CN101438517A - 光电场接收器、光多值信号接收器以及光传送系统 - Google Patents

光电场接收器、光多值信号接收器以及光传送系统 Download PDF

Info

Publication number
CN101438517A
CN101438517A CNA2006800545488A CN200680054548A CN101438517A CN 101438517 A CN101438517 A CN 101438517A CN A2006800545488 A CNA2006800545488 A CN A2006800545488A CN 200680054548 A CN200680054548 A CN 200680054548A CN 101438517 A CN101438517 A CN 101438517A
Authority
CN
China
Prior art keywords
signal
light
mentioned
receiver
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006800545488A
Other languages
English (en)
Other versions
CN101438517B (zh
Inventor
菊池信彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Communication Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Communication Technologies Ltd filed Critical Hitachi Communication Technologies Ltd
Publication of CN101438517A publication Critical patent/CN101438517A/zh
Application granted granted Critical
Publication of CN101438517B publication Critical patent/CN101438517B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/67Optical arrangements in the receiver
    • H04B10/671Optical arrangements in the receiver for controlling the input optical signal
    • H04B10/672Optical arrangements in the receiver for controlling the input optical signal for controlling the power of the input optical signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0008Synchronisation information channels, e.g. clock distribution lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0075Arrangements for synchronising receiver with transmitter with photonic or optical means

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本发明提供一种光电场接收器、光多值信号接收器以及光传送系统,该光电场接收器包括:光分支器,将所接收到的光多值信号分支成第1、第2光信号;第1光延迟检波器,以延迟时间T(T=符号时间)对上述第1光信号进行延迟检波;第2光延迟检波器,通过相对上述第1光延迟检波器偏移90度的光相位差,以延迟时间T对上述第2光信号进行延迟检波;第1、第2光接收器,将从上述第1、第2延迟检波器输出的表示复数信号的x分量、y分量的延迟检波信号分别变换成电信号;以及电场运算部,从上述第1、第2光接收器的输出信号,针对每个符号时间T,生成表示以上述复数信号表示的接收符号的振幅值和相位角的第1、第2再现信号。

Description

光电场接收器、光多值信号接收器以及光传送系统
技术领域
本发明涉及光信息传送技术,更详细而言涉及适用于在光纤中传送的多值光信息的接收的光电场接收器、光多值信号接收器以及光传送系统。
背景技术
近年来,使用一根光纤可以传送的信息量(传送容量)伴随被复用的波长信道的数量的增加、光信号的调制速度的高速化而继续扩大,但感觉在大致10T(Tera)bit/s达到了极限。难以进一步扩大传送容量的主要原因在于,光传送中可以使用的波长频带已达到被光纤放大器的波长频带(将C、L、S波段相加而大致为80nm=10THz)限制的极限区域。在这样的状况下,为了进一步增大光纤的传送容量,需要通过研究信号调制方式,向被限制的频率频带填入多个的光信号,而提高频率频带的利用效率。
在无线通信的世界中,利用从20世纪60年代普及的多值调制技术可以实现频率利用效率超过10的高效率的传送。多值调制有望还被应用于光纤传送,从以往进行了许多研究。例如,在R.A.Griffin,等,“10Gb/s Optical Differential Quadrature Phase Shift Key(DQPSK)Transmission using GaAs/AlGaAs Integration,”OFC2002,paper PD-FD 6,2003(非专利文献1)中,报告出进行4值相位调制的QPSK(Quadrature Phase Shift Keying,正交相移键控),在Kenro Sekine,Nobuhiko Kikuchi,Shinya Sasaki,Shigenori Hayaseand Chie Hasegawa,“Proposal and Demonstration of 10-Gsymbol/sec 16-ary(40Gbit/s)Optical Modulation/DemodulationScheme,”paper We3.4.5,ECOC 2004,2004(非专利文献2)中,报告出组合了4值的振幅调制和4值的相位调制的16值的振幅、相位调制。
图1的(A)~(D)是示出光传送中可以应用的公知的各种调制方式的特征的图,在相位面(IQ平面上)绘制出光调制的相位点(识别时刻中的光电场的复数表示)。
(A)示出被广泛使用的2值振幅调制(BASK)。在BASK中,不利用相位,而仅通过振幅的强弱来传送1位的信息。
(B)示出通过使用4值的相位角(0、π/2、π、-π/2),表示使用1个符号传送2位的信息(11、10、01、00)的4值相位调制(QPSK)。
(C)示出在无线中被广泛使用的16值正交振幅调制(16QAM)。在16QAM中,相位点被配置成格子状,可以使用1个符号传送4位的信息。在图示的例子中,在Q轴坐标上表现上位2位(11xx、10xx、01xx、00xx)的值、在I轴坐标上表现下位2位(xx11、xx10、xx01、xx00)的值。该相位点配置由于可以增大相位点间的距离,所以接收灵敏度高,但尚未报告出光通信领域中的实现例。
(D)示出2值振幅调制的相位点和8值相位调制的相位点被同心圆状地配置的16值振幅相位调制(16APSK),(E)示出振幅与相位的关系。
这样,从以往对多值信号的各种相位点配置进行了研究,但伴随多值数的增加,接收器变得复杂。另外,如果多值数增加,则用于对相位分量进行检测的光延迟检波中的符号间干扰增加,所以存在接收灵敏度等特性急速恶化这样的问题。
另一方面,为了扩大光传送容量,还进行了使各波长(信道)的调制速度高速化至10Gbit/秒~40Gbit/秒左右的研究。但是,如果使调制速度高速化至该程度,则由于光纤所具有的波长分散、自相位调制效果等非线性效果,传送质量劣化得较大。在光传送的情况下,由于波长分散的影响,光传送距离以信号位速率的平方分之一急速降低。因此,在10Gbit/秒以上的光传送中,在光信号接收端、光中继器中,需要用于对在传送路径中发生的波长分散进行补偿的分散补偿器。例如,正在研究如下的自适应补偿技术:在40Gbit/秒的光传送中,由于针对波长分散的抵抗性在通常分散光纤中仅为5km左右,所以利用配置于光信号接收端的可变波长分散补偿器自动地进行控制,以使信号质量的劣化成为最小。
但是,可变波长分散补偿器在装置的尺寸、复杂度、成本、控制速度等点上还有较多的解决课题。近年来,正在研究在光信号接收机的电气电路部中配置有前馈均衡电路(FFE)或判定反馈均衡电路(DFE)等电气性自适应均衡电路的结构、使用最大似然估计电路(MLSE)估计接收接收符号的电气级补偿技术。但是,基于以往技术的电气级的波长分散补偿仅仅是对接收光波形的眼(eye)开口进行整形的不完全的补偿。因此也是如下的不充分的补偿效果,使接收器的波长分散抵抗性有效上扩大至1.5~2倍,例如在40Gbit/秒的通常的光纤传送中将传送距离延伸至10km左右。
作为可以解决上述问题的以往技术之一,例如有在M.G.Taylor,“Coherent detection method using DSP to demodulate signal and forsubsequent equalization of propagation impairments,”paperWe4.P.111,ECOC 2003,2003(非专利文献3)中报告的相干光电场接收系统。在相干光电场接收系统中,如图2(A)所示,在光纤传送路径中传送的光多值信号123通过偏振波分离电路131被分离成水平(P)偏振波分量133和垂直(S)偏振波分量134后,分别被输入到相干光电场接收器135-1、135-2。
在相干光电场接收系统中,需要具有与发送光源大致相同的波长的本地振荡激光光源130。来自上述激光光源130的输出光(本地发光)132通过光分支器102被分离成2个本地发光132-1和132-2后,并被输入到相干光电场接收器135-1和135-2。
相干光电场接收器135-1具备光相位分集电路136和数字运算电路141。光相位分集电路136从所输入的光多值信号的P偏振波分量133和本地发光132-1,生成由本地发光与光多值信号的同相分量构成的I(同相)分量输出光137、和由本地发光与光多值信号的正交分量构成的Q(正交)分量输出光138,I分量输出光137供给到平衡型光接收器105-1,Q分量输出光138供给到平衡型光接收器105-2。分别通过A/D变换器106-1、106-2对从平衡型光接收器105-1、105-2输出的模拟电信号进行时间采样,而变换成数字信号。
在以下说明中,如图1的(E)所示,将接收信号的光电场定义成r(n)exp(φ(n)),将本地发光132-1、132-2的光电场表示成exp(-φ(n))。此处,r表示光电场的振幅,φ表示光电场的相位,n表示采样时刻,本地发光132的振幅假定成固定值“1”。另外,θ(n)表示激光光源本质上所具有的随机的相位噪声和由于本地发光与信号光的差频率分量而产生的相位变动等。另外,发送机侧的发送光源也具有相位噪声,但此处,为使说明简单化,将其忽略。
各平衡型光接收器105-1、105-2使用本地发光对所输入的光多值信号进行零差检波后,分别输出以本地发光为基准的光多值信号的光电场的同相分量和正交分量。因此,A/D变换器106-1的输出信号140-1成为I’(n)=r(n)cos(φ’(n)),A/D变换器106-2的输出电信号140-2成为Q’(n)=r(n)sin(φ’(n))。但是,此处,为简化而设为φ’(n)=φ(n)+θ(n),将变换效率等常数全部设为“1”。
此处,如果忽略相位变动θ(n),则成为φ’(n)=φ(n)。因此,在使用了相干光电场接收器的情况下,从所接收到的光多值信号123,可以直接且简单地得到表示光电场r(n)exp(φ(n))的全部信息(此处是指I、Q两个分量),应可以实现多值光信号接收,但实际上无法忽略本地发光132的相位变动θ(n)的影响。例如,如果假设成所接收到的光多值信号通过图1的(C)所示的16值正交调制(16QAM)进行了多值调制,则在存在相位变动θ(n)的情况下,同等化地如图2的(B)所示,接收信号的相位点配置从理想的位置仅旋转θ(n)。其结果,从上述的I’(n)和Q’(n),无法识别发送了哪个符号(相位点)。
数字运算电路141从A/D变换器106-1、106-2的输出信号,检测相位点的充分的旋转分量(~几百MHz),将该旋转分量视为相位变动θ(n)而通过运算处理从A/D变换器的输出信号去除,向符号判定电路143输出表示正确的同相分量I(n)=r(n)cos(φ(n))、正交分量Q(n)=r(n)sin(φ(n))的输出信号142-1、142-2。
平衡型光接收器105-2通过与平衡型光接收器105-1同样的动作,也输出正确的同相分量I(n)=r(n)cos(φ(n))、正交分量Q(n)=r(n)sin(φ(n)),而作为输出信号142-3、142-4。符号判定电路143通过将从上述各数字运算电路141输出的I、Q分量与图1(C)所示的相位点配置进行比较,而高精度地判别传送了哪个符号,并输出再现多值数字信号144。
如果利用上述的相干光电场接收器,则可以通过运算处理对起因于波长分散等的信号劣化进行补偿,而生成识别多值信号所需的所有电场信息,所以在原理上不论如何复杂的多值信号,都可以接收。另外,在上述相干光电场接收器中,使用数字运算电路141,对输入信号利用光纤传送路径的传播函数的反函数进行矫正处理,从而理论上可以完全补偿由于波长分散等而引起的线性劣化,具有在补偿量中也没有限制这样的大的优点。但是,目前,在市场上尚未提供具有10Gbit/秒以上的信号处理性能的小型的高速数字运算电路141,所以上述的数字处理型的相干光电场接收器利用计算机对使用高速的A/D变换器取入的电信号140-1、140-2进行离线运算,其效果处于验证中的阶段。
另一方面,图3的(B)示出以非专利文献2为代表的以往的振幅相位调制光接收用的光多值信号接收器的结构图,图3的(A)示出相位4值、振幅2值的8个相位点被配置在同心圆上的8值的振幅相位调制光(8APSK)的1个例子。如8APSK信号,在相位分量被等间隔地分割的光调制中,通常在相位分量的调制中使用差动编码。在本例子中,与振幅2值和与前一符号的相位差成为0、π/2、π、-π/2中的某一个的相位4值相关联地,而使用各符号传送3位的信息。
接收8APSK信号的光多值信号接收器是不检测光电场的非相干方式,如图3的(B)所示,所输入的光APSK信号124通过光分支电路150被分支成3个光信号。其中,对光延迟检波器104-1和104-2输入2个光信号,向光强度接收器151输入剩余的1个光信号。光延迟检波器104-1和104-2分别由对输入信号提供符号时间T的延迟的第1光路径和具有-π/4移相器或+π/4移相器的第2光路径构成,使所接收到的光多值信号的状态(符号)与在时刻T之前接收到的符号干涉,而将相位调制分量变换成光强度信号。
具有+π/4移相器的光延迟检波器104-1的输出光在接收符号与前一符号的相位差成为0或+π/2时输出强度变大,在相位差成为-π/2或π时输出强度变小。通过使用平衡型接收器105-1接收光延迟检波器104-1的输出光,并使用2值判定电路152-1对该输出进行2值判定,得到1位的2值再现数字信号153-1。
具有-π/4移相器的光延迟检波器104-2的输出光在接收符号与前一符号的相位差成为0或-π/2时输出强度变大,在相位差成为π/2或π时输出强度变小。通过经由平衡型接收器105-2向2值判定电路152-2输入光延迟检波器104-2的输出光,再现出包含在相位分量中的另外1位的2值再现数字信号153-2。
光强度接收器151将接收信号的光强度(光电场振幅的平方)变换成电信号。光强度接收器151的输出通过2值判定电路152-3进行判定,而再现出包含在光振幅分量中的1位的2值再现数字信号153-3。该光多值信号接收器由于使用光延迟检波,所以几乎没有相位变动θ(n)的影响和偏振波依赖性,具有无需本地振荡光源等优点,适用于直到16值的APSK信号的接收。
图4示出S Calabro,“Improved Detection of Differential PhaseShift Keying Through Multi-symbol Phase Estimation,”proc.ECOC’05,We4P 118,25-292005年9月,Glasgow,Scotland,2005(非专利文献4)中示出的2值相位调制光的接收器。
该接收器为了高灵敏度地接收2值差动相位调制(DPSK)的输入光信号159,应用无线通信中使用的判定反馈方式。在本例子中,将输入信号分支成2个光信号后,输入到光延迟检波器104-1和104-2。光延迟检波器104-1和104-2与图5同样地由对输入信号提供符号时间T的延迟的第1光路径和具有相位角0的移相器或π/2移相器的第2光路径构成。
此处,将相位调制分量设为φ(n),将2值相位调制信号的光电场表示成exp(φ(n))。如果分别向平衡型接收器105-1、105-2输入光延迟检波器104-1、104-2的输出,则2个平衡型接收器的输出信号被表示成cos(Δφ(n))、sin(Δφ(n))。其中,是Δφ(n)=φ(n)-φ(n-1),振幅分量成为固定,所以被归一化成“1”。
平衡型接收器105-1的输出cos(Δφ(n))的值如果没有噪声,则与差动相位调制Δφ对应地,在Δφ=0的情况下成为“1”,在Δφ=π的情况下成为“-1”,成为与DPSK信号的信息值对应的值。因此,在通常的DPSK接收器中,在原理上向2值判定电路152直接输入平衡型光接收器105-1的输出,而得到2值再现数字信号153(在Δφ=0时为“1”,在Δφ=π时为“-1”)。
但是,在这样的延迟检波中,如果在光信号中存在噪声或符号间干扰,则在前一符号中相位φ(n-1)产生波动,在Δφ(n)的判定中发生误差。为了降低这样的Δφ(n)的判定误差,在图4所示的接收器中,采用判定反馈方式。
具体而言,通过使用延迟电路157-1、157-2和乘法器158-1、158-2,对前一符号的相位差信息cos(Δφ(n-1))、sin(Δφ(n-1))乘上从2值判定电路152输出的2值数字信息,消除差动相位调制分量(“0”或“π”),仅抽取误差分量。从所抽取的误差分量和新的相位差信息φ(n),使用4象限乘法器156生成补偿信号,向加权电路155-1、155-2输入补偿信号。通过使用加法电路154-1、154-2向接收信号加上加权后的补偿信号,而部分地去除前位(符号)的影响。由此,从加法电路154-1、154-2得到正确度增加的2值差动相位调制分量cos(Δφi(n))、sin(Δφi(n)),所以可以降低2值判定结果的误差分量,提高接收灵敏度。
上述的2值相位调制光接收器从结构的对称性,可以比较容易地扩展至4值的差动相位调制信号接收。但是,难以通过相位调制与振幅调制的组合扩展至4值以上的光多值信号接收。
非专利文献1:R.A.Griffin,等,“10Gb/s Optical DifferentialQuadrature Phase Shift Key(DQPSK)Transmission usingGaAs/AlGaAs Integration,”OFC 2002,paper PD-FD 6,2003
非专利文献2:Kenro Sekine,Nobuhiko Kikuchi,Shinya Sasaki,Shigenori Hayase and Chie Hasegawa,“Proposal and Demonstrationof 10-Gsymbol/sec 16-ary(40Gbit/s)OpticalModulation/DemodulationScheme,”paper We3.4.5,ECOC 2004,2004
非专利文献3:M.G.Taylor,“Coherent detection method usingDSP to demodulate signal and for subsequent equalization ofpropagation impairments,”paper We4.P.111,ECOC 2003,2003
非专利文献4:S Calabro,“Improved Detection of DifferentialPhase Shift Keying Through Multi-symbol Phase Estimation,”proc.ECOC’05,We4P 118,25-29 2005年9月,Glasgow,Scotland,2005
发明内容
本发明的第1目的在于提供一种无偏振波依赖性且无需本地振荡光源的实用性的光电场接收器以及光多值信号接收器。
本发明的第2目的在于提供一种光电场接收器以及光多值信号接收器,可以对符号判定中所需的光多值调制信号的所有电场信息(接收符号的振幅值、相位角、或符号间相位差)进行检测。
在光纤传送中,知道传送光信号的偏振波的状态在时间上较大地变动。图2中说明的相干光电场接收器在原理上存在偏振波依赖性,如果上述的P偏振波分量由于偏振波的变动而丧失,则相干光电场接收器135-1无法动作。因此,在图2所示的相干光电场接收系统中,准备:接收光多值信号的P偏振波分量133的相干光电场接收器135-1、和接收S偏振波分量的相干光电场接收器135-2,符号判定电路143作为选择这些2个接收器中的一个而进行符号判定的偏振波分集结构。
进而,在相干光电场接收系统中,由于需要波长与接收光大致一致的本地振荡光源130,所以存在波长管理变得复杂这样的问题。另外,通过采用偏振波分集结构,即使偏振波状态变动也可以接收输入光信号,但在该情况下,需要偏振波分离电路131、光分支器102等多余的光部件,存在接收器的硬件规模变大这样的在实用上的大问题。
另一方面,在图3中说明的多值光接收器、图4中说明的判定反馈型的多值相位调制接收器中,仅对接收信号的强度和相对相位差分别进行2值判定,而无法进行光电场的所有信息的检测、例如图1(C)的16QAM信号的判定所需的振幅值与绝对相位值的组合。这是因为,在这些方式中使用的光延迟检波器用于对根据在时间轴上连续的2个符号的相对相位差而变化的强度信号进行检测,无法对各符号的绝对相位进行检测。另外由于判定限于2值,所以还无法进行图1(D)的16APSK信号的判定所需的相对相位差的8值检测等。
本发明的第3目的在于提供一种可以应用于多值数不同的多种光调制方式的通用性高的光电场接收器、光多值信号接收器以及光传送系统。
相干光电场接收器还对该课题有利。但是,如图3中说明的光多值信号接收器和图4中说明的判定反馈型多值相位调制接收器等那样,在非相干型的接收器中,构成为组合接收信号强度的2值判定和相对相位差的2值判定,所以在符号的多值数以2的N次幂增加的情况下,原则上需要N组的接收电路,接收器的结构复杂化。该结构复杂化在将来进一步期望多值数的增加的光多值信号接收器中,成为实用上的大问题。另外,对于这些非相干型的接收器,由于接收器的结构依赖于所接收的光信号的调制方式和相位点配置等而改变,所以还存在通用性欠缺这样的问题。在非专利文献2中,使用1个光强度接收器来接收4值的强度多值调制信号,但多值模拟信号在电气性电路级中的劣化变大,所以不易实现光信号的4值以上的多值化。
本发明的第4目的在于,实现以非相干方式对光电场的全部信息进行检测,而对传送中产生的线性劣化进行补偿的光电场接收器。一般在延迟检波中,人们如下考虑:如果光信号具有振幅调制分量,则输出信号强度随着振幅调制分量而变动,所以如果不是使用了本地振荡光源的相干光接收方式,则无法得到光电场信息。如果接收包含以往的2值振幅调制的多值调制后的光信号,而可以得到所有电场信息,则在接收器的电气性电路级中,通过运算处理对在传送中产生的线性劣化进行补偿,例如可以实现高度的分散补偿。
为了达成上述目的,在本发明的光电场接收器以及光多值信号接收器中,向相位相互偏移90度的1对光延迟检波器输入接收光信号,将各自的延迟检波输出变换成电信号,使用电场运算部计算出光电场信息。根据上述结构,由于不进行零差检波,所以无需本地振荡光源,并且由于在光延迟检波器中无偏振波依赖性,所以可以实现无偏振波依赖性的光电场接收器。
在具体说明时,在本发明中,从1对光延迟检波器,发生表示复数信号的正交分量x分量和y分量(或者I分量和Q分量)的2个延迟检波信号,使用电场运算部计算出上述复数信号的相位分量(符号间相位差),从所计算出的相位分量减去过去计算出的前一符号的相位角,从而计算出接收符号的相位角。另外,通过从上述2个延迟检波信号,计算出复数信号的振幅值,并将该值除以过去计算出的前一符号的振幅值,从而计算出接收符号的振幅值。
另外,接收符号的振幅值也可以根据与光延迟检波器独立设置的光强度检波器的输出而运算出。通过将光延迟检波器的输出信号变换成电气性模拟信号,并使用A/D变换器对其进行数字变换,从而使用电气性数字运算处理电路来实现这些运算。
在接收光信号为多值相位调制信号的情况下,本发明的光电场接收器以及光多值信号接收器具备多值符号判定电路,该多值符号判定电路从使用电场运算部计算出的符号间相位差,判定接收符号。另外,在接收光信号例如为如QAM信号和APSK信号等那样组合了振幅调制和相位调制的光多值调制信号的情况下,本发明的光电场接收器以及光多值信号接收器具备多值符号判定电路,该多值符号判定电路从使用电场运算部计算出的光电场的振幅值和相位分量(符号间相位差或符号相位角)、或者同相分量和正交分量,判定接收符号。在这样的光多值信号的接收中,相位、振幅的低速度变动成为问题,但可以在多值符号判定中例如通过采用判定反馈运算等方法来去除该变动分量。
在本发明的第1实施例中,将光延迟检波器的延迟时间T和A/D变换器的采样时间分别设定为1/2f(f为输入光信号所具有的最高频率分量)以下,以满足奈奎斯特定理。由此,作为数字光电场信号,可以还包含时间区域而再现输入光波形的完全的复制,可以缓和由波长分散等的波形劣化而引起的光传送距离限制。
另外,针对所再现的光电场信号,例如如果可以使用光电场补偿电路进行光传送路径传播特性的逆运算,则可以进一步完全地补偿波长分散。在该情况下,需要对光电场补偿电路指定应补偿的波长分散量,但在波长分散值为已知的情况下预先指定固定的补偿值即可,在波长分散值不清楚的情况下,采用补偿值根据接收状态自动变更的自适应补偿型的光电场补偿电路即可。另外,在可以使用外部装置判定波长分散量的补偿值、恰当的补偿算法的情况下,可以从外部装置对光电场补偿电路设定补偿值。
例如,在付随构成光网络的光传送装置而配置了本发明的光电场接收器以及光多值信号接收器的情况下,利用与光网络连接的控制终端来计算出沿着光信号路径的光纤的总波长分散量,向光信号接收侧的光传送装置发送该值,提供到光电场接收器以及光多值信号接收器的光电场补偿电路而作为补偿量的初始值,从而可以设定最佳的补偿量。根据该方式,在光网络内的光信号路径被变更的情况下,可以对光电场补偿电路迅速地设定再次计算出的补偿量,所以无需自适应补偿型的光电场补偿电路,可以缩短自适应补偿控制中的向最佳状态的引入时间。
本发明由于使用光延迟检波器,所以不依赖于输入光的偏振波状态,与以往的相干检波方式不同,无需本地振荡光源,所以可以简化接收器的结构。另外,在以往的非相干型的多值光接收器中,伴随接收信号的多值数增加,电路规模大型化,但本发明的光电场接收器以及多值光接收器可以直接再现接收光电场的相位面上的二维坐标信息,所以具有即使在为了提高传送效率而增多了光调制信号的多值数的情况下,也可以通过实用性的硬件规模判定接收信号的符号这样的优点。另外,根据本发明,可以使用电气性数字电路来实现接收光信号的电场运算和多值判定等,所以可以通过同一接收器结构适用于多值数和调制方式等不同的光信号。
附图说明
图1是可以应用于光传送的调制方式的说明图。
图2是示出以往的相干光电场接收器的1个例子的结构图(A)和示出相位变动的影响的图(B)。
图3是8值振幅相位调制(APSK)信号的相位点配置(A)和以往的8APSK信号接收用的光多值信号接收器的结构图(B)。
图4是示出判定反馈型的以往的2值相位调制光接收器的1个例子的图。
图5是示出本发明的光电场接收器的第1实施例的结构图。
图6是示出第1实施例中的电气性接收信号(A)和再现电场信号(B)的变化的图。
图7是示出将第1实施例中的电场运算部111并联化时的结构图。
图8是示出本发明的光电场接收器的第2实施例的光多值信号接收器的结构图。
图9是通过实施例2中的判定反馈实现的相位噪声去除的原理说明图。
图10是用于说明第2实施例中采用的初始相位判定方法的图。
图11是示出本发明的光电场接收器的第3实施例的光多值信号接收器的结构图。
图12是示出本发明的光电场接收器的第4实施例的光多值信号接收器的结构图。
图13是示出本发明的光电场接收器的第5实施例的光APSK信号接收器的结构图。
图14是光APSK信号的差动接收的原理说明图。
图15是示出本发明的光电场接收器的第5实施例的N值光相位调制信号用的光信号接收器的结构图。
图16是示出本发明的光电场接收器的第6实施例的完全型光电场接收器的结构图。
图17是第7实施例中的波长分散补偿的原理说明图。
图18是通过第7实施例的光电场接收器实现的波长分散补偿的说明图。
图19是示出本发明的光电场接收器的第8实施例的自适应补偿型的光电场接收器的结构图。
图20是示出本发明的光电场接收器的第9实施例的2值强度调制信号用的光电场接收器的结构图。
图21是示出本发明的光电场接收器的第10实施例的波长复用光传送系统的结构图。
图22是在第10实施例中本地控制部所执行的补偿量设定例程的流程图。
图23是示出本发明的光电场接收器的第11实施例的由多个ADM构成的光网络的结构图。
图24是示出本发明的光电场接收器的第12实施例的光多值信号接收器的结构图。
图25是示出本发明的光电场接收器的第13实施例的光多值信号接收器的结构图。
图26是示出本发明的光电场接收器的第14实施例的交叉采样型的光多值信号接收器的结构图。
图27是第14实施例中的交叉动作的说明图。
标号说明
100  光电场接收器
101  输入光信号
102  光分支电路
103  光信号路径
104  光延迟检波器
105  平衡型光接收器
106  A/D 变换器
107  采样时钟
108  延迟调整电路
109  电信号的路径
111  电场运算部
112  平方运算电路
113  反正切运算电路
115  延迟除法电路
116  延迟加法电路
117  再现光电场信号
120  分组分割电路
121  分组合成电路
123  光多值信号
124  光APSK信号
130  本地振荡激光光源
131  偏振波分离电路
132  本地发光
133  光多值信号的P偏振波分量
134  光多值信号的S偏振波分量
136  相位分集电路
137  I分量输出光
138  Q分量输出光
141  数字运算电路
143  符号判定电路
144  再现多值数字信号
150  光分支电路
151  光强度接收器
152  2值判定电路
153  2值再现数字信号
154  加法器
155  加权电路
156  4象限乘法器
157  延迟电路
158  乘法电路
159  2值差动相位调制光
160  平方根电路
161  时钟抽取电路
171  减法电路
174  相位变动估计电路
175  相位变动的估计值
176  不依赖相位变动的符号判定电路
191  倍频时钟源
192  再采样电路
193  判定反馈均衡电路
194  判定反馈信号
195  自动增益控制电路
197  N值光相位调制信号
198  正交坐标变换电路
200  完全型光电场接收器
201  延迟量T/2的光延迟检波器
202  电场补偿电路
203  补偿后的电场信号
206  光纤传送路径
207  补偿量输入端子
208  电场计算部
210  光多值信号发送器
211  4倍电路
212  偏差最小化控制电路
213  2值振幅调制光发送器
214  眼开口检测电路
215  最大化控制电路
220  光波长复用传送装置
221  终端控制部
222  数据库
223  波长合波器
224  波长分波器
225  光放大器
226  光发送器
230  光分插装置
231  控制操作台
232  光信号的路径
233  补偿量设定信号的通信路径
234  延迟检波电路
240  分频时钟源
241  电场同步电路
242  矫正信号
243  复用电路
244  延迟量3T的光延迟检波器
具体实施方式
以下,参考附图对本发明的几个实施例进行说明。
实施例1
图5示出本发明的光电场接收器100的第1实施例。在图5中,光信号的路径用粗线表示,电信号的路径用细线表示。
用式r(n)exp(φ(n))表示的输入光信号101与图4中说明的以往的判定反馈型的多值相位调制接收器同样地,通过光分支电路102被分支成2个光信号后,被输入到光延迟检波器104-1和104-2。光延迟检波器104-1和104-2由对输入信号提供符号时间T的延迟的第1光路径、和具有相位角0的移相器或π/2移相器以在2个检波器中相位相互偏移π/2的第2光路径构成,使相移后的光多值信号的状态(符号)与仅在时刻T之前接收到的符号干涉。
从光延迟检波器104-1、104-2输出的光信号在分别通过光平衡型接收器(光检测器)105-1、105-2变换成电信号之后,通过A/D变换器106-1、106-2变换成数字信号。从A/D变换器106-1、106-2输出的数字信号分别通过延迟调整电路108-1、108-2,将2个信号路径的定时偏移调整到符号时间T以下之后,作为电气性接收信号110-1、110-2被供给到电场运算部111。
电气性接收信号110-1、110-2为复数信号,根据光延迟检波的原理,分别写成x=r(n)r(n-1)cos(Δφ(n))、y=r(n)r(n-1)sin(Δφ(n))。此处,是Δφ(n)=φ(n)-φ(n-1)。从上述正交分量x、y可知,在电气性接收信号110-1、110-2中,混合有第n个接收符号信息、其前一个的第n-1个接收符号信息。因此,在本实施例中,向电场运算部111输入这些信号,去除前一个的第n-1个符号信息,仅抽取第n个接收符号信息,作为再现光电场信号117-1、117-2而输出。在本例子中,再现光电场信号117-1表示电场振幅r(n),再现光电场信号117-2表示相位角φ(n)。
电场运算部111具体而言包括:平方运算电路112,用于从电气性接收信号110-1、110-2计算出延迟检波信号的振幅r(n)r(n-1);反正切运算电路113,用于从电气性接收信号110-1、110-2计算出延迟检波信号的相位差Δφ(n);延迟除法电路115,与平方运算电路112连接;以及延迟加法电路116,与反正切运算电路113连接。
延迟除法电路115通过从振幅r(n)r(n-1)去除前一接收符号的振幅r(n-1)分量,而输出表示接收符号的电场振幅r(n)的再现光电场信号117-1。另一方面,延迟加法电路116通过从相位差Δφ(n)去除前一接收符号的相位分量φ(n-1),而输出表示接收符号的相位角φ(n)的再现光电场信号117-2。
此处所示的光电场接收器通过在电场运算部111的后级连接用于判定与再现光电场信号r(n)和φ(n)对应的位值的多值符号判定电路,可以构成光多值信号接收器。另外,通过将光延迟检波器104-1、104-2的延迟时间和采样时间设定为符号时间T的1/2以下,并设置使用传送路径的传播函数的逆特性来矫正再现光电场信号的补偿运算电路,可以构成完全地补偿由于波长分散等而引起的信号劣化的光电场接收器以及光多值信号接收器。
图6是上述第1实施例的光电场接收器的动作定时的说明图。
A/D变换电路106-1、106-2分别以使用采样时钟107-1、107-2决定的期望的周期和定时,对光平衡型接收器105-1、105-2的输出信号进行A/D变换。
图6(A)示出输入到电场运算部111的电气性接收信号110-1(x分量)和电气性接收信号110-2(y分量)的变化,图6(B)示出从电场运算部111输出的再现电场信号117-1(振幅分量r)和再现电场信号117-2(相位分量φ)的变化。此处,使采样时钟的频率与接收光多值信号的符号速率一致,在各符号期间的中央的定时对接收信号进行采样。
平方运算电路112通过以符号周期计算出输入信号x、y的平方和的平方根,消除余弦项和正弦项,输出表示振幅之积r(n)r(n-1)的信号114-1。另外,反正切运算电路113通过计算出输入信号x、y的反正切tan-1(y/x),输出表示将输入信号x、y设为正交分量的复数信号(以下称为“延迟检波信号”)的相位差Δφ(例如-π<Δφ≤π)的信号114-2。
这些信号被分别输入到延迟除法电路115和延迟加法电路116。如果电场运算部111正常地动作,则应在之前的符号周期,已判明前一符号的电场信息r(n-1)和φ(n-1)的值。因此,在延迟除法电路115中,通过用从平方运算电路112输出的振幅积r(n)r(n-1)除以前一符号的振幅r(n-1),可以计算出接收符号的振幅r(n)。另外,在延迟加法电路中,通过对从反正切运算电路113输出的Δφ(n)加上前一符号的相位Δφ(n-1),可以计算出接收符号的相位角φ(n)。这样,在本实施例中,可以使用作为非相干接收器的光延迟检波型的光接收器,从输入光信号101抽取表示振幅值和相位角的光电场信息。
另外,在图5中,在光信号路径103上的光部件间的结合中,可以采样利用光部件间的光纤实现的结合、利用体光学元件空间束实现的结合、利用集成化的光部件间的波导实现的结合等各种连接方式。另外,如图所示,如果组合光延迟检波器104和平衡型接收器105,则对检波器输出信号的振幅进行倍增,具有可以去除无需的直流信号的优点。但是,还可以代替平衡型接收器105而应用通常的光强度检测器。
延迟调整电路108-1、108-2用于使光分支电路102和电场运算部111之间的2个信号路径中的信号传播时间一致,使x分量与y分量的运算定时一致,例如可以使用缓冲电路实现。但是,在采用了在制造阶段可以使2个信号路径长度完全地一致的电路结构的情况下,延迟调整电路108-1、108-2可以省略。另外,也可以不使用延迟调整电路108-1、108-2,而利用其他方法、例如利用对A/D变换器106-1、106-2供给的采样时钟107-1、107-2的施加定时来控制x分量与y分量的相对相位。
在图5中,在A/D变换器106-1(106-2)之后,配置了数字延迟调整电路108-1(108-2),但也可以设为将模拟延迟线用作延迟调整电路,并在其之后配置了A/D变换器106的电路结构。另外,也可以省略A/D变换器106,而使用模拟电路来实现电场运算部111的一部分或全部运算功能。
在此处所示的实施例中,使用了极坐标(r(n)、φ(n))运算型的电场运算部111,但还可以将正交坐标(I(n)、Q(n))运算型的部件用作电场运算部111。在该情况下,根据需要,使用坐标变换电路。
电场运算部111的功能可以例如用FPGA、ASIC、DSP或可重构功能的处理器来实现。在该情况下,在由电场运算部111应进行的运算的步骤和运算方法等中,根据其目的,有与实施例不同的各种变型和近似计算方法。另外,也可以如下构成:与不同的输入信号值对应地,向存储器存储预先运算出的输出值,并根据输入信号值以表查询形式求出运算结果。也可以在电场运算部111的内部,根据需要具备其他功能电路、例如对信号的振幅和强度等进行归一化的自动增益控制(AGC)电路。
在1个电场运算部111中,在不能得到充分的计算速度的情况下,也可以例如如图7所示,向分组分割电路120输入电场数据串,按照时间序列,如1~N、N+1~2N、2N+1~3N那样,按照每N个数据分割成3序列的数据分组(数据块),使用并列配置的3个电场运算部111-1~111-3来处理各数据分组,使用分组合成电路121来合成从各电场运算部输出的再现电场信号。另外,在这样分割处理电场数据串的情况下,需要调在各数据分组的连结部分进行整成以使光电场相位连续,其可以例如通过使前后的数据分组具有多位的重复部分并矫正成使重复位的相位一致来解决。
实施例2
图8作为本发明的第2实施例而示出利用了图5所示的光电场接收器100的光多值信号接收器。
如果在发送光源和光放大器等中发生噪声,则这些噪声(例如相位变动)成为使用光电场接收器再现的光电场相位的变动要因。第2实施例的特征在于,在接收到包含相位变动θ(n)的光多值信号123的情况下,可以从再现多值数字信号去除相位变动θ(n)的影响。
利用由光分支电路102、光延迟检波器104(104-1、104-2)、光平衡型接收器105(105-1、105-2)、A/D变换器106(106-1、106-2)、延迟调整电路108(108-1、108-2)和电场运算部111构成的与图1同样的光电场接收器对所接收到的光多值信号123进行处理。在本实施例中,从电场运算部111输出表示振幅分量r(n)的再现电场信号117-1和表示受到相位变动θ(n)的影响的相位分量φ’(n)的再现电场信号117-2。这些再现电场信号117-1、117-2被输入到不依赖相位变动的符号判定部176。
符号判定部176由符号判定电路143、相位变动估计电路174、延迟电路157-1、157-2和减法电路171构成。对符号判定电路143,输入再现电场信号117-1(振幅分量r(n))和通过后述的判定反馈从再现电场信号117-2去除了相位变动分量θ(n)而得到的再现电场信号172(相位分量φ(n)),输出符号判定结果而作为再现多值数字信号144。
参考图9对接收光多值信号123为16QAM信号时的符号判定部176的动作进行说明。
16QAM信号的正确的相位点位于图9(A)中用白圆表示的位置。此处,假定成从电场运算部111输出的时刻n的光电场信息表示在图9(A)中用黑圆表示的相位点。由于起因于发送装置中的光源的相位摆动、噪声、波形失真等的光信号的相位变动θ(n),在相位面上发生旋转偏移,在接收装置侧观察到的相位点从正确的相位点偏移。由此,无法判定所观察到的相位点相当于16QAM信号的哪个符号,所以在本实施例中,使用相位变动估计电路174从过去(时刻n-1)的相位点信息计算出时刻n的相位变动的估计值175(θ(n)),使用运算电路171从时刻n的相位分量φ’(n)去除上述相位变动的估计值θ(n),从而计算出正确的相位角φ(n)172。
通过上述估计值θ(n)的去除,如图9(C)所示修正相位点的配置。符号判定电路143从接收信号的振幅信息r(n)和相位信息φ(n),选择似乎是最准确的接收符号。简言之,计算出16QAM信号中的各符号位置(白圆)与接收信号所表示的相位点(黑圆)的距离,将距离最近的符号判定成接收符号即可。符号判定电路143输出在16QAM信号中对接收符号分配的4位的数字值而作为再现多值数字信号144。在本例子中,用二重圆表示的符号被判定成接收符号,相位角成为φD(n),输出数字值成为“1011”。
对相位变动估计电路174,经由延迟电路157-1和157-2,输入1个符号周期前的接收信号相位φ’(n-1)和在1个符号周期前判定的相位角φD(n-1)。在该情况下,如果忽略由于噪声引起的接收电场的随机偏差(图9(A)中的黑圆与二重圆的距离),则1个符号周期前的相位变动分量θ(n-1)如图9(B)所示可以计算成θ(n-1)=φ’(n-1)-φD(n-1)。实际上,相位变动分量θ的变化速度与符号速度(千兆赫以上)相比非常慢(兆赫左右),通过在过去N符号(N=2~几千左右)期间计算出θ(n-1)的时间平均值,可以平均地去除随机噪声的影响。即,将相位变动的估计值θ(n)设为θ(n)=∑{φ’(n-k)-φD(n-k)}/N(其中,k=1、2、...、N)即可。
根据本实施例,即使在光源的相位噪声和光放大器噪声等的影响下,也可以高精度地计算出接收光电场的相位。在图8中,不依赖相位变动的符号判定部176利用判定反馈去除了相位变动,但判定反馈技术还可以适用于振幅运算误差和其他误差的矫正。另外,在过去N位期间,计算出所输入的相位点与符号判定部176所判定的符号位置的距离,动态地调整相位角和符号振幅等,以使该平均值成为最小,从而可以维持最佳的接收状态。相反,还可以通过根据输入相位点的分布来移动成为判定基准的符号位置,例如动态地适应于波形变化,而维持最佳的接收灵敏度。
在从再现光电场信号117-2去除相位变动的方法中,除了实施例中示出的方法以外,还存在各种变型。例如,在接收N值的相位调制信号的情况下,通过对N倍电路(或者将光电场的相位项expφ’(n)设为输入的N次幂电路)输入再现光电场信号117-2所表示的相位角φ’(n),消除相位调制分量(相位点的间隔为π/N),可以简单地估计相位变动分量。如果在过去M位期间对该估计值进行平均化,并从所检测到的相位角φ’(n)减去,则可以去除变动分量。
另外,即使如16QAM信号那样相位调制间隔为不等间隔的情况下,仅抽取振幅成为最大的4角的相位点、例如图1(C)所示的点“1111”、“0000”、“1100”、“0011”的相位角,将这些相位角输入到4倍电路并平均化,从而可以与上述同样地估计相位变动分量。也可以在时间上追踪特定相位点的平均位置,而将该偏移量估计成相位变动。在相位变动分量的估计中,也可以应用无线通信领域中公知的其他方法。
例如,如上述实施例所述,在逐次计算光电场信息的方式中,噪声和运算误差等的影响累积,在最坏的情况下,有可能在长时间引起错误传播。作为防止这样的错误传播的方法,例如有对振幅和相位等应用差动编码等编码、在发送侧定期地插入已知参考代码号等。另外,也可以应用通过振幅的归一化运算防止振幅值的发散和衰减等、或者从接收相位点的统计分部和特定的相位点位置等的逐次判定反馈等方法。
在此处示出的实施例中,在接收符号的判定中应用了最小距离规则,但也可以应用在无线通信领域中被用作多值信号用的公知的其他符号判定法。例如,还可以优先判定相位和振幅半径中的任一个,或者应用利用连续的多个符号的电场状态的MLSE;最大似然判定(Viterbi解码);软判定FEC(前向纠错);网格(trellis)编码/解码处理等方法。另外,代替单纯的平方距离的判定,例如也可以预先定义与噪声发生要因(光放大器的噪声、热噪声、串扰等)对应的非欧几里德距离,并将其应用为判定基准。另外,符号判定电路例如也可以是如下的模拟型的结构:并列配置与各符号对应的多个匹配滤波器并选择输出成为最大的滤波器,来确定输入码元。
图10示出上述第2实施例中采用的初始相位判定方法1个例子。
逐次再现的光电场由于最初的符号的振幅信息和相位信息不确定,所以再现值与输入光信号的真实的光电场不一致。该问题是通过在发送光信号(在此处所示的例子中是指16QAM信号)的头部插入在接收器侧已知的特殊的数据模式来解决的。
图10(A)示出发送光电场,图10(B)示出16QAM信号的符号(相位点)配置。此处,在图10(B)的符号配置中,将位于相互对称位置的2个角“1111”、“0000”的符号用作已知数据,在用户信息之前,发送由5个符号“1111”、“0000”、“1111”、“0000”、“0000”构成的已知数据模式。这些符号未被振幅调制,所以再现光电场的振幅如图10(C)所示,第1符号的振幅值变得不明确,但第2符号以后成为固定值。因此,在接收侧,矫正再现电场强度以使第2符号以后的振幅值成为16QAM信号中的符号“1111”、“0000”的半径即可。
在上述已知数据模式的接收期间中,作为相位角,理想情况下应检测出符号“0000”的相位角π/4、或符号“1111”的相位角-3π/4。但是,实际上,由于第1符号的相位角不确定,所以在第2符号以后,将第1符号的相位角φ0(不确定值)作为初始相位,而呈现被-π/4调制或-3π/4调制的相位角。在此处所示的例子中,在已知数据模式的接收期间中,仅在第4、第5符号的接收时,连续2位而呈现同一相位角。另外,此时检测出的相位角与符号“0000”的相位角对应。因此,从在第4、第5符号中检测出的相位角的值和符号“0000”本来应具有的相位角π/4,可以确定相位的偏移量(初始相位角φ0)。
即,在图10(D)所示的相位点配置中,计算出在第3象限中用黑圆表示的第5符号的检测相位角与符号“0000”应具有的标准的相位角π/4之差φ0,之后从检测出的再现光电场的相位角减去φ0,从而可以矫正检测相位角。
作为已知数据模式,例如如果如图10(B)所示的“0000”、“0011”那样使用处于非对称位置关系的2个符号,则即使如图10(C)的第4、第5符号那样使同一符号不连续,也可以判别初始相位。
初始相位和初始振幅等的判定在光通信领域、无线通信领域中成为共同的课题。因此,在本发明的光电场接收器中,除了上述的解决法以外,还可以应用这些通信领域中成为公知的其他方法。例如,也可以使用在发送信号内周期或间歇地插入具有已知的相位角或振幅值的参考信号,或者无需初始相位和初始振幅等的判定的差动调制等技术。另外,也可以从所再现的相位点的统计分布自适应学习地调整初始相位和振幅等以可以实现正常的接收。
实施例3
图11作为本发明的光电场接收器的第3实施例而示出追加了光强度接收功能和时钟抽取功能的结构的光多值信号接收器。
在本实施例中,输入光多值信号123通过光分支电路150被分支成3个光信号。第1、第2光信号分别被输入到光延迟检波器104-1、104-2,第3光信号被输入到光强度接收器151。光延迟检波器104-1、104-2的输出与图8同样地通过光平衡型接收器105(105-1、105-2)变换成电信号,经由A/D变换器106(106-1、106-2)、延迟调整电路108(108-1、108-2)被供给到电场运算部111。光强度接收器151的输出信号通过A/D变换器106-3变换成数字信号,并通过延迟调整电路108-3进行定时调整之后,被输入到电场运算部111。
在从延迟调整电路108-1、108-2输出了表示第n符号的正交分量x、y的输出信号110-1、110-2时,延迟调整电路108-3的输出信号110-3表示第n符号的强度r(n)的平方值r2(n)。在本实施例中,通过使用设置于电场运算部111中的平方根电路106,运算出来自延迟调整电路108-3的输出信号110-3的平方根,而得到第n符号的振幅值r(n)。根据上述结构,可以与图5所示的第1实施例的光电场接收器相比更简单且高精度地得到光电场振幅r(n),而无需振幅的初始值估计和误差传播对策等。
在图11所示的实施例中,对时钟抽取电路161输入光强度接收器151的输出信号的一部分,抽取与符号速率的倒数(1/T)相当的频率f的时钟信号,将其供给到A/D变换器106-1、106-2、106-3。时钟信号的发生定时被调整成A/D变换器在各符号期间的中央对输入信号进行采样。由此,即使在光多值信号123中产生了定时抖动和时钟速度的变动等,也可以总是进行最佳的信号接收。另外,也可以对时钟抽取电路161提供平衡型接收器105-1或105-2的输出而代替光强度接收器151的输出。另外,时钟抽取电路161也可以针对各光检测器独立地设置,也可以对时钟抽取准备专用的光检测器。
实施例4
图12作为本发明的第4实施例而示出具备判定反馈均衡电路的光多值信号接收器。
在本实施例中,从时钟源191发生具有输入光多值信号123的符号速率(1/T)的2倍(或其以上)的频率f的时钟,将其供给到A/D变换器106-1、106-2而作为采样时钟107-1、107-2。A/D变换器106-1、106-2响应于上述采样时钟,与和输入符号的定时同步无关地进行采样。
A/D变换器106-1、106-2的输出分别经由延迟调整电路108-1、108-2,被输入到再采样电路192-1、192-2。各再采样电路可以利用奈奎斯特定理进行输入数据串的内插,而在任意的定时再现采样点。此处,进行再采样,以使采样点位于各符号期间的中央。采样的定时例如可以使用数据迁移点的判别电路和眼开口的最大点的检测电路等来调整。
这样,在以输入光多值信号123的符号速率的倍速度进行了采样的情况下,由于得到电场波形的详细的信息,所以通过设置在运算处理的过程中使用了前馈均等(FFE)和判定反馈(DFE)均等等的均衡电路193,可以高效地补偿波形劣化。其为与高速的无线信号和光接收器等中利用的自适应波形均等相同的技术,可以部分地改善由于符号间干涉、偏振波模式分散(PMD)、波长分散、自相位调制效果等而引起的波形劣化。另外,在采样速率与符号速率相同的情况下,如果应用这样的均衡电路,则与倍频率采样的情况相比,改善量被限定。
在第4实施例中,利用与电场运算部111连接的正交坐标变换电路198,将从电场运算部111输出的光电场的坐标从极坐标变换成正交坐标之后,经由判定反馈均衡电路193向不依赖相位变动的符号判定部176供给光电场值。通过对从符号判定部176得到的判定反馈信号194进行反馈,使用均衡电路193进行使用了判定反馈的波形均等。
另外,与通常的波形均等同样地,在本实施例中,也可以通过安装公知的高速光信号中使用的前向纠错码(FEC),进行再现多值数字信号144的纠错,可以进一步改善性能。
实施例5
图13作为本发明的第5实施例而示出光APSK信号用的光多值信号接收器。
第5实施例的光多值信号接收器使用光延迟检波器104-1、104-2对光APSK信号124进行差动接收,向自动增益控制电路(AGC)195-1、195-2输入延迟调整电路108-1、108-2的输出信号,进行归一化,以使平均强度成为固定。通过设置AGC 195-1、195-2,即使输入光信号124的接收强度产生了变动,也可以使接收特性稳定化。
AGC 195-1、195-2的输出信号x、y被分别并列地供给到光电场运算部111的平方运算电路112和反正切运算电路113。光电场运算部111向符号判定电路143输出利用平方运算电路112和延迟除法电路115计算出的接收光电场的振幅r(n)即第1信号117-1、和利用反正切运算电路113计算出的符号间相位差Δφ(n)即第2信号117-2。
图14(A)示出振幅为2值(“1”和“a”)、相位为8值的16值APSK信号的相位点配置。APSK信号如用虚线所示那样,具有同心圆状的相位点配置。因此,APSK信号通过对相位分量应用差动接收,可以增大相位变动抵抗力,而无需相位变动的去除。
图14(B)是表示相位差Δφ(n)的值与D3、D2、D1这3个信息位的对应关系的差动相位调制用的编码表。符号判定电路143判定作为第1信号171-1而输入的振幅r(n)的强弱,并且逆向地使用图14(B)的编码表对作为第2信号而输入的相位差Δφ的值进行解码。
在发送侧,按照图14(C)所示的差动振幅调制用的编码表,对信息位D4进行振幅调制。即,在信息位D4为“0”的情况下,使第n符号的振幅与前一个的第(n-1)符号相同,在信息位D4为“1”的情况下,设为将前一个的第(n-1)符号的振幅r(n-1)反转而得到的振幅值(如果前一符号的振幅r(n-1)为1,则设为“a”,在r(n-1)为“a”的情况下设为“1”)。
在接收侧得到的r(n)r(n-1)的大小如图14(D)的差动振幅调制用的解码表所示,可以取“1”、“a”、“a2”这3个值。其中,仅在第n符号与前一个的第(n-1)符号不同的情况下,振幅成为“a”。因此,在振幅为“a”的情况下,信息位D4为“1”,在除此以外的情况下,可以判定信息位D4为“0”。这样相位、振幅的差动接收具有防止错误传播的效果,可以应用于本发明中的APSK信号接收。另外,公知在QAM信号中也使用其4次旋转对称性而仅对2位进行差动相位调制的方法,也可以将其应用于本发明。
根据本发明,通过在符号判定中使用通过反正切运算计算出的Δφ,与非专利文献4所示的接收器相比,可以容易地接收多值数大的多值信号。即,根据本实施例,即使接收信号的多值数增加,也不会增大硬件规模。另外,在APSK信号的情况下,通过在发送侧也对振幅进行差动编码,还可以构成为从光电场运算部111省略延迟除法电路115,而向符号判定电路143直接输入平方运算电路112的输出信号114-1:r(n)r(n-1)。
实施例6
图15作为本发明的第6实施例而示出N值光相位调制信号用的光多值信号接收器。
在第6实施例中,通过对N值光相位调制信号197进行差动接收,无需接收光的振幅判定,从图13所示的电场运算部111省略平方运算电路112和延迟除法电路115,而仅剩余反正切运算电路113。虽未在图15中示出,但在本实施例中,也可以通过使用图8、图9中说明的判定反馈电路来降低相位变动的影响,而可以改善接收灵敏度。
另外,第6实施例从表面上来看类似于图4所示的以往的2值相位调制光用的接收器,但在图4的接收器中,接收信号被限于2值相位调制信号,对成为符号判定电路的2值判定电路152,输入从平衡型接收器105-1输出的cos(Δφ(n))。因此,上述以往技术的接收器并非如本实施例所示那样,根据从平衡型接收器输出的复数信号的x、y分量生成符号间相位差Δφ(n),并利用该Δφ(n)的值来判定接收符号的数字值。根据本实施例,即使在接收到2值以上的多值相位调制信号的情况下,也可以利用使用电场运算部111生成的Δφ(n)的值,容易地判定接收符号的数字值。
实施例7
图16作为本发明的第7实施例而示出读取光电场所具有的信息全部的完全型的光电场接收器200。
此次示出的完全型的光电场接收器200与第6实施例不同,通过以符号速率的倍速对输入光信号101的光电场进行直接采样,而读取光电场所具有的信息全部。
如果与图5所示的第1实施例进行比较,则光延迟检波器201-1、202-2的延迟量成为符号周期T的1/2,对A/D变换器106输入的采样时钟107成为与输入光信号同步的符号速率的2倍(频率=2/T)的时钟。从光延迟检波器204-1、204-2至电场运算部111的动作与第1实施例类似。在本实施例中,对从电场运算部111输出的电场信号117-1、117-2通过电场补偿电路202实施补偿运算,将补偿后的电场信号203-1、203-2设为光多值信号接收器的输出。
图17的(A)、(B)分别示出电气性接收信号x、y和再现电场信号r(n)、φ(n)的采样定时。在这些图中,n、n-1并表示符号序号,而表示T/2间隔的时间序列采样的顺序。在本实施例中,光延迟检波器201-1、202-2的延迟量成为T/2,所以光延迟检波是在时间轴上偏移了半个符号的接收符号间进行的。其结果,如图(B)所示,作为再现电场信号,可以针对每半个符号逐次得到电场信息。这样,如果可以以T/2间隔得到全部电场信息,则可以与相干光接收器同样地,完全补偿光电场的劣化。另外,以往技术中的光延迟检波由于以专门得到符号间的相对相位信息为目的,所以无需如本实施例那样,以符号长度以下的延迟时间差进行光延迟检波。
图18是应用第7实施例的完全型光电场接收器200对由于传送路径中的波长分散而引起光多值信号劣化进行补偿时的说明图。
来自光多值信号发送器210的发送光电场204如框501的振幅眼图案所示那样,具有3个值的振幅电平。然而,如果通过光纤传送路径206,则在光电场204中产生与波长分散量β对应的波形劣化,多值信号接收器200所接收的光电场的振幅眼图案如框502所示那样劣化得较大。传送路径206的波长分散作为用传播函数exp(-jβω2)表示的线性劣化,对发送光电场204带来影响。
本实施例的完全型光电场接收器200接收波形劣化的发送光电场204,使用电场计算部208计算出再现光电场信号117。此处,电场计算部208相当于图16所示的光延迟检波器204-1、204-2至电场运算部111为止的电路部分。A/D变换器106-1、106-2的采样点被调整成位于各符号的中央。
电场计算部208的输出117(r(n)和φ(n))被供给到电场补偿电路202,使用与传送路径205的传播函数相逆的特性的传播函数exp(jβω2)来进行补偿。该补偿为频率区域的运算,可以利用FFT或卷积运算来实现。电场补偿电路202通过补偿量输入端子207从外部设定补偿量β,可以动态地变更传播函数。根据上述运算的结果,从电场补偿电路202输出对波形劣化进行了补偿的电场信号203,所以可以用与各符号的中央一致的采样定时,进行多值信号的判定处理。
上述的完全补偿不限于在接收信号中发生的波形劣化为线性,在原理上还可以应用于任意的波形劣化。因此,还可以利用电场补偿电路202补偿例如光发送器或接收器的频带劣化、由于窄带光滤波而引起的频带削减、滤波器的脉动的影响等。
另外,为了补偿上述的接收信号的劣化,优选使用数字运算器构成电场补偿器202,但也可以与其他运算电路同样地,使用FPGA和DSP等来构成电场补偿器202。另外,也可以在电场补偿器202中,根据接收信号的劣化程度,为了节约功耗和运算能力等而省略补偿处理的一部分,或者在存在多个信号劣化要因的情况下,选择地执行与影响度最高的劣化要因对应的补偿模式,或者重复多个补偿模式来执行。
在第7实施例中,将A/D变换器106的采样间隔和光延迟检波器104的延迟量设为符号长度的1/2,但从奈奎斯特定理可以求出,采样频率为信号的最大频率分量的2倍以上。因此,在发送信号包含比符号速率更高速的调制分量的情况下,需要更高速的采样,相反在如双二进制信号那样光电场的有效频带低的情况下,可以降低采样速率。但是,被RZ调制的光信号由于包含与符号速率相同的频率的强度调制分量,所以如果使采样速度与T/2一致,则由于重叠,输出信号的强度有可能总是成为固定值。因此,在接收到被RZ调制的光信号的情况下,需要将采样速度设成比T/2稍微高。
在图12中说明的第4实施例中,也使A/D变换器106的采样速度成为符号速率的倍数,但在第4实施例中,光延迟检波器104的输出信号由于成为与1个符号前的电场的合成信号,所以仅简单地通过对采样实现高速化,无法得到完全的电场信息。该问题可以利用后述的交叉采样来解决。
实施例8
图19作为上述完全型的光电场接收器200的变形例而示出适用于光纤中发生的非线性效果的一种即自相位调制效果的补偿的自适应补偿型的光电场接收器的结构。但是,由于在自相位调制效果的补偿中,未必固定需要完全的电场信息,所以也可以在自适应补偿型中应用第1实施例~第6实施例中说明的其他形式的光电场接收器。
在本实施例中,光多值信号发送器210向光纤发送8值的APSK信号。在该情况下,发送光电场204的相位点配置如框511所示,成为在振幅2值的同心圆上放射状地配置了4值的相位点的配置。光纤传送路径206中发生的自相位调制效果在光信号中引起与该强度成比例的相位旋转(Δφ(r)=ar2)。因此,通过了光纤的光电场的相位点配置如在框512中用黑圆所示,外侧同心圆上的相位点比内侧同心圆上的相位点旋转得更多,而在内周和外周,在相位点配置中产生偏移。自相位调制效果为非线性效果。但是,该影响可以通过对接收信号乘上逆算子exp(-jar(n)2)来消除。
在从完全型光电场接收器200的电场计算部208输出的电场信号117中,如框513所示,通过自相位调制效果而发生相位旋转(Δφ(r)=ar2)。因此,在本实施例中,向4倍电路211输入从电场补偿器202输出的电场信号203中的相位信号φj(n)并抽取偏差分量,向偏差最小化控制电路212输入该偏差分量。偏差最小化控制电路212通过自动地控制对电场补偿电路202的补偿量输入端子207提供的补偿量a的值以使从电场补偿器202输出的补偿后的电场信号的误差成为最小,而实现自适应补偿。
APSK信号由4值的相位调制和2值的振幅调制构成,所以在相位点配置正常的情况下,如果使用4倍电路211使各相位点的相位成为4倍,则应总是成为固定值。但是,如果由于自相位调制效果而相位点产生偏移,则4倍电路的输出针对每个符号发生偏差。根据本实施例,通过进行自适应补偿以使偏差分量成为最小,可以总是将从电场补偿电路202输出的电场信号203的相位点配置修正成最佳配置。由于自相位调制效果引起的信号劣化在APSK信号以外的光信号中也相同,本发明的自适应补偿型的光电场接收器还可以应用于其他调制方式。
实施例9
图20示出将本发明的完全型的光电场接收器200应用于2值强度调制信号的波长分散补偿的实施例。
通常的2值调制是在消光比为10dB左右的空间级别(space level)光强度低的状态下使用的。如果是该程度的消光比,则电场振幅比成为3左右,所以成为对于本发明的光电场接收器200在动作上没有问题的信号电平。但是,在消光比非常高的情况(例如20dB左右)和由于光纤传送路径中产生的波形劣化而采样点的光强度降低至零附近的情况下,光电场接收器200有可能无法正常地动作。本实施例的特征在于,在消光比非常高的情况下为了使光电场接收器200正常地动作,有意地将空间级别设定得较高,而使消光比劣化。
在从发送器213发送了框521所示的2值光信号的情况下,由于光纤的波长分散的影响,光电场接收器200所接收的光电场205如框522所示变化得较大。在本实施例中,使用光电场接收器200的电场计算部208如框523所示的再现光电场信号117的白圆所示那样,使采样点从符号的中央偏移,而设定成符号宽度的25%与75%的时刻,从而使采样后的光电场强度不易成为零。通过使用电场补偿电路202针对来自电场计算部208的输出信号117运算出与波长分散相逆的特性的传播函数,而如框524所示,得到波长分散的影响被补偿的电场信号。
另外,从自电场补偿电路202输出的电场信号203再现的信号波形的采样点偏移,所以在本实施例中,向再采样电路192输入振幅信号rj(n),使用2值判定电路152判定符号波形的中央的采样值,从而得到再现后的2值数字信号153。另外,在本实施例中,向眼开口检测电路214分支再采样电路192的输出,使用眼开口检测电路214对电场补偿后的信号的眼开口的大小进行检测。向控制电路215输入眼开口检测结果,控制电路215控制电场补偿电路202的补偿量β以使眼开口的值成为最大,从而实现自适应分散补偿。
本发明的完全型的光电场接收器作为相干接收器发挥功能,通过利用电气性电路实现的运算处理,可以动态且无限制地补偿波长分散。本发明的完全型的光电场接收器如上所述,可以应用于多值信号以外的2值的强度调制光、双二进制信号、2值相位调制信号等各种光信号的接收。在该情况下,无需波长分散补偿器,具有可以大幅扩大光传送距离这样的优点。另外,在RZ调制的情况下,在位间光信号强度一定成为“0”,但通过与本实施例同样地降低RZ调制的消光比、或使采样定时偏移,可以再现原来的信号波形。
实施例10
图21示出应用了本发明的光电场接收器的波长复用光传送系统的1个实施例。
波长复用传送装置220A包括与波长合波器223A结合的光发送器226-1A~226-3A和与波长分波器224A结合的本发明的光电场接收器200-1A~200-3A。另外,波长复用传送装置220B包括与波长合波器223B结合的光发送器226-1B~226-3B和与波长分波器224B结合的本发明的光电场接收器200-1B~200-3B。
波长复用传送装置220A、220B利用上行光传送路径和下行光传送路径连接。上行光传送路径由光纤206-1~206-3和光放大器225-1、225-2构成,下行光传送路径由光纤206-4~206-6和光放大器225-3、225-4构成。
波长复用传送装置220A的光发送器226-1A~226-3A以分别不同的波长λ1~λ3发送光信号。这些光信号在通过波长合波器223A合波之后,输出到上行光传送路径,通过所对置的光传送装置220B的波长分波器224B针对每个波长进行分离,而输入到光电场接收器200-1B~200-3B。另一方面,波长复用传送装置220B的光发送器226-1B~226-3B也分别以不同的波长λ1~λ3发送光信号。这些光信号在通过波长合波器223B合波之后,输出到下行光传送路径,通过光传送装置220A的波长分波器224A针对每个波长进行分离,而输入到光电场接收器200-1A~200-3A。另外,也可以在上行光传送路径和下行光传送路径中,使所复用的光波长不同。
波长复用传送装置220A(220B)具备终端控制部221A(221B)和数据库222A(222B)。对光发送器226-1A~226-3A(226-1B~226-3B)以及光电场接收器200-1A~200-3A(200-1B~200-3B),从外部输入发送数据,向外部输出接收数据,但在附图中省略了该部分。在数据库222A(222B)中,与接收波长λ1~λ3对应地,存储有表示形成光传送路径的各光纤的波长分散量的数据表。
图22示出由终端控制部221A(221B)执行的补偿量设定例程的流程图。该例程是在波长复用传送装置的起动/复位时、或者发送接收器226(226-1A~226-3A)、200(200-1A~200-3A)被复位时执行的。
终端控制部221A从数据库222A读出波长分散量数据表,将用于确定波长信道的参数i设定成初始值“1”(步骤601)。终端控制部221A对参数i的值进行校验(步骤602),在参数i超过对光纤传送路径复用的信道数N(在图21中N=3)的情况下,结束该例程。
在参数i为N以下的情况下,终端控制部221A从与波长分散量数据表所表示的第i信道的波长λi对应的各光纤的波长分散量,计算出沿着接收光传送路径(在终端控制部221-1的情况下是指下行光传送路径)的全部光纤的总波长分散量Di(步骤603)。之后,在对第i信道(波长λi)的光电场接收器200-iA的端子207设定补偿量“-Di”,起动光电场接收器200-iA。终端控制部221A使参数i的值递增(i=i+1),直到参数i超过复用信道数N为止,反复步骤602~604。
根据本实施例,光电场接收器200-1A~200-3A可以从起动时高精度地估计波长分散补偿量,所以无需自适应控制。假设使用了自适应控制的情况下,也可以在短时间内迁移到最佳的控制状态,而可以防止误动作。
实施例11
图23示出由应用了本发明的光电场接收器的多个光分插装置(ADM)230-1~230-4构成的光网络结构的1个实施例。光分插装置230-1~230-4在光纤传送路径206-1~206-4中环状地连接。
在使用了光分插装置和光交叉连接器等的光网络中,光信号路径有可能动态地变更。在本实施例中,在光信号路径的变更时,利用与光分插装置230-1连接的控制操作台231,使受到路径变更的影响的光接收器200中的分散补偿量进行恰当化。222是针对构成网络的全部光纤,记录了每个波长的波长分散值的数据库222。在光信号路径被变更时,控制操作台231访问数据库222,计算出与新的光信号路径和使用波长对应的总波长分散值,经由网络将其分发到与成为新路径的终端的光分插装置(230-2~230-4)连接的光接收器200(200-1~200-3)而作为分散补偿量。
例如,在图23中,从光发送器200-3输出的波长λ3的光信号被输入到光分插装置230-4,经由沿着光路径232-3的3个光纤传送路径206-1、206-2、206-3,到达与光分插装置230-3连接的光电场接收器200-3。在光路径232-3为新的路径的情况下,控制操作台231从数据库222读出与波长λ3对应的光纤传送路径206-1、206-2、206-3的波长分散量,使用用虚线表示的通信路径233-3向光电场接收器200-3通知根据该合计值决定的补偿量的设定信号。补偿量设定信号被输入到补偿量设定端子207-3,由此,对光电场接收器200-3的电场补偿电路202设定最佳的分散补偿值。
根据本实施例,即使在光网络上的光路径被切换的情况下,也可以从控制操作台对成为光路径的终端的光电场接收器200-3立刻设定恰当的补偿量,所以可以大幅削减通信的中断时间。另外,在从控制操作台设定的分散补偿值的精度不充分的情况下,如实施例10中说明那样,将该值作为初始值,利用自适应控制进行最佳化即可。
实施例12
图24示出应用了本发明的光电场接收器的光多值信号接收器的其他实施例。
在本实施例中,使用图16中说明的完全型的光电场接收器的光延迟检波器201-1、201-2接收光多值信号123,向电场补偿电路202输入电场运算部111的输出,向不依赖相位变动的符号判定部176输入电场补偿后的电场信号203-1、203-2,从而进行相位变动分量去除和多值信号的符号判定。这样,通过在光电场接收器的后级连接符号判定电路和FFE、DFE等均衡电路、纠错电路等,可以构成高性能的光多值调制信号接收器。
实施例13
图25示出应用了本发明的光电场接收器的光多值信号接收器的叉一实施例。
在本实施例中,在来自图16中说明的完全型的光电场接收器的电场补偿电路202的输出信号中,表示振幅分量的ri(n)的信号203-1直接输入到不依赖相位变动的符号判定部176,表示相位分量φi(n)的信号203-2输入到电气性区域的延迟检波电路234,向不依赖相位变动的符号判定部176供给从延迟检波电路234输出的差动相位信号Δφ(n),从而进行相位变动分量的去除和多值信号的符号判定。
为了使用电场补偿电路202进行完全的分散补偿,需要使用前级的电场运算部111预先再现全部光电场信息r(n)、φ(n)。但是,在如APSK信号那样将可以应用延迟检波的信号设为接收信号的情况下,向电气性区域的延迟检波电路234输入使用电场补偿电路202补偿完的电场信号中的相位分量φi(n),计算出差动相位信号Δφ(n),将其应用于符号判定,从而可以去除相位变动的影响。
实施例14
图26作为本发明的第14实施例示出应用了交叉采样的光多值信号接收器。
在本实施例中,在图8中说明的第2实施例的光多值信号接收器中,代替光延迟检波器104-1、104-2,而使用延迟量3T的光延迟检波器244-1、244-2,向平衡型光接收器105-1、105-2分别连接3个A/D变换器106-1A~106-3A、106-1B~106-3B,向电场运算部111-1~111-3分别输入相互成对的3组A/D变换输出“x1、y1”、“x2、y2”、“x3、y3”。电场运算部111-1~111-3的输出信号117-1~117-3被分别输入到不依赖相位变动的符号判定部176-1~176-3。通过使这些3个符号判定部交叉动作,可以将符号判定所需的电路速度降低至1/3。
240是与接收符号定时同步地发生频率为1/3T的时钟的分频时钟源,通过使用延迟时间T和2T的延迟电路157,生成具有符号时间T的相位差的3相的时钟信号串。3组A/D变换器106-iA、106-iB(i=1~3)将这些3相的时钟信号作为采样时钟,对平衡型光接收器105-1、105-2的输出信号进行数字化。
其结果,对于从平衡型光接收器105-1、105-2输出的延迟检波信号,如图27中用黑圆、二重圆、白圆所示那样,通过这些3组A/D变换器,在时间轴上对3个序列进行交叉采样。在该情况下,由于光延迟检波器244-1、244-2的延迟量成为3T,所以在电场运算部111-1~111-3中可以相互独立地执行光电场的再现运算。所再现的光电场信号117-1~117-3分别通过独立的符号判定部176-1~176-3进行相位变动的去除和符号判定。从符号判定部176-1~176-3输出的3个系统的数字信号通过复用电路243合成,并作为再现多值数字信号144而输出。
在上述结构中,如果使用电场运算部111-1~111-3独立地对在时间上交叉后的3个序列的相位点(图26的黑圆、二重圆、白圆)进行处理,并互不相关地供给到符号判定电路176-1~176-3,则在相位和振幅等中有可能具有误差。
因此,在本实施例中,向电场同步电路241分支再现光电场信号117-1~117-3,对同一相位点的平均振幅、平均相位相互进行比较,将该差分作为矫正信号242供给到符号判定部176-1~176-3供给。各符号判定部176根据上述矫正信号,进行输入信号振幅的归一化和基准相位的矫正,以使3个系统的输出信号的振幅、相位基准总是一致。另外,也可以设为矫正信号242供给到电场运算部111-1~111-3而代替供给到符号判定部176,各电场运算部111-1~111-3对各个输出信号(再现光电场信号)117-1~117-3进行矫正。
在本实施例中,交叉数和采样速度等可以任意地选择。例如,在使用图16所示的完全型的光电场接收器200进行交叉数为2的交叉采样的情况下,将光延迟检波器201-1、201-2的延迟时间设为T,将采样速度设为1/T即可。
如从以上的实施例可知,本发明的光电场接收器使用光延迟检波器,所以不依赖于输入光的偏振波状态,无需本地振荡光源。实施例中示出的光多值信号接收器在处理光延迟检波器的输出信号的电场运算电路中,可以直接再现光信号相位点的二维坐标信息,所以可以使用与电场运算电路连接的符号判定电路一并判定多值符号,可以使用比较小型的硬件规模来实现传送效率高的32值、64值等多值数大的光多值信号接收器。
另外,在本发明中,由于可以使用电气性数字电路来执行电场运算和多值判定等,所以可以容易地实现与传送路径的损失、信号的SN比、劣化要因等对应的自适应型接收器。在对光电场接收器连接了电场补偿电路的情况下,理论上可以完全补偿波长分散和频带劣化等线性的传送劣化,还可以实现动态地变更补偿内容的自适应分散补偿。另外,本发明除了光纤通信用的接收器以外,例如还可以应用于光电场波形测定装置和光空间传送装置等。
另外,在无线通信领域中的多值信号传送和应用了本发明的光通信领域中,技术上存在以下那样的不同点。
(1)无线通信领域的接收器构成为一般使用本地振荡器,对输入电场的正交分量进行相干接收。其对应于本说明书中图2示出的相干光传送方式。在无线通信的领域中,与光通信不同,接收信号的偏振波依赖性和本地发送器等的成本不会成为问题,所以可以比较简单地构成这样的相干电场接收器。本发明不使用本地振荡器,而使用光延迟检波器得到与相干检波同样的效果,与无线通信领域的接收器的解决课题不同。
(2)在无线通信领域中,也使用延迟检波器。但是,在无线通信领域中,一般情况下通过使用了本地振荡器的相干正交检波生成基带信号,并针对该基带信号应用延迟检波。本发明的光延迟检波适用于无法正交分离的复数光信号,作用效果与无线通信中的延迟检波不同。
工业上的利用可能性
本发明可以用于在光通信领域中的高传送效率的多值调制信号接收中。

Claims (19)

1.一种光电场接收器,用于接收光多值信号,其特征在于,包括:
光分支器,将所接收到的光多值信号分支成第1、第2光信号;
第1光延迟检波器,以延迟时间T(T=符号时间)对上述第1光信号进行延迟检波;
第2光延迟检波器,通过相对上述第1光延迟检波器偏移90度的光相位差,以延迟时间T对上述第2光信号进行延迟检波;
第1、第2光接收器,将从上述第1、第2延迟检波器输出的表示复数信号的x分量、y分量的延迟检波信号分别变换成第1、第2电信号;以及
电场运算部,从上述第1、第2电信号,针对每个符号时间T,生成表示接收符号的相位角或符号间相位差的第1再现信号。
2.根据权利要求1所述的光电场接收器,其特征在于,上述电场运算部从上述第1、第2电信号,针对每个符号时间T,生成表示接收符号的振幅值的第2再现信号。
3.根据权利要求2所述的光电场接收器,其特征在于,上述电场运算部将通过上述第1、第2电信号的平方和的平方根运算得到的延迟检波信号的振幅值除以在1个符号时间之前作为上述第2再现信号被输出的接收符号的振幅值,生成作为上述第2再现信号应新输出的振幅值。
4.一种光电场接收器,接收通过相位调制和振幅调制的组合得到的多值的光信号,其特征在于,包括:
光分支器,将所接收到的光多值信号分支成第1、第2、第3光信号;
第1光延迟检波器,以延迟时间T(T=符号时间)对上述第1光信号进行延迟检波;
第2光延迟检波器,通过相对上述第1光延迟检波器偏移90度的光相位差,以延迟时间T对上述第2光信号进行延迟检波;
第1、第2光接收器,将从上述第1、第2延迟检波器输出的表示复数信号的x分量、y分量的延迟检波信号分别变换成第1、第2电信号;
第3光接收器,将上述第3光信号变换成电气性光强度信号;以及
电场运算部,针对每个符号时间T,从上述第1、第2光接收器的输出信号,生成表示接收符号的相位角或符号间相位差的第1再现信号,从上述第3光接收器的输出信号,生成表示接收光信号的振幅值的第2再现信号。
5.根据权利要求1~4中的任意一项所述的光电场接收器,其特征在于,上述电场运算部通过上述第1、第2电信号的反正切运算,生成作为上述第1输出信号应输出的符号间相位差。
6.根据权利要求1~4中的任意一项所述的光电场接收器,其特征在于,上述电场运算部根据依据上述第1、第2电信号计算出的符号间相位差、和至少在1个符号时间之前作为上述第1再现信号被输出的相位角,生成应作为上述第1再现信号输出的相位角。
7.根据权利要求1~6中的任意一项所述的光电场接收器,其特征在于,具备延迟调整单元,该延迟调整单元用于将从上述光分支器经由上述第1、第2光延迟检波器到达上述电场运算部的2个信号路径中的传播时间差调整到上述符号时间T以下。
8.根据权利要求2~4中的任意一项所述的光电场接收器,其特征在于,具备正交坐标变换部,该正交坐标变换部用于将由上述电场运算部生成的振幅值和相位角变换成复数信号的同相分量(1分量)和正交分量(Q分量),而作为上述第1、第2再现信号输出。
9.根据权利要求2~4中的任意一项所述的光电场接收器,其特征在于,具备多个A/D变换器,上述多个A/D变换器用于将从上述各光接收器输出的电信号变换成数字信号,上述电场运算部通过数字运算生成上述第1、第2再现信号。
10.一种光多值信号接收器,其特征在于,包括:
权利要求1~9中的任意一项所述的光电场接收器;以及
符号判定电路,根据来自上述光电场接收器的输出信号,对与接收符号对应的多值数字信号进行解码。
11.一种光多值信号接收器,其特征在于,包括:
权利要求2所述的光电场接收器;以及
符号判定电路,根据从上述光电场接收器输出的上述第1、第2再现信号,对与接收符号对应的多值数字信号进行解码,
上述符号判定电路具备用于从上述第1再现信号表示的相位角去除相位变动分量的单元,根据去除了该相位变动分量的相位角和上述第2再现信号表示的振幅值,生成上述多值数字信号。
12.一种光多值信号接收器,其特征在于,包括:
权利要求9所述的光电场接收器;以及
符号判定电路,根据从上述光电场接收器输出的上述第1、第2再现信号,生成与接收符号对应的多值数字信号,
上述各A/D变换器以符号速率(1/T)的2倍以上的采样速度,将从上述各光接收器输出的电信号变换成数字信号。
13.根据权利要求12所述的光多值信号接收器,其特征在于,上述符号判定电路具备波形均衡单元,该波形均衡单元用于补偿上述第1、第2再现信号的波形劣化。
14.一种光电场接收器,接收实施了2值以上的多值调制的光信号,其特征在于,包括:
光分支器,将所接收到的光多值信号分支成第1、第2光信号;
第1光延迟检波器,以T/2以下(T=符号时间)的延迟时间t对上述第1光信号进行延迟检波;
第2光延迟检波器,通过相对上述第1光延迟检波器偏移90度的光相位差,以延迟时间t对上述第2光信号进行延迟检波;
第1、第2光接收器,将从上述第1、第2延迟检波器输出的表示复数信号的x分量、y分量的延迟检波信号分别变换成第1、第2电信号;
第1、第2A/D变换器,用于以采样周期t将上述各光接收器的输出信号变换成数字信号;以及
电场运算部,从上述第1、第2电信号,以周期t生成表示接收符号的相位角的第1再现信号和表示接收符号的振幅值的第2再现信号。
15.根据权利要求14所述的光电场接收器,其特征在于,上述电场运算部具备光电场补偿电路,该光电场补偿电路用于对上述第1、第2再现信号,补偿上述光多值信号通过的外部光传送路径中产生的波形劣化。
16.根据权利要求15所述的光电场接收器,其特征在于,上述光电场补偿电路具备用于对波形劣化补偿量进行最优化的自动控制单元。
17.根据权利要求14~16中的任意一项所述的光电场接收器,其特征在于,具备延迟调整单元,该延迟调整单元用于将从上述光分支器经由上述第1、第2光延迟检波器到达上述电场运算部的2个信号路径中的传播时间差调整到上述延迟时间t以下。
18.一种光多值信号接收器,其特征在于,包括:
权利要求14~17中的任意一项所述的光电场接收器;以及
符号判定电路,根据上述第1、第2再现信号,生成与接收符号对应的多值数字信号。
19.一种光传送装置,其特征在于,包括:
权利要求15所述的至少1个光电场接收器;
存储装置,存储有构成外部光传送路径的多个光纤区间的波长分散信息;以及
控制部,
上述控制部根据存储在上述存储装置中的波长分散信息,计算出成为向上述光多值信号接收器输入的光多值信号的路径的外部光传送路径中的波长分散的总量,对上述光电场补偿电路设定通过该波长分散总量决定的波形劣化补偿量。
CN2006800545488A 2006-05-11 2006-05-11 光电场接收器、光多值信号接收器以及光传送系统 Expired - Fee Related CN101438517B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/309498 WO2007132503A1 (ja) 2006-05-11 2006-05-11 光電界受信器、光多値信号受信器および光伝送システム

Publications (2)

Publication Number Publication Date
CN101438517A true CN101438517A (zh) 2009-05-20
CN101438517B CN101438517B (zh) 2012-09-05

Family

ID=38693606

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800545488A Expired - Fee Related CN101438517B (zh) 2006-05-11 2006-05-11 光电场接收器、光多值信号接收器以及光传送系统

Country Status (5)

Country Link
US (1) US8873968B2 (zh)
EP (1) EP2017980A4 (zh)
JP (1) JP4791536B2 (zh)
CN (1) CN101438517B (zh)
WO (1) WO2007132503A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102695946A (zh) * 2009-10-29 2012-09-26 斯汀格雷地球物理有限公司 信号处理
CN102971976A (zh) * 2010-07-09 2013-03-13 株式会社日立制作所 光接收器及光传送系统
US8472807B2 (en) 2008-11-28 2013-06-25 Hitachi, Ltd. Optical field transmitter and optical transmission system
CN112425099A (zh) * 2018-07-24 2021-02-26 Ntt 电子株式会社 相位变动补偿装置、相位变动补偿方法和通信装置

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9312964B2 (en) 2006-09-22 2016-04-12 Alcatel Lucent Reconstruction and restoration of an optical signal field
US8184992B2 (en) 2006-09-26 2012-05-22 Hitachi, Ltd. Optical field receiver and optical transmission system
JP4303760B2 (ja) 2007-02-16 2009-07-29 富士通株式会社 Ad変換制御装置、光受信装置および光受信方法
EP2219306A1 (en) 2007-11-09 2010-08-18 Hitachi, Ltd. Photofield transmitter and photofield transmission system
JP2009218837A (ja) * 2008-03-10 2009-09-24 Fujitsu Ltd 光受信装置および光受信方法
JP5136236B2 (ja) * 2008-06-19 2013-02-06 富士通株式会社 光受信装置
JP5417810B2 (ja) * 2008-11-17 2014-02-19 横河電機株式会社 光測定装置及び光測定方法
US8166365B2 (en) * 2008-12-03 2012-04-24 Ciena Corporation Cycle slip location and correction
JP5326584B2 (ja) * 2009-01-09 2013-10-30 富士通株式会社 遅延処理装置,信号増幅装置,光電変換装置,アナログ/デジタル変換装置,受信装置および受信方法
JP5202650B2 (ja) * 2009-01-16 2013-06-05 三菱電機株式会社 光変復調システム、光伝送システムおよび光変復調方法
JP4987127B2 (ja) * 2009-01-16 2012-07-25 三菱電機株式会社 光伝送システム、送信装置および受信装置
JP5407403B2 (ja) * 2009-02-18 2014-02-05 富士通株式会社 信号処理装置および光受信装置
US8655193B2 (en) * 2009-03-02 2014-02-18 Hitachi, Ltd. Optical multi-level transmission system
EP2230782A1 (en) 2009-03-19 2010-09-22 Alcatel Lucent Monitoring of non-linear distortions in a fiber-optic transmission system
CN102422571B (zh) * 2009-05-18 2016-06-15 日本电信电话株式会社 信号生成电路、光信号发送装置、信号接收电路、光信号同步确立方法以及光信号同步系统
US8478136B2 (en) * 2009-10-02 2013-07-02 Eye Diagram2 Ip, Llc Electronic compensation of nonlinearity in optical communication
WO2011065163A1 (ja) * 2009-11-24 2011-06-03 日本電気株式会社 光受信装置および光受信制御方法
WO2011083575A1 (ja) * 2010-01-07 2011-07-14 株式会社日立製作所 光伝送システム
JP5482210B2 (ja) 2010-01-08 2014-05-07 富士通株式会社 光受信器および光受信方法
JP5482273B2 (ja) * 2010-02-12 2014-05-07 富士通株式会社 光受信器
US8401389B2 (en) * 2010-03-12 2013-03-19 Fujitsu Limited Method and system for compensating for optical dispersion in an optical signal
US9319141B2 (en) * 2010-04-06 2016-04-19 Nec Corporation Optical transmitting/receiving system and timing extracting method in optical transmitting/receiving system
EP2381593B1 (en) * 2010-04-21 2014-06-25 Alcatel Lucent Power adjustment of in-phase and quadrature components at a coherent optical receiver
JP5737874B2 (ja) * 2010-07-06 2015-06-17 日本オクラロ株式会社 復調器及び光送受信機
JP5578360B2 (ja) * 2010-09-14 2014-08-27 ソニー株式会社 受信装置および方法、並びにプログラム
US8620166B2 (en) * 2011-01-07 2013-12-31 Raytheon Bbn Technologies Corp. Holevo capacity achieving joint detection receiver
JP5707981B2 (ja) * 2011-01-31 2015-04-30 富士通株式会社 サンプリングクロック同期装置、ディジタルコヒーレント受信装置およびサンプリングクロック同期方法
US8725006B2 (en) * 2011-02-25 2014-05-13 Nec Laboratories America, Inc. Digital signal-to-signal beat noise reduction for filter-less coherent receiving system
US9154232B2 (en) * 2011-04-21 2015-10-06 Nec Corporation Optical reception method and optical receiver using maximal-ratio-combining method
JP5824883B2 (ja) * 2011-06-06 2015-12-02 富士通株式会社 受信機及び相互位相変調緩和方法
US9100116B2 (en) 2011-08-24 2015-08-04 Ciena Corporation Short-term optical recovery systems and methods for coherent optical receivers
US8824501B2 (en) * 2011-09-16 2014-09-02 Alcatel Lucent Performance enhancement through optical variants
US8977136B2 (en) * 2011-12-19 2015-03-10 Technion Research And Development Foundation Ltd. Carrier phase estimation for optically coherent QPSK based on wiener-optimal and adaptive multi-symbol delay detection (MSDD)
JP2014013965A (ja) * 2012-07-03 2014-01-23 Hitachi Ltd 偏波多値信号光受信装置、偏波多値信号光送信装置および偏波多値信号光伝送装置
US20140241722A1 (en) * 2013-02-25 2014-08-28 Alcatel-Lucent Usa Inc. PDM-(M) Ask Optical Systems And Methods For Metro Network Applications
WO2014161445A1 (en) * 2013-03-30 2014-10-09 Zte Corporation Recovering data from quadrature phase shift keying modulated optical signals
JP6396016B2 (ja) * 2013-12-05 2018-09-26 株式会社日立製作所 光受信器および光信号受信方法
JP2015122632A (ja) * 2013-12-24 2015-07-02 富士通株式会社 光通信受信装置
US10027416B2 (en) * 2014-07-29 2018-07-17 Corning Incorporated All-optical mode division demultiplexing
GB2546279B (en) * 2016-01-12 2019-08-21 Phoelex Ltd An optical apparatus
US10511388B1 (en) * 2018-08-10 2019-12-17 Fujitsu Limited Reducing variance in reach of WDM channels in an optical network
CN110932782B (zh) * 2019-12-27 2022-06-24 裕太微电子股份有限公司 一种光纤传输标准的自适应系统及自适应方法
KR102404946B1 (ko) * 2021-03-24 2022-06-02 연세대학교 산학협력단 위상 변조 신호 왜곡을 보상하는 광 수신 장치 및 방법
JPWO2022230105A1 (zh) * 2021-04-28 2022-11-03
CN114024662B (zh) * 2021-12-21 2022-05-24 渔翁信息技术股份有限公司 随机数发生器
CN117375708B (zh) * 2023-09-27 2024-03-19 威海激光通信先进技术研究院 基于光纤耦合的空间二维偏角测量通信一体化实现方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5432819A (en) * 1994-03-09 1995-07-11 Martin Marietta Corporation DPSK communications with Doppler compensation
US6064507A (en) * 1996-06-17 2000-05-16 Trw Inc. High speed differential optoelectronic receiver
JP3857099B2 (ja) * 2001-10-09 2006-12-13 株式会社アドバンテスト データ伝送装置、光電変換回路、及び試験装置
JP4246149B2 (ja) * 2002-07-11 2009-04-02 エヌエックスピー ビー ヴィ 光受信機回路
US20040141222A1 (en) * 2002-11-01 2004-07-22 Communications Res. Lab., Ind. Admin. Inst. Optical phase multi-level modulation method and apparatus, and error control method
US6798557B1 (en) * 2003-05-22 2004-09-28 Lucent Technologies Inc. Direct optical N-state phase shift keying
JP4516501B2 (ja) * 2005-08-25 2010-08-04 富士通オプティカルコンポーネンツ株式会社 Dqpsk光受信回路
US7623796B2 (en) * 2006-02-27 2009-11-24 Alcatel-Lucent Usa Inc. Data-aided multi-symbol phase estimation for optical differential multilevel phase-shift keying signals

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8472807B2 (en) 2008-11-28 2013-06-25 Hitachi, Ltd. Optical field transmitter and optical transmission system
CN102695946A (zh) * 2009-10-29 2012-09-26 斯汀格雷地球物理有限公司 信号处理
CN102695946B (zh) * 2009-10-29 2015-03-25 Tgs地球物理(英国)有限公司 信号处理
CN102971976A (zh) * 2010-07-09 2013-03-13 株式会社日立制作所 光接收器及光传送系统
CN112425099A (zh) * 2018-07-24 2021-02-26 Ntt 电子株式会社 相位变动补偿装置、相位变动补偿方法和通信装置
CN112425099B (zh) * 2018-07-24 2024-06-14 Ntt创新器件有限公司 相位变动补偿装置、相位变动补偿方法和通信装置

Also Published As

Publication number Publication date
JPWO2007132503A1 (ja) 2009-09-17
JP4791536B2 (ja) 2011-10-12
CN101438517B (zh) 2012-09-05
EP2017980A4 (en) 2013-01-16
US8873968B2 (en) 2014-10-28
EP2017980A1 (en) 2009-01-21
US20090208224A1 (en) 2009-08-20
WO2007132503A1 (ja) 2007-11-22

Similar Documents

Publication Publication Date Title
CN101438517B (zh) 光电场接收器、光多值信号接收器以及光传送系统
CN102017467B (zh) 光电场发送器及光电场传输系统
JP4755690B2 (ja) 光電界受信器および光伝送システム
CN102511135B (zh) 路径时延差评估器、路径时延差补偿器和相干接收机
JP5458313B2 (ja) 光多値伝送システム
EP2047615B1 (en) Method and apparatus for the generation and detection of optical differential varied-multilevel phase-shift keying with pulse amplitude modulation (odvmpsk/pam) signals
US20150280857A1 (en) Clock recovery method and clock recovery arrangement for coherent polarization multiplex receivers
CN104115423A (zh) 用于正交幅度调制系统中的盲均衡和载波相位恢复的系统和方法
CN105393487B (zh) 相干光接收器
US8655196B2 (en) Phase control circuit and method for optical receivers
US8942573B2 (en) Blind equalization algorithms for adaptive polarization recovery and PMD compensation
US9088387B2 (en) Chain encoding and decoding of high speed signals
CN108847895A (zh) 一种适用于C-mQAM相干光通信系统的盲相位噪声补偿方法
CN101478347B (zh) 无反馈回路的光差分正交移相键控调制器的预编码器
CN116260523A (zh) 一种基于Alamouti编码的简化同源相干系统
US9071362B1 (en) Noise-tolerant optical modulation
RU2664019C9 (ru) Устройство и способ адаптивной компенсации искажений и восстановления несущей сигнала для когерентных приёмников
CN118337284A (zh) 基于原生光载波的复数信号场恢复系统及恢复方法
EP2748996B1 (en) A method of converting an optical communications signal and an optical receiver
Al-Bermani et al. Real-time implementation of square 16-QAM transmission system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: HITACHI CO., LTD.

Free format text: FORMER OWNER: HITACHI COMMUNICATION TECHNOLOGIES LTD.

Effective date: 20100318

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20100318

Address after: Tokyo, Japan

Applicant after: Hitachi Ltd.

Address before: Tokyo, Japan

Applicant before: Hitachi Communications Technology Co., Ltd.

C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120905

Termination date: 20160511

CF01 Termination of patent right due to non-payment of annual fee