JP2007094398A - 光位相変調装置 - Google Patents

光位相変調装置 Download PDF

Info

Publication number
JP2007094398A
JP2007094398A JP2006240170A JP2006240170A JP2007094398A JP 2007094398 A JP2007094398 A JP 2007094398A JP 2006240170 A JP2006240170 A JP 2006240170A JP 2006240170 A JP2006240170 A JP 2006240170A JP 2007094398 A JP2007094398 A JP 2007094398A
Authority
JP
Japan
Prior art keywords
optical
light
phase modulation
phase
probe light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006240170A
Other languages
English (en)
Inventor
Kenichi Kitayama
研一 北山
Akihiro Maruta
章博 丸田
Takeshi Mishina
健 三科
Toshiji Miyahara
利治 宮原
Tatsuo Hatta
竜夫 八田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Osaka University NUC
Original Assignee
Mitsubishi Electric Corp
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Osaka University NUC filed Critical Mitsubishi Electric Corp
Priority to JP2006240170A priority Critical patent/JP2007094398A/ja
Publication of JP2007094398A publication Critical patent/JP2007094398A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

【課題】電気信号に変換せずに入力される光強度変調信号により光信号を位相変調する簡便な構造の光位相変調装置を提供する。
【解決手段】光位相変調装置は、2つ以上の入射ポートと、1つ以上の出射ポートと、2本のアーム、2本のアームと一方の入射ポートとを連通する入力導波路および2本のアームと出射ポートとを連通する出力導波路から構成され、一方のアームに他方の入射ポートが直接接続されたマッハツェンダー干渉計とが設けられた光符号変換部と、2本のアームにそれぞれ1つ以上配置された半導体光増幅器と、他方のアームに1つ以上配置された半導体位相調整器と、を備え、入力導波路にプローブ光のパルス列が入力され、一方の入射ポートに強度変調された信号光が入力され、出射ポートから信号光により位相変調されたプローブ光のパルス列が出力される。
【選択図】図1

Description

この発明は、強度変調されている光通信信号により光信号を位相変調する光位相変調装置に関する。
従来、光位相変復調通信システムは、光信号を出力する送信側レーザ部と、伝送信号の入力を受け付ける入力受付部と、入力を受け付けられた伝送信号で、送信側レーザ部により出力された光信号の位相を変調させる変調部と、変調された光信号を送信する送信部と、を備える送信装置を具備している。そして、伝送する情報に基づいて強度変調された光信号は、一旦電気信号に変換されてそれにより光信号の位相を変調している(例えば、特許文献1参照)。
特開2001−339352号公報
しかし、光通信の中継点において強度変調された光信号を一旦電気信号に変換するための入力受付部を送信装置に備えなければならないので、入力受付部が所定のスペースを占有し省スペース化の妨げになるという問題がある。
また、入力受付部で光信号を電気信号に変換するために多くの電力を消費するために省消費電力化が図れないという問題がある。
さらに、光通信の符号速度は通常では、2.5Gbit/s〜40Gbit/sといった高速であるため、符号変換する部分の電気信号処理も高速なスループットが要求され、電子回路が高価になるという問題がある。
この発明の目的は、電気信号に変換せずに入力される光強度変調信号により光信号を位相変調する簡便な構造の光位相変調装置を提供することである。
この発明に係わる光位相変調装置は、2つ以上の入射ポートと、1つ以上の出射ポートと、2本のアーム、上記2本のアームと一方の上記入射ポートとを連通する入力導波路および上記2本のアームと上記出射ポートとを連通する出力導波路から構成され、一方の上記アームに他方の上記入射ポートが直接接続されたマッハツェンダー干渉計とが設けられた光符号変換部と、上記2本のアームにそれぞれ1つ以上配置された半導体光増幅器と、他方の上記アームに1つ以上配置された半導体位相調整器と、を備え、上記入力導波路にプローブ光のパルス列が入力され、上記一方の入射ポートに強度変調された信号光が入力され、上記出射ポートから上記信号光により位相変調されたプローブ光のパルス列が出力される。
この発明に係わる光位相変調装置の効果は、半導体光増幅器に入力される光強度に従って位相が変化する現象を利用して、マッハツェンダー干渉計の2本のアームの一方だけに強度変調の信号光を入力することにより変調対象のプローブ光のパルス列の位相を変調することができる。そして、信号光により直接的に変調対象のプローブ光のパルス列を変調することができるので、従来のような光−電気変換のための素子を配設する必要性がなく、省スペース化と省消費電力化することができる。
図1は、この発明に係わる光位相変調の原理を説明するための概略図である。
この発明に係わる光位相変調装置は、図1に示すように、デジタル情報に基づいて光信号が強度変調された信号光によりプローブ光のパルス列を位相変調する。なお、この発明において、デジタル情報の0のとき信号光の強度は零、デジタル情報の1のとき信号光の強度は所定の値である。一方、デジタル情報が0のときプローブ光のパルスの位相は0ラジアン、デジタル情報の1のときプローブ光のパルスの位相はπラジアンとなる。また、2つの位相にプローブ光のパルス列を変調することができれば、0/πラジアンの組合せに限るものではない。
そして、入力される光の強度により通過して出力する光の位相が変化する半導体光増幅器(Semicondoctor Optical Amplifierの略号も用いる。)を用いる。半導体光増幅器は、光が入力されると誘電放出の増加によりキャリア密度が減少し、その結果屈折率が増加し、通過する光の位相を変化させる。
この半導体光増幅器は、マッハツェンダー干渉計の2本のアームのそれぞれに介設されている。そして、一方のアームに変調対象のプローブ光のパルス列と強度が変調されている信号光とが一緒にして入射される。他方のアームには変調対象のプローブ光のパルス列だけが入射される。この一方のアームでは、信号光の強度が零のときプローブ光のパルスの位相の変化は他のアームを通過するプローブ光のパルスの位相に対して、同じように変化する。逆に、信号光の強度が所定の値のときこの信号光と一緒に通過するプローブ光のパルスの位相は、他のアームを通過するプローブ光のパルスの位相に対して、例えばπラジアン異なる。このように、信号光の強度に従ってプローブ光のパルスの位相が変化するので、強度変調された信号光と一緒に変調対象のプローブ光を通過させれば、プローブ光のパルス列を位相変調することができる。
このアームを通過したプローブ光のパルスが、強度が零の信号光と一緒に通過するとき位相が同相、強度が所定の値の信号光と一緒に通過するとき位相が逆相になるように、信号光の強度と半導体位相調整器の注入電流とを調整する。
また、半導体光増幅器は、入力される光の強度により利得が変化するので、この一方のアームを通過するプローブ光のパルスの光電界振幅は信号光の強度の変化に従って変化する。そこで、他のアームを通過するプローブ光のパルス列の光電界振幅と位相を調整することにより、出力導波路で両方のアームを通過したプローブ光のパルス列が干渉した後は入力信号が1であるか0であるかに関わらず光電界振幅の同じパルス列を出力する。
このようにして両方のアームを通過したプローブ光のパルス列を干渉させ合うことにより、光電界振幅がほぼ一定で、デジタル情報の0と1のとき位相がπラジアン異なるプローブ光のパルス列が得られる。それから、マッハツェンダー干渉計の出力導波路に介設されているフィルタにより、入射ポートに入射されたプローブ光のパルス列だけが取り出される。
このような光位相変調装置は、半導体光増幅器に入力される信号光の強度に従って位相が変化する現象を利用して、マッハツェンダー干渉計の2本のアームの一方だけに強度変調の信号光を入力することにより変調対象のプローブ光のパルス列の位相を変調することができる。そして、信号光により直接的に変調対象のプローブ光のパルス列を変調することができるので、従来のような光−電気変換のための素子を配設する必要性がなく、省スペース化と省消費電力化することができる。
実施の形態1.
次に、この発明の実施の形態1に係わる光位相変調装置1について説明する。
図2は、この発明の実施の形態1に係わる光位相変調装置の構成図である。
この発明の実施の形態1に係わる光位相変調装置1は、n−InP基板のような半導体光基板2上にマッハツェンダー干渉計3を構成する光符号変換部4が形成されている。光符号変換部4として、半導体光基板2に、2種類の光がそれぞれ入射される2つの入射ポート5a、5bと1種類の光が出射される出射ポート6が形成されている。また、マッハツェンダー干渉計3を構成する2本のアームとしての位相変調導波路7と位相電力調整導波路8、位相変調導波路7と位相電力調整導波路8の一方の端に一方の入射ポート5aからY分岐されて延びている入力導波路9、位相変調導波路7の一方の端と他方の入射ポート5bとを接続する信号光導波路10、位相変調導波路7と位相電力調整導波路8の他方の端同士が結合される出力導波路11から構成されている。
また、光位相変調装置1は、位相変調導波路7と位相電力調整導波路8にそれぞれ介設されている半導体光増幅器12a、12b、位相電力調整導波路8に半導体光増幅器12bと直列に介設されている位相電力調整部としての半導体位相調整器13、入力導波路9に連なる一方の入射ポート5aに接続されて半導体光基板2上に集積されるモードロックLD14、出力導波路11に介設されているフィルタ15を備える。
なお、モードロックLD14は、例えば、Gotoda et al.「Widely wavelength tunable optical clock generation by use of injection lockedDBR lasers with vernier gratings」、OFC2005、Optical Society of America、JWA29に示されるようなパルス光源であり、レーザダイオードが複数のモードで発振しているとき、各モードの周波数間隔を揃えて相互位相を一定に保つことにより各モードが規則正しく干渉して得られたパルス幅の短い繰り返し光パルスを発振するものである。
入射ポート5bには、外部からデジタル情報の0と1とに対応して強度が零と所定の値とに変調された信号光が入射される。
また、モードロックLD14は、所定の周期でプローブ光のパルス列を発振し、そのプローブ光が入射ポート5aに入射される。
光位相変調装置1に入力される光の波長は、それぞれ信号光が1560nm、プローブ光が1550nmであるが、これらに限るものではない。
半導体光増幅器12a、12bと半導体位相調整器13は、注入電流を調整することにより光路長と利得が調整される。また、半導体光増幅器12a、12bと半導体位相調整器13は、入力される光の強度により光路長と利得が変化する。
フィルタ15は、プローブ光だけを通過する。
次に、実施の形態1に係わる光位相変調装置1の動作について説明する。
位相変調導波路7は、プローブ光と信号光とが一緒に通過してそのプローブ光と信号光とが半導体光増幅器12aに入力する。そして、半導体光増幅器12aでは、プローブ光と信号光との強度の変化に従ってキャリア密度が変化し、それに伴って屈折率と利得とが変化する。屈折率が変化することにより、半導体光増幅器12aの光路長が変化するので、半導体光増幅器12aを通過したプローブ光のパルスの位相が変化する。また、利得が変化することにより、半導体光増幅器12aを通過したプローブ光のパルスの光電界振幅が変化する。
この実施の形態1において、半導体光増幅器12aの出力におけるプローブ光の位相を信号光の強度が零のとき0ラジアンと定め、信号光の強度が所定の値のときπラジアンになるように信号光の所定の値と半導体光増幅器12aの注入電流とを調整してある。また、半導体光増幅器12aの出力でのプローブ光の電界振幅を信号光の強度が零のとき1と定めると、信号光の強度が1のときにはプローブ光の電界振幅は0.5程度にまで減衰する。これは、半導体光増幅器12aに入る光強度が変化したときに、その屈折率だけではなく利得までが同時に変化してしまうからである。屈折率変化による位相変調は相互位相変調、同時に起こる利得の変化は相互利得変調と呼ばれ、良質な位相変調光出力を得るためには、この相互利得変調の影響を抑えることが必要である。そのために、位相電力調整導波路8側を伝播するパルス列を利用する。
位相電力調整導波路8では、プローブ光が半導体光増幅器12bに入力される。半導体光増幅器12bでは、プローブ光のパルスの位相と光電界振幅が変化して半導体位相調整器13に入力する。半導体位相調整器13は、基本的な構造は半導体光増幅器12a,12bと同じであるが、増幅をつかさどる活性層のバンドギャップが1.2μm程度の短波長に設定されている。そのため、1.55μm帯のプローブ光に対しては透明で、注入電流を変えることによるキャリア密度変化に依存して屈折率だけを効果的に変化させることができる。そこで、半導体位相調整器13では、位相変調導波路7から出力されるプローブ光の位相に対して、半導体位相調整器13を通過したプローブ光の位相がπラジアン、光電界振幅が0.25になるように半導体位相調整器13の注入電流を調整してある。
出力導波路11で位相変調導波路7と位相電力調整導波路8とから出力されるプローブ光が干渉する。そして、干渉して形成されたプローブ光は、光電界振幅が0.75と一定で、位相がデジタル情報0のとき0ラジアン、デジタル情報1のときπラジアンのパルスからなる。最後に、フィルタ15によりプローブ光の波長の光だけを通過して位相変調された信号光を出力する。
このような光位相変調装置1は、半導体光増幅器12a、12bと半導体位相調整器13に入力される光強度に従って位相が変化する現象を利用して、マッハツェンダー干渉計3の2本のアームの一方だけに強度変調の信号光を入力することにより変調対象のプローブ光のパルス列の位相を変調することができる。そして、信号光により直接変調対象のプローブ光のパルス列を変調することができるので、従来のような光−電気変換のための素子を配設する必要がなく、省スペース化と省消費電力化することができる。
また、デジタル情報の0と1とに対応して出力するプローブ光のパルスの光電界振幅が同一になるように信号光の強度と半導体光増幅器の注入電流とが調整されているので、伝送路中の波形歪など光電界振幅に依存する影響によるパルス信号の依存性が小さくなる。
また、モードロックLD14が半導体光増幅器12a、12bと半導体位相調整器13やマッハツェンダー干渉計3と同じ半導体光基板2に集積化されるので、モジュールの小型化が可能となるし、光ファイバ等の部品点数が少なくなるため低価格化が可能となる。
また、光ファイバへの結合や光ファイバから素子への結合等による損失がなくなるため、モードロックLD14の光電界振幅が小さくでき、消費電力低下を実現できる。
また、集積化するパルス光源としてモードロックLD14を採用しているので、安定した周期のプローブ光のパルス列を得ることができる。
実施の形態2.
この発明の実施の形態2に係わる光位相変調装置は、実施の形態1に係わる光位相変調装置1のパルス光源としてのモードロックLD14の替わりにセルフパルセーティングLDが半導体光基板2に集積されていることが異なっており、それ以外は同様であるので、同様な部分の説明は省略する。
なお、セルフパルセーティングLDは、例えば、特開2004−241627号公報に示されているようなパルス光源であり、定電流駆動において緩和振動は減衰せずに時間とともに増大する一方で、誘導放出が増大するとキャリア密度は減少し、利得が閾値を下回ると発振が停止することを繰り返す発振方法を採用しているものである。
このような光位相変調装置は、パルス光源としてセルフパルセーティングLDが採用されているので、10GHz〜160GHzの変調速度に対応したフォーマット変換を行うことができる。
また、セルフパルセーティングLDが半導体光増幅器12a、12bと半導体位相調整器13やマッハツェンダー干渉計3と同じ半導体光基板2に集積化されるので、モジュールの小型化が可能となるし、光ファイバ等の部品点数が少なくなるため低価格化が可能となる。
実施の形態3.
図3は、この発明の実施の形態3に係わる光位相変調装置の構成図である。
この発明の実施の形態3に係わる光位相変調装置1Cは、実施の形態1に係わる光位相変調装置1のパルス光源としてのモードロックLD14に信号光を入力する光路を追加したことが異なっており、それ以外は同様であるので、同様な部分に同じ符号を付記して説明は省略する。
実施の形態3に係わる光位相変調装置1Cは、入射ポート5bから入射された信号光を分岐してモードロックLD14の素子端面側から入力し、モードロックLD14から出力されるプローブ光を入力導波路9に出力するための光サーキュレータ20を備える。このようにモードロックLD14に信号光を入力することにより信号光に同期したプローブ光が出力される。
このような光位相変調装置1Cは、モードロックLD14に信号光が入力されることにより、ジッタの少ないプローブ光のパルス列を提供することができるとともにジッタの少ない位相変調されたパルス列を得ることができる。
なお、パルス光源がセルフパルセーティングLDを使用していても同様な効果が得られる。
実施の形態4.
図4は、この発明の実施の形態4に係わる光位相変調装置の構成図である。
この発明の実施の形態4に係わる光位相変調装置1Dは、実施の形態1に係わる光位相変調装置1に光アシスト光源22が追加されることが異なっており、それ以外は同様であるので、同様な部分に同じ符号を付記して説明は省略する。
実施の形態4に係わる光位相変調装置1Dでは、半導体光基板2に入射ポート5cが追加され、入射ポート5cは入力導波路9に接続されている。また、半導体光基板2に光アシスト光源22が集積され、光アシスト光源22から入射ポート5cにアシスト光が入射される。アシスト光は、強度が一定で波長が1551nmの連続光である。
位相変調導波路7は、プローブ光と信号光とアシスト光が一緒に通過してそのプローブ光と信号光とアシスト光が半導体光増幅器12aに入力する。
このような光位相変調装置1Dは、半導体光増幅器12aにプローブ光と信号光とアシスト光とが入力されているので、プローブ光のパルス列による半導体光増幅器12aの自己位相変調効果を抑えることができ、波形の歪を低減する。図5に、2.5Gbit/sにおいてアシスト光源22の有無による位相変調光出力波形の変化に関する計算結果を示す。入力信号が0の時には、キャリア密度の変化が大きいためにパルス列の先頭が自己位相変調によって大きく歪んでいるが、アシスト光源を入れた場合には、信号の無い時のキャリア密度の過度の上昇を抑圧することができ、良好な光波形を得ることができる。
また、光アシスト光源22が半導体光基板2に集積化されているので、モジュールの小型化が可能となる。また、光ファイバ等の部品点数が少なくなるため低価格化が可能となる。また、光ファイバへの結合や光ファイバから素子への結合などでの損失がなくなるため、光アシスト光源22からのアシスト光の光電界振幅を小さくすることができ、消費電力低下を実現できる。
実施の形態5.
図6は、この発明の実施の形態5に係わる光位相変調装置の原理を説明するための概略図である。
この発明の実施の形態5に係わる光位相変調装置は、光位相変調部30を備え、光位相変調部30は実施の形態1に係わるマッハツェンダー干渉計3と構成が同様なマッハツェンダー干渉計31a、31bがプローブ光に対して並列に2つ配置されている。そして、マッハツェンダー干渉計31aとマッハツェンダー干渉計31bは、それぞれ第1の信号光と第2の信号光が入力され、プローブ光が2値位相変調される。そして、マッハツェンダー干渉計31a、31bでそれぞれ2値位相変調されたプローブ光を一方だけ位相調整してから合成することにより4値位相変調されたプローブ光が出力される。
そして、マッハツェンダー干渉計31aは、2本のアーム7a、8aを有し、2本のアーム7a、8aの両端には第1のプローブ光入力光路9aと第1の合成光路11aがそれぞれ接続されている。また、アーム7aには、直接第1の信号光入力光路10aが接続されている。そして、アーム7a、8aには、半導体光増幅器12a、12bが配置されている。
また、マッハツェンダー干渉計31bは、同様に、2本のアーム7b、8bを有し、2本のアーム7b、8bの両端には第2のプローブ光入力光路9bと第2の合成光路11bがそれぞれ接続されている。また、アーム7bには、直接第2の信号光入力光路10bが接続されている。そして、アーム7b、8bには、半導体光増幅器12c、12dが配置されている。
また、実施の形態5に係わる光位相変調部30は、マッハツェンダー干渉計31aの第1の合成光路11aの出力とマッハツェンダー干渉計31bの第2の合成光路11bの出力を合成する出力光路32、第2の合成光路11bに配置され、π/2ラジアンだけ位相を調整する半導体位相調整器33、出力光路32に配置されプローブ光だけ通過するフィルタ34を備える。このプローブ光入力光路9a、9b、信号光入力光路10a、10b、合成光路11a、11b、出力光路32は、光学的な導波路から構成されている。
また、実施の形態5に係わる光位相変調装置は、2つの入射ポート35a、35b、プローブ光入射ポート5aおよび出射ポート6を備える。そして、入射ポート35aに第1の信号光入力光路10a、入射ポート35bに第2の信号光入力光路10b、プローブ光入射ポート5aに第1のプローブ光入力光路9aと第2のプローブ光入力光路9bが接続されている。また、出射ポート6には出力光路32が接続されている。
プローブ光入射ポート5aから等時間間隔のパルス列のプローブ光が入射され、一方の入射ポート35aからプローブ光と同じ周期のクロックに同期し、強度変調された第1の信号光が入射され、他方の入射ポート35bからプローブ光と同じ周期のクロックに同期し、強度変調された第2の信号光が入射され、出射ポート6から4値位相変調された出力信号光が出射される。
第1の合成光路11aで合成されたプローブ光は、第1の信号光の強度の0と1とに対応して出力するプローブ光のパルスの光電界振幅が同一になるように第1の信号光の強度と半導体光増幅器12a、12bの注入電流とが調整されているので、光電界振幅が同一で、第1の信号光の強度が0のとき位相が0ラジアン、第1の信号光の強度が1のとき位相がπラジアンのパルスからなる。
また、第2の合成光路11bで合成され、π/2ラジアンだけ位相が調整されたプローブ光は、第2の信号光の強度0と1とに対応して出力するプローブ光のパルスの光電界振幅が同一になるように第2の信号光の強度と半導体光増幅器12a、12bの注入電流とが調整されているので、第2の信号光の強度が0のとき位相がπ/2ラジアン、第2の信号光の強度が1のとき位相が−π/2ラジアンのパルスからなる。
そして、出力光路32で合成され、フィルタ34を通過したプローブ光は、両アームでプローブ光の光電界振幅が等しくなるように設計されており、干渉時の両アームでのプローブ光の位相差は第1の信号光と第2の信号光の強度のどの組合せにおいてもπ/2ラジアンとなるので、干渉後に出力されるプローブ光の強度も第1の信号光と第2の信号光の強度の組合せに係わらず等しくなる。
また、出力光路32で合成され、フィルタ34を通過したプローブ光は、第1の信号光が0および第2の信号光が0のとき位相がπ/4ラジアン、第1の信号光が0および第2の信号光が1のとき位相が−π/4ラジアン、第1の信号光が1および第2の信号光が0のとき位相が3π/4ラジアン、第1の信号光が1および第2の信号光が1のとき位相が−3π/4ラジアンである。
このように両方のアームを通過し、それぞれ2値位相変調されたプローブ光のパルス列を干渉させ合うことにより、光電界振幅がほぼ一定で4値位相変調されたプローブ光のパルス列が得られる。それから、マッハツェンダー干渉計の出力光路32に介設されたフィルタ34により、4値位相変調されたプローブ光のパルス列だけが取り出せる。
なお、4つの位相にプローブ光のパルス列を変調することができれば、π/ラジアン、−π/4ラジアン、3π/4ラジアン、−3π/4ラジアンの組合せに限るものではない。
実施の形態6.
図7は、この発明の実施の形態6に係わる光位相変調装置の原理を説明するための概略図である。
この発明の実施の形態6に係わる光位相変調装置は、実施の形態5に係わる光位相変調部30と構成が同様な光位相変調部41a、41bがプローブ光に対して並列に2つ配置されている。
また、プローブ光を元に第3の信号光により2つのパルス列のプローブ光を生成する切替光スイッチ42を備える。この切替光スイッチ42には、等時間間隔のパルス列からなるプローブ光およびプローブ光の周期と同じクロックに同期して強度変調された第3の信号光が入力される。そして、切替光スイッチ42では、第3の信号光の強度が1のときパルスの光電界振幅が1、第3の信号光の強度が0のときパルスの光電界振幅が0の第1のプローブ光を生成する。また、切替光スイッチ42では、第3の信号光の強度が1のときパルスの光電界振幅が0、第3の信号光の強度が0のときパルスの光電界振幅が1の第2のプローブ光を生成する。
この第1のプローブ光と第2のプローブ光の強度は、対称的な値を示し、一方が1のとき他方が0、一方が0のとき他方が1となる。そして、第1のプローブ光が光位相変調部41aにプローブ光として入力され、第2のプローブ光が光位相変調部41bにプローブ光として入力される。
光位相変調部41aは、第1のプローブ光、第1の信号光および第2の信号光が入力され、第1のプローブ光を4値位相変調し、4値位相変調したプローブ光を出力する。
また、光位相変調部41bは、第2のプローブ光、第1の信号光および第2の信号光が入力され、第2のプローブ光を4値位相変調し、4値位相変調したプローブ光を出力する。この第1または第2のプローブ光を第1の信号光および第2の信号光で4値位相変調する動作は、実施の形態5と同様であるので説明は省略する。
また、実施の形態6に係わる光位相変調装置は、両方の光位相変調部41a、41bから出力される4値位相変調されたプローブ光を合波する合波部43を備える。
そして、この合波部43は、光位相変調部41bから出力される4値位相変調されたプローブ光の位相をπ/4ラジアン調整する半導体位相調整器44と、この位相が調整されたプローブ光と光位相変調部41aから出力される4値位相変調されたプローブ光とを合波する合波光路45と、合波されたプローブ光からプローブ光だけ通過するフィルタ46を備える。
この位相が調整されたプローブ光は、第1の信号光の強度が0および第2の信号光の強度が0のとき位相がπ/2ラジアン、第1の信号光の強度が1および第2の信号光の強度が0のとき位相がπラジアン、第1の信号光の強度が0および第2の信号光の強度が1のとき位相が−π/2ラジアン、第1の信号光の強度が1および第2の信号光の強度が1のとき位相が0ラジアンである。
そして、光位相変調部41aから出力される4値位相変調されたプローブ光と位相調整されたプローブ光が合成され、フィルタ46によりプローブ光だけ通過され、8値位相変調されたプローブ光が出力される。
この8値位相変調されたプローブ光は、第1の信号光の強度が0、第2の信号光の強度が0および第3の信号光の強度が0のとき位相がπ/4ラジアン、第1の信号光の強度が0、第2の信号光の強度が0および第3の信号光の強度が1のとき位相がπ/2ラジアン、第1の信号光の強度が1、第2の信号光の強度が0および第3の信号光の強度が0のとき位相が3π/4ラジアン、第1の信号光の強度が1、第2の信号光の強度が0および第3の信号光の強度が1のとき位相がπラジアン、第1の信号光の強度が0、第2の信号光の強度が1および第3の信号光の強度が0のとき位相が−π/4ラジアン、第1の信号光の強度が0、第2の信号光の強度が1および第3の信号光の強度が1のとき位相が−π/2ラジアン、第1の信号光の強度が1、第2の信号光の強度が1および第3の信号光の強度が0のとき位相が−3π/4ラジアン、第1の信号光の強度が1、第2の信号光の強度が1および第3の信号光の強度が1のとき位相が0ラジアンである。
このように、強度変調された信号光により強度が対称的に強度変調された2つのプローブ光を生成し、そのプローブ光を2つの信号光の強度により4値位相変調できる2つの光位相変調部41a、41bに強度変調されたプローブ光をそれぞれ入力し、光位相変調部41a、41bから出力される4値位相変調されたプローブ光を合成することにより、3つの信号光を用いて8値位相変調されたプローブ光を出力することができる。
なお、8つの位相のパルス列にプローブ光を変調することができれば、上述の組合せに限るものではない。
実施の形態7.
図8は、この発明の実施の形態7に係わる光位相変調装置の1つの構成を説明するための概略図である。
実施の形態6に係わる光位相変調装置は、プローブ光を2つの信号光の強度により4値位相変調できる2つの光位相変調部41a、41bが並列に備えられる。また、実施の形態6において、各光位相変調部41a、41bに入力されるプローブ光は、等時間間隔のパルス列からなる原プローブ光を第3の信号光により強度が対称的に変調して得られた2つのパルス列である。そこで、実施の形態7においては、より多値に位相変調されたプローブ光を得ることを目的に、拡張したものである。
実施の形態7に係わる光位相変調装置は、プローブ光を2つの信号光の強度により4値位相変調できる2個の光位相変調部、各光位相変調部に入力されるプローブ光として、等時間間隔のパルス列からなる原プローブ光を1段目で信号光により対称的に強度変調して2つのプローブ光を生成し、さらにこの2つのプローブ光をそれぞれ信号光により対称的に強度変調して2つのプローブ光を生成し、N段目で2個のプローブ光を生成する光切替スイッチ、および1段目で4値位相変調された2個のプローブ光を2(N−1)個の8値位相変調されたプローブ光に合波し、N段目で1個の2(N+2)値位相変調されたプローブ光に合波する合波部を備える。実施の形態6に係わる光位相変調装置は、Nが1の場合である。
図8に示す光位相変調装置は、Nが2のときであり、4つの光位相変調部51a〜51d、1段目で原プローブ光を第3の信号光に基づいて強度が対称的な2つのパルス列を生成し、2段目で2つのパルス列をそれぞれ第4の信号光に基づいて強度が対称的な2つのパルス列、全体として4つのパルス列を生成する光切替スイッチ52、4つの光位相変調部51a〜51dから出力される4値位相変調されたプローブ光を1段目で2つの8値位相変調されたプローブ光に合波し、2段目で1つの16値位相変調されたプローブ光に合波する合波部53を備える。
この発明に係わる光位相変調の原理を説明するための概略図である。 実施の形態1に係わる光位相変調装置の構成図である。 この発明の実施の形態3に係わる光位相変調装置の構成図である。 この発明の実施の形態4に係わる光位相変調装置の構成図である。 この発明の実施の形態4による光出力波形を示す図である。 この発明の実施の形態5に係わる光位相変調装置の原理を説明するための概略図である。 この発明の実施の形態6に係わる光位相変調装置の原理を説明するための概略図である。 この発明の実施の形態7に係わる光位相変調装置の1つの構成を説明するための概略図である。
符号の説明
1、1C、1D 光位相変調装置、2 半導体光基板、3、31a、31b マッハツェンダー干渉計、4 光符号変換部、5a、5b、5c、35a、35b 入射ポート、6 出射ポート、7 位相変調導波路、8 位相電力調整導波路、9 プローブ光入力光路(入力導波路)、10 信号光入力光路(信号光導波路)、11 合成光路(出力導波路)、12a〜12d 半導体光増幅器、13、33、44 半導体位相調整器、14 モードロックLD、15、34、46 フィルタ、20 光サーキュレータ、22 光アシスト光源、30、41a、41b、51a〜51d 光位相変調部、32 出力光路、42、52 光切替スイッチ、43、53 合波部。

Claims (11)

  1. 2つ以上の入射ポートと、1つ以上の出射ポートと、2本のアーム、上記2本のアームと一方の上記入射ポートとを連通する入力導波路および上記2本のアームと上記出射ポートとを連通する出力導波路から構成され、一方の上記アームに他方の上記入射ポートが直接接続されたマッハツェンダー干渉計とが設けられた光符号変換部と、
    上記2本のアームにそれぞれ1つ以上配置された半導体光増幅器と、
    他方の上記アームに1つ以上配置された半導体位相調整器と、
    を備え、
    上記入力導波路にプローブ光のパルス列が入力され、上記一方の入射ポートに強度変調された信号光が入力され、上記出射ポートから上記信号光により位相変調されたプローブ光のパルス列が出力されることを特徴とする光位相変調装置。
  2. 出力される上記プローブ光の上記信号光の強度にそれぞれ対応するパルスの光電界振幅が同じであることを特徴とする請求項1に記載する光位相変調装置。
  3. 上記光符号変換部と一体として集積化された上記プローブ光を出力するパルス光源を備えることを特徴とする請求項1または2に記載する光位相変調装置。
  4. 上記パルス光源は、モードロックLDであることを特徴とする請求項3に記載する光位相変調装置。
  5. 上記パルス光源は、セルフパルセーティングLDであることを特徴とする請求項3に記載する光位相変調装置。
  6. 上記パルス光源の素子端面側から上記信号光が入射されることを特徴とする請求項3乃至5のいずれか一項に記載する光位相変調装置。
  7. 上記一方のアームにアシスト光を入力することを特徴とする請求項1乃至6のいずれか一項に記載する光位相変調装置。
  8. 上記光符号変換部と一体として集積された上記アシスト光を出力する光アシスト光源を備えることを特徴とする請求項7に記載する光位相変調装置。
  9. 4本のアーム、4本のアームが2つの組に分けられた一方の組の2本の上記アームに接続する第1のプローブ光入力光路、他方の組の2本の上記アームに接続する第2のプローブ光入力光路、上記一方の組の一方の上記アームに接続する第1の信号光入力光路、上記他方の組の一方の上記アームに接続する第2の信号光入力光路、上記一方の組の2本のアームからの出力信号を合成する第1の合成光路、上記他方の組の2本のアームからの出力を合成する第2の合成光路、上記第1および第2の合成光路からの出力を合成する出力光路、上記4本のアームにそれぞれ1つ以上配置された半導体光増幅器および上記第1または第2の合成光路の一方に配置された半導体位相調整器から構成される光位相変調部を備え、
    上記第1のプローブ光入力光路および上記第2のプローブ光入力光路に等時間間隔のパルス列からなるプローブ光が入力され、上記第1の信号光入力光路に強度変調された第1の信号光が入力され、上記第2の信号光入力光路に強度変調された第2の信号光が入力され、上記出力光路から4値位相変調されたプローブ光が出力されることを特徴とする光位相変調装置。
  10. 上記プローブ光入力光路、上記信号光入力光路、上記合成光路および上記出力光路が光学的な導波路で構成されることを特徴とする請求項9に記載する光位相変調装置。
  11. (但し、Nは1以上の正の整数)個の上記請求項9に記載の光位相変調部と、
    等時間間隔のパルス列の原プローブ光が入力され、段毎に入力されるパルス列毎に強度が対称的な2個のパルス列を生成し最終的に2個のプローブ光を出力する切替光スイッチと、
    各上記光位相変調部で4値位相変調されたプローブ光を2個づつ一方の位相を調整して合波し、更に2個づつ合波を繰り返し2(N+2)値位相変調した1個のプローブ光を出力する合波部と、
    を備えることを特徴とする光位相変調装置。
JP2006240170A 2005-09-05 2006-09-05 光位相変調装置 Pending JP2007094398A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006240170A JP2007094398A (ja) 2005-09-05 2006-09-05 光位相変調装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005256256 2005-09-05
JP2006240170A JP2007094398A (ja) 2005-09-05 2006-09-05 光位相変調装置

Publications (1)

Publication Number Publication Date
JP2007094398A true JP2007094398A (ja) 2007-04-12

Family

ID=37980118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006240170A Pending JP2007094398A (ja) 2005-09-05 2006-09-05 光位相変調装置

Country Status (1)

Country Link
JP (1) JP2007094398A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014075387A (ja) * 2012-10-02 2014-04-24 Mitsubishi Electric Corp 光集積素子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014075387A (ja) * 2012-10-02 2014-04-24 Mitsubishi Electric Corp 光集積素子

Similar Documents

Publication Publication Date Title
US6760142B2 (en) Delay interferometer optical pulse generator
US7761012B2 (en) Optical communication system and method for generating dark return-to zero and DWDM optical MM-Wave generation for ROF downstream link using optical phase modulator and optical interleaver
JP4278332B2 (ja) 光送信器および光伝送システム
US8380084B2 (en) Polarization multiplexing and transmitting apparatus
US20100021182A1 (en) Optical transmitter
US6643046B2 (en) Apparatus and method for optical modulation
JP2007086207A (ja) 位相制御光fsk変調器
JP5786565B2 (ja) 光多重装置および光ネットワークシステム
US20110188800A1 (en) Optical modulation device and optical modulation method
JP4889661B2 (ja) 光マルチキャリア発生装置およびそれを用いた光マルチキャリア送信装置
US7133622B2 (en) Return-to-zero (RZ) optical data modulator
JP5870754B2 (ja) 光信号送信装置及び光信号送信方法
US6535316B1 (en) Generation of high-speed digital optical signals
JP2004312678A (ja) デュオバイナリ光伝送装置
JP3447664B2 (ja) 光送信器および光送信器制御方法
JP5691426B2 (ja) 光送信器および偏波ビットインターリーブ信号生成方法
JP2007094398A (ja) 光位相変調装置
JP4693644B2 (ja) 波長多重光変調方法および装置
EP1515461B1 (en) Duobinary optical transmitter
JP5374709B2 (ja) 光送信器
CN114285485B (zh) 一种基于延时线干涉仪的相位编码方法及系统
JP4249093B2 (ja) Cs−rz出力波長変換装置
JP4400716B2 (ja) 全光スイッチおよび方法
JP4823945B2 (ja) 光位相変調装置
JP2005222083A (ja) 光パルス発生装置及び光パルス発生方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061213