における APSK信号受信に適用できる。尚、 QAM信号においても、その 4回回 転対称性を利用して、 2ビット分だけを差動位相変調する手法が知られており、これも 本発明に適用可能である。
[0091] 本実施例によれば、逆正接演算で算出した Δ φをシンボル判定に用いることによつ て、非特許文献 4に示された受信器に比較して、多値数の大きい多値信号を容易に 受信可能となる。すなわち、本実施例によれば、受信信号の多値数が増えても、ハー ドウエア規模が増大しない。尚、 APSK信号の場合、送信側で振幅にも差動符号ィ匕 を施すことによって、光電界演算部 111から遅延除算回路 115を省き、平方演算回 路 112の出力信号 114— 1: r(n)r(n - 1)を直接シンボル判定回路 143に入力する構 成とすることも可能である。
実施例 6
[0092] 図 15は、本発明の第 6実施例として、 N値光位相変調信号用の光多値信号受信器 を示す。
第 6実施例では、 N値光位相変調信号 197を差動受信することによって、受信光の 振幅判定を不要とし、図 13に示した電界演算部 111から平方演算回路 112と遅延 除算回路 115を省略し、逆正接演算回路 113のみを残している。図 15では示されて いないが、本実施例でも、図 8、図 9で説明した判定帰還回路を用いて位相変動の 影響を低減することにより、受信感度を改善できる。
[0093] 尚、第 6実施例は、一見すると、図 4に示した従来の 2値位相変調光用の受信器に 似ているが、図 4の受信器は、受信信号が 2値位相変調信号に限定されており、シン ボル判定回路となる 2値判定回路 152には、バランス型受信器 105— 1から出力され た cos ( A φ (η))が入力されている。従って、上記従来技術による受信器は、本実施 例のように、ノ《ランス型受信器から出力された複素信号の x、 y成分に基いてシンボル 間位相差 Δ φ (η)を生成し、この Δ φ (η)の値によって受信シンボルのディジタル値を 判定するものではない。本実施例によれば、 2値以上の多値位相変調信号を受信し た場合でも、電界演算部 111で生成した Δ φ (η)の値を利用して、受信シンボルのデ イジタル値を容易に判定することが可能となる。
実施例 7
[0094] 図 16は、本発明の第 7実施例として、光電界の持つ情報を全て取り込む完全型の 光電界受信器 200を示す。
ここに示した完全型の光電界受信器 200は、第 6実施例とは異なり、入力光信号 10 1の光電界をシンボルレートの倍の速度で直接サンプリングすることによって、光電界 の持つ情報を全て取り込む。 [0095] 図 5に示した第 1実施例と比較すると、光遅延検波器 201— 1、 202— 2の遅延量が シンボル周期 Tの 1Z2となっており、 AZD変^ ^106に入力されるサンプリングクロ ック 107が、入力光信号に同期したシンボルレートの 2倍 (周波数 = 2ZT)のクロック となっている。光遅延検波器 204—1、 204— 2から電界演算部 111までの動作は、 第 1実施例と類似している。本実施例では、電界演算部 111から出力される電界信 号 117— 1、 117— 2に、電界補償回路 202で補償演算を施し、補償後の電界信号 2 03- 1, 203- 2を光多値信号受信器の出力として 、る。
[0096] 図 17の (A)、 (B)は、それぞれ電気的受信信号 x、 yと、再生電界信号 r(n)、 φ ( の サンプリングタイミングを示している。これらの図において、 η、 n—lはシンボル番号 ではなぐ TZ2間隔の時系列サンプルの順番を示している。本実施例では、光遅延 検波器 201— 1、 202— 2の遅延量が TZ2となっているため、光遅延検波は、時間 軸上で半シンボルずれた受信シンボル間で行われている。この結果、図(B)に示す ように、再生電界信号として、半シンボル毎に逐次、電界情報を得ることができる。こ のように、 TZ2間隔で全電界情報を得ることができれば、コヒーレント光受信器と同 様に、光電界の劣化を完全に補償することが可能となる。尚、従来技術における光遅 延検波は、専らシンボル間の相対位相情報を得ることを目的としているため、本実施 例のように、シンボル長以下の遅延時間差で光遅延検波を行う必要性は全くな 、。
[0097] 図 18は、伝送路における波長分散による光多値信号劣化の補償に、第 7実施例の 完全型光電界受信器 200を適用した場合の説明図である。
光多値信号送信器 210からの送信光電界 204は、枠 501の振幅アイパターンが示 すように、 3値の振幅レベルを持っている。しかしながら、光ファイバ伝送路 206を通 過すると、光電界 204に波長分散量 j8に応じた波形劣化が生じ、多値信号受信器 2 00が受信する光電界の振幅アイパターンは、枠 502に示すように大きく劣化する。伝 送路 206の波長分散は、伝達関数 exp (-j β ω 2)で示される線形劣化として、送信光 電界 204に影響を及ぼす。
[0098] 本実施例による完全型光電界受信器 200は、波形が劣化した送信光電界 204を 受信し、電界算出部 208で再生光電界信号 117を算出する。ここで、電界算出部 20 8は、図 16に示した光遅延検波器 204—1、 204— 2から電界演算部 111までの回 路部分に相当している。 AZD変翻 106— 1、 106— 2のサンプリング点は、各シン ボルの中央に位置するように調整される。
[0099] 電界算出部 208の出力 117 (r(n)と φ (η) )は、電界補償回路 202に供給され、伝 送路 205の伝達関数とは逆特性の伝達関数 exp G iS ω 2)で補償される。この補償は 、周波数領域の演算であり、 FFTもしくは畳み込み演算によって実現できる。電界補 償回路 202は、補償量入力端子 207を通して外部力も補償量 j8を設定することによ り、伝達関数を動的に変更できる。上記演算の結果、電界補償回路 202から波形劣 化を補償した電界信号 203が出力されるため、各シンボルの中央に合わせたサンプ リングタイミングで、多値信号の判定処理が可能となる。
[0100] 上述した完全補償は、受信信号に発生する波形劣化が線形である限り、原理的に どのような波形劣化に対しても適用できる。従って、電界補償回路 202によって、例 えば、光送信器や受信器の帯域劣化、狭帯域光フィルタリングによる帯域削減、フィ ルタのリップルの影響なども補償できる。
[0101] 尚、上述した受信信号の劣化を補償するためには、電界補償器 202をデジタル演 算器で構成することが望ましいが、他の演算回路と同様に、電界補償器 202を FPG Aや DSPで構成してもよい。また、電界補償器 202では、受信信号の劣化程度に応 じて、消費電力や演算能力を節約するために補償処理の一部を省略したり、信号劣 化要因が複数ある場合に、影響度が最も高い劣化要因に対応した補償モードを選 択的に実行したり、複数の補償モードを重複して実行できるようにしてもよい。
[0102] 第 7実施例では、 AZD変翻 106のサンプル間隔と、光遅延検波器 104の遅延 量をシンボル長の 1Z2とした力 ナイキストの定理から、サンプリング周波数は、信号 の最大周波数成分の 2倍以上であることが求められる。従って、送信信号が、シンポ ルレートより更に高速の変調成分を含む場合、更に高速のサンプリングが必要になり 、逆に、デュオバイナリ信号のように、光電界の実効帯域が低い場合、サンプリングレ ートを下げることができる。但し、 RZ変調された光信号は、シンボルレートと同一周波 数の強度変調成分を含むため、サンプリング速度を TZ2に合わせると、折り返しによ つて、出力信号の強度が常に一定値になる可能性がある。このため、 RZ変調された 光信号を受信する場合は、サンプリング速度を TZ2よりも多少高くする必要がある。 [0103] 図 12で説明した第 4実施例でも、 AZD変換器 106のサンプリング速度をシンボル レートの倍にしているが、第 4実施例では、光遅延検波器 104の出力信号は、 1シン ボル前の電界との合成信号となって 、るため、単にサンプリングを高速ィ匕しただけで は、完全な電界情報が得られない。この問題は、後述するインタリーブサンプリングに よって解決できる。
実施例 8
[0104] 図 19は、上述した完全型の光電界受信器 200の変形例として、光ファイバで発生 する非線形効果の一種である自己位相変調効果の補償に適した適応補償型の光電 界受信器の構成を示す。但し、自己位相変調効果の補償には、必ずしも完全な電界 情報を必要としないため、適応補償型には、第 1実施例〜第 6実施例で説明した他 の型式の光電界受信器を適用してもょ 、。
[0105] 本実施例において、光多値信号送信器 210は、光ファイバに 8値の APSK信号を 送出する。この場合、送信光電界 204の位相点配置は、枠 511に示すように、振幅 2 値の同心円上に、 4値の位相点を放射状に配置したものとなっている。光ファイバ伝 送路 206で発生する自己位相変調効果は、光信号にその強度に比例した位相回転 ( Δ () (r) = ar2)を引き起こす。そのため、光ファイバを通過した光電界の位相点配置 は、枠 512に黒丸で示すように、外側同心円上の位相点が、内側同心円上の位相点 よりも大きく回転し、内周と外周で位相点配置にずれが生ずる。自己位相変調効果 は、非線形効果である。しかしながら、その影響は、受信信号に逆演算子 exp (— jar( n)2)を乗算することによって打ち消すことができる。
[0106] 完全型光電界受信器 200の電界算出部 208から出力される電界信号 117には、 枠 513に示すように、自己位相変調効果による位相回転(Δ () (r) = ar2)が発生して いる。そこで、本実施例では、電界補償器 202から出力される電界信号 203のうち、 位相信号 φ j(n)を 4倍回路 211に入力して偏差成分を抽出し、この偏差成分を偏差 最小化制御回路 212に入力している。偏差最小化制御回路 212は、電界補償器 20 2から出力される補償後の電界信号の誤差が最小となるように、電界補償回路 202の 補償量入力端子 207に与える補償量 aの値を自動的に制御することによって、適応 補償を実現する。 [0107] APSK信号は、 4値の位相変調と 2値の振幅変調と力 なって 、るため、位相点配 置が正常の場合、 4倍回路 211で各位相点の位相を 4倍にすれば、常に一定値とな るはずである。しかしながら、自己位相変調効果によって位相点がずれると、 4倍回 路の出力がシンボル毎に偏差が発生する。本実施例によれば、偏差成分が最小に なるように適応補償を行うことによって、電界補償回路 202から出力される電界信号 2 03の位相点配置を常に最適配置に修正することが可能となる。自己位相変調効果 による信号劣化は、 APSK信号以外の光信号でも同様であり、本発明による適応補 償型の光電界受信器は、他の変調方式にも適用可能である。
実施例 9
[0108] 図 20は、本発明による完全型の光電界受信器 200を 2値強度変調信号の波長分 散補償に適用した実施例を示す。
通常の 2値変調は、消光比が 10dB程度のスペースレベル光強度が低い状態で用 いられる。この程度の消光比であれば、電界振幅比は 3程度となるため、本発明の光 電界受信器 200にとつて動作上問題のない信号レベルとなる。但し、消光比が非常 に高い場合 (例えば、 20dB程度)や、光ファイバ伝送路で生じる波形劣化によって、 サンプリング点の光強度がゼロ付近に低下した場合は、光電界受信器 200が正常に 動作しなくなる可能性がある。本実施例は、消光比が非常に高い場合に光電界受信 器 200を正常動作させるために、意図的にスペースレベルを高く設定し、消光比を劣 化させることを特徴として 、る。
[0109] 送信器 213から、枠 521に示す 2値光信号を送信した場合、光ファイバの波長分散 の影響で、光電界受信器 200が受信する光電界 205は、枠 522に示すように、大きく 劣化する。本実施例では、光電界受信器 200の電界算出部 208で、枠 523に示した 再生光電界信号 117の白丸が示すように、サンプリング点をシンボルの中央からずら し、シンボル幅の 25%と 75%の時点に設定することによって、サンプリングされた光 電界強度がゼロになりにく 、ようにして 、る。電界算出部 208からの出力信号 117に 対して、電界補償回路 202で、波長分散とは逆特性の伝達関数を演算することによ つて、枠 524に示すように、波長分散の影響が補償された電界信号が得られる。
[0110] 尚、電界補償回路 202から出力される電界信号 203から再生された信号波形は、 サンプリング点がずれているため、本実施例では、振幅信号 r (n)を再サンプリング回 路 192に入力し、シンボル波形の中央のサンプル値を 2値判定回路 152で判定する こと〖こよって、再生された 2値デジタル信号 153を得ている。また、本実施例では、再 サンプリング回路 192の出力をアイ開口検出回路 214に分岐し、電界補償後の信号 のアイ開口の大きさをアイ開口検出回路 214で検出している。アイ開口検出結果を 制御回路 215に入力し、制御回路 215が、アイ開口の値が最大となるように電界補 償回路 202の補償量 を制御することによって、適応分散補償が実現されている。
[0111] 本発明による完全型の光電界受信器は、コヒーレント受信器として機能し、電気回 路による演算処理によって、波長分散を動的、且つ無制限に補償できる。本発明に よる完全型の光電界受信器は、上述したように、多値信号以外の 2値の強度変調光 や、デュオバイナリ信号、 2値位相変調信号など、様々な光信号の受信に適用できる 。この場合、波長分散補償器が不要となり、光伝送距離を大幅に拡大できるという利 点がある。尚、 RZ変調の場合、ビット間で光信号強度が必ず「0」となるが、本実施例 と同様に、 RZ変調の消光比を下げたり、サンプリングタイミングをずらすことによって、 元の信号波形を再生することが可能となる。
実施例 10
[0112] 図 21は、本発明の光電界受信器を適用した波長多重光伝送系の 1実施例を示す 波長多重伝送装置 220Aは、波長合波器 223Aに結合された光送信器 226— 1A 〜226— 3Aと、波長分波器 224Aに結合された本発明の光電界受信器 200— 1A 〜200— 3Aとを含む。また、波長多重伝送装置 220Bは、波長合波器 223Bに結合 された光送信器 226— 1B〜226— 3Bと、波長分波器 224Bに結合された本発明の 光電界受信器 200— 1B〜200— 3Bとを含む。
[0113] 波長多重伝送装置 220A、 220Bは、上り光伝送路と下り光伝送路によって接続さ れて ヽる。上り光伝送路は、光ファイノ 206— 1〜206— 3と、光増幅器 225— 1、 22 5— 2力らなり、下り光伝送路は、光ファイノ 206— 4〜206— 6と、光増幅器 225— 3 、 225— 4と力らなっている。
[0114] 波長多重伝送装置 220Aの光送信器 226— 1 A〜226— 3Aは、それぞれ異なる 波長 λ 1〜え 3で光信号を送信する。これらの光信号は、波長合波器 223Αで合波 した後、上り光伝送路に出力され、対向する光伝送装置 220Βの波長分波器 224Β で波長毎に分離して、光電界受信器 200— 1Β〜200— 3Βに入力される。一方、波 長多重伝送装置 220Βの光送信器 226 - 1Β〜226 - 3Βも、それぞれ異なる波長 λ 1〜え 3で光信号を送信する。これらの光信号は、波長合波器 223Βで合波した後、 下り光伝送路に出力され、光伝送装置 220Αの波長分波器 224Αで波長毎に分離し て、光電界受信器 200— 1Α〜200— 3Αに入力される。尚、上り光伝送路と下り光伝 送路では、多重化される光波長が異なって 、てもよ 、。
[0115] 波長多重伝送装置 220Α(220Β)は、端局制御部 221Α(221Β)と、データベース 222Α(222Β)を備えて!/ヽる。光送信器 226 - 1 Α〜226 - 3Α(226 - 1Β〜226 - 3Β)および光電界受信器 200— 1Α〜200— 3Α(200— 1Β〜200— 3Β)には、外 部から送信データが入力され、受信データが外部に出力されるが、図面では省略し てある。データベース 222Α(222Β)には、受信波長 λ 1〜え 3と対応して、光伝送路 を形成する各光ファイバの波長分散量を示すデータテーブルが記憶されている。
[0116] 図 22は、局制御部 221 A (221B)で実行される補償量設定ルーチンのフローチヤ ートを示す。このルーチンは、波長多重伝送装置の起動 Zリセット時、または送受信 器 226 (226— 1A〜226— 3A)、 200 (200— 1A〜200— 3A)力ジセッ卜された時に 実行される。
[0117] 端局制御部 221Aは、データベース 222Aから波長分散量データテーブルを読み 出し、波長チャネルを特定するためのパラメータ iを初期値「1」に設定する (ステップ 6 01)。端局制御部 221Aは、パラメータ iの値をチェックし (ステップ 602)、パラメータ i 力 光ファイバ伝送路に多重化されるチャネル数 N (図 21では N = 3)を超えた場合、 このルーチンを終了する。
[0118] ノ メータ iが N以下の場合、端局制御部 221 Aは、波長分散量データテーブルが 示す第 iチャネルの波長 λ iと対応する各光ファイバの波長分散量から、受信光伝送 路 (端局制御部 221— 1の場合は下り光伝送路)に沿った全光ファイバの総波長分 散量 Diを算出する (ステップ 603)。この後、第 iチャネル (波長え i)の光電界受信器 2 00 - 1Aの端子 207に補償量「― Di」を設定し、光電界受信器 200 - 1Aを起動する。 端局制御部 221Aは、ノ メータ iの値をインクリメント (i=i+ l)して、パラメータ 、 多重化チャネル数 Nを超えるまで、ステップ 602〜604を繰り返す。
[0119] 本実施例によれば、光電界受信器 200— 1A〜200— 3Aは、起動時から波長分 散補償量を高精度で推定できるため、適応制御が不要となる。仮に、適応制御を使 用した場合であっても、短時間で最適な制御状態に遷移でき、誤動作を防止するこ とが可能となる。
実施例 11
[0120] 図 23は、本発明の光電界受信器を適用した複数の光アツドドロップ装置 (ADM) 2 30— 1〜230— 4からなる光ネットワーク構成の 1実施例を示す。光アツドドロップ装 置 230— 1〜230— 4は、光ファイバ伝送路 206— 1〜206—4でリング状に接続され ている。
[0121] 光アツドドロップ装置や光クロスコネクトを用いた光ネットワークでは、光信号経路が 動的に変更される可能性がある。本実施例では、光信号経路の変更時に、光アツドド ロップ装置 230— 1に接続された制御コンソール 231によって、経路変更の影響を受 ける光受信器 200における分散補償量を適正化する。 222は、ネットワークを構成し て 、る全光ファイバにつ 、て、波長毎の波長分散値を記録したデータベース 222で ある。光信号経路が変更された時、制御コンソール 231は、データベース 222をァク セスし、新たな光信号経路と使用波長に応じた総波長分散値を算出し、これをネット ワーク経由で、新経路の終端となる光アツドドロップ装置(230— 2〜230— 4)に接続 された光受信器 200 (200—1〜200— 3)に分散補償量として配信する。
[0122] 例えば、図 23において、光送信器 200— 3から出力される波長え 3の光信号は、光 アツドドロップ装置 230— 4に入力され、光経路 232— 3に沿った 3つの光ファイバ伝 送路 206— 1、 206— 2、 206— 3を経由して、光アツドドロップ装置 230— 3に接続さ れた光電界受信器 200— 3に到達して ヽる。光経路 232— 3が新たな経路の場合、 制御コンソール 231は、データベース 222から、波長え 3と対応する光ファイバ伝送 路 206— 1、 206— 2、 206— 3の波長分散量を読み出し、その合計値から決まる補 償量の設定信号を破線で示す通信経路 233— 3で光電界受信器 200— 3に通知す る。補償量設定信号は、補償量設定端子 207— 3に入力され、これによつて、て光電 界受信器 200— 3の電界補償回路 202に最適な分散補償値が設定される。
[0123] 本実施例によれば、光ネットワーク上での光経路が切り替わった場合でも、制御コ ンソールから、光経路の終端となる光電界受信器 200— 3に適切な補償量を即座に 設定できるため、通信の中断時間を大幅に削減することが可能となる。尚、制御コン ノールから設定した分散補償値の精度が不十分な場合、実施例 10で説明したように 、この値を初期値として、適応制御によって最適化すればよい。
実施例 12
[0124] 図 24は、本発明による光電界受信器を適用した光多値信号受信器の他の実施例 を示す。
本実施例では、図 16で説明した完全型の光電界受信器の光遅延検波器 201— 1 、 201— 2で光多値信号 123を受信し、電界演算部 111の出力を電界補償回路 202 に入力し、電界補償後の電界信号 203— 1、 203— 2を位相変動無依存のシンボル 判定部 176に入力することによって、位相変動成分の除去と、多値信号のシンボル 判定を行っている。このように、光電界受信器の後段に、シンボル判定回路や、 FFE 、 DFEなどの等化回路、誤り訂正回路などを接続することによって、高機能の光多値 変調信号受信器を構成することが可能となる。
実施例 13
[0125] 図 25は、本発明の光電界受信器を適用した光多値信号受信器の更に他の実施例 を示す。
本実施例では、図 16で説明した完全型の光電界受信器の電界補償回路 202から の出力信号のうち、振幅成分 r (n)を示す信号 203— 1は、位相変動無依存のシンポ ル判定部 176に直接入力し、位相成分 φ (n)を示す信号 203— 2は、電気領域の遅 延検波回路 234に入力し、遅延検波回路 234から出力された差動位相信号 Δ (n) を位相変動無依存シンボル判定部 176に供給することによって、位相変動成分の除 去と多値信号のシンボル判定を行って 、る。
[0126] 電界補償回路 202で完全な分散補償を行うためには、前段の電界演算部 111で、 予め全光電界情報 r(n)、 φ (n)を再生しておく必要がある。し力しながら、 APSK信号 のように遅延検波が適用可能な信号を受信信号とした場合、電界補償回路 202で補 償済みの電界信号のうち、位相成分 Φ i(n)を電気領域の遅延検波回路 234に入力し て、差動位相信号 Δ φ (η)を算出し、これをシンボル判定に適用することによって、位 相変動の影響を除去することが可能となる。
実施例 14
[0127] 図 26は、本発明の第 14実施例として、インタリーブサンプリングを適用した光多値 信号受信器を示す。
本実施例では、図 8で説明した第 2実施例の光多値信号受信器において、光遅延 検波器 104—1、 104— 2の代わりに、遅延量 3Τの光遅延検波器 244— 1、 244— 2 を使用し、バランス型光受信器 105— 1、 105— 2に、それぞれ 3個の AZD変翻1 06— 1Α〜106— 3Α、 106— 1Β〜106— 3Βを接続して、互いに対をなす 3組の A ZD変換出力「xl、yl」、「x2、y2」、「x3、 y3」をそれぞれ電界演算部 111 1〜11 1 3【こ人力して!/ヽる。電界演算咅 1〜: L 11 3の出力信号 117— 1〜117— 3は、それぞれ位相変動無依存のシンボル判定部 176— 1〜 176— 3に入力される。 これら 3個のシンボル判定部をインタリーブ動作させることによって、シンボル判定に 必要な回路速度を 1Z3に低減することが可能になる。
[0128] 240は、受信シンボルタイミングに同期して周波数が 1Z3Tのクロックを発生する分 周クロック源であり、遅延時間 Tと 2Tの遅延回路 157を使用することによって、シンポ ル時間 Tの位相差をもつ 3相のクロック信号列が生成されて 、る。 3組の AZD変換 器 106— iA、 106— iB (i= l〜3)は、これらの 3相のクロック信号をサンプリングクロッ クとして、バランス型光受信器 105— 1、 105— 2の出力信号をディジタルィ匕する。
[0129] この結果、バランス型光受信器 105— 1、 105— 2から出力された遅延検波信号は 、これら 3組の AZD変^^で、図 27に黒丸、二重丸、白丸で示すように、時間軸上 で 3系列にインタリーブしてサンプリングされる。この場合、光遅延検波器 244—1、 2 44— 2の遅延量が 3Tとなっているため、電界演算部 111— 1〜: L 11— 3では、互い に独立して光電界の再生演算を実行することができる。再生された光電界信号 117 1〜117— 3は、それぞれ個別のシンボル判定部 176— 1〜176— 3によって、位 相変動の除去とシンボル判定が行われる。シンボル判定部 176— 1〜 176— 3から 出力された 3系統のデジタル信号は、多重化回路 243で合成され、再生多値デジタ ル信号 144として出力される。
[0130] 上記構成において、時間軸上でインターリーブされた 3系列の位相点(図 26の黒丸 、二重丸、白丸)を電界演算部 111 1〜111 3で個別に処理し、互いに相関させ ることなくシンボル判定回路 176— 1〜 176— 3に供給すると、位相や振幅に誤差を 持つ可能性がある。
そこで、本実施例では、再生光電界信号 117— 1〜117— 3を電界同期回路 241 に分岐し、同一位相点の平均振幅、平均位相を相互に比較し、その差分を補正信 号 242としてシンボル判定部 176— 1〜176— 3に供給する。各シンボル判定部 176 は、上記補正信号に従って、 3系統の出力信号の振幅、位相基準が常に一致するよ うに、入力信号振幅の正規化と基準位相の補正を行う。尚、補正信号 242は、シンポ ル判定部 176に与える代わりに、電界演算部 111 1〜111 3に供給し、各電界 演算部 111 1〜 111 3が、それぞれの出力信号 (再生光電界信号) 117— 1〜 1 17- 3を補正するようにしてもょ ヽ。
[0131] 本実施例において、インタリーブ数やサンプリング速度は任意に選ぶことができる。
例えば、図 16に示した完全型の光電界受信器 200でインタリーブ数 2のインタリーブ サンプリングを行う場合、光遅延検波器 201— 1、 201— 2の遅延時間を Tとし、サン プリング速度を 1ZTにすればょ 、。
[0132] 以上の実施例から明らかなように、本発明の光電界受信器は、光遅延検波器を用 いているため、入力光の偏波状態に無依存であり、局部発振光源を必要としない。 実施例で示した光多値信号受信器は、光遅延検波器の出力信号を処理する電界演 算回路において、光信号位相点の 2次元座標情報を直接的に再生することができる ため、電界演算回路に接続したシンボル判定回路で多値シンボルの一括判定が可 能となり、伝送効率の高い 32値、 64値等の多値数の大きい光多値信号受信器を比 較的小型のハードウェア規模で実現できる。
[0133] また、本発明では、電界演算や多値判定を電気的なデジタル回路で実行できるた め、伝送路の損失や信号の SN比、劣化要因などに応じた適応型受信器を容易に実 現できる。光電界受信器に電界補償回路を接続した場合、波長分散や帯域劣化な どの線形な伝送劣化を理論的に完全に補償でき、補償内容を動的に変更する適応 分散補償を実現することも可能となる。また、本発明は、光ファイバ通信用の受信器 以外に、例えば、光電界波形測定装置や光空間伝送装置などにも適用可能である。
[0134] 尚、無線通信分野における多値信号伝送と、本発明が適用される光通信分野では 、技術的に以下のような相違がある。
(1)無線通信分野の受信器は、一般的に局部発振器を使用し、入力電界の直交成 分をコヒーレント受信する構成となっている。これは、本明細書で図 2に示したコヒー レント光伝送方式に対応している。無線通信の分野では、光通信と異なり、受信信号 の偏波依存性や局発発信器のコストが問題とならないため、このようなコヒーレント電 界受信器を比較的簡単に構成できる。本発明は、局部発振器を使用することなぐ光 遅延検波器を使用してコヒーレント検波と同様の効果を得たものであり、無線通信分 野の受信器とは解決課題を異にしている。
(2)無線通信分野でも、遅延検波器が使用されている。し力しながら、無線通信分野 では、局部発振器を用いたコヒーレント直交検波によってベースバンド信号を生成し 、このベースバンド信号に対して、遅延検波を適用するのが一般的である。本発明の 光遅延検波は、直交分離が不可能な複素光信号に対して適用してあり、無線通信に おける遅延検波とは作用効果が異なっている。
産業上の利用可能性
[0135] 本発明は、光通信分野における高伝送効率の多値変調信号受信に適用できる。
図面の簡単な説明
[0136] [図 1]光伝送に適用可能な変調方式の説明図。
[図 2]従来のコヒーレント光電界受信器の 1例を示す構成図 (A)と、位相変動の影響 を示す図 (B)。
[図 3]8値振幅位相変調 (APSK)信号の位相点配置 (A)と、従来の 8APSK信号受 信用の光多値信号受信器の構成図 (B)。
圆 4]判定帰還型の従来の 2値位相変調光受信器の 1例を示す構成図。
[図 5]本発明による光電界受信器の第 1実施例を示す構成図。
[図 6]第 1実施例における電気的受信信号 (A)と再生電界信号 (B)の変化を示す図 圆 7]第 1実施例における電界演算部 111を並列化した場合の構成図。
圆 8]本発明による光電界受信器の第 2の実施例を示す光多値信号受信器の構成 図。
圆 9]第 2実施例における判定帰還による位相雑音除去の原理説明図。
圆 10]第 2実施例で採用される初期位相判定方法を説明するための図。
圆 11]本発明による光電界受信器の第 3実施例を示す光多値信号受信器の構成図 圆 12]本発明による光電界受信器の第 4実施例を示す光多値信号受信器の構成図 圆 13]本発明による光電界受信器の第 5実施例を示す光 APSK信号受信器の構成 図。
圆 14]光 APSK信号の差動受信の原理説明図。
圆 15]本発明による光電界受信器の第 5実施例を示す N値光位相変調信号用の光 信号受信器の構成図。
[図 16]本発明による光電界受信器の第 6実施例を示す完全型光電界受信器の構成 図。
圆 17]第 7実施例における波長分散補償の原理説明図。
圆 18]第 7実施例の光電界受信器による波長分散補償の説明図。
[図 19]本発明による光電界受信器の第 8実施例を示す適応補償型の光電界受信器 の構成図。
[図 20]本発明による光電界受信器の第 9実施例を示す 2値強度変調信号用の光電 界受信器の構成図。
圆 21]本発明による光電界受信器の第 10実施例を示す波長多重光伝送系の構成 図。
圆 22]第 10実施例において局制御部が実行する補償量設定ルーチンのフローチヤ ート。
圆 23]本発明による光電界受信器の第 11実施例を示す複数 ADMカゝらなる光ネット ワークの構成図。 [図 24]本発明による光電界受信器の第 12実施例を示す光多値信号受信器の構成 図。
[図 25]本発明による光電界受信器の第 13実施例を示す光多値信号受信器の構成 図。
[図 26]本発明による光電界受信器の第 14の実施例を示すインターリーブサンプリン グ型の光多値信号受信器の構成図である。
[図 27]第 14実施例におけるインターリーブ動作の説明図。
符号の説明
100:光電界受信器、 101:入力光信号、 102:光分岐回路、 103:光信号経路、 10 4:光遅延検波器、 105:バランス型光受信器、 106:AZD変翻、 107:サンプリン グクロック、 108:遅延調整回路、 109:電気信号の経路、 111:電界演算部、 112:平 方演算回路、 113:逆正接演算回路、 115:遅延除算回路、
116:遅延加算回路、 117:再生光電界信号、 120:パケット分割回路、
121:パケット合成回路、 123:光多値信号、 124:光 APSK信号、 130:局部発振レ 一ザ光源、 131:偏波分離回路、 132:局発光、 133:光多値信号の P偏波成分、 13 4:光多値信号の S偏波成分、 136:位相ダイバーシティ回路、 137:1成分出力光、 1 38 :Q成分出力光、 141:デジタル演算回路、 143:シンボル判定回路、 144:再生 多値デジタル信号、 150:光分岐回路、 151:光強度受信器、 152:2値判定回路、 1 53 :2値再生デジタル信号、 154:加算器、 155:重み付け回路、 156 :4象限乗算器 、 157:遅延回路、 158:乗算回路、 159 :2値差動位相変調光、 160:平方根回路、 161:クロック抽出回路、 171:減算回路、 174:位相変動推定回路、 175:位相変動 の推定値、 176:位相変動無依存のシンボル判定回路、 191:倍周波クロック源、 19 2:再サンプリング回路、 193:判定帰還等化回路、 194:判定帰還信号、 195:自動 利得制御回路、 197:N値光位相変調信号、 198:直交座標変換回路、 200:完全型 光電界受信器、 201:遅延量 TZ2の光遅延検波器、 202:電界補償回路、 203:補 償後の電界信号、 206:光ファイバ伝送路、 207:補償量入力端子、 208:電界算出 部、 210:光多値信号送信器、 211:4倍回路、 212:偏差最小化制御回路、 213:2 値振幅変調光送信器、 214:アイ開口検出回路、 215:最大化制御回路、 220:光波長多重伝送装置、 221:端局制御部、 222:データベース、 223:波長合波器、 224:波長分波器、 225 :光増幅器、 226:光送信器、 230:光アツドドロップ装置、 231:制御コンソール、 23 2:光信号の経路、 233:補償量設定信号の通信経路、 234:遅延検波回路、 240: 分周クロック源、 241:電界同期回路、 242:補正信号、 243:多重化回路、 244:遅 延量 3Tの光遅延検波器。

Claims

請求の範囲
[1] 光多値信号を受信する光電界受信器であって、
受信した光多値信号を第 1、第 2の光信号に分岐する光分岐器と、
上記第 1の光信号を遅延時間 T (T=シンボル時間)で遅延検波する第 1の光遅延 検波器と、
上記第 1の光遅延検波器と 90度ずれた光位相差で、上記第 2の光信号を遅延時 間 Τで遅延検波する第 2の光遅延検波器と、
上記第 1、第 2の遅延検波器から出力される複素信号の X成分、 y成分を示す遅延 検波信号をそれぞれ第 1、第 2の電気的信号に変換する第 1、第 2の光受信器と、 上記第 1、第 2の電気的信号から、シンボル時間 T毎に、受信シンボルの位相角ま たはシンボル間位相差を示す第 1の再生信号を生成する電界演算部とからなること を特徴とする光電界受信器。
[2] 前記電界演算部が、前記第 1、第 2の電気的信号から、シンボル時間 T毎に、受信 シンボルの振幅値を示す第 2の再生信号を生成することを特徴とする請求項 1に記 載の光電界受信器。
[3] 前記電界演算部が、前記第 1、第 2の電気的信号の二乗和の平方根演算によって 得られた遅延検波信号の振幅値を、 1シンボル時間前に前記第 2の再生信号として 出力された受信シンボルの振幅値で除算することによって、前記第 2の再生信号とし て新たに出力すべき振幅値を生成することを特徴とする請求項 2に記載の光電界受 信器。
[4] 位相変調と振幅変調の組み合わせによる多値の光信号を受信する光電界受信器 であって、
受信した光多値信号を第 1、第 2、第 3の光信号に分岐する光分岐器と、 上記第 1の光信号を遅延時間 T (T=シンボル時間)で遅延検波する第 1の光遅延 検波器と、
上記第 1の光遅延検波器と 90度ずれた光位相差で、上記第 2の光信号を遅延時 間 Τで遅延検波する第 2の光遅延検波器と、
上記第 1、第 2の遅延検波器から出力される複素信号の X成分、 y成分を示す遅延 検波信号をそれぞれ第 1、第 2の電気的信号に変換する第 1、第 2の光受信器と、 上記第 3の光信号を電気的な光強度信号に変換する第 3の光受信器と、 シンボル時間 T毎に、上記第 1、第 2の光受信器の出力信号から、受信シンボルの 位相角またはシンボル間位相差を示す第 1の再生信号を生成し、上記第 3の光受信 器の出力信号から、受信光信号の振幅値を示す第 2の再生信号を生成する電界演 算部とからなることを特徴とする光電界受信器。
[5] 前記電界演算部が、前記第 1、第 2の電気的信号の逆正接演算によって、前記第 1 の出力信号として出力すべきシンボル間位相差を生成することを特徴とする請求項 1
〜請求項 4の何れかに記載の光電界受信器。
[6] 前記電界演算部が、前記第 1、第 2の電気的信号力 算出されたシンボル間位相 差と、少なくとも 1シンボル時間前に前記第 1の再生信号として出力された位相角とに 基いて、前記第 1の再生信号として出力すべき位相角を生成することを特徴とする請 求項 1〜請求項 4の何れかに記載の光電界受信器。
[7] 前記光分岐器から前記第 1、第 2の光遅延検波器を経て前記電界演算部に至る 2 つの信号経路における伝播時間差を前記シンボル時間 T以下に調整するための遅 延調整手段を備えたことを特徴とする請求項 1〜請求項 6の何れかに記載の光電界 受信器。
[8] 前記電界演算部で生成された振幅値と位相角を複素信号の同相成分 (I成分)と直 交成分 (Q成分)に変換して、前記第 1、第 2の再生信号として出力するための直交 座標変換部を備えたことを特徴とする請求項 2〜請求項 4の何れかに記載の光電界 受信器。
[9] 前記各光受信器カゝら出力された電気的信号をディジタル信号に変換するための複 数の AZD変換器を備え、前記電界演算部が、ディジタル演算によって前記第 1、第 2の再生信号を生成することを特徴とする請求項 2〜請求項 4の何れかに記載の光 電界受目 。
[10] 請求項 1〜請求項 9の何れかに記載の光電界受信器と、
上記光電界受信器からの出力信号に基 、て、受信シンボルと対応した多値デイジ タル信号を復号するシンボル判定回路とからなることを特徴とする光多値信号受信 器。
[11] 請求項 2に記載の光電界受信器と、
上記光電界受信器から出力された前記第 1、第 2の再生信号に基いて、受信シン ボルと対応した多値ディジタル信号を復号するシンボル判定回路とからなり、 上記シンボル判定回路が、前記第 1の再生信号が示す位相角から位相変動成分 を除去するための手段を備え、該位相変動成分が除去された位相角と前記第 2の再 生信号が示す振幅値とに基 、て、上記多値ディジタル信号を生成することを特徴と する光多値信号受信器。
[12] 請求項 9に記載の光電界受信器と、
上記光電界受信器から出力された前記第 1、第 2の再生信号に基いて、受信シン ボルと対応した多値ディジタル信号を生成するシンボル判定回路とからなり、 前記各 AZD変換器が、シンボルレート(1ZT)の 2倍以上のサンプリング速度で、 前記各光受信器カゝら出力される電気的信号をディジタル信号に変換することを特徴 とする光多値信号受信器。
[13] 前記シンボル判定回路が、前記第 1、第 2の再生信号の波形劣化を補償するため の波形等化手段を備えたことを特徴とする請求項 12に記載の光多値信号受信器。
[14] 2値以上の多値変調を施された光信号を受信する光電界受信器であって、
受信した光多値信号を第 1、第 2の光信号に分岐する光分岐器と、
上記第 1の光信号を TZ2以下 (T=シンボル時間)の遅延時間 tで遅延検波する第 1の光遅延検波器と、
上記第 1の光遅延検波器と 90度ずれた光位相差で、上記第 2の光信号を遅延時 間 tで遅延検波する第 2の光遅延検波器と、
上記第 1、第 2の遅延検波器から出力される複素信号の X成分、 y成分を示す遅延 検波信号をそれぞれ第 1、第 2の電気的信号に変換する第 1、第 2の光受信器と、 上記各光受信器の出力信号をサンプリング周期 tでディジタル信号に変換するため の第 1、第 2の AZD変換器と、
上記第 1、第 2の電気的信号から、周期 tで、受信シンボルの位相角を示す第 1の再 生信号と、受信シンボルの振幅値示す第 2の再生信号とを生成する電界演算部とか らなることを特徴とする光電界受信器。
[15] 前記電界演算部が、前記第 1、第 2の再生信号に対して、前記光多値信号が通過 した外部光伝送路で生じた波形劣化を補償するための光電界補償回路を備えたこと を特徴とする請求項 14に記載の光電界受信器。
[16] 前記光電界補償回路が、波形劣化補償量を最適化するための自動制御手段が備 えたことを特徴とする請求項 15に記載の光電界受信器。
[17] 前記光分岐器から前記第 1、第 2の光遅延検波器を経て前記電界演算部に至る 2 つの信号経路における伝播時間差を前記遅延時間 t以下に調整するための遅延調 整手段を備えたことを特徴とする請求項 14〜請求項 16の何れかに記載の光電界受 信器。
[18] 請求項 14〜 17の何れかに記載の光電界受信器と、
前記第 1、第 2の再生信号に基いて、受信シンボルと対応した多値ディジタル信号 を生成するシンボル判定回路とからなることを特徴とする光多値信号受信器。
[19] 請求項 15に記載された少なくとも 1つ光電界受信器と、
外部光伝送路を構成する複数の光ファイバ区間の波長分散情報を格納した記憶 装置と、
制御部とからなり、
上記制御部が、上記記憶装置に格納された波長分散情報に基いて、上記光多値 信号受信器に入力される光多値信号の経路となる外部光伝送路における波長分散 の総量を算出し、該波長分散総量によって決まる波形劣化補償量を前記光電界補 償回路に設定することを特徴とする光伝送装置。
PCT/JP2006/309498 2006-05-11 2006-05-11 光電界受信器、光多値信号受信器および光伝送システム WO2007132503A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP06732529A EP2017980A4 (en) 2006-05-11 2006-05-11 OPTICAL ELECTRIC FIELD RECEIVER, OPTICAL MULTI-LEVEL SIGNAL RECEIVER AND OPTICAL TRANSMISSION SYSTEM
CN2006800545488A CN101438517B (zh) 2006-05-11 2006-05-11 光电场接收器、光多值信号接收器以及光传送系统
JP2008515391A JP4791536B2 (ja) 2006-05-11 2006-05-11 光電界受信器、光多値信号受信器および光伝送システム
US12/300,212 US8873968B2 (en) 2006-05-11 2006-05-11 Optical field receiver, optical multilevel signal receiver, and optical transmission system
PCT/JP2006/309498 WO2007132503A1 (ja) 2006-05-11 2006-05-11 光電界受信器、光多値信号受信器および光伝送システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/309498 WO2007132503A1 (ja) 2006-05-11 2006-05-11 光電界受信器、光多値信号受信器および光伝送システム

Publications (1)

Publication Number Publication Date
WO2007132503A1 true WO2007132503A1 (ja) 2007-11-22

Family

ID=38693606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309498 WO2007132503A1 (ja) 2006-05-11 2006-05-11 光電界受信器、光多値信号受信器および光伝送システム

Country Status (5)

Country Link
US (1) US8873968B2 (ja)
EP (1) EP2017980A4 (ja)
JP (1) JP4791536B2 (ja)
CN (1) CN101438517B (ja)
WO (1) WO2007132503A1 (ja)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009060920A1 (ja) 2007-11-09 2009-05-14 Hitachi Communication Technologies, Ltd. 光電界送信器及び光電界伝送システム
JP2009218837A (ja) * 2008-03-10 2009-09-24 Fujitsu Ltd 光受信装置および光受信方法
US7602322B2 (en) 2007-02-16 2009-10-13 Fujitsu Limited Analog-to-digital conversion controller, optical receiving device, optical receiving method, and waveform-distortion compensating device
JP2010004245A (ja) * 2008-06-19 2010-01-07 Fujitsu Ltd 光受信装置およびデジタル受信回路
JP2010504694A (ja) * 2006-09-22 2010-02-12 アルカテル−ルーセント ユーエスエー インコーポレーテッド 光信号フィールドの復元および修復
JP2010121942A (ja) * 2008-11-17 2010-06-03 Yokogawa Electric Corp 光測定装置及び光測定方法
WO2010061784A1 (ja) * 2008-11-28 2010-06-03 株式会社日立製作所 光電界送信器及び光伝送システム
WO2010082339A1 (ja) * 2009-01-16 2010-07-22 三菱電機株式会社 光伝送システム、送信装置および受信装置
US20100209121A1 (en) * 2009-02-18 2010-08-19 Fujitsu Limited Signal processing device and optical receiving device
WO2010100763A1 (ja) * 2009-03-02 2010-09-10 株式会社日立製作所 光多値伝送システム
WO2011065163A1 (ja) * 2009-11-24 2011-06-03 日本電気株式会社 光受信装置および光受信制御方法
WO2012004890A1 (ja) 2010-07-09 2012-01-12 株式会社日立製作所 光受信器及び光伝送システム
CN102333059A (zh) * 2010-07-06 2012-01-25 日本光进株式会社 解调器及光收发机
JP2012510762A (ja) * 2008-12-03 2012-05-10 シエナ ルクセンブルグ エス.アー.エール.エル 光通信システムにおけるサイクルスリップの影響を修正する方法、及びコヒーレント受信機
US8184992B2 (en) 2006-09-26 2012-05-22 Hitachi, Ltd. Optical field receiver and optical transmission system
JP2012160888A (ja) * 2011-01-31 2012-08-23 Fujitsu Ltd サンプリングクロック同期装置、ディジタルコヒーレント受信装置およびサンプリングクロック同期方法
JP5202650B2 (ja) * 2009-01-16 2013-06-05 三菱電機株式会社 光変復調システム、光伝送システムおよび光変復調方法
JP2013527686A (ja) * 2010-04-21 2013-06-27 アルカテル−ルーセント コヒーレント光受信機における同相成分および直交成分の電力調整
JP5511849B2 (ja) * 2010-01-07 2014-06-04 株式会社日立製作所 光伝送システム
JP5545892B2 (ja) * 2009-05-18 2014-07-09 日本電信電話株式会社 信号生成回路および信号受信回路、信号生成回路、光信号送信装置、信号受信回路、光信号同期確立方法、および光信号同期システム
JP2015109576A (ja) * 2013-12-05 2015-06-11 株式会社日立製作所 光受信器および光信号受信方法
JP2016521027A (ja) * 2013-03-30 2016-07-14 ゼットティーイー コーポレーションZte Corporation 直交位相シフトキーイング変調された光信号からのデータ復元
WO2022230105A1 (ja) * 2021-04-28 2022-11-03 日本電信電話株式会社 アナログ・デジタル変換方法およびアナログ・デジタル変換器

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5326584B2 (ja) * 2009-01-09 2013-10-30 富士通株式会社 遅延処理装置,信号増幅装置,光電変換装置,アナログ/デジタル変換装置,受信装置および受信方法
EP2230782A1 (en) 2009-03-19 2010-09-22 Alcatel Lucent Monitoring of non-linear distortions in a fiber-optic transmission system
US8478136B2 (en) * 2009-10-02 2013-07-02 Eye Diagram2 Ip, Llc Electronic compensation of nonlinearity in optical communication
GB2474882B (en) * 2009-10-29 2014-04-09 Tgs Geophysical Company Uk Ltd Signal processing
JP5482210B2 (ja) * 2010-01-08 2014-05-07 富士通株式会社 光受信器および光受信方法
JP5482273B2 (ja) * 2010-02-12 2014-05-07 富士通株式会社 光受信器
US8401389B2 (en) * 2010-03-12 2013-03-19 Fujitsu Limited Method and system for compensating for optical dispersion in an optical signal
US9319141B2 (en) * 2010-04-06 2016-04-19 Nec Corporation Optical transmitting/receiving system and timing extracting method in optical transmitting/receiving system
JP5578360B2 (ja) * 2010-09-14 2014-08-27 ソニー株式会社 受信装置および方法、並びにプログラム
US8620166B2 (en) * 2011-01-07 2013-12-31 Raytheon Bbn Technologies Corp. Holevo capacity achieving joint detection receiver
US8725006B2 (en) * 2011-02-25 2014-05-13 Nec Laboratories America, Inc. Digital signal-to-signal beat noise reduction for filter-less coherent receiving system
WO2012144108A1 (ja) * 2011-04-21 2012-10-26 日本電気株式会社 光受信方法および光受信機
JP5824883B2 (ja) * 2011-06-06 2015-12-02 富士通株式会社 受信機及び相互位相変調緩和方法
US9100116B2 (en) * 2011-08-24 2015-08-04 Ciena Corporation Short-term optical recovery systems and methods for coherent optical receivers
US8824501B2 (en) * 2011-09-16 2014-09-02 Alcatel Lucent Performance enhancement through optical variants
US8977136B2 (en) * 2011-12-19 2015-03-10 Technion Research And Development Foundation Ltd. Carrier phase estimation for optically coherent QPSK based on wiener-optimal and adaptive multi-symbol delay detection (MSDD)
JP2014013965A (ja) * 2012-07-03 2014-01-23 Hitachi Ltd 偏波多値信号光受信装置、偏波多値信号光送信装置および偏波多値信号光伝送装置
US20140241722A1 (en) * 2013-02-25 2014-08-28 Alcatel-Lucent Usa Inc. PDM-(M) Ask Optical Systems And Methods For Metro Network Applications
JP2015122632A (ja) * 2013-12-24 2015-07-02 富士通株式会社 光通信受信装置
US10027416B2 (en) * 2014-07-29 2018-07-17 Corning Incorporated All-optical mode division demultiplexing
GB2546279B (en) * 2016-01-12 2019-08-21 Phoelex Ltd An optical apparatus
JP6627927B1 (ja) * 2018-07-24 2020-01-08 Nttエレクトロニクス株式会社 位相変動補償装置、位相変動補償方法及び通信装置
US10511388B1 (en) * 2018-08-10 2019-12-17 Fujitsu Limited Reducing variance in reach of WDM channels in an optical network
CN110932782B (zh) * 2019-12-27 2022-06-24 裕太微电子股份有限公司 一种光纤传输标准的自适应系统及自适应方法
KR102404946B1 (ko) * 2021-03-24 2022-06-02 연세대학교 산학협력단 위상 변조 신호 왜곡을 보상하는 광 수신 장치 및 방법
CN114024662B (zh) * 2021-12-21 2022-05-24 渔翁信息技术股份有限公司 随机数发生器
CN117375708B (zh) * 2023-09-27 2024-03-19 威海激光通信先进技术研究院 基于光纤耦合的空间二维偏角测量通信一体化实现方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5432819A (en) * 1994-03-09 1995-07-11 Martin Marietta Corporation DPSK communications with Doppler compensation
US6064507A (en) * 1996-06-17 2000-05-16 Trw Inc. High speed differential optoelectronic receiver
JP3857099B2 (ja) * 2001-10-09 2006-12-13 株式会社アドバンテスト データ伝送装置、光電変換回路、及び試験装置
JP4246149B2 (ja) * 2002-07-11 2009-04-02 エヌエックスピー ビー ヴィ 光受信機回路
US20040141222A1 (en) * 2002-11-01 2004-07-22 Communications Res. Lab., Ind. Admin. Inst. Optical phase multi-level modulation method and apparatus, and error control method
US6798557B1 (en) * 2003-05-22 2004-09-28 Lucent Technologies Inc. Direct optical N-state phase shift keying
JP4516501B2 (ja) * 2005-08-25 2010-08-04 富士通オプティカルコンポーネンツ株式会社 Dqpsk光受信回路
US7623796B2 (en) * 2006-02-27 2009-11-24 Alcatel-Lucent Usa Inc. Data-aided multi-symbol phase estimation for optical differential multilevel phase-shift keying signals

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
BOSOCO G. ET AL.: "On the Joint Effect of Receiver Impairments on Direct-Detection DQPSK Systems", IEEE JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. 24, no. 3, March 2006 (2006-03-01), pages 1323 - 1333, XP003001606 *
KENRO SEKINE ET AL.: "Proposal and Demonstration of 10-Gsymbol/sec 16-ary (40 Gbits/s) Optical Modulation / Demodulation Scheme", ECOC 2004, 2004, pages 345
KIKUCHI N. ET AL.: "Study on Cross-Phase Modulation (XPM) Effect on Amplitude and Differentially Phase-Modulated Multilevel Signals in DWDM Transmission", IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 17, no. 7, July 2005 (2005-07-01), pages 1549 - 1551, XP003001604 *
M. G. TAYLOR: "Coherent Detection Method Using DSP to Demodulate S and for Subsequent Equalization of Propagation Impairments", ECOC 2003, 2003, pages 111
M. G. TAYLOR: "Coherent Detection Method Using DSP to Demodulate Signal and for Subsequent Equalization of Propagation Impairments", ECOC 2003, 2003, pages 111
R.A.GRIFFIN: "10 GB/s Optical Differential Quadrature Phase Shift Key (DQPSK) Transmission using GaAs/AlGaAs Integration", OFC2002, 2003
R.A.GRIFFLN: "10 Gbits/s Optical Differential Quadrature Phase Shift Key (DQPSK) Transmission using GaAs/AlGaAs Integration", OFC2002, 2003
S CALABRO: "Improved Detection of Differential Phase Shift Keying Through Multi-symbol Phase Estimation", PROC. ECOC' 05, 25 September 2005 (2005-09-25), pages 118
See also references of EP2017980A4
SEKINE K. ET AL.: "Study on Optical 16-ary Amplitude-Phase-Shift Keying", IEICE TECHNICAL REPORT OCS2005-8, vol. 105, no. 32, 15 April 2005 (2005-04-15), pages 29 - 34, XP003001605 *
WANG J. AND KAHN J.M.: "Impact of Chromatic and Polarization-Mode Dispersions on DPSK Systems Using Interferometric Demodulation and Direct Detection", IEEE JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. 22, no. 2, February 2004 (2004-02-01), pages 362 - 371, XP003001607 *

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9312964B2 (en) 2006-09-22 2016-04-12 Alcatel Lucent Reconstruction and restoration of an optical signal field
JP2010504694A (ja) * 2006-09-22 2010-02-12 アルカテル−ルーセント ユーエスエー インコーポレーテッド 光信号フィールドの復元および修復
US8184992B2 (en) 2006-09-26 2012-05-22 Hitachi, Ltd. Optical field receiver and optical transmission system
US7602322B2 (en) 2007-02-16 2009-10-13 Fujitsu Limited Analog-to-digital conversion controller, optical receiving device, optical receiving method, and waveform-distortion compensating device
US8265489B2 (en) 2007-11-09 2012-09-11 Hitachi, Ltd. Optical field transmitter and optical field transmission system
WO2009060920A1 (ja) 2007-11-09 2009-05-14 Hitachi Communication Technologies, Ltd. 光電界送信器及び光電界伝送システム
JP2009218837A (ja) * 2008-03-10 2009-09-24 Fujitsu Ltd 光受信装置および光受信方法
JP2010004245A (ja) * 2008-06-19 2010-01-07 Fujitsu Ltd 光受信装置およびデジタル受信回路
JP2010121942A (ja) * 2008-11-17 2010-06-03 Yokogawa Electric Corp 光測定装置及び光測定方法
US8472807B2 (en) 2008-11-28 2013-06-25 Hitachi, Ltd. Optical field transmitter and optical transmission system
WO2010061784A1 (ja) * 2008-11-28 2010-06-03 株式会社日立製作所 光電界送信器及び光伝送システム
JP2012510762A (ja) * 2008-12-03 2012-05-10 シエナ ルクセンブルグ エス.アー.エール.エル 光通信システムにおけるサイクルスリップの影響を修正する方法、及びコヒーレント受信機
JP4987127B2 (ja) * 2009-01-16 2012-07-25 三菱電機株式会社 光伝送システム、送信装置および受信装置
JP5202650B2 (ja) * 2009-01-16 2013-06-05 三菱電機株式会社 光変復調システム、光伝送システムおよび光変復調方法
WO2010082339A1 (ja) * 2009-01-16 2010-07-22 三菱電機株式会社 光伝送システム、送信装置および受信装置
US20100209121A1 (en) * 2009-02-18 2010-08-19 Fujitsu Limited Signal processing device and optical receiving device
US8923708B2 (en) * 2009-02-18 2014-12-30 Fujitsu Limited Signal processing device and optical receiving device
CN102318306A (zh) * 2009-03-02 2012-01-11 株式会社日立制作所 光多值传输系统
JP5458313B2 (ja) * 2009-03-02 2014-04-02 株式会社日立製作所 光多値伝送システム
WO2010100763A1 (ja) * 2009-03-02 2010-09-10 株式会社日立製作所 光多値伝送システム
US8655193B2 (en) 2009-03-02 2014-02-18 Hitachi, Ltd. Optical multi-level transmission system
US20110305457A1 (en) * 2009-03-02 2011-12-15 Hitachi, Ltd. Optical Multi-Level Transmission System
JP5545892B2 (ja) * 2009-05-18 2014-07-09 日本電信電話株式会社 信号生成回路および信号受信回路、信号生成回路、光信号送信装置、信号受信回路、光信号同期確立方法、および光信号同期システム
US9100126B2 (en) 2009-11-24 2015-08-04 Nec Corporation Optical reception device and optical reception control method
JP5158268B2 (ja) * 2009-11-24 2013-03-06 日本電気株式会社 光受信装置および光受信制御方法
WO2011065163A1 (ja) * 2009-11-24 2011-06-03 日本電気株式会社 光受信装置および光受信制御方法
JP5511849B2 (ja) * 2010-01-07 2014-06-04 株式会社日立製作所 光伝送システム
JP2013527686A (ja) * 2010-04-21 2013-06-27 アルカテル−ルーセント コヒーレント光受信機における同相成分および直交成分の電力調整
CN102333059A (zh) * 2010-07-06 2012-01-25 日本光进株式会社 解调器及光收发机
US8855503B2 (en) 2010-07-09 2014-10-07 Hitachi, Ltd. Optical receiver and optical transmission system
WO2012004890A1 (ja) 2010-07-09 2012-01-12 株式会社日立製作所 光受信器及び光伝送システム
US9014575B2 (en) 2011-01-31 2015-04-21 Fujitsu Limited Sampling clock synchronizing apparatus, digital coherent receiving apparatus, and sampling clock synchronizing method
JP2012160888A (ja) * 2011-01-31 2012-08-23 Fujitsu Ltd サンプリングクロック同期装置、ディジタルコヒーレント受信装置およびサンプリングクロック同期方法
JP2016521027A (ja) * 2013-03-30 2016-07-14 ゼットティーイー コーポレーションZte Corporation 直交位相シフトキーイング変調された光信号からのデータ復元
JP2015109576A (ja) * 2013-12-05 2015-06-11 株式会社日立製作所 光受信器および光信号受信方法
WO2022230105A1 (ja) * 2021-04-28 2022-11-03 日本電信電話株式会社 アナログ・デジタル変換方法およびアナログ・デジタル変換器

Also Published As

Publication number Publication date
CN101438517A (zh) 2009-05-20
EP2017980A1 (en) 2009-01-21
CN101438517B (zh) 2012-09-05
EP2017980A4 (en) 2013-01-16
US20090208224A1 (en) 2009-08-20
JP4791536B2 (ja) 2011-10-12
US8873968B2 (en) 2014-10-28
JPWO2007132503A1 (ja) 2009-09-17

Similar Documents

Publication Publication Date Title
JP4791536B2 (ja) 光電界受信器、光多値信号受信器および光伝送システム
JP4755690B2 (ja) 光電界受信器および光伝送システム
US8913901B2 (en) System and method for blind equalization and carrier phase recovery in a quadrature amplitude modulated system
US8855503B2 (en) Optical receiver and optical transmission system
US10404378B2 (en) Optical communication system
WO2009060920A1 (ja) 光電界送信器及び光電界伝送システム
US20130209089A1 (en) Constrained continuous phase modulation and demodulation in an optical communications system
JP5888056B2 (ja) デジタル光コヒーレント伝送装置
WO2010033402A1 (en) Optical transmitter error reduction using receiver feedback
EP2047615A2 (en) Method and apparatus for the generation and detection of optical differential varied-multilevel phase-shift keying with pulse amplitude modulation (odvmpsk/pam) signals
WO2011125964A1 (ja) 光送受信システムおよび光送受信システムにおけるタイミング抽出方法
WO2014194940A1 (en) Coherent optical receiver
US9088387B2 (en) Chain encoding and decoding of high speed signals
WO2009109582A1 (en) Phase control circuit and method for optical receivers
WO2015088729A1 (en) Use of parity-check coding for carrier-phase estimation in an optical transport system
US20090220249A1 (en) Demodulation circuit
EP2976852B1 (en) Timing recovery apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06732529

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008515391

Country of ref document: JP

Ref document number: 2006732529

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12300212

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200680054548.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE