WO2011145280A1 - 光強度位相変換器、マッハ・ツェンダー型光干渉計、光a/d変換器及び光強度位相変換器の構成方法 - Google Patents

光強度位相変換器、マッハ・ツェンダー型光干渉計、光a/d変換器及び光強度位相変換器の構成方法 Download PDF

Info

Publication number
WO2011145280A1
WO2011145280A1 PCT/JP2011/002505 JP2011002505W WO2011145280A1 WO 2011145280 A1 WO2011145280 A1 WO 2011145280A1 JP 2011002505 W JP2011002505 W JP 2011002505W WO 2011145280 A1 WO2011145280 A1 WO 2011145280A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
light
input
intensity
phase
Prior art date
Application number
PCT/JP2011/002505
Other languages
English (en)
French (fr)
Inventor
信也 須藤
佐藤 健二
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2012515725A priority Critical patent/JPWO2011145280A1/ja
Priority to US13/698,019 priority patent/US8922410B2/en
Publication of WO2011145280A1 publication Critical patent/WO2011145280A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/011Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  in optical waveguides, not otherwise provided for in this subclass
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3515All-optical modulation, gating, switching, e.g. control of a light beam by another light beam
    • G02F1/3517All-optical modulation, gating, switching, e.g. control of a light beam by another light beam using an interferometer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F7/00Optical analogue/digital converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture

Definitions

  • the present invention relates to a light intensity phase converter, a Mach-Zehnder optical interferometer using the same, an optical A / D converter, and a method of configuring the light intensity phase converter.
  • wavelength division multiplexing is used and the wavelength channel interval is determined. Therefore, about 100 channels can be used at 50 GHz intervals within the band of the optical fiber amplifier.
  • optical multilevel modulation increases the amount of information without increasing the frequency usage band by multileveling using the amplitude and phase of light. It is a method to make it.
  • optical OFDM an OFDM signal is generated from an electrical signal, optically modulated, and multiplexed between optical subcarriers in an orthogonal state. Therefore, the crosstalk problem can be solved and the frequency utilization efficiency can be increased.
  • an optical A / D converter that directly derives an analog amount of an optical signal as a digital value has a feature of high speed, and thus many proposals have been made.
  • Patent Document 1 by dividing an optical signal by a different predetermined division ratio, the light amount is expressed by a predetermined ratio, and the optical analog amount of the input optical signal depending on whether each divided optical signal has reached a threshold value Is detected.
  • a feedback system via a non-linear optical element is configured for an input optical signal that is an analog signal, so that digital signals are sequentially transmitted from the optical A / D conversion means. A first output light is obtained.
  • an optical encoding circuit uses a plurality of optical encoders including optical nonlinear elements having periodicity with different input / output characteristics relating to light intensity, to generate a pulse train of signal light having a first wavelength.
  • Optically encoding according to control light which is a pulse train of an optical analog signal that has a second wavelength in the vicinity different from the first wavelength and is optically sampled, and each of a plurality of optically encoded pulse trains of signal light Output from the optical encoder.
  • the optical quantization circuit is connected to each of the optical encoders, and uses a plurality of optical threshold processors having an optical nonlinear element having an input / output characteristic related to light intensity having periodicity, and the first wavelength.
  • a pulse train of carrier light having a third wavelength in the vicinity different from the above is optically quantized by performing optical threshold processing in accordance with a plurality of optically encoded pulse trains of signal light, and output as an optical digital signal .
  • Patent Document 4 a plurality of branch interference type optical modulators are provided, a photovoltaic element is formed on the same substrate, and an output voltage of the photovoltaic element is applied to the branch interference type optical modulator. It is characterized by that. Therefore, in this example, the intensity signal light is once received by the PD and converted into a voltage signal, and the speed of the electric signal determines the speed of the entire circuit.
  • Patent Document 5 discloses a logic holding / logic inversion signal light generator that converts an optical signal that is turned ON and OFF into a phase difference signal.
  • Patent Document 6 discloses an apparatus that uses a modulated signal of a phase difference of light to remove control light using a filter.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a light intensity phase converter capable of easily configuring an optical A / D converter.
  • the light intensity phase converter is: First and second waveguides to which first input light is input; A third waveguide into which the second input light is input; An interaction region provided in common on the second and third waveguides, wherein the first and second input lights are combined and interact with each other, Based on the intensity of the first or second input light, a phase difference is given to the output light output from the first and second waveguides.
  • the method of configuring the light intensity phase converter according to the present invention is as follows: Providing first and second waveguides for receiving first input light; Providing a third waveguide for receiving the second input light; An interaction region where the first and second input lights are combined and interacted with each other on the second and third waveguides in common is provided. Based on the intensity of the first or second input light, a phase difference is given to the output light output from the first and second waveguides.
  • FIG. 1 is a configuration diagram of a light intensity phase converter according to the first embodiment.
  • the light intensity phase converter converts light intensity information into phase difference information.
  • the optical intensity phase converter 1 includes a two-input two-output optical multiplexer / demultiplexer 8 connected to two input ports 3 and 4 and two output ports 6 and 7, an input port 2.
  • an optical multiplexer / demultiplexer 11 connected to the output port 5, optical intensity adjusters 9a, 9b, 9c, optical phase adjusters 10a, 10b, 10c, and an optical waveguide connecting them.
  • an optical multiplexer / demultiplexer, an optical intensity adjuster, and an optical phase adjuster are all provided in three paths (first to third waveguides).
  • the optical multiplexer / demultiplexer 11, the light intensity adjusters 9a, 9b, 9c and the optical phase adjusters 10a, 10b, 10c are not essential.
  • the optical multiplexer / demultiplexer 8 is a 2-input 2-output optical circuit.
  • the phase of light input to the input port 3 and the input port 4 is shifted by optical cross-phase modulation in the optical multiplexer / demultiplexer 8 which is an interaction region.
  • Values such as the width and length of the optical multiplexer / demultiplexer are designed so that the phase shift amount becomes a desired value.
  • the optical cross phase modulation will be described later.
  • the light input from the input port 4 is designed to be output to the output port 7 so that the light is output only from the output port 6. This is preferable because it is not necessary to separate light by an optical filter or the like at a later stage.
  • the optical multiplexer / demultiplexer 8 a structure capable of injecting current or applying voltage is introduced.
  • the optical multiplexer / demultiplexer 8 is a semiconductor waveguide having a pin structure, and electrodes are arranged so that current or voltage can be applied.
  • the optical multiplexer / demultiplexer 8 may use a 2-input 2-output MMI (Multi-Mode Interference) waveguide.
  • MMI Multi-Mode Interference
  • the width and length of the MMI waveguide for example, when light is input from only the input port 3, it can be designed to output only from the output port 6.
  • the light input from the input port 4 is output to the output port 7.
  • the set of the width and length of the MMI waveguide is determined so that the phase shift amount caused by the optical cross phase modulation caused in the MMI waveguide becomes a desired value.
  • the optical multiplexer / demultiplexer 8 Even when an MMI waveguide is used as the optical multiplexer / demultiplexer 8, a structure capable of injecting current or applying voltage can be introduced. In order to cause a large cross-phase modulation function, the band gap wavelength of the MMI waveguide is close to the wavelength of the light to be used, and the optical amplification function can be obtained by injecting current.
  • the light intensity adjusters 9a, 9b, 9c and the optical phase adjusters 10a, 10b, 10c are output from the optical multiplexer / demultiplexer 11 without being cross-phase modulated and output from the optical multiplexer / demultiplexer 8 without being cross-phase modulated. It is an apparatus for adjusting the intensity and phase of the emitted light.
  • the light intensity adjusters 9a, 9b, and 9c adjust in advance so that the light intensity output from the output port 5 and the output port 6 is equal when the signal light intensity input from the input port 4 is the minimum light intensity. Has been.
  • the optical phase adjusters 10a, 10b, and 10c are adjusted in advance so that there is no phase difference between the output port 5 and the output port 6 when the signal light intensity input from the input port 4 is the minimum light intensity. .
  • the light intensity adjusters 9a, 9b, 9c for example, semiconductor optical amplifiers can be used.
  • the light intensity can be changed at a short distance, but at the same time, the phase of the light often rotates.
  • optical phase adjusters 10a, 10b, and 10c are separately required.
  • the optical phase adjusters 10a, 10b, and 10c for example, semiconductor phase modulators can be used.
  • the phase in the case of the 1.55 ⁇ m band from the wavelength of light using the band gap wavelength of the semiconductor phase modulator, the phase can be changed with almost no change in light intensity by shortening it by about 100 to 200 nm. it can.
  • the optical phase adjusters 10a, 10b, and 10c cannot be adjusted. Therefore, it is desirable to pass through the optical multiplexer / demultiplexer 11 having the same structure as the optical multiplexer / demultiplexer 8.
  • the optical multiplexers / demultiplexers 8 and 11 are described with 2 inputs and 2 outputs as an example, but 1 inputs and 2 outputs may be used.
  • the phase shift amount of each port output varies depending on the structure of the MMI waveguide, the operation of the optical phase adjusters 10a, 10b, and 10c may be set accordingly.
  • the optical multiplexers / demultiplexers 8 and 11 have a structure including functions of an optical multiplexer, a semiconductor optical waveguide, and an optical demultiplexer.
  • the light input from the two input ports 3 and 4 propagates in the optical waveguide while affecting each other in the optical multiplexer / demultiplexer 8, but is separated at the exit.
  • the light that passes through the optical multiplexer / demultiplexer 11 and passes from the input port 2 to the output port 5 does not undergo cross-phase modulation because the light input is one. Therefore, the light passing from the input port 2 to the output port 5 affected by the light passing from the input port 4 to the output port 7 has a phase difference compared to the light passing from the input port 3 to the output port 6. become.
  • the light input from the input port 3 can be designed to pass through the output port 7. In that case, the light input from the input port 4 is output to the output port 6.
  • This structure can be used as long as there is no problem in the structure of the element.
  • FIG. 2 is a configuration diagram of an MZ type optical interferometer according to the second embodiment, and is an example in which the light intensity phase converter 1 of FIG. 1 is applied to an MZ type optical interferometer.
  • This MZ type optical interferometer includes an optical demultiplexer 15 and an optical multiplexer / demultiplexer 16 in addition to the light intensity phase converter 1 of FIG.
  • the same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted as appropriate.
  • continuous light is introduced into the optical demultiplexer 15 as local light and divided into two.
  • the optical demultiplexer 15 of FIG. 2 uses a 2-input 2-output MMI waveguide
  • another means such as a 1-input 2-output MMI waveguide or an optical directional coupler may be used.
  • the absolute value of the phase shift amount of each output port may be different from the case of the 2-input 2-output MMI waveguide, but the change in the relative relationship is different from the case of the 2-input 2-output MMI waveguide.
  • the two outputs of the optical demultiplexer 15 are respectively coupled to the input ports 2 and 3 of the optical intensity phase converter 1. That is, the continuous light divided into two is introduced into the input ports 2 and 3, respectively.
  • signal light is input to the input port 4.
  • optical cross-phase modulation occurs in the optical multiplexer / demultiplexer 8, and the phase of continuous light changes accordingly.
  • optical cross-phase modulation does not occur, and the phase of continuous light does not change. Therefore, a phase difference occurs between the continuous light that has passed through the optical multiplexer / demultiplexer 8 and the continuous light that has passed through the optical multiplexer / demultiplexer 11. This phase difference changes according to the intensity of the input signal light.
  • the optical multiplexers / demultiplexers 8 and 11 are waveguides having the same parameters (width, length, etc.). With respect to the optical multiplexer / demultiplexer 11 having two inputs and two outputs, light is input only to one input port 2 of the two input ports, and light is not input to the other input port (not shown). For the optical multiplexer / demultiplexer 8, all the light input from the input port 3 is output to the output port 6. Specifically, when an MMI waveguide is used for the optical multiplexers / demultiplexers 8 and 11, the width and length of the MMI waveguide are determined.
  • the injection current amount is adjusted in advance so that the light intensities at the output port 5 and the output port 6 are uniform.
  • the optical phase adjusters 10a, 10b, and 10c output the optical multiplexer / demultiplexer 16 when the signal light input to the input port 4 has the minimum light intensity (in many cases, the signal light is not input).
  • the light intensity at the port 13 is adjusted to be minimum. That is, the phase difference between the light that passes from the input port 2 to the output port 5 and the light that passes from the input port 3 to the output port 6 is adjusted.
  • FIG. 3 is a diagram showing changes in the light intensities P13 and P14 with respect to the input light intensity (the intensity of the input signal light) in the cross section 12 of FIG.
  • the light intensities P13 and P14 change symmetrically according to the input light intensity. Specifically, when the light intensity P13 is maximum, the light intensity P14 is minimum, and when the light intensity P13 is minimum, the light intensity P14 is maximum.
  • P13 + P14 constant holds.
  • FIG. 4 is a configuration diagram of an MZ type optical interferometer according to the third embodiment, and is an example in which the light intensity phase converter of FIG. 1 is applied to an MZ type optical interferometer.
  • the difference from the MZ type optical interferometer of FIG. 2 according to the second embodiment is that the positional relationship between the port for introducing signal light and the port for introducing continuous light is reversed. Specifically, in FIG. 2, continuous light is input to the input ports 2 and 3, whereas in FIG. 4, signal light is input to the input ports 2 and 3. In FIG. 2, signal light is input to the input port 4, whereas in FIG. 4, continuous light is input to the input port 4.
  • the optical multiplexer / demultiplexer 8 the optical intensity adjusters 9a, 9b, and 9c, the optical phase adjusters 10a, 10b, and 10c, and the optical multiplexer / demultiplexer 11 are performed in the same manner as in the second embodiment.
  • the optical multiplexer / demultiplexer 8 By adjusting each of these, a change in signal light as shown in FIG. 5 can be obtained.
  • the sum P13 + P14 of the output light intensities P13 and P14 increases as the intensity of the input signal light increases. Therefore, the vertical axis in FIG. 5 is not the light intensity itself but the relative light intensity.
  • FIG. 6 is a configuration diagram of an optical A / D converter according to the fourth embodiment, which is an optical A / D converter including the MZ type optical interferometer of FIG. 2 inside.
  • the optical demultiplexer 15 of the MZ type optical interferometer is not a 2-input 2-output optical multiplexer / demultiplexer but a 1-input 2-output optical multiplexer / demultiplexer.
  • an MMI waveguide is used as an optical multiplexer / demultiplexer.
  • the light intensity can be decomposed into multiple bits and extracted as a digital value in the state of light.
  • FIG. 6 shows a configuration example of a 4-bit optical A / D converter.
  • This optical A / D converter includes an input port 23, an optical demultiplexer 24, an MZ type optical interferometer 29, output ports 13, 14, 17 to 22, and a balanced receiver 30.
  • the analog input signal Ain which is an optical signal
  • the analog input signal Ain is input from the input port 23 and is divided into four equivalent analog signals A3, A2, A1, and A0 by the optical demultiplexer 24. This number of divisions corresponds to the number of bits of the optical A / D converter.
  • the lights demultiplexed by the optical demultiplexer 24 are respectively input to the MZ type optical interferometer 29 through the optical waveguide.
  • the MZ type optical interferometer 29 includes four paths, and includes one optical demultiplexer 15 and one optical multiplexer / demultiplexer 16 for each path.
  • an optical A / D converter using an MZ type interferometer several bits of MZ type interferometers corresponding to each bit are prepared in order to output the result of A / D conversion almost simultaneously.
  • optical modulation regions 25, 26, 27, and 28 are provided between the optical demultiplexer 15 and the optical multiplexer / demultiplexer 16.
  • Local light LL3, LL2, LL1, and LL0 are input to each optical demultiplexer 15, and each is demultiplexed into two local lights.
  • Four pairs of local lights LL3, LL2, LL1, LL0 demultiplexed into two by the optical demultiplexer 15 and the analog signals A3, A2, A1, A0 are respectively light modulation regions 25, 26, 27, 28.
  • the light modulation regions 25, 26, 27, and 28 include the light intensity phase converter 1 of FIG. 1.
  • Each of the light modulation regions 25, 26, 27, and 28 is set to a phase shift amount necessary for outputting a signal corresponding to each bit of the digital signal.
  • the light output from the output port of the light modulation region 25 is distributed to the output ports 13 and 14 after interfering with each other in the optical multiplexer / demultiplexer 16.
  • the light output from the output port of the light modulation region 26 is distributed to the output ports 17 and 18 after interfering with each other in the optical multiplexer / demultiplexer 16.
  • the light output from the output port of the light modulation region 27 is distributed to the output ports 19 and 20 after interfering with each other in the optical multiplexer / demultiplexer 16.
  • the light output from the output port of the light modulation region 28 is distributed to the output ports 21 and 22 after interfering with each other in the optical multiplexer / demultiplexer 16.
  • the optical demultiplexer 15 is assumed to have one input and two outputs
  • the optical multiplexer / demultiplexer 16 is assumed to have two inputs and two outputs, as shown in FIG.
  • a pair of lights output from each path of the MZ type optical interferometer is O / E converted by the balanced receiver 30, that is, converted from an optical signal to an electric signal.
  • the balanced receiver 30 is composed of a pair of PDs connected in series.
  • a digital output signal Dout is generated by assigning 0 and 1 of the digital signal according to the output of each balanced receiver 30.
  • Each MZ type interferometer needs to convert the same light intensity into a different phase difference, that is, output a different phase shift (phase rotation) amount for the same light intensity. It is necessary to design the optical multiplexer / demultiplexer 8 as an interaction region so that the optical intensity phase converter 1 causes a necessary amount of phase rotation for each optical signal intensity. It is preferable to use a light intensity phase converter 1 that can be connected in cascade and performs a certain unit phase rotation.
  • 7A to 7D are diagrams showing details of the light modulation regions 25 to 28 in FIG. 6, respectively. The light intensity phase converter 1 is provided in the light modulation regions 25 to 28. The light intensity phase converter 1 can be connected in cascade.
  • the number of the light intensity phase converters 1 varies depending on the light modulation regions 25 to 28. Specifically, one is provided in the light modulation region 25, two are provided in the light modulation region 26, four are provided in the light modulation region 27, and eight are provided in the light modulation region 28.
  • the light modulation area 25 shown in FIG. 7A corresponds to the MZ type optical interferometer of FIG.
  • FIG. 7B when two light intensity phase converters 1 of FIG. 1 are provided, the two light intensity phase converters 1 are connected in cascade. Specifically, the three output ports 5 to 7 of the front light intensity phase converter 1 (see FIG. 1) are connected to the three input ports 2 to 4 of the rear light intensity phase converter 1, respectively.
  • the light intensity adjuster 9c of each light intensity phase converter 1 has the input intensity and the output intensity of the signal light. It has been adjusted in advance so that it is aligned. Further, the light intensity adjusters 9a and 9b and the optical phase adjusters 10a and 10b are arranged so that the relative relationship between the intensity and phase of the local light input to the input port 3 and the local light input to the input port 2 is uniform. Adjusted to
  • the light intensity phase converter 1 in the present embodiment is a current value input to the optical multiplexer / demultiplexers 8 and 11 so that the phase rotation is 2 ⁇ according to the light intensity from the minimum light intensity to the maximum light intensity. And the width and length of the MMI waveguide are set. As a result, when the light intensity from the minimum light intensity to the maximum light intensity changes, phase rotation of 2 ⁇ occurs in the light modulation region 25, 4 ⁇ in the light modulation region 26, 8 ⁇ in the light modulation region 27, and 16 ⁇ in the light modulation region 28. It will be.
  • FIG. 8 shows the light intensity in the cross section 12 of FIG.
  • the light intensities P13 and P14 are compared, and it is sufficient to determine 0 or 1 depending on which is greater. Specifically, since the balanced receiver 30 can detect a difference in output due to the combination of two PDs, a digital value can be obtained by using a comparator.
  • One period corresponds to the light intensity from the light intensity to the maximum light intensity.
  • the phase rotation is set to 4 ⁇ , 8 ⁇ , and 16 ⁇ , respectively, according to the light intensity up to the maximum light intensity. Therefore, if the repetition frequency in the light modulation region 25 is f, the output light intensity repetition frequency from the output ports 17 and 18 is 2 ⁇ f. Similarly, the repetition frequency of the output light intensity from the output ports 19 and 20 is 4 ⁇ f. The repetition frequency of the output light intensity from the output ports 21 and 22 is 8 ⁇ f.
  • the outputs of the light modulation regions 25 to 28 are respectively input to the balanced receiver 30, and digital signals D3, D2, D1, and D0 corresponding to the analog signals A3, A2, A1, and A0 are output.
  • digital signals D3, D2, D1, and D0 as shown in FIG. 9 are obtained according to the input light intensity. That is, the light intensity of the analog input signal is converted into a digital signal.
  • FIG. 10 is a configuration diagram of an optical A / D converter according to the fifth embodiment, which is an optical A / D converter including the MZ type optical interferometer of FIG. 4 inside.
  • the optical demultiplexer 15 of the MZ type optical interferometer is not a 2-input 2-output MMI waveguide but a 1-input 2-output MMI waveguide.
  • FIG. 10 shows a configuration example of a 4-bit optical A / D converter.
  • the basic configuration is the same as that of the fourth embodiment. 6 differs from FIG. 6 in that the analog signals A3, A2, A1, and A0 of the input light to the MZ type optical interferometer 29 are each divided into two, and the light intensity phase converter at the foremost stage of each of the light modulation regions 25 to 28.
  • the local light (LL 0, LL 1, LL 2, LL 3) is introduced into the input port 4 of the light intensity phase converter 1.
  • the functions of the light modulation areas 25 to 28 are the same as those of the light modulation areas 25 to 28 in FIG.
  • Such a configuration is the same as in the fourth embodiment, and the method for determining the number of built-in components is also the same.
  • the optical intensity inside the optical multiplexer / demultiplexer 8 can be changed even with the same signal light change. Different states can be created. Therefore, by using the difference between the self-phase modulation that occurs in the optical multiplexer / demultiplexer 11 and the mutual phase modulation that occurs in the optical multiplexer / demultiplexer 8, a phase difference is provided between the signal lights input to the input ports 2 and 3. Can do. In this way, a digital signal as shown in FIG. 9 is obtained.
  • the fourth and fifth embodiments are set based on binary codes.
  • the configurations of the light modulation regions 25 to 28 are set as appropriate according to the format of the digital signal code.
  • the code (gray code) shown in FIG. 12 is output. can do.
  • the optical phase adjuster 32 in FIGS. 11B to 11D rotates the phase by ⁇ / 2 without changing the intensity.
  • the optical phase adjuster 32 may not be provided, and the optical phase adjuster 10a or 10b of the last-stage light intensity phase converter 1 included in the light modulation regions 25 to 28 may be used for adjustment. Also, among the optical demultiplexers 15 provided in each of the MZ type optical interferometers shown in FIGS. 6 and 10, the optical demultiplexer 15 in the bit to which the optical phase adjuster 32 is added is connected to the 1-input 2-output MMI. The optical phase adjuster 32 can also be omitted by changing from a waveguide to a 2-input 2-output MMI waveguide.
  • the MZ type optical interferometer including the light intensity phase modulator according to the above embodiment is not limited to application to an optical A / D converter.
  • the intensity of the signal light is reflected in the phase information of the continuous light by the light intensity phase modulator, and further converted into an intensity signal when it is applied to the structure of the MZ type optical interferometer. Therefore, in general, when the wavelength of the signal light is different from the wavelength of the continuous light, it functions as a wavelength converter. Application to such uses is also possible.
  • the above-described embodiments can be combined within a range in which the contents do not conflict with each other. Further, in the above-described embodiments and modifications, the structure of each part has been specifically described, but the structure and the like can be variously changed within a range that satisfies the present invention.
  • the optical intensity phase converter realized by the present invention is used, a high-speed and low-power optical A / D converter can be realized. Therefore, an optical demodulation circuit using this optical A / D converter can be provided with a high-speed and low-power. It can be used in a form that takes advantage of such advantages.
  • the optical A / D converter of the present invention can be incorporated in a coherent detection circuit or an optical direct detection circuit.
  • the technique according to the present invention can be used for a light intensity phase converter, a Mach-Zehnder optical interferometer using the same, an optical A / D converter, a light intensity phase converter, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Abstract

 本発明に係る光強度位相変換器は、第1の入力光が入力される第1及び第2の導波路と、第2の入力光が入力される第3の導波路と、前記第2及び第3の導波路上に共通に設けられ、前記第1及び第2の入力光が合波して相互作用する相互作用領域と、を備え、前記第1又は第2の入力光の強度に基づいて、前記第1及び第2の導波路から出力される出力光に位相差を付与する。これにより、光A/D変換器を簡易に構成可能な光強度位相変換器を提供することができる。

Description

光強度位相変換器、マッハ・ツェンダー型光干渉計、光A/D変換器及び光強度位相変換器の構成方法
 本発明は、光強度位相変換器、これを用いたマッハ・ツェンダー型光干渉計、光A/D変換器及び光強度位相変換器の構成方法に関する。
 中・長距離系における光通信システムにおいては、ますます高速化や波長多重による大容量化が進んでいる。現在の幹線系光通信システムでは、波長多重通信が用いられ、波長チャネル間隔が定められている。そのため、光ファイバアンプの帯域内において50GHz間隔であれば、約100チャネルを利用することができる。
 ここで、チャネル間隔をΔf[Hz]、伝送速度をB[bit/s]とすると、B/Δf[bit/s/Hz]を、周波数利用効率という。Δf=50GHzであれば、もしチャネル毎に100Gbit/sの伝送速度があれば、周波数利用効率は、2bit/s/Hzとなる。
 光ファイバアンプの帯域が限られているため、周波数利用効率を高めることが必要である。ただし、周波数利用効率を高くするために単純に信号のビットレートを高くすると、チャネル間のクロストークが問題となる。そこで、次世代の光通信方式として、光多値変調や、光直交周波数分割多重(OFDM:Orthogonal Frequency-Division Multiplexing)の検討が進んでいる。光多値変調は、従来の0、1の2値を用いた光強度変調とは異なり、光の振幅や位相を用いて多値化することによって、周波数利用帯域を増やさずに情報量を増大させる方法である。また、光OFDMでは、電気信号によってOFDM信号を生成して光変調し、光サブキャリア間を直交状態にして多重化する。そのため、クロストーク問題を解決し、周波数利用効率を高めることができる。
 このように電気信号処理を主とした多値化、多重化を行い、伝送された光信号は、受信側で電気信号に復調する。光復調回路のPD(光受光器)の後段にはアナログ/デジタル(A/D)変換器が必要となる。現在は、電気回路を利用したA/D変換器が一般的に用いられている。
 他方、光信号のアナログ量を直接デジタル値として導出する光A/D変換器は、高速性という特長を有するため、提案が多くなされている。例えば、特許文献1では、光信号を異なる所定の分割比で分割することによって、光量を所定の比率で表し、各分割光信号が閾値に達しているかどうかで入力された光信号の光アナログ量を検出している。
 また、特許文献2では、光A/D変換手段において、アナログ信号である入力光信号に対し非線形光素子を介した帰還系を構成することにより、当該光A/D変換手段より順次デジタル信号である第1出力光を得ている。
 特許文献3では、光符号化回路は、光強度に関する入出力特性が異なる周期性を有する光非線形素子を備えた複数の光符号化器を用いて、第1の波長を有する信号光のパルス列を、第1の波長とは異なる近傍の第2の波長を有しかつ光標本化された光アナログ信号のパルス列である制御光に従って光符号化し、光符号化された複数の信号光のパルス列を各光符号化器から出力する。次いで、光量子化回路は、各光符号化器にそれぞれ接続され、光強度に関する入出力特性が周期性を有する光非線形素子を備えた複数の光しきい値処理器を用いて、第1の波長とは異なる近傍の第3の波長を有する搬送波光のパルス列を、光符号化された複数の信号光のパルス列に従ってそれぞれ光しきい値処理を行うことにより光量子化して光デジタル信号として出力している。
 特許文献4では、複数の分岐干渉型光変調器を有しており、同じ基板上に光起電力素子が形成されて、この光起電力素子の出力電圧が分岐干渉型光変調器に印加されることを特徴としている。そのため、この例では、強度信号光を一度PDで受光し、電圧信号に変換することになり、その電気信号の速度が全体の回路の速度を決定してしまうことになる。
 特許文献5には、ON、OFFされている光信号を用いて、その信号を位相差の信号に変換する、論理保持・論理反転信号光生成器が示されている。
 特許文献6には、フィルタによって制御光を除去する、光の位相差の変調信号を利用した装置が示されている。
特開2007-24924号公報 特開平1-56426号公報 特開2005-173530号公報 実開昭61-203566号公報 特開2006-276095号公報 特開2008-052066号公報
 光のA/D変換器を実現するにあたり、光のままではある強度を有する光から一定の強度の光を減算することは困難であることから、構成が複雑になっていたと考えられる。この光A/D変換器を簡易に構成するためには、光の位相情報を用いるマッハ・ツェンダー(MZ)型干渉計を用いることが考えられる。そのためには、効率的に光強度の強弱を光位相差の大小に変換する手段(以下、この手段が実現される装置を光強度位相変換器と呼ぶ)が必要となる。
 本発明は上記事情に鑑みてなされたものであり、その目的とするところは、光A/D変換器を簡易に構成可能な光強度位相変換器を提供することである。
 本発明に係る光強度位相変換器は、
 第1の入力光が入力される第1及び第2の導波路と、
 第2の入力光が入力される第3の導波路と、
 前記第2及び第3の導波路上に共通に設けられ、前記第1及び第2の入力光が合波して相互作用する相互作用領域と、を備え、
 前記第1又は第2の入力光の強度に基づいて、前記第1及び第2の導波路から出力される出力光に位相差を付与するものである。
 本発明に係る光強度位相変換器の構成方法は、
 第1の入力光が入力される第1及び第2の導波路を設け、
 第2の入力光が入力される第3の導波路を設け、
 前記第2及び第3の導波路上に共通に、前記第1及び第2の入力光が合波して相互作用する相互作用領域を設け、
 前記第1又は第2の入力光の強度に基づいて、前記第1及び第2の導波路から出力される出力光に位相差を付与するものである。
 本発明によれば、光A/D変換器を簡易に構成可能な光強度位相変換器を提供することができる。
第1の実施の形態に係る光強度位相変換器の構成図である。 第2の実施の形態に係るMZ型光干渉計の構成図である。 図2の断面12における光強度を示す図である。 第3の実施の形態に係るMZ型光干渉計の構成図である。 図4の断面12における相対光強度を示す図である。 第4の実施の形態に係る光A/D変換器の構成図である。 図6の光変調領域25の構成を示す図である。 図6の光変調領域26の構成を示す図である。 図6の光変調領域27の構成を示す図である。 図6の光変調領域28の構成を示す図である。 図6の断面12における光出力の相対強度を示すグラフである。 第4の実施の形態に係る光A/D変換器から出力される入力光強度に応じたデジタル信号を示す図である。 第5の実施の形態に係る光A/D変換器の構成図である。 図12に示すデジタル符号に対応する図10の光変調領域25の構成を示す図である。 図12に示すデジタル符号に対応する図10の光変調領域26の構成を示す図である。 図12に示すデジタル符号に対応する図10の光変調領域27の構成を示す図である。 図12に示すデジタル符号に対応する図10の光変調領域28の構成を示す図である。 第4及び第5の実施の形態にて出力可能な図5とは異なるデジタル信号を示す図である。
 以下、本発明を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。ただし、本発明が以下の実施の形態に限定される訳ではない。また、説明を明確にするため、以下の記載及び図面は、適宜、簡略化されている。
(第1の実施の形態)
 図1は、第1の実施の形態に係る光強度位相変換器の構成図である。光強度位相変換器は、光強度の情報を、位相差の情報に変換する。図1に示すように、この光強度位相変換器1は、2つの入力ポート3及び4、2つの出力ポート6及び7に接続されている2入力2出力の光合分波器8、入力ポート2及び出力ポート5に接続されている光合分波器11、光強度調整器9a、9b、9c、光位相調整器10a、10b、10c、それらを接続する光導波路を備えている。図1では、3つの各経路(第1~第3の導波路)に、光合分波器、光強度調整器、光位相調整器の全てが設けられている。但し、光合分波器11、光強度調整器9a、9b、9c、光位相調整器10a、10b、10cは必須ではない。
 光合分波器8は、2入力2出力の光回路である。入力ポート3及び入力ポート4に入力された光は、相互作用領域である光合分波器8にて、光相互位相変調により位相がシフトする。位相シフト量が所望の値になるように、光合分波器の幅や長さなどの値が設計される。光相互位相変調については後述する。さらには、例えば、入力ポート3のみから光を入力した場合、出力ポート6のみから出力されるように、入力ポート4から入力された光は出力ポート7に出力されるように設計されると、後段で光フィルタなどによって光を分離する必要がなくなるため好ましい。
 光合分波器8には電流を注入、あるいは、電圧を印加できる構造を導入する。例えば、光合分波器8はpin構造を有する半導体導波路であって、電流ないし電圧が印加できるように、電極が配置されている。
 光合分波器8は、例えば図1に示すように、2入力2出力のMMI(Multi Mode Interference)導波路を利用すると良い。その場合、MMI導波路の幅や長さを調節することにより、例えば、入力ポート3のみから光を入力した場合、出力ポート6のみから出力されるように設計することができる。この場合は、入力ポート4から入力された光は出力ポート7に出力される。このようにMMI導波路のある幅に対して、片側の入力ポート(例えば3)から入力された光がどちらか一方の出力ポート(例えば6)のみに出力される長さは周期的に多数存在する。そこで、MMI導波路にて引き起こされる光相互位相変調による位相シフト量が所望の値になるように、MMI導波路の幅と長さのセットが決定される。
 光合分波器8としてMMI導波路を用いた場合でも、電流を注入、あるいは、電圧を印加できる構造は導入できる。大きな相互位相変調機能を引き起こすために、MMI導波路が持つバンドギャップ波長は、利用する光の波長に近くし、電流を注入することで光増幅機能が得られるように設計される。
 光強度調整器9a、9b、9c、光位相調整器10a、10b、10cは、相互位相変調されて光合分波器8から出力された光及び相互位相変調されずに光合分波器11から出力された光に対して、その強度と位相とをそれぞれ調整するための装置である。例えば、光強度調整器9a、9b、9cは、入力ポート4から入力される信号光強度が最小光強度の時に、出力ポート5と出力ポート6から出力される光の強度が揃うようにあらかじめ調整されている。さらには、各入力ポートと対応する出力ポートとが同じ光強度になるように調整されることが望ましい。これによって、光強度位相変換器1を容易に縦続接続することができる。また、光位相調整器10a、10b、10cは、入力ポート4から入力される信号光強度が最小光強度の時に、出力ポート5と出力ポート6との位相差がないようにあらかじめ調整されている。
 光強度調整器9a、9b、9cとしては、例えば、半導体光増幅器を用いることができる。半導体光増幅器を用いると短い距離で光強度を変化させることができるが、同時に光の位相も回転することが多い。
 そのため、光位相調整器10a、10b、10cが、別途必要となる。光位相調整器10a、10b、10cとしては、例えば、半導体位相変調器を用いることができる。半導体位相変調器のもつバンドギャップ波長を利用する光の波長から、例えば1.55μm帯であれば、100~200nm程度短くすることにより、光の強度をほとんど変化させることなく位相を変化させることができる。
 また、入力ポート3、4から出力ポート6、7に抜ける光が、光合分波器8にて光増幅を受け、大きく光の強度が変化した場合、後段の光強度調整器9a、9b、9c、光位相調整器10a、10b、10cで調整しきれないことが考えられる。そのため、光合分波器8と同一の構造を有する光合分波器11を通過させることが望ましい。なお、ここでは光合分波器8、11は、2入力2出力を例に記載したが、1入力2出力であっても良い。MMI導波路の構造により出力される各ポートの位相シフト量は異なるが、それに応じて、光位相調整器10a、10b、10cの動作を設定すればよい。
 次に動作原理について説明する。位相変調には、公知の光相互位相変調(XPM:Cross-Phase Modulation)を利用する。これにより光強度変化が光位相変化へと変換される。光合分波器8、11は、光合波器、半導体光導波路、光分波器の機能を含む構造である。光合分波器8では、2つの入力ポート3、4から入力された光が光合分波器8の中で同一の導波路内をお互いに影響しながら伝搬するが、出口ではそれぞれ分離されるように設定される。よって、後段で波長に応じて光を再分離する必要がないため、簡易で小型な分波器が実現できる。
 一方、光合分波器11を通過して入力ポート2から出力ポート5に抜ける光は、光の入力が1つであるので相互位相変調は起こらない。そのため、入力ポート4から出力ポート7に抜ける光の影響を受けた、入力ポート2から出力ポート5に抜ける光は、入力ポート3から出力ポート6に抜ける光と比較して、位相差が生じることになる。
 なお、入力ポート3から入力された光が出力ポート7に抜けるように設計することもできる。その場合は、入力ポート4から入力された光は出力ポート6に出力される。素子の構造上、問題が生じない限り、この構造を利用することもできる。
(第2の実施の形態)
 次に、第2の実施の形態について、図2を参照して説明する。図2は、第2の実施の形態に係るMZ型光干渉計の構成図であって、図1の光強度位相変換器1をMZ型光干渉計に適用した例である。このMZ型光干渉計は、図1の光強度位相変換器1に加え、光分波器15、光合分波器16を備えている。図1と同一の構成要素については同一符号を付し、適宜説明を省略する。
 まず、局所光として連続光が光分波器15に導入され、2分割される。図2の光分波器15は、2入力2出力のMMI導波路を用いているが、1入力2出力のMMI導波路、あるいは、光方向性結合器など別の手段を用いても良い。その場合、出力される各ポートの位相シフト量の絶対値は、2入力2出力のMMI導波路の場合と異なることがあるが、相対関係の変化は2入力2出力のMMI導波路の場合と同様となる。光分波器15の2つの出力は、それぞれ光強度位相変換器1の入力ポート2、3に結合されている。即ち、2分割された連続光は、それぞれ入力ポート2、3に導入される。他方、入力ポート4には信号光が入力される。
 前述のように、光合分波器8では光相互位相変調が起こり、それに応じて連続光の位相が変化する。一方、光合分波器11では光相互位相変調が起こらず、連続光の位相が変化しない。そのため、光合分波器8を通過した連続光と、光合分波器11を通過した連続光との間に位相差が生じる。この位相差は、入力される信号光の強度に応じて変化する。
 上述の通り、光合分波器8、11は、同じパラメータ(幅、長さなど)を有する導波路である。2入力2出力の光合分波器11については、2つの入力ポートのうち一方の入力ポート2のみに光が入力され、他方の入力ポート(不図示)には光が入力されない。光合分波器8については、入力ポート3から入力された光が全て出力ポート6へ出力されるようにする。具体的には、光合分波器8、11にMMI導波路を用いる場合には、MMI導波路の幅、長さが決定される。目的としている光強度変化に応じて所望の注入電流値で有意な位相回転が実現されるように、「入力ポート3から入力された光が全て出力ポート6から出力される」という条件を満たしつつ、光合分波器8であるMMI導波路の適切な幅と長さが選択される。
 光強度調整器9a、9b、9cについては、出力ポート5と出力ポート6とにおける光強度が揃うように、あらかじめ注入電流量が調整されている。また、光位相調整器10a、10b、10cは、入力ポート4に入力された信号光が最小光強度の場合(多くは、信号光が入力されない場合に相当する)、光合分波器16の出力ポート13における光強度が最小になるように調整されている。即ち、入力ポート2から出力ポート5に抜ける光と、入力ポート3から出力ポート6に抜ける光との位相差がなくなるように調整されている。
 このように設計されたMZ型光干渉計は、入力ポート4から入力される信号光強度に応じて、断面12における出力ポート13の光強度P13と出力ポート14の光強度P14が変化する。図3は、図2の断面12における入力光強度(入力される信号光の強度)に対する光強度P13、P14の変化を示す図である。光強度P13、P14は入力光強度に応じて対称に変化する。具体的には、光強度P13が最大の時に、光強度P14は最小になり、光強度P13が最小の時に、光強度P14は最大になる。図2のMZ型光干渉計では、入力される連続光の強度が一定であるため、P13+P14=一定が成立する。
(第3の実施の形態)
 次に、第3の実施の形態について、図4を参照して説明する。図4は、第3の実施の形態に係るMZ型光干渉計の構成図であって、図1の光強度位相変換器をMZ型光干渉計に適用した例である。第2の実施の形態に係る図2のMZ型光干渉計との違いは、信号光を導入するポートと連続光を導入するポートとの位置関係を逆にしたことである。具体的には、図2では、入力ポート2、3に連続光が入力されているのに対し、図4では、入力ポート2、3に信号光が入力されている。また、図2では、入力ポート4に信号光が入力されているのに対し、図4では、入力ポート4に連続光が入力されている。第3の実施の形態でも、第2の実施の形態と同様の手法で光合分波器8、光強度調整器9a、9b、9c、光位相調整器10a、10b、10c、光合分波器11のそれぞれを調整することによって、図5のような信号光の変化を得ることができる。ただし、図4のMZ型光干渉計では、入力される信号光の強度が大きくなるほど出力光強度P13、P14の和P13+P14も大きくなる。そのため、図5の縦軸は光強度そのものではなく、相対光強度で示されている。
(第4の実施の形態)
 次に、第4の実施の形態について、図6を参照して説明する。図6は、第4の実施の形態に係る光A/D変換器の構成図であって、図2のMZ型光干渉計を内部に含む光A/D変換器である。但し、MZ型光干渉計の光分波器15は、2入力2出力の光合分波器でなく、1入力2出力の光合分波器としている。図6では、光合分波器としてMMI導波路を用いている。第4の実施の形態に係る光A/D変換器では、光のままの状態で、光強度を多ビットに分解してデジタル値として取り出すことができる。
 図6は、4ビットの光A/D変換器の構成例を示す。この光A/D変換器は、入力ポート23、光分波器24、MZ型光干渉計29、出力ポート13、14、17~22、バランスドレシーバ30を備えている。
 入力ポート23から光信号であるアナログ入力信号Ainが入力され、光分波器24により等価な4つのアナログ信号A3、A2、A1、A0に分割される。この分割数が、光A/D変換器のビット数に対応する。光分波器24により分波された光は、光導波路を介して、それぞれ、MZ型光干渉計29に入力される。
 図6に示すように、MZ型光干渉計29は、4つの経路を備え、各経路に1つずつ光分波器15と光合分波器16とを備えている。MZ型干渉計を用いた光A/D変換器では、A/D変換された結果をほぼ同時に出力するために、各ビットに対応するMZ型干渉計をビット数個用意する。また、それぞれの経路において、光分波器15と光合分波器16との間に光変調領域25、26、27、28が設けられている。各光分波器15には局所光LL3、LL2、LL1、LL0が入力され、それぞれが2つの局所光に分波される。光分波器15で2つに分波された4対の局所光LL3、LL2、LL1、LL0と、上記アナログ信号A3、A2、A1、A0とが、それぞれ光変調領域25、26、27、28に入力される。
 ここで、光変調領域25、26、27、28は、図1の光強度位相変換器1を含んでいる。光変調領域25、26、27、28のそれぞれは、デジタル信号の各ビットに相当する信号を出力するために必要な位相シフト量に設定されている。
 光変調領域25の出力ポートから出力された光は、光合分波器16において互いに干渉後、出力ポート13、14に分配される。同様に、光変調領域26の出力ポートから出力された光は、光合分波器16において互いに干渉後、出力ポート17、18に分配される。光変調領域27の出力ポートから出力された光は、光合分波器16において互いに干渉後、出力ポート19、20に分配される。光変調領域28の出力ポートから出力された光は、光合分波器16において互いに干渉後、出力ポート21、22に分配される。ここで、光分波器15はここでは1入力2出力を想定し、光合分波器16は2入力2出力を想定して図6に示している。
 次に、MZ型光干渉計の各経路から出力された1対の光は、バランスドレシーバ30によってO/E変換、すなわち、光信号から電気信号へと変換される。ここで、バランスドレシーバ30は直列接続された1対のPDから構成されている。各バランスドレシーバ30の出力に応じて、デジタル信号の0と1を割り振ることにより、デジタル出力信号Doutを生成する。
 次に、図7A~7Dを用いて動作原理について説明する。各MZ型干渉計は、同じ光強度を異なる位相差に変換する、つまり、同じ光強度に対して異なる位相シフト(位相回転)量を出力する必要がある。光強度位相変換器1を、ある光信号強度に対して、それぞれに必要な位相回転量を引き起こすように、相互作用領域である光合分波器8を設計する必要があるが、簡単には、縦続接続できる、ある単位位相回転を行う光強度位相変換器1を利用するのが好ましい。図7A~7Dは、それぞれ図6における光変調領域25~28の詳細を示した図である。光変調領域25~28には、光強度位相変換器1が設けられている。光強度位相変換器1は、縦続接続できるようにされている。この光強度位相変換器1の数が光変調領域25~28によって異なっている。具体的には、光変調領域25には1つ、光変調領域26には2つ、光変調領域27には4つ、光変調領域28には8つ設けられている。図7Aに示す光変調領域25は、図2のMZ型光干渉計に対応している。図7Bに示すように、図1の光強度位相変換器1を2つ備える場合には、2つの光強度位相変換器1を縦続に接続する。具体的には、前段の光強度位相変換器1(図1参照)の3つの出力ポート5~7を後段の光強度位相変換器1の3つの入力ポート2~4にそれぞれ接続する。一般に、nビットの光A/D変換器を作成する場合には、上位ビットから下位ビットに行くに従って、光強度位相変換器1の数を2^k(k=0、・・・、n-1)とすればよい。
 また、光変調領域26~28のように光強度位相変換器1が縦続接続されている場合、各光強度位相変換器1の光強度調整器9cは、信号光の入力強度と出力強度とが揃うように、あらかじめ調整されている。また、光強度調整器9a、9bと光位相調整器10a、10bとにより、入力ポート3に入力される局所光と入力ポート2に入力される局所光との強度及び位相の相対関係が揃うように調整される。
 本実施の形態での光強度位相変換器1は、最小光強度から最大光強度までの光強度に応じて位相回転が2πになるように、光合分波器8、11に入力される電流値やMMI導波路の幅、長さなどが設定されている。これにより、最小光強度から最大光強度までの光強度が変化すると、光変調領域25では2π、光変調領域26では4π、光変調領域27では8π、光変調領域28では16πの位相回転が起こることになる。
 従って、出力ポート13の光強度P13、出力ポート14の光強度P14とすると、図8に示すように変化する。図8の横軸は入力光強度、縦軸は光強度である。ここで、図8は、図6の断面12における光強度を示している。
 そして、光強度P13、P14の強度の比較を行い、どちらが大きいかで0と1の判定を行えば良いことになる。具体的には、バランスドレシーバ30は、2つのPDを組み合わせることによっての出力の違いを検知することができるので、コンパレータを用いることによりデジタル値を得ることができる。
 この比は、光変調領域25では最小光強度から最大光強度までの光強度に応じて位相回転が2πになるように設定したため、繰り返し周期Pperiod=1/f(fは繰り返し周波数)は最小光強度から最大光強度までの光強度に応じて1周期となる。
 同様に、光変調領域26、27、28では、最大光強度までの光強度に応じて位相回転がそれぞれ4π、8π、16πになるように設定されている。よって、光変調領域25での繰り返し周波数をfとすると、出力ポート17、18からの出力光強度繰り返し周波数は2×fとなる。同様に、出力ポート19、20からの出力光強度の繰り返し周波数は4×fとなる。出力ポート21、22からの出力光強度の繰り返し周波数は8×fになる。
 光変調領域25~28の出力は、それぞれがバランスドレシーバ30に入力されており、アナログ信号A3、A2、A1、A0に対応したデジタル信号D3、D2、D1、D0が出力される。具体的には、入力光強度に応じて、図9に示すようなデジタル信号D3、D2、D1、D0が得られることがわかる。即ち、アナログ入力信号の光強度がデジタル信号に変換される。
(第5の実施の形態)
 次に、第5の実施の形態について、図10を参照して説明する。図10は、第5の実施の形態に係る光A/D変換器の構成図であって、図4のMZ型光干渉計を内部に含む光A/D変換器である。但し、MZ型光干渉計の光分波器15は、2入力2出力のMMI導波路でなく、1入力2出力のMMI導波路としている。
 図10は、4ビットの光A/D変換器の構成例を示す。基本的な構成は第4の実施の形態と同様である。図6と異なる点は、MZ型光干渉計29への入力光のうち、アナログ信号A3、A2、A1、A0がそれぞれ2分割され各光変調領域25~28の最前段の光強度位相変換器1の入力ポート2、3に導入され、局所光(LL0、LL1、LL2、LL3)が光強度位相変換器1の入力ポート4に導入される点である。
 光変調領域25~28の機能は、図6における光変調領域25~28と同様である。図11A~11Dに示すように、光変調領域25~28は、縦続接続できる、ある単位位相回転を行う光強度位相変換器1を利用し、それぞれ光強度位相変換器1を2^0=1、2^1=2、2^2=4、2^3=8個内蔵している。このような構成は、第4の実施の形態と同様であって、この内蔵する数の決定方法も同様である。
 図10の光A/D変換器では、光強度位相変換器1の光合分波器8にのみ局所光LLを導入することによって、同じ信号光変化でも、光合分波器8内部の光強度が異なる状態を作ることができる。従って、光合分波器11で起こる自己位相変調、光合分波器8で起こる相互位相変調の違いを利用して、入力ポート2、3に入力された信号光の間に位相差を付与することができる。このようにして図9に示すようなデジタル信号が得られることになる。
 なお、第4及び第5の実施の形態は、2進符号を元にして設定した。実際には、デジタル信号符号のフォーマットに応じて、光変調領域25~28の構成は適宜設定される。例えば、第4や5の実施の形態における光変調領域25~28を、図11A~11Dに示す光変調領域25~28のような構成とすれば、図12に示す符号(グレイコード)を出力することができる。ここで、図11B~11Dの光位相調整器32は、強度を変えずに位相をπ/2回転させる。一般にnビットの光A/D変換器を作成する場合には、上位ビットから下位ビットに行くに従って、光強度位相変換器1の数を2^k(k=0、0、1、・・・、n-2)とすればよい。
 なお、光位相調整器32を設けずに、光変調領域25~28に含まれる最後段の光強度位相変換器1の光位相調整器10aあるいは10bを用いて調整してもよい。また、図6、図10に示す各MZ型光干渉計に設けられた光分波器15のうち光位相調整器32を付加したビットにある光分波器15を、1入力2出力のMMI導波路から2入力2出力のMMI導波路に変更することでも、光位相調整器32を省略することができる。
 なお、上記実施の形態に係る光強度位相変調器を含むMZ型光干渉計は、光A/D変換器への適用に限定されない。光強度位相変調器によって、信号光の強度が、連続光の位相情報に反映され、さらにそれがMZ型光干渉計の構造に応用されると強度信号に変換される。そのため、一般的には、信号光の波長と連続光の波長が異なる場合には、波長変換器として機能する。このような用途への応用も可能である。
 また、当然ながら、上述した実施の形態は、その内容が相反しない範囲で組み合わせることができる。また、上述した実施の形態及び変形例では、各部の構造などを具体的に説明したが、その構造などは本発明を満足する範囲で各種に変更することができる。本発明によって実現された光強度位相変換器を用いると、高速かつ低電力な光A/D変換器が実現できるので、この光A/D変換器を利用した光復調回路に、高速かつ低電力といったメリットを生かされた形で利用することができる。具体的には、コヒーレント検波回路や光直接検波回路に本発明の光A/D変換器を内蔵することができる。
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2010年5月19日に出願された日本出願特願2010-115545を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 本発明にかかる技術は、光強度位相変換器、これを用いたマッハ・ツェンダー型光干渉計、光A/D変換器及び光強度位相変換器などに利用できる。
1 光強度位相変換器
2~4、23 入力ポート
5~7、13、14、17~22 出力ポート
8、11、16 光合分波器
9 光強度調整器
10、32 光位相調整器
12 断面
15、24 光分波器
25~28 光変調領域
29 MZ型光干渉計
30 バランスドレシーバ

Claims (10)

  1.  第1の入力光が入力される第1及び第2の導波路と、
     第2の入力光が入力される第3の導波路と、
     前記第2及び第3の導波路上に共通に設けられ、前記第1及び第2の入力光が合波して相互作用する相互作用領域と、を備え、
     前記第1又は第2の入力光の強度に基づいて、前記第1及び第2の導波路から出力される出力光に位相差を付与する光強度位相変換器。
  2.  前記相互作用領域がMMI導波路であることを特徴とする請求項1に記載の光強度位相変換器。
  3.  前記第1の導波路上に前記相互作用領域と同一サイズの相互作用領域を更に備えることを特徴とする請求項1又は2に記載の光強度位相変換器。
  4.  前記相互作用領域の出力側の前記第2の導波路上に光強度調整器及び光位相調整器を、更に備えていることを特徴とする請求項1~3のいずれか1項に記載の光強度位相変換器。
  5.  前記相互作用領域の出力側の前記第3の導波路上に光強度調整器及び光位相調整器を、更に備えていることを特徴とする請求項1~4のいずれか1項に記載の光強度位相変換器。
  6.  前記第1の導波路上に光強度調整器及び光位相調整器を、更に備えていることを特徴とする請求項1~5のいずれか1項に記載の光強度位相変換器。
  7.  請求項1~6のいずれか1項に記載の光強度位相変換器と、
     前記第1の入力光を、前記第1及び第2の導波路に分岐する分波器と、
     前記第1及び第2の導波路から出力される前記出力光を合分波する合分波器と、を備えるマッハ・ツェンダー型光干渉計。
  8.  複数の前記光強度位相変換器が、直列に接続されていることを特徴とする請求項7に記載のマッハ・ツェンダー型光干渉計。
  9.  請求項7又は8に記載のマッハ・ツェンダー型光干渉計をN(Nは自然数)個備え、
     前記マッハ・ツェンダー型光干渉計は、前記入力される光強度信号の強度に応じてNビットのデジタル信号を出力することを特徴とする光A/D変換器。
  10.  第1の入力光が入力される第1及び第2の導波路を設け、
     第2の入力光が入力される第3の導波路を設け、
     前記第2及び第3の導波路上に共通に、前記第1及び第2の入力光が合波して相互作用する相互作用領域を設け、
     前記第1又は第2の入力光の強度に基づいて、前記第1及び第2の導波路から出力される出力光に位相差を付与する光強度位相変換器の構成方法。
PCT/JP2011/002505 2010-05-19 2011-04-28 光強度位相変換器、マッハ・ツェンダー型光干渉計、光a/d変換器及び光強度位相変換器の構成方法 WO2011145280A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012515725A JPWO2011145280A1 (ja) 2010-05-19 2011-04-28 光強度位相変換器、マッハ・ツェンダー型光干渉計、光a/d変換器及び光強度位相変換器の構成方法
US13/698,019 US8922410B2 (en) 2010-05-19 2011-04-28 Optical intensity-to-phase converter, mach-zehnder interferometer, optical A/D converter, and method of constructing optical intensity-to-phase converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-115545 2010-05-19
JP2010115545 2010-05-19

Publications (1)

Publication Number Publication Date
WO2011145280A1 true WO2011145280A1 (ja) 2011-11-24

Family

ID=44991403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002505 WO2011145280A1 (ja) 2010-05-19 2011-04-28 光強度位相変換器、マッハ・ツェンダー型光干渉計、光a/d変換器及び光強度位相変換器の構成方法

Country Status (3)

Country Link
US (1) US8922410B2 (ja)
JP (1) JPWO2011145280A1 (ja)
WO (1) WO2011145280A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9197471B1 (en) 2011-08-05 2015-11-24 Rockwell Collins, Inc. Optically interleaved photonic analog to digital converters
US10069619B1 (en) 2011-08-05 2018-09-04 Rockwell Collins, Inc. Optical sample and hold system and method
DE102013204731B4 (de) * 2013-03-18 2017-11-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Analog-Digital-Konverter und Verfahren zum Erzeugen eines digitalen Datenstromes
US9356704B1 (en) * 2013-08-09 2016-05-31 Rockwell Collins, Inc. Optical conversion system and method with multiple phase processing
US9118423B1 (en) 2013-08-09 2015-08-25 Rockwell Collins.com Optical conversion system and method with multiple amplitude processing
US9843398B1 (en) * 2016-05-20 2017-12-12 Rockwell Collins, Inc. Photonic direct sampling digital receiver
CN112731692B (zh) * 2021-01-06 2022-05-20 上海交通大学 一种相位分布曲面的调控方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11502634A (ja) * 1995-02-01 1999-03-02 ロイトルド,ユルグ マルチモード干渉モードコンバータを使用した小型光−光スイッチおよび波長コンバータ
JP2003295246A (ja) * 2002-04-04 2003-10-15 Nippon Telegr & Teleph Corp <Ntt> 相互位相変調型波長変換器
JP2005173530A (ja) * 2003-11-17 2005-06-30 Osaka Industrial Promotion Organization 光信号処理方法及び装置、非線形光ループミラーとその設計方法並びに光信号変換方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61203566U (ja) 1985-06-10 1986-12-22
JP2564852B2 (ja) 1987-05-21 1996-12-18 キヤノン株式会社 光a−d変換器
US4947170A (en) 1988-06-22 1990-08-07 The Boeing Company All optical analog-to-digital converter
US6118397A (en) 1998-06-17 2000-09-12 Trw Inc. Fully optical analog to digital converters with complementary outputs
US6292119B1 (en) 1999-06-30 2001-09-18 Trw Inc. Delayed pulse saturable absorber-based downward-folding optical A/D
JP3583681B2 (ja) 2000-03-16 2004-11-04 日本電信電話株式会社 光位相シフタ並びにこれを用いた光フィルタ及び光スイッチ
JP2003131272A (ja) * 2001-10-29 2003-05-08 Fujitsu Ltd 光信号処理装置、光デマルチプレクサ、波長変換装置、光信号処理方法及び波長変換方法
JP2004061889A (ja) 2002-07-30 2004-02-26 Nec Corp マッハツェンダー型全光スイッチ
JP4617955B2 (ja) 2005-03-28 2011-01-26 Kddi株式会社 Ook/psk変換装置
CA2606167A1 (en) * 2005-04-27 2006-11-09 National Institute Of Japan Science And Technology Agency Optical analog/digital converting method and apparatus
JP2007024924A (ja) 2005-07-12 2007-02-01 Sony Corp 光アナログ/デジタル変換装置
JP4911404B2 (ja) 2006-08-25 2012-04-04 独立行政法人産業技術総合研究所 光信号処理回路
JP4936322B2 (ja) 2007-02-27 2012-05-23 古河電気工業株式会社 非線形光ループミラー及び光a/d変換器
EP2219306A1 (en) 2007-11-09 2010-08-18 Hitachi, Ltd. Photofield transmitter and photofield transmission system
US7564387B1 (en) 2008-02-29 2009-07-21 Sandia Corporation Optical analog-to-digital converter
JP5006850B2 (ja) 2008-07-24 2012-08-22 日本電信電話株式会社 光信号処理回路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11502634A (ja) * 1995-02-01 1999-03-02 ロイトルド,ユルグ マルチモード干渉モードコンバータを使用した小型光−光スイッチおよび波長コンバータ
JP2003295246A (ja) * 2002-04-04 2003-10-15 Nippon Telegr & Teleph Corp <Ntt> 相互位相変調型波長変換器
JP2005173530A (ja) * 2003-11-17 2005-06-30 Osaka Industrial Promotion Organization 光信号処理方法及び装置、非線形光ループミラーとその設計方法並びに光信号変換方法

Also Published As

Publication number Publication date
JPWO2011145280A1 (ja) 2013-07-22
US8922410B2 (en) 2014-12-30
US20130113641A1 (en) 2013-05-09

Similar Documents

Publication Publication Date Title
WO2011145280A1 (ja) 光強度位相変換器、マッハ・ツェンダー型光干渉計、光a/d変換器及び光強度位相変換器の構成方法
US9413467B2 (en) Optical transmitter, optical transmission/reception system, and drive circuit
JP5585589B2 (ja) 光変調装置及び光変調方法
WO2012073447A1 (ja) 光強度減算器、光a/d変換器及び光強度減算方法
WO2011145281A1 (ja) 光アナログ/デジタル変換器、その構成方法、光信号復調器及び光変復調装置
US7525461B1 (en) Optical digital to analog conversion
Dewra et al. Performance analysis of optical network based on optical add drop multiplexers with different MZI techniques
EP3497825B1 (en) Encoding for optical transmission
US9091593B2 (en) Optical intensity determination unit, method of forming the same, and optical A/D converter
US20060215709A1 (en) Code conversion circuit
JP2005086823A (ja) デュオバイナリーエンコーダ及びこれを利用した光デュオバイナリー伝送装置
US8971726B2 (en) Network element
JP4936322B2 (ja) 非線形光ループミラー及び光a/d変換器
JP3761412B2 (ja) 多波長光源
JP5487491B2 (ja) 非線形光ループミラー及び光a/d変換器
US8441383B1 (en) Photonic digital-to-analog conversion (DAC) based on RSOAs
JP3753229B2 (ja) 高速波長変換装置
CN111245553A (zh) 形成光子辅助光学串并转换系统及采用其的光通信设备
JP3996843B2 (ja) 多波長信号光源および多波長信号光発生方法、ならびに光波長変換器および光波長変換方法
JP4400716B2 (ja) 全光スイッチおよび方法
JP2007094398A (ja) 光位相変調装置
JP4249093B2 (ja) Cs−rz出力波長変換装置
Kodama et al. A low-power photonic quantization approach using OFDM subcarrier spectral shifts
JP3953934B2 (ja) 符号変換回路、及び光送信回路
CN117595931A (zh) 基于偏振复用的光子时间拉伸方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11783219

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012515725

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13698019

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11783219

Country of ref document: EP

Kind code of ref document: A1