WO2009060920A1 - 光電界送信器及び光電界伝送システム - Google Patents

光電界送信器及び光電界伝送システム Download PDF

Info

Publication number
WO2009060920A1
WO2009060920A1 PCT/JP2008/070248 JP2008070248W WO2009060920A1 WO 2009060920 A1 WO2009060920 A1 WO 2009060920A1 JP 2008070248 W JP2008070248 W JP 2008070248W WO 2009060920 A1 WO2009060920 A1 WO 2009060920A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
optical
electric field
optical electric
phase
Prior art date
Application number
PCT/JP2008/070248
Other languages
English (en)
French (fr)
Inventor
Nobuhiko Kikuchi
Original Assignee
Hitachi Communication Technologies, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Communication Technologies, Ltd. filed Critical Hitachi Communication Technologies, Ltd.
Priority to JP2009540091A priority Critical patent/JP4880039B2/ja
Priority to EP08846532A priority patent/EP2219306A1/en
Priority to CN200880115100.1A priority patent/CN102017467B/zh
Priority to US12/741,518 priority patent/US8265489B2/en
Publication of WO2009060920A1 publication Critical patent/WO2009060920A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • H04L27/2096Arrangements for directly or externally modulating an optical carrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/361Modulation using a single or unspecified number of carriers, e.g. with separate stages of phase and amplitude modulation

Definitions

  • the present invention relates to an optical information transmission technique, and more particularly to a technique suitable for transmission / reception of multilevel optical information transmitted through an optical fiber.
  • the amount of information (transmission capacity) that can be transmitted over a single optical fiber has been increasing due to an increase in the number of wavelengths and the modulation speed of optical signals, but it has almost reached its limit. This is because the wavelength band of optical fiber amplifiers that can be used for optical transmission has almost been used. In such a situation, in order to further increase the transmission capacity of the optical fiber, the signal modulation method is devised and a large number of optical signals are included in the limited frequency band, thereby increasing the frequency band utilization efficiency. There is a need to.
  • Multi-level modulation technology that has been popular since the 1960s has enabled high-efficiency transmission with a frequency utilization efficiency exceeding 10 (b i t / s / H z / se c to r).
  • Multi-level modulation is considered promising in optical fiber transmission and has been studied extensively. For example, ⁇ 10Gb / s Optical Differential
  • FIG. 1 is an explanatory diagram showing the characteristics of various conventional modulation methods applicable to optical transmission.
  • light modulation signal points (display of complex information of the optical electric field at the time the signal is identified) are plotted on the phase plane (on the IQ plane).
  • Figure 1A is an explanatory diagram of signal points on the phase plane, where each signal point is equivalent to a complex Cartesian coordinate on the IQ plane or a polar coordinate containing (n) and phase ⁇ (n) in amplitude Is displayed.
  • Fig. 1B four values (0, ⁇ ⁇ 2, ⁇ , and ⁇ / 2) are used for the phase angle ⁇ (n), and 2 bits of information (00, 0 1, 1) are used for 1 symbol.
  • QP SK quaternary phase modulation
  • Figure 1C shows 16-value quadrature amplitude modulation (1 6 QAM) widely used in radio
  • a signal example of (Quadrature Amplitude Modulation)) is shown.
  • signal points are arranged in a grid, and 4 bits of information can be transmitted with one symbol.
  • the value of the upper 2 bits (1 0 xx, llxx, 0 1 xx, and 00 xx) is represented in the Q-axis coordinates, and the lower 2 bits (XX 10) in the I-axis coordinates. , Xx 1 1, xx 01, and x X 00).
  • 1 6 Q AM signal point arrangement increases the distance between the signal points, increasing the reception sensitivity.
  • quadrature amplitude modulation can be achieved using a coherent optical receiver. It is.
  • a coherent optical receiver is a receiver that uses a local light source disposed inside the receiver in order to detect the phase angle of the optical signal.
  • Fig. 1D shows a signal example of the 16-value amplitude phase modulation method (16 APSK method) in which the same number of signal points are arranged radially on a concentric circle on the IQ plane.
  • FIG. 2 is a block diagram of a polarization-diversity coherent optical field receiver.
  • the polarization-diversity coherent optical field receiver simultaneously receives information on two polarizations of an optical signal.
  • the input optical signal 1 0 1 transmitted through the optical fiber transmission line is converted into a horizontal (S) polarization component 1 0 5 and a vertical (P) polarization component 1 0 6 by the polarization separation circuit 1 0 2—1.
  • S-polarized wave component 1 0 5 and P-polarized wave component 1 0 6 are input to the coherent optical electric field receiver 1 0 0-1 and the coherent optical electric field receiver 1 0 0 1 2, respectively.
  • a local laser light source 1 0 3 having substantially the same wavelength as that of the input optical signal 1 0 1 is used as a reference for the optical phase.
  • the local light 1 0 4— 1 output from the local laser light source 1 0 3 is divided into two local light sources 1 0 4— 2 and local light 1 0 4— 3 by the polarization separation circuit 1 0 2— 2.
  • the separated local light 1 0 4-2 and local light 1 0 4-3 are input to the coherent optical field receiver 1 0 0-1 and the coherent optical field receiver 1 0 0-2, respectively.
  • the coherent optical electric field receiver 1 0 0-1 synthesizes the optical phase diversity circuit 1 0 7 force S, the S polarization component 1 0 5 of the input optical multilevel signal and the local light 1 0 4-2.
  • the optical phase diversity circuit 1 0 7 is an I (in-phase) component output light 10 8 extracted from the in-phase component of the combined local light 1 0 4— 2 and the S polarization component 1 0 5 of the optical multilevel signal.
  • Q (orthogonal) component output light 1009 extracted from the orthogonal component of the combined local light 104-2 and the S polarization component 1005 of the optical multilevel signal is generated.
  • the output light 1 0 8 and the Q component output light are received by the balanced optical receivers 1 1 0-1 and 1 1 0-2, respectively.
  • the received I component output light 10 8 and Q component output light are converted into electrical signals.
  • the two converted electrical signals are time-sampled by the A / D converters 1 1 1 1 1 and 1 1 1 1 2 respectively, and the digitized output signals 1 1 2— 1 and 1 1 2 — 2 is generated.
  • the optical electric field of the received input optical signal 1 0 1 is expressed as r (n) e x p (j ⁇ (n)).
  • R is the amplitude of the optical electric field
  • is the phase of the optical electric field
  • n is the sampling time.
  • Local light 10 4 actually includes random phase noise and slight difference frequency components with signal light, etc., but phase noise and difference frequency components are slow phase rotations, and digital signal processing Ignore because it is removed by.
  • the balanced photodetector 1 1 0—1 and the balanced photodetector 1 1 0—2 perform homodyne detection on the input optical signal 1 0 1 input using the local light 10 04-2,
  • the in-phase component and the quadrature component of the optical field of the input optical signal 100 1 as a reference are output.
  • all constants such as conversion efficiency are set to “1”.
  • the digital arithmetic circuit 1 1 3 is a complex electric field arithmetic circuit that gives an inverse function of linear degradation (for example, chromatic dispersion) that an optical signal undergoes during transmission. It is possible to almost completely cancel out the influence of. Also, processing such as clock extraction and resampling is performed as necessary, and the in-phase component of the processed optical electric field signal 1 1 4 1 1 and the quadrature component of the optical electric field signal 1 1 4 ⁇ 2 are output. .
  • the coherent optical electric field receiver 1 0 0— 1 can obtain electric field information of one polarization component (for example, S polarization component) of the received input optical signal 1 0 1. Since the polarization state of the optical signal fluctuates during optical fiber transmission, it is also necessary to receive the P polarization component. Therefore, the coherent optical electric field receiver 1 0 0 ⁇ 2 similarly receives the P polarization component of the input optical signal 1 0 1, and uses the received electric field information of the P polarization component as the optical electric field signal 1 1 4 ⁇ 3 And the optical electric field signal is output as 1 1 4 1 4.
  • one polarization component for example, S polarization component
  • Digital computation / symbol determination circuit 1 1 5 converts the polarization state of the optical signal into the I component and Q component of each polarization output from the digital computation circuit 1 1 3 (for example, from linear polarization to circular polarization) Conversion) to eliminate the fluctuation of the polarization state.
  • the digital computation / symbol determination circuit 1 15 determines, with high accuracy, which symbol has been transmitted, for example, by comparing with the signal point arrangement shown in FIG. 1C. The judgment result is output as a multi-value digital signal 1 1 6.
  • the digital arithmetic circuit 1 1 3 performs correction processing using the inverse function of the propagation function of the optical fiber transmission line for the input signal, and linear degradation due to wavelength dispersion, etc. Theoretically it can be completely compensated. In addition, the correction process has the great advantage that the compensation amount is not limited. However, at present, small high-speed digital arithmetic circuits with a signal processing performance of 10 Gb i t Z seconds or more are not available on the market, and are in the stage of effect verification through partial experiments.
  • Fig. 3A is an example of 8-level amplitude-phase modulated light (8 APSK) in which 8 signal points with 4-level phase and 2-level amplitude are arranged on concentric circles.
  • B is a configuration of a conventional optical multilevel signal receiver for receiving amplitude-phase modulated light described in Sekine et al. FIG.
  • Optical modulation in which phase components are divided at regular intervals uses differential encoding to modulate the phase components.
  • the binary value (1 bit) and the four values (2 bits) of phase difference 0, ⁇ / 2, ⁇ , and ⁇ 2 between the previous symbol are used for information transmission.
  • Each symbol transmits 3 bits of information.
  • an 8 AP SK signal is used as the input optical signal 101.
  • the optical branch circuit 120 separates the inputted input optical signal 101 into three optical signals. Of the separated optical signals, two optical signals are input to the optical delay detectors 121-1 and 1 2 1 1 2, and the remaining optical signal is input to the optical intensity detector 122.
  • Each of the optical delay detectors 1 21-1 and 1 21-2 has a first optical path that gives a delay of symbol time ⁇ to the input signal and a first ⁇ / 4 phase shifter or + ⁇ 4 phase shifter. Including the two optical paths, the input optical signal 101 is made to interfere with the signal received just before time ⁇ , and the phase modulation component is converted into an optical intensity signal.
  • the output intensity of the output light from the optical delay detector 121-1 passing through the + ⁇ / 4 phase shifter becomes maximum when the phase difference between the received symbol and the immediately preceding symbol becomes 0 or + ⁇ / 2. Minimum when the phase difference reaches 1 ⁇ / 2 or ⁇ .
  • the binary decision circuit 123-1 receives the output light of the optical delay detector 121-1 through the balanced photodetector 11. The received output light is binary-determined to obtain a binary digital signal 1 24-1 for 1 bit.
  • the output intensity of the output light from the optical delay detector 1 21-2 passing through one ⁇ / 4 phase shifter becomes maximum when the phase difference between the received symbol and the immediately preceding symbol becomes zero or one ⁇ / 2. Minimum when the phase difference reaches 7C // 2 or ⁇ .
  • the binary decision circuit 1 23-2 receives the output light of the optical delay detector 121-21 through the balanced photodetector 110-2. The received output light is subjected to binary determination, whereby a binary digital signal 124-2 for another 1 bit included in the phase component is obtained.
  • the light intensity detector 1 2 2 converts the light intensity of the received signal (the square of the optical electric field amplitude) into an electrical signal. The output of the converted electrical signal is binary-determined by the binary decision circuit 1 2 3-3, so that a binary digital signal 1 2 4-3 for 1 bit included in the amplitude component is obtained.
  • optical multilevel signal receiver uses optical delay detection, there is almost no dependency on the phase variation of the light source and reception polarization, and a local oscillation light source becomes unnecessary. Applies to the reception of APSK signals with radial signal point arrangement. Disclosure of the invention
  • the problem to be solved by the present invention is that in the conventional optical multilevel transmission and optical electric field transmission using the non-coherent method, there are significant restrictions on the arrangement of receivable signal points and optical electric field information.
  • the non-coherent method which uses optical delay detection to obtain the phase information of an optical signal, is less polarization-dependent than the coherent method and does not require a local light source. Is simple and easy to implement.
  • the non-coherent method has a limited scope for application and performance improvement.
  • the non-coherent scheme is only applicable to multilevel phase modulation (Fig. 1B) or APSK scheme (Fig. ID and Fig. 3A) in which the same number of signal points are arranged radially on a concentric circle. It has not been.
  • the APSK system may indicate modulation in which amplitude and phase are arbitrarily combined. Therefore, in the present invention, in order to distinguish between the general APSK system and the APSK to which the present invention is applied, ⁇ concentric circles '' will be described below.
  • the “APSK system in which the same number of signal points are arranged radially at equal intervals and at the same phase angle” will be described as a radial APSK system or radial APSK modulation.
  • each concentric circle corresponds to a different amplitude value of the optical electric field, and as a result of assigning a phase to each signal point independently, each concentric circle has a signal point at a point of the same phase angle.
  • Radial APSK signal point constellations can be received incoherently.
  • the information contained in the amplitude component can be received by the intensity receiver, and the information contained in the phase component can be received independently by optical delay detection.
  • An intensity receiver is a receiver that obtains an amplitude component from a received optical electric field by receiving an optical electric field that is the square of the amplitude of a light wave.
  • the independence of the phase modulation component and the amplitude modulation component is different from the reception of the non-coherent method, and is not related to the actual modulation procedure.
  • the amplitude and phase do not necessarily have to be modulated by independent modulators.
  • the amplitude and phase are modulated by a single optical electric field modulator, non-coherent reception is not possible.
  • An optical electric field modulator is a modulator that generates an arbitrary optical electric field signal by modulating the amplitude component and phase component of an optical electric field output from a laser light source or the like to a desired state in accordance with an input electrical information signal. It is.
  • the radial APSK modulation described above is independent of the logical code assignment and the temporal arrangement of signal points (for example, trellis modulation), and defines only the arrangement that an optical multilevel signal can take on a complex optical electric field. It is a thing.
  • transmission of general complex information for example, transmission of subcarrier modulation signals such as OF DM transmission, is non-coherent. Method reception is not available.
  • FIG. 11 of the inventors is an example of an optical electric field receiver that receives an optical multilevel signal, and the configuration described below includes each of the optical electric field receivers shown in FIG. 11 of International Publication No. 2006/309498. ⁇ O.
  • the input optical multilevel signal 123 is separated into three optical signals by the optical branch circuit 150.
  • the separated first and second optical signals are input to the optical delay detector 104-1 (set to phase difference 0) and the optical delay detector 104-2 (set to phase difference ⁇ / 2), respectively.
  • the third optical signal is input to the light intensity detector 151.
  • the outputs of the optical delay detectors 104-1 and 104-2 are converted into electrical signals X and y by the optical balanced receiver 105-1 and the optical balance receiver 105-2, and the AZD converters 106-1 and A
  • the signal is input to the electric field calculation unit 111 through the / D converter 106-2, the delay adjustment circuit 108-1 and the delay adjustment circuit 108-2.
  • the output signal of the light intensity detector 1 51 is converted into a digital signal by the A / D converter 106-3, the timing is adjusted by the delay adjustment circuit 108-3, and then input to the electric field calculation unit 1 1 1. .
  • the delay amount of the optical delay detector 104 is the symbol time T. By setting this to T // 2, the sampling rate is made smaller than this value. Based on the Nyquist theorem, it has been shown that optical electric field information can be applied to regeneration and chromatic dispersion compensation in a receiver.
  • Fig. 17 of WO 2006/309498 shows examples of each received electrical signal and the relationship between the regenerated electric field signals.
  • the n-th output signals X and y have continuous amplitude values r (n) and r (n — R (n) r (n— 1) multiplied by 1) to cos ( ⁇ ( ⁇ )) and si ⁇ ( ⁇ ⁇ (n)) multiplied by
  • ⁇ ⁇ ( ⁇ ) ⁇ ( ⁇ ) 1 ⁇ ( ⁇ — 1) is the phase difference between symbols.
  • the arc tangent calculation of the signals X and y is performed by the arctangent calculation circuit 1 1 3 to calculate the phase difference ⁇ ( ⁇ ).
  • the calculated phase difference ⁇ ( ⁇ ) is cumulatively added for each sample by the delay addition circuit 116, thereby calculating the phase ⁇ ( ⁇ ).
  • the output signal 110-3 is the intensity ⁇ r (n) ⁇ 2 of the ⁇ -th sample, and the amplitude value r (n) is obtained from the square root circuit 160.
  • the original optical electric field r (n) exp (j (n)) is obtained.
  • FIG. 4 is an explanatory diagram showing an example of numerical simulation of the signal processing of the non-coherent electric field regeneration method.
  • the transmitted optical electric field is assumed to be 16 QAM shown in Fig. 4A
  • the output signals (X, Y) of two orthogonal delay detectors that have received the transmitted optical electric field are horizontal.
  • the example shown in Figure 4B is obtained.
  • the original 16 Q AM signal is obtained as shown in (C) of Fig. 4. Can be played.
  • the slope of the signal point is due to the fact that the initial value of the phase is indeterminate in the integration calculation process, and the initial phase is estimated and the process to remove the estimated initial value of the phase is added. 1 6 Q AM signal can be received.
  • the non-coherent electric field regeneration method If the non-coherent electric field regeneration method is used, it is possible to detect the optical electric field of an arbitrary received signal even when receiving by the non-coherent method. However, the non-coherent electric field regeneration method has the following problems.
  • the first problem is the accumulation of errors by the delay adder circuit provided in the receiver. For example, if the delay of the optical delay detector includes a time error of 5%, the regenerated electric field will rotate significantly as shown in D of Fig. 4. This is because errors accumulate when ⁇ is accumulated in the receiver. In other words, if an error (including indefinite initial phase) is included even once in the process of accumulating ⁇ , the error will be included in all of the remaining calculation results. It is because it is included. For this reason, the non-coherent electric field regeneration method has a problem that the initial phase is indefinite, errors are likely to accumulate, and it is difficult to detect an accurate optical electric field.
  • the second problem is that the continuity of the phase information of the optical signal is lost when the amplitude of the received signal is approximately zero.
  • the amplitude r (n) becomes zero even once, the outputs of the two optical delay detectors become zero before and after that, and phase continuity is lost.
  • the phase of all the optical electric fields after the amplitude r (n) of the received signal becomes zero becomes indefinite. Therefore, in the non-coherent electric field regeneration method, when the amplitude of the received optical electric field is approximately zero, it is very difficult to reproduce the optical electric field.
  • the third problem is that optical signals cannot be received due to distortion of the optical electric field waveform due to chromatic dispersion. In other words, even when optical multilevel modulation that does not generate an amplitude gap is used for information transmission, such as the radial APSK modulation described above, the optical signal is transmitted through the optical fiber.
  • Degradation due to chromatic dispersion of the transmission line, etc. may cause the optical electric field waveform to be greatly distorted, resulting in a point of zero amplitude that should not exist. In this case, the received signal is greatly degraded.
  • a first object of the present invention is to solve the problem of error accumulation in the non-coherent optical electric field detection method, and to easily receive optical multilevel modulation other than radial APSK modulation.
  • a second object of the present invention is to solve the problem that information on an electric field near zero cannot be transmitted in a non-coherent reception method.
  • a third object of the present invention is to solve the problem that it becomes difficult to receive an optical electric field signal due to waveform distortion such as chromatic dispersion.
  • a typical example of the present invention is as follows. That is, a light source, one or more DA converters, and an optical electric field modulator are provided.
  • the information signal sampled at a predetermined time interval is modulated into an optical electric field signal, and the modulated optical electric field signal is transmitted.
  • the information signal is a multi-valued signal arranged by combining a multi-valued signal irregularly arranged on a complex plane, and at least two amplitude values and a different number of phases.
  • the optical electric field transmitter includes a phase pre-integration circuit that outputs phase pre-integration complex information obtained by previously integrating the phase components of the information signal at a predetermined time interval,
  • the DA converter converts the information signal including the output phase pre-integration complex information into an analog signal, inputs the converted analog signal to the photoelectric modulator, and the optical electric field modulator From the light source Using a force light, modulating the analog signal to the optical field signal, and transmits the modulated optical field signal.
  • phase errors are not accumulated compared to the optical electric field regeneration method, and the phase component can be calculated with high accuracy.
  • 1A to 1D are explanatory diagrams showing characteristics of various conventional modulation schemes applicable to optical transmission.
  • Figure 2 shows the configuration of a conventional polarization diversity coherent optical field receiver.
  • FIG. 3A is an explanatory diagram of a conventional 8-level amplitude phase modulated light (8 APSK), and FIG. 3B is a configuration diagram of a conventional optical multilevel signal receiver for receiving amplitude phase modulated light.
  • 8 APSK 8-level amplitude phase modulated light
  • FIG. 3B is a configuration diagram of a conventional optical multilevel signal receiver for receiving amplitude phase modulated light.
  • 4A to 4D are explanatory diagrams showing an example of numerical simulation of signal processing of a conventional non-coherent electric field regeneration method.
  • FIG. 5 is a configuration diagram of the optical electric field transmission system according to the first embodiment of this invention.
  • 6A and 6B are explanatory diagrams showing types of complex multilevel information signals that are not applicable to the first embodiment of the present invention.
  • FIGS. 6C to 6E are diagrams illustrating the present invention.
  • FIG. 5 is an explanatory diagram showing types of complex multilevel information signals to which the first embodiment is applied.
  • FIG. 7A to FIG. 7E are explanatory diagrams showing the operation principle of the first embodiment of the present invention.
  • FIG. 8A and 8B are explanatory diagrams showing an overview of signal processing of a conventional radio signal.
  • FIG. 8B is an overview of signal processing of the non-coherent detector according to the first embodiment of this invention. It is explanatory drawing which shows.
  • FIG. 9 is a configuration diagram of the optical electric field transmission system according to the second embodiment of the present invention.
  • FIG. 1OA to FIG. 10C are explanatory diagrams illustrating coordinate conversion of complex signals according to the second embodiment of the present invention.
  • FIG. 11 is a configuration diagram of an optical electric field transmission system according to a third embodiment of the present invention.
  • FIG. 12 is a configuration diagram of an optical electric field transmission system according to the fourth embodiment of the present invention.
  • FIG. 13 is a configuration diagram of an optical electric field transmission system according to the fifth embodiment of the present invention.
  • the first object of the present invention is to generate phase pre-integrated complex information in which only the phase components are pre-integrated at time intervals T when transmitting complex information other than radial APSK modulation, and the generated phase pre-integrated complex This can be achieved by converting information into an optical electric field signal and transmitting it.
  • the transmitted optical electric field signal is branched and received with the same timing by two optical delay detection type receivers whose optical phase difference is 90 degrees. What is necessary is just to detect a phase angle component.
  • the complex phase angles of the output signals d I and d Q of the two optical delay detection receivers are the same as the phase angle of the original complex information.
  • the phase integration process becomes extremely practical when digital computation is used.
  • the complex information is converted to a high-speed analog signal by the DA converter, and the optical electric field modulator is driven by the converted analog signal.
  • an optical intensity receiver is provided inside the optical electric field receiver, and by combining the obtained optical electric field (or optical intensity) information with the phase information described above, the complex information on the transmission side is restored with high accuracy and output. It becomes possible to do.
  • the signal processing required inside the optical field receiver includes AD converters after each of the plurality of optical field receivers described above, and simultaneously digitally samples in a certain cycle and converts them into digital signals. It can be easily realized.
  • the phase integration process described above is performed, the intersymbol interference of the output signals of the two sets of optical delay detection receivers is reduced, and the uncertainty of the initial phase of the output signal is eliminated.
  • a second object of the present invention is to perform coordinate conversion so that the amplitude of the complex information transmitted inside the optical electric field transmitter of the present invention does not become substantially zero, or in advance is a positive predetermined value or more. This can be solved by transmitting information using multi-value complex information of signal point arrangement with amplitude values.
  • an inverse coordinate conversion circuit is provided in the optical electric field receiver. Therefore, the original complex information is restored, and the restored complex information can be output.
  • the third object of the present invention is to completely eliminate the deterioration caused by the optical electric field transmitter / receiver and the optical transmission line in advance between the phase preintegration circuit of the optical electric field transmitter of the present invention and the approximate optical electric field modulator.
  • This is solved by providing a pre-equalization circuit that approximately equalizes.
  • an oversampling circuit that oversamples the approximate complex information at an integer multiple frequency at the input part of the pre-equalization circuit, the Nyquist theorem is satisfied and the performance of the pre-equalization circuit can be improved. It becomes possible. .
  • the optimal equalization amount varies depending on the transmission distance and the characteristics of each configuration. Therefore, a function for changing the equalization amount of the pre-equalization circuit may be provided. In order to optimize the equalization amount, it is preferable to dynamically control the equalization amount so that the quality is the best using the signal quality information obtained from the optical electric field receiver.
  • FIG. 5 is a configuration diagram of the optical electric field transmission system according to the first embodiment of the present invention.
  • the optical signal path is indicated by a bold line, and the electrical signal path is indicated by a thin line.
  • an unmodulated laser beam output from the laser light source 2 1 2 is input to the optical electric field modulator 2 1 3 to perform the required electric field signal.
  • the transmitted information signal has a two-dimensional phase plane (complex plane or I).
  • This is a digital electrical multilevel signal expressed as (i, q) on the Q plane, and is an information signal that is not included in the aforementioned radiation-like APSK signal.
  • the signal input to 0 1 is input to the phase preintegration circuit 2 0 2.
  • the phase pre-integration circuit 202 integrates only the phase components of the multilevel signal at time intervals T.
  • the phase integrating circuit 205 is composed of a delay circuit 206 having a delay time T and an adding circuit 207, and is added to an integrated value ⁇ ⁇ (t -T) delayed by an input digital phase signal ⁇ (t) force time T. By repeating this process, the phase integration value ⁇ ⁇
  • phase pre-integration signal 208 which is new complex information having the amplitude value r (t) as the amplitude component and the phase integration value ⁇ (t) as the phase component, is generated.
  • the phase pre-integration signal 208 has a real part i and an imaginary part q, respectively.
  • a converter 210-2 converts to high-speed analog signal.
  • the converted high-speed analog signals are amplified by the drive circuit 21 1-1 and the drive circuit 21 1 _ 2, respectively, and input to the two modulation terminals I and Q of the optical electric field modulator 21 3. Therefore, an optical electric field signal 215 including the in-phase component I and the quadrature component Q of the optical electric field is generated using the phase pre-integrated signal (i ′, q ′) 208.
  • the optical electric field of the optical electric field signal 215 is expressed as r (t) e x p (j ⁇ (t)).
  • the optical electric field signal 215 is transmitted through the optical fiber transmission line 216, and after being subjected to transmission deterioration such as chromatic dispersion of the optical fiber, is input to the non-coherent optical electric field receiver 220 as the received optical electric field signal 221.
  • the received optical electric field signal 221 is separated into three optical signal paths by the optical branch circuit 120, and the first optical delay detector 1 21-1, the second optical delay detector 1 21-2, and the optical intensity, respectively. Input to detector 1 22.
  • the optical phase difference between both paths is set to zero.
  • the arc tangent calculation circuit 223 calculates a phase angle by performing a two-argument inverse tangent calculation using the digital signal d I as the X component and the digital signal dQ as the Y component.
  • the output signal P of the light intensity detector is input to the square root circuit 224, and the original electric field amplitude r (t) is obtained as an output. Therefore, when the obtained electric field amplitude r (t) and phase component ⁇ (t) are input to the Cartesian coordinate transformation circuit 204-2, The original digital electrical multilevel signal (i, q) can be reproduced from the complex information output terminal 2 2 5.
  • FIG. 6 is an explanatory diagram showing the types of complex multi-level information signals that are not applicable or applicable to the present invention.
  • 6A and 6B are examples of a radial APSK signal to which the present invention is not applied.
  • the same number of signal points are arranged at the same phase interval at the same phase angle of each amplitude level. Is a feature.
  • Fig. 6A in the case of a 4 APSK signal, two signal points are arranged at two amplitude levels a 0 and a 1 with a phase interval ⁇ at positions 0 and ⁇ , respectively. Is done. Also, as shown in Fig. 6 ⁇ , in the case of 16 APSK signal, there are four amplitude levels a 0 to a 3 with four phase angles of 0, ⁇ / 2, ⁇ , and 3 ⁇ / 2, respectively. Signal points at equal intervals (phase interval ⁇ ⁇ 2) are arranged.
  • the phase intervals of the signal points are equal, there is no change in the phase angle of the output signal even if optical delay detection is performed. Therefore, even if the phase pre-integration of the present invention is performed, the signal point arrangement does not change. Therefore, the maximum effect of the present invention, that is, the effect of “facilitating non-coherent reception of multilevel signals by the phase integration process on the transmission side” cannot be obtained, and is therefore excluded from the object of the present invention. is there.
  • FIG. 6C to FIG. 6B are signal point arrangements to which the present invention is applied.
  • a 16 Q AM signal has three amplitude levels a 0, a 1, and a 2, but has four signal points at amplitude level a 0 and amplitude level a 1.
  • This is a non-radial APSK signal having eight signal points and four signal points at an amplitude level a 3, and is an object of application of the present invention.
  • the four signal points with amplitude level a 0 and the four signal points with amplitude level a 1 are staggered in the 8-s APSK signal. Since the angle is different, it is an object of the present invention.
  • An optical signal such as an 8 AP SK signal is essentially composed of four phase angles (0, ⁇ 2 ⁇ , ⁇ ) force (d I, d Q) of a delay detector when ⁇ ⁇ ⁇ / 2. Since the phase angle increases to a maximum of six angles (0, ⁇ ⁇ , ⁇ , ⁇ ⁇ ⁇ ), it becomes difficult to determine the output signal.
  • FIG. 7 is an explanatory diagram showing the operation principle of the first embodiment of the present invention.
  • the phase integration signal of the present invention is as shown in FIG. 7B.
  • the correspondence between the phase and amplitude of each signal point is temporarily lost, and the original 16 Q AM signal Signal points are distributed on concentric circles corresponding to the three amplitude levels.
  • the phase-integrated signal is converted into an optical electric field and transmitted, and the non-coherent optical electric field receiver 2 20 has two optical delay detections whose phases are orthogonal to each other with a delay time T. Receive simultaneously.
  • the output signals dI and dQ of the optical delay detector are displayed two-dimensionally as the horizontal and vertical axes, respectively, as shown in Fig. 7C.
  • the complex multilevel information to be transmitted and the actual optical electric field signal do not directly correspond to each other, and are not determined as clear signal points on the optical electric field. Then, the original constellation is reconstructed using the delay detection characteristics.
  • the greatest effect of the present invention is that the reproduced signal points are affected by noise and transmitter / receiver errors. It is a point that is difficult to receive. This is an effect caused by performing the phase integration processing performed in the receiver in the conventional “non-coherent electric field regeneration method” by digital computation on the transmission side. In other words, the digital computation on the transmission side is completely an ideal numerical computation, and is not affected by noise generated during transmission and transmitter / receiver errors, and these effects can be completely avoided.
  • Fig. 7E assumes that random noise is applied to each signal point during transmission of an optical electric field signal, and a 5% error is assumed in the delay amount of the delay detector. Even in this case, it can be seen that the original 16 Q AM signal is separated, and the effect of the first embodiment of the present invention can be confirmed.
  • phase integration calculation of the present invention differs from the differential encoding conventionally used for phase modulation in the following points in terms of processing purpose and contents.
  • the waveform (optical electric field waveform) transmitted using is exactly the same waveform. They differ only in the transmitted information, and are not distinguished by observations of waveforms and signal points.
  • the phase integration process of the present invention is a digital numerical calculation that integrates the phase angle of a signal point with each symbol.
  • the optical electric field waveform output from the transmitter is changed to a waveform completely different from the original complex information by performing the phase integration process (see FIGS. 7A and 7B). (See Figure 7B). Therefore, the phase integration procedure of the present invention is greatly different from the conventional differential encoding.
  • any non-radial modulation code can always be applied.
  • one of the advantages of the present invention is that when a zero hit occurs in which the amplitude of the optical electric field is zero, the error is minimized and the error is not propagated to the subsequent processing.
  • the non-coherent optical field receiver 2 2 0 shown in FIG. 5 for example, when the amplitude r (t) of the electric field of the input optical signal is zero at time t 0, the two output signals shown in FIG. d I and d Q become zero at two points: [
  • the light intensity receiver 1 2 2 detects that the amplitude is zero and sets the output signal to zero.
  • the output signal at time t o + T has the same amplitude r (t o + T), but the amplitude is not necessarily zero.
  • the output signal (phase rotation amount before time T) is not defined.
  • the non-coherent electric field regeneration method described in International Publication No. 2 0 6/3 0 9 4 9 errors will occur in the received signal because errors will be included in all optical phases thereafter. There was.
  • phase pre-integration process of the present invention does not require phase integration at the receiver, so even if a zero hit occurs, the effect is that the phase of the output signal at time t 0+ T is unknown.
  • the following signals will give the correct output.
  • an optical IQ modulator (also called dual parallel modulator or optical SSB modulator) in which two Matsuhatsu type optical modulators are configured in a Matsuhachenda interferometer type is usually used.
  • the optical IQ modulator is suitable for the photoelectric field modulator 2 1 and 3 of the present invention because the voltage signal applied to the two IQ terminals is directly converted into an IQ signal of the output optical electric field.
  • an IQ modulator there are a modulator using a lithium niobate crystal and a modulator using a semiconductor, but any modulator can be used as long as it has a similar function. Good.
  • these modulators lose the linearity of electric field modulation when the applied voltage approaches the half-wave voltage ⁇ ⁇ , but the method of lowering the applied voltage so that the range of the applied voltage is sufficiently within the linear region, and This can be solved by a method of linearization using an applied voltage table having an inverse characteristic to compensate for nonlinearity and an external correction circuit.
  • the optical IQ modulator not only the optical IQ modulator but also a plurality of modulators such as an amplitude modulator and a phase modulator can be arranged in tandem, and the same effect can be obtained.
  • the voltage signal applied to each modulator is converted to an appropriate coordinate in advance.
  • High-speed D-to-D converters (2 1 0—1, 2 1 0-2) are not ideal in practice and may generate unwanted harmonics that do not satisfy the Nyquist condition or lack of bandwidth May cause distortion of the output waveform.
  • the drive circuit (2 1 1 ⁇ 1, 2 1 1-2) may cause waveform distortion due to saturation, lack of bandwidth, ripples, etc.
  • An electric circuit that corrects the generated distortion may be inserted as appropriate.
  • phase pre-integration circuit 2 0 In the example shown in FIG. 5, complex information input terminal 2 0 1, phase pre-integration circuit 2 0 2, polar coordinate conversion circuit 2 0 3, Cartesian coordinate conversion circuit 2 0 4, phase integration circuit 2 0 5, phase pre-integration Processing of high-speed serial electrical signals and high-speed serial electrical signals with digital signals and digital arithmetic circuits such as signal 2 0 8, inverse tangent circuit 2 2 3, square root circuit 2 2 4, and reproduction complex information output terminal 2 2 5
  • transmission of high-speed digital signals is a configuration in which transmission of multiple low-speed electrical digital signals is parallelized. Therefore, the internal configuration of each circuit and the wiring connecting each circuit may be used for low-speed digital signal processing and digital lines in parallel with equal functions and transmission capacity.
  • phase difference and the mutual sign are removed by a simple complex operation because the output signal is only electrically inverted or rotated on the complex plane even when the sign is inverted.
  • the optical field transmitter 20 0 0 and the non-coherent optical field receiver 2 2 0 according to the first embodiment of the present invention have 1/3 digital sample points per symbol. The case is shown.
  • the output signals must be synchronized with each other as appropriate.
  • the lengths of the two signal paths 1 and q from the orthogonal coordinate conversion circuit 2 0 4-1 to the optical field modulator 2 1 3 need to be adjusted equally.
  • the non-coherent optical electric field receiver 2 20 requires a clock extraction circuit in which the timing of AZD conversion of the received optical signal is adjusted to the central time of each symbol.
  • the delay times of the two signal paths d I and d Q from the optical branch circuit 1 2 0 to the arctangent calculation circuit 2 2 3 need to be adjusted to be equal to each other.
  • phase signal ⁇ (t) and the amplitude signal r (t) arrive at the orthogonal coordinate transformation circuit 204-2 must be adjusted equally. These may be adjusted by an analog delay line, a phase shift circuit, and a digital delay circuit as appropriate.
  • the time interval T in which the phase signals are integrated in the optical electric field transmitter 2 100 according to the first embodiment of the present invention is equal to the optical delay detector (1 2 1—) of the non-coherent optical electric field receiver 2 2 0
  • the delay time of 1, 1 2 1-2) must be approximately equal. Therefore, the time interval phase-integrated by the optical electric field transmitter and the time when the phase difference is detected by the optical delay detector (1 2 1 ⁇ 1, 1 2 1 ⁇ 2) of the non-coherent optical electric field receiver 2 20 The interval becomes equal and the original complex information is correctly restored by the non-coherent optical field receiver 2 2 0.
  • the time interval T is basically set freely with respect to the sampling interval T sa of the complex information signal.
  • the time interval T for phase integration is set longer than necessary, problems such as being easily affected by the phase noise of the optical signal and long-term intersymbol interference in the output signal arise.
  • the time interval T for phase integration is set short, the phase of the phase integration signal rotates at a higher speed than the original complex signal, and the bandwidth of the output optical electric field signal is widened. There is a possibility that it is easy to receive. Therefore, it is appropriate that the time interval T is set within a range of T sa that is several times greater than T sa.
  • T sa is less than half of T s.
  • the square root circuit 2 2 4 is used for the output of the light intensity receiver 1 2 2, but the square root circuit 2 2 4 may not necessarily be used.
  • a complex signal in which the intensity of the received signal is replaced with the amplitude can be obtained from the output.
  • the electric field amplitude and intensity are in a 1: 1 conversion relationship, a multilevel signal is received.
  • the arrangement of the signal points in the amplitude direction only changes.
  • the signal is converted into an electric field and the noise distribution is linearized, it is easier to suppress the influence of noise when determining the received signal point.
  • FIG. 8A is a diagram showing an outline of signal processing of a conventional radio signal.
  • the antenna 231 receives a radio signal r (t) exp (j ⁇ ⁇ (t)) e (j ⁇ t), and the complex information signal r (t) exp ( j ⁇ (t)) is obtained.
  • co is the carrier frequency
  • the sine component and cosine component of the local oscillator 23 2 are multiplied using the mixers 233-1 and 23 3-2, respectively, and the carrier components are removed. .
  • the output signals of the mixer 23 3-1 and the mixer 233-2 are the low-speed digital signals r (t) cos (j ⁇ (t)) in the AD converters 1 1 1 1 1 and 1 1 1 1 2 , And, r (t) sin (j ⁇ (t)).
  • a complex signal r (t) e x p (j ⁇ (t)) is generated in which the converted low-speed digital signal has a real part and an imaginary part, respectively.
  • the radio signal delay detection circuit 239 includes a delay circuit 2 3 5 1 to 235_ 3, a phase estimation circuit 237, and a complex division circuit 238 that delay the signal by time T.
  • the input complex signal is delayed by time T in each delay circuit 235, and then amplitude components are removed by the amplitude limiter circuits 236-1 to 236-3.
  • phase estimation circuit 237 The complex signal from which the amplitude component has been removed is input to the phase estimation circuit 237, and the delayed phase signal ex p (j ⁇ (t 1 T)) from which the phase error has been averaged is output. Note that e X p (j ⁇ ⁇ (t 1 T)) is also output from the amplitude limiter circuit 236-1; however, the phase estimation circuit 23 7 uses the phase error information of past symbols. To reduce the phase error.
  • the complex signal r (t) exp (j ⁇ (t)) and the delayed phase signal exp (j ⁇ ⁇ (t -T)) are input to the complex divider circuit 2 38, where the complex signal is the delayed phase signal In Aelong, the result of phase conjugation after the delayed phase signal is output as the output signal r (t) exp (j (t)).
  • Figure 8B shows an overview of the signal processing of the non-coherent detector.
  • the optical electric field signal received by the non-coherent optical electric field receiver 220 shown in FIG. 8B is expressed as r) eXp (j j (t)) t).
  • the optical electric field signal is usually expressed using the light carrier frequency 0, which is omitted.
  • the optical electric field signal is separated into two by the optical branch circuit 120.
  • the separated optical electric field signal causes optical interference with the previous signal by the time ⁇ by the optical delay detector (121–1, 121–2) with a delay amount T set to 0 and ⁇ 2.
  • (t -T) cos ( ⁇ (t))
  • dQ r (t) r (t -T) sin ( ⁇ (t)).
  • phase angle ⁇ (t) is extracted from the output signal, and the amplitude part is replaced with r (t) obtained from the path of the intensity receiver 1 2 2, so that the original optical electric field signal r ( t) exp (j ⁇ (t)) is obtained.
  • the non-coherent optical electric field receiver 220 used in the first embodiment of the present invention performs optical delay detection including a carrier component, unlike a receiver used for radio.
  • the product of the amplitude is calculated so that the amplitude part of the output signal of the optical delay detector (1 2 1—1, 1 2 1—2) is expressed as r (t) r (t 1 T).
  • the signal processing becomes difficult. Therefore, after the optical delay detection, it is necessary to take a complicated configuration in which the amplitude part is obtained from the optical intensity receiver 1 2 2 and the output signal and the amplitude part are synthesized by the orthogonal coordinate conversion circuit 204 1-2.
  • the delay detection circuit 2 39 is configured using the above-described processing and processing using complex conjugates that are difficult to realize by optical signal computation. Therefore, the object of optical electric field detection cannot be achieved by simply adopting the phase integration of radio signals in the configuration of the present invention.
  • the effect is that the phase angle of the complex signal output from the receiver is the same as the absolute phase of the complex information input to the transmitter. is there. This is particularly effective when transmitting complex information signals modulated with non-radial APSK. Furthermore, an optical intensity receiver is provided, and by replacing the amplitude of the complex signal output from the receiver with the amplitude obtained from the optical intensity receiver, the complex information signal input to the optical electric field transmitter is changed. It can be completely reproduced on the receiving side. .
  • the first embodiment unlike the conventional coherent detection method, it is a non-coherent method using an optical delay detector, and does not depend on the polarization state of the input light and does not require a local oscillation light source.
  • the configuration of the receiver becomes easy.
  • the circuit scale is increased as the number of received signals increases, but the optical electric field of the first embodiment is increased.
  • the receiver and multi-level optical receiver can determine the symbol of the received signal with the same hardware scale even when the multi-level number of the modulation signal is increased.
  • the electric field calculation and the multilevel determination of the received optical signal can be performed by an electrical digital circuit, so that the multilevel number and the modulation scheme are different with the same receiver configuration. It can be adapted to optical signals.
  • the initial phase of the output signal becomes constant due to the pre-integration of the phase components, and the problem that the initial phase is unknown in the optical electric field regeneration method can be solved. Therefore, in order to realize differential detection again in the receiver, an operation for removing the initial phase and the phase variation of the light source is not necessary.
  • pre-equalization and multi-value determination are performed by an electric digital circuit. Can be executed.
  • a receiver for optical fiber communication it can be applied to, for example, an optical electric field waveform measuring device and an optical space transmission device.
  • FIG. 9 is a configuration diagram of the optical electric field transmission system according to the second embodiment of the present invention.
  • the optical electric field transmitter 20 0 is a kind of coordinate conversion circuit, an amplitude conversion circuit 2 40, an oversampling circuit 2 4 1, and a pre-equalization circuit 2 4 2
  • the non-coherent optical electric field receiver 2 20 is different from the first embodiment described above in that it includes an amplitude inverse conversion circuit 2 43 which is a kind of inverse coordinate conversion circuit.
  • the sampling rate of the complex signal input to the complex information input terminal 2 0 1 is, for example, one sample symbol.
  • an amplitude conversion circuit 2 40 is arranged in the path of the amplitude component r (t) separated by the polar coordinate conversion circuit 2 0 3.
  • the amplitude conversion circuit 2 4 0 adds a positive constant value a to the amplitude r (t).
  • an oversampling circuit 2 4 1 is arranged immediately after the Cartesian coordinate conversion circuit 2 0 4-1, and the sampling points are complemented so that the sampling rate (sampling frequency) is 2 samples / symbol (oversampling). Since the Nyquist theorem is satisfied by complementing the sampling points, complete electric field equalization is possible. Alternatively, oversampling may be performed so that the sampling rate is multiplied by an integer and the sampling points are complemented.
  • the pre-equalization circuit 2 4 2 applies an inverse function of degradation caused by the optical fiber transmission line 2 16 and the like to the phase pre-integration signal 2 08.
  • An amplitude inverse conversion circuit 2 4 3 for performing an inverse operation of subtracting a constant value a from the received signal r (t) + a is arranged.
  • the purpose of the amplitude converter circuit 240 and the inverse amplitude converter circuit 24 3 is to avoid the above-described zero hit.
  • FIG. 10 is an explanatory diagram showing coordinate conversion of complex signals according to the second embodiment of the present invention.
  • the area of radius a centered at the origin where the amplitude is zero is set as the prohibited area, and the sample point of the transmitted optical electric field is arranged outside this area. Coordinate conversion is performed as described.
  • each signal point is 0, 45 degrees, 90 degrees from the center to the outside.
  • the phase angle may be limited to only a and moved so as to move only a.
  • Such coordinate transformation is easily realized in the Cartesian coordinate system. Specifically, since the signal point is moved by limiting the phase angle, the calculation of the signal point is reduced compared to the case shown in FIG. 10B, and the circuit configuration is facilitated.
  • the pre-equalization circuit 2 42 compensates in advance for waveform degradation that occurs in a transmission line such as an optical fiber and a transmitter / receiver.
  • the pre-equalization circuit 2 4 2 suppresses waveform degradation due to chromatic dispersion, which is a problem in high-speed and long-distance fiber transmission, and in particular enables long-distance fiber transmission. Further, when the pre-equalization circuit 2 42 is combined with the configuration of the present invention, it is extremely effective because it has the effect of avoiding zero hits. In other words, waveform degradation due to chromatic dispersion or the like changes the optical electric field waveform and may cause a zero hit that should not exist, but the pre-equalization circuit 2 4 2 applies an inverse function of waveform degradation in advance.
  • phase integration processing is performed by the non-coherent optical field receiver 2 20, and the phase integration signal r (t) exp (j ⁇ (t)) transmitted in the optical fiber is regenerated. . Then, after equalizing the cause of the waveform deterioration, the phase component difference is taken again at the time interval T to restore the desired complex information signal r (t) e xp (j ⁇ (t)). Therefore, even when phase error accumulation occurs in the non-coherent optical electric field regeneration method, the error is removed in the process of finally obtaining the phase component difference, and the same effect as the present invention can be obtained.
  • a pre-equalization circuit that compensates in advance for the influence of linear degradation such as chromatic dispersion on the transmission side, and a non-linear line that compensates for the effect of nonlinear phase rotation in advance on the transmission side
  • linear degradation such as chromatic dispersion
  • non-linear line that compensates for the effect of nonlinear phase rotation in advance on the transmission side
  • optimal equalization can be performed to extend the transmission distance and improve the performance.
  • signal quality information obtained from the optical electric field receiver and dynamically controlling the equalization amount so that the quality is the best, it is possible to always maintain the optimum reception state.
  • FIG. 11 is a configuration diagram of an optical electric field transmission system according to a third embodiment of the present invention.
  • the optical electric field transmitter includes a nonlinear phase compensation circuit 244-1 and a pre-equalization circuit 242
  • the non-coherent optical electric field receiver 220 includes a nonlinear phase compensation circuit 244-2. This is different from the first embodiment described above.
  • the Nyquist theorem is satisfied from the beginning for the sampling rate of the complex signal input to the complex information input terminal 201, for example, 2 samples Z symbols.
  • a nonlinear phase compensation circuit 244-1 is arranged on the path of the phase component ⁇ (t) separated by the polar coordinate conversion circuit 203.
  • the nonlinear phase compensation ⁇ (t) is subtracted.
  • the nonlinear phase compensation circuit 244-1 receives the amplitude information r (t) of the signal, and the compensation amount C of the nonlinear phase is variably set from the outside by the compensation amount control terminal 245-1.
  • the pre-equalization circuit 242 has a compensation amount control terminal 246.
  • the non-coherent optical field receiver 220 includes a nonlinear phase compensation circuit 244-2 in the path of the phase component ⁇ (t) output from the arctangent calculation circuit 2 23, and the nonlinear phase ⁇ '(t )
  • the nonlinear phase compensation ⁇ (t) is subtracted from the phase component ⁇ ⁇ (t) + '(t) distorted by.
  • the amplitude information r (t) of the received signal is input to the nonlinear phase compensation circuit 244-2, and is input to the compensation amount control terminal 245-2. Therefore, the compensation amount C, of the nonlinear phase is set variably from the outside.
  • the nonlinear phase in optical fiber transmission is based on the intensity modulation component included in the optical signal and the light intensity noise emitted from the repeater during the optical fiber transmission. This is a phenomenon in which an optical signal is degraded by adding an extra nonlinear phase rotation to the phase component of the optical signal transmitted through the network. The amount of degradation of the optical signal is proportional to the intensity component ⁇ r (t) ⁇ 2 of the optical signal. Therefore, the nonlinear phase compensation circuit (244–1, 24 4) placed in the optical field transmitter 200 and the optical field receiver -It is possible to compensate by 2).
  • the non-linear phase compensation circuit 244-1 of the optical electric field transmitter 200 has a high effect of compensating for deterioration caused by signal intensity fluctuation.
  • the nonlinear phase compensation circuit 244-2 of the non-coherent optical electric field receiver 220 has a high effect of compensating for the nonlinear phase noise generated by the optical noise.
  • the compensation amount C of the non-linear phase compensation circuit 244-1 described above, the compensation amount C ′ of the non-linear phase compensation circuit 24 1 and 2, and the compensation amount of the pre-equalization circuit 246 are set to fixed amounts. Moreover, it may be set from outside as required. Alternatively, the error rate information and quality information obtained from the optical electric field receiver may be used to automatically control the compensation amount of the pre-equalization circuit 246 so that the signal quality is optimized. .
  • FIG. 12 is a configuration diagram of an optical electric field transmission system according to the fourth embodiment of the present invention.
  • the fourth embodiment of the present invention is characterized in that the non-coherent optical electric field receiver 2 20 includes a maximum likelihood sequence estimation (MLSE) circuit 25 50 which is a kind of symbol estimation circuit. Different from form.
  • MSE maximum likelihood sequence estimation
  • the maximum likelihood sequence estimation circuit 2 5 0 receives the output signals d I and d Q obtained from the AD converters 2 2 2 ⁇ 1 and 2 2 2 ⁇ 2 and uses the information of the past samples. The most probable input data sequence. The estimated input data sequence is sequentially output as a data signal 2 51.
  • the symbol estimation circuit such as the maximum likelihood sequence estimation circuit 25 50 Easy to apply.
  • the optical intensity receiver 1 2 2 can be omitted, and the configuration of the optical receiver can be simplified. Note that the number of samples required for determination by the symbol estimation circuit depends on how long the input signal waveforms interact with each other in the past, and the signal waveforms interact with each other. The calculation processing increases rapidly as the operating time increases.
  • the complex signal with the real and imaginary parts of the signals d I and d Q is expressed as r (t) r (t + T) exp (j ⁇ (t)). It can be seen that there are many past interactions.
  • the complex information r (t) e x p (j (t)) is synthesized by the light intensity receiver 1 2 2.
  • the required amount of computation can be reduced.
  • FIG. 13 is a configuration diagram of an optical electric field transmission system according to the fifth embodiment of the present invention.
  • an input complex information signal is converted into subcarrier modulation such as OF DM and then transmitted through an optical fiber.
  • the optical electric field transmitter 200 includes an OFDM conversion circuit 252.
  • the non-coherent optical electric field receiver 220 is different from the first embodiment in that an OFDM inverse conversion circuit 254 is provided.
  • the OFDM conversion circuit 252 divides the complex information signal input from the complex information input terminal 201 into buckets of a certain length, performs multi-level modulation and Fourier transform for each bucket, and converts the signals into OFDM signals by FFT processing.
  • the OF DM signal is a combination of a plurality of narrow-band modulated carriers, it is a complex digital sample sequence in which the instantaneous waveform of the complex information signal is not predicted.
  • the complex digital sample sequence is converted into an optical electric field, and the converted optical electric field is transmitted to the optical fiber.
  • the non-coherent optical electric field receiver 220 can recover the original complex digital sample sequence by receiving the transmitted optical electric field, and obtain the first complex information signal using the OFDM inverse conversion circuit 254.
  • the fifth embodiment of the present invention eliminates the need for a coherent receiver required for normal optical OF DM transmission, and can simplify the configuration of the receiver.
  • the complex digital sample sequence output from the OFDM conversion circuit 252 does not have a clear symbol interval.
  • the sampling time Tsa and phase integration time T of the complex digital sample sequence (and the delay time Td of the optical delay detector at the optical field receiver) are made equal to each other, so that the non-coherent optical field receiver It is guaranteed that the same complex information as the original complex information is restored from the orthogonal coordinate transformation circuit 204 1-2 of 220.
  • the AD conversion sample interval may be shortened as necessary, and oversampling may be performed using an integer multiple of the frequency.
  • subcarrier transmission such as OF DM is not significantly affected even if the phase information of one sample point is lost. .
  • the amplitude conversion circuit 2 40 and the amplitude reverse conversion circuit 2 4 3 are used, but these are not necessarily provided. If necessary, as described above, the optical signal is oversampled by the non-coherent optical field receiver 220, so that the lost phase information can be estimated from the previous and subsequent sample points. is there.
  • the fifth embodiment of the present invention eliminates the need for coherent reception when applied to transmission of complex electric field signals such as optical OFDM transmission, thereby reducing the size, cost, and power saving of the receiver. it can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

光源と、一つ以上のDA変換器と、光電界変調器とを備え、所定の時間間隔でサンプリングされた情報信号を光電界信号に変調して送信する送信器であって、情報信号は、複素平面上に不規則に配置された多値の信号、及び、少なくとも二つの振幅値と異なる数の位相とを組み合わせることによって配置された多値の信号のいずれか一つを含み、光電界送信器は、情報信号の位相成分を積算した位相予積算複素情報を出力する位相予積算回路を備え、DA変換器は、出力された位相予積算複素情報を含む情報信号を、アナログ信号に変換し、変換されたアナログ信号を光電界変調器に入力し、光電界変調器は、光源から出力された光を用いて、前記アナログ信号を光電界信号に変調し、変調された光電界信号を送信する。

Description

光電界送信器及び光電界伝送システム 技術分野
本発明は、 光情報伝送技術に関し、 特に、 光ファイバで伝送される多値光情報 の送受信に適した技術に関する。 明 背景技術 書
近年、 一本の光ファイバで伝送可能な情報量 (伝送容量) は、 波長数の増加や 光信号の変調速度の高速化によって拡大し続けてきたが、 ほぼ限界に達している。 これは、 光伝送に使用可能な光ファイバアンプの波長帯域がほぼ使用されてしま つたためである。 このような状況において、 光ファイバの伝送容量をさらに大き くするためには、 信号変調方式を工夫し、 限られた周波数帯域に多数の光信号が 含まれることによって、 周波数帯域の利用効率を高くする必要がある。
無線通信の世界では、 1 9 6 0年代から普及した多値変調技術によって、 周波 数利用効率が 1 0 ( b i t / s /H z / s e c t o r ) を越える高い効率の伝送 が可能となっている。 多値変調は、 光ファイバ伝送においても有望視され、 従来 から多くの検討がされてきた。 例えば、 〃10Gb/s Optical Differential
Quadrature Phase Shift Key (DQPSK) Transmission using GaAs/AlGaAs
Integration", R. A. Griffin, et al. , 0FC 2002, paper PD - FD6, 2002 には、 4値位相変調を行う Q P S K (Quadrature Phase Shift Keying) の技術が記載 されている。 また、 "Proposal and Demonstration of 10 - Gsymbol/sec 16-ary (40 Gbit/s) Optical Modulation I Demodulation Scheme", Kenro Sekine, Nobu iko Kikuchi, Shinya Sasaki, Shigenori Hayase and Chie Hasegawa, paper We3. 4. 5, EC0C 2004, 200 には、 4値の振幅変調と 4値の位相変調とを 組み合わせた 1 6値の振幅 ·位相変調の技術が記載されている。
図 1は、 光伝送に適用可能な従来の各種変調方式の特徴を示した説明図である。 図 1に示す例では、 位相面 ( I Q平面上) に光変調の信号点 (信号が識別され る時刻における光電界の複素情報の表示) がプロットされている。
図 1 Aは、 位相面上の信号点の説明図であり、 各信号点は、 I Q平面上の複素 直交座標、 又は、 振幅で (n) と位相 ψ (n) とを含む極座標によって等価的に 表示される。
図 1 Bは、 位相角 φ (n) に四つの値 (0、 πΖ2、 π、 及ぴー π/2) が用 いられており、 1シンポルで 2ビッ トの情報 (00、 0 1、 1 1、 及ぴ 1 0) を 伝送する 4値位相変調 (QP SK) の信号例を示す。
図 1 Cは、 無線で広く用いられる 1 6値直交振幅変調 (1 6 QAM
(Quadrature Amplitude Modulation) ) の信号例を示す。 1 6 QAMは、 信号 点が格子状に配置され、 1シンボルで 4ビッ トの情報伝送が可能となる。 図 1 C に示す例では、 Q軸座標には上位 2ビット (1 0 x x、 l l x x、 0 1 x x、 及 ぴ 00 x x) の値が表現され、 I軸座標には下位 2ビッ ト (X X 10、 x x 1 1 , x x 01、 及び x X 00) の値が表現される。
1 6 Q AMの信号点の配置は、 信号点間の距離を大きくすることが可能である ため、 受信感度が高くなり、 光通信では、 コヒーレント光受信器を用いて、 直交 振幅変調が実現可能である。
例えば、 "1 Gsymbol/s, 64 QAM Coherent Optical Transmission over 150 km with a Spectral Efficiency of 3 Bit/s/Hz", J. Hongou, K. Kasai, .
Yoshida and M. Nakazawa, in Proc. Optical Fiber Communication Conf.
(0FC/NF0FEC) , Anaheim, CA, March 2007, paper 0MP3. には、 64 QAM信号 を用いた送受信の実験例が記載されている。 コヒーレント光受信器とは、 光信号 の位相角を検出するため、 受信器内部に配置された局発光源を用いる受信器であ る。 図 1 Dは、 I Q平面の同心円上に同数の信号点を放射状に配置した 1 6値振幅 位相変調方式 (1 6 A P S K方式) の信号例を示す。
ここで、 光多値受信器の従来技術の一つであるコヒーレント受信方式、 例えば、 Coherent detection method using DSP to demodulate signal and for subsequent equalization of propagation impairments", M. G. Taylor, paper We4. P. HI, EC0C 2003, 2003 に記載されているコヒーレント光電界受信器につ いて説明する。
図 2は、 偏波ダイパーシティ型コヒーレント光電界受信器の構成図であり、 偏 波ダイパーシティ型コヒーレント光電界受信器は、 光信号の二つの偏波の情報を 同時に受信する。 光ファイバ伝送路で伝送された入力光信号 1 0 1は、 偏波分離 回路 1 0 2— 1によって、 水平 (S ) 偏波成分 1 0 5と垂直 (P ) 偏波成分 1 0 6とに分離される。 分離された S偏波成分 1 0 5及び P偏波成分 1 0 6は、 それ ぞれコヒーレント光電界受信器 1 0 0— 1及びコヒーレント光電界受信器 1 0 0 一 2に入力される。
コヒーレント光電界受信器 1 0 0— 1では、 光位相の基準として、 入力光信号 1 0 1と略同一の波長の局発レーザ光源 1 0 3が用いられる。 局発レーザ光源 1 0 3から出力された局発光 1 0 4— 1は、 偏波分離回路 1 0 2— 2で二つの局発 光 1 0 4— 2と局発光 1 0 4— 3とに分離される。 分離された局発光 1 0 4— 2 及び局発光 1 0 4— 3は、 それぞれコヒーレント光電界受信器 1 0 0— 1及びコ ヒーレント光電界受信器 1 0 0— 2に入力される。
コヒーレント光電界受信器 1 0 0— 1では、 光位相ダイバーシティ回路 1 0 7 力 S、 入力された光多値信号の S偏波成分 1 0 5及ぴ局発光 1 0 4— 2を合成する。 光位相ダイバーシティ回路 1 0 7は、 合成された局発光 1 0 4— 2と光多値信号 の S偏波成分 1 0 5 との同相成分から取り出される I (同相) 成分出力光 1 0 8、 及び、 合成された局発光 1 0 4— 2と光多値信号の S偏波成分 1 0 5 との直交成 分から取り出される Q (直交) 成分出力光 1 0 9を生成する。 生成された I成分 出力光 1 0 8及ぴ Q成分出力光は、 それぞれパランス型光受信器 1 1 0— 1及び 1 1 0— 2によって受信される。 受信された I成分出力光 1 0 8及び Q成分出力 光は、 電気信号に変換される。 そして、 変換された二つの電気信号は、 それぞれ A/D変換器 1 1 1一 1及ぴ 1 1 1一 2で時間サンプリングされ、 デジタル化さ れた出力信号 1 1 2— 1及び 1 1 2— 2が生成される。
以下の説明では、 図 1の Aに示すように、 受信した入力光信号 1 0 1の光電界 は r (n) e x p ( j φ (n) ) と表記される。 ここで、 局発光 1 04— 2及ぴ 局発光 1 04— 3の光電界を 1と仮定する (本来は光周波数成分を含むが省略す る) 。 また、 rは光電界の振幅であり、 φは光電界の位相であり、 nはサンプリ ング時刻である。
局発光 1 0 4は、 実際にはランダムな位相雑音及び信号光とのわずかな差周波 成分等を含むが、 位相雑音及び差周波成分は、 時間的に緩やかな位相回転であり、 デジタル信号処理によって除去されるため無視する。
バランス型光検出器 1 1 0— 1及びパランス型光検出器 1 1 0— 2は、 局発光 1 04— 2を用いて入力された入力光信号 1 0 1をホモダイン検波し、 それぞれ 局発光を基準にした入力光信号 1 0 1の光電界の同相成分及び直交成分を出力す る。
従って、 AZD変換器 1 1 1一 1の出力信号 1 1 2— 1は、 I (n) = r (n) c o s ( φ (n) ) で表記され、 A/D変換器 1 1 1— 2の出力信号 1 1 2— 2は、 Q (n) = r (n) s i η (Φ (n) ) で表記される。 ただし、 数式 を簡略化するため、 変換効率などの定数は全て 「1」 としている。
コヒーレント光電界受信器では、 受信した入力光信号 1 0 1から、 光電界 r (n) e x ρ ( φ (n) ) によって表記される全ての情報 (ここでは I成分及ぴ Q成分) を容易に得られるため、 多値光信号受信が可能となる。
デジタル演算回路 1 1 3は、 複素電界演算回路であり、 光信号が伝送中に受け る線形劣化 (例えば、 波長分散等) の逆関数を与えることによって、 線形劣化等 の影響をほぼ完全に打ち消すことが可能である。 また、 必要に応じてクロック抽 出及ぴ再サンプリング等の処理を行い、 処理後の光電界信号の同相成分 1 1 4一 1及ぴ光電界信号の直交成分 1 1 4— 2が出力される。
コヒーレント光電界受信器 1 0 0— 1は、 前述したように、 受信した入力光信 号 1 0 1の一つの偏波成分 (例えば、 S偏波成分) の電界情報を得ることができ るが、 光信号の偏波状態は光ファイバ伝送中に変動するため、 P偏波成分も受信 する必要がある。 そこで、 コヒーレント光電界受信器 1 0 0— 2は、 入力光信号 1 0 1の P偏波成分を同様に受信し、 受信した P偏波成分の電界情報を光電界信 号 1 1 4— 3及び光電界信号 1 1 4一 4として出力する。
デジタル演算 · シンボル判定回路 1 1 5は、 デジタル演算回路 1 1 3から出力 された各偏波の I成分及び Q成分に光信号の偏波状態の変換 (例えば、 直線偏波 から円偏波 の変換) を行って偏波状態の変動を解消する。
次に、 デジタル演算 · シンボル判定回路 1 1 5は、 例えば、 図 1 Cに示す信号 点配置と比較することによって、 どのシンボルが伝送されたかを高精度に判定す る。 判定結果は、 多値デジタル信号 1 1 6として出力される。
前述したコヒーレント光電界受信器を用いると、 受信信号の全ての電界情報を 得ることができ、 複雑な多値信号の場合でも受信可能となる。
また、 前述したコヒーレント光電界受信器は、 デジタル演算回路 1 1 3で、 入 力信号に光ファイバ伝送路の伝搬関数の逆関数を用いた補正処理を行い、 波長分 散等による線形劣化を、 理論的には完全に補償できる。 また、 補正処理は、 補償 量に制限が無いという大きな利点がある。 但し、 現時点では、 1 0 G b i t Z秒 以上の信号処理性能をもつ小型の高速デジタル演算回路 1 1 3が市場に提供され ておらず、 部分的な実験による効果検証の段階にある。
図 3 Aは、 位相が 4値であり、 振幅が 2値である 8個の信号点が同心円上に配 置された 8値の振幅位相変調光 (8 A P S K) の 1例であり、 図 3 Bは、 Sekine et al.に記載されている従来の振幅位相変調光受信用の光多値信号受信器の構成 図である。
8 AP S K信号のように、 位相成分が等間隔に分割される光変調は、 位相成分 の変調に差動符号化を用いられる。 図 3の Βに示す例では、 振幅 2値 (1ビッ ト) と、 直前シンボルとの位相差 0、 π/2、 π、 及ぴー πΖ 2の 4値 (2ビッ ト) が情報伝送に用いられ、 各シンポルで 3ビットの情報が伝送される。
図 3 Βに示す例では、 入力光信号 101として 8 AP SK信号が用いられてい る。 光分岐回路 1 20は、 入力された入力光信号 101を三つの光信号に分離す る。 分離された光信号のうち、 二つの光信号が光遅延検波器 121— 1及び 1 2 1一 2に入力され、 残る一つの光信号が光強度検出器 122に入力される。
光遅延検波器 1 21— 1及び 1 21— 2は、 それぞれ入力信号にシンボル時間 Τの遅延を与える第 1の光パスと、 一 π/4位相シフタ又は + πΖ4の位相シフ タを経由する第 2の光パスを含み、 入力された入力光信号 101を時刻 Τだけ前 に受信した信号と干渉させ、 位相変調成分を光強度信号に変換する。
+ π/4位相シフタを経由する光遅延検波器 121— 1の出力光の出力強度は、 受信シンポルと直前のシンボルとの位相差が 0又は +π/2となった時に最大と なり、 位相差が一 π/2又は πとなつた時に最小となる。
2値判定回路 123— 1は、 バランス型光検出器 1 1◦一 1を介して光遅延検 波器 1 21— 1の出力光を受信する。 受信した出力光が、 2値判定されることに よって、 1ビット分の 2値デジタル信号 1 24— 1が得られる。
一 π/4位相シフタを経由する光遅延検波器 1 21— 2の出力光の出力強度は、 受信シンポルと直前のシンポルとの位相差が 0又は一 π/ 2となった時に最大と なり、 位相差が 7C//2又は πとなつた時に最小となる。
2値判定回路 1 23— 2は、 バランス型光検出器 1 10— 2を介して光遅延検 波器 1 21— 2の出力光を受信する。 受信した出力光が、 2値判定されることに よって、 位相成分に含まれる他の 1ビット分の 2値デジタル信号 124— 2が得 られる。 光強度検出器 1 2 2は、 受信信号の光強度 (光電界振幅の二乗) を電気信号に 変換する。 変換された電気信号の出力が、 2値判定回路 1 2 3— 3で 2値判定さ れることによって、 振幅成分に含まれる 1ビット分の 2値デジタル信号 1 2 4— 3が得られる。
光多値信号受信器は、 光遅延検波を用いるため、 光源の位相変動及び受信偏波 依存性が殆どなく、 局部発振光源が不要となるため、 n値の位相変調信号及び 1 6値までの放射状の信号点配置を持った A P S K信号の受信に適用される。 発明の開示
本発明が解決しょうとする課題は、 従来の非コヒーレント方式を用いた光多値 伝送及び光電界伝送において、 受信可能な信号点の配置及び光電界情報に大きな 制限がある点である。
光遅延検波を用いて光信号の位相情報を得る非コヒーレント方式は、 コヒーレ ント方式に比べて偏波依存性がなく、 局発光源が不要である点から、 低コス トか つ受信器の構成が簡易で、 実現が容易である。
しかし、 受信可能な信号点の配置及び光電界情報の制限によって、 非コヒーレ ント方式は、 適用範囲及ぴ性能改善の余地が大きく限定される。 例えば、 光多値 伝送において、 非コヒーレント方式は、 多値位相変調 (図 1 B ) 、 又は同心円上 に同数の信号点を放射状に配置した A P S K方式 (図 I D及び図 3 A) にしか適 用されていない。
なお、 一般に A P S K方式は、 振幅及ぴ位相を任意に組み合わせた変調を示す 場合があるため、 以下、 本発明では、 一般の A P S K方式と本発明が適用される A P S Kとを区別するため、 「同心円上に同数の信号点を、 等間隔かつ同じ位相 角の点に放射状に配置した A P S K方式」 を放射状 A P S K方式又は放射状 A P S K変調として説明する。
放射状 A P S K方式の特徴は、 多値信号の位相及ぴ振幅が互いに独立して変調 されている点である。 すなわち、 それぞれの同心円は、 光電界の異なる振幅値に 対応しており、 独立して各信号点に位相が割り当てられる結果、 各同心円は、 全 て同じ位相角の点に信号点をもつ。
放射状 A P S K方式の信号点配置は、 非コヒーレント方式で受信可能である。 すなわち、 振幅成分に含まれる情報を強度受信器で受信するとともに、 位相成分 に含まれる情報を光遅延検波で独立に受信することが可能である。 強度受信器と は、 光波の振幅の二乗である光電界を受信することによって、 受信した光電界か ら振幅成分を得る受信器である。
なお、 前述した放射状 A P S K変調では、 位相変調成分及ぴ振幅変調成分の独 立性は、 非コヒーレント方式の受信との差異であり、 現実の変調手順とは無関係 である。 すなわち、 必ず振幅及び位相が独立の変調器で変調される必要はなく、 例えば、 1個の光電界変調器で振幅及び位相を変調する場合であっても、 非コヒ 一レント方式の受信との差異が無い放射状 A P S K変調として取り扱われる。 よ つて、 振幅値が 1の場合 (位相変調) 及び位相値が 1の場合 (振幅変調) も広義 には放射状 A P S K変調に含まれる。 光電界変調器とは、 レーザ光源等から出力 された光電界の振幅成分及び位相成分を、 入力される電気情報信号に応じて所望 の状態に変調し、 任意の光電界信号を生成する変調器である。
さらに、 前述した放射状 A P S K変調は、 論理的な符号の割り当て及び信号点 の時間的配置 (例えば、 トレリス変調等) とも無関係であり、 光多値信号が複素 光電界上でとりうる配置のみを定義したものである。
よって、 放射状 A P S K変調以外の複雑な信号点配置をもつ光多値信号は、 非 コヒーレント方式を適用することが困難である課題があった。 これは、 位相変調 及び強度変調の信号点が非独立に配置される場合、 光遅延検波によって振幅及ぴ 位相を複雑に組み合わせた多数の信号点を生じてしまうためである。
また、 一般の複素情報の伝送、 例えば、 O F DM伝送等に代表されるサブキヤ リア変調信吾等の伝送は、 「光電界の絶対位相」 が検出できない非コヒーレント 方式の受信が利用できない。
そこで、 発明者らによる国際公開 2006/309498号パンフレツトには、 前述した課題を解決した光電界受信器の構成が記載されている。 発明者らの図 1 1は、 光多値信号を受信する光電界受信器の例であり、 以下に説明する構成は、 国際公開 2006/309498号の図 11に示される光電界受信器の各構成で あ <o。
入力光多値信号 1 23は、 光分岐回路 150で三つの光信号に分離される。 分 離された第 1及び第 2の光信号は、 それぞれ光遅延検波器 104— 1 (位相差 0 に設定) 及び光遅延検波器 104— 2 (位相差 π/ 2に設定) に入力され、 第 3 の光信号は、 光強度検出器 1 51に入力される。
光遅延検波器 104— 1及び 104— 2の出力は、 光バランス型受信器 105 一 1及び光パランス型受信器 105— 2で電気信号 X及び yに変換され、 AZD 変換器 106— 1及び A/D変換器 106— 2と、 遅延調整回路 108— 1及び 遅延調整回路 108— 2とを介して、 電界演算部 11 1に入力される。
光強度検出器 1 51の出力信号は、 A/D変換器 106— 3でデジタル信号に 変換され、 遅延調整回路 108— 3でタイミングが調整された後、 電界演算部 1 1 1に入力される。
なお、 国際公開 2006Z30 9498号の図 1 1では、 光遅延検波器 104 の遅延量は、 シンボル時間 Tとなっているが、 これを T// 2とし、 サンプリング 速度をこの値より小さくすることによって、 ナイキスト定理に基づいて光電界情 報を受信器内で再生及び波長分散の補償に適用できることが示されている。
国際公開 2006/309498号の図 17は、 各受信電気信号の例及ぴ再生 した電界信号の関係を示している。
受信光の光電界は、 r (n) e x p (j Φ (n) ) で表記されるため、 第 n番 目の出力信号 X及び yは、 それぞれ連続する振幅値 r (n) 及び r (n— 1) が 乗算された r (n) r (n— 1) に、 c o s (Δ (η) ) 及び s i η (Δ φ (n) ) を乗じた値である。 ここで、 Δ φ (η) = φ (η) 一 φ (η— 1) は、 シンボル間の位相差である。
よって、 逆正接演算回路 1 1 3で信号 X及ぴ yの a r c t a n演算が行われる ことによって、 位相差 Δ φ (η) が演算される。 演算された位相差 Δ φ (η) は、 遅延加算回路 1 16でサンプル毎に累積加算されることによって、 位相 φ (η) が算出される。
一方、 出力信号 1 10— 3は、 第 ηサンプルの強度 { r (n) } 2であり、 平 方根回路 160から振幅値 r (n) が得られる。 これら振幅値 r (n) 及ぴ位相 φ (n) を用いることによって、 元の光電界 r (n) e x p (j (n) ) が得 られる。
以下、 国際公開 2006/309498号に記載された受信方式を、 「非コヒ 一レント電界再生方式」 として説明する。
図 4は、 非コヒーレント電界再生方式の信号処理を数値シミュレーションした 例を示す説明図である。
例えば、 送信された光電界を図 4の Aに示す 16 QAMと仮定すると、 送信さ れた光電界を受信した直交する二つの遅延検波器の出力信号 (X、 Y) が、 それ ぞれ横軸 (d l) 及び横軸 (dQ) を用いて二次元的に表示されると図 4 Bに示 す例となる。
これは、 16 QAM信号の光電界の振幅値 r (n) 及ぴ r (n— 1) が乗算さ れた r (n) r (n - 1 ) に c o s (Λ φ (η) ) 及び s i η ( Δ φ ( η ) ) を 乗じて光遅延検波した出力信号が、 それぞれ実部及ぴ虚部とする複素信号 r
(n) r (n- 1) e x p ( j Δ Φ (n) ) を合成して二次元的に表示されたも のである。
図 4に示す例では、 振幅の積及び位相角 Δ φの組み合わせが多数存在し、 複雑 な多数の信号点配置となるため、 光信号の検出ができない。 そこで、 受信器内で 位相角 Δ φのみを取り出して時間 T毎に積算演算を行い、 絶対位相 Φ ( t) =∑ Δ φ ( t ) が再生される。
また、 光電界の振幅部分を受信器から得られた強度信号の平方根 r ( n ) と置 き換える処理を行うことによって、 図 4の (C ) に示すように、 元の 1 6 Q AM 信号が再生できる。 なお、 信号点の傾きは、 積算演算の処理で、 位相の初期値が 不定であるために生じたものであり、 初期位相が推定され、 推定された位相の初 期値が除去される処理加えることによって 1 6 Q AM信号が受信できる。
非コヒーレント電界再生方式を用いると、 非コヒーレント方式による受信の場 合でも、 任意の受信信号の光電界を検知することが可能である。 しかし、 非コヒ 一レント電界再生方式には以下の課題がある。
第一の課題は、 受信器に備わる遅延加算回路による誤差の累積である。 例えば、 光遅延検波器の遅延量が 5 %の時間誤差を含んでいた場合には、 再生される電界 は、 図 4の Dに示すように大きく回転してしまう。 これは、 受信器内で Δ φを積 算する際に誤差が累積してしまうである。 すなわち、 Δ φを積算する過程で一回 でも誤差 (初期位相の不定性を含む) が含まれてしまうと、 残りの計算結果の全 てに誤差が含まれてしまい、 その後も誤差がずつと含まれてしまうためである。 このため、 非コヒーレント電界再生方式では、 初期位相が不定で、 誤差が累積し やすく、 正確な光電界を検出することが困難である課題がある。
第二の課題は、 受信信号の振幅が略ゼロの場合に、 光信号の位相情報の連続性 が失われることである。 すなわち、 一回でも振幅 r ( n ) がゼロになると、 その 前後で二つの光遅延検波器の出力もゼロとなってしまうため、 位相の連続性が失 われてしまう。 すなわち、 受信信号の振幅 r ( n ) がゼロになった以降の全ての 光電界の位相が不定になってしまう。 従って、 非コヒーレント電界再生方式では、 受信した光電界の振幅が略ゼロの場合、 光電界の再生が極めて困難である。
第三の課題は、 波長分散による光電界波形の歪みによって、 光信号が受信でき なくなることである。 すなわち、 前述した放射状 A P S K変調のように、 振幅ゼ 口を生じない光多値変調が情報伝送に用いられた場合でも、 光信号が光ファイバ P2008/070248
12 伝送路の波長分散等によって劣化すると、 光電界波形が大きく歪み、 本来存在し ないはずの振幅ゼロの点が発生してしまう可能性がある。 この場合には、 受信信 号が大きく劣化する。
そこで、 本発明の第一の目的は、 非コヒーレント光電界検出方式における誤差 累積の課題を解決し、 放射状 A P S K変調以外の光多値変調が容易に受信できる ようにする。
次に、 本発明の第二の目的は、 非コヒーレントの受信方式において、 ゼロ付近 の電界の情報が伝送できなくなる課題を解決することである。
また、 本発明の第三の目的は、 波長分散等の波形の歪みによって、 光電界信号 の受信が困難になる課題を解決することである。
本発明の代表的な一例を示せば以下の通りである。 すなわち、 光源と、 一つ以 上の D A変換器と、 光電界変調器とを備え、 所定の時間間隔でサンプリングされ た情報信号を光電界信号に変調し、 前記変調された光電界信号を送信する送信器 であって、 前記情報信号は、 複素平面上に不規則に配置された多値の信号、 及び、 少なくとも二つの振幅値と異なる数の位相とを組み合わせることによって配置さ れた多値の信号のいずれか一つを含み、 前記光電界送信器は、 前記情報信号の位 相成分を予め所定の時間間隔で積算した位相予積算複素情報を出力する位相予積 算回路を備え、 前記 D A変換器は、 前記出力された位相予積算複素情報を含む前 記情報信号を、 アナログ信号に変換し、 前記変換されたアナログ信号を前記光電 界変調器に入力し、 前記光電界変調器は、 前記光源から出力された光を用いて、 前記アナログ信号を前記光電界信号に変調し、 前記変調された光電界信号を送信 する。
本発明の一実施形態によれば、 複素情報信号の伝送において送信側で積算処理 を行うため、 光電界再生方式と比較して位相誤差が累積せず、 高精度に位相成分 を算出できる。 図面の簡単な説明
図 1 Aから図 1 Dは、 光伝送に適用可能な従来の各種変調方式の特徴を示した 説明図である。
図 2は、 従来の偏波ダイバーシティ型コヒーレント光電界受信器の構成図であ る。
図 3 Aは、 従来の 8値の振幅位相変調光 (8 A P S K) の説明図であり、 図 3 Bは、 従来の振幅位相変調光受信用の光多値信号受信器の構成図である。
図 4 Aから図 4 Dは、 従来の非コヒーレント電界再生方式の信号処理を数値シ ミュレーションした例を示す説明図である。
図 5は、 本発明の第 1の実施の形態の光電界伝送システムの構成図である。 図 6 A及び図 6 Bは、 本発明の第 1の実施の形態の適用非対象である複素多値 情報信号の種類を示す説明図であり、 図 6 Cから図 6 Eは、 本発明の第 1の実施 の形態の適用対象である複素多値情報信号の種類を示す説明図である。
図 7 Aから図 7 Eは、 本発明の第 1の実施の形態の動作原理を示す説明図であ る。
図 8 A及び図 8 Bは、 従来の無線信号の信号処理の概要を示す説明図であり、 図 8 Bは、 本発明の第 1の実施の形態非コヒーレント方式の検波器の信号処理の 概要を示す説明図である。
図 9は、 本発明の第 2の実施の形態の光電界伝送システムの構成図である。 図 1 O Aから図 1 0 Cは、 本発明の第 2の実施の形態の複素信号の座標変換を 示す説明図である。
図 1 1は、 本発明の第 3の実施の形態の光電界伝送システムの構成図である。 図 1 2は、 本発明の第 4の実施の形態の光電界伝送システムの構成図である。 図 1 3は、 本発明の第 5の実施の形態の光電界伝送システムの構成図である。 発明を実施するための最良の形態 P2008/070248
14 本発明の実施の形態の概要は、 以下の通りである。
本発明の第一の目的は、 放射状 A P S K変調以外の複素情報を伝送する際に、 その位相成分のみを予め時間間隔 Tで積算した位相予積算複素情報が生成され、 生成された位相予積算複素情報を光電界信号に変換して送信することによって達 成できる。 受信側では、 送信された光電界信号を分岐し遅延時間略丁で、 互いに 光位相差が 9 0度である 2台の光遅延検波型受信器でタイミングを揃えて受信し、 その出力信号の位相角成分を検出すればよい。 これによつて、 受信側で位相積分 処理が用いられない場合でも、 該 2台の光遅延検波型受信器の出力信号 d I及ぴ d Qの複素位相角が元の複素情報の位相角と等しくなるため、 誤差累積の問題が 解決できる。 前述した変調過程において、 位相積算処理は、 デジタル演算が用い られると実装が極めて実用的となる。 次に、 複素情報が D A変換器で高速のアナ 口グ信号に変換され、 変換されたアナ口グ信号によつて光電界変調器が駆動され るとよい。
また、 光電界受信器内部に光強度受信器を備え、 得られた光電界 (又は光強 度) 情報を、 前述した位相情報と組み合わせることによって、 送信側の複素情報 を高精度に復元し出力することが可能となる。
また、 光電界受信器内部で必要となる信号処理は、 前述した複数の光電界受信 器の後にそれぞれ AD変換器を備え、 一定の周期で同時にデジタルサンプリング し、 デジタル信号に変換することによって、 より容易に実現できるようになる。 また前述した位相積算処理が行われると、 2組の光遅延検波型受信器の出力信 号の符号間干渉が低減し、 出力信号の初期位相の不確定性がなくなるため、 最尤 系列推定 (M L S E ) のような受信シンボル推定技術の適用が容易となる。
次に、 本発明の第二の目的は、 本発明の光電界送信器内部に伝送される複素情 報の振幅が略ゼロとならないように座標変換を行う、 又は、 予め正の所定値以上 の振幅値をもつ信号点配置の多値の複素情報を用いて情報伝送を行うことによつ て解決される。 前者の場合、 光電界受信器内に逆座標変換回路を備えることによ つて、 元の複素情報が復元され、 復元された複素情報を出力することが可能とな る。
次に、 本発明の第三の目的は、 本発明の光電界送信器の位相予積算回路と概光 電界変調器との間に、 光電界送受信器及び光伝送路の引き起こす劣化を予め完全 又は近似的に等化する予等化回路を備えることによって解決される。 この際、 予 等化回路の入力部に概複素情報を整数倍の周波数でオーバーサンプリングするォ 一バーサンプリング回路を備えることによって、 ナイキスト定理が満たされ、 予 等化回路の性能を向上することが可能となる。 .
また、 最適な等化量は、 伝送距離や各構成の特性によって変化する。 よって、 予等化回路の等化量を変更する機能を備えるとよい。 また、 前記等化量を最適に するためには、 光電界受信器から得られる信号品質情報を用いて、 品質が最良と なるように等化量を動的に制御するとよい。
以下、 本発明の実施の形態について図面を参照しながら説明する。
<第 1の実施形態 >
図 5は、 本発明の第 1の実施の形態の光電界伝送システムの構成図であり、 光 信号の経路は太線で示し、 電気信号の経路は細線で示す。
本発明の第 1の実施の形態では、 レーザ光源 2 1 2から出力される無変調のレ 一ザ光を、 光電界変調器 2 1 3に入力し、 所要の電界変調を行った光電界信号 2
1 5を光ファイバ 2 1 4から出力する。
図 5に示す例では、 伝送される情報信号は、 2次元の位相面 (複素平面又は I
Q平面) 上で ( i, q ) と表現されるデジタル電気多値信号であり、 前述した放 射状 A P S K信号に含まれない情報信号である。
第 1の実施の形態で用いられるデジタル電気多値信号は、 時間間隔 T毎に、 信 号の実部及ぴ虚部が、 それぞれ複素情報入力端子 2 0 1の i及び qから入力され る (すなわち、 情報信号のシンポル時間 T sa= Tとする) 。 複素情報入力端子 2
0 1に入力された信号は、 位相予積算回路 2 0 2に入力される。 位相予積算回路 202は、 多値信号の位相成分のみを時間間隔 Tで積算する。 例えば、 入力された複素情報信号を極座標変換回路 203に入力し、 複素情報信 号が振幅成分 r (t) = s q r t ( i 2+q2) 及ぴ位相成分 φ (t) = a r c t a n (q, i ) に変換される。 そして、 変換された位相成分のみが位相積算回 路 205に入力される。
位相積算回路 205は、 遅延時間 Tの遅延回路 206及ぴ加算回路 207から 構成され、 入力されたデジタル位相信号 φ (t) 力 時間 Tだけ遅延した積算値 ∑ φ ( t -T) に加算される処理を繰り返すことによって、 位相積算値∑ φ
(t) が得られる。
次に、 振幅値 r (t) を振幅成分とし、 位相積算値 Σ Φ (t) を位相成分とす る新たな複秦情報である位相予積算信号 208が生成され、 直交座標変換回路 2
04— 1で再ぴ直交座標表示 ( i ' , q' ) に戻される。
位相予積算信号 208は、 実部 i及ぴ虚部 qが、 それぞれ D A変換器 21 0—
1及び D A変換器 210— 2で高速アナログ信号に変換される。 変換された高速 アナログ信号は、 それぞれ駆動回路 21 1— 1及び駆動回路 21 1 _ 2で増幅さ れ、 光電界変調器 21 3の I及ぴ Qの二つの変調端子に入力される。 よって、 位 相予積算信号 ( i ' , q' ) 208を用いて、 光電界の同相成分 Iと直交成分 Q とを含む光電界信号 21 5が生成される。 この結果、 光電界信号 215の光電界 は、 r ( t ) e x p ( j ∑ φ ( t ) ) と表わされる。
光電界信号 21 5は、 光ファイバ伝送路 21 6を用いて伝送され、 光ファイバ の波長分散等の伝送劣化を受けた後に、 受信光電界信号 221として非コヒーレ ント光電界受信器 220に入力される。
受信光電界信号 221は、 光分岐回路 1 20によって三つの光信号経路に分離 され、 それぞれ第一の光遅延検波器 1 21— 1、 第二の光遅延検波器 1 21— 2、 及び光強度検出器 1 22に入力される。
第一の光遅延検波器 1 21— 1は、 二つの経路の一方が遅延時間 T d=Tで遅 延され、 両経路の光位相差がゼロとなるように設定される。 また、 第二の光遅延 検波器 1 21— 2は、 二つの経路の一方が遅延時間 T d = Tで遅延され、 両経路 の光位相差が πΖ 2となるように設定される。
第一光遅延検波器 1 21一 2及ぴ第二の光遅延検波器 1 2 1一 2の二つの出力 光は、 それぞれバランス型光検出器 1 10— 1及びバランス型光検出器 1 10— 2で電気信号に変換される。 変換された各電気信号は、 それぞれ A/D変換器 2 22— 1及ぴ 222— 2でデジタル信号 d I及び d Qに変換される。 また、 光強 度検出器 1 22から出力された電気信号は、 A/D変換器 222— 3でデジタル 信号 Pに変換される。
次に、 デジタル信号 d I及ぴ dQは、 逆正接演算回路 2 23に入力される。 逆 正接演算回路 223は、 デジタル信号 d Iを X成分とし、 デジタル信号 dQを Y 成分とする 2引数の逆タンジニント演算を行い、 位相角を算出する。 逆正接演算 回路 223の動作は部分的に、 前述した 「非コヒーレント電界再生方式」 と同一 であり、 受信光信号を r (n) e x p (j Θ ( t) ) と仮定すると、 デジタル信 号 d lは、 d l = r (n) r (n— 1) c o s (Δ θ ( t ) ) で表記され、 デジ タル信号 dQは、 dQ= r (n) s i n (Δ θ ( t) ) で表記される。 ここで、 逆正接演算回路 223の出力は、 Δ θ (n) = 0 ( t ) 一 Θ ( t— Τ) で表わさ れる。
本発明の第 1の実施の形態では、 光電界送信器 200で位相が積算される演算 を行っているため、 受信光電界信号の電界は、 r ( t ) e x p ( j ∑ ( t) ) であるすなわち、 Θ ( t) =∑ φ ( t ) である。 よって、 逆正接演算回路 2 23 の出力信号は、 Δ 0 (n) =∑ φ ( t) —∑ φ ( t -T) = φ ( t ) であり、 元 の複素情報信号の位相成分 Φ ( t) が抽出される。
一方、 光強度検出器の出力信号 Pは、 平方根回路 224に入力され、 元の電界 振幅 r ( t) が出力として得られる。 よって、 得られた電界振幅 r ( t ) と位相 成分 φ (t) とが直交座標変換回路 204— 2に入力されることによって、 再生 複素情報出力端子 2 2 5から、 元のデジタル電気多値信号 ( i, q ) が再生でき る。
図 6は、 本発明の適用非対象又は適用対象である複素多値情報信号の種類を示 す説明図である。
図 6 A及び図 6 Bは、 本発明の適用非対象の放射状 A P S K信号の例であり、 いずれも各振幅レベルの同じ位相角に、 同数の信号点が等しい位相間隔で配置さ れているのが特徴である。
例えば、 図 6 Aに示すように 4 A P S K信号の場合には、 二つの振幅レベル a 0及ぴ a 1に、 それぞれ、 位相 0及ぴ πの位置の位相間隔 πで 2つの信号点が配 置される。 また、 図 6 Βに示すように 1 6 A P S K信号の場合には、 四つの振幅 レベル a 0〜 a 3に、 それぞれ、 位相角 0、 π / 2、 π、 及ぴ 3 π / 2の四つの 等間隔 (位相間隔 π Ζ 2 ) の信号点が配置される。
信号点の位相間隔が等間隔であるため、 光遅延検波を行っても出力信号の位相 角に変化が生じないため、 本発明の位相予積算を行っても信号点の配置が変化し ない。 よって、 本発明の最大の効果である、 「送信側での位相積算処理によって、 多値信号の非コヒーレント受信を容易にする」 という効果が得られないため、 本 発明の対象から除外したものである。
一方、 図 6 C〜図 6 Εは、 本発明の適用対象とする信号点配置である。 例えば、 図 6 Cに示すように 1 6 Q AM信号は、 三つの振幅レベル a 0、 a 1、 及び a 2 をもつが、 振幅レベル a 0に四つの信号点をもち、 振幅レベル a 1に八つの信号 点をもち、 振幅レベル a 3に四つの信号点をもつ非放射状 A P S K信号であり、 本発明の適用対象である。
また、 図 6 Dに示すように振幅レベル a 0の四つの信号点と、 振幅レベル a 1 の四つの信号点とが互い違いに並べられる 8— s A P S K信号も、 各レベルで信 号点の位相角が異なるため、 本発明の適用対象である。
また、 図 6 Eに示すように 8 A P S K信号も信号点の位相間隔が均一でないた 8070248
19 め、 本発明の適用対象となる。 8 AP S K信号のような光信号は、 α≠ π/ 2の 場合には、 本来四つの位相角 (0、 ± 2 α、 π) 力 遅延検波受信器の (d I、 d Q) の成す位相角が最大六つの角度 (0、 ± α、 π、 π ± α) に増加するため、 出力信号の判定が困難になる。
本発明の適用対象となる信号は、 振幅及び位相を独立に変調しただけでは生成 できない、 又は、 遅延検波を行うと信号点の数が変化する共通した特徴がある。 図 7は、 本発明の第 1の実施の形態の動作原理を示す説明図である。
伝送される複素情報を図 7 Αの 1 6 Q AM信号とすると、 本発明の位相積算信 号は、 図 7 Bになる。 図 7 Bに示すように、 1 6 QAM信号の位相成分のみを積 算することによって、 各信号点の位相と振幅との対応が一時的に失われてしまい、 元の 1 6 Q AM信号の三つの振幅レベルに対応した同心円上に信号点が分布して いる。
本発明の第 1の実施の形態では、 位相積算信号が光電界に変換されて伝送され、 非コヒーレント光電界受信器 2 2 0は、 遅延時間 Tで互いに位相が直交した 2台 の光遅延検波器で同時に受信する。 光遅延検波器の出力信号 d I及び d Qが、 そ れぞれ横軸及ぴ縦軸として二次元的に表示されたものが、 図 7 Cである。
図 7 Cに示すように、 振幅 r ( t ) と前のシンボル r ( t - 1 ) とが干渉して 振幅レベルが増えているが、 各信号点の位相角は、 元の 1 6 QAM信号の位相角 φ ( t ) が再生できる。 よって、 振幅値を強度受信器から得られた r ( t ) に置 き換えることによって、 図 7 Dに示す複素信号が再生できる。 再生された複素信 号は、 図 7 A) の 1 6 QAM信号と完全に一致する。
このように本発明の第 1の実施の形態では、 伝送したい複素多値情報と実際の 光電界信号とは直接に対応せず、 光電界上で明確な信号点として判定されないが、 非コヒーレント方式で受信した後に、 遅延検波の特性を用いて元の信号点配置が 再生される。
本発明の最大の効果は、 再生された信号点が雑音及ぴ送受信器の誤差の影響を 受けにくくなる点である。 これは、 従来の 「非コヒーレント電界再生方式」 にお いて、 受信器で行われていた位相の積算処理を、 送信側のデジタル演算で行われ ることによって生じた効果である。 すなわち、 送信側のデジタル演算は完全に理 想的な数値演算であり、 伝送中に発生する雑音及び送受信器の誤差の影響を受け ることがなく、 これらの影響を完全に回避できる。
図 7 Eに示す例は、 光電界信号を伝送中に、 各信号点にランダムな雑音が印加 され、 遅延検波器の遅延量に 5 %の誤差を仮定したものであるが、 雑音が印加さ れた場合でも、 元の 1 6 Q AM信号が分離されていることがわかり、 本発明の第 1の実施の形態の効果が確認できる。
なお、 本発明の位相積算演算は、 従来から位相変調に用いられてきた差動符号 化と、 処理の目的及び内容が以下の点において異なる。
第一に、 従来の差動符号化は、 遅延検波が用いられることによって受信器から 出力される情報信号のビットパターンが変化するため、 予めビットパターンを変 更する論理演算処理が行われる。
すなわち、 差動符号化の処理によって出力される光信号の波形及び信号点配置 に変化が生じるわけではなく、 例えば、 4値の位相変調である Q P S K方式と、 差動位相変調である D Q P S K方式とを用いて送信される波形 (光電界波形) は、 全く同一の波形である。 両者は、 伝送される情報が異なっているのみであり、 波 形及ぴ信号点の観測によって見分けられることはない。
—方、 本発明の位相積算処理は、 信号点の位相角を各シンポルで積算するデジ タル数値演算である。 すなわち、 本発明の適用対象である非放射状 A P S K変調 では、 位相積算処理を行うことによって送信器から出力される光電界波形は、 元 の複素情報と完全に異なる波形に変化する (図 7 A及び図 7 B参照) 。 よって、 本発明の位相積算処置と従来の差動符号化とは大きく異なる。
第二に、 本発明の適用対象である非放射状 A P S K変調は、 遅延検波を行うこ とによって信号点の数及び配置が大幅に変化する。 よって、 従来の光通信で用い られていた論理的な差動符号化は、 適用することが不可能である。
一方、 本発明では、 論理的な割り当てとは無関係に位相差を積算するものであ るため、 非放射状の変調符号であれば、 常に適用可能である。
また、 本発明の利点の一つに、 光電界の振幅がゼロになるゼロヒットが生じた 際に、 誤差が最小限に抑えられ、 以後の処理に誤差が伝播しない点が挙げられる。 図 5に示す非コヒーレント光電界受信器 2 2 0において、 例えば、 入力される 光信号の電界の振幅 r ( t ) が時刻 t 0でゼロの場合には、 図 5に示す二つの出 力信号 d I及び d Qは、 時亥 [| t o及び t o + Tの二点でゼロになる。 二つの時刻 のうち時刻 t oでは、 光強度受信器 1 2 2が、 振幅がゼロであることを検出し、 出力信号をゼロとすればよい。 し力 し、 時刻 t o + Tの出力信号は、 同様に振幅 r ( t o + T ) が検出されるが、 必ずしも振幅がゼロであるとは限らない。 この 場合、 逆正接演算回路 2 2 3では、 入力信号が d I = d Q = 0であるため、 出力 信号 (時刻 T前からの位相回転量) が定義されなくなる。 国際公開 2 0 0 6 / 3 0 9 4 9 8号に記載されている非コヒーレント電界再生方式では、 以降、 全ての 光位相に誤差が含まれてしまうため、 受信した信号に誤りが生じる可能性があつ た。
一方、 本発明の位相予積算処理では、 受信器で位相の積算が不要であるため、 ゼロヒットが生じる場合であつても、 影響は時刻 t 0+ Tの出力信号の位相が不 明になるのみであり、 以降の信号は、 正しい出力が得られる。
次に、 本発明の光電界送信器 2 0 0及ぴ光電界受信器 2 2 0の各構成について 説明する。
光電界変調器 2 1 3には、 通常、 2個のマツハツヱンダ型光変調器をマツハツ ェンダ千渉計型に構成した光 I Q変調器 (デュアルパラレル変調器又は光 S S B 変調器とも呼ばれる) が用いられる。 光 I Q変調器は、 二つの I Q端子に加えら れた電圧信号を、 そのまま出力光電界の I Q信号に変換するため、 本発明の光電 界変調器 2 1 3に適している。 また、 I Q変調器として、 リチウムナイォベイ ト結晶を用いた変調器及び半導 体が用いられた変調器があるが、 同等の機能をもつ変調器であればいずれの変調 器が用いられてもよい。
また、 これらの変調器は、 印加電圧が半波長電圧 ν πに近づくと電界変調の線 形性が失われるが、 印加電圧の範囲が十分に線形領域に収まるように印加電圧を 下げる方法、 及び、 非線形性を補償するよう逆特性をもつ印加電圧テーブル及び 外部の捕正回路を用いて線形化する方法等によって解決される。
また、 光 I Q変調器に限らず、 複数の変調器、 例えば、 振幅変調器及び位相変 調器がタンデムに並べられる構成であっても同等の効果を得ることが可能である。 この場合には、 各変調器に与えられる電圧信号は、 あらかじめ適当な座標変換
(例えば、 極座標への座標変換) が行なわれる必要がある。
高速 D Α変換器 (2 1 0— 1、 2 1 0 - 2 ) は、 実際には理想的な動作ではな く、 ナイキスト条件を満たさない不要な高調波を発生させる可能性、 又は、 帯域 不足等で出力波形の歪みを引き起こす可能性がある。
また、 駆動回路 (2 1 1— 1、 2 1 1 - 2 ) は、 飽和、 帯域の不足、 及ぴリッ プル等によって波形歪を起こす可能性があるが、 本発明の光電界送信器 2 0 0に、 発生した歪みを捕正する電気回路が適宜挿入されてもよい。
また、 図 5に示す例では、 複素情報入力端子 2 0 1、 位相予積算回路 2 0 2、 極座標変換回路 2 0 3、 直交座標変換回路 2 0 4、 位相積算回路 2 0 5、 位相予 積算信号 2 0 8、 逆正接演算回路 2 2 3、 平方根回路 2 2 4、 及び再生複素情報 出力端子 2 2 5等のデジタル信号及びデジタル演算回路を、 高速シリアル電気信 号及び高速シリアル電気信号の処理としているが、 一般に、 高速デジタル信号の 伝送は、 複数の低速の電気デジタル信号の伝送が並列化された構成である。 よつ て、 各回路の内部構成及び各回路を接続する配線は、 等化な機能及び伝送量をも つ並列で低速のデジタル信号処理及ぴデジタル回線に用いられるものであっても よい。 なお、 受信器内の第一の光遅延検波器 1 2 1— 1及ぴ第二の光遅延検波器 1 2 1一 2が略直交している場合には、 両者の光位相差は、 0及ぴ π 2にする必要 はない。 ただし、 この場合には、 出力された複素信号が余分な位相回転を含むた め、 位相回転を除去する回転演算が必要となる。
また、 位相差及び相互の符号は、 正負が反転している場合でも、 出力信号が電 気的に反転又は複素平面上で回転するのみであるため、 簡単な複素演算によって 除去される。
なお、 本発明の第 1の実施の形態の光電界送信器 2 0 0及ぴ非コヒーレント光 電界受信器 2 2 0は、 最も簡単な例として、 1シンボルに一^ 3のデジタルサンプ ル点をもつ場合が示されている。
図に示していないが、 各出力信号は、 互いに適宜同期を取る必要がある。 例え ば、 光電界送信器 2 0 0では、 直交座標変換回路 2 0 4— 1から光電界変調器 2 1 3に至る 1, 及び q, の二つの信号経路の長さが等しく調整される必要がある。 また、 非コヒーレント光電界受信器 2 2 0では、 受信した光信号を AZD変換 するタイミングが、 各シンポルの中央の時刻に調整されるクロック抽出回路が必 要となる。 また、 光分岐回路 1 2 0から逆正接演算回路 2 2 3に至る d I及ぴ d Qの二つの信号経路の遅延時間が互いに等しく調整される必要がある。 また、 直 交座標変換回路 2 0 4— 2に位相信号 φ ( t ) 及び振幅信号 r ( t ) が到着する タイミングも等しく調整される必要がある。 これらは、 適宜アナログ遅延線、 移 相回路、 及びデジタル遅延回路で調整されてもよい。
また、 本発明の第 1の実施の形態の光電界送信器 2 0 0で位相信号が積算され る時間間隔 Tは、 非コヒーレント光電界受信器 2 2 0の光遅延検波器 (1 2 1— 1、 1 2 1 - 2 ) の遅延時間と略等しくする必要がある。 よって、 光電界送信器 で位相積分された時間間隔と、 非コヒーレント光電界受信器 2 2 0の光遅延検波 器 (1 2 1— 1、 1 2 1— 2 ) で位相差が検出される時間間隔とが等しくなり、 非コヒーレント光電界受信器 2 2 0で元の複素情報が正しく復元される。 時間間隔 Tは、 基本的に複素情報信号のサンプリング間隔 T saに対して自由に 設定される。 ただし、 位相積算の時間間隔 Tが必要以上に長く設定されると、 光 信号の位相雑音の影響を受けやすくなる、 及び、 出力信号に長時間にわたる符号 間干渉が発生する等の問題が生じる。 また、 位相積算の時間間隔 Tが短く設定さ れると、 位相積算信号の位相は、 本来の複素信号より早い速度で回転し、 出力さ れる光電界信号の帯域が広がるため、 波長分散等の劣化を受けやすくなる可能性 がある。 そこで、 時間間隔 Tは、 T saから数倍の T saの範囲に設定されるのが適 している。
なお、 シンボル速度 T sが明確に設定されている多値信号の場合、 シンボル時 刻での位相が伝送されるため、 時間間隔 Tは、 T sに略一致させて設定されるの が有効である。
また、 ナイキスト定理の観点から情報の欠落をなくすために、 T saは、 T sの 2分の 1以下とするとさら'に有効である。 このように時間間隔 Tが設定されると、 T≠ T sの場合でも、 シンポルの中央の時刻での位相値が正確に補間される。
また本発明の第 1の実施の形態では、 光強度受信器 1 2 2の出力に平方根回路 2 2 4が用いられているが、 平方根回路 2 2 4が必ず用いられなくてもよい。 こ の場合には、 受信した信号の強度が振幅と入れ替わった複素信号が出力から得ら れるが、 電界振幅と強度とは、 1 : 1の変換関係にあるため、 多値信号を受信す る場合には、 単に信号点の振幅方向の配置が変わるのみである。 しかし、 一般に、 信号が電界に変換され、 雑音分布が線形化された方が、 受信信号点の判定の際に、 雑音の影響を抑圧することが容易になる。
なお、 A Technique for Combining Equalization with Generalized
Differential Demodulation Aelong, IEEE Int. Phoenix Conf Computers, Commun. (Scotsdale, AZ), March. 1993 には、 無線伝送において、 送信側で複 素信号の位相成分のみが積算されて伝送する方式が記載されている。
図 8 Aは、 従来の無線信号の信号処理の概要を示す図である。 図 8 Aに示す例では、 アンテナ 231で、 無線信号 r ( t) e x p ( j ∑ Φ ( t) ) e ( j ω t) を受信し、 受信した信号から複素情報信号 r (t) e x p ( j φ ( t ) ) が得られる。 ここで、 coはキャリア周波数であり、 無線信号処理 では、 ミキサ 233— 1及ぴ 23 3— 2を用いて、 局発振器 23 2の正弦成分及 ぴ余弦成分をそれぞれ掛け合わせ、 キャリア成分が取り除かれる。
次に、 ミキサ 23 3— 1及びミキサ 233— 2の出力信号は、 AD変換器 1 1 1一 1及ぴ 1 1 1一 2で低速のデジタル信号 r ( t ) c o s ( j ∑ ( t ) ) , 及ぴ、 r ( t ) s i n ( j ∑ ( t) ) に変換される。 この結果、 変換された低 速のデジタル信号をそれぞれ実部及び虚部とした複素信号 r ( t ) e x p ( j ∑ ( t) ) が生成される。
次に、 複素信号は、 図 8 Aに二重線で示される複素デジタル信号の演算経路 2 34の経路を経て、 無線信号の遅延検波回路 23 9によって遅延検波される。 無線信号の遅延検波回路 23 9は、 信号を時間 Tだけ遅延する遅延回路 2 3 5 一 1〜235 _ 3、 位相推定回路 23 7、 及ぴ複素除算回路 238から構成され る。 入力された複素信号は、 各遅延回路 23 5で時間 Tずつ遅延された後、 振幅 リミッタ回路 23 6— 1〜236— 3によって振幅成分が除去される。
振幅成分が除去された複素信号は、 位相推定回路 23 7に入力され、 位相の誤 差を平均化して除去された遅延位相信号 e x p ( j ∑ φ (t一 T) ) が出力され る。 なお、 e X p ( j ∑ φ ( t一 T) ) は、 振幅リミッタ回路 236— 1からも 出力されているが、 位相推定回路 23 7は、 過去のシンポルの位相誤差情報を利 用することによって位相誤差を低減している。
次に、 複素信号 r ( t) e x p ( j ∑ ( t) ) 及び遅延位相信号 e x p ( j ∑ φ (t -T) ) は、 複素除算回路 2 38に入力され、 複素信号が遅延位相信号 で除算 ( Aelong では、 遅延位相信号を位相共役した後に乗算) された結果が出 力信号 r ( t) e x p ( j ( t) ) として出力される。
一方、 図 8 Aに示す信号処理と比較するために、 本発明の第 1の実施の形態に 非コヒーレント方式の検波器の信号処理の概要を図 8 Bに示す。
図 8 Bに示す非コヒーレント光電界受信器 220が受信する光電界信号は、 r け) e X p ( j ∑ ( t ) ) t ) と表わされる。 なお、 ここで 光電界信号は、 比較のため、 通常は省略する光のキャリア周波数 0を用いて表 わされる。
光電界信号は、 光分岐回路 1 20で二つに分離される。 分離された光電界信号 は、 位相差が 0及び πΖ2に設定された遅延量 Tの光遅延検波器 (1 21— 1、 1 21 - 2) で時間 Τだけ前の信号と光干渉を起こす。 光干渉した結果が、 AD 変換器 222— 1及ぴ AD変換器 222 _ 2でデジタル信号に変換されると、 そ れぞれの出力信号は、 前述したように、 d l = r ( t ) r ( t -T) c o s (φ ( t) ) 及ぴ dQ= r ( t ) r ( t -T) s i n (φ ( t) ) となる。
次に、 出力信号から位相角 ψ (t)のみが抽出され、 振幅部分が強度受信器 1 2 2の経路から得られた r ( t) と置換されることによって、 元の光電界信号 r ( t) e x p (j φ ( t) ) が得られる。
図 8 Aと図 8 Bとで処理の差異が生じる原因は、 非コヒーレント光電界受信器 220の場合には、 局発光源が用いられたコヒーレント受信では、 受信器の構成 が複雑になり、 実用性が損なわれるためである。
よって、 本発明第 1の実施の形態で用いられる非コヒーレント光電界受信器 2 20は、 無線に用いられる受信器とは異なり、 キャリア成分を含んだ光遅延検波 を行う。 光遅延検波の結果、 光遅延検波器 (1 2 1— 1、 1 2 1— 2) の出力信 号の振幅部分が r ( t) r ( t一 T) で表記されるように振幅の積の形となり、 信号処理が困難となる。 よって、 光遅延検波後に、 振幅部分が光強度受信器 1 2 2から得られ、 直交座標変換回路 204一 2で出力信号と振幅部分とが合成され る複雑な構成をとる必要がある。
一方、 無線信号の処理の場合には、 デジタル化された複素信号に遅延検波が行 われればよいため、 前述したように、 遅延信号の振幅成分がリミツト回路で消去 される処理、 及び、 光信号の演算では実現することが困難な複素共役が用いられ る処理等が用いられて、 遅延検波回路 2 3 9が構成される。 よって、 単純に無線 信号の位相積算を本発明の構成に採用するだけでは、 光電界検出の目的は達成さ れない。
本発明の第 1の実施の形態では、 複素多値信号の伝送において、 受信器から出 力される複素信号の位相角が、 送信器に入力される複素情報の絶対位相と同じに なる効果がある。 これは、 特に、 非放射状の A P S Kで変調された複素情報信号 を伝送する際に極めて有効である。 さらに、 光強度受信器を備え、 受信器から出 力される複素信号の振幅を、 光強度受信器から得られる振幅と置き替えることに よって、 光電界送信器に入力される複素情報の信号を完全に受信側で再現するこ とが可能となる。 .
また、 第 1の実施の形態では、 従来のコヒーレント検波方式と異なり、 光遅延 検波器を用いた非コヒーレント方式であり、 入力光の偏波状態に依存せず、 局部 発振光源を必要としないため、 受信器の構成が容易になる。
また、 第 1の実施の形態では、 従来の非コヒーレント型の多値光受信器では、 受信信号の多値数の増加と共に回路規模が大型化していたが、 第 1の実施の形態 の光電界受信器及び多値光受信器は、 変調信号の多値数を大きくした場合でも、 同じハードウェアの規模で受信信号のシンボルを判定できる。 また、 第 1の実施 の形態によれば、 受信した光信号の電界演算及び多値判定を電気的なデジタル回 路で実行できるため、 同一の受信器構成で、 多値数及び変調方式の異なる光信号 に適合させることが可能となる。
また、 第 1の実施の形態では、 位相成分の予積算によって、 出力信号の初期位 相が一定となり、 光電界再生方式において初期位相が不明という問題を解決でき る。 よって、 受信器内で再び差動検波を実現するため、 初期位相及び光源の位相 変動分を除去する操作が不要になる。
また、 第 1の実施の形態では、 予等化及ぴ多値判定を電気的なデジタル回路で 実行できる。 また、 光ファイバ通信用の受信器以外に、 例えば、 光電界波形測定 装置及び光空間伝送装置等にも適用可能である。
また、 第 1の実施の形態では、 受信する光信号の電界振幅が略ゼロとなって光 電界の検出が困難になる現象 (ゼロヒッ ト) が生じる場合でも、 原理的に誤りが 1点のみであるため、 以降に誤りの伝播が起こらない。 これは、 光通信における 伝送劣化を最小限に保つ上で非常に有用な効果である。
<第 2の実施形態 >
図 9は、 本発明の第 2の実施の形態の光電界伝送システムの構成図である。 本発明の第 2の実施の形態は、 光電界送信器 2 0 0が、 座標変換回路の一種で ある振幅変換回路 2 4 0、 オーバーサンプリング回路 2 4 1、 及ぴ予等化回路 2 4 2を備え、 非コヒーレント光電界受信器 2 2 0が、 逆座標変換回路の一種であ る、 振幅逆変換回路 2 4 3を備える点が前述した第 1の実施の形態と異なる。 第 2の実施の形態では、 複素情報入力端子 2 0 1に入力される複素信号のサン プリング速度を、 例えば、 1サンプル シンポルと仮定する。 また、 位相予積算 回路 2 0 2には、 極座標変換回路 2 0 3によって分離された振幅成分 r ( t ) の 経路に、 振幅変換回路 2 4 0が配置されている。 振幅変換回路 2 4 0は、 振幅 r ( t ) に正の一定値 aを加算する。
また、 直交座標変換回路 2 0 4 - 1の直後にオーバーサンプリング回路 2 4 1 が配置され、 サンプリング速度 (サンプリング周波数) が 2サンプル/シンポル となるように、 サンプリング点を補完する (オーバーサンプリング) 。 サンプリ ング点が補完されることによってナイキスト定理が満たされるため、 完全な電界 等化処理が可能になる。 また、 サンプリング速度を整数倍にし、 サンプリング点 が補完されるようにオーバーサンプリングされてもよい。
予等化回路 2 4 2は、 位相予積算信号 2 0 8に光ファイバ伝送路 2 1 6等で生 じる劣化の逆関数を印加する。
—方、 非コヒーレント光電界受信器 2 2 0には、 平方根回路 2 2 4から出力さ れた信号 r ( t ) + aから、 一定値 aを減じる逆演算を行う振幅逆変換回路 2 4 3が配置されている。
振幅変換回路 2 4 0及び振幅逆変換回路 2 4 3の目的は、 前述したゼロヒット を回避するものである。
図 1 0は、 本発明の第 2の実施の形態の複素信号の座標変換を示す説明図であ る。
一般的に、 波形の振幅が小さい領域では、 光ファイバ伝送によってランダムな 雑音が印加されるとゼロヒットを起こす原因となり易い。 そこで、 第 2の実施の 形態では、 図 1 O Aに示すように振幅がゼロとなる原点を中心に半径 aの領域を 禁止領域とし、 送信される光電界のサンプル点がこの領域より外に配置されるよ うに座標変換が行われる。
すなわち、 振幅変換回路 2 4 0が振幅成分にのみ一定値 aを加算することによ つて、 全ての信号点は、 図 1 0 Bに示すように中心から放射状に外側に移動する。 座標変換によって、 ゼロヒットの確率を下げて光ファイバ伝送が行われ、 複素信 号の再生が完了した段階で振幅値を元に戻す。
よって、 どのような信号点配置の複素信号であっても、 ゼロヒットを避けるこ とが可能になる。 なお、 元の複素信号が原点 (振幅ゼロ) に信号点をもつ場合に は、 半径 aの円周上のいずれかに信号点を移動させるとよい。
なお、 座標変換の方法は、 前述した方法のみではなく、 例えば、 図 1 0 Cに示 すように、 各信号点を中心から外側に向かって、 0、 4 5度、 及ぴ 9 0度の位相 角のみに限定して放射状に aだけ移動させるように変換してもよい。 このような 座標変換は、 直交座標系において簡単に実現される。 具体的には、 位相角を限定 して信号点を移動させるため、 図 1 0 Bに示す場合と比較して信号点の移動の計 算が少なくなり、 回路の構成が容易になる。
また、 任意の位相回転を伴う変換、 及び、 振幅の逆数を用いる変換が行われて もよい。 また、 複素情報の信号点配置が任意に選択される場合には、 最初から図 1 0 B及び図 1 0 Cに示すようなゼロ点近傍を避けた信号点 (所定以上の正の値 の振幅をもつ信号点) に配置されるように信号点が選択される方法も有効である。 次に、 予等化回路 2 4 2は、 前述したように、 光ファイバ等の伝送路及び送受 信器で生じる波形劣化を予め補償する。 また、 予等化回路 2 4 2は、 高速かつ長 距離ファイバ伝送において問題となる波長分散等による波形劣化を抑制し、 特に、 長距離のファイバ伝送を可能にする。 また、 予等化回路 2 4 2が本発明の構成に 組み合わされた場合には、 ゼロヒットを避ける効果があるため極めて有効である。 すなわち、 波長分散等による波形劣化は光電界波形を変化させ、 本来存在しな いはずのゼロヒットを引き起こす可能性があるが、 予等化回路 2 4 2によって予 め波形劣化の逆関数を印加してから光電界信号が出力された場合には、 印加され た逆関数と伝送路の特性とが打ち消されるため、 理論上、 非コヒーレント光電界 受信器 2 2 0に入力される受信光電界信号 2 2 1は、 ゼロヒットを生じない。 なお、 波長分散等の伝送劣化は、 予等化回路 2 4 2でのみ完全に等化される必 要はなく、 伝送路の途中に分散補償ファイバが配置される、 又は、 非コヒーレン ト光電界受信器 2 2 0の直前に可変分散補償器が配置される等の手段によって等 ィ匕されてもよい。
また、 国際公開 2 0 0 6 Z 3 0 9 4 9 8号に記載されている非コヒーレント光 電界再生方式による波長分散補償が用いられてもよい。 この場合には、 非コヒー レント光電界受信器 2 2 0で位相の積算処理が行われ、 光ファイバ中に伝送され る位相積算信号 r ( t ) e x p ( j ∑ ( t ) ) が再生される。 そして、 波形劣 化の要因を等化した後に、 時間間隔 Tで再度位相成分の差分をとり、 所望の複素 情報信号 r ( t ) e x p ( j φ ( t ) ) が復元される。 よって、 非コヒーレント 光電界再生方式で位相誤差の累積が生じた場合でも、 最終的に位相成分の差分を とる過程で誤差が除去され、 本発明と同様の効果が得られる。
本発明の第 2の実施の形態では、 波長分散等の線形劣化の影響を送信側で予め 補償する予等化回路、 及び、 非線形位相回転の影響を送信側で予め捕償する非線 形位相補償回路等を挿入することによって、 これらの予等化の影響と伝送路の劣 化とが打ち消され、 長距離の光ファイバ伝送を可能にするとともに、 ゼロヒッ ト の発生を抑えることができる。
また、 予等化回路の等化量を変更することによって、 最適な等化を行い伝送距 離の延長及び性能の向上を図ることができる。 また、 光電界受信器から得られる 信号品質情報を用いて、 品質が最良となるように等化量を動的に制御することで、 常に最適な受信状態を保つことができる。
<第 3の実施形態 >
図 1 1は、 本発明の第 3の実施の形態の光電界伝送システムの構成図である。 本発明の第 3の実施の形態は、 光電界送信器が、 非線形位相捕償回路 244— 1及び予等化回路 242を備え、 非コヒーレント光電界受信器 220が、 非線形 位相補償回路 244- 2を備える点が前述した第 1の実施の形態と異なる。
第 3の実施の形態では、 複素情報入力端子 20 1に入力される複素信号のサン プリング速度は、 例えば、 2サンプル Zシンボルのように、 最初からナイキスト 定理が満たされている。
位相予積算回路 20 2には、 極座標変換回路 203によって分離された位相成 分 Φ ( t) の経路に非線形位相補償回路 244— 1が配置され、 送信信号の位相 成分 Σ φ ( t) から予め非線形位相の補償分 Ψ ( t) が減算される。 非線形位相 補償回路 244— 1には、 信号の振幅情報 r ( t) が入力され、 補償量制御端子 245 - 1によって外部から非線形位相の補償量 Cが可変に設定される。 同様に、 予等化回路 242にも補償量制御端子 246が備わっている。
また、 非コヒーレント光電界受信器 220には、 逆正接演算回路 2 23から出 力される位相成分 Φ ( t) の経路に非線形位相捕償回路 244— 2が配置され、 非線形位相 Ψ' ( t) によって歪んだ位相成分∑ φ ( t) + ' ( t) から非線 形位相の捕償分 Ψ ( t) が差し引かれている。 非線形位相補償回路 244— 2に は、 受信した信号の振幅情報 r ( t) が入力され、 捕償量制御端子 245— 2に よって、 外部から非線形位相の補償量 C, が可変に設定される。
光ファイバ伝送における非線形位相は、 光信号に含まれる強度変調成分、 及び、 光ファイバ伝送の途中で中継器等から放出される光強度雑音が、 光ファイバのも つ非線形効果 (自己位相変調効果) を通じて伝送される光信号の位相成分に余分 な非線形位相回転を与えることによって、 光信号が劣化する現象である。 光信号 が劣化する量は、 光信号の強度成分 {r (t) } 2に比例するため、 光電界送信 器 200及び光電界受信器に配置された非線形位相補償回路 (244— 1、 24 4- 2) によって捕償することが可能である。
この場合、 光電界送信器 200の非線形位相補償回路 244— 1は、 信号の強 度変動に起因する劣化を補償する効果が高い。 また、 非コヒーレント光電界受信 器 220の非線形位相補償回路 244— 2は、 光雑音によって生じた非線形位相 雑音の捕償をする効果が高い。 これらは、 両方を同時に用いた場合に最大の効果 が得られるが、 必要に応じて一方のみが用いられてもよい。
なお、 非線形位相捕償回路 244— 1及び非線形位相補償回路 244— 2は、 非線形位相を捕償する機能は同一であるが、 非線形位相を補償する方式は多少異 なる。 すなわち、 光電界送信器 200では、 非線形位相そのものを補償するため、 補償量は、 Ψ (t) =C · { r (t) } 2となる。 また、 非コヒーレント光電界 受信器 220では、 差動位相を補償する必要があるため、 補償量は、 Ψ, (t) =C ( { r (t) } 2— { r (t -T) } 2) となる。
前述した非線形位相補償回路 244— 1の補償量 C、 非線形位相補償回路 24 4一 2の捕償量 C' 、 及び、 予等化回路 246の補償量は、 固定量に設定される。 また、 必要に応じて外部から設定されてもよい。 また、 光電界受信器から得られ た誤り率情報及び品質情報を利用し、 信号品質が最適になるように予等化回路 2 46の補償量を自動的に制御することによって設定されてもよい。
<第 4の実施形態 >
図 1 2は、 本発明の第 4の実施の形態の光電界伝送システムの構成図である。 本発明の第 4の実施の形態は、 非コヒーレント光電界受信器 2 2 0が、 シンポ ル推定回路の一種である最尤系列推定 (M L S E ) 回路 2 5 0を備える点が第 1 の実施の形態と異なる。
最尤系列推定回路 2 5 0には、 AD変換器 2 2 2— 1及ぴ 2 2 2— 2力 ら得ら れる出力信号 d I及ぴ d Qが入力され、 過去のサンプルの情報を用いて、 最も確 からしい入力データ列を推定する。 推定された入力データ列は、 データ信号 2 5 1として順次出力される。
本発明の位相予積算処理では、 最尤系列推定回路 2 5 0に入力される信号の初 期位相の不確定性が無くなるため、 最尤系列推定回路 2 5 0のようなシンボル推 定回路の適用が容易になる。
また、 最尤系列推定が用いられる場合には、 完全に元の複素信号が再生されな くても入力データ系列が判定されるため、 図 1 2に示すように、 光強度受信器 1 2 2を省略することが可能であり、 光受信器の構成を簡素化することができる。 なお、 シンボル推定回路の判定に必要とされるサンプル数は、 入力される信号 の波形が過去にどのぐらいの時間間隔に渡って相互に作用しているかに依存し、 信号の波形が相互に作用している時間が長いほど急激に演算処理が増加する。 信号 d I及び d Qをそれぞれ実部及ぴ虚部とする複素信号は、 r ( t ) r ( t + T ) e x p ( j φ ( t ) ) と表記されるため、 振幅部分が時間間隔 Tに渡る過 去の相互作用をもつことがわかる。 したがって、 前述した実施の形態で示したよ うに光強度受信器 1 2 2によって、 複素情報 r ( t ) e x p ( j ( t ) ) が合 成さる。 合成された複素情報を最尤系列推定回路 2 5 0に入力すると、 必要な演 算量を低減することが可能となる。
本発明の第 4の実施の形態では、 位相成分の予積算によって、 出力信号の初期 位相が一定となり、 光電界再生方式において初期位相が不明という問題を解決で きるため、 最尤系列推定 (M L S E ) のような判定方式の適用に有効となる。 ぐ第 5の実施形態 > 図 13は、 本発明の第 5の実施の形態の光電界伝送システムの構成図である。 第 5の実施の形態は、 入力される複素情報信号を OF DM等のサブキヤリァ変 調に変換してから光ファイバを伝送する構成であり、 光電界送信器 200が、 O FDM変換回路 252を備え、 非コヒーレント光電界受信器 220が、 OFDM 逆変換回路 254を備える点で第 1の実施の形態と異なる。
OFDM変換回路 252は、 複素情報入力端子 201から入力された複素情報 信号を一定長のバケツトに区切り、 バケツト毎に多値変調及びフーリエ変換を行 い、 FFT処理によって OFDM信号に変換する。
OF DM信号は、 狭帯域変調された複数のキャリアの合成であるため、 複素情 報信号の瞬時波形が予測されなレ、複素デジタルサンプル列となっている。
図 13に示す例では、 光電界送信器 200で位相成分が積算された後に、 複素 デジタルサンプル列を光電界に変換して、 変換された光電界が光ファイバに伝送 される。 非コヒーレント光電界受信器 220は、 伝送された光電界を受信するこ とによって、 元の複素デジタルサンプル列を復元し、 OFDM逆変換回路 254 を用いて最初の複素情報信号を得ることができる。
本発明の第 5の実施の形態は、 通常の光 OF DM伝送に必要となるコヒーレン ト受信器を不要とし、 受信器の構成を簡素化することができる。
なお、 OFDM変換回路 252から出力される複素デジタルサンプル列は、 明 確なシンボル間隔がない。 この場合には、 複素デジタルサンプル列のサンプリン グ時間 Tsa及び位相積算時間 T (及び、 光電界受信器での光遅延検波器の遅延時 間 Td) を等しくすることによって、 非コヒーレント光電界受信器 220の直交 座標変換回路 204一 2から元の複素情報と同じ複素情報が復元されることが保 障される。
なお、 非コヒーレント光電界受信器内部では、 必要に応じて AD変換のサンプ ル間隔を短くし、 整数倍の周波数を用いてオーバーサンプリングが行われてもよ レ、。 また、 前述したゼロヒットの課題は、 第 5の実施の形態においても生じるが、 一般に、 O F DMのようなサブキャリア伝送では、 1サンプル点の位相情報が失 われる場合でも、 大きな影響を受けない。
よって、 図 1 3に示す例では、 振幅変換回路 2 4 0及び振幅逆変換回路 2 4 3 が用いられているが、 これらは必ず備わっていなくてもよい。 また、 必要があれ ば、 前述したように、 非コヒーレント光電界受信器 2 2 0で光信号がオーバーサ ンプリングされることによって、 失われた位相情報が前後のサンプル点から推定 される構成も可能である。
本発明の第 5の実施の形態では、 光 O F D M伝送等の複素電界信号の伝送に適 用した場合、 コヒーレント受信を不要とし、 これによつて受信器のサイズ、 コス ト、 及び省電力を節減できる。

Claims

請求の範囲
光源と、 一つ以上の D A変換器と、 光電界変調器とを備え、
所定の時間間隔でサンプリングされた情報信号を光電界信号に変調し、 前 記変調された光電界信号を送信する光電界送信器であって、
前記情報信号は、 複素平面上に不規則に配置された多値の信号、 及び、 少 なくとも二つの振幅値において互いに異なる数の位相値を組み合わせて配置 された多値の信号のいずれか一つを含み、
前記光電界送信器は、 前記情報信号の位相成分を予め所定の時間間隔で積 算した位相予積算複素情報を出力する位相予積算回路を備え、
前記 D A変換器は、 前記出力された位相予積算複素情報を含む前記情報信 号を、 アナログ信号に変換し、 前記変換されたアナログ信号を前記光電界変 調器に入力し、
前記光電界変調器は、 前記光源から出力された光を、 前記アナログ信号を 用いて前記光電界信号に変調し、 前記変調された光電界信号を送信すること を特徴とする光電界送信器。 前記光電界送信器は、 前記変調後の光電界信号の振幅がゼロにならないよ うに前記情報信号の座標変換を行う座標変換回路を備えることを特徴とする 請求項 1に記載の光電界送信器。 前記情報信号は、 さらに、 予め所定値以上の正の振幅値をもつ信号点に配 置された多値の信号を含むことを特徴とした請求項 1に記載の光電界送信器。 前記光電界送信器は、 前記位相予積算回路と前記光電界変調器との間に予 等化回路を備え、
前記予等化回路は、 前記光電界送信器、 前記光電界送信器から送信された 光電界信号を伝送する光伝送路、 及び、 前記伝送された光電界信号を受信す る光電界受信器のいずれかによつて引き起こされる光電界信号の劣化を、 予 め等化することを特徴とする請求項 1に記載の光電界送信器。 5 . 前記光電界送信器は、 前記予等化回路に入力される前記情報信号を整数倍 の周波数でオーバーサンプリングするオーバーサンプリング回路を備えるこ とを特徴とする請求項 4に記載の光電界送信器。
6 . 光源と、 一つ以上の D A変換器と、 光電界変調器とを備え、
所定の時間間隔でサンプリングされた情報信号を光電界信号に変調し、 前 記変調された光電界信号を送信する光電界送信器と、
前記光電界送信器から送信された光電界信号を受信する光電界受信器と、 を備えた光電界伝送システムであって、
前記情報信号は、 複素平面上に不規則に配置された信号、 少なくとも二つ の振幅値において互いに異なる数の位相値を組み合わせて配置された多値の 信号のいずれか一つを含み、
前記光電界送信器は、 前記情報信号の位相成分を予め所定の時間間隔で積 算した位相予積算複素情報を出力する位相予積算回路を備え、
前記 D A変換器は、 前記出力された位相予積算複素情報を含む前記情報信 号を、 アナログ信号に変換し、 前記変換されたアナログ信号を前記光電界変 調器に入力し、
前記光電界変調器は、 前記光源から出力された光を用いて、 前記アナログ 信号を前記光電界信号に変調し、 前記変調された光電界信号を送信し、 前記光電界受信器は、
前記受信した光電界信号を少なくとも第 1の光信号及び第 2の光信号をそ れぞれ一つずつ含む複数の光信号に分離する光分岐器と、 前記第 1の光信号を所定の遅延時間で遅延検波し、 前記遅延検波された第 1の光信号を第 1の電気信号に変換する第 1の光遅延検波受信器と、
前記第 1の光遅延検波受信器と位相が 9 0度ずれた位相差で前記第 2の光 信号を所定の遅延時間で遅延検波し、 前記光遅延検波された第 2の光信号を 第 2の電気信号に変換する第 2の光遅延検波受信器と、
前記第 1の電気信号及ぴ前記第 2の電気信号が同じタイミングで入力され る複素情報合成回路とを備えることを特徴とする伝送システム。 前記光分岐器は、 さらに、 前記受信した光電界信号を第 3の光信号に分離 し、
前記光電界受信器は、 前記第 3の光信号の強度成分を受信し、 前記受信し た第 3の光信号の強度成分を第 3の電気信号に変換する光強度受信器を備え、 前記光強度受信器は、 前記第 1の電気信号及び前記第 2の電気信号と同じ タイミングで、 前記第 3の電気信号を前記直交座標変換回路に入力し、 前記直交座標変換回路は、
前記第 1の電気信号及び前記第 2の電気信号から前記情報信号の位相成分 を算出し、
前記入力された第 3の電気信号から前記情報信号の強度成分、 又は、 前記 入力された第 3の信号の平方根の振幅から前記情報信号の振幅成分を算出す ことを特徴とする請求項 6に記載の伝送システム。 前記光電界受信器は、 前記第 1の光遅延検波受信器及び前記第 2の光遅延 検波受信器の後にそれぞれ A D変換器を備え、
前記各 A D変換器は、 所定の周期で同時にサンプリングし、 デジタル信号 に変換することを特徴とする請求項 6に記載の伝送システム。
. 前記光電界送信器は、 前記情報信号の振幅が略ゼロとならないように座標 変換を行う座標変換回路を備え、
前記光電界受信器は、 逆座標変換回路を備え、
前記逆座標変換回路は、 前記座標変換回路で行われた座標変換と逆の演算 を前記直交座標変換回路から出力される信号に行うことを特徴とする請求項
6に記載の伝送システム。
1 0 . 前記光電界送信器は、 前記位相予積算回路と前記光電界変調器との間に 予等化回路を備え、
前記予等化回路は、 前記光電界送信器、 前記光電界送信器から送信された 光電界信号を伝送する光伝送路、 及び、 前記伝送された光電界信号を受信す る光電界受信器のいずれかによつて引き起こされる光電界信号の劣化を、 予 め等化することを特徴とする請求項 6に記載の伝送システム。 1 1 . 前記伝送システムは、 前記光電界受信器から信号の品質情報を取得し、 前記取得された信号の品質情報に基づいて、 前記予等化回路が等化する量 を変更することを特徴とする請求項 1 0に記載の伝送システム。
PCT/JP2008/070248 2007-11-09 2008-10-30 光電界送信器及び光電界伝送システム WO2009060920A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009540091A JP4880039B2 (ja) 2007-11-09 2008-10-30 光電界送信器及び光電界伝送システム
EP08846532A EP2219306A1 (en) 2007-11-09 2008-10-30 Photofield transmitter and photofield transmission system
CN200880115100.1A CN102017467B (zh) 2007-11-09 2008-10-30 光电场发送器及光电场传输系统
US12/741,518 US8265489B2 (en) 2007-11-09 2008-10-30 Optical field transmitter and optical field transmission system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007291679 2007-11-09
JP2007-291679 2007-11-09

Publications (1)

Publication Number Publication Date
WO2009060920A1 true WO2009060920A1 (ja) 2009-05-14

Family

ID=40625807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/070248 WO2009060920A1 (ja) 2007-11-09 2008-10-30 光電界送信器及び光電界伝送システム

Country Status (5)

Country Link
US (1) US8265489B2 (ja)
EP (1) EP2219306A1 (ja)
JP (1) JP4880039B2 (ja)
CN (1) CN102017467B (ja)
WO (1) WO2009060920A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010061784A1 (ja) * 2008-11-28 2010-06-03 株式会社日立製作所 光電界送信器及び光伝送システム
WO2011145281A1 (ja) * 2010-05-19 2011-11-24 日本電気株式会社 光アナログ/デジタル変換器、その構成方法、光信号復調器及び光変復調装置
WO2012004890A1 (ja) 2010-07-09 2012-01-12 株式会社日立製作所 光受信器及び光伝送システム
WO2012108421A1 (ja) * 2011-02-07 2012-08-16 日本電信電話株式会社 デジタル信号処理装置
US20120281988A1 (en) * 2010-01-07 2012-11-08 Hitachi, Ltd. Optical Transmission System
JP2013003256A (ja) * 2011-06-14 2013-01-07 Hitachi Ltd 光通信用伝送装置
JP5202650B2 (ja) * 2009-01-16 2013-06-05 三菱電機株式会社 光変復調システム、光伝送システムおよび光変復調方法
JP2013543668A (ja) * 2010-09-09 2013-12-05 ゼットティーイー (ユーエスエー) インコーポレイテッド 16qam光信号の生成
JP5390607B2 (ja) 2009-05-26 2014-01-15 三菱電機株式会社 予等化伝送システム
US8655193B2 (en) 2009-03-02 2014-02-18 Hitachi, Ltd. Optical multi-level transmission system
JP2014068072A (ja) * 2012-09-24 2014-04-17 Oki Electric Ind Co Ltd 光信号品質評価装置及び光信号品質評価方法
JP2014107736A (ja) * 2012-11-28 2014-06-09 Hitachi Ltd 光多値信号予等化回路、光多値信号予等化送信器及び偏波多重光予等化送信器
JP2014202913A (ja) * 2013-04-04 2014-10-27 日本電信電話株式会社 差動位相変調信号復調回路およびその復調方法
US8922410B2 (en) 2010-05-19 2014-12-30 Nec Corporation Optical intensity-to-phase converter, mach-zehnder interferometer, optical A/D converter, and method of constructing optical intensity-to-phase converter
JP2020195095A (ja) * 2019-05-29 2020-12-03 沖電気工業株式会社 変調装置、復調装置、変調方法、復調方法及び伝送装置
CN114978354A (zh) * 2022-05-31 2022-08-30 桂林电子科技大学 基于跳变检测的光声异构物理场水下通信同步方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9312964B2 (en) * 2006-09-22 2016-04-12 Alcatel Lucent Reconstruction and restoration of an optical signal field
US8798471B2 (en) * 2009-10-13 2014-08-05 Xieon Networks S.A.R.L. Method for processing data in an optical network element and optical network element
JP5421792B2 (ja) * 2010-01-12 2014-02-19 株式会社日立製作所 偏波多重送信器及び伝送システム
JP2012010070A (ja) * 2010-06-24 2012-01-12 Nec Corp 偏波多重光伝送システム、偏波多重光受信器、および偏波多重光伝送方法
JP5760419B2 (ja) * 2010-12-13 2015-08-12 富士通株式会社 光送信装置および光送信方法
US8824501B2 (en) * 2011-09-16 2014-09-02 Alcatel Lucent Performance enhancement through optical variants
US9166689B2 (en) * 2012-06-28 2015-10-20 Infinera Corporation Equalization mechanism for processing traffic based on three-quadrature amplitude modulation (3QAM)
US20140230536A1 (en) * 2013-02-15 2014-08-21 Baker Hughes Incorporated Distributed acoustic monitoring via time-sheared incoherent frequency domain reflectometry
WO2015134437A1 (en) * 2014-03-07 2015-09-11 Trustees Of Boston University System and method for embedding phase and amplitude into a real-valued unipolar signal
CN106572040B (zh) * 2015-10-12 2020-04-21 富士通株式会社 发射端调制器的偏置漂移估计装置、补偿装置以及接收机
CN108667555B (zh) * 2017-03-29 2021-07-20 华为技术有限公司 一种相位调整方法、相关设备和通信系统
JP6863147B2 (ja) * 2017-07-14 2021-04-21 富士通株式会社 光送信器、変調方法、及び光伝送装置
US10778337B1 (en) * 2019-05-17 2020-09-15 Google Llc Phase noise tolerant coherent modulation formats for short reach optical communication systems
US11677540B1 (en) 2020-01-28 2023-06-13 Cable Television Laboratories, Inc. Systems and methods for data frame and data symbol synchronization in a communication network
US11736199B1 (en) * 2020-01-29 2023-08-22 Cable Television Laboratories, Inc. Systems and methods for phase compensation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005110266A (ja) * 2003-09-29 2005-04-21 Lucent Technol Inc 光でラベル付けされたパケット送信のためのシステムおよび方法
JP2007082094A (ja) * 2005-09-16 2007-03-29 Fujitsu Ltd 光送信装置および光通信システム
WO2007132503A1 (ja) 2006-05-11 2007-11-22 Hitachi Communication Technologies, Ltd. 光電界受信器、光多値信号受信器および光伝送システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7398022B2 (en) * 2005-07-08 2008-07-08 Mario Zitelli Optical return-to-zero phase-shift keying with improved transmitters
JP4701928B2 (ja) * 2005-09-01 2011-06-15 株式会社日立製作所 光電界波形観測装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005110266A (ja) * 2003-09-29 2005-04-21 Lucent Technol Inc 光でラベル付けされたパケット送信のためのシステムおよび方法
JP2007082094A (ja) * 2005-09-16 2007-03-29 Fujitsu Ltd 光送信装置および光通信システム
WO2007132503A1 (ja) 2006-05-11 2007-11-22 Hitachi Communication Technologies, Ltd. 光電界受信器、光多値信号受信器および光伝送システム

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
J. HONGOU; K. KASAI; M. YOSHIDA; M. NAKAZAWA: "1 Gsymbol/s, 64QAM Coherent Optical Transmission over 150 km with a Spectral Efficiency of 3 Bit/s/Hz", PROC. OPTICAL FIBER COMMUNICATION CONF. (OFC/NFOFEC), March 2007 (2007-03-01)
K.SEKINE ET AL.: "40Gbit/s, 16-ary(4bit/symbol) optical modulation/demodulation scheme", IEEE ELECTRONICS LETTERS, vol. 41, no. 7, March 2005 (2005-03-01), pages 430 - 432, XP006023796 *
KENRO SEKINE ET AL.: "Hikari 16-Chi Shinpuku Iso Hencho Hoshiki (16APSK) no Kento", IEICE TECHNICAL REPORT, OCS2005-8, 15 April 2005 (2005-04-15), pages 29 - 34, XP003022495 *
KENRO SEKINE ET AL.: "Proposal and Demonstration of 10-Gsymbol/sec 16-ary (40 Gbit/s) Optical Modulation/Demodulation Scheme", ECOC 2004, 2004
KIKUCHI N. ET AL.: "Jiko Homodyne Kansho ni yoru Iso Hencho Tachi Henchoko no Denkai Hakei Kansokuho", IEICE, B-10-58, 8 March 2006 (2006-03-08), pages 378, XP003022496 *
KIKUCHI.N ET AL.: "Study on cross-phase modulation (XPM) effect on amplitude and differentially phase-modulated multilevel signals in DWDM transmission", IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 17, no. 7, July 2005 (2005-07-01), pages 1549 - 1551, XP011134966 *
M. G. TAYLOR: "Coherent detection method using DSP to demodulate signal and for subsequent equalisation of propagation impairments", ECOC 2003, 2003
R. A. GRIFFIN ET AL.: "10 Gb/s Optical Differential Quadrature Phase Shift Key (DQPSK) Transmission using GaAs/AlGaAs Integration", OFC 2002, 2002

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8472807B2 (en) 2008-11-28 2013-06-25 Hitachi, Ltd. Optical field transmitter and optical transmission system
WO2010061784A1 (ja) * 2008-11-28 2010-06-03 株式会社日立製作所 光電界送信器及び光伝送システム
JP5202650B2 (ja) * 2009-01-16 2013-06-05 三菱電機株式会社 光変復調システム、光伝送システムおよび光変復調方法
US8655193B2 (en) 2009-03-02 2014-02-18 Hitachi, Ltd. Optical multi-level transmission system
JP5390607B2 (ja) 2009-05-26 2014-01-15 三菱電機株式会社 予等化伝送システム
EP2523367A4 (en) * 2010-01-07 2015-11-04 Hitachi Ltd OPTICAL TRANSMISSION SYSTEM
US20120281988A1 (en) * 2010-01-07 2012-11-08 Hitachi, Ltd. Optical Transmission System
US8693886B2 (en) 2010-01-07 2014-04-08 Hitachi, Ltd. Optical transmission system
WO2011145281A1 (ja) * 2010-05-19 2011-11-24 日本電気株式会社 光アナログ/デジタル変換器、その構成方法、光信号復調器及び光変復調装置
US9052534B2 (en) 2010-05-19 2015-06-09 Nec Corporation Optical analog-to-digital converter, method of constructing the same, optical signal demodulator, and optical modulator-demodulator
US8922410B2 (en) 2010-05-19 2014-12-30 Nec Corporation Optical intensity-to-phase converter, mach-zehnder interferometer, optical A/D converter, and method of constructing optical intensity-to-phase converter
JP5406989B2 (ja) * 2010-07-09 2014-02-05 株式会社日立製作所 光受信器及び光伝送システム
CN102971976A (zh) * 2010-07-09 2013-03-13 株式会社日立制作所 光接收器及光传送系统
WO2012004890A1 (ja) 2010-07-09 2012-01-12 株式会社日立製作所 光受信器及び光伝送システム
US8855503B2 (en) 2010-07-09 2014-10-07 Hitachi, Ltd. Optical receiver and optical transmission system
JP2013543668A (ja) * 2010-09-09 2013-12-05 ゼットティーイー (ユーエスエー) インコーポレイテッド 16qam光信号の生成
US8977141B2 (en) 2011-02-07 2015-03-10 Nippon Telegraph And Telephone Corporation Digital signal processing apparatus
CN103460659A (zh) * 2011-02-07 2013-12-18 日本电信电话株式会社 数字信号处理装置
WO2012108421A1 (ja) * 2011-02-07 2012-08-16 日本電信電話株式会社 デジタル信号処理装置
JP2013003256A (ja) * 2011-06-14 2013-01-07 Hitachi Ltd 光通信用伝送装置
JP2014068072A (ja) * 2012-09-24 2014-04-17 Oki Electric Ind Co Ltd 光信号品質評価装置及び光信号品質評価方法
JP2014107736A (ja) * 2012-11-28 2014-06-09 Hitachi Ltd 光多値信号予等化回路、光多値信号予等化送信器及び偏波多重光予等化送信器
JP2014202913A (ja) * 2013-04-04 2014-10-27 日本電信電話株式会社 差動位相変調信号復調回路およびその復調方法
JP2020195095A (ja) * 2019-05-29 2020-12-03 沖電気工業株式会社 変調装置、復調装置、変調方法、復調方法及び伝送装置
CN114978354A (zh) * 2022-05-31 2022-08-30 桂林电子科技大学 基于跳变检测的光声异构物理场水下通信同步方法
CN114978354B (zh) * 2022-05-31 2023-10-13 桂林电子科技大学 基于跳变检测的光声异构物理场水下通信同步方法

Also Published As

Publication number Publication date
US20100239267A1 (en) 2010-09-23
JPWO2009060920A1 (ja) 2011-03-24
CN102017467B (zh) 2014-06-25
JP4880039B2 (ja) 2012-02-22
CN102017467A (zh) 2011-04-13
EP2219306A1 (en) 2010-08-18
US8265489B2 (en) 2012-09-11

Similar Documents

Publication Publication Date Title
WO2009060920A1 (ja) 光電界送信器及び光電界伝送システム
JP5511849B2 (ja) 光伝送システム
US8983309B2 (en) Constrained continuous phase modulation and demodulation in an optical communications system
JP5406989B2 (ja) 光受信器及び光伝送システム
JP4791536B2 (ja) 光電界受信器、光多値信号受信器および光伝送システム
US8655191B2 (en) Symbol timing recovery in polarization division multiplexed coherent optical transmission system
US9112614B2 (en) Correction of a local-oscillator phase error in a coherent optical receiver
US8073338B2 (en) Modulation scheme with increased number of states of polarization
JP4755690B2 (ja) 光電界受信器および光伝送システム
JP6263915B2 (ja) 帯域内管理データ変調
JP6104948B2 (ja) 直交振幅変調システムにおけるブラインド等化およびキャリア位相復元のためのシステムおよび方法
EP2047615B1 (en) Method and apparatus for the generation and detection of optical differential varied-multilevel phase-shift keying with pulse amplitude modulation (odvmpsk/pam) signals
US8335438B2 (en) Estimating frequency offset using a feedback loop
WO2009100526A1 (en) Low conversion rate digital dispersion compensation
WO2010061784A1 (ja) 光電界送信器及び光伝送システム
WO2014194940A1 (en) Coherent optical receiver
US8942573B2 (en) Blind equalization algorithms for adaptive polarization recovery and PMD compensation
US6996191B1 (en) Efficient accurate controller for envelope feedforward power amplifiers
Kikuchi et al. Incoherent 32-level optical multilevel signaling technologies
WO2021240695A1 (ja) 光受信装置及びクロック同期方法
JP6396016B2 (ja) 光受信器および光信号受信方法
Seimetz Systems with Higher-Order Modulation

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880115100.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08846532

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009540091

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2008846532

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12741518

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE