WO2011145281A1 - 光アナログ/デジタル変換器、その構成方法、光信号復調器及び光変復調装置 - Google Patents

光アナログ/デジタル変換器、その構成方法、光信号復調器及び光変復調装置 Download PDF

Info

Publication number
WO2011145281A1
WO2011145281A1 PCT/JP2011/002511 JP2011002511W WO2011145281A1 WO 2011145281 A1 WO2011145281 A1 WO 2011145281A1 JP 2011002511 W JP2011002511 W JP 2011002511W WO 2011145281 A1 WO2011145281 A1 WO 2011145281A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
light
light intensity
mach
input
Prior art date
Application number
PCT/JP2011/002511
Other languages
English (en)
French (fr)
Inventor
信也 須藤
佐藤 健二
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2012515726A priority Critical patent/JPWO2011145281A1/ja
Priority to US13/698,018 priority patent/US9052534B2/en
Publication of WO2011145281A1 publication Critical patent/WO2011145281A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F7/00Optical analogue/digital converters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2/00Demodulating light; Transferring the modulation of modulated light; Frequency-changing of light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2/00Demodulating light; Transferring the modulation of modulated light; Frequency-changing of light
    • G02F2/004Transferring the modulation of modulated light, i.e. transferring the information from one optical carrier of a first wavelength to a second optical carrier of a second wavelength, e.g. all-optical wavelength converter
    • G02F2/006All-optical wavelength conversion
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/50Phase-only modulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining

Definitions

  • the present invention relates to an optical analog / digital converter used in, for example, an optical communication system and an optical interconnection, an optical signal demodulator, an optical modulation / demodulation device, and an optical analog / digital converter.
  • wavelength division multiplexing is used and the wavelength channel interval is determined. Therefore, about 100 channels can be used at 50 GHz intervals within the band of the optical fiber amplifier.
  • optical multilevel modulation increases the amount of information without increasing the frequency usage band by multileveling using the amplitude and phase of light. It is a method to make it.
  • optical OFDM an OFDM signal is generated from an electrical signal, optically modulated, and multiplexed between optical subcarriers in an orthogonal state. Therefore, the crosstalk problem can be solved and the frequency utilization efficiency can be increased.
  • an optical A / D converter that directly derives an analog amount of an optical signal as a digital value has a feature of high speed, and thus many proposals have been made.
  • Patent Document 1 by dividing an optical signal by a different predetermined division ratio, the light amount is expressed by a predetermined ratio, and the optical analog amount of the input optical signal depending on whether each divided optical signal has reached a threshold value Is detected.
  • a feedback system via a non-linear optical element is configured for an input optical signal that is an analog signal, so that digital signals are sequentially transmitted from the optical A / D conversion means. A first output light is obtained.
  • an optical encoding circuit uses a plurality of optical encoders including optical nonlinear elements having periodicity with different input / output characteristics relating to light intensity, to generate a pulse train of signal light having a first wavelength.
  • Optically encoding according to control light which is a pulse train of an optical analog signal that has a second wavelength in the vicinity different from the first wavelength and is optically sampled, and each of a plurality of optically encoded pulse trains of signal light Output from the optical encoder.
  • the optical quantization circuit is connected to each of the optical encoders, and uses a plurality of optical threshold processors having an optical nonlinear element having an input / output characteristic related to light intensity having periodicity, and the first wavelength.
  • a pulse train of carrier light having a third wavelength in the vicinity different from the above is optically quantized by performing optical threshold processing in accordance with a plurality of optically encoded pulse trains of signal light, and output as an optical digital signal .
  • Patent Document 4 a plurality of branch interference type optical modulators are provided, a photovoltaic element is formed on the same substrate, and an output voltage of the photovoltaic element is applied to the branch interference type optical modulator. It is characterized by that. Therefore, in this example, the intensity signal light is once received by the PD and converted into a voltage signal, and the speed of the electric signal determines the speed of the entire circuit.
  • Patent Document 5 discloses a technique for sampling signal light and performing A / D conversion using probe light.
  • Patent Document 6 discloses a technique for performing sequential A / D conversion by optical subtraction.
  • JP 2007-24924 A JP-A-1-56426 JP 2005-173530 A Japanese Utility Model Publication No. 61-203666 JP 2008-209775 A JP 2001-051314 A
  • an A / D converter arranged at the rear stage of the PD of the optical demodulation circuit on the receiving side uses an electric circuit.
  • the speed of electric signal processing is limited.
  • the bit rate of each subcarrier remains below Gbit / s.
  • power consumption for processing is large.
  • the method using an optical A / D converter is considered to have a complicated structure because it is difficult to subtract light having a certain intensity from light having a certain intensity as it is.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide an optical demodulation circuit using a high-speed and low power consumption optical A / D converter.
  • the optical A / D converter is An optical demultiplexer that divides the analog input signal light into a plurality of parts; A plurality of Mach-Zehnder optical interferometers to which each signal light divided by the optical demultiplexer is input, A plurality of optical / electrical conversion means for converting each signal light output from each of the Mach-Zehnder type optical interferometers into a digital electrical signal, Each Mach-Zehnder optical interferometer is A light intensity phase conversion means for optically converting the intensity of the input signal light into a phase shift amount; The phase shift amount is different for each Mach-Zehnder type optical interferometer.
  • the configuration method of the optical A / D converter according to the present invention is as follows: An optical demultiplexer that divides the analog input signal light into multiple parts is provided. A plurality of Mach-Zehnder optical interferometers to which each signal light divided by the optical demultiplexer is input are provided, A plurality of optical / electrical conversion means for converting each signal light output from each of the Mach-Zehnder type optical interferometers into a digital electrical signal, Each Mach-Zehnder optical interferometer is provided with a light intensity phase conversion means for optically converting the intensity of the input signal light into a phase shift amount, The phase shift amount is configured to be different for each Mach-Zehnder optical interferometer.
  • a high-speed and low-power optical A / D converter can be obtained, and an optical signal demodulator and an optical modulation / demodulation device including it can be realized at high speed and low power.
  • region 8 of FIG. 3 is a graph showing characteristics of light intensity phase conversion units 25 to 28. It is a graph which shows the relative light intensity in the cross section 21 of FIG. It is a figure which shows the digital signal according to the input light intensity output from the optical A / D converter which concerns on 1st, 2nd and 3rd Embodiment.
  • FIG. 3 is a diagram showing a configuration of a light intensity phase converter 39.
  • FIG. 6 is a diagram showing another configuration of the light intensity phase converter 39.
  • FIG. It is a block diagram of the optical A / D converter which concerns on 3rd Embodiment. It is a figure which shows the structure of the light modulation area
  • FIG. 4 is a diagram showing a configuration of a light intensity phase converter 59. It is a figure which shows the structure of the light modulation area
  • a device called an optical phase hybrid is used to cause interference between four local lights having different phases by 90 degrees and signal lights, and output for each of two systems for the real part I and the imaginary part Q.
  • Light is obtained, and light from each system is received by a PD (Photodiode).
  • PD Photodiode
  • optical A / D conversion is performed using intensity information in each system after the optical signal has already been separated into the real part I or the imaginary part Q.
  • the intensity of light was received by a PD and converted into an electric signal, and then converted into a digital value by an A / D converter using an electric circuit.
  • the method using an optical A / D converter is considered to have a complicated structure because it is difficult to subtract light having a certain intensity from light having a certain intensity as it is. Therefore, in the present invention, a circuit for converting the intensity into a phase difference is added, and processing is performed with the optical phase.
  • the light intensity is decomposed into multiple bits and extracted as a digital value in the state of light.
  • FIG. 1 is a configuration diagram of the optical A / D converter according to the first embodiment.
  • FIG. 1 shows a configuration example of a 4-bit optical A / D converter.
  • the optical A / D converter includes an input port 1, an optical demultiplexer 2, an optical waveguide 3, a Mach-Zehnder (MZ) type optical interferometer 4, output ports 13 to 20, and a balanced receiver 9.
  • MZ Mach-Zehnder
  • the analog input signal Ain which is an optical signal
  • the analog input signal Ain is input from the input port 1, and is divided into four equivalent analog signals A3, A2, A1, and A0 by the optical demultiplexer 2. This number of divisions corresponds to the number of bits of the optical A / D converter.
  • the lights demultiplexed by the optical demultiplexer 2 are respectively input to the MZ type optical interferometer 4 through the optical waveguide 3.
  • the MZ type optical interferometer 4 includes four paths, and includes one optical demultiplexer 10 and one optical multiplexer / demultiplexer 11 for each path.
  • optical modulation regions 5, 6, 7, and 8 are provided between the optical demultiplexer 10 and the optical multiplexer / demultiplexer 11.
  • Four pairs of analog signals A3, A2, A1, and A0 demultiplexed by the optical demultiplexer 10 into the two arms are input to the optical modulation regions 5, 6, 7, and 8, respectively.
  • each of the light modulation regions 5, 6, 7, and 8 has two upper and lower inputs and two upper and lower outputs, and the upper input port is connected to the upper output port and the lower input port is connected to the lower output port. .
  • the phase of the light passing through the lower input / output port changes according to the intensity of the optical signal input from the input port 1 as compared with the light passing through the upper input / output port.
  • Each of the light modulation regions 5, 6, 7, and 8 is designed to have a phase shift (phase rotation) amount necessary for outputting a signal corresponding to each bit of the digital signal. Details will be described later.
  • a pair of lights that have passed through the light modulation region 5 and output from the upper and lower output ports interfere with each other in the optical multiplexer / demultiplexer 11. Then, the output light is distributed to the pair of output ports 13 and 14. Similarly, a pair of lights that have passed through the light modulation region 6 and are output from the upper and lower output ports interfere with each other in the optical multiplexer / demultiplexer 11 and are then distributed to the pair of output ports 15 and 16. A pair of lights that have passed through the light modulation region 7 and output from the upper and lower output ports interfere with each other in the optical multiplexer / demultiplexer 11, and are then distributed to the pair of output ports 17 and 18.
  • the optical demultiplexer 10 is illustrated as one input and two outputs, and the optical multiplexer / demultiplexer 11 is illustrated as two inputs and two outputs.
  • the present invention is not limited to this.
  • a pair of lights output from each path of the MZ type optical interferometer is O / E (optical / electrical) converted by the balanced receiver 9.
  • the balanced receiver 9 is composed of a pair of PDs connected in series.
  • a digital output signal Dout is generated by assigning 0 and 1 of the digital signal according to the output of each balanced receiver 9.
  • FIGS. 2A to 2D are diagrams showing details of the light modulation regions 5 to 8 in FIG. 1, respectively.
  • One arm (the upper arm in FIGS. 2A to 2D) in the light modulation regions 5 to 8 is a normal optical waveguide.
  • the other arm (the lower arm in FIGS. 2A to 2D) is provided with light intensity phase converters 25, 26, 27, and 28, respectively.
  • each of the light intensity phase converters 25, 26, 27, and 28 has a linear characteristic in which the input light intensity and the phase shift amount are in a proportional relationship as shown in FIG.
  • the “Kerr effect” or “Semiconductor optical amplifier (SOA) self-phase modulation effect” can also be used. Even when the nonlinear effect is used, adjustment of the current value of the SOA and further adjustment of the intensity of the signal light itself may be made in advance so that a linear region can be used as much as possible.
  • SOA semiconductor optical amplifier
  • the length of the light intensity phase conversion unit 25 is determined so that the phase rotation of the light intensity phase conversion unit 25 becomes 2 ⁇ at a certain maximum light intensity and minimum light intensity. Let that length be L.
  • the light transmitted through the MZ type optical interferometer 4 changes the phase difference between the arms of the light modulation region 5 from 0 to 2 ⁇ according to the light intensity from the minimum light intensity to the maximum light intensity. Therefore, the ratio of the output light intensity B1 from the output port 13 to the sum (B1 + B2) of the output light intensity B1 from the output port 13 that has passed through the MZ type optical interferometer 4 and the output light intensity B2 from the output port 14, that is,
  • the relative light intensity B1 / (B1 + B2) changes as shown in FIG.
  • the horizontal axis represents the input light intensity
  • the vertical axis represents the relative light intensity.
  • FIG. 4 shows the relative light intensity in the cross section 21 of FIG.
  • the balanced receiver 9 can detect a difference in output by combining two PDs, and thus can obtain a digital value by using a comparator. In this way, a digital value such as the digital signal D3 in FIG. 5 is taken according to the input light intensity.
  • the repetition period P period 1 / f (f is the repetition frequency) is one period according to the light intensity from the minimum light intensity to the maximum light intensity.
  • the light intensity phase conversion units 26, 27, and 28 are set to be 2L, 4L, and 8L on the basis of the length L of 25, the light modulation regions 6, 7, and 8 are maximum.
  • the phase rotation is 4 ⁇ , 8 ⁇ , or 16 ⁇ depending on the light intensity up to the light intensity. Therefore, if the repetition frequency in the light modulation region 5 is f, the repetition frequency of the ratio of the output light intensity from the output port 15 to the total output light intensity from the output port 15 and the output port 16 is 2 ⁇ f. . Similarly, the repetition frequency of the ratio of the output light intensity from the output port 17 to the total output light intensity from the output port 17 and the output port 18 is 4 ⁇ f. The repetition frequency of the ratio of the output light intensity from the output port 19 to the total output light intensity from the output port 19 and the output port 20 is 8 ⁇ f.
  • the outputs of the light modulation areas 5 to 8 are respectively input to the balanced receiver 9, and digital signals D3, D2, D1, and D0 corresponding to the analog signals A3, A2, A1, and A0 are output.
  • digital signals D3, D2, D1, and D0 as shown in FIG. 5 are obtained according to the input light intensity. That is, the light intensity of the analog input signal is converted into a digital signal.
  • the light may be amplified in advance so that the average light intensity is close to the center value when it is converted into a digital signal. Good.
  • the operation states of the light intensity phase conversion units 25, 26, 27, and 28 are adjusted in advance so that the maximum light intensity is close to the maximum value of the digital signal and the longest light intensity is the minimum value of the digital signal. It is desirable.
  • FIG. 6 is a configuration example of a 4-bit optical A / D converter.
  • the same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • the present embodiment is different in that local lights LL3, LL2, LL1, and LL0 are introduced into the light modulation regions 35, 36, 37, and 38.
  • the analog input signal Ain is input from the input port 1 and is divided into four equivalent analog signals A3, A2, A1, and A0 by the optical demultiplexer 2. This number of divisions corresponds to the number of bits of the optical A / D converter.
  • the light demultiplexed by the optical demultiplexer 2 is input to the light modulation regions 35, 36, 37, and 38 in the MZ type optical interferometer 4, respectively. Further, the local light beams LL3, LL2, LL1, and LL0 demultiplexed into two arms by the optical demultiplexer 10 are input to the light modulation regions 35, 36, 37, and 38, respectively.
  • each of the light modulation regions 35, 36, 37, and 38 has upper and lower two inputs and upper and lower two outputs, the upper input port is connected to the upper output port, and the lower input port is connected to the lower output port. .
  • the phase of the light passing through the lower input / output port changes according to the intensity of the optical signal input from the input port 1 as compared with the light passing through the upper input / output port.
  • Each of the light modulation regions 35, 36, 37, and 38 is designed to have a phase shift amount necessary for outputting a signal corresponding to each bit of the digital signal. Details will be described later.
  • the optical demultiplexer 10 is illustrated as one input and two outputs, and the optical multiplexer / demultiplexer 11 is illustrated as two inputs and two outputs.
  • the present invention is not limited to this.
  • a pair of lights output from each path of the MZ type optical interferometer 4 is O / E converted by the balanced receiver 9.
  • the balanced receiver 9 is composed of a pair of PDs connected in series.
  • a digital output signal Dout is generated by assigning 0 and 1 of the digital signal according to the output of each balanced receiver 9.
  • FIGS. 7A to 7D are diagrams showing details of the light modulation regions 35 to 38 in FIG. 6, respectively.
  • a light intensity phase converter 39 is provided in the light modulation regions 35 to 38. This region has a function of converting a light intensity change into a phase difference.
  • analog signals A3 to A0 that are signal lights are input to the light intensity phase converters 39 in the light modulation regions 35 to 38.
  • the phase of the local light is modulated and output according to the intensity of the signal light.
  • FIG. 7E is an example of a specific configuration of the light intensity phase converter 39.
  • the local light LLb (wavelength ⁇ 2) input from the input waveguide 44a of the light intensity phase converter 39 has a phase corresponding to the intensity of the signal light A (wavelength ⁇ 1) input from the input waveguide 44b in the region 40. Undergo change.
  • the local light LLb and the signal light A are designed to exit separately at the exit of the region 40.
  • the local light LLb is output from the output waveguide 48 via the light intensity adjuster 42b.
  • the signal light A is output from the output waveguide 47 via the light intensity adjuster 41.
  • the region 40 is set so that the phase rotation is 2 ⁇ according to the light intensity from the minimum light intensity to the maximum light intensity.
  • the region 40 has a 2 ⁇ 2 MMI (Multi Mode Interference) waveguide formed of a semiconductor optical waveguide.
  • the width and length are such that light input to the input waveguide 44a, which is the upper port of the MMI waveguide, is input to the lower output waveguide 48, and light input to the input waveguide 44b, which is the lower port, is the upper output waveguide. It is designed to output to 47.
  • the semiconductor optical waveguide in this region 40 has a pin structure, and electrodes are arranged above and below so that a current or voltage can be applied. Depending on the current value or the like, the phase rotation amount is set to a desired value in accordance with the intensity change of the signal light.
  • the local light LLa (wavelength ⁇ 2) input to the input waveguide 45 is output from the output waveguide 46 via the light intensity adjuster 42a and the optical phase adjuster 43.
  • the light intensity adjusters 42a and 42b and the optical phase adjuster 43 are adjusted so that the relative relationship between the intensity and phase of the local light input to the input waveguide 45 and the input waveguide 44a is aligned.
  • the light intensity adjusters 42a and 42b are adjusted in advance so that the output waveguide 46 and the output waveguide 48 have the same intensity when the signal light intensity is the minimum light intensity.
  • the optical phase adjuster 43 adjusts in advance so that the phases of the output waveguide 46 and the output waveguide 48 are aligned when the signal light intensity is the minimum light intensity.
  • the light intensity adjuster 41 is previously set so that the relationship between the signal light and the local light is aligned when the light intensity phase converters 39 are connected in cascade as in the light modulation regions 36, 37, and 38. It has been adjusted. That is, in the light modulation region 35 shown in FIG. 7A, the light intensity adjuster 41 in the light intensity phase converter 39 is not essential. Note that it is preferable that the wavelength ⁇ 2 of the local lights LLa and LLb and the wavelength ⁇ 1 of the signal light A are different.
  • the light intensity adjusters 41, 42a, and 42b are set so that the current value can be adjusted as desired using the SOA.
  • the optical phase adjuster 43 is adjusted so that desired phase rotation occurs by applying an electric field to a semiconductor optical waveguide having a pin structure.
  • light intensity adjustment using SOA involves phase rotation, and therefore a separate phase rotation adjuster is required.
  • the phase is 2 ⁇ in the light modulation region 35, 4 ⁇ in the light modulation region 36, 8 ⁇ in the light modulation region 37, and 16 ⁇ in the light modulation region 38. Rotation will occur.
  • the light intensity phase converter 39 shown in FIG. 7E the output positions of the local light and the signal light are reversed at the output section of the region 40.
  • the length of the region 40 can be changed according to the degree of cross-phase modulation between the signal light and the local light, and the output positions of the local light and the signal light can not be reversed.
  • FIG. 7F Such a configuration is shown in FIG. 7F.
  • the light transmitted through the MZ type optical interferometer 4 has a phase difference between the arms of the light modulation region 35 varying from 0 to 2 ⁇ according to the light intensity from the minimum light intensity to the maximum light intensity. Therefore, the ratio of the output light intensity B1 from the output port 13 to the sum (B1 + B2) of the output light intensity B1 from the output port 13 that has passed through the MZ type optical interferometer 4 and the output light intensity B2 from the output port 14, that is, , B1 / (B1 + B2) change as shown in FIG. That is, FIG. 4 shows the ratio calculated based on the light intensity of the portion 21 shown in FIG.
  • the balanced receiver 9 can detect a difference in output due to the combination of two PDs, so that a digital value can be obtained by using a comparator.
  • the repetition period P Period 1 / f (f is the repetition frequency) is one period according to the light intensity from the minimum light intensity to the maximum light intensity.
  • the phase rotation is set to 4 ⁇ , 8 ⁇ , and 16 ⁇ according to the light intensity up to the maximum light intensity. Therefore, if the repetition frequency in the light modulation region 5 is f, the repetition frequency of the ratio of the output light intensity from the output port 15 to the total output light intensity from the output port 15 and the output port 16 is 2 ⁇ f. . Similarly, the repetition frequency of the ratio of the output light intensity from the output port 17 to the total output light intensity from the output port 17 and the output port 18 is 4 ⁇ f. The repetition frequency of the ratio of the output light intensity from the output port 19 to the total output light intensity from the output port 19 and the output port 20 is 8 ⁇ f.
  • the outputs of the light modulation areas 35 to 38 are respectively input to the balanced receiver 9, and digital signals D3, D2, D1, and D0 corresponding to the analog signals A3, A2, A1, and A0 are output.
  • digital signals D3, D2, D1, and D0 as shown in FIG. 5 are obtained according to the input light intensity. That is, the light intensity of the analog input signal is converted into a digital signal.
  • FIG. 8 is a configuration example of a 4-bit optical A / D converter.
  • the same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • the present embodiment is different in that local light LL3, LL2, LL1, and LL0 are introduced into the light modulation regions 55, 56, 57, and 58. Thereby, the efficiency of changing the phase according to the optical signal intensity can be increased.
  • the functions of the light modulation areas 55, 56, 57, and 58 are the same as those of the light modulation areas 5, 6, 7, and 8 in FIG. 1 and the light modulation areas 35, 36, 37, and 38 in FIG.
  • a configuration is the same as that of the second embodiment, and the method for determining the number of built-in components is also the same.
  • FIG. 9E is an example of a specific configuration of the light intensity phase converter 59.
  • the regions 60a and 60b include, for example, 2 ⁇ 2 MMI waveguides configured from semiconductor optical waveguides. The width and length are designed so that the light input to the upper port of the MMI waveguide is output to the lower part and the light input to the lower port is output to the upper part.
  • the same MMI waveguide regions 60a and 60b are provided in both the lower input waveguide 64a and the upper input waveguide 65 of the light intensity phase converter 59, respectively.
  • the local light LL (wavelength ⁇ 2) is introduced only into the region 60b of the lower input waveguide 64a.
  • the signal light Aa input to the input waveguide 65 of the light intensity phase converter 59 is output from the output waveguide 66 via the region 60a, the light intensity adjuster 62, and the optical phase adjuster 63.
  • the signal light Ab input from the input waveguide 64a undergoes a phase change according to the intensity of the local light LL input from the input waveguide 64b in the region 60b.
  • the local light LL and the signal light Ab are designed to be emitted separately at the exit of the region 60b.
  • the signal light Ab is output from the output waveguide 68.
  • the local light LL is output from the output waveguide 67 via the light intensity adjuster 61.
  • the semiconductor optical waveguides in the regions 60a and 60b have a pin structure and electrodes are arranged above and below so that a current or voltage can be applied.
  • the light intensity phase converter 59 as shown in FIGS. 9A to 9D, a digital signal as shown in FIG. 5 can be obtained.
  • the length of the light intensity phase converters 25 to 28 and the number of the light intensity phase converters 39 and 59 are set based on the binary code. Actually, different values are appropriately set according to the format of the digital signal code.
  • the light modulation regions 5 to 8 in the first embodiment may be configured as shown in FIGS. 10A to 10D.
  • the optical phase modulator 50 rotates the phase by ⁇ / 2 without changing the light intensity.
  • the length of the light intensity phase conversion unit is set to L as the length of the most significant bit from the upper bit to the lower bit.
  • the length of the light intensity phase conversion unit can be made shorter than that of the binary code.
  • the optical phase modulator 50 may be configured to cause a desired phase rotation by applying an electric field to a semiconductor optical waveguide having a pin structure. It can also be realized by changing the waveguide length so that the optical path length is shifted by ⁇ / 2. With such a configuration, a digital output as shown in FIG. 12 is obtained according to the input light intensity.
  • the Gray code shown in FIG. 12 can be output.
  • the optical phase modulator 50 rotates the phase by ⁇ / 2 without changing the light intensity.
  • the number of light intensity phase converters 39 can be reduced as compared with the binary code.
  • output is possible if the light modulation regions 55 to 58 are configured as shown in FIGS. 11A to 11D. It is.
  • This optical phase modulator 50 can also be realized by the same method as the optical phase modulator 50 in FIGS. 10A to 10D described above.
  • the above-described embodiments can be combined within a range in which the contents do not conflict with each other. Further, in the above-described embodiments and modifications, the structure of each part has been specifically described, but the structure and the like can be variously changed within a range that satisfies the present invention. According to the present invention, since a high-speed and low-power optical A / D converter can be realized, the optical demodulation circuit using this optical A / D converter can be used in a form that takes advantage of high-speed and low power. can do. Specifically, the optical A / D converter of the present invention can be incorporated in a coherent detection circuit or an optical direct detection circuit.
  • the technology according to the present invention can be used for an optical analog / digital converter, an optical signal demodulator, an optical modulator / demodulator, an optical analog / digital converter, and the like used in an optical communication system and an optical interconnection.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Abstract

本発明に係る光A/D変換器は、アナログ入力信号光を複数に分割する光分波器(2)と、光分波器(2)により分割された各信号光が入力される複数のマッハ・ツェンダー型光干渉計(4)と、各マッハ・ツェンダー型光干渉計(4)から出力された各信号光をデジタル電気信号に変換する複数の光/電気変換手段(9)と、を備え、各マッハ・ツェンダー型光干渉計(4)は、入力信号光の強度を位相シフト量に光学的に変換する光強度位相変換手段(25~28)を備え、位相シフト量が、マッハ・ツェンダー型光干渉計(4)毎に異なるものである。これにより、高速かつ低消費電力な光復調回路を提供することができる。

Description

光アナログ/デジタル変換器、その構成方法、光信号復調器及び光変復調装置
 本発明は、例えば光通信システムや光インターコネクションにおいて用いられる光アナログ/デジタル変換器、これを用いた光信号復調器、光変復調装置及び光アナログ/デジタル変換器の構成方法に関する。
 中・長距離系における光通信システムにおいては、ますます高速化や波長多重による大容量化が進んでいる。現在の幹線系光通信システムでは、波長多重通信が用いられ、波長チャネル間隔が定められている。そのため、光ファイバアンプの帯域内において50GHz間隔であれば、約100チャネルを利用することができる。
 ここで、チャネル間隔をΔf[Hz]、伝送速度をB[bit/s]とすると、B/Δf[bit/s/Hz]を、周波数利用効率という。Δf=50GHzであれば、もしチャネル毎に100Gbit/sの伝送速度があれば、周波数利用効率は、2bit/s/Hzとなる。
 光ファイバアンプの帯域が限られているため、周波数利用効率を高めることが必要である。ただし、周波数利用効率を高くするために単純に信号のビットレートを高くすると、チャネル間のクロストークが問題となる。そこで、次世代の光通信方式として、光多値変調や、光直交周波数分割多重(OFDM:Orthogonal Frequency-Division Multiplexing)の検討が進んでいる。光多値変調は、従来の0、1の2値を用いた光強度変調とは異なり、光の振幅や位相を用いて多値化することによって、周波数利用帯域を増やさずに情報量を増大させる方法である。また、光OFDMでは、電気信号によってOFDM信号を生成して光変調し、光サブキャリア間を直交状態にして多重化する。そのため、クロストーク問題を解決し、周波数利用効率を高めることができる。
 このように電気信号処理を主とした多値化、多重化を行い、伝送された光信号は、受信側で電気信号に復調する。光復調回路のPD(光受光器)の後段にはアナログ/デジタル(A/D)変換器が必要となる。現在は、電気回路を利用したA/D変換器が一般的に用いられている。
 他方、光信号のアナログ量を直接デジタル値として導出する光A/D変換器は、高速性という特長を有するため、提案が多くなされている。例えば、特許文献1では、光信号を異なる所定の分割比で分割することによって、光量を所定の比率で表し、各分割光信号が閾値に達しているかどうかで入力された光信号の光アナログ量を検出している。
 また、特許文献2では、光A/D変換手段において、アナログ信号である入力光信号に対し非線形光素子を介した帰還系を構成することにより、当該光A/D変換手段より順次デジタル信号である第1出力光を得ている。
 特許文献3では、光符号化回路は、光強度に関する入出力特性が異なる周期性を有する光非線形素子を備えた複数の光符号化器を用いて、第1の波長を有する信号光のパルス列を、第1の波長とは異なる近傍の第2の波長を有しかつ光標本化された光アナログ信号のパルス列である制御光に従って光符号化し、光符号化された複数の信号光のパルス列を各光符号化器から出力する。次いで、光量子化回路は、各光符号化器にそれぞれ接続され、光強度に関する入出力特性が周期性を有する光非線形素子を備えた複数の光しきい値処理器を用いて、第1の波長とは異なる近傍の第3の波長を有する搬送波光のパルス列を、光符号化された複数の信号光のパルス列に従ってそれぞれ光しきい値処理を行うことにより光量子化して光デジタル信号として出力している。
 特許文献4では、複数の分岐干渉型光変調器を有しており、同じ基板上に光起電力素子が形成されて、この光起電力素子の出力電圧が分岐干渉型光変調器に印加されることを特徴としている。そのため、この例では、強度信号光を一度PDで受光し、電圧信号に変換することになり、その電気信号の速度が全体の回路の速度を決定してしまうことになる。
 特許文献5には、プローブ光を用いて、信号光をサンプリングし、A/D変換を行なう技術が開示されている。
 また、特許文献6には、光減算により逐次A/D変換を行なう技術が開示されている。
特開2007-24924号公報 特開平1-56426号公報 特開2005-173530号公報 実開昭61-203566号公報 特開2008-209775号公報 特開2001-051314号公報
 光伝送容量が増大した電気信号処理を主とした多値化、多重化の伝送では、受信側の光復調回路のPD後段に配置されるA/D変換器が電気回路を利用したものである場合、電気信号処理の速度に制限される。例えば、電気OFDMの報告例では、各サブキャリアのビットレートがGbit/s未満にとどまっている。また、処理のための消費電力が大きいという問題があった。
 これに対し、光のA/D変換器を用いる方法は、光のままではある強度を有する光から一定の強度の光を減算することは困難であることから、構成が複雑になると考えられる。
 本発明は上記事情に鑑みてなされたものであり、その目的は、高速かつ低消費電力な光A/D変換器を用いた光復調回路を提供することである。
 本発明に係る光A/D変換器は、
 アナログ入力信号光を複数に分割する光分波器と、
 前記光分波器により分割された各信号光が入力される複数のマッハ・ツェンダー型光干渉計と、
 各前記マッハ・ツェンダー型光干渉計から出力された各信号光をデジタル電気信号に変換する複数の光/電気変換手段と、を備え、
 各前記マッハ・ツェンダー型光干渉計は、
 入力信号光の強度を位相シフト量に光学的に変換する光強度位相変換手段を備え、
 前記位相シフト量が、前記マッハ・ツェンダー型光干渉計毎に異なるものである。
 本発明に係る光A/D変換器の構成方法は、
 アナログ入力信号光を複数に分割する光分波器を設け、
 前記光分波器により分割された各信号光が入力される複数のマッハ・ツェンダー型光干渉計を設け、
 各前記マッハ・ツェンダー型光干渉計から出力された各信号光をデジタル電気信号に変換する複数の光/電気変換手段を設け、
 各前記マッハ・ツェンダー型光干渉計に、入力信号光の強度を位相シフト量に光学的に変換する光強度位相変換手段を設け、
 前記位相シフト量を前記マッハ・ツェンダー型光干渉計毎に異なるように構成するものである。
 本発明によれば、高速かつ低電力な光A/D変換器が得られ、それを内部に含む光信号復調器、光変復調装置が高速かつ低電力に実現できる。
第1の実施の形態に係る光A/D変換器の構成図である。 図1の光変調領域5の構成を示す図である。 図1の光変調領域6の構成を示す図である。 図1の光変調領域7の構成を示す図である。 図1の光変調領域8の構成を示す図である。 光強度位相変換部25~28が有する特性を示すグラフである。 図1の断面21における相対光強度を示すグラフである。 第1、第2及び第3の実施の形態に係る光A/D変換器から出力される入力光強度に応じたデジタル信号を示す図である。 第2の実施の形態に係る光A/D変換器の構成図である。 図6の光変調領域35の構成を示す図である。 図6の光変調領域36の構成を示す図である。 図6の光変調領域37の構成を示す図である。 図6の光変調領域38の構成を示す図である。 光強度位相変換器39の構成を示す図である。 光強度位相変換器39の他の構成を示す図である。 第3の実施の形態に係る光A/D変換器の構成図である。 図8の光変調領域55の構成を示す図である。 図8の光変調領域56の構成を示す図である。 図8の光変調領域57の構成を示す図である。 図8の光変調領域58の構成を示す図である。 光強度位相変換器59の構成を示す図である。 図12に示すデジタル符号に対応する図1の光変調領域5の構成を示す図である。 図12に示すデジタル符号に対応する図1の光変調領域6の構成を示す図である。 図12に示すデジタル符号に対応する図1の光変調領域7の構成を示す図である。 図12に示すデジタル符号に対応する図1の光変調領域8の構成を示す図である。 図12に示すデジタル符号に対応する図6の光変調領域35の構成を示す図である。 図12に示すデジタル符号に対応する図6の光変調領域36の構成を示す図である。 図12に示すデジタル符号に対応する図6の光変調領域37の構成を示す図である。 図12に示すデジタル符号に対応する図6の光変調領域38の構成を示す図である。 第1、第2及び第3の実施の形態にて出力可能な図5とは異なるデジタル信号を示す図である。
 多値・多重化された光信号の復調のためには、光の位相及び振幅の状態を検知する必要がある。しかしながら、複素平面上で光の状態を検知するのは困難なため、前段で実部Iと虚部Qに分離しておき、それぞれの実部Iと虚部Qの強度情報を受信器(PD)にて検知するのが一般的である。
 例えば、コヒーレント光検波という手法においては、光位相ハイブリッドという装置を用いて、位相が90度異なる4つの局所光とそれぞれ信号光を干渉させ、実部I及び虚部Q用に2系統ずつの出力光を得て、それぞれの系統の光をPD(Photodiode)で受光する。本発明では、既に光信号が実部Iまたは虚部Qに分離された後の各系統における強度情報を用いて光A/D変換を行う。
 これまでは、光の強度を検知するのに、PDで受信して電気信号に変換し、電気回路によるA/D変換器でデジタル値に変換していた。これを光のA/D変換器を用いる方法は、光のままではある強度を有する光から一定の強度の光を減算することは困難であることから、構成が複雑になると考えられる。そこで、本発明では、さらに強度を位相差に変換する回路を付け加え、光位相にて処理を行う。これによって、以下に説明する発明の実施の形態では、光のままの状態で、光強度を多ビットに分解してデジタル値として取り出す。
 以下、本発明を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。ただし、本発明が以下の実施の形態に限定される訳ではない。また、説明を明確にするため、以下の記載及び図面は、適宜、簡略化されている。
(第1の実施の形態)
 図1は、第1の実施の形態に係る光A/D変換器の構成図である。図1は、4ビットの光A/D変換器の構成例を示す。この光A/D変換器は、入力ポート1、光分波器2、光導波路3、マッハ・ツェンダー(MZ)型光干渉計4、出力ポート13~20、バランスドレシーバ9を備えている。
 入力ポート1から光信号であるアナログ入力信号Ainが入力され、光分波器2により等価な4つのアナログ信号A3、A2、A1、A0に分割される。この分割数が、光A/D変換器のビット数に対応する。光分波器2により分波された光は、光導波路3を介して、それぞれ、MZ型光干渉計4に入力される。
 図1に示すように、MZ型光干渉計4は、4つの経路を備え、各経路に1つずつ光分波器10と光合分波器11とを備えている。また、それぞれの経路において、光分波器10と光合分波器11との間に光変調領域5、6、7、8が設けられている。光分波器10で2つのアームに分波された4対のアナログ信号A3、A2、A1、A0は、それぞれ光変調領域5、6、7、8に入力される。
 ここで、光変調領域5、6、7、8は、それぞれ上下2入力と上下2出力を有し、上側入力ポートは上側出力ポートに、下側入力ポートは下側出力ポートに接続されている。この領域では、上側の入出力ポートを通った光と比べて、下側の入出力ポートを通った光の位相が、入力ポート1から入力された光信号の強度に応じて変化するようにしている。光変調領域5、6、7、8のそれぞれは、デジタル信号の各ビットに相当する信号を出力するために必要な位相シフト(位相回転)量を有するように設計されている。なお、詳細については後述する。
 次に、図1の最上段の経路を例に説明すると、光変調領域5を通過して上下の出力ポートから出力された1対の光は、光合分波器11において干渉する。そして、出力光が1対の出力ポート13、14に分配される。同様に、光変調領域6を通過して上下の出力ポートから出力された1対の光は、光合分波器11において干渉した後、1対の出力ポート15、16に分配される。光変調領域7を通過して上下の出力ポートから出力された1対の光は、光合分波器11において干渉した後、1対の出力ポート17、18に分配される。光変調領域8を通過して上下の出力ポートから出力された1対の光は、光合分波器11において干渉した後、1対の出力ポート19、20に分配される。なお、図1では、光分波器10は1入力2出力、光合分波器11は2入力2出力として図示されているが、これに限定されるものではない。
 次に、MZ型光干渉計の各経路から出力された1対の光は、バランスドレシーバ9によってO/E(光/電気)変換される。ここで、バランスドレシーバ9は直列接続された1対のPDから構成されている。各バランスドレシーバ9の出力に応じて、デジタル信号の0と1を割り振ることにより、デジタル出力信号Doutを生成する。
 次に、図2A~2Dを用いて動作原理について説明する。図2A~2Dは、それぞれ図1における光変調領域5~8の詳細を示した図である。光変調領域5~8における一方のアーム(図2A~2Dにおける上側のアーム)は通常の光導波路である。他方のアーム(図2A~2Dにおける下側のアーム)には、それぞれ光強度位相変換部25、26、27、28が設けられている。ここで、光強度位相変換部25、26、27、28は、いずれも、図3に示すように、入力光強度と位相シフト量とが比例関係となる線形特性を有している。
 具体的には、「カー効果」や「半導体光増幅器(SOA:Semiconductor Optical Amplifier)の自己位相変調効果」なども利用することができる。非線形の効果を利用する場合にも、なるべく線形の領域を利用できるように、SOAの電流値の調整、さらには、信号光自体の強度をそれに見合うようにあらかじめ調整しておけばよい。
 ここでは簡単のため、光強度位相変換部25、26、27、28は、単位長さあたりの特性がすべて同じであるとする。さらに、ある規定された最大光強度と最小光強度において、光強度位相変換部25の位相回転が2πになるように、光強度位相変換部25の長さを決定する。その長さをLとする。
 これにより、MZ型光干渉計4を透過する光は、光変調領域5のアーム間の位相差が、最小光強度から最大光強度までの光強度に応じて0~2πまで変化する。そのため、MZ型光干渉計4を通過した出力ポート13からの出力光強度B1と出力ポート14からの出力光強度B2との合計(B1+B2)に対する出力ポート13からの出力光強度B1の割合、即ち、相対光強度B1/(B1+B2)は、図4に示すように変化する。図4の横軸は入力光強度、縦軸は相対光強度である。ここで、図4は、図1の断面21における相対光強度を示している。
 そして、出力光強度B1、B2の強度の比較を行い、どちらが大きいかにより、0又は1の判定を行えばよい。具体的には、バランスドレシーバ9は、2つのPDを組み合わせることによって出力の違いを検知することができるので、コンパレータを用いることによりデジタル値を得ることができる。このようにして、入力光強度に応じて、図5のデジタル信号D3のようなデジタル値をとることになる。
 この比は、光変調領域5では最小光強度から最大光強度までの光強度に応じて位相回転が2πになるように設定されている。そのため、繰り返し周期Pperiod=1/f(fは繰り返し周波数)は最小光強度から最大光強度までの光強度に応じて1周期となる。
 次に、光強度位相変換部26、27、28については、それぞれ25の長さLを基準として、2L、4L、8Lとなるように設定すれば、光変調領域6、7、8では、最大光強度までの光強度に応じて位相回転が4π、8π、16πとなる。よって、上記光変調領域5での繰り返し周波数をfとすると、出力ポート15及び出力ポート16からの出力光強度の合計に対する出力ポート15からの出力光強度の割合の繰り返し周波数は2×fとなる。同様に、出力ポート17及び出力ポート18からの出力光強度の合計に対する出力ポート17からの出力光強度の割合の繰り返し周波数は4×fとなる。出力ポート19及び出力ポート20からの出力光強度の合計に対する出力ポート19からの出力光強度の割合の繰り返し周波数は8×fになる。
 一般に、nビットの光A/D変換器を作成する場合、上位ビットから下位ビットに行くに従って、光強度位相変換部の長さを長くする。具体的には、最上位ビットでの長さをLとした場合、各下位ビットについては、順に長さLの2^k(k=0、・・・、n-1)倍とすればよい。
 光変調領域5~8の出力は、それぞれがバランスドレシーバ9に入力されており、アナログ信号A3、A2、A1、A0に対応したデジタル信号D3、D2、D1、D0が出力される。具体的には、入力光強度に応じて、図5に示すようなデジタル信号D3、D2、D1、D0が得られることがわかる。即ち、アナログ入力信号の光強度がデジタル信号に変換される。
 なお、入力ポート1から入力される平均的な光の強度が小さい場合には、平均光強度がちょうどデジタル信号にした際の中央の値近くになるように、あらかじめ光を増幅しておくことがよい。また、最大光強度でデジタル信号の最大値に近くなり、最長光強度でデジタル信号の最小値になるように、あらかじめ光強度位相変換部25、26、27、28の動作状態を調整しておくことが望ましい。
(第2の実施の形態)
 次に、第2の実施の形態について、図6を参照して説明する。図6は、4ビットの光A/D変換器の構成例である。図1と同一の構成要素については同一符号を付し、適宜説明を省略する。第1の実施の形態では、図1における光変調領域5、6、7、8に局所光が導入されていない。これに対し、本実施の形態では、光変調領域35、36、37、38に局所光LL3、LL2、LL1、LL0が導入されている点が異なる。
 入力ポート1からアナログ入力信号Ainが入力され、光分波器2により等価な4つのアナログ信号A3、A2、A1、A0に分割される。この分割数が、光A/D変換器のビット数に対応する。光分波器2により分波された光は、それぞれ、MZ型光干渉計4の中にある光変調領域35、36、37、38に入力される。また、光変調領域35、36、37、38には、それぞれ光分波器10により2つのアームに分波された局所光LL3、LL2、LL1、LL0が入力される。
 ここで、光変調領域35、36、37、38は、それぞれ上下2入力と上下2出力を有し、上側入力ポートは上側出力ポートに、下側入力ポートは下側出力ポートに接続されている。この領域では、上側の入出力ポートを通った光と比べて、下側の入出力ポートを通った光の位相が、入力ポート1から入力された光信号の強度に応じて変化するようにしている。光変調領域35、36、37、38のそれぞれは、デジタル信号の各ビットに相当する信号を出力するために必要な位相シフト量を有するように設計されている。なお、詳細については後述する。
 次に、光変調領域35、36、37、38を通過して上下の出力ポートから出力された4対の光は、光合分波器11において干渉する。そして、出力光が1対の出力ポート(例えば、出力ポート13、14)に分配される。なお、図6では、光分波器10は1入力2出力、光合分波器11は2入力2出力として図示されているが、これに限定されるものではない。
 実施の形態1と同様に、MZ型光干渉計4の各経路から出力された1対の光は、バランスドレシーバ9によってO/E変換される。ここで、バランスドレシーバ9は直列接続された1対のPDから構成されている。各バランスドレシーバ9の出力に応じて、デジタル信号の0と1を割り振ることにより、デジタル出力信号Doutを生成する。
 次に、図7A~7Dを用いて動作原理について説明する。図7A~7Dは、それぞれ図6における光変調領域35~38の詳細を示した図である。光変調領域35~38には、光強度位相変換器39が設けられている。この領域は光強度変化を位相差に変換する機能を持つ。この光強度位相変換器39の数が光変調領域35~38において異なっている。具体的には、光変調領域35には1つ、光変調領域36には2つ、光変調領域37には4つ、光変調領域38には8つ設けられている。一般に、nビットの光A/D変換器を作成する場合には、上位ビットから下位ビットに行くに従って、光強度位相変換器39の数を2^k(k=0、・・・、n-1)とすればよい。
 光変調領域35~38の光強度位相変換器39には、局所光LL3~LL0に加えて信号光であるアナログ信号A3~A0が入力される。信号光の強度に応じて局所光の位相が変調されて出力される。
 図7Eは、光強度位相変換器39の具体的な構成の一例である。光強度位相変換器39の入力導波路44aから入力される局所光LLb(波長λ2)は、領域40において、入力導波路44bから入力される信号光A(波長λ1)の強度に応じた位相の変化を受ける。また、領域40の出口では、局所光LLbと信号光Aが分かれて出てくるように設計されている。そして、局所光LLbは光強度調整器42bを介して出力導波路48から出力される。また、信号光Aは光強度調整器41を介して出力導波路47から出力される。さらに、領域40は、最小光強度から最大光強度までの光強度に応じて位相回転が2πになるように設定されている。
 具体的には、例えば、領域40は、半導体光導波路から構成される2×2のMMI(Multi Mode Interference)導波路を有する。その幅と長さは、MMI導波路の上部ポートである入力導波路44aに入力した光が下部の出力導波路48へ、下部ポートである入力導波路44bに入力した光が上部の出力導波路47へ出力されるように設計されている。さらに、電流ないしは電圧が印加できるように、この領域40の半導体光導波路は、pin構造を有し、上下に電極が配置される。この電流値などによって、信号光の強度変化に応じて位相回転量が所望のものになるように設定される。
 入力導波路45に入力される局所光LLa(波長λ2)は、光強度調整器42a及び光位相調整器43を介して、出力導波路46から出力される。光強度調整器42a、42b及び光位相調整器43は、入力導波路45と入力導波路44aとに入力される局所光の強度及び位相の相対関係が揃うように調整されている。例えば、光強度調整器42a、42bは、信号光強度が最小光強度の時に、出力導波路46と出力導波路48の強度が揃うようにあらかじめ調整されている。また、光位相調整器43は、信号光強度が最小光強度の時に、出力導波路46と出力導波路48の位相が揃うようにあらかじめ調整しておく。また、光強度調整器41は、光変調領域36、37、38のように光強度位相変換器39が連続して縦続接続されているときに、信号光と局所光の関係が揃うようにあらかじめ調整されている。即ち、図7Aに示した光変調領域35では、光強度位相変換器39における光強度調整器41は必須ではない。なお、局所光LLa、LLbの波長λ2と信号光Aの波長λ1とは、異なる方が好ましい。
 具体的には、光強度調整器41、42a、42bは、SOAを用いてその電流値を所望の調整ができるように設定される。また、光位相調整器43は、pin構造を有する半導体光導波路に電界を印加することで、所望の位相回転が起こるように調整される。一般に、SOAを用いた光強度調整は、位相回転を伴うため、別途位相回転調整器が必要である。
 このような構成により、最小光強度から最大光強度までの光強度が変化すると、光変調領域35では2π、光変調領域36では4π、光変調領域37では8π、光変調領域38では16πの位相回転が起こることになる。
 なお、図7Eに示した光強度位相変換器39では、領域40の出力部で、局所光と信号光の出力位置が反転している。しかしながら、信号光と局所光の相互位相変調の程度に応じて、領域40の長さを変更し、局所光と信号光の出力位置を反転させないこともできる。そのような構成を図7Fに示す。
 これにより、第1の実施の形態と同様な特性を得ることができる。具体的には、MZ型光干渉計4を透過する光は、光変調領域35のアーム間の位相差が、最小光強度から最大光強度までの光強度に応じて0~2πまで変化する。そのため、MZ型光干渉計4を通過した出力ポート13からの出力光強度B1と出力ポート14からの出力光強度B2との合計(B1+B2)に対する出力ポート13からの出力光強度B1の割合、即ち、B1/(B1+B2)は、図4に示すように変化する。即ち、図4は、図1に示す21の部分の光強度を元に算出された割合である。
 そして、B1とB2の強度の比較を行い、どちらが大きいかにより、0又は1の判定を行えばよい。具体的には、バランスドレシーバ9は、2つのPDを組み合わせることによっての出力の違いを検知することができるので、コンパレータを用いることによりデジタル値を得ることができる。
 この比は、光変調領域35では最小光強度から最大光強度までの光強度に応じて位相回転が2πになるように設定されている。そのため、繰り返し周期PPeriod=1/f(fは繰り返し周波数)は最小光強度から最大光強度までの光強度に応じて1周期となる。
 同様に、光変調領域36、光変調領域37、光変調領域38では、最大光強度までの光強度に応じて位相回転が4π、8π、16πになるように設定されている。よって、上記光変調領域5での繰り返し周波数をfとすると、出力ポート15及び出力ポート16からの出力光強度の合計に対する出力ポート15からの出力光強度の割合の繰り返し周波数は2×fとなる。同様に、出力ポート17及び出力ポート18からの出力光強度の合計に対する出力ポート17からの出力光強度の割合の繰り返し周波数は4×fとなる。出力ポート19及び出力ポート20からの出力光強度の合計に対する出力ポート19からの出力光強度の割合の繰り返し周波数は8×fになる。
 光変調領域35~38の出力は、それぞれがバランスドレシーバ9に入力されており、アナログ信号A3、A2、A1、A0に対応したデジタル信号D3、D2、D1、D0が出力される。具体的には、入力光強度に応じて、図5に示すようなデジタル信号D3、D2、D1、D0が得られる。即ち、アナログ入力信号の光強度がデジタル信号に変換される。
(第3の実施の形態)
 次に、第3の実施の形態について、図8を参照して説明する。図8は、4ビットの光A/D変換器の構成例である。図1と同一の構成要素については同一符号を付し、適宜説明を省略する。第1の実施の形態では、図1における光変調領域5、6、7、8に局所光が導入されていない。これに対し、本実施の形態では、光変調領域55、56、57、58に局所光LL3、LL2、LL1、LL0が導入されている点が異なる。これにより光信号強度に応じて位相を変化させる効率を上げることができる。
 光変調領域55、56、57、58の機能は、図1における光変調領域5、6、7、8、及び、図6における光変調領域35、36、37、38と同様である。図9A~9Dに示すように、光変調領域55、56、57、58は、それぞれ光強度位相変換器59を2^0=1、2^1=2、2^2=4、2^3=8個内蔵している。このような構成は、第2の実施の形態と同様であって、この内蔵する数の決定方法も同様である。
 図9Eは、光強度位相変換器59の具体的な構成の一例である。ここで、領域60a、60bは、例えば、半導体光導波路から構成される2×2のMMI導波路を有する。その幅と長さは、MMI導波路の上部ポートに入力された光が下部に、下部ポートに入力された光が上部に出力されるように設計される。光強度位相変換器59の下部の入力導波路64aと上部の入力導波路65の両方に同じMMI導波路の領域60a、60bがそれぞれ設けられている。下部の入力導波路64aの領域60bにのみ局所光LL(波長λ2)が導入される。これにより、同じ信号光変化でも、MMI導波路内部の光強度が異なる状態を作ることができる。従って、MMI導波路で引き起こされる自己位相変調、相互位相変調の違いを利用して、上下のポートに入力された信号光Aa(波長λ1)、Ab(波長λ1)に位相差を付与することができる。
 なお、図9Eに示す光強度位相変換器59においても、図7Fと同様に、信号光と局所光の出力位置を反転させないこともできる。
 ここで、光強度位相変換器59の入力導波路65に入力される信号光Aaは、領域60a、光強度調整器62及び光位相調整器63を介して、出力導波路66から出力される。一方、入力導波路64aから入力される信号光Abは、領域60bにおいて、入力導波路64bから入力される局所光LLの強度に応じた位相の変化を受ける。また、領域60bの出口では、局所光LLと信号光Abが分かれて出てくるように設計されている。そして、信号光Abは出力導波路68から出力される。また、局所光LLは光強度調整器61を介して出力導波路67から出力される。
 実施の形態2の領域40と同様に、電流ないしは電圧が印加できるように、この領域60a、60bの半導体光導波路はpin構造を有し、上下に電極が配置される。このように、光強度位相変換器59を図9A~9Dのように配置することで、図5に示すようなデジタル信号を得ることができる。
 なお、第1~3の実施の形態は、2進符号を元にして、光強度位相変換部25~28の長さや、光強度位相変換器39、59の数を設定した。実際には、デジタル信号符号のフォーマットに応じて異なる値が適宜設定される。
 例えば、図12に示すグレイコードを出力するためには、第1の実施の形態における光変調領域5~8を、図10A~10Dのような構成にすればよい。ここで、光位相変調器50は、光強度を変えずに位相をπ/2回転させる。この場合、一般にnビットの光A/D変換器を作成する場合には、上位ビットから下位ビットに行くに従って、光強度位相変換部の長さを、最上位ビットの長さをLとした際には、各ビットの信号が出力される光強度位相変換部の長さを、長さLの2^k(k=0、0、1、2、3、・・・、n-2)倍とすればよい。2進コードの時よりも光強度位相変換部の長さを短くことができる。
 ここで、光位相変調器50は、具体的には、pin構造を有する半導体光導波路に電界を印加することで、所望の位相回転が起こるようにすればよい。また、光路長としてπ/2分ずれるように導波路長を変えておくことでも実現できる。このような構成により、入力光強度に応じて、図12に示すようなデジタル出力が得られる。
 第2の実施の形態では、光変調領域35~38を、図11A~11Dのような構成にすれば、図12に示すグレイコードを出力することができる。ここで、光位相変調器50は、光強度を変えずに位相をπ/2回転させる。この場合、一般にnビットの光A/D変換器を作成する場合には、上位ビットから下位ビットに行くに従って、光強度位相変換器39の数を2^k(k=0、0、1、2、3、・・・、n-2)とすればよい。2進コードの時よりも光強度位相変換器39の数を少なくすることができる。第3の実施の形態においても同様に、光変調領域55~58を図11A~図11Dのように構成すれば出力可能である。である。この光位相変調器50も、上述の図10A~10Dにおける光位相変調器50と同様の方法により実現できる。
 なお、当然ながら、上述した実施の形態は、その内容が相反しない範囲で組み合わせることができる。また、上述した実施の形態及び変形例では、各部の構造などを具体的に説明したが、その構造などは本発明を満足する範囲で各種に変更することができる。本発明によれば、高速かつ低電力な光A/D変換器が実現できるので、この光A/D変換器を利用した光復調回路に、高速かつ低電力といったメリットを生かされた形で利用することができる。具体的には、コヒーレント検波回路や光直接検波回路に本発明の光A/D変換器を内蔵することができる。
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2010年5月19日に出願された日本出願特願2010-115544を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 本発明にかかる技術は、光通信システムや光インターコネクションにおいて用いられる光アナログ/デジタル変換器、これを用いた光信号復調器、光変復調装置及び光アナログ/デジタル変換器などに利用できる。
1 入力ポート
2、10 光分波器
3 光導波路
4 MZ型光干渉計
5~8、35~38、55~58 光変調領域
9 バランスドレシーバ
11 光合分波器
13~20 出力ポート
21 断面
25~28 光強度位相変換部
39、59 光強度位相変換器
40、60a、60b 領域
41、42a、42b、61、62 光強度調整器
43、63 光位相調整器
44a、44b、45、64a、64b、65 入力導波路
46~48、66~68 出力導波路
50 光位相変調器

Claims (10)

  1.  入力されたアナログ光信号を複数に分割する光分波器と、
     前記光分波器により分割された各光信号が入力される複数のマッハ・ツェンダー型光干渉計と、
     各前記マッハ・ツェンダー型光干渉計から出力された各光信号をデジタル電気信号に変換する複数の光/電気変換手段と、を備え、
     各前記マッハ・ツェンダー型光干渉計は、
     入力された光信号の強度を位相シフト量に光学的に変換する光強度位相変換手段を備え、
     前記位相シフト量が、前記マッハ・ツェンダー型光干渉計毎に異なる光A/D変換器。
  2.  前記光強度位相変換手段が、半導体光増幅器であることを特徴とする請求項1に記載の光A/D変換器。
  3.  各前記マッハ・ツェンダー型光干渉計は、
     入力された光を2つに分割する内部光分波器と、
     前記内部光分波器に接続された第1及び第2の導波路と、
     前記第1及び第2の導波路に接続された合分波器と、を備え、
     少なくとも前記第2の導波路に前記光強度位相変換手段が設けられ、前記第1の導波路との間に位相差をつけることができることを特徴とする請求項1又は2に記載の光A/D変換器。
  4.  各光強度位相変換手段の長さが、前記マッハ・ツェンダー型光干渉計毎に異なることにより、前記位相シフト量が異なることを特徴とする請求項1~3のいずれか一項に記載の光A/D変換器。
  5.  各光強度位相変換手段の個数が、前記マッハ・ツェンダー型光干渉計毎に異なることにより、前記位相シフト量が異なることを特徴とする請求項1~3のいずれか一項に記載の光A/D変換器。
  6.  前記光強度位相変換手段が、直列接続された2つの受光素子を含むバランスドレシーバからなることを特徴とする請求項1~5のいずれか一項に記載の光A/D変換器。
  7.  各前記マッハ・ツェンダー型光干渉計は、
     信号光と異なる波長の局所光が入力される局所光導入導波路を更に備えることを特徴とする請求項1~6のいずれか一項に記載の光A/D変換器。
  8.  請求項1~7のいずれか一項に記載の光A/D変換器を含むことを特徴とする光信号復調器。
  9.  請求項8に記載の光信号復調器を含むことを特徴とする光変復調装置。
  10.  入力されたアナログ光信号を複数に分割する光分波器を設け、
     前記光分波器により分割された各光信号が入力される複数のマッハ・ツェンダー型光干渉計を設け、
     各前記マッハ・ツェンダー型光干渉計から出力された各光信号をデジタル電気信号に変換する複数の光/電気変換手段を設け、
     各前記マッハ・ツェンダー型光干渉計に、入力された光信号の強度を位相シフト量に光学的に変換する光強度位相変換手段を設け、
     前記位相シフト量を前記マッハ・ツェンダー型光干渉計毎に異なるように構成する光A/D変換器の構成方法。
PCT/JP2011/002511 2010-05-19 2011-04-28 光アナログ/デジタル変換器、その構成方法、光信号復調器及び光変復調装置 WO2011145281A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012515726A JPWO2011145281A1 (ja) 2010-05-19 2011-04-28 光アナログ/デジタル変換器、その構成方法、光信号復調器及び光変復調装置
US13/698,018 US9052534B2 (en) 2010-05-19 2011-04-28 Optical analog-to-digital converter, method of constructing the same, optical signal demodulator, and optical modulator-demodulator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-115544 2010-05-19
JP2010115544 2010-05-19

Publications (1)

Publication Number Publication Date
WO2011145281A1 true WO2011145281A1 (ja) 2011-11-24

Family

ID=44991404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002511 WO2011145281A1 (ja) 2010-05-19 2011-04-28 光アナログ/デジタル変換器、その構成方法、光信号復調器及び光変復調装置

Country Status (3)

Country Link
US (1) US9052534B2 (ja)
JP (1) JPWO2011145281A1 (ja)
WO (1) WO2011145281A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9450597B1 (en) 2014-05-02 2016-09-20 Hrl Laboratories, Llc Hardware based compressive sampling ADC architecture for non-uniform sampled signal recovery
US9953670B1 (en) 2015-11-10 2018-04-24 Western Digital (Fremont), Llc Method and system for providing a HAMR writer including a multi-mode interference device
US9843398B1 (en) * 2016-05-20 2017-12-12 Rockwell Collins, Inc. Photonic direct sampling digital receiver
US10965168B2 (en) * 2017-11-02 2021-03-30 Bio Cellular Design Aeronautics Africa Sa Fibo electromagnetic field harvester
CN112865794B (zh) * 2021-01-11 2022-07-05 杭州电子科技大学 一种移相非均匀光量化模数转换器及其转换方法
CN115061241B (zh) * 2022-08-04 2022-11-18 上海羲禾科技有限公司 一种波分复用器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264709A (ja) * 2000-03-16 2001-09-26 Nippon Telegr & Teleph Corp <Ntt> 光位相シフタ並びにこれを用いた光フィルタ及び光スイッチ
JP2004061889A (ja) * 2002-07-30 2004-02-26 Nec Corp マッハツェンダー型全光スイッチ
WO2009060920A1 (ja) * 2007-11-09 2009-05-14 Hitachi Communication Technologies, Ltd. 光電界送信器及び光電界伝送システム
JP2010026458A (ja) * 2008-07-24 2010-02-04 Nippon Telegr & Teleph Corp <Ntt> 光信号処理回路

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61203566U (ja) 1985-06-10 1986-12-22
JP2564852B2 (ja) 1987-05-21 1996-12-18 キヤノン株式会社 光a−d変換器
US4947170A (en) * 1988-06-22 1990-08-07 The Boeing Company All optical analog-to-digital converter
US5933554A (en) 1995-02-01 1999-08-03 Leuthold; Juerg Compact optical-optical switches and wavelength converters by means of multimode interference mode converters
US6118397A (en) * 1998-06-17 2000-09-12 Trw Inc. Fully optical analog to digital converters with complementary outputs
US6292119B1 (en) 1999-06-30 2001-09-18 Trw Inc. Delayed pulse saturable absorber-based downward-folding optical A/D
JP2003131272A (ja) 2001-10-29 2003-05-08 Fujitsu Ltd 光信号処理装置、光デマルチプレクサ、波長変換装置、光信号処理方法及び波長変換方法
JP3781414B2 (ja) 2002-04-04 2006-05-31 日本電信電話株式会社 相互位相変調型波長変換器
JP2005173530A (ja) 2003-11-17 2005-06-30 Osaka Industrial Promotion Organization 光信号処理方法及び装置、非線形光ループミラーとその設計方法並びに光信号変換方法
JP4617955B2 (ja) 2005-03-28 2011-01-26 Kddi株式会社 Ook/psk変換装置
EP1876492A4 (en) 2005-04-27 2010-12-08 Univ Osaka METHOD AND APPARATUS FOR OPTICAL DIGITAL / DIGITAL CONVERSION
JP2007024924A (ja) 2005-07-12 2007-02-01 Sony Corp 光アナログ/デジタル変換装置
JP4911404B2 (ja) 2006-08-25 2012-04-04 独立行政法人産業技術総合研究所 光信号処理回路
JP4936322B2 (ja) 2007-02-27 2012-05-23 古河電気工業株式会社 非線形光ループミラー及び光a/d変換器
US7564387B1 (en) * 2008-02-29 2009-07-21 Sandia Corporation Optical analog-to-digital converter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264709A (ja) * 2000-03-16 2001-09-26 Nippon Telegr & Teleph Corp <Ntt> 光位相シフタ並びにこれを用いた光フィルタ及び光スイッチ
JP2004061889A (ja) * 2002-07-30 2004-02-26 Nec Corp マッハツェンダー型全光スイッチ
WO2009060920A1 (ja) * 2007-11-09 2009-05-14 Hitachi Communication Technologies, Ltd. 光電界送信器及び光電界伝送システム
JP2010026458A (ja) * 2008-07-24 2010-02-04 Nippon Telegr & Teleph Corp <Ntt> 光信号処理回路

Also Published As

Publication number Publication date
JPWO2011145281A1 (ja) 2013-07-22
US20130063806A1 (en) 2013-03-14
US9052534B2 (en) 2015-06-09

Similar Documents

Publication Publication Date Title
WO2011145281A1 (ja) 光アナログ/デジタル変換器、その構成方法、光信号復調器及び光変復調装置
WO2011145280A1 (ja) 光強度位相変換器、マッハ・ツェンダー型光干渉計、光a/d変換器及び光強度位相変換器の構成方法
US20100310256A1 (en) Parallel optical receiver for optical systems
EP2154796B1 (en) Device and method for receiving a dopsk signal and method for obtaining a dopsk signal
EP3466005B1 (en) Line coding for optical transmission
US8941519B2 (en) Light intensity subtractor, optical A-D converter, and method for subtracting light intensity
JP5585589B2 (ja) 光変調装置及び光変調方法
US20040131089A1 (en) Multiplexer
JP2011526445A (ja) 差動4相位相変調システム、方法、及び装置
JP5583788B2 (ja) 光通信システム、光送信器及びトランスポンダ
JP2011004227A (ja) 光信号受信装置
WO2012020524A1 (ja) 光強度判定器、その構成方法及び光a/d変換器
EP3497825B1 (en) Encoding for optical transmission
JP2004312678A (ja) デュオバイナリ光伝送装置
JP3993597B2 (ja) デュオバイナリエンコーダ及びこれを用いた光デュオバイナリ伝送装置
US20060215709A1 (en) Code conversion circuit
JP2005086823A (ja) デュオバイナリーエンコーダ及びこれを利用した光デュオバイナリー伝送装置
JP5507341B2 (ja) 光符号分割多重用送信回路及び光符号分割多重用受信回路
CN113359369A (zh) 高频抗混叠带通可调光模数转换装置
Deng et al. Experimental demonstration and performance evaluation of flexible add/drop operations of DSP-switched ROADMs for cloud access networks
JP2004135139A (ja) 光送信器
Rocha et al. Challenges toward a cost-effective implementation of optical OFDM
JP6126538B2 (ja) 光変調装置
Imran et al. A programmable optical few wavelength source for flexgrid optical networks
JP3996843B2 (ja) 多波長信号光源および多波長信号光発生方法、ならびに光波長変換器および光波長変換方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11783220

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012515726

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13698018

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11783220

Country of ref document: EP

Kind code of ref document: A1