WO2012020524A1 - 光強度判定器、その構成方法及び光a/d変換器 - Google Patents

光強度判定器、その構成方法及び光a/d変換器 Download PDF

Info

Publication number
WO2012020524A1
WO2012020524A1 PCT/JP2011/002285 JP2011002285W WO2012020524A1 WO 2012020524 A1 WO2012020524 A1 WO 2012020524A1 JP 2011002285 W JP2011002285 W JP 2011002285W WO 2012020524 A1 WO2012020524 A1 WO 2012020524A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
light
light intensity
output
output port
Prior art date
Application number
PCT/JP2011/002285
Other languages
English (en)
French (fr)
Inventor
佐藤 健二
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US13/816,160 priority Critical patent/US9091593B2/en
Priority to JP2012528564A priority patent/JPWO2012020524A1/ja
Publication of WO2012020524A1 publication Critical patent/WO2012020524A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07955Monitoring or measuring power
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0459Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using an optical amplifier of light or coatings to improve optical coupling
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F7/00Optical analogue/digital converters

Definitions

  • the present invention relates to a light intensity determiner that determines the input light intensity by converting the intensity of input light into phase information, and an optical A / D converter using the same.
  • wavelength division multiplexing is used and the wavelength channel interval is determined. Therefore, about 100 channels can be used at 50 GHz intervals within the band of the optical fiber amplifier.
  • optical multilevel modulation increases the amount of information without increasing the frequency usage band by multileveling using the amplitude and phase of light. It is a method to make it.
  • optical OFDM an OFDM signal is generated from an electrical signal, optically modulated, and multiplexed between optical subcarriers in an orthogonal state. Therefore, the crosstalk problem can be solved and the frequency utilization efficiency can be increased.
  • an optical A / D converter that directly derives an analog amount of an optical signal as a digital value has a feature of high speed, and thus many proposals have been made.
  • Patent Document 1 by dividing an optical signal by a different predetermined division ratio, the light amount is expressed by a predetermined ratio, and the optical analog amount of the input optical signal depending on whether each divided optical signal has reached a threshold value Is detected.
  • a feedback system via a non-linear optical element is configured for an input optical signal that is an analog signal, so that digital signals are sequentially transmitted from the optical A / D conversion means. A first output light is obtained.
  • an optical encoding circuit uses a plurality of optical encoders including optical nonlinear elements having periodicity with different input / output characteristics relating to light intensity, to generate a pulse train of signal light having a first wavelength.
  • Optically encoding according to control light which is a pulse train of an optical analog signal that has a second wavelength in the vicinity different from the first wavelength and is optically sampled, and each of a plurality of optically encoded pulse trains of signal light Output from the optical encoder.
  • the optical quantization circuit is connected to each of the optical encoders, and uses a plurality of optical threshold processors having an optical nonlinear element having an input / output characteristic related to light intensity having periodicity, and the first wavelength.
  • a pulse train of carrier light having a third wavelength in the vicinity different from the above is optically quantized by performing optical threshold processing in accordance with a plurality of optically encoded pulse trains of signal light, and output as an optical digital signal .
  • Patent Document 4 a plurality of branch interference type optical modulators are provided, a photovoltaic element is formed on the same substrate, and an output voltage of the photovoltaic element is applied to the branch interference type optical modulator. It is characterized by that. Therefore, in this example, since the intensity signal light is once received by the PD and converted into a voltage signal, the speed of the electric signal determines the speed of the entire circuit.
  • Patent Document 5 discloses a logic holding / logic inversion signal light generator 116 that converts an optical signal that is turned on and off into a phase difference signal.
  • Patent Document 6 discloses an apparatus that uses a modulated signal of a phase difference of light to remove control light using a filter.
  • a light intensity phase converter for use in an optical A / D converter using an MZ interferometer needs to realize different phase rotation amounts for the same light intensity. That is, when MZ type interferometers corresponding to each bit are prepared for the number of bits, a device for outputting different phase rotation amounts for the same light intensity is required for each. Furthermore, it is desirable to have a structure capable of connecting a device that performs a unit phase rotation. However, it is difficult to easily realize these, and in Patent Document 4, a different phase rotation amount is given after light is once converted into electricity. The configuration was complicated.
  • the intensity phase converter is arranged in the MZ interferometer to realize the light intensity determination.
  • the light intensity phase converter requires n waveguides having different amounts of phase rotation.
  • the present invention has been made in view of the above circumstances, and an object thereof is to simply configure an optical A / D converter without increasing the element area.
  • the light intensity determiner is An optical input port; An optical output port; An optical resonator provided between the optical input port and the optical output port; A first light receiving element for converting at least a part of an optical signal output from the first output port of the optical resonator into an electric signal; A second light receiving element that converts at least a part of the optical signal output from the second output port of the optical resonator into an electric signal; A comparison circuit that determines the magnitude of the electrical signal output from the first and second light receiving elements and outputs a digital signal; An optical branch circuit for branching output light from the second output port of the optical resonator to the optical output port and the second light receiving element; A part of the waveguide in the optical resonator is provided with a light intensity phase conversion unit that modulates the optical phase according to the intensity of the input light.
  • the method of configuring the light intensity determiner according to the present invention is as follows.
  • An optical resonator is provided between the optical input port and the optical output port, A first light receiving element for converting at least a part of an optical signal output from the first output port of the optical resonator into an electrical signal;
  • a comparison circuit that determines the magnitude of the electrical signal output from the first and second light receiving elements and outputs a digital signal;
  • An optical branch circuit for branching output light from the second output port of the optical resonator to the optical output port and the second light receiving element is provided,
  • a part of the waveguide in the optical resonator is provided with a light intensity phase conversion unit that modulates an optical phase according to the intensity of input light.
  • the optical A / D converter can be simply configured without increasing the element area.
  • FIG. 1 is a configuration diagram of a light intensity determiner according to the first embodiment.
  • the light intensity phase converter converts light intensity information into phase difference information.
  • the light intensity determiner 1 includes an optical input port 2, a ring resonator 3, an optical intensity phase converter 4, a through port 5, optical branch circuits 6 and 9, an optical level adjuster 7, an optical An output port 8, a drop port 10, optical receivers (PD) 11 and 12, an electric signal amplifier 13, and an electric signal output port 14 are provided.
  • the ring resonator 3 has a periodic wavelength dependency in transmission characteristics.
  • the finesse of the ring resonator 3 is set to about 2, and is initially set so that the most transmitted wavelength is transmitted.
  • the ring resonator 3 has a light intensity phase converter 4 (a part for converting light intensity due to the SPM effect into optical phase information) in a part of the ring waveguide.
  • two light intensity phase converters 4 are provided opposite to each other in the ring waveguide of the ring resonator 3.
  • the setting and arrangement are not limited to this.
  • the light phase rotates approximately in proportion to the light intensity.
  • the transmission characteristics of the ring resonator 3, that is, the light output from the through port 5 and the drop port 10 have a periodic dependency on the magnitude of the light input intensity from the light input port 2. .
  • the light intensity phase conversion unit 4 for example, a semiconductor optical amplifier (SOA) can be used.
  • SOA semiconductor optical amplifier
  • the refractive index changes because the density of the internal carriers changes, the phase of the light also rotates at the same time. This is the SPM effect.
  • the light intensity phase converter 4 wants to rotate only the light phase without changing the light intensity as much as possible. For this purpose, a high current may be passed through the SOA and used in a saturated state.
  • the light intensity phase conversion unit 4 is a core layer having a composition different from that of the other waveguides in the ring resonator 3.
  • the core layer uses an InGaAsP multiple quantum well, but the composition wavelength is set to be substantially the same as or slightly longer than the wavelength of the light to be used. . Since the wavelength band used for normal optical communication is around 1.55 ⁇ m, the composition wavelength is also set to about 1.55 to 1.6 ⁇ m. On the other hand, for a waveguide transparent to light other than the light intensity phase conversion unit 4, the composition wavelength of the core layer is 1.3 to 1.5 ⁇ m.
  • the finesse of the ring resonator 3 is set to about 2, it basically has a light output characteristic of a sine curve. Further, the light output intensities from the through port 5 and the drop port 10 have a reciprocal relationship. However, the difference from a general ring resonator is that, as a result of the light intensity phase conversion by the light intensity phase conversion unit 4 provided inside the ring resonator 3, the light output intensity is a component proportional to the light input intensity (see FIG. 2 and the sine curve in which the amplitude increases.
  • the light from the through port 5 and the drop port 10 is tapped at a branch ratio of, for example, 1: 9 by the first optical branch circuit 6 and the second optical branch circuit 9, respectively, and the first optical receiver 11 and The light is received by the second optical receiver 12.
  • the first and second optical receivers 11 and 12 are electrically connected in a so-called balanced receiver relationship.
  • the signal which determined whether the output of either the 1st optical receiver 11 or the 2nd optical receiver 12 is high is output.
  • the signal is output to the electric signal output port 14 through the electric amplifier 13.
  • FIG. 4 is a diagram in which the signals of FIGS. 2 and 3 are superimposed. Since the first and second optical receivers 11 and 12 are connected in a balanced receiver relationship, the electrical signal output port 14 has the first and second optical receivers as shown in FIGS. Comparing the magnitude of the output signal from the device, only the digital signal determined by 1 or 0 written in the diagram of FIG. 4 is output. The output result is shown in FIG. Here, when the signals as shown in FIGS. 2 and 3 are brought close to a sine curve, the intervals between the intersections for determining the magnitude can be made substantially equal. Thereby, it is possible to determine the magnitude of the light input intensity Pin from the light input port 2 with periodic dependency.
  • the light that has not been branched to the first optical receiver 11 in the first optical branch circuit 6 is adjusted in light level through the light intensity adjuster 7 and output to the optical output port 8.
  • the light intensity of the light intensity adjuster 7 is adjusted by the light intensity adjuster 7 so that the light intensity is output with substantially the same light intensity as the light intensity Pin input from the light input port 2.
  • the light intensity adjuster 7 may be a semiconductor optical amplifier (SOA), for example.
  • SOA semiconductor optical amplifier
  • MMI multimode interferometer
  • DC directional coupler
  • the branch ratio can be adjusted by design for both MMI and DC, and is not limited to the 1: 9 branch ratio shown here.
  • the ring resonator is taken as an example here, the structure is not limited to this as long as it has a periodic intensity output with respect to the light input frequency.
  • the essence of this application is to combine the light intensity phase conversion unit that rotates the phase with respect to the intensity, such as a ring resonator, that normally shows a periodic intensity output with respect to the frequency. Therefore, it is to have a periodicity of strength.
  • a ring resonator for example, an asymmetric Mach-Zehnder interferometer or a Fabry-Perot resonator can be considered. What shows a periodic intensity output with respect to such a frequency can be used.
  • a diagram in which components such as a waveguide and a ring resonator are integrated is shown, but the present invention is not limited to this.
  • Each component can also be configured by connecting with an optical fiber.
  • FIG. 6 shows an optical A / D converter including therein the light intensity determiner according to the first embodiment.
  • a device called an optical phase hybrid is used to cause interference between four local lights having different phases by 90 degrees and signal lights, and output for each of two systems for the real part I and the imaginary part Q.
  • Light is obtained, and light from each system is received by a PD (Photodiode).
  • PD Photodiode
  • optical A / D conversion is performed using intensity information in each system after the optical signal has already been separated into the real part I or the imaginary part Q.
  • the intensity of light was received by a PD and converted into an electric signal, and then converted into a digital value by an A / D converter using an electric circuit.
  • the method using an optical A / D converter is considered to have a complicated structure because it is difficult to subtract light having a certain intensity from light having a certain intensity as it is. Therefore, in the present invention, a circuit for converting the intensity into a phase difference is added, and processing is performed with the optical phase.
  • the light intensity is decomposed into multiple bits and extracted as a digital value in the state of light.
  • FIG. 6 shows a 4-bit configuration example.
  • four of the light intensity determiners shown in FIG. 1 are connected in series.
  • the light intensity from the optical input port 20 is Pin.
  • the first light intensity determiner 31 to which light is first input is a light intensity phase conversion characteristic that uses only a periodic characteristic that increases or decreases only once with respect to the light input intensity Pin. Yes.
  • This is possible by adjusting the amount of phase change of the light intensity phase converter 4 in FIG. Specifically, it is possible by adjusting the length of the light intensity phase conversion unit 4 with respect to the circumference of the ring resonator 3.
  • the light intensity phase conversion unit that increases or decreases only once with respect to the light input intensity Pin is configured so that the phase rotation is 2 ⁇ according to the light intensity from the minimum light intensity to the maximum light intensity.
  • the length is set. Specifically, when SOA is used and SPM is used in its saturated state, it is considered that the maximum carrier density in the SOA is 10 19 cm ⁇ 3 and the minimum carrier density is about 10 18 cm ⁇ 3 . It is considered that the carrier density in the SOA changes in the longitudinal direction in a linear approximation from the maximum to the minimum by SPM, but when converted from the standard refractive index change obtained thereby, for the refractive index change of 2 ⁇ The length of about 200 ⁇ m is required.
  • the optical branch circuit requires about 50 ⁇ m, the total ring length is 250 ⁇ m. Therefore, the diameter of the ring was about 80 ⁇ m. In this way, the first light intensity determiner 31 can be used to determine the most significant bit (maximum intensity side) of the 4-bit output.
  • the second light intensity is arranged next.
  • the output characteristic thereof is a cyclic characteristic (0 ⁇ 1 ⁇ 0 ⁇ 1 ⁇ 0) repeated two times as shown in FIG. 7B. That is, it becomes a half repetition period. This is because the light intensity changing from (0 ⁇ 1 ⁇ 0) is input to the optical input port 21, first, the input from the through port of the second light intensity determiner 32 with respect to the input of 0 ⁇ 1.
  • the output is 0 ⁇ 1 ⁇ 0.
  • the output becomes 0 ⁇ 1 ⁇ 0 again, so that the entire cycle is further half as 0 ⁇ 1 ⁇ 0 ⁇ 1 ⁇ 0.
  • This is similarly input to the light input port 22 of the third light intensity determiner 33, and the repetition period is further reduced by half (FIG. 7C). Further, the light is input to the light input port 23 of the fourth light intensity determiner 34, and the repetition period is further halved (FIG. 7D).
  • the cycle characteristic is doubled every time it is transmitted, and binary bit output is possible.
  • the optical A / D converter the output of each bit from the light intensity determiners 31 to 34 is output from the electrical signal output ports 41 to 44 as digital signals D41 to D44. This is shown in FIG. It can be seen that the lower the bit, the shorter the repetition period.
  • FIG. 6 shows a 4-bit example
  • an n-bit optical A / D converter can be configured by connecting n light intensity determiners in series.
  • the element length is only n times the number of bits n, so that there is an effect that it is easy to increase the number of bits.
  • the light level adjuster matches the input intensity and the output intensity of the light by the light level adjuster, thereby determining the first to fourth light intensity.
  • the vessels can have exactly the same configuration.
  • FIG. 6 shows an example in which components such as a waveguide and a ring resonator are integrated, but the present invention is not limited to this. Each component can also be configured by connecting with an optical fiber.
  • FIG. 9 shows an example of a light intensity determiner 15 having a different configuration of the ring resonator as the light intensity determiner with respect to the first embodiment.
  • the arrangement of the drop port 10 is changed with respect to the ring resonator 3 shown in the first embodiment.
  • the 1st and 2nd optical receivers 11 and 12 can be arrange
  • the light intensity phase conversion unit 4 which is divided into two and arranged to face each other is integrally formed.
  • the first and second optical receivers 11 and 12 as balanced receivers can also be arranged outside the light intensity determiner 15.
  • FIG. 10 shows an example of the light intensity determiner 16 configured using the asymmetric Mach-Zehnder interferometer 17 as the light intensity determiner.
  • the through port 5 and the drop port 10 of the ring resonator 3 shown in the first embodiment correspond to the first MZ output port 18 and the second MZ output port 19, respectively.
  • Other configurations are the same as those in FIG.
  • the application example of the light intensity determination unit including the light intensity phase conversion unit to the optical A / D converter is shown, but the present invention is not limited to this.
  • the intensity of the signal light is reflected in the phase information of the continuous light by the light intensity phase conversion unit, and when it is applied to a resonator structure such as a ring, it is converted into an intensity signal. Therefore, generally, when the wavelength of the signal light is different from the wavelength of the continuous light, it can also function as a wavelength converter. Such an application is also possible.
  • the optical A / D converter using the optical intensity phase converter according to the above-described embodiment can be used in an optical demodulation circuit in a form that takes advantage of high speed and low power.
  • an optical A / D converter can be incorporated in a coherent detection circuit or an optical direct detection circuit.
  • the present invention is applicable to a light intensity determiner that determines the input light intensity by converting the intensity of the input light into phase information, and an optical A / D converter using the light intensity determiner.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

 光入力ポートと、光出力ポートと、それらの間に設けられた光共振器と、光共振器の第1の出力ポートから出力された光信号の少なくとも一部を電気信号に変換する第1の受光素子と、光共振器の第2の出力ポートから出力された光信号の少なくとも一部を電気信号に変換する第2の受光素子と、第1及び第2の受光素子から出力される電気信号の大小を判定し、デジタル信号を出力する比較回路と、光出力ポートと、第2の受光素子とへ、光共振器の第2の出力ポートからの出力光を分岐する光分岐回路と、を備える光強度判定器。光共振器内の導波路の一部には、入力光の強度に応じて光位相を変調する光強度位相変換部が設けられている。

Description

光強度判定器、その構成方法及び光A/D変換器
 本発明は、入力光の強度を位相情報に変換して入力光強度を判定する光強度判定器、及び、それを用いた光A/D変換器に関する。
 中・長距離系における光通信システムにおいては、ますます高速化や波長多重による大容量化が進んでいる。現在の幹線系光通信システムでは、波長多重通信が用いられ、波長チャネル間隔が定められている。そのため、光ファイバアンプの帯域内において50GHz間隔であれば、約100チャネルを利用することができる。
 ここで、チャネル間隔をΔf[Hz]、伝送速度をB[bit/s]とすると、B/Δf[bit/s/Hz]を、周波数利用効率という。Δf=50GHzであれば、もしチャネル毎に100Gbit/sの伝送速度があれば、周波数利用効率は、2bit/s/Hzとなる。
 光ファイバアンプの帯域が限られているため、周波数利用効率を高めることが必要である。ただし、周波数利用効率を高くするために単純に信号のビットレートを高くすると、チャネル間のクロストークが問題となる。そこで、次世代の光通信方式として、光多値変調や、光直交周波数分割多重(OFDM:Orthogonal Frequency-Division Multiplexing)の検討が進んでいる。光多値変調は、従来の0、1の2値を用いた光強度変調とは異なり、光の振幅や位相を用いて多値化することによって、周波数利用帯域を増やさずに情報量を増大させる方法である。また、光OFDMでは、電気信号によってOFDM信号を生成して光変調し、光サブキャリア間を直交状態にして多重化する。そのため、クロストーク問題を解決し、周波数利用効率を高めることができる。
 このように電気信号処理を主とした多値化、多重化を行い、伝送された光信号は、受信側で電気信号に復調する。光復調回路のPD(光受光器)の後段にはアナログ/デジタル(A/D)変換器が必要となる。現在は、電気回路を利用したA/D変換器が一般的に用いられている。
 他方、光信号のアナログ量を直接デジタル値として導出する光A/D変換器は、高速性という特長を有するため、提案が多くなされている。例えば、特許文献1では、光信号を異なる所定の分割比で分割することによって、光量を所定の比率で表し、各分割光信号が閾値に達しているかどうかで入力された光信号の光アナログ量を検出している。
 また、特許文献2では、光A/D変換手段において、アナログ信号である入力光信号に対し非線形光素子を介した帰還系を構成することにより、当該光A/D変換手段より順次デジタル信号である第1出力光を得ている。
 特許文献3では、光符号化回路は、光強度に関する入出力特性が異なる周期性を有する光非線形素子を備えた複数の光符号化器を用いて、第1の波長を有する信号光のパルス列を、第1の波長とは異なる近傍の第2の波長を有しかつ光標本化された光アナログ信号のパルス列である制御光に従って光符号化し、光符号化された複数の信号光のパルス列を各光符号化器から出力する。次いで、光量子化回路は、各光符号化器にそれぞれ接続され、光強度に関する入出力特性が周期性を有する光非線形素子を備えた複数の光しきい値処理器を用いて、第1の波長とは異なる近傍の第3の波長を有する搬送波光のパルス列を、光符号化された複数の信号光のパルス列に従ってそれぞれ光しきい値処理を行うことにより光量子化して光デジタル信号として出力している。
 特許文献4では、複数の分岐干渉型光変調器を有しており、同じ基板上に光起電力素子が形成されて、この光起電力素子の出力電圧が分岐干渉型光変調器に印加されることを特長としている。そのため、この例では、強度信号光を一度PDで受光し、電圧信号に変換しているため、その電気信号の速度が全体の回路の速度を決定してしまうことになる。
 光には強度信号だけではなく位相差を信号として用いることができ、前記特許文献の一部にもそれを用いている装置がある。この手法を用い、さらに、電気の変調信号を介さずに、光のまま、強度から位相差を作り出して利用している例がある。
 特許文献5には、ON、OFFされている光信号を用いて、その信号を位相差の信号に変換する、論理保持・論理反転信号光生成器116が示されている。
 特許文献6には、フィルタによって制御光を除去する、光の位相差の変調信号を利用した装置が示されている。
特開2007-24924号公報 特開平1-56426号公報 特開2005-173530号公報 実開昭61-203566号公報 特開2006-276095号公報 特開2008-052066号公報
 光は、パワー(振幅)の減算ができないため、光A/D変換器を簡易に構成するためには、工夫が必要である。特許文献4にあるように、光A/D変換器を簡易に構成するためには、光の位相情報を用いるマッハツェンダー(MZ)型干渉計を用いることが考えられる。そのためには、効率的に光強度信号を位相差信号に変換する装置が必要となる。この装置全体を、ここでは光強度位相変換器とする。
 MZ型干渉計を用いる光A/D変換器に利用するための光強度位相変換器には、同じ光強度に対して異なる位相回転量を実現される必要がある。すなわち、各ビットに対応するMZ型干渉計をビット数分用意すると、そのそれぞれには同じ光強度に対して異なる位相回転量を出力する装置が必要である。さらには、ある単位位相回転を行う装置を接続できる構造が望ましいが、これらを簡易に実現することが難しく、特許文献4では、光を一旦、電気に変換してから異なる位相回転量を与えており、構成が複雑になっていた。
 また、光強度を位相へ変換するにはSOA素子の特性である公知の自己位相変調(SPM:Self Phase Modulation)や相互位相変調(XPM:cross phase modulation)の効果を利用しており、その光強度位相変換器をMZ干渉計内に配置して光強度の判定を実現している。ただし、nビットで出力するために、光強度位相変換器において、n本の異なる位相回転量を有する導波路が必要となる。2のn乗の長さとなるn本の位相変換部を並列に配置しており、ビット数nが大きいと素子面積が増大する問題がある。
 本発明は上記事情に鑑みてなされたものであり、その目的とするところは、素子面積を増大させずに、光A/D変換器を簡易に構成することである。
 本発明に係る光強度判定器は、
光入力ポートと、
 光出力ポートと、
 前記光入力ポートと、前記光出力ポートとの間に設けられた光共振器と、
 前記光共振器の第1の出力ポートから出力された光信号の少なくとも一部を電気信号に変換する第1の受光素子と、
 前記光共振器の第2の出力ポートから出力された光信号の少なくとも一部を電気信号に変換する第2の受光素子と、
 前記第1及び第2の受光素子から出力される電気信号の大小を判定し、デジタル信号を出力する比較回路と、
 前記光出力ポートと、前記第2の受光素子とへ、前記光共振器の前記第2の出力ポートからの出力光を分岐する光分岐回路と、を備え、
 前記光共振器内の導波路の一部には、入力光の強度に応じて光位相を変調する光強度位相変換部が設けられているものである。
 本発明に係る光強度判定器の構成方法は、
 光入力ポートと、光出力ポートとの間に光共振器を設け、
 前記光共振器の第1の出力ポートから出力された光信号の少なくとも一部を電気信号に変換する第1の受光素子を設け、
 前記光共振器の第2の出力ポートから出力された光信号の少なくとも一部を電気信号に変換する第2の受光素子を設け、
 前記第1及び第2の受光素子から出力される電気信号の大小を判定し、デジタル信号を出力する比較回路を設け、
 前記光出力ポートと、前記第2の受光素子とへ、前記光共振器の前記第2の出力ポートからの出力光を分岐する光分岐回路を設け、
 前記光共振器内の導波路の一部には、入力光の強度に応じて光位相を変調する光強度位相変換部を設けるものである。
 本発明によれば、素子面積を増大させずに、光A/D変換器を簡易に構成することができる。
第1の実施の形態にかかる、光強度判定器の構成図である。 第1の実施の形態にかかる、光入力強度(Pin)に対する光強度判定器のスルーポートへの出力光強度を示した図である。 第1の実施の形態に係る光入力強度(Pin)に対する光強度判定器のドロップポートへの出力光強度を示した図である。 第1の実施の形態に係る2つの光検出器で検出される信号を重ね合わせ、その大小を1又は0として判定する例を示した図である。 光入力強度(Pin)を1又は0の判定をデジタル電気信号で出力した例を示す図である。 第2の実施の形態に係る光A/D変換器の構成図である。 第2の実施の形態に係る光出力判定器31の光出力ポートから光出力強度の光入力強度(Pin)依存性を示す図である。 第2の実施の形態に係る光出力判定器32の光出力ポートから光出力強度の光入力強度(Pin)依存性を示す図である。 第2の実施の形態に係る光出力判定器33の光出力ポートから光出力強度の光入力強度(Pin)依存性を示す図である。 第2の実施の形態に係る光出力判定器34の光出力ポートから光出力強度の光入力強度(Pin)依存性を示す図である。 第2の実施の形態に係る複数の光出力判定器から出力されるデジタル電気信号の光入力強度(Pin)依存性を示す図である。 第3の実施の形態に係る光強度判定器の構成図である。 第4の実施の形態に係る光強度判定器の構成図である。
 以下、本発明を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。ただし、本発明が以下の実施の形態に限定される訳ではない。また、説明を明確にするため、以下の記載及び図面は、適宜、簡略化されている。
(第1の実施の形態)
 本実施の形態では、光強度情報を位相情報に変換して入力強度を判定する光強度判定器の構成を提案する。図1は、第1の実施の形態に係る光強度判定器の構成図である。光強度位相変換器は、光強度の情報を、位相差の情報に変換する。図1に示すように、この光強度判定器1は、光入力ポート2、リング共振器3、光強度位相変換部4、スルーポート5、光分岐回路6、9、光レベル調整器7、光出力ポート8、ドロップポート10、光受信器(PD)11、12、電気信号増幅器13、電気信号出力ポート14を備えている。
 図1において、光入力ポート2から入力した光は、リング共振器3を通過する。リング共振器3は、透過特性に周期的な波長依存性を持っている。ここで、リング共振器3のフィネスは2程度に設定され、最も通過する波長が透過するように初期設定されている。また、リング共振器3は、リング導波路の一部に光強度位相変換部4(SPM効果による光強度を光位相情報へ変換する部分)を有している。具体的には、図1の構成では、光強度位相変換部4は、リング共振器3のリング導波路に互いに対向して2つ設けられている。ただし、設定および配置は、この限りではない。この光強度位相変換部4では、光強度にほぼ比例して光位相が回転する。その結果、リング共振器3の透過特性つまりスルーポート5及びドロップポート10からの光出力が、光入力ポート2からの光入力強度の大きさに対して、周期的な依存性を持つことになる。
 ここで、光強度位相変換部4としては、例えば、半導体光増幅器(SOA)を用いることができる。半導体光増幅器を用いると、通常は短い距離で光強度を変化させることができる。ここで、内部のキャリアの密度が変化するため屈折率が変化するので、同時に光の位相も回転している。これが、SPM効果である。光強度位相変換部4では、できる限り光強度は変化させず、光位相だけを回転させたい。そのためには、SOAに高電流を流しておき、飽和状態として使用すればよい。
 以上の効果を利用するために、光強度位相変換部4は、リング共振器3における他の部分の導波路とは、異なる組成のコア層となっている。具体的には、光強度位相変換部4では、そのコア層は、InGaAsP多重量子井戸を用いているが、その組成波長は、使用する光の波長とほぼ同一、又は若干長い波長で設定される。通常の光通信に用いられる波長帯であれば、1.55μm付近であるため、その組成波長も1.55~1.6μm程度に設定される。他方、光強度位相変換部4以外の、光にとって透明な導波路については、そのコア層の組成波長は1.3~1.5μmが用いられる。
 図2及び図3は、それぞれ、光入力ポート2での光強度Pin(横軸)に対するリング共振器3のスルーポート5及びドロップポート10からの光出力強度(縦軸)の変化を示している。リング共振器3のフィネスを2程度に設定しているため、基本的にはほぼサインカーブの光出力特性を有している。また、スルーポート5とドロップポート10からの光出力強度はそれぞれ相反的な関係になっている。ただし、一般的なリング共振器と異なるのは、リング共振器3内部に設けられた光強度位相変換部4による光強度位相変換の結果、光出力強度は、光入力強度に比例した成分(図2及び部3の点線)に接して、振幅が増加していくサインカーブとなる。
 スルーポート5及びドロップポート10からの光は、それぞれ、第1の光分岐回路6及び第2の光分岐回路9により、例えば1:9の分岐比でタップされ、第1の光受光器11及び第2の光受光器12により受光される。図1に示すように、第1及び第2の光受光器11、12は、いわゆるバランスドレシーバの関係で電気的に接続されている。そして、第1の光受光器11又は第2の光受光器12のどちらかの出力が高いかを判定した信号が出力される。その信号が、電気アンプ13を通して、電気信号出力ポート14に出力される。
 図4は、図2及び図3の信号を重ねた図である。第1及び第2の光受光器11、12がバランスドレシーバの関係で接続されているため、電気信号出力ポート14には、図2及び図3に示すような第1及び第2の光受光器からの出力信号の大小を比較して、図4の図中に書かれている1又は0で判定されたデジタル信号だけが出力される。その出力結果を図5に示す。ここで、図2及び図3に示すような信号をサインカーブに近づけると、その大小を判定する交点の間隔はほぼ等間隔にすることができる。これにより、光入力ポート2からのある光入力強度Pinに対して、周期的な依存性を持って、大小を判定することができる。
 また、第1の光分岐回路6で、第1の光受光器11へ分岐されなかった光は、光強度調整器7を通ることより光レベルが調整され、光出力ポート8へ出力される。この時、光強度調整器7によって、光入力ポート2から入力された光強度Pinとほぼ同じ光強度になって出力されるように光強度調整器7の光利得を調整している。
 光強度調整器7は、例えば、半導体光増幅器(SOA)を用いることができる。また、第1及び第2の光分岐回路については、例えば、マルチモード干渉計(MMI:Multi Mode interference)分岐回路、又は方向性結合器(DC:Directional Coupler)を用いることができる。MMIもDCも、設計により、分岐比を調整でき、ここで示した1:9の分岐比に限らない。
 また、ここではリング共振器を例としたが、光の入力周波数に対して周期的な強度出力を示す構造であれば、これに限らない。本願の本質は、リング共振器のような、通常は周波数に対して周期的な強度出力を示すものに、強度に対して位相回転する光強度位相変換部を組み合わせることにより、全体で強度に対して強度の周期性を持たせる点にある。リング共振器以外には、例えば、非対称なマッハツェンダー干渉計や、ファブリーペロー共振器が考えられる。そのような周波数に対して周期的な強度出力を示すものを用いることができる。
 なお、本実施の形態においては、導波路及びリング共振器といったコンポーネントが、集積されている図を示しているが、これに限らない。各コンポーネントそれぞれを、光ファイバーで接続して、構成することもできる。
(第2の実施の形態)
 次に、本発明の第2の実施の形態に係る光A/D変換器について説明する。図6には、第1の実施の形態に係る光強度判定器を内部に含む光A/D変換器を示す。
 ところで、多値・多重化された光信号の復調のためには、光の位相及び振幅の状態を検知する必要がある。しかしながら、複素平面上で光の状態を検知するのは困難なため、前段で実部Iと虚部Qに分離しておき、それぞれの実部Iと虚部Qの強度情報を受信器(PD)にて検知するのが一般的である。
 例えば、コヒーレント光検波という手法においては、光位相ハイブリッドという装置を用いて、位相が90度異なる4つの局所光とそれぞれ信号光を干渉させ、実部I及び虚部Q用に2系統ずつの出力光を得て、それぞれの系統の光をPD(Photodiode)で受光する。本発明では、既に光信号が実部I又は虚部Qに分離された後の各系統における強度情報を用いて光A/D変換を行う。
 これまでは、光の強度を検知するのに、PDで受信して電気信号に変換し、電気回路によるA/D変換器でデジタル値に変換していた。これを光のA/D変換器を用いる方法は、光のままではある強度を有する光から一定の強度の光を減算することは困難であることから、構成が複雑になると考えられる。そこで、本発明では、さらに強度を位相差に変換する回路を付け加え、光位相にて処理を行う。これによって、以下に説明する発明の実施の形態では、光のままの状態で、光強度を多ビットに分解してデジタル値として取り出す。
 図6では、4ビットの構成例を示す。図6に示すように、図1に示した光強度判定器が、4つ直列に接続されている。光入力ポート20からの光強度をPinとしている。最初に光が入力される第1の光強度判定器31は、図7Aに示す様に、光入力強度Pinに対し、1回だけ増減する周期特性だけを利用するような光強度位相変換特性としている。これは、図1における光強度位相変換部4の位相変化量の調整で可能である。具体的には、リング共振器3の周回長に対し、光強度位相変換部4の長さを調整することで可能である。
 前記のように、光入力強度Pinに対し、1回だけ増減する光強度位相変換部は、最小光強度から最大光強度までの光強度に応じて位相回転が2πになるように、リング共振器内で、長さが設定されている。具体的には、SOAを用いて、その飽和状態でSPMを用いるとすると、SOA内における最大キャリア密度は1019cm-3で、最小キャリア密度は1018cm-3程度と考えられる。SPMによって、SOA内でキャリア密度が、最大から最小へ線形近似で長手方向に変化すると考えられるが、それによって得られる標準的な屈折率変化量から換算すると、2πの屈折率変化のためには、200μm長程度が必要となる。光分岐回路に50μm程要したとして、リング全長は250μmとなる。従って、リングの直径は、約80μとした。このようにすると、第1の光強度判定器31は4ビット出力のうち最上位ビット(強度の最大側)の判定に用いることができる。
 また、第1の光強度判定器31からの光出力強度が既に1回分の周期特性を持っている(図7Aのように、0→1→0)ため、次に配置されている第2の光強度判定器32の光入力ポート21へ入力すると、その出力特性は、図7Bに示すように、2回分の繰り返しの周期特性(0→1→0→1→0)を示す。すなわち、半分の繰り返し周期となる。これは、光入力ポート21へ(0→1→0)と変遷する光強度が入力されるため、まず、0→1という入力に対して、第2の光強度判定器32のスルーポートからの出力は、0→1→0となる。次に、1→0という入力に対して、出力は再び、0→1→0となるから、全体として、0→1→0→1→0、とさらに半分の繰り返し周期となる。これが同様に、第3の光強度判定器33の光入力ポート22へ入力されていき、繰り返し周期がさらに半分となって出力される(図7C)。さらに第4の光強度判定器34の光入力ポート23へ入力されて、繰り返し周期がさらに半分となって出力される(図7D)。
 前述のように、下位ビットまで直列接続することにより、光強度判定器の構成は同一でも、透過する度に倍の繰り返し数の周期特性となっていき、2進数であるビット出力を可能としている。光A/D変換器として、光強度判定器31~34からの各ビットの出力は、電気信号出力ポート41~44からデジタル信号D41~D44として出力される。その様子を図8に示す。下位ビットほど、繰り返し周期が短くなっていることがわかる。
 なお、図6では、4ビットの例を示したが、n台の光強度判定器を直列に接続することで、nビットの光A/D変換器を構成することができる。また、以上のようにビット数nに対して、素子長はn倍にしかならないため、ビット数を増加していくことが容易である効果がある。なお、ひとつの光強度判定器において、実施の形態1で記述したように、光レベル調整器により、光の入力強度と、出力強度を一致させることにより、第1から第4までの光強度判定器は、全く同一の構成とすることができる。なお、図6では、導波路及びリング共振器といったコンポーネントが、集積された例を示しているが、これに限らない。各コンポーネントそれぞれを、光ファイバーで接続して、構成することもできる。
(第3の実施の形態)
 次に、光強度判定器として、第1の実施の形態に対し、リング共振器の構成の異なる構成による光強度判定器15の例を図9に示す。第1の実施の形態に示したリング共振器3に対し、ドロップポート10の配置が変更されている。これにより、第1及び第2の光受光器11、12を平行に近い位置に配置できるため、バランスドレシーバの標準的な構成にすることができる。また、これに伴い、2つに分割されて対向配置されていた光強度位相変換部4が一体に形成されている。なお、バランスドレシーバとしての第1及び第2の光受信器11、12は、光強度判定器15の外部に配置することもできる。
(第4の実施の形態)
 次に、光強度判定器として、非対称マッハツェンダー干渉計17を用いて構成した光強度判定器16の例を図10に示す。第1の実施の形態に示したリング共振器3のスルーポート5及びドロップポート10に、それぞれ第1のMZ出力ポート18と第2のMZ出力ポート19に対応している。他の構成については図1の構成と同一である。
 なお、上述の実施の形態では、光強度位相変換部を含む光強度判定器を、光A/D変換器への適用例を示したが、これに限られるものではない。光強度位相変換部によって、信号光の強度が、連続光の位相情報に反映され、さらにそれがリング等の共振器構造に応用されると、強度信号に変換される。そのため、一般的には、信号光の波長と連続光の波長が異なる場合には、波長変換器としても作用できる。このような応用も可能である。
 また、上述の実施の形態に係る光強度位相変換器を用いた光A/D変換器を、高速かつ低電力といったメリットを生かした形で光復調回路に利用することができる。具体的には、コヒーレント検波回路や光直接検波回路にそのような光A/D変換器を内蔵することができる。
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2010年8月9日に出願された日本出願特願2010-178465を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 本発明は、入力光の強度を位相情報に変換して入力光強度を判定する光強度判定器、及び、それを用いた光A/D変換器に利用可能である。
1 光強度判定器
2 光入力ポート
3 リング共振器
4 光強度位相変換部
5 スルーポート
6、9 光分岐回路
7 光レベル調整器
8 光出力ポート
10 ドロップポート
11、12 光受信器(PD)
13 電気信号増幅器
14 電気信号出力ポート
16 光強度判定器
17 非対称マッハツェンダー干渉計
18、19 MZ出力ポート
20、21、22、23 光入力ポート
24 光出力ポート
31、32、33、34 光強度判定器
41、42、43、44 電気信号出力ポート

Claims (9)

  1.  光入力ポートと、
     光出力ポートと、
     前記光入力ポートと、前記光出力ポートとの間に設けられた光共振器と、
     前記光共振器の第1の出力ポートから出力された光信号の少なくとも一部を電気信号に変換する第1の受光素子と、
     前記光共振器の第2の出力ポートから出力された光信号の少なくとも一部を電気信号に変換する第2の受光素子と、
     前記第1及び第2の受光素子から出力される電気信号の大小を判定し、デジタル信号を出力する比較回路と、
     前記光出力ポートと、前記第2の受光素子とへ、前記光共振器の前記第2の出力ポートからの出力光を分岐する光分岐回路と、を備え、
     前記光共振器内の導波路の一部には、入力光の強度に応じて光位相を変調する光強度位相変換部が設けられている光強度判定器。
  2.  前記光分岐回路と光出力ポートとの間に設けられ、出力光強度を調整する光レベル調整器をさらに備えることを特徴とする請求項1に記載の光強度判定器。
  3.  前記光強度位相変換部が、半導体光増幅器を備えていることを特徴とする請求項1又は2に記載の光強度判定器。
  4.  前記光強度位相変換部がが、リング共振器であることを特徴とする請求項1~3のいずれか一項に記載の光強度判定器。
  5.  前記光共振器が、非対称マッハツェンダー干渉計であることを特徴とする請求項1~3のいずれか一項に記載の光強度判定器。
  6.  前記光共振器が、ファブリーペロー共振器であることを特徴とする請求項1~3のいずれか一項に記載の光強度判定器。
  7.  請求項1~6のいずれか一項に記載の光強度判定器を複数備え、
     当該複数の光強度判定器が直列に接続されたことを特徴とする光A/D変換器。
  8.  前記複数の光強度判定器は、いずれも同一構造であることを特徴とする請求項7に記載の光A/D変換器。
  9.  光入力ポートと、光出力ポートとの間に光共振器を設け、
     前記光共振器の第1の出力ポートから出力された光信号の少なくとも一部を電気信号に変換する第1の受光素子を設け、
     前記光共振器の第2の出力ポートから出力された光信号の少なくとも一部を電気信号に変換する第2の受光素子を設け、
     前記第1及び第2の受光素子から出力される電気信号の大小を判定し、デジタル信号を出力する比較回路を設け、
     前記光出力ポートと、前記第2の受光素子とへ、前記光共振器の前記第2の出力ポートからの出力光を分岐する光分岐回路を設け、
     前記光共振器内の導波路の一部には、入力光の強度に応じて光位相を変調する光強度位相変換部を設ける光強度判定器の構成方法。
PCT/JP2011/002285 2010-08-09 2011-04-19 光強度判定器、その構成方法及び光a/d変換器 WO2012020524A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/816,160 US9091593B2 (en) 2010-08-09 2011-04-19 Optical intensity determination unit, method of forming the same, and optical A/D converter
JP2012528564A JPWO2012020524A1 (ja) 2010-08-09 2011-04-19 光強度判定器、その製造方法及び光a/d変換器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010178465 2010-08-09
JP2010-178465 2010-08-09

Publications (1)

Publication Number Publication Date
WO2012020524A1 true WO2012020524A1 (ja) 2012-02-16

Family

ID=45567500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002285 WO2012020524A1 (ja) 2010-08-09 2011-04-19 光強度判定器、その構成方法及び光a/d変換器

Country Status (3)

Country Link
US (1) US9091593B2 (ja)
JP (1) JPWO2012020524A1 (ja)
WO (1) WO2012020524A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2554286C1 (ru) * 2014-04-04 2015-06-27 Александр Александрович Майер Способ выделения части сигнала с максимальным значением интенсивности

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3058627B1 (en) * 2013-10-15 2018-07-25 Elenion Technologies, LLC Operation and stabilization of mod-mux wdm transmitters based on silicon microrings
US10516409B2 (en) * 2016-02-26 2019-12-24 University Of Florida Research Foundation, Incorporated High-speed, high-resolution, photonic-based analog-to-digital converter
US10732352B2 (en) * 2018-03-22 2020-08-04 Keysight Technologies, Inc. Continuously tunable optical filter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003241242A (ja) * 2002-02-15 2003-08-27 Nippon Telegr & Teleph Corp <Ntt> 光識別再生回路および光識別再生方法
WO2005047970A1 (ja) * 2003-11-17 2005-05-26 Juridical Foundation Osaka Industrial Promotion Organization 光信号処理方法及び装置
JP2007024924A (ja) * 2005-07-12 2007-02-01 Sony Corp 光アナログ/デジタル変換装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4775214A (en) * 1983-12-21 1988-10-04 Rosemount Inc. Wavelength coded resonant optical sensor
JPS61203566U (ja) 1985-06-10 1986-12-22
JP2564852B2 (ja) 1987-05-21 1996-12-18 キヤノン株式会社 光a−d変換器
JP4617955B2 (ja) 2005-03-28 2011-01-26 Kddi株式会社 Ook/psk変換装置
JP4911404B2 (ja) 2006-08-25 2012-04-04 独立行政法人産業技術総合研究所 光信号処理回路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003241242A (ja) * 2002-02-15 2003-08-27 Nippon Telegr & Teleph Corp <Ntt> 光識別再生回路および光識別再生方法
WO2005047970A1 (ja) * 2003-11-17 2005-05-26 Juridical Foundation Osaka Industrial Promotion Organization 光信号処理方法及び装置
JP2007024924A (ja) * 2005-07-12 2007-02-01 Sony Corp 光アナログ/デジタル変換装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2554286C1 (ru) * 2014-04-04 2015-06-27 Александр Александрович Майер Способ выделения части сигнала с максимальным значением интенсивности

Also Published As

Publication number Publication date
JPWO2012020524A1 (ja) 2013-10-28
US20130134302A1 (en) 2013-05-30
US9091593B2 (en) 2015-07-28

Similar Documents

Publication Publication Date Title
US8676060B2 (en) Quadrature amplitude modulation signal generating device
US8941519B2 (en) Light intensity subtractor, optical A-D converter, and method for subtracting light intensity
US8922410B2 (en) Optical intensity-to-phase converter, mach-zehnder interferometer, optical A/D converter, and method of constructing optical intensity-to-phase converter
US10895797B2 (en) Line coding for optical transmission
US9052534B2 (en) Optical analog-to-digital converter, method of constructing the same, optical signal demodulator, and optical modulator-demodulator
JP2009017320A (ja) 光変調回路および光伝送システム
CN102427386B (zh) 偏振位移键控的解调方法及系统
JP6546689B2 (ja) 光送信器
WO2012020524A1 (ja) 光強度判定器、その構成方法及び光a/d変換器
JP2011526445A (ja) 差動4相位相変調システム、方法、及び装置
US20170026133A1 (en) A method of modulating light in a telecommunication network
Liao et al. Novel bipolar photonic digital-to-analog conversion employing differential phase shift keying modulation and balanced detection
CN112684650B (zh) 一种基于加权调制曲线的光子模数转换方法及系统
US10833768B2 (en) Photonic monobit analog-to-digital converter using coherent detection
JP4561925B2 (ja) 光時分割多重差動位相変調信号生成装置
JP5334718B2 (ja) 光符号分割多重用送信回路及び光符号分割多重用受信回路
Chen et al. Differentially encoded photonic analog-to-digital conversion based on phase modulation and interferometric demodulation
Xiang et al. Simultaneous multi-channel RZ-OOK/DPSK to NRZ-OOK/DPSK format conversion based on integrated delay interferometers and arrayed-waveguide grating
Li et al. Experimental demonstration of a dynamic range enhancement method for a phase-shifted PADC by using a modulo operation
Nejadmalayeri et al. Attosecond photonics for optical communications
JP5507341B2 (ja) 光符号分割多重用送信回路及び光符号分割多重用受信回路
Aparna et al. Performance analysis of optical communication system using wavelength division and sub carrier multiplexing
CN114137777B (zh) 基于脉冲处理的光子数模转换系统
Aldhaibani et al. Performance of OCDMA system using OFDM technique based on flexible cross correlation code
Odbayar et al. Proposal of Integrated-Optical Circuit for Recognition of 8PSK-Coded Label for Photonic Label Router

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11816194

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012528564

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13816160

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11816194

Country of ref document: EP

Kind code of ref document: A1