WO2012073590A1 - 光伝送システム、光送信装置および光受信装置 - Google Patents

光伝送システム、光送信装置および光受信装置 Download PDF

Info

Publication number
WO2012073590A1
WO2012073590A1 PCT/JP2011/072638 JP2011072638W WO2012073590A1 WO 2012073590 A1 WO2012073590 A1 WO 2012073590A1 JP 2011072638 W JP2011072638 W JP 2011072638W WO 2012073590 A1 WO2012073590 A1 WO 2012073590A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
polarization
optical
unit
axis
Prior art date
Application number
PCT/JP2011/072638
Other languages
English (en)
French (fr)
Inventor
吉田 剛
杉原 隆嗣
和行 石田
水落 隆司
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP11845299.4A priority Critical patent/EP2648346B1/en
Priority to US13/814,617 priority patent/US8909066B2/en
Priority to CN201180047142.8A priority patent/CN103141037B/zh
Priority to JP2012546729A priority patent/JP5523582B2/ja
Publication of WO2012073590A1 publication Critical patent/WO2012073590A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/06Polarisation multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5053Laser transmitters using external modulation using a parallel, i.e. shunt, combination of modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/532Polarisation modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/616Details of the electronic signal processing in coherent optical receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/002Coherencemultiplexing

Definitions

  • the present invention relates to an optical transmission system using a digital coherent method.
  • QAM Quadrature Amplitude Modulation
  • a digital coherent system that receives these optical modulation signals by combining digital signal processing with a synchronous detection system has attracted attention.
  • linear opto-electric conversion by synchronous detection and fixed, semi-fixed and adaptive linear equalization by digital signal processing enable stable multiple signal separation at the receiver and restoration to the original signal. Is possible. Therefore, it is possible to realize excellent equalization characteristics and excellent noise tolerance against linear waveform distortion caused by chromatic dispersion and polarization mode dispersion (PMD) generated in the transmission path.
  • PMD chromatic dispersion and polarization mode dispersion
  • FIG. 23 and FIG. 24 are diagrams showing a time axis representation of a polarization multiplexed signal normally used in the polarization multiplexing system of the prior art.
  • FIG. 23 shows an example in which Ex and Ey are completely bit-synchronized on the time axis.
  • FIG. 24 shows an example in which Ex and Ey are shifted by a half symbol on the time axis (see, for example, Non-Patent Document 1 and Non-Patent Document 2).
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to reduce the non-linear interference generated in the orthogonal polarization multiplexed signal and improve the transmission quality.
  • An optical transmission system includes a pulse signal generation unit that generates a pulse signal having a pulse width of Ts / 2 or less with respect to a symbol repetition period Ts, and a data modulation that generates a data modulation signal based on a transmission data signal.
  • a polarization interleaving unit that generates a polarization multiplexed signal in which a delay difference between two substantially orthogonal polarization components is half the symbol repetition period Ts (Ts / 2), Light that causes interference between the local oscillation light source that generates light corresponding to the center wavelength of the optical signal received from the optical transmission unit, the light generated by the local oscillation light source, and the optical signal received from the optical transmission unit
  • An optical receiving unit having an interference unit, an optical / electrical conversion unit that converts an output from the optical interference unit into an electrical signal, and an analog that converts the electrical signal output from the optical reception unit into a digital signal
  • a digital conversion unit and a digital signal processing unit that removes a Ts / 2 delay difference between polarization signal components and adaptively equalizes distortion other than the delay difference with respect to the digital signal.
  • An electrical signal processing unit wherein the optical transmission unit has alternating polarization components on the time axis, and the time at which the polarization components exist simultaneously is substantially zero, and the repetition period of the optical signal of each polarization component is An optical signal that becomes Ts is generated.
  • FIG. 1 is a diagram illustrating a configuration example of an optical transmission system according to a first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a configuration example of the polarization multiplexing type 2 parallel Mach-Zehnder modulator according to the first embodiment of the present invention.
  • FIG. 3 is a diagram illustrating a configuration example of the polarization interleaver according to the first embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a configuration example of the polarization multiplexing interleaved modulator according to the first embodiment of the present invention.
  • FIG. 5 shows an example of a time waveform of CW light generated by the optical transmitter according to the first embodiment of the present invention.
  • FIG. 6 shows an example of the time waveform of the pulsed optical signal generated by the optical transmitter according to the first embodiment of the present invention.
  • FIG. 7 shows an example of a time waveform of the X polarization pulsed QPSK optical signal generated by the optical transmission unit according to the first embodiment of the present invention.
  • FIG. 8 shows an example of a time waveform of a Y-polarized pulsed QPSK optical signal generated by the optical transmitter according to the first embodiment of the present invention.
  • FIG. 9 shows an example of a time waveform of the polarization multiplexed QPSK optical signal generated by the optical transmitter according to the first embodiment of the present invention.
  • FIG. 10 shows an example of a time waveform of the polarization multiplexed interleaved QPSK optical signal generated by the optical transmitter according to the first embodiment of the present invention.
  • FIG. 11 is a diagram illustrating a configuration example of the digital signal processing unit according to the first embodiment of the present invention.
  • FIG. 12 is a diagram illustrating a configuration example of the polarization restoring unit according to the first embodiment of the present invention.
  • FIG. 13 is a diagram illustrating a configuration example of an optical transmission system according to the second embodiment of the present invention.
  • FIG. 14 shows an example of a time waveform of the CW light generated by the optical transmitter according to the second embodiment of the present invention.
  • FIG. 11 is a diagram illustrating a configuration example of the digital signal processing unit according to the first embodiment of the present invention.
  • FIG. 12 is a diagram illustrating a configuration example of the polarization restoring unit according to the first embodiment of the present invention.
  • FIG. 13 is a diagram illustrating a configuration example of
  • FIG. 15 shows an example of the time waveform of the CSRZ optical signal generated by the optical transmitter according to the second embodiment of the present invention.
  • FIG. 16 shows an example of a time waveform of a CSRZ-QPSK optical signal generated by the optical transmitter according to the second embodiment of the present invention.
  • FIG. 17 shows an example of a time waveform of the polarization multiplexed interleaved QPSK optical signal generated by the optical transmitter according to the second embodiment of the present invention.
  • FIG. 18 is a configuration example showing an optical transmission system in which the arrangement of the optical transmission units in FIG. 13 is changed.
  • FIG. 19 shows an example of the time waveform of the CW light generated by the optical transmitter in FIG. FIG.
  • FIG. 20 shows an example of the time waveform of the QPSK optical signal generated by the optical transmitter in FIG.
  • FIG. 21 shows an example of a time waveform of the CSRZ-QPSK optical signal generated by the optical transmitter in FIG.
  • FIG. 22 shows an example of the time waveform of the polarization multiplexed interleaved QPSK optical signal generated by the optical transmitter in FIG.
  • FIG. 23 is an example of bit synchronization in a diagram showing a time waveform of a conventional polarization multiplexed signal.
  • FIG. 24 shows an example in which the time waveform of a conventional polarization multiplexed signal is shifted by a half symbol on the time axis.
  • FIG. 1 is a diagram illustrating a configuration example of an optical transmission system according to the present embodiment.
  • the optical transmission system of the present embodiment includes an optical transmission unit (optical transmission device) 100, an optical transmission unit 200, and an optical reception device 1000.
  • the optical receiving apparatus 1000 includes an optical receiving unit 300 and a received electrical signal processing unit 400. The same applies to the optical transmission systems described in the following embodiments.
  • the optical signal transmitted from the optical transmission unit 100 reaches the optical reception unit 300 via the optical transmission unit 200.
  • the received optical signal is converted into an electrical signal by the optical receiver 300 and then electrically processed by the received electrical signal processor 400.
  • the optical transmission unit 100 includes a first electric signal source 101, a second electric signal source 102, electric amplifiers 103-A, 103-B, 103-C, 103-D, 103-E, a light source 104, , A Mach-Zehnder modulator 105, a polarization multiplexed two-parallel Mach-Zehnder modulator 106, and a polarization interleaver 107.
  • the optical transmission unit 200 connects the optical transmission unit 100 and the optical reception unit 300.
  • the optical transmission unit 200 may include various devices assumed in a normal optical transmission system, such as an optical fiber, an optical multiplexing / demultiplexing device, a chromatic dispersion compensation device, and an optical amplification device.
  • the optical receiver 300 includes a local oscillation light source 301, an optical 90-degree hybrid 302, and balanced photoelectric converters 303-A, 303-B, 303-C, and 303-D.
  • the received electrical signal processing unit 400 includes analog / digital converters 401-A, 401-B, 401-C, 401-D and a digital signal processing unit 402.
  • the 40 Gbit / s polarization multiplexed QPSK optical signal can communicate 4 bits per symbol, and the symbol repetition frequency fs is 10 GHz.
  • the present embodiment can be applied to other transmission rates and various modulation schemes, and is not limited to this example.
  • each polarization component of the polarization multiplexed QPSK optical signal is interleaved to generate a polarization multiplexed interleaved QPSK optical signal.
  • the first electrical signal source 101 is based on a transmission data signal input from the outside, and a clock signal, four data signals, that is, an X polarization / I axis electrical signal exI, and an X polarization / Q axis electrical A signal exQ, a Y polarization / I-axis electrical signal eyI, and a Y polarization / Q-axis electrical signal eyQ are generated.
  • the four data signals are developed in parallel and are reduced to 1/16 of the actual bit rate of 40 Gbit / s.
  • the clock signal is similarly slowed down.
  • the first electric signal source 101 outputs four systems of data signals and clock signals reduced to 1/16 speed to the second electric signal source 102.
  • the speed reduction by the above ratio is an example, and the present invention is not limited thereby.
  • the four data signals correspond to an example of the first electric signal in the present invention
  • the clock signal corresponds to an example of the second electric signal in the present invention.
  • the second electric signal source 102 outputs the generated X polarization / I axis electric signal to the electric amplifier 103-B, and outputs the generated X polarization / Q axis electric signal to the electric amplifier 103-C.
  • the generated Y polarization / I axis electric signal is output to the electric amplifier 103-D
  • the generated Y polarization / Q axis electric signal is output to the electric amplifier 103-E
  • the generated pulse signal is output to the electric amplifier 103-.
  • the pulse width is Ts / 2.
  • the pulse width may be Ts / 2 or less.
  • the generated four systems of data signals correspond to an example of the third electric signal in the present invention, and the generated pulse signal corresponds to an example of the fourth electric signal in the present invention.
  • d1 0, 0, 1, 1, 0, 0, 1, 1, 0, (1)
  • d2 0, 1, 0, 1, 0, 1, 0, 1, (2)
  • d3 0, 0, 0, 1, 0, 0, 1, 0, 0, (3)
  • the electric amplifier 103 -A amplifies the pulse signal input from the second electric signal source 102 until it is approximately equal to the half-wave voltage of the Mach-Zehnder modulator 105, and outputs the amplified signal to the Mach-Zehnder modulator 105.
  • the electric amplifier 103-B amplifies the X-polarized / I-axis electric signal input from the second electric signal source 102 to approximately twice the half-wave voltage of the polarization multiplexed 2-parallel Mach-Zehnder modulator 106. This is output to the double-type parallel Mach-Zehnder modulator 106.
  • the electric amplifier 103-C amplifies the X polarization / Q axis electric signal input from the second electric signal source 102 to approximately twice the half-wave voltage of the polarization multiplexed 2-parallel Mach-Zehnder modulator 106, This is output to the double-type parallel Mach-Zehnder modulator 106.
  • the electric amplifier 103-D amplifies the Y-polarization / I-axis electric signal input from the second electric signal source 102 to approximately twice the half-wave voltage of the polarization multiplexing type 2-parallel Mach-Zehnder modulator 106, This is output to the double-type parallel Mach-Zehnder modulator 106.
  • the electric amplifier 103-E amplifies the Y-polarized wave / Q-axis electric signal input from the second electric signal source 102 to approximately twice the half-wave voltage of the polarization multiplexing type 2-parallel Mach-Zehnder modulator 106, This is output to the double-type parallel Mach-Zehnder modulator 106.
  • the light source 104 generates CW light and outputs it to the Mach-Zehnder modulator 105.
  • the Mach-Zehnder modulator 105 pulse-modulates the CW light input from the light source 104 with the amplified pulse signal input from the electric amplifier 103-A to generate a pulsed optical signal, and biases the pulsed optical signal. This is output to the wave-multiplexing type 2 parallel Mach-Zehnder modulator 106.
  • the Mach-Zehnder modulator 105 corresponds to an example of a pulse signal generation unit in the present invention.
  • the pulse signal generation unit may use a method other than the Mach-Zehnder modulator. For example, an electroabsorption optical modulator may be used.
  • FIG. 2 is a diagram illustrating a configuration example of the polarization multiplexing type 2 parallel Mach-Zehnder modulator according to the present embodiment.
  • the polarization multiplexed two-parallel Mach-Zehnder modulator 106 includes an optical branching unit 511, a polarization converting unit 512, an optical coupling unit 513, and data modulating units 514-A and 514-B. .
  • the polarization multiplexing type two-parallel Mach-Zehnder modulator 106 generates two systems of single polarization signals that are space-division multiplexed and performs polarization multiplexing on the generated two systems of optical signals.
  • the polarization multiplexing type 2 parallel Mach-Zehnder modulator 106 generates a polarization multiplexed QPSK optical signal by QPSK modulation and polarization multiplexing the pulsed optical signal input from the Mach Zehnder modulator 105, and generates the polarization multiplexed QPSK optical signal. Output to the polarization interleaver 107.
  • Polarization multiplexing QPSK modulation in the polarization multiplexing type 2 parallel Mach-Zehnder modulator 106 is input from the amplified X polarization / I axis electric signal input from the electric amplifier 103-B and the electric amplifier 103-C.
  • the amplified X polarization / Q axis signal, the amplified Y polarization / I axis electric signal input from the electric amplifier 103-D, and the amplified Y polarization input from the electric amplifier 103-E Wave and Q axis signals are used.
  • the optical branching unit 511 bifurcates while maintaining the polarization state of the input optical signal, and outputs the bifurcated optical signals to the data modulation units 514-A and 514-B.
  • the data modulation unit 514 -A modulates the optical signal input from the optical branching unit 511 with the data modulation electrical signal input from the outside, and outputs the modulated optical signal to the polarization conversion unit 512.
  • the polarization converter 512 causes the polarization state of the optical signal input from the data modulator 514 -A to be orthogonal to the polarization state of the input optical signal and the polarization state of the output light. And the optical signal with the polarization state converted is output to the optical coupling unit 513.
  • the data modulation unit 514 -B modulates the optical signal input from the optical branching unit 511 with the data modulation electrical signal input from the outside, and outputs the modulated optical signal to the optical coupling unit 513.
  • the optical coupling unit 513 combines the optical signal input from the polarization conversion unit 512 and the optical signal input from the data modulation unit 512-B while maintaining the polarization state, and outputs the combined signal.
  • the data modulation unit 514 -A has an X-polarization 2-parallel Mach-Zehnder modulator
  • the data modulation unit 514 -B has a 2-parallel Y-polarization.
  • a Mach-Zehnder modulator can be used.
  • a 10 Gsymbol / s X-polarized wave / I-axis electrical signal and a 10 Gsymbol / s X-polarized wave / Q-axis electrical signal are input in parallel to the X-polarized 2-parallel Mach-Zehnder modulator.
  • a 10 G symbol / s Y-polarized wave / I-axis electrical signal and a 10 G symbol / s Y-polarized wave / Q-axis electric signal are input in parallel to the Y-polarized 2-parallel Mach-Zehnder modulator.
  • the two-parallel Mach-Zehnder modulator for X polarization performs QPSK modulation according to the X polarization / I axis electric signal and the X polarization / Q axis electric signal.
  • the 2-parallel Mach-Zehnder modulator for Y polarization performs QPSK modulation according to the Y polarization / I-axis electrical signal and the Y polarization / Q-axis electrical signal.
  • a normal Mach-Zehnder modulator may be used instead of the two-parallel Mach-Zehnder modulator in which two Mach-Zehnder modulators are connected in parallel to the data modulation unit 514 -A.
  • the Mach-Zehnder modulator used in the data modulators 514-A and 514-B can be selected as appropriate according to the modulation method, required transmission quality, and the like.
  • the second electric signal source 102 performs synchronization control for bit-synchronizing the timing of the pulsed modulation in the Mach-Zehnder modulator 105 and the timing of each QPSK modulation in the polarization multiplexing type 2-parallel Mach-Zehnder modulator 106.
  • a bit synchronization method prepares a table storing information in which a temperature change amount and a phase adjustment amount are associated with each other, and the second electric signal source 102 has a temperature change amount. A corresponding phase adjustment amount may be extracted from the table to perform synchronization control.
  • the second electric signal source 102 receives a part of the optical signal output from the polarization multiplexing type two parallel Mach-Zehnder modulator 106, and performs synchronization control by adjusting the phase so as to optimize the optical power.
  • a low frequency component is superimposed on an electric signal for driving the polarization multiplexing type 2 parallel Mach-Zehnder modulator 106, and a part of the optical signal output from the polarization multiplexing type 2 parallel Mach-Zehnder modulator 106 is obtained. It may receive and perform synchronous control based on the low frequency component extracted from the received optical signal.
  • the method of synchronization control is not limited to the above, and other methods may be used.
  • the timing of the above synchronization is determined based on the pulse signal input to the Mach-Zehnder modulator 105. For example, a state that rises from 0 to 1 or a state that falls from 1 to 0 (hereinafter referred to as a transition region) at both ends of the pulse signal waveform should not be a synchronization timing, and is not a transition region.
  • the state of 1 or 0 in the center of the waveform and its vicinity (hereinafter referred to as a non-transition region) should be the synchronization timing.
  • the non-transition region of the pulse signal substantially coincides with the central portion of the QPSK optical signal output from the data modulation units 514-A and 514-B.
  • the transition region is used, the optical power at the central portion of the data becomes extremely small, resulting in significant performance degradation.
  • FIG. 3 is a diagram illustrating a configuration example of the polarization interleaver 107 according to the present embodiment.
  • the polarization interleaver 107 includes a polarization branching unit 611, a non-delay unit 612, a delay unit 613, and a polarization coupling unit 614.
  • the delay difference is given, and each polarization component is multiplexed.
  • a desired delay can be given by passing an optical signal through a birefringent medium such as a polarization maintaining fiber.
  • the polarization interleaver 107 corresponds to an example of a polarization interleave unit in the present invention.
  • the polarization branching unit 611 branches an input polarization multiplexed QPSK optical signal (for example, having independent signals for the X polarization and the Y polarization) into an X polarization optical signal and a Y polarization optical signal, and generates an X polarization signal.
  • the wave signal is output to the non-delay unit 612 and the Y-polarized light signal is output to the delay unit 613.
  • the non-delay unit 612 outputs the X-polarized light signal input from the polarization branching unit 611 to the polarization coupling unit 614.
  • the X polarization optical signal input from the non-delay unit 612 and the delayed Y polarization optical signal input from the delay unit 613 are combined while maintaining the polarization state, and externally coupled. Output to.
  • FIG. 4 is a diagram illustrating a configuration example of the polarization multiplexing interleaved modulator according to the present embodiment.
  • the polarization multiplexing interleaved modulator 108 has a delay unit 515 added to the configuration of FIG.
  • FIG. 5 shows a time waveform of the CW light output from the light source 104.
  • the CW light is pulse-modulated by the Mach-Zehnder modulator 105 and converted into a pulsed optical signal shown in FIG.
  • the X-polarized optical signal and the Y-polarized optical signal of the pulsed optical signal are each QPSK modulated by the polarization multiplexing type two parallel Mach-Zehnder modulator 106 to be changed into QPSK optical signals shown in FIGS. It is multiplexed and changed to a polarization multiplexed QPSK optical signal shown in FIG.
  • the polarization multiplexed QPSK optical signal is polarization interleaved by the polarization interleaver 107, and changes to the polarization multiplexed interleaved QPSK optical signal shown in FIG.
  • the polarization multiplexed interleaved QPSK optical signal shown in FIG. 10 assigns independent signal components Ex and Ey to substantially orthogonal X polarization component and Y polarization component, and the time when Ex and Ey exist at the same time on the time axis.
  • Ex and Ey alternately exist, and the periods in which Ex and Ey exist are each Ts.
  • the symbol repetition period Ts is expressed by m / B.
  • the overlap of Ex and Ey on the time axis is substantially zero when Ex and Ey exist at the same time. That is, it is ideal that the time during which Ex and Ey exist at the same time is zero, but Ex and Ey may be overlapped to an extent acceptable for the required transmission signal quality.
  • the polarization multiplexed interleaved optical signal output from the polarization interleaver 107 reaches the optical 90-degree hybrid 302 of the optical receiving unit 300 via the optical transmission unit 200.
  • the local oscillation light source 301 generates CW light having a center wavelength that approximately matches the center wavelength of the optical signal after transmission, and outputs the CW light to the optical 90-degree hybrid 302.
  • the optical 90-degree hybrid 302 causes the optical signal after transmission input from the optical transmission unit 200 and the CW light input from the local oscillation light source 301 to interfere with each other so that the X ′ polarization component and the Y ′ polarization component respectively.
  • the sum component and difference component of the X ′ polarization / I ′ axis are output to the balanced photoelectric converter 303-A, and the sum component and difference component of the X ′ polarization / Q ′ axis are balanced balance photoelectric conversion.
  • Unit 303-B, and the sum and difference components of the Y ′ polarization and I ′ axis are output to the balanced photoelectric converter 303-C, and the sum and difference components of the Y ′ polarization and Q ′ axis are output.
  • the present invention is not limited by these correspondences.
  • the X ′ polarization component and the Y ′ polarization component are the X polarization component and the Y polarization component at the output point of the optical transmission unit 100, respectively. Generally do not match. Also, regarding the I′-axis component and the Q′-axis component, the I-axis component and the Q-axis component at the transmitter output point generally do not match.
  • the light 90-degree hybrid 302 corresponds to an example of an optical interference unit in the present invention.
  • the balanced photoelectric converter 303-A photoelectrically converts the sum component and the difference component of the optical signal after interference input from the optical 90-degree hybrid 302, and converts the X ′ polarization / I ′ axis electrical signal into an analog signal. Output to the digital converter 401-A.
  • the balanced photoelectric converter 303-B photoelectrically converts the sum component and the difference component of the optical signal after interference input from the optical 90-degree hybrid 302, and converts the X ′ polarization / Q ′ axis electrical signal into an analog signal. Output to the digital converter 401-B.
  • the balanced photoelectric converter 303-C photoelectrically converts the sum component and the difference component of the optical signal after interference input from the optical 90-degree hybrid 302, and converts the Y ′ polarization / I ′ axis electrical signal into an analog signal. Output to the digital converter 401 -C.
  • the balanced photoelectric converter 303-D photoelectrically converts the sum component and the difference component of the optical signal after interference input from the optical 90-degree hybrid 302, and converts the Y ′ polarization / Q ′ axis electrical signal into an analog Output to the digital converter 401-D.
  • the balanced photoelectric converters 303-A, 303-B, 303-C, and 303-D can be realized by, for example, a combination of a photodetector and a transimpedance amplifier. These balanced photoelectric converters correspond to an example of the photoelectric converter in the present invention.
  • the analog / digital converter 401 -A converts the X ′ polarization / I ′ axis electrical signal input from the balanced photoelectric converter 303 -A into a digital signal and outputs the digital signal to the digital signal processing unit 402.
  • the analog / digital converter 401 -B converts the X ′ polarization / Q ′ axis electric signal input from the balanced photoelectric converter 303 -B into a digital signal and outputs the digital signal to the digital signal processing unit 402.
  • the analog / digital converter 401 -C converts the Y ′ polarization / I ′ axis electrical signal input from the balanced photoelectric converter 303 -C into a digital signal and outputs the digital signal to the digital signal processing unit 402.
  • the analog / digital converter 401 -D converts the Y ′ polarization / Q ′ axis electrical signal input from the balanced photoelectric converter 303 -D into a digital signal and outputs the digital signal to the digital signal processing unit 402.
  • analog-digital conversion both discrete time conversion of continuous-time signals and quantization of amplitude levels are performed.
  • the ratio of the sampling rate by the discrete time to the symbol rate is set to 1 Sample / symbol or higher, and is generally set to 2 Sample / symbol in many cases.
  • the analog / digital converters 401-A, 401-B, 401-C, and 401-D correspond to an example of an analog / digital converter in the present invention.
  • the digital signal processing unit 402 performs reception electric signal processing based on each digital signal input from the analog / digital converters 401-A, 401-B, 401-C, and 402-D.
  • FIG. 11 is a diagram illustrating a configuration example of the digital signal processing unit according to the embodiment of the present invention.
  • the digital signal processing unit 402 includes a fixed skew adjustment unit 701, chromatic dispersion compensation units 702-A and 702-B, a polarization restoration unit 703, and carrier frequency offset compensation units 704-A and 704-. B, carrier phase offset compensation units 705-A and 705-B, and identification units 706-A and 706-B.
  • the digital signal processing unit 402 can be realized by a digital signal processing device such as a digital signal processor (Digital Signal Processor), an FPGA (Field Programmable Gate Array), or an ASIC (Application Specific Integrated Circuit).
  • the fixed skew adjustment unit 701 includes an X ′ polarization / I ′ axis digital signal, an X ′ polarization / Q ′ axis digital signal, a Y ′ polarization / I ′ axis digital signal, and a Y ′ input from the outside.
  • a fixed delay difference adjustment inherent in the optical / electrical circuit in the optical transmission system is performed on the polarization / Q′-axis digital signal to generate digital data with uniform delay.
  • the fixed skew adjustment unit 701 outputs the delay-adjusted X ′ polarization component to the chromatic dispersion compensation unit 702-A, and outputs the delay-adjusted Y ′ polarization component to the chromatic dispersion compensation unit 702-B.
  • the chromatic dispersion compensation unit 702-A compensates the chromatic dispersion generated in the transmission process for the X ′ polarization / I ′ axis and X ′ polarization / Q ′ axis digital data input from the fixed skew adjustment unit 701,
  • the X ′ polarized wave / I ′ axis and X ′ polarized wave / Q ′ axis digital data subjected to wavelength dispersion compensation are output to the polarization restoring unit 703.
  • the chromatic dispersion compensation unit 702-B compensates the chromatic dispersion generated in the transmission process for the Y ′ polarization / I ′ axis and Y ′ polarization / Q ′ axis digital data input from the fixed skew adjustment unit 701,
  • the Y ′ polarization / I ′ axis and Y ′ polarization / Q ′ axis digital data compensated for chromatic dispersion is output to the polarization restoration unit 703.
  • the chromatic dispersion compensators 702-A and 702-B perform, for example, frequency domain equalization and time domain equalization using a finite impulse response (FIR) filter. If the waveform distortion has a long fluctuation period, waveform distortion other than chromatic dispersion can be equalized.
  • FIR finite impulse response
  • the polarization restoration unit 703 receives the X ′ polarization / I ′ axis and X ′ polarization / Q ′ axis digital data input from the chromatic dispersion compensation unit 702-A and the chromatic dispersion compensation unit 702-B. Based on the Y ′ polarization / I ′ axis and Y ′ polarization / Q ′ axis digital data, the original X polarization signal and Y polarization signal are restored, and the polarization component interleaved by the optical transmission unit 100 is obtained. Deinterleave.
  • the polarization restoration unit 703 at least partially eliminates chromatic dispersion remaining without being compensated by the chromatic dispersion compensation units 702-A and 702-B, PMD generated in the transmission process, deterioration due to insufficient bandwidth in each device, and the like. Equalize.
  • the processed X polarization component is output to the carrier frequency offset compensation unit 704-A
  • the processed Y polarization component is output to the carrier frequency offset compensation unit 704-B.
  • the processing of the polarization restoration unit 703 may be realized collectively by a butterfly FIR filter described in Non-Patent Document 1.
  • a butterfly FIR filter described in Non-Patent Document 1.
  • the polarization restoration unit 703 recognizes that the digital data to be processed includes a PMD of Ts / 2 in advance, removes the delay difference of Ts / 2 between the polarization signal components, Perform adaptive equalization of distortion other than delay difference.
  • FIG. 12 is a diagram illustrating a configuration example of the polarization restoration unit according to the present embodiment.
  • the butterfly FIR filter includes complex signal generators 901-A and 901-B and complex adders 902-1, 902-2, 902-3,..., 902- (n-1), 903-1, 903-2, 903-3, ..., 903- (n-1), 904-1, 904-2, 904-3, ..., 904- (n-1), 905-1, 905 2, 905-3,..., 905- (n-1), 906-A, 906-B, and delay units 907-1, 907-2, 907-3, ..., 907- (n- 1), 908-1, 908-2, 908-3, ..., 908- (n-1), 909-1, 909-2, 909-3, ..., 909- (n-1) , 910-1, 910-2, 910-3,...
  • the complex signal generation unit 901-A generates a complex number having X ′ polarization / I ′ axis digital data input from outside as a real part and X ′ polarization / Q ′ axis digital data input from outside as an imaginary part. And output to complex multipliers 911-1 and 913-1 and delay units 907-1 and 909-1, respectively.
  • the complex signal generation unit 901-B generates a complex number having Y ′ polarization / I ′ axis digital data input from outside as a real part and Y ′ polarization / Q ′ axis digital data input from outside as an imaginary part. And output to complex multipliers 912-1 and 914-1 and delay units 908-1 and 910-1, respectively.
  • the delay unit 907-1 holds the digital data input from the complex signal generation unit 901-A for a predetermined time ⁇ , and outputs the digital data to the complex multiplication unit 911-2 and the delay unit 907-2 after the time ⁇ elapses.
  • the delay unit 908-1 holds the digital data input from the complex signal generation unit 901-B for a predetermined time ⁇ , and outputs the digital data to the complex multiplication unit 912-2 and the delay unit 908-2 after the elapse of time ⁇ .
  • the delay unit 909-1 holds the digital data input from the complex signal generation unit 901-A for a predetermined time ⁇ , and outputs the digital data to the complex multiplication unit 913-2 and the delay unit 909-2 after the elapse of time ⁇ . .
  • the delay unit 910-1 holds the digital data input from the complex signal generation unit 901-B for a predetermined time ⁇ , and outputs the digital data to the complex multiplication unit 914-2 and the delay unit 910-2 after the time ⁇ elapses. .
  • Digital data is output to the multiplier 911- (k + 1) and the delay unit 907- (k + 1).
  • Digital data is output to the multiplier 912-(k + 1) and the delay unit 908-(k + 1).
  • Digital data is output to the multiplication unit 913- (k + 1) and the delay unit 909- (k + 1).
  • Digital data is output to the multiplier 914- (k + 1) and the delay unit 910- (k + 1).
  • the delay unit 907- (n-1) holds the digital data input from the delay unit 907- (n-2) for a predetermined time ⁇ , and outputs the digital data to the complex multiplier 911-n after the time ⁇ elapses.
  • the delay unit 908- (n-1) holds the digital data input from the delay unit 908- (n-2) for a predetermined time ⁇ , and outputs the digital data to the complex multiplication unit 912-n after the elapse of time ⁇ .
  • the delay unit 909- (n-1) holds the digital data input from the delay unit 909- (n-2) for a predetermined time ⁇ , and outputs the digital data to the complex multiplication unit 913-n after the time ⁇ elapses.
  • the delay unit 910- (n-1) holds the digital data input from the delay unit 910- (n-2) for a predetermined time ⁇ , and outputs the digital data to the complex multiplier 914-n after the time ⁇ elapses. .
  • the complex multiplication unit 911-1 performs complex multiplication of the digital data input from the complex signal generation unit 901-A and the tap coefficient input from the tap coefficient holding unit 915-A, and the operation result is converted to the complex addition unit 902- Output to 1.
  • the complex multiplication unit 912-1 performs complex multiplication of the digital data input from the complex signal generation unit 901-B and the tap coefficient input from the tap coefficient holding unit 915-B, and the operation result is converted into the complex addition unit 903-B. Output to 1.
  • the complex multiplication unit 913-1 performs complex multiplication of the digital data input from the complex signal generation unit 901-A and the tap coefficient input from the tap coefficient holding unit 915-C, and the operation result is complex addition unit 904- Output to 1.
  • the complex multiplication unit 914-1 performs complex multiplication of the digital data input from the complex signal generation unit 901-B and the tap coefficient input from the tap coefficient holding unit 915-D, and the operation result is converted to the complex addition unit 905-905. Output to 1.
  • the complex adder 902-1 performs complex addition between the digital data input from the complex multiplier 911-1 and the digital data input from the complex multiplier 911-2, and the operation result is converted to the complex adder 902-2. Output to.
  • the complex adder 903-1 performs complex addition of the digital data input from the complex multiplier 912-1 and the digital data input from the complex multiplier 912-2, and the operation result is converted to the complex adder 903-2. Output to.
  • the complex adder 904-1 performs complex addition between the digital data input from the complex multiplier 913-1 and the digital data input from the complex multiplier 913-2, and the operation result is converted to the complex adder 904-2. Output to.
  • the complex adder 905-1 performs complex addition of the digital data input from the complex multiplier 914-1 and the digital data input from the complex multiplier 914-2, and the operation result is converted to the complex adder 905-2. Output to.
  • the complex adder 902- (n ⁇ 1) performs complex addition of the digital data input from the complex adder 902- (n-2) and the digital data input from the complex multiplier 911-n, and performs complex addition.
  • the data is output to the adder 906-A.
  • the complex adder 903- (n-1) performs complex addition of the digital data input from the complex adder 903- (n-2) and the digital data input from the complex multiplier 912-n, and performs complex addition.
  • the data is output to the adder 906-A.
  • the complex adder 904- (n-1) performs complex addition of the digital data input from the complex adder 904- (n-2) and the digital data input from the complex multiplier 913-n, and performs complex addition.
  • the result is output to the adder 906-B.
  • the complex adder 905- (n-1) performs complex addition of the digital data input from the complex adder 905- (n-2) and the digital data input from the complex multiplier 914-n, and performs complex addition.
  • the result is output to the adder 906-B.
  • the complex adder 906-A performs complex addition of the digital data input from the complex adder 902- (n-1) and the digital data input from the complex adder 903- (n-1), and performs an operation. The result is output to the tap coefficient generation unit 916 and the output data selection unit 917-A.
  • the complex adder 906-B performs a complex addition of the digital data input from the complex adder 904- (n-1) and the digital data input from the complex adder 905- (n-1) to obtain an operation. The result is output to the tap coefficient generation unit 916 and the output data selection unit 917-B.
  • an envelope constant standard algorithm Constant Modulus Algorithm
  • CMA Constant Modulus Algorithm
  • LMS Least Mean Square
  • the tap coefficients are sequentially updated, and the updated tap coefficients are used as tap coefficient holding units 915-A, 915-B, 915-C, 915-D.
  • the complex adders 906-A and 906-B may And the tap coefficient is set so that each signal becomes independent.
  • the tap coefficient is generally a complex number.
  • the component corresponding to the X polarization component is output to the tap coefficient holding unit 915-A, and among the X ′ polarization components, the component corresponding to the Y polarization component is output to the tap coefficient holding unit 915.
  • a component corresponding to the X polarization component of the Y 'polarization component is output to the tap coefficient holding unit 915-B, and a component corresponding to the Y polarization component of the Y' polarization component Is output to the tap coefficient holding unit 915-D.
  • the tap coefficient holding unit 915-A holds the tap coefficient input from the tap coefficient generation unit 916 and outputs it to the complex multiplication units 911-1, 911-2, 911-3,.
  • the tap coefficients output to each complex multiplier generally take different values.
  • the tap coefficient holding unit 915-B holds the tap coefficient input from the tap coefficient generation unit 916 and outputs it to the complex multiplication units 912-1, 912-2, 912-3, ..., 912-n.
  • the tap coefficients output to each complex multiplier generally take different values.
  • the tap coefficient holding unit 915-C holds the tap coefficient input from the tap coefficient generation unit 916 and outputs it to the complex multiplication units 913-1, 913-2, 913-3,.
  • the tap coefficients output to each complex multiplier generally take different values.
  • the tap coefficient holding unit 915-D holds the tap coefficient input from the tap coefficient generation unit 916 and outputs it to the complex multiplication units 914-1, 914-2, 914-3, ..., 914-n.
  • the tap coefficients output to each complex multiplier generally take different values.
  • the output data selection unit 917-A selects data input from the complex addition unit 906-A, and outputs the selected data signal to the outside as an X polarization signal.
  • the output data selection unit 917-B selects the data input from the complex addition unit 906-B, and outputs the selected data signal to the outside (not shown) as a Y polarization signal.
  • digital data with a sampling rate ratio of 1 Sample / symbol is output to the outside.
  • the present invention does not limit the sampling rate ratio.
  • the output data selection units 917-A and 917-B select and output all input data. In the case of p> 1, the output is made after the sampling speed is set to 1 / p, that is, after the sampling speed ratio is rate-converted to 1 Sample / symbol.
  • the output data selection units 917-A and 917-B perform rate conversion to 1 / p, it is conceivable to output data at the same time or output data at a different time.
  • e'yin e'y00, e'y01, e'y10, e'y11, ..., e'yk0, e'yk1, ...
  • e'xout e'x00, e'x10, ..., e'xk0, ... (6)
  • e'yout e'y00, e'y10, ..., e'yk0, ...
  • tap coefficient generation unit 916 tap coefficients are generated so that Ts / 2 DGD remains between the X polarization and Y polarization, and the remaining Ts / 2 DGD is output to the output data selection units 917-A, 917. This is because if it is compensated by ⁇ B, it is not necessary to use the equalization ability of the butterfly FIR for the known DGD compensation.
  • the target value of the envelope is set to a (> 0), and the envelope value of the output signal of X polarization and the envelope value of the output signal of Y polarization are always a.
  • the tap coefficient is updated so as to approach.
  • the envelope target value may be set as in the following equation (in general, a ⁇ b, a> 0, b> 0). ).
  • Equations (10) to (15) is a tap coefficient generation / update method in the case of equalization with butterfly FIR including up to Ts / 2 DGD.
  • the equations (12) to (15) may be modified as the equations (16) to (19).
  • the carrier frequency offset compensator 704-A is based on the digital data of the X polarization / I ′ axis and the X polarization / Q ′ axis input from the polarization restoration unit 703, and the center of the local oscillation light and the received signal light. Frequency offset compensation is performed, and the compensated X-polarized wave / I′-axis and X-polarized wave / Q′-axis digital data is output to the carrier phase offset compensating unit 705-A.
  • the carrier frequency offset compensating unit 704-B is based on the digital data of the Y polarization / I ′ axis and the Y polarization / Q ′ axis input from the polarization restoration unit 703, and the center of the local oscillation light and the reception signal light. Frequency offset compensation is performed, and the compensated Y polarization / I′-axis and Y polarization / Q′-axis digital data is output to the carrier phase offset compensation unit 705-B.
  • the carrier phase offset compensation unit 705-A performs phase offset compensation of the signal light based on the digital data of the X polarization / I ′ axis and the X polarization / Q ′ axis input from the carrier frequency offset compensation unit 704-A. By doing so, the I axis and Q axis are restored, and the compensated X polarization / I axis and X polarization / Q axis digital data are output to the identification unit 706-A.
  • the carrier phase offset compensation unit 705-B performs phase offset compensation of the signal light based on the digital data of the Y polarization / I ′ axis and the Y polarization / Q ′ axis input from the carrier frequency offset compensation unit 704-B. By doing so, the I axis and the Q axis are restored, and the compensated Y polarization / I axis and Y polarization / Q axis digital data are output to the identification unit 706-B.
  • the identifying unit 706-A identifies the X-polarized I-axis signal and the Q-axis signal based on the X-polarized wave / I-axis and X-polarized wave / Q-axis digital data input from the carrier phase offset compensating unit 705-A. And output the identified data to the outside.
  • the identification unit 706-B obtains the Y-polarized I-axis signal and the Q-axis signal based on the digital data of the Y-polarized wave / I-axis and the Y-polarized wave / Q-axis input from the carrier phase offset compensating unit 705-A. Identify and output the identified data to the outside.
  • the optical signal output from the polarization interleaver 107 has a pulse width that is 1 ⁇ 2 times that of the prior art and has a frequency spectrum width that is twice that of the conventional signal.
  • the bandwidth of the electric circuit built in the balanced photoelectric converters 303-A, 303-B, 303-C, and 303-D is set to 3 dB bandwidth with respect to the symbol repetition frequency fs of the data signal. Set to 0.5 fs to 1.0 fs.
  • the band limitation is not performed so as to change the frequency spectrum of the signal upstream of the balanced photoelectric converters 303-A, 303-B, 303-C, and 303-D.
  • the balanced photoelectric converters 303-A, 303-B, 303-C, and 303-D receive a signal having a spectrum width that is twice that of a normal one.
  • the 3 dB bandwidth of the electric circuit incorporated in the balanced photoelectric converters 303-A, 303-B, 303-C, and 303-D is slightly too small when the frequency is 0.5 fs. Since there is a possibility that conditions exceeding fs may be optimized, it is particularly important to optimize the bandwidth of the receiving circuit.
  • the bandwidth of the balanced photoelectric converter is optimized so that the code error rate after reception electrical signal processing is minimized, the transmission quality is periodically monitored during operation, and the bandwidth optimality is monitored. This is achieved by updating the settings so that they are always optimal.
  • Band narrowing can also be achieved by using single sideband (SSB) modulation or residual sideband (VSB) modulation in combination. Further, for example, when performing band narrowing by the optical multiplexing / demultiplexing device included in the optical transmission unit 200, the bandwidth is equivalent to 20 Gbit / s, that is, a bandwidth equivalent to 40 GHz in general double sideband (DSB) modulation. On the other hand, by performing strict band narrowing such as a pass bandwidth of 50 GHz or less (2.5 times the symbol rate) or by shifting the center frequency of band narrowing from the center frequency of signal light, It is also possible to receive after VSB conversion.
  • SSB single sideband
  • VSB residual sideband
  • a pass band of at least 10 GHz (corresponding to 0.5 times the symbol rate) is required. By performing such band narrowing, it is possible to perform wavelength multiplexing at high density and realize high frequency utilization efficiency.
  • each polarization component alternately exists on the time axis, and the time in which the polarization component exists simultaneously is approximately zero, and symbol repetition of the optical signal of each polarization component is performed.
  • An optical signal with a period of Ts is generated.
  • the optical receiving unit 300 causes the local oscillation light and the received optical signal to interfere with each other, and then converts the optical signal after the interference into an electrical signal.
  • the received electrical signal processing unit 400 Then, analog-to-digital conversion of the electrical signal, removal of the Ts / 2 delay difference between the polarization signal components, and adaptive equalization of distortion other than the delay difference are performed.
  • analog-to-digital conversion of the electrical signal removal of the Ts / 2 delay difference between the polarization signal components, and adaptive equalization of distortion other than the delay difference are performed.
  • Embodiment 2 FIG. In the present embodiment, CSRZ (Carrier Suppressed Return to Zero) modulation is used for the pulse modulation in the first embodiment.
  • CSRZ Carrier Suppressed Return to Zero
  • FIG. 13 is a diagram illustrating a configuration example of the optical transmission system according to the present embodiment. Configurations having the same functions as those in FIG. 1 of the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
  • the optical transmission system according to the present embodiment includes an optical transmission unit (optical transmission device) 800, an optical transmission unit 200, and an optical reception device 1000.
  • the optical transmitter 800 includes a first electric signal source 801, a second electric signal source 802, electric amplifiers 803-A, 803-B, 803-C, 803-D, and a light source 804. And a Mach-Zehnder modulator 805. Since the functions of the optical transmission unit 200, the optical reception unit 300, and the reception electrical signal processing unit 400 are the same as those in the first embodiment, the description thereof is omitted.
  • the operation of the optical transmission system according to the present embodiment will be described.
  • an example of generating a 40 Gbit / s polarization multiplexed interleaved QPSK optical signal will be described.
  • the present embodiment can be applied to other transmission rates and various modulation schemes, and is not limited to this example.
  • an electric signal ex for generating an X-polarized optical signal Ex an electric signal ey for generating a Y-polarized optical signal Ey, and a clock signal based on an externally input signal And outputs the clock signal, the electric signal ex and the electric signal ey that are developed in parallel to the second electric signal source 802.
  • ex consists of I-axis signal exI and Q-axis signal exQ
  • ey consists of I-axis signal eyI and Q-axis signal eyQ
  • exI xI1, xI2, (20)
  • exQ xQ1, xQ2, ...
  • the electrical signal ex and the electrical signal ey correspond to an example of the first electrical signal in the present invention
  • the clock signal corresponds to an example of the second electrical signal in the present invention.
  • both the I-axis signal eI and the Q-axis signal eQ have a signal exy in which ex and ey are alternately time-division multiplexed.
  • the present invention is not limited to these assumptions.
  • the two data signals correspond to an example of the third electric signal in the present invention
  • the two clock signals correspond to an example of the fourth electric signal in the present invention.
  • the light source 804 generates CW light and outputs it to the Mach-Zehnder modulator 805.
  • the signal is output to the 2-parallel Mach-Zehnder modulator 806.
  • the Mach-Zehnder modulator 805 corresponds to an example of a pulse signal generation unit in the present invention.
  • the 2-parallel Mach-Zehnder modulator 806 corresponds to an example of the data modulation unit in the present invention.
  • the polarization multiplexed interleaved QPSK optical signal is generated, and the polarization multiplexed interleaved QPSK optical signal is output to the optical transmission unit 200.
  • a polarization multiplexed interleaved QPSK optical signal having a delay difference of Ts / 2 (50 ps) between the X polarization optical signal and the Y polarization optical signal is generated by the two parallel Mach-Zehnder modulator 806 and the polarization modulator 807. Is done.
  • the polarization modulator 807 corresponds to an example of a polarization interleave unit in the present invention.
  • the electric signal waveform for driving the polarization modulator 807 is a sine wave whose peak amplitude is equal to the half-wave voltage of the polarization modulator, but switching the polarization by making this a rectangular wave with the same amplitude.
  • the time can be shortened, which contributes to polarization separation on the receiving side and waveform distortion suppression during transmission.
  • a limit type driver is used as the electric amplifier 803-D.
  • the electric amplifier 803-D has a multi-stage electric amplifier. It is possible to take a method such as making a rectangle.
  • FIG. 14 shows a time waveform of the CW light output from the light source 804.
  • the CW light is CSRZ-modulated by the Mach-Zehnder modulator 805 and changed to a CSRZ optical signal shown in FIG.
  • the CSRZ optical signal is QPSK-modulated by the two parallel Mach-Zehnder modulator 806 and converted into a CSRZ-QPSK optical signal shown in FIG.
  • the CSRZ-QPSK optical signal is polarization-modulated by the polarization modulator 807 and changes to a polarization multiplexed interleaved QPSK optical signal shown in FIG. As shown in FIG. 17, the polarization modulator 807 distributes a single polarization signal component (FIG. 16) to two polarization components alternately for each symbol, thereby generating a polarization multiplexed interleaved QPSK optical signal. Generate.
  • the second electric signal source 802 performs synchronization control for bit-synchronizing the timing of CSRZ modulation, QPSK modulation, and polarization modulation.
  • the method of bit synchronization is the same as in the first embodiment.
  • the timing is determined based on the clock signal input to the Mach-Zehnder modulator 805 and the polarization modulator 807. As in the first embodiment, the timing is determined from the non-transition region of the clock signal. When the non-transition region is set as the synchronization timing, the non-transition region of the clock signal input to the polarization modulator and the central portion of the CSRZ-QPSK optical signal output from the 2-parallel Mach-Zehnder modulator 806 substantially coincide.
  • CSRZ modulation is used as pulsed modulation, but it goes without saying that other RZ modulation such as 50% RZ modulation or 33% RZ modulation has the same effect.
  • CSRZ modulation is performed by the Mach-Zehnder modulator 805
  • data modulation is performed by the two parallel Mach-Zehnder modulator 806
  • polarization multiplexing modulation is performed by the polarization modulator 807.
  • the electric signal source and the second electric signal source can cope with each other, and the circuit of the electric signal source can be simplified and reduced in price even when the number of systems increases in the future.
  • the positional relationship among the pulse signal generation unit, the data modulation unit, and the polarization interleaving unit is arranged in the order of the pulse signal generation unit, the data modulation unit, and the polarization interleaving unit.
  • the order there is no limitation on the order, and the same function can be achieved with an arrangement other than the order.
  • FIG. 18 is a configuration example showing an optical transmission system in which the arrangement of the optical transmission unit according to the second embodiment is changed.
  • the data modulation unit is arranged before the pulse signal generation unit. This arrangement can improve the sensitivity of the DC bias control and can improve the transmission quality. Furthermore, the control of the optical components is facilitated, and the control circuit can be simplified and reduced in price.
  • DC bias control of the data modulation optical modulator is essential.
  • the sensitivity of the DC bias control depends on the average optical power input to the optical modulator. Since the DC bias control of data modulation requires a control gain that is 10 to 100 times higher than that of pulsed modulation, the higher the average optical power, the more advantageous in terms of control sensitivity. If data modulation is performed before the pulsed modulation, insertion loss and modulation loss of the optical modulator for pulsed modulation can be avoided. As a result, the average optical power input to the data modulation optical modulator can be increased, and the sensitivity of DC bias control for data modulation is improved. As a result, the control of the optical component is facilitated, and the control circuit can be simplified and reduced in price.
  • FIG. 19 to 22 show changes in the time waveform of the optical signal output from the optical transmission unit in the arrangement of FIG.
  • FIG. 19 shows a time waveform of CW light output from the light source 804.
  • the CW light is QPSK modulated by the 2-parallel Mach-Zehnder modulator 806, and changes to a QPSK optical signal shown in FIG.
  • the QPSK optical signal is CSRZ-modulated by the Mach-Zehnder modulator 805, and changes to the CSRZ-QPSK optical signal shown in FIG.
  • the CSRZ-QPSK signal is subjected to polarization modulation by the polarization modulator 807 and changed to a polarization multiplexed interleaved QPSK optical signal shown in FIG.
  • the data modulation unit can be arranged in front of the pulse signal generation unit.
  • a lithium niobate modulator widely used in the pulse signal generation unit when a lithium niobate modulator widely used in the pulse signal generation unit is used, only one polarization component of the polarization multiplexed signal may be pulse-modulated due to the polarization dependence of the modulator. is there. In order to avoid this, a polarization-independent optical modulator may be used for the pulse signal generation unit.
  • the electrical band required for the receiver is approximately double.
  • the reception electrical band is preferably about 40 to 70% of the symbol rate, and particularly preferably within the range of 50 to 60%. Therefore, when the transmission rate is 40 Gb / s, the conventional methods described in Non-Patent Documents 1 and 2 A band of about 5 to 6 GHz is optimal in the technology, and about 10 to 12 GHz in the second embodiment.
  • the electrical band is excessively wide, the waveform distortion is hardly changed, and only an increase in mixed noise occurs, so that the performance is deteriorated.
  • the electrical band is excessively narrow, the noise to be mixed becomes small, but the waveform distortion becomes very large, so that the performance deteriorates.
  • the line rate may increase to about 50 Gb / s even if the transmission rate of the payload is 40 Gb / s.
  • the bandwidth of about 6.25 to 7.5 GHz is optimal for the conventional techniques described in Non-Patent Documents 1 and 2, and the band of about 12.5 to 15 GHz is optimal for Embodiment 1.
  • the input signal to the second electric signal source 802 is generally a 16-paralleled SFI-5 (Serdes Frame Interface Level 5) signal
  • a 16: 2 multiplexer is used as the electrical signal source 2.
  • a 40 Gb / s class 16: 2 multiplexer is a commonly available component in optical communications.
  • the optical transmission system according to the present invention is useful for an optical transmission system using a digital coherent method, and is particularly suitable for an optical transmission system that performs long-distance communication.
  • Optical transmitters 101,801 First electric signal source 102,802 Second electric signal source 103-A, 103-B, 103-C, 103-D, 103-E, 803-A, 803- B, 803-C, 803-D Electric amplifier 104, 804 Light source 105, 805 Mach-Zehnder modulator 106 Polarization multiplexing type 2 parallel Mach-Zehnder modulator 107 Polarization interleaver 108 Polarization multiplexing interleaved modulator 200 Optical transmission unit 300 Optical reception unit 301 Local Oscillation Light Source 302 Optical 90 Degree Hybrid 303-A, 303-B, 303-C, 303-D Balanced Photoelectric Converter 400 Received Electric Signal Processing Unit 401-A, 401-B, 401-C, 401- D Analog to digital converter 402 Digital signal processing unit 511 Optical branching unit 512 Polarization converting unit 51 Optical coupling unit 514-A, 514-A

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

 本発明にかかる光伝送システムは、光送信部100では時間軸上において各偏波成分が交互に存在し、同時に存在する時間が概略ゼロであり、各偏波成分の光信号のシンボル繰り返し周期がTsとなる光信号を生成し、光受信部300では、局部発振光と受信光信号とを干渉させてから、干渉後の光信号を電気信号に変換し、受信電気信号処理部400では、電気信号のアナログ・デジタル変換と、各偏波信号成分間のTs/2の遅延差の除去と、該遅延差以外の歪の適応等化とを行う。

Description

光伝送システム、光送信装置および光受信装置
 この発明は、デジタルコヒーレント方式を用いた光伝送システムに関する。
 40Gbit/sや100Gbit/sのような大容量光伝送のためには、光信号対雑音電力限界の克服や高密度波長多重化が課題である。光信号対雑音電力限界を克服する技術として、従来のオンオフキーイング(On-Off Keying:OOK)に対して、2値位相偏移変調(Binary Phase-Shift Keying:BPSK)や4値PSK(Quaternary Phase-Shift Keying:QPSK)の利用が知られている。また、高密度波長多重化のために、直交する2つの偏波成分に独立の信号を割り当てる偏波多重によって、1シンボル当たりの伝送ビット数を2倍に増やす方式や、QPSKや16値直交振幅変調(Quadrature Amplitude Modulation:QAM)のように、信号多重度を上げて、1シンボル当たりの伝送ビット数を増やす方式が知られている。QPSKや16QAMは、光送信器において、同位相軸(In-Phase軸:I軸)と、直交位相軸(Quadrature-Phase軸:Q軸)とに信号を割り当てて伝送する。
 また、これらの光変調信号を同期検波方式にデジタル信号処理を組み合わせて受信するデジタルコヒーレント方式が注目されている。この方式では、同期検波による線形な光電気変換と、デジタル信号処理による固定的、半固定的および適応的な線形等化により、受信器における安定な多重信号分離と、元の信号への復元とが可能となる。このため、伝送路で生じる波長分散や偏波モード分散(Polarization-Mode Dispersion:PMD)等に起因する線形な波形歪みに対する優れた等化特性や優れた雑音耐力を実現できる。
 通常、デジタルコヒーレント方式では、直交する2つの偏波成分(X偏波成分およびY偏波成分)に独立な信号成分(ExおよびEy)を割り当てる偏波多重方式が用いられる。図23、図24は、従来技術の偏波多重方式において通常用いられる偏波多重信号の時間軸表現を示す図である。図23はExとEyとが時間軸上で完全にビット同期している例である。図24はExとEyとが時間軸上で半シンボルずらされた例である(例えば、非特許文献1、非特許文献2参照)。
Seb J. Savory,"Digital Filters for Coherent Optical Receivers",Optics Express,vol.16, no.2, pp.804-817,2008. Optical Internetworking Forum,"100G Ultra Long Haul DWDM Framework Document",http://www.oiforum.com/public/documents/OIF-FD-100G-DWDM-01.0.pdf,June 2009.
 しかしながら、上記の従来技術によれば、時間軸上で同時に直交するX偏波成分とY偏波成分に同一波長の信号成分Ex、Eyが多重化されているので、光ファイバ中の非線形光学効果により、Ex-Ey間に非線形な相互作用が生じるという課題があった。また、Ex-Ey間で生じた非線形干渉は、受信器における線形適応等化器では等化できず、信号品質の過剰な劣化を招くという問題があった。
 例えば、図23に示す時間波形では、ExとEyとが時間軸上で完全にビット同期しているので、Ex-Ey間の非線形干渉が伝送品質劣化を招く。また、図24に示す時間波形では、ExとEyとの波形のピークが時間的にずれているため、非線形な相互作用による伝送品質劣化が低減されるが、ExとEyとの間に重なり時間が存在するため、ファイバ非線形効果によるEx-Ey間の非線形干渉が生じる。
 この発明は、上記の課題を解決するためになされたものであって、その目的は、直交偏波多重信号に生じる非線形干渉を低減し、伝送品質を向上させることにある。
 本発明にかかる光伝送システムは、シンボル繰り返し周期Tsに対し、Ts/2以下となるパルス幅のパルス信号を生成するパルス信号生成部と、送信データ信号に基づき、データ変調信号を生成するデータ変調部と、略直交する2つの偏波成分間の遅延差が、シンボル繰り返し周期Tsの半分(Ts/2)となる偏波多重信号を生成する偏波インタリーブ部と、を有する光送信部と、前記光送信部から受信した光信号の中心波長に対応する光を生成する局部発振光源と、前記局部発振光源によって生成された光と、前記光送信部から受信した光信号と、を干渉させる光干渉部と、前記光干渉部からの出力を電気信号に変換する光電気変換部と、を有する光受信部と、前記光受信部から出力される電気信号をデジタル信号に変換するアナログ・デジタル変換部と、前記デジタル信号に対し、偏波信号成分間のTs/2の遅延差の除去と、該遅延差以外の歪の適応等化とを行うデジタル信号処理部と、を有する受信電気信号処理部と、を備え、前記光送信部は、時間軸上において各偏波成分が交互に存在し、同時に存在する時間が概略ゼロであり、各偏波成分の光信号の繰り返し周期はTsとなる光信号を生成することを特徴とする。
 この発明によれば、直交偏波多重信号間で生じる非線形干渉を低減し、伝送品質を向上させることができる。
図1は、この発明の実施の形態1にかかる光伝送システムの構成例を示す図である。 図2は、この発明の実施の形態1にかかる偏波多重型2並列マッハツェンダ変調器の構成例を示す図である。 図3は、この発明の実施の形態1にかかる偏波インタリーバの構成例を示す図である。 図4は、この発明の実施の形態1にかかる偏波多重インタリーブ型変調器の構成例を示す図である。 図5は、この発明の実施の形態1にかかる光送信部で生成されるCW光の時間波形の例を示したものである。 図6は、この発明の実施の形態1にかかる光送信部で生成されるパルス化光信号の時間波形の例を示したものである。 図7は、この発明の実施の形態1にかかる光送信部で生成されるX偏波パルス化QPSK光信号の時間波形の例を示したものである。 図8は、この発明の実施の形態1にかかる光送信部で生成されるY偏波パルス化QPSK光信号の時間波形の例を示したものである。 図9は、この発明の実施の形態1にかかる光送信部で生成される偏波多重QPSK光信号の時間波形の例を示したものである。 図10は、この発明の実施の形態1にかかる光送信部で生成される偏波多重インタリーブQPSK光信号の時間波形の例を示したものである。 図11は、この発明の実施の形態1にかかるデジタル信号処理部の構成例を示す図である。 図12は、この発明の実施の形態1にかかる偏波復元部の構成例を示す図である。 図13は、この発明の実施の形態2にかかる光伝送システムの構成例を示す図である。 図14は、この発明の実施の形態2にかかる光送信部で生成されるCW光の時間波形の例を示したものである。 図15は、この発明の実施の形態2にかかる光送信部で生成されるCSRZ光信号の時間波形の例を示したものである。 図16は、この発明の実施の形態2にかかる光送信部で生成されるCSRZ-QPSK光信号の時間波形の例を示したものである。 図17は、この発明の実施の形態2にかかる光送信部で生成される偏波多重インタリーブQPSK光信号の時間波形の例を示したものである。 図18は、図13の光送信部の配置を変更した光伝送システムを示す構成例である。 図19は、図18における光送信部で生成されるCW光の時間波形の例を示したものである。 図20は、図18における光送信部で生成されるQPSK光信号の時間波形の例を示したものである。 図21は、図18における光送信部で生成されるCSRZ-QPSK光信号の時間波形の例を示したものである。 図22は、図18における光送信部で生成される偏波多重インタリーブQPSK光信号の時間波形の例を示したものである。 図23は、従来の偏波多重信号の時間波形を示す図のうち、ビット同期した例である。 図24は、従来の偏波多重信号の時間波形を示す図のうち、時間軸上で半シンボルずらされた例である。
 以下に、本発明にかかる光伝送システムの実施の形態を図面に基づいて詳細に説明する。なお、以下に説明する実施の形態は、本発明を具体化する際の一形態であって、本発明をその範囲内に限定するためのものではない。
実施の形態1.
 図1は、本実施の形態にかかる光伝送システムの構成例を示す図である。図1に示すように、本実施の形態の光伝送システムは、光送信部(光送信装置)100と、光伝送部200と、光受信装置1000と、を備える。光受信装置1000は、光受信部300と受信電気信号処理部400を備える。以下の実施の形態に示す光伝送システムにおいても同様とする。光送信部100から送出された光信号は光伝送部200を経由し、光受信部300に到達する。受信された光信号は光受信部300で、電気信号に変換された後、受信電気信号処理部400にて電気的に信号処理される。
 光送信部100は、第1の電気信号源101と、第2の電気信号源102と、電気増幅器103-A、103-B、103-C、103-D、103-Eと、光源104と、マッハツェンダ変調器105と、偏波多重型2並列マッハツェンダ変調器106と、偏波インタリーバ107とを備えている。
 光伝送部200は、光送信部100と光受信部300とを接続する。光伝送部200には、例えば、光ファイバ、光合分波装置、波長分散補償装置、光増幅装置等の通常の光伝送システムで想定されるさまざまな装置を含んでいてもよい。
 光受信部300は、局部発振光源301と、光90度ハイブリッド302と、バランス型光電気変換器303-A、303-B、303-C、303-Dとを備えている。
 受信電気信号処理部400は、アナログ・デジタル変換器401-A、401-B、401-C、401-Dと、デジタル信号処理部402と、を備えている。
 以下、本実施の形態にかかる光伝送システムの動作を説明する。以下、40Gbit/s偏波多重QPSK光信号を生成する例について説明する。40Gbit/s偏波多重QPSK光信号は1シンボル当たり4ビットの通信が可能であり、シンボル繰り返し周波数fsは10GHzである。また、シンボル繰り返し周期はTs(=1/fs)とする。なお、本実施の形態は、他の伝送レート、各種の変調方式に適用可能であり、この例に限定されるものではない。また、本実施の形態では偏波多重QPSK光信号の各偏波成分をインタリーブして偏波多重インタリーブQPSK光信号を生成する。
 第1の電気信号源101は、外部から入力される送信データ信号に基づき、クロック信号と、4系統のデータ信号、すなわち、X偏波・I軸電気信号exIと、X偏波・Q軸電気信号exQと、Y偏波・I軸電気信号eyIと、Y偏波・Q軸電気信号eyQとを生成する。4系統のデータ信号は、例えば、それぞれ並列展開されて実ビットレート40Gbit/sの1/16に低速化される。クロック信号も同様に低速化される。第1の電気信号源101は、1/16の速度に低速化された4系統のデータ信号とクロック信号とを第2の電気信号源102に出力する。上記の比率による低速化は一例であり、本発明はこれよって限定されるものではない。なお、4系統のデータ信号は本発明における第1の電気信号の一例、クロック信号は本発明における第2の電気信号の一例にそれぞれ相当する。
 第2の電気信号源102は、入力された4系統のデータ信号とクロック信号から、シンボルレートfs(=10Gsymbol/s)の4系統のデータ信号と、周期をTs/2(=50ps)として2周期に一度のみTs/2(=50ps)のパルス幅を有するパルス信号とを生成する。また、第2の電気信号源102は、生成したX偏波・I軸電気信号を電気増幅器103-Bに出力し、生成したX偏波・Q軸電気信号を電気増幅器103-Cに出力し、生成したY偏波・I軸電気信号を電気増幅器103-Dに出力し、生成したY偏波・Q軸電気信号を電気増幅器103-Eに出力し、生成したパルス信号を電気増幅器103-Aに出力する。なお、本実施の形態ではパルス幅はTs/2としたが、偏波成分間の非線形干渉をより低減するため、Ts/2以下となるようにしてもよい。なお、生成した4系統のデータ信号は本発明における第3の電気信号の一例、生成したパルス信号は本発明における第4の電気信号の一例にそれぞれ相当する。
 上記のパルス信号は、例えば、周波数fs/2(=5GHz)と周波数fs(10GHz)とのクロック信号の論理積をとることによって得ることができる。一例として、周波数fs/2(=5GHz)の論理クロック信号d1と周波数fs(=10GHz)の論理クロック信号d2との論理積d3は、次のようにして得られる。
 d1=0,0,1,1,0,0,1,1,0,0,・・・ (1)
 d2=0,1,0,1,0,1,0,1,0,1,・・・ (2)
 d3=0,0,0,1,0,0,0,1,0,0,・・・ (3)
ただし、1つの論理の占める時間幅はTs/2(=50ps)に相当する。論理クロック信号d1およびd2は、それぞれ典型的な、デューティ比50%の論理RZ(Return to Zero)信号と見なせる一方、d3は、d2の周期Ts/2(=50ps)に対して2周期に一度パルスを有する、デューティ比25%の論理RZ信号になることがわかる。
 電気増幅器103-Aは、第2の電気信号源102から入力されるパルス信号をマッハツェンダ変調器105の半波長電圧と概略同等となるまで増幅し、マッハツェンダ変調器105に出力する。電気増幅器103-Bは、第2の電気信号源102から入力されるX偏波・I軸電気信号を偏波多重型2並列マッハツェンダ変調器106の半波長電圧の概略2倍まで増幅し、偏波多重型2並列マッハツェンダ変調器106に出力する。電気増幅器103-Cは、第2の電気信号源102から入力されるX偏波・Q軸電気信号を偏波多重型2並列マッハツェンダ変調器106の半波長電圧の概略2倍まで増幅し、偏波多重型2並列マッハツェンダ変調器106に出力する。電気増幅器103-Dは、第2の電気信号源102から入力されるY偏波・I軸電気信号を偏波多重型2並列マッハツェンダ変調器106の半波長電圧の概略2倍まで増幅し、偏波多重型2並列マッハツェンダ変調器106に出力する。電気増幅器103-Eは、第2の電気信号源102から入力されるY偏波・Q軸電気信号を偏波多重型2並列マッハツェンダ変調器106の半波長電圧の概略2倍まで増幅し、偏波多重型2並列マッハツェンダ変調器106に出力する。
 光源104は、CW光を生成し、マッハツェンダ変調器105に出力する。
 マッハツェンダ変調器105は、光源104から入力されるCW光を、電気増幅器103-Aから入力される、増幅されたパルス信号でパルス変調してパルス化光信号を生成し、パルス化光信号を偏波多重型2並列マッハツェンダ変調器106に出力する。マッハツェンダ変調器105は、本発明におけるパルス信号生成部の一例に相当する。なお、パルス信号生成部はマッハツェンダ変調器以外の他の方法を用いてもよい。例えば、電界吸収型光変調器などであってもよい。
 図2は、本実施の形態にかかる偏波多重型2並列マッハツェンダ変調器の構成例を示す図である。図示するように、偏波多重型2並列マッハツェンダ変調器106は、光分岐部511と、偏波変換部512と、光結合部513と、データ変調部514-A、514-Bとを備えている。偏波多重型2並列マッハツェンダ変調器106は、2系統の空間分割多重された単一偏波信号を生成して、生成した2系統の光信号を偏波多重化する。
 偏波多重型2並列マッハツェンダ変調器106は、マッハツェンダ変調器105から入力されるパルス化光信号を、QPSK変調および偏波多重化して偏波多重QPSK光信号を生成し、偏波多重QPSK光信号を偏波インタリーバ107に出力する。偏波多重型2並列マッハツェンダ変調器106における偏波多重QPSK変調は、電気増幅器103-Bから入力される、増幅されたX偏波・I軸電気信号と、電気増幅器103-Cから入力される、増幅されたX偏波・Q軸信号と、電気増幅器103-Dから入力される、増幅されたY偏波・I軸電気信号と、電気増幅器103-Eから入力される、増幅されたY偏波・Q軸信号とを用いる。
 次に、図2における偏波多重型2並列マッハツェンダ変調器106の動作を説明する。光分岐部511は、入力される光信号の偏波状態を保持しつつ二分岐し、二分岐されたそれぞれの光信号をデータ変調部514-Aおよび514-Bに出力する。データ変調部514-Aは、光分岐部511から入力される光信号を、外部から入力されるデータ変調用電気信号で変調し、変調後の光信号を偏波変換部512に出力する。偏波変換部512は、データ変調部514-Aから入力される光信号の偏波状態を、入力される光信号の偏波状態と出力される光の偏波状態とが直交関係となるように変換し、偏波状態が変換された光信号を光結合部513に出力する。データ変調部514-Bは、光分岐部511から入力される光信号を、外部から入力されるデータ変調用電気信号で変調し、変調後の光信号を光結合部513に出力する。光結合部513は、偏波変換部512から入力される光信号と、データ変調部514-Bから入力される光信号とを、偏波状態を保持しつつ結合し、外部へ出力する。
 ここで、40Gbit/s偏波多重QPSK光信号を生成する場合は、例えば、データ変調部514-AにX偏波用2並列マッハツェンダ変調器、データ変調部514-BにY偏波用2並列マッハツェンダ変調器を用いることができる。10Gsymbol/sのX偏波・I軸電気信号および10Gsymbol/sのX偏波・Q軸電気信号が、並列にX偏波用2並列マッハツェンダ変調器に入力される。10Gsymbol/sのY偏波・I軸電気信号および10Gsymbol/sのY偏波・Q軸電気信号が並列にY偏波用2並列マッハツェンダ変調器に入力される。X偏波用2並列マッハツェンダ変調器はX偏波・I軸電気信号とX偏波・Q軸電気信号とに従ってQPSK変調する。Y偏波用2並列マッハツェンダ変調器はY偏波・I軸電気信号とY偏波・Q軸電気信号とに従ってQPSK変調する。
 なお、データ変調部514-Aに2つのマッハツェンダ変調器が並列に接続された2並列マッハツェンダ変調器ではなく、通常のマッハツェンダ変調器を用いてもよい。データ変調部514-Bも同様である。データ変調部514-A、514-Bに使用するマッハツェンダ変調器は、変調方式や必要とされる伝送品質などに応じて適宜選択できる。
 第2の電気信号源102はマッハツェンダ変調器105におけるパルス化変調と偏波多重型2並列マッハツェンダ変調器106における各QPSK変調のタイミングをビット同期させるための同期制御を行う。ビット同期させる方法は、例えば、温度変化による位相ずれを防ぐため、温度変化量と位相調整量とを対応付けた情報を格納したテーブルを用意し、第2の電気信号源102が温度変化量に応じた位相調整量をテーブルから抽出し、同期制御を行うものであってもよい。または、第2の電気信号源102が偏波多重型2並列マッハツェンダ変調器106から出力される光信号の一部を受信し、光パワーを最適化するように位相調整して同期制御を行うものであってもよい。光パワーを最適化する方法として、偏波多重型2並列マッハツェンダ変調器106を駆動する電気信号に低周波成分を重畳し、偏波多重型2並列マッハツェンダ変調器106から出力される光信号の一部を受信し、受信した光信号から抽出された低周波成分に基づいて同期制御を行うものであってもよい。同期制御の方法は上記に限られず、他の方法を用いてもよい。
 上記の同期のタイミングはマッハツェンダ変調器105に入力されるパルス信号に基づいて決定される。例えば、パルス信号波形の両端にある、0から1へ立ち上がる状態、または、1から0へ立ち下る状態(以下、遷移領域とする。)を同期のタイミングとしてはならず、遷移領域ではないパルス信号波形の中央とその近傍の1または0の状態(以下、非遷移領域とする。)を同期のタイミングとすべきである。非遷移領域を同期のタイミングとした場合には、パルス信号の非遷移領域と、データ変調部514-A、514-Bから出力されるQPSK光信号の中央部分が略一致する。遷移領域を用いる場合にはデータの中央部分の光パワーが極端に小さくなり、大幅な性能劣化が生じる。
 図3は、本実施の形態にかかる偏波インタリーバ107の構成例を示す図である。図示するように、偏波インタリーバ107は、偏波分岐部611と、非遅延部612と、遅延部613と、偏波結合部614とを備えている。
 偏波インタリーバ107は、偏波多重型2並列マッハツェンダ変調器106から入力される偏波多重QPSK光信号のX偏波光信号とY偏波光信号との間に、概略Ts/2(=50ps)に相当する遅延差を与え、各偏波成分を多重化する。例えば、光信号を偏波保持ファイバ等の複屈折媒質を通過させることで、所望の遅延を与えることができる。偏波インタリーバ107は、本発明における偏波インタリーブ部の一例に相当する。
 次に、図3における偏波インタリーバ107の動作を説明する。偏波分岐部611は、入力される偏波多重QPSK光信号(例えば、X偏波とY偏波に独立な信号を有する)をX偏波光信号とY偏波光信号とに分岐し、X偏波光信号を非遅延部612に出力し、Y偏波光信号を遅延部613に出力する。非遅延部612は、偏波分岐部611から入力されるX偏波光信号を偏波結合部614に出力する。遅延部613は、偏波分岐部611から入力されるY偏波光信号に、非遅延部612を通過するX偏波光信号に対して相対的にTs/2(=50ps)の遅延を与え、遅延を与えたY偏波光信号を偏波結合部614に出力する。偏波結合部614では、非遅延部612から入力されるX偏波光信号と、遅延部613から入力される、遅延を与えたY偏波光信号との偏波状態を保持しつつ結合し、外部に出力する。
 また、偏波多重型2並列マッハツェンダ変調器106と偏波インタリーバ107とが集積化された構成としてもよい。図4は、本実施の形態にかかる偏波多重インタリーブ型変調器の構成例を示す図である。偏波多重インタリーブ型変調器108は、図2の構成に遅延部515を加えている。
 次に、図4における偏波多重インタリーブ型変調器108の動作を説明する。図2と同一の機能を有する構成は同一の符号を付して、重複する説明を省略する。遅延部515は、データ変調部514-Bから入力される光信号に概略Ts/2(=50ps)の遅延を与え、遅延を与えた光信号を光結合部513に出力する。これにより、データ変調部514-Aを通過する経路で得られるX偏波光信号と、データ変調手段514-Bを通過する経路で得られるY偏波光信号との間に、Ts/2(=50ps)の遅延差が与えられる。
 図5~図10は、本実施の形態にかかる光送信部100により生成される光信号の時間波形の変化の様子を示したものである。図5は、光源104から出力されたCW光の時間波形を示したものである。CW光は、マッハツェンダ変調器105によってパルス変調されて、図6に示すパルス化光信号に変化する。パルス化光信号のX偏波光信号とY偏波光信号は、偏波多重型2並列マッハツェンダ変調器106によって、それぞれQPSK変調されて図7および図8に示すQPSK光信号に変化し、かつ、偏波多重化されて図9に示す偏波多重QPSK光信号に変化する。偏波多重QPSK光信号は、偏波インタリーバ107により偏波インタリーブされ、図10に示す偏波多重インタリーブQPSK光信号に変化する。
 図10に示す偏波多重インタリーブQPSK光信号は、略直交するX偏波成分およびY偏波成分に独立な信号成分Ex、Eyを割り当て、ExとEyとが時間軸上において同時に存在する時間が概略ゼロであり、時間軸上ではExとEyとが交互に存在し、ExとEyの存在する周期がそれぞれTsとなる。ただし、ビットレートをBとし、変調方式の多値度をmとするとき、シンボル繰返し周期Tsはm/Bで表される。なお、ExとEyの時間軸上における重なりは、ExとEyが同時に存在する時間が概略ゼロとなる。すなわち、ExとEyが同時に存在する時間がゼロなることが理想的であるが、必要とされる伝送信号品質に対して許容される程度のExとEyの重なりが生じていてもよい。
 偏波インタリーバ107から出力される偏波多重インタリーブ光信号は、光伝送部200を経由して、光受信部300の光90度ハイブリッド302に到達する。
 局部発振光源301は、伝送後の光信号の中心波長に概略一致した中心波長を有するCW光を生成し、CW光を光90度ハイブリッド302に出力する。
 光90度ハイブリッド302は、光伝送部200から入力される伝送後の光信号と、局部発振光源301から入力されるCW光とを干渉させて、X’偏波成分とY’偏波成分それぞれのI’軸成分、Q’軸成分に対応する和成分、差成分で決まる8成分を生成し、それぞれの成分をバランス型光電気変換器303-A、303-B、303-C、303-Dへ出力する。例えば、X’偏波・I’軸の和成分および差成分がバランス型光電気変換器303-Aに出力され、X’偏波・Q’軸の和成分および差成分がバランス型光電気変換器303-Bに出力され、Y’偏波・I’軸の和成分および差成分がバランス型光電気変換器303-Cに出力され、Y’偏波・Q’軸の和成分および差成分がバランス型光電気変換器303-Dに出力される。なお、本発明はこれらの対応関係によって限定されるものではない。
 なお、光伝送部200での偏波状態変化や位相変化の影響により、X’偏波成分とY’偏波成分は、光送信部100出力点でのX偏波成分とY偏波成分とは一般に一致しない。また、I’軸成分とQ’軸成分についても、送信器出力点でのI軸成分とQ軸成分とは一般に一致しない。光90度ハイブリッド302は、本発明における光干渉部の一例に相当する。
 バランス型光電気変換器303-Aは、光90度ハイブリッド302から入力される干渉後の光信号の和成分と差成分を光電気変換し、X’偏波・I’軸電気信号をアナログ・デジタル変換器401-Aに出力する。バランス型光電気変換器303-Bは、光90度ハイブリッド302から入力される干渉後の光信号の和成分と差成分を光電気変換し、X’偏波・Q’軸電気信号をアナログ・デジタル変換器401-Bに出力する。バランス型光電気変換器303-Cは、光90度ハイブリッド302から入力される干渉後の光信号の和成分と差成分を光電気変換し、Y’偏波・I’軸電気信号をアナログ・デジタル変換器401-Cに出力する。バランス型光電気変換器303-Dは、光90度ハイブリッド302から入力される干渉後の光信号の和成分と差成分を光電気変換し、Y’偏波・Q’軸電気信号をアナログ・デジタル変換器401-Dに出力する。バランス型光電気変換器303-A、303-B、303-C、303-Dは、例えば、光検出器(Photodetector)とトランスインピーダンスアンプ(Transimpedance Amplifier)との組み合わせにより実現することができる。これらのバランス型光電気変換器は本発明における光電気変換部の一例に相当する。
 アナログ・デジタル変換器401-Aは、バランス型光電気変換器303-Aから入力されるX’偏波・I’軸電気信号をデジタル信号に変換し、デジタル信号処理部402に出力する。アナログ・デジタル変換器401-Bは、バランス型光電気変換器303-Bから入力されるX’偏波・Q’軸電気信号をデジタル信号に変換し、デジタル信号処理部402に出力する。アナログ・デジタル変換器401-Cは、バランス型光電気変換器303-Cから入力されるY’偏波・I’軸電気信号をデジタル信号に変換し、デジタル信号処理部402に出力する。アナログ・デジタル変換器401-Dは、バランス型光電気変換器303-Dから入力されるY’偏波・Q’軸電気信号をデジタル信号に変換し、デジタル信号処理部402に出力する。アナログ・デジタル変換においては、連続時間信号の離散時間化と、振幅レベルの量子化との双方が行われる。離散時間化によるサンプリング速度のシンボルレートに対する比は、1Sample/symbol以上に設定され、一般には2Sample/symbolに設定されることが多い。アナログ・デジタル変換器401-A、401-B、401-C、401-Dは、本発明におけるアナログ・デジタル変換部の一例に相当する。
 デジタル信号処理部402は、アナログ・デジタル変換器401-A、401-B、401-C、402-Dから入力される各デジタル信号に基づき、受信電気信号処理を行う。図11は、本発明の実施の形態にかかるデジタル信号処理部の構成例を示す図である。図示するように、デジタル信号処理部402は、固定スキュー調整部701と、波長分散補償部702-A、702-Bと、偏波復元部703と、搬送波周波数オフセット補償部704-A、704-Bと、搬送波位相オフセット補償部705-A、705-Bと、識別部706-A、706-Bとを備えている。デジタル信号処理部402は、例えば、デジタル信号プロセッサ(Digital Signal Processor)、FPGA(Field Programmable Gate Array)、ASIC(Application Specific Integrated Circuit)などのデジタル信号処理装置により実現することができる。
 次に、図11におけるデジタル信号処理部402の動作を説明する。固定スキュー調整部701は、外部から入力されるX’偏波・I’軸デジタル信号と、X’偏波・Q’軸デジタル信号と、Y’偏波・I’軸デジタル信号と、Y’偏波・Q’軸デジタル信号とに対し、光伝送システム内の光・電気回路に内在する固定遅延差調整を行い、遅延の揃ったデジタルデータを生成する。固定スキュー調整部701は遅延調整されたX’偏波成分を波長分散補償部702-Aに出力し、遅延調整されたY’偏波成分を波長分散補償部702-Bに出力する。
 波長分散補償部702-Aは、固定スキュー調整部701から入力されるX’偏波・I’軸およびX’偏波・Q’軸デジタルデータについて、伝送過程で生じた波長分散を補償し、波長分散補償されたX’偏波・I’軸およびX’偏波・Q’軸デジタルデータを偏波復元部703に出力する。波長分散補償部702-Bは、固定スキュー調整部701から入力されるY’偏波・I’軸およびY’偏波・Q’軸デジタルデータについて、伝送過程で生じた波長分散を補償し、波長分散補償されたY’偏波・I’軸およびY’偏波・Q’軸デジタルデータを偏波復元部703に出力する。
 波長分散補償部702-A、702-Bは、例えば、周波数領域等化や、有限長インパルス応答(Finite Impulse Response:FIR)フィルタによる時間領域等化を行う。変動周期の長い波形歪みであれば、波長分散以外の波形歪みも等化可能である。
 偏波復元部703は、波長分散補償部702-Aから入力されるX’偏波・I’軸およびX’偏波・Q’軸デジタルデータと、波長分散補償部702-Bから入力されるY’偏波・I’軸およびY’偏波・Q’軸デジタルデータとに基づき、元のX偏波信号およびY偏波信号を復元し、光送信部100でインタリーブされた偏波成分をデインタリーブする。また、偏波復元部703は、波長分散補償部702-A,702-Bで補償されず残留した波長分散、伝送過程で生じたPMD、各デバイスにおける帯域不足等に起因する劣化などを少なくとも部分的に等化する。処理後のX偏波成分は搬送波周波数オフセット補償部704-Aに出力され、処理後のY偏波成分は搬送波周波数オフセット補償部704-Bに出力される。
 例えば、偏波復元部703の処理は、非特許文献1に記載のバタフライ型FIRフィルタにより一括して実現されるものであってもよい。前記バタフライ型FIRフィルタのタップ長nを数シンボル以上に設定することで、Ts/2(=50ps)以上のPMDを補償することが可能になる。偏波インタリーブは概略Ts/2 (=50ps)の固定のDGD(Differential Group Delay)を発生させていることに等しいため、Ts/2 (=50ps)以上のPMDを補償が可能であれば、問題なく復調することが可能である。偏波復元部703は、処理対象となるデジタルデータには予めTs/2となるPMDが含まれていることを認識し、各偏波信号成分間のTs/2の遅延差の除去と、該遅延差以外の歪の適応等化とを行う。
 図12は、本実施の形態にかかる偏波復元部の構成例を示した図である。図示するように、偏波復元部703の例としてバタフライ型FIRフィルタを用いた例を説明する。バタフライ型FIRフィルタは、複素信号生成部901-A、901-Bと、複素加算部902-1、902-2、902-3、・・・、902-(n-1)、903-1、903-2、903-3、・・・、903-(n-1)、904-1、904-2、904-3、・・・、904-(n-1)、905-1、905-2、905-3、・・・、905-(n-1)、906-A、906-Bと、遅延部907-1、907-2、907-3、・・・、907-(n-1)、908-1、908-2、908-3、・・・、908-(n-1)、909-1、909-2、909-3、・・・、909-(n-1)、910-1、910-2、910-3、・・・、910-(n-1)と、複素乗算部911-1、911-2、911-3、・・・、911-(n-1)、912-1、912-2、912-3、・・・、912-(n-1)、913-1、913-2、913-3、・・・、913-(n-1)、914-1、914-2、914-3、・・・、914-(n-1)と、タップ係数保持部915-A、915-B、915-C、915-Dと、タップ係数生成部916と、出力データ選択部917-A、917-Bと、を備えている。上記においてnは自然数である。以下同じとする。
 複素信号生成部901-Aは、外部から入力されるX’偏波・I’軸デジタルデータを実部、外部から入力されるX’偏波・Q’軸デジタルデータを虚部とする複素数を生成し、複素乗算部911-1および913-1と遅延部907-1および909-1とにそれぞれ出力する。複素信号生成部901-Bは、外部から入力されるY’偏波・I’軸デジタルデータを実部、外部から入力されるY’偏波・Q’軸デジタルデータを虚部とする複素数を生成し、複素乗算部912-1および914-1と遅延部908-1および910-1とにそれぞれ出力する。
 遅延部907-1では複素信号生成部901-Aから入力されるデジタルデータを所定の時間τ保持し、時間τ経過後に複素乗算部911-2と遅延部907-2とにデジタルデータを出力する。遅延部908-1では複素信号生成部901-Bから入力されるデジタルデータを所定の時間τ保持し、時間τ経過後に複素乗算部912-2と遅延部908-2とにデジタルデータを出力する。遅延部909-1では複素信号生成部901-Aから入力されるデジタルデータを所定の時間τ保持し、時間τ経過後に複素乗算部913-2と遅延部909-2とにデジタルデータを出力する。遅延部910-1では複素信号生成部901-Bから入力されるデジタルデータを所定の時間τ保持し、時間τ経過後に複素乗算部914-2と遅延部910-2とにデジタルデータを出力する。
 遅延部907-k(k=2,3,・・・,n-2)では、遅延部907-(k-1)から入力されるデジタルデータを所定の時間τ保持し、時間τ経過後に複素乗算部911-(k+1)と遅延部907-(k+1)とにデジタルデータを出力する。遅延部908-k(k=2,3,・・・,n-2)では、遅延部908-(k-1)から入力されるデジタルデータを所定の時間τ保持し、時間τ経過後に複素乗算部912-(k+1)と遅延部908-(k+1)とにデジタルデータを出力する。遅延部909-k(k=2,3,・・・,n-2)では、遅延部909-(k-1)から入力されるデジタルデータを所定の時間τ保持し、時間τ経過後に複素乗算部913-(k+1)と遅延部909-(k+1)とにデジタルデータを出力する。遅延部910-k(k=2,3,・・・,n-2)では、遅延部910-(k-1)から入力されるデジタルデータを所定の時間τ保持し、時間τ経過後に複素乗算部914-(k+1)と遅延部910-(k+1)とにデジタルデータを出力する。
 遅延部907-(n-1)では、遅延部907-(n-2)から入力されるデジタルデータを所定の時間τ保持し、時間τ経過後に複素乗算部911-nにデジタルデータを出力する。遅延部908-(n-1)では、遅延部908-(n-2)から入力されるデジタルデータを所定の時間τ保持し、時間τ経過後に複素乗算部912-nにデジタルデータを出力する。遅延部909-(n-1)では、遅延部909-(n-2)から入力されるデジタルデータを所定の時間τ保持し、時間τ経過後に複素乗算部913-nにデジタルデータを出力する。遅延部910-(n-1)では、遅延部910-(n-2)から入力されるデジタルデータを所定の時間τ保持し、時間τ経過後に複素乗算部914-nにデジタルデータを出力する。
 複素乗算部911-1では、複素信号生成部901-Aから入力されるデジタルデータと、タップ係数保持部915-Aから入力されるタップ係数とを複素乗算し、演算結果を複素加算部902-1に出力する。複素乗算部912-1では、複素信号生成部901-Bから入力されるデジタルデータと、タップ係数保持部915-Bから入力されるタップ係数とを複素乗算し、演算結果を複素加算部903-1に出力する。複素乗算部913-1では、複素信号生成部901-Aから入力されるデジタルデータと、タップ係数保持部915-Cから入力されるタップ係数とを複素乗算し、演算結果を複素加算部904-1に出力する。複素乗算部914-1では、複素信号生成部901-Bから入力されるデジタルデータと、タップ係数保持部915-Dから入力されるタップ係数とを複素乗算し、演算結果を複素加算部905-1に出力する。
 複素乗算部911-k(k=2,3,・・・,n)では、遅延部907-(k-1)から入力されるデジタルデータと、タップ係数保持部915-Aから入力されるタップ係数とを複素乗算し、演算結果を複素加算部902-(k-1)に出力する。複素乗算部912-k(k=2,3,・・・,n)では、遅延部908-(k-1)から入力されるデジタルデータと、タップ係数保持部915-Bから入力されるタップ係数とを複素乗算し、演算結果を複素加算部903-(k-1)に出力する。複素乗算部913-k(k=2,3,・・・,n)では、遅延部909-(k-1)から入力されるデジタルデータと、タップ係数保持部915-Cから入力されるタップ係数とを複素乗算し、演算結果を複素加算部904-(k-1)に出力する。複素乗算部914-k(k=2,3,・・・,n)では、遅延部910-(k-1)から入力されるデジタルデータと、タップ係数保持部915-Dから入力されるタップ係数とを複素乗算し、演算結果を複素加算部905-(k-1)に出力する。
 複素加算部902-1では、複素乗算部911-1から入力されるデジタルデータと、複素乗算部911-2から入力されるデジタルデータとの複素加算を行い、演算結果を複素加算部902-2に出力する。複素加算部903-1では、複素乗算部912-1から入力されるデジタルデータと、複素乗算部912-2から入力されるデジタルデータとの複素加算を行い、演算結果を複素加算部903-2に出力する。複素加算部904-1では、複素乗算部913-1から入力されるデジタルデータと、複素乗算部913-2から入力されるデジタルデータとの複素加算を行い、演算結果を複素加算部904-2に出力する。複素加算部905-1では、複素乗算部914-1から入力されるデジタルデータと、複素乗算部914-2から入力されるデジタルデータとの複素加算を行い、演算結果を複素加算部905-2に出力する。
 複素加算部902-k(k=2,3,・・・,n-2)では、複素加算部902-(k-1)から入力されるデジタルデータと、複素乗算部911-(k+1)から入力されるデジタルデータとの複素加算を行い、演算結果を複素加算部902-(k+1)に出力する。複素加算部903-k(k=2,3,・・・,n-2)では、複素加算部903-(k-1)から入力されるデジタルデータと、複素乗算部912-(k+1)から入力されるデジタルデータとの複素加算を行い、演算結果を複素加算部903-(k+1)に出力する。複素加算部904-k(k=2,3,・・・,n-2)では、複素加算部904-(k-1)から入力されるデジタルデータと、複素乗算部913-(k+1)から入力されるデジタルデータとの複素加算を行い、演算結果を複素加算部904-(k+1)に出力する。複素加算部905-k(k=2,3,・・・,n-2)では、複素加算部905-(k-1)から入力されるデジタルデータと、複素乗算部914-(k+1)から入力されるデジタルデータとの複素加算を行い、演算結果を複素加算部905-(k+1)に出力する。
 複素加算部902-(n-1)では、複素加算部902-(n-2)から入力されるデジタルデータと、複素乗算部911-nから入力されるデジタルデータとの複素加算を行い、複素加算部906-Aに出力する。複素加算部903-(n-1)では、複素加算部903-(n-2)から入力されるデジタルデータと、複素乗算部912-nから入力されるデジタルデータとの複素加算を行い、複素加算部906-Aに出力する。複素加算部904-(n-1)では、複素加算部904-(n-2)から入力されるデジタルデータと、複素乗算部913-nから入力されるデジタルデータとの複素加算を行い、複素加算部906-Bに出力する。複素加算部905-(n-1)では、複素加算部905-(n-2)から入力されるデジタルデータと、複素乗算部914-nから入力されるデジタルデータとの複素加算を行い、複素加算部906-Bに出力する。
 複素加算部906-Aでは、複素加算部902-(n-1)から入力されるデジタルデータと、複素加算部903-(n-1)から入力されるデジタルデータとの複素加算を行い、演算結果をタップ係数生成部916と出力データ選択部917-Aとに出力する。複素加算部906-Bでは、複素加算部904-(n-1)から入力されるデジタルデータと、複素加算部905-(n-1)から入力されるデジタルデータとの複素加算を行い、演算結果をタップ係数生成部916と出力データ選択部917-Bとに出力する。
 タップ係数生成部916では、複素加算部906-Aから入力されるデジタルデータと、複素加算部906-Bから入力されるデジタルデータとに対して、例えば、包絡線一定化規範アルゴリズム(Constant Modulus Algorithm:CMA)や、判定指向型LMS(Least Mean Square)アルゴリズムを適用し、タップ係数を逐次更新し、更新したタップ係数をタップ係数保持部915-A、915-B、915-C、915-Dにそれぞれ出力する。ここで、CMAのミスキャプチャにより、複素加算部906-A、906-B出力信号が、それぞれ同一偏波成分に収束してしまう可能性があるため、複素加算部906-A、906-Bからの入力信号の相関値をモニタし、各信号が独立になるよう、タップ係数を設定する。タップ係数は一般に複素数である。X’偏波成分のうち、X偏波成分に相当する成分をタップ係数保持部915-Aに出力し、X’偏波成分のうち、Y偏波成分に相当する成分をタップ係数保持部915-Cに出力し、Y’偏波成分のうち、X偏波成分に相当する成分をタップ係数保持部915-Bに出力し、Y’偏波成分のうち、Y偏波成分に相当する成分をタップ係数保持部915-Dに出力する。
 タップ係数保持部915-Aでは、タップ係数生成部916から入力されるタップ係数を保持し、複素乗算部911-1、911-2、911-3、・・・、911-nに出力する。各複素乗算部に出力されるタップ係数は一般に異なる値をとる。タップ係数保持部915-Bでは、タップ係数生成部916から入力されるタップ係数を保持し、複素乗算部912-1、912-2、912-3、・・・、912-nに出力する。各複素乗算部に出力されるタップ係数は一般に異なる値をとる。タップ係数保持部915-Cでは、タップ係数生成部916から入力されるタップ係数を保持し、複素乗算部913-1、913-2、913-3、・・・、913-nに出力する。各複素乗算部に出力されるタップ係数は一般に異なる値をとる。タップ係数保持部915-Dでは、タップ係数生成部916から入力されるタップ係数を保持し、複素乗算部914-1、914-2、914-3、・・・、914-nに出力する。各複素乗算部に出力されるタップ係数は一般に異なる値をとる。
 出力データ選択部917-Aでは、複素加算部906-Aから入力されるデータを選択し、選択されたデータ信号をX偏波信号として外部に出力する。出力データ選択部917-Bでは、複素加算部906-Bから入力されるデータを選択し、選択されたデータ信号をY偏波信号として図示しない外部に出力する。以下、外部に対しては1Sample/symbolのサンプリング速度比のデジタルデータを出力するものと仮定する。ただし、本発明はこのサンプリング速度比に制限を加えるものではない。
 遅延部907-k、908-k、909-k、910-k(k=1,2,・・・,n-1)の遅延量τがシンボル繰り返し周期Tsを用いてτ=Ts/pで表されるとする。p=1の場合、出力データ選択部917-Aおよび917-Bは、入力データすべてを選択して出力する。p>1の場合には、サンプリング速度を1/pにした後に、すなわち、サンプリング速度比を1Sample/symbolにレート変換した後に出力する。
 出力データ選択部917-Aおよび917-Bで、1/pにレート変換する際に、同じ時点のデータを出力する場合と、違う時点のデータを出力する場合とが考えられる。例えば、p=2とし、出力データ選択部917-Aへの入力データ列e’xin、出力データ選択部917-Bへの入力データ列e’yinがそれぞれ
 e’xin=e’x00,e’x01,e’x10,e’x11,・・・,e’xk0,e’xk1,・・・ (4)
 e’yin=e’y00,e’y01,e’y10,e’y11,・・・,e’yk0,e’yk1,・・・ (5)
と表されるとすると、出力データ選択部917-Aからの出力データ列e’xout、出力データ選択部917-Bからの出力データ列e’youtは、
 e’xout=e’x00,e’x10,・・・,e’xk0,・・・ (6)
 e’yout=e’y00,e’y10,・・・,e’yk0,・・・ (7)
のように、同じ時点のデータを出力する場合と、
 e’xout=e’x00,e’x10,・・・,e’xk0,・・・ (8)
 e’yout=e’y01,e’y11,・・・,e’yk1,・・・ (9)
のように、違う時点のデータを出力する場合とが想定される。ここで、本実施の形態のように、光送信部でX偏波とY偏波との間にTs/2の遅延差を与えている場合には、式(8)よりも、むしろ式(9)に類する形で処理されることが望ましい。タップ係数生成部916において、X偏波とY偏波との間にTs/2のDGDが残留するようにタップ係数を生成し、残るTs/2のDGDを出力データ選択部917-A、917-Bで補償すれば、既知のDGD補償のためにバタフライ型FIRの等化能力を割く必要がなくなるためである。
 p=2の場合に、Ts/2のDGDが残留するようにタップ係数の生成・更新を行う方法を以下に説明する。
 通常、CMAを用いて偏波復元を行うときには、包絡線の目標値をa(>0)とし、X偏波の出力信号の包絡線値とY偏波の出力信号の包絡線値が常にaに近づくようタップ係数を更新する。
 (X偏波の包絡線目標値)=a (10)
 (Y偏波の包絡線目標値)=a (11)
ここで、パルス化された信号に対して偏波復元を行う場合には、例えば、包絡線目標値を下式のように設定してもよい(一般にa≠b、a>0、b>0)。
 (m=2nにおけるX偏波の包絡線目標値)=a (12)
 (m=2n+1におけるX偏波の包絡線目標値)=b (13)
 (m=2nにおけるY偏波の包絡線目標値)=a (t=2tk) (14)
 (m=2n+1におけるY偏波の包絡線目標値)=b (t=2tk+1) (15)
ただし、m、nは整数であり、mは離散時間番号を示す。m=2nがパルス中心のタイミングであり、m=2n+1がパルスとパルスの中間のタイミングであるとき、包絡線目標値をa=1かつb=0となるように設定する、あるいは、a=1かつb=1/2となるように設定するなどの方法が考えられる。
 式(10)~(15)に記載の包絡線目標値設定方法は、Ts/2のDGDまで含めてバタフライ型FIRで等化する場合のタップ係数生成・更新方法である。Ts/2のDGDを意図的に残すためには、式(12)~(15)を、式(16)~(19)のように修正すればよい。
 (m=2nにおけるX偏波の包絡線目標値)=a (t=2tk) (16)
 (m=2n+1におけるX偏波の包絡線目標値)=b (t=2tk+1) (17)
 (m=2nにおけるY偏波の包絡線目標値)=b (t=2tk) (18)
 (m=2n+1におけるY偏波の包絡線目標値)=a (t=2tk+1) (19)
Ts/2のDGDを残すとき、X偏波のパルス中心点(m=2n)は、Y偏波のパルスとパルスの中間点に相当し、Y偏波のパルス中心点(m=2n+1)は、X偏波のパルスとパルスの中間点に相当するためである。
 搬送波周波数オフセット補償部704-Aは、偏波復元部703から入力されるX偏波・I’軸およびX偏波・Q’軸のデジタルデータに基づき、局部発振光と受信信号光との中心周波数オフセット補償を行い、補償後のX偏波・I’軸およびX偏波・Q’軸デジタルデータを搬送波位相オフセット補償部705-Aに出力する。搬送波周波数オフセット補償部704-Bは、偏波復元部703から入力されるY偏波・I’軸およびY偏波・Q’軸のデジタルデータに基づき、局部発振光と受信信号光との中心周波数オフセット補償を行い、補償後のY偏波・I’軸およびY偏波・Q’軸デジタルデータを搬送波位相オフセット補償部705-Bに出力する。
 搬送波位相オフセット補償部705-Aは、搬送波周波数オフセット補償部704-Aから入力されるX偏波・I’軸およびX偏波・Q’軸のデジタルデータに基づき、信号光の位相オフセット補償を行うことでI軸・Q軸を復元し、補償後のX偏波・I軸およびX偏波・Q軸デジタルデータを識別部706-Aに出力する。搬送波位相オフセット補償部705-Bは、搬送波周波数オフセット補償部704-Bから入力されるY偏波・I’軸およびY偏波・Q’軸のデジタルデータに基づき、信号光の位相オフセット補償を行うことでI軸・Q軸を復元し、補償後のY偏波・I軸およびY偏波・Q軸デジタルデータを識別部706-Bに出力する。
 識別部706-Aは、搬送波位相オフセット補償部705-Aから入力されるX偏波・I軸およびX偏波・Q軸デジタルデータに基づき、X偏波のI軸信号、Q軸信号を識別し、識別後のデータを外部に出力する。識別部706-Bでは、搬送波位相オフセット補償部705-Aから入力されるY偏波・I軸およびY偏波・Q軸のデジタルデータに基づき、Y偏波のI軸信号、Q軸信号を識別し、識別後のデータを外部に出力する。
 上記では、局部発振光源301からCW光を出力し、CW光と伝送後の信号光との干渉をとる例を示したが、CW光ではなく、パルス化された光と伝送後の信号光との干渉をとってもよい。
 上記では、データ変調方式としてQPSKの場合を示したが、BPSK、16QAMのような他の変調方式、予等化や差動符号化を行う場合にも適用可能であることは言うまでもない。
 また、伝送性能最適化のため、光送信部100、光伝送部200、光受信部300、受信電気信号処理部400の各部分において、帯域制限の最適化を行うことが重要である。図10と図17を比較してわかるように、偏波インタリーバ107から出力される光信号は、従来の1/2倍のパルス幅を有し、2倍の周波数スペクトル幅を有する。例えば、通常、バランス型光電気変換器303-A、303-B、303-C、303-Dに内蔵される電気回路の帯域を、データ信号のシンボル繰り返し周波数fsに対して、3dB帯域幅を0.5fs~1.0fsに設定する。本実施の形態において、仮にバランス型光電気変換器303-A、303-B、303-C、303-Dの上流で、信号の周波数スペクトルを変化させるほどには帯域制限が行われなかった場合、バランス型光電器変換器303-A、303-B、303-C、303-Dでは、通常の2倍のスペクトル幅を有する信号を受信することになる。このとき、バランス型光電気変換器303-A、303-B、303-C、303-Dに内蔵される電気回路の3dB帯域幅が0.5fsではやや過小となることが推測され、場合によってはfsを超える条件が最適になる可能性があるため、特に受信回路の帯域最適化が重要である。例えば、光伝送システム起動時に、受信電気信号処理後の符号誤り率が最小となるよう、バランス型光電気変換器の帯域を最適化し、運用時には伝送品質を周期監視し、帯域最適性をモニタし、常に最適となるよう設定を更新することで実現される。
 単側波帯(Single Sideband:SSB)変調や、残留側波帯(Vestigial Sideband:VSB)変調を併用することで帯域狭窄を図ることも可能である。また、例えば、光伝送部200に含まれる光合分波装置により帯域狭窄化を行う際に、20Gbit/s、すなわち、一般的な両側波帯(Double Sideband:DSB)変調では40GHz相当の帯域幅に対して、50GHz以下(シンボルレートの2.5倍以下)の通過帯域幅のような厳しい帯域狭窄化を行うことや、帯域狭窄化の中心周波数を信号光の中心周波数とずらすことで、疑似的にVSB化した後に受信することも可能である。ただし、受信器におけるデジタル信号処理を複雑とせずに性能を保つためには、最低限10GHz(シンボルレートの0.5倍相当)の通過帯域が必要である。これら帯域狭窄を行うことで高密度に波長多重を行い、高い周波数利用効率を実現することが可能になる。
 以上のように、本実施の形態では、光送信部100では時間軸上において各偏波成分が交互に存在し、同時に存在する時間が概略ゼロであり、各偏波成分の光信号のシンボル繰り返し周期はTsとなる光信号を生成し、光受信部300では、局部発振光と受信光信号とを干渉させてから、干渉後の光信号を電気信号に変換し、受信電気信号処理部400では、電気信号のアナログ・デジタル変換と、各偏波信号成分間のTs/2の遅延差の除去と、該遅延差以外の歪の適応等化とを行うようにした。これにより、直交偏波多重信号間で生じる非線形干渉に起因する伝送品質劣化を低減し、伝送品質を向上させることができる。
実施の形態2.
 本実施の形態では、上記実施の形態1におけるパルス変調にCSRZ(Carrier Suppressed Return to Zero)変調を用いる構成としている。
 図13は、本実施の形態にかかる光伝送システムの構成例を示す図である。実施の形態1の図1と同一の機能を有する構成は同一の符号を付して、重複する説明を省略する。本実施の形態の光伝送システムは、光送信部(光送信装置)800と、光伝送部200と、光受信装置1000と、を備える。図示するように、光送信部800は、第1の電気信号源801と、第2の電気信号源802と、電気増幅器803-A、803-B、803-C、803-Dと、光源804と、マッハツェンダ変調器805と、を備えている。光伝送部200、光受信部300、受信電気信号処理部400の機能は実施の形態1と同様であるので、説明を省略する。
 以下、本実施の形態にかかる光伝送システムの動作を説明する。以下、40Gbit/s偏波多重インタリーブQPSK光信号を生成する例について説明する。なお、本実施の形態は他の伝送レート、各種の変調方式に適用可能であり、この例に限定されるものではない。
 第1の電気信号源801では、外部から入力される信号に基づき、X偏波光信号Exを生成するための電気信号exと、Y偏波光信号Eyを生成するための電気信号eyと、クロック信号とを生成し、クロック信号と、並列展開された電気信号exと電気信号eyを第2の電気信号源802に出力する。exはI軸信号exIとQ軸信号exQからなり、eyはI軸信号eyIとQ軸信号eyQからなり、
 exI=xI1,xI2,・・・      (20)
 exQ=xQ1,xQ2,・・・      (21)
 eyI=yI1,yI2,・・・      (22)
 eyQ=yQ1,yQ2,・・・      (23)
であると仮定する。ただし、本発明はこれらの仮定に制限を受けるものではない。なお、電気信号exと電気信号eyは本発明における第1の電気信号の一例、クロック信号は本発明における第2の電気信号の一例にそれぞれ相当する。
 第2の電気信号源802は、第1の電気信号源801から入力される、並列展開された電気信号exと、電気信号eyとから、2fs(=20Gsymbol/s)のデータ信号2系統(I軸信号およびQ軸信号)を生成して、I軸信号を電気増幅器803-Bに出力し、Q軸信号を電気増幅器803-Cに出力する。また、第2の電気信号源802は、第1の電気信号源801から入力されるクロック信号からfs(=10GHz)のクロック信号2系統を生成して、うち1系統を電気増幅器803-Aに出力し、うち1系統を電気増幅器803-Dに出力する。ここで、I軸信号eI、Q軸信号eQは、ともにexとeyとが交互に時間分割多重された信号exyを有するものとする。例えば、I軸信号eI、Q軸信号eQは、例えば、以下のようにして得られるものと仮定できる。すなわち、
 eI=xI1,yI1,xI2,yI2,・・・  (24)
 eQ=xQ1,yQ1,xQ2,yQ2,・・・  (25)
となるようビットオーダリングを設定する。ただし、本発明はこれらの仮定に制限を受けるものではない。なお、2系統のデータ信号は本発明における第3の電気信号の一例、2系統のクロック信号は本発明における第4の電気信号の一例にそれぞれ相当する。
 電気増幅器803-Aは、第2の電気信号源802から入力されるfs(=10GHz)のクロック信号をマッハツェンダ変調器805の半波長電圧の概略2倍まで増幅し、マッハツェンダ変調器805に出力する。電気増幅器803-Bは、第2の電気信号源802から入力される2fs(=20Gsymbol/s)のI軸信号を2並列マッハツェンダ変調器806の半波長電圧の概略2倍まで増幅し、2並列マッハツェンダ変調器806に出力する。電気増幅器803-Cは、第2の電気信号源802から入力される2fs(=20Gsymbol/s)のQ軸信号を2並列マッハツェンダ変調器806の半波長電圧の概略2倍まで増幅し、2並列マッハツェンダ変調器806に出力する。電気増幅器803-Dは、第2の電気信号源802から入力されるfs(=10GHz)のクロック信号を偏波変調器807の半波長電圧に概略同等となるまで増幅し、偏波変調器807に出力する。
 光源804では、CW光を生成し、マッハツェンダ変調器805に出力する。
 マッハツェンダ変調器805では、光源804から入力されるCW光を、電気増幅器803-Aから入力される、増幅されたfs(=10GHz)クロック信号でCSRZ変調してCSRZ光信号を生成し、CSRZ光信号を2並列マッハツェンダ変調器806に出力する。マッハツェンダ変調器805は、本発明におけるパルス信号生成部の一例に相当する。
 2並列マッハツェンダ変調器806は、マッハツェンダ変調器805から入力されるCSRZ光信号を、電気増幅器803-Bから入力される、増幅された2fs(=20Gsymbol/s)のI軸信号と、電気増幅器803-Cから入力される、増幅された2fs(=20Gsymbol/s)のQ軸信号とでQPSK変調してCSRZ-QPSK光信号を生成し、CSRZ-QPSK信号を偏波変調器807に出力する。2並列マッハツェンダ変調器806は、本発明におけるデータ変調部の一例に相当する。
 偏波変調器807は、2並列マッハツェンダ変調器806から入力されるCSRZ-QPSK光信号を、電気増幅器803-Dから入力される、増幅されたfs(=10GHz)のクロック信号で偏波変調して偏波多重インタリーブQPSK光信号を生成し、偏波多重インタリーブQPSK光信号を光伝送部200へ出力する。したがって、2並列マッハツェンダ変調器806と、偏波変調器807により、X偏波光信号とY偏波光信号との間にTs/2(50ps)の遅延差を有する偏波多重インタリーブQPSK光信号が生成される。偏波変調器807は、本発明における偏波インタリーブ部の一例に相当する。ここで、偏波変調器807を駆動する電気信号波形は、ピーク振幅が偏波変調器の半波長電圧に等しい正弦波であるが、これを同じ振幅の矩形波とすることで偏波の切り替え時間を短縮することが可能になり、受信側での偏波分離や伝送時の波形歪み抑圧に寄与する。矩形波とするためには、例えば電気増幅器803-Dとしてリミット型のドライバを用いる、電気増幅器803-Dにおいて電気増幅器を多段構成とする、電気増幅器803-D前段において図示しないフリップフロップにより電気波形を矩形化するなどの方法をとりうる。
 図14~図17は、本実施の形態にかかる光送信部800により生成される光信号の時間波形の変化の様子を示したものである。図14は、光源804から出力されるCW光の時間波形を示したものである。CW光は、マッハツェンダ変調器805によりCSRZ変調されて図15に示すCSRZ光信号に変化する。CSRZ光信号波形の光位相はパルスごとに交互に反転するが、光パワーの観点では、CW光は繰り返し周波数2fs(=20GHz)でパルス化される。CSRZ光信号は、2並列マッハツェンダ変調器806によりQPSK変調されて、図16に示すCSRZ-QPSK光信号に変化する。CSRZ-QPSK光信号は、偏波変調器807により偏波変調されて、図17に示す偏波多重インタリーブQPSK光信号に変化する。図17に示すように、偏波変調器807は、単一偏波信号成分(図16)を2つの偏波成分に1シンボル毎に交互に分配することにより、偏波多重インタリーブQPSK光信号を生成する。
 第2の電気信号源802はCSRZ変調、QPSK変調、偏波変調のタイミングをビット同期させるための同期制御を行う。ビット同期させる方法は、実施の形態1と同様である。また、上記のタイミングはマッハツェンダ変調器805、偏波変調器807に入力されるクロック信号に基づいて決定される。実施の形態1と同様に、タイミングはクロック信号の非遷移領域から決定される。非遷移領域を同期のタイミングとした場合、偏波変調器に入力されるクロック信号の非遷移領域と、2並列マッハツェンダ変調器806から出力されるCSRZ-QPSK光信号の中央部分が略一致する。
 上記の例では、パルス化変調としてCSRZ変調を用いる例を示したが、50%RZ変調や33%RZ変調など、その他のRZ化変調を用いても同等の効果を有することは言うまでもない。
 以上のように、本実施の形態では、マッハツェンダ変調器805でCSRZ変調し、2並列マッハツェンダ変調器806でデータ変調し、偏波変調器807で偏波多重変調をするようにした。これにより、実施の形態1と同様の偏波多重インタリーブQPSK光信号を得ることができる。
 また、図1と図13の対比から明らかなように、データ変調のために入力される電気信号は4系統から2系統となる。このため、4系統の電気データ信号を生成する場合に比べて、第1の電気信号源と第2の電気信号源の回路の簡素化や低価格化を実現できる。
 また、単一偏波信号生成と、偏波の交互振り分けを組み合わせることにより、データ変調のために2m系統(m≧3)の光信号を生成する場合であっても、m系統の第1の電気信号源と第2の電気信号源で対応することができ、将来、系統が増えた場合でも電気信号源の回路の簡素化および低価格化を実現できる。
 なお、実施の形態1、2において、パルス信号生成部と、データ変調部と、偏波インタリーブ部との位置関係を、パルス信号生成部と、データ変調部と、偏波インタリーブ部の順に配置したが、前記の順番に制限を加えるものではなく、前記の順番以外の配置でも同様の機能が果たされる。
 図18は実施の形態2の光送信部の配置を変更した光伝送システムを示す構成例である。この例では、データ変調部をパルス信号生成部の前段に配置している。この配置は、DCバイアス制御の感度を向上させ、伝送品質を良好な状態にすることができる。さらに、光部品の制御が容易になり、制御回路を簡素化および低価格化することができる。
 良好な伝送品質を確保するためには、データ変調用光変調器のDCバイアス制御が必須である。DCバイアス制御の感度は光変調器に入力する平均光パワーに依存する。データ変調のDCバイアス制御はパルス化変調に比べて10倍から100倍高い制御利得を必要とするため、上記の平均光パワーが大きいほど制御感度の点で有利である。パルス化変調の前段でデータ変調を行えば、パルス化変調用光変調器の挿入損失及び変調損失を回避できる。これにより、データ変調用光変調器に入力する平均光パワーを大きくすることができ、データ変調のDCバイアス制御の感度が向上する。その結果、光部品の制御が容易になり、制御回路を簡素化および低価格化することができる。
 図19~図22は、図18の配置における光送信部から出力される光信号の時間波形の変化の様子を示したものである。図19は、光源804から出力されるCW光の時間波形を示したものである。CW光は、2並列マッハツェンダ変調器806により、QPSK変調され、図20に示すQPSK光信号に変化する。QPSK光信号は、マッハツェンダ変調器805により、CSRZ変調され、図21に示すCSRZ-QPSK光信号に変化する。CSRZ-QPSK信号は、偏波変調器807により偏波変調されて、図22に示す偏波多重インタリーブQPSK光信号に変化する。
 実施の形態1においても、データ変調部をパルス信号生成部の前段に配置することができる。しかしながら、パルス信号生成部に広く普及しているニオブ酸リチウム変調器を用いた場合、変調器の偏波依存性によって、偏波多重信号の一方の偏波成分のみがパルス化変調されることがある。これを避けるためには、パルス信号生成部に偏波無依存の光変調器を用いればよい。
 実施の形態2においては、非特許文献1、2に記載の従来技術と比較してシンボルレートが2倍になるため、受信器に求められる電気帯域は略2倍相当になる。デジタルコヒーレント方式では受信電気帯域はシンボルレートの40~70%程度,その中でも特に50~60%の範囲内が望ましいため、伝送レートが40Gb/sの場合、非特許文献1、2に記載の従来技術では5~6GHz、実施の形態2においては10~12GHz程度の帯域が最適となる。電気帯域が過剰に広い場合、波形歪みはほとんど変わらず混入雑音の増加のみが生じるため、性能が劣化する。電気帯域が過剰に狭い場合、混入する雑音は小さくなるが、波形歪みが非常に大きくなるため、やはり性能が劣化する。
 誤り訂正符号による冗長ビットを付加した場合、ペイロードの伝送レートが40Gb/sであっても、ラインレートは50Gb/s程度まで上昇する場合がある。この場合には、非特許文献1、2に記載の従来技術では6.25~7.5GHz、実施の形態1においては12.5~15GHz程度の帯域が最適となる。
 実施の形態2において、特にペイロードの伝送レートが40Gb/s相当である場合、第2の電気信号源802に対する入力信号は一般に16並列化されたSFI-5(Serdes Frame Interface Level5)信号であり、電気信号源2として16:2多重化器を用いる。40Gb/s級の16:2多重化器は光通信において一般的に入手可能な部品である。
 以上のように、本発明にかかる光伝送システムは、デジタルコヒーレント方式を用いた光伝送システムに有用であり、特に、長距離通信をする光伝送システムに適している。
 100,800 光送信部
 101,801 第1の電気信号源
 102,802 第2の電気信号源
 103-A,103-B,103-C,103-D,103-E,803-A,803-B,803-C,803-D 電気増幅器
 104,804 光源
 105,805 マッハツェンダ変調器
 106 偏波多重型2並列マッハツェンダ変調器
 107 偏波インタリーバ
 108 偏波多重インタリーブ型変調器
 200 光伝送部
 300 光受信部
 301 局部発振光源
 302 光90度ハイブリッド
 303-A,303-B,303-C,303-D バランス型光電気変換器
 400 受信電気信号処理部
 401-A,401-B,401-C,401-D アナログ・デジタル変換器
 402 デジタル信号処理部
 511 光分岐部
 512 偏波変換部
 513 光結合部
 514-A,514-B データ変調部
 515 遅延部
 611 偏波分岐部
 612 非遅延部
 613 遅延部
 614 偏波結合部
 701 固定スキュー調整部
 702-A,702-B 波長分散補償部
 703 偏波復元部
 704-A,704-B 搬送波周波数オフセット補償部
 705-A,705-B 搬送波位相オフセット補償部
 706-A,706-B 識別部
 806 2並列マッハツェンダ変調器
 807 偏波変調器
 1000 光受信装置

Claims (16)

  1.  シンボル繰り返し周期Tsに対し、Ts/2以下となるパルス幅のパルス信号を生成するパルス信号生成部と、
     送信データ信号に基づき、データ変調信号を生成するデータ変調部と、
     略直交する2つの偏波成分間の遅延差が、シンボル繰り返し周期Tsの半分(Ts/2)となる偏波多重信号を生成する偏波インタリーブ部と、を有する光送信部と、
     前記光送信部から受信した光信号の中心波長に対応する光を生成する局部発振光源と、
     前記局部発振光源によって生成された光と、前記光送信部から受信した光信号と、を干渉させる光干渉部と、
     前記光干渉部からの出力を電気信号に変換する光電気変換部と、を有する光受信部と、
     前記光受信部から出力される電気信号をデジタル信号に変換するアナログ・デジタル変換部と、
     前記デジタル信号に対し、偏波信号成分間のTs/2の遅延差の除去と、該遅延差以外の歪の適応等化とを行うデジタル信号処理部と、を有する受信電気信号処理部と、
     を備え、
     前記光送信部は、時間軸上において各偏波成分が交互に存在し、同時に存在する時間が概略ゼロであり、各偏波成分の光信号の繰り返し周期はTsとなる光信号を生成することを特徴とする光伝送システム。
  2.  前記光送信部と前記光受信部を接続する光伝送部、を備え、
     前記光伝送部はシンボルレートの略0.5~2.5倍の通過帯域により帯域狭窄化をすることを特徴とする請求項1に記載の光伝送システム。
  3.  略直交する2つの偏波成分に対応する第1の電気信号と第2の電気信号を生成する第1の電気信号源と、
     前記第1の電気信号と前記第2の電気信号に基づき、第3の電気信号と該第3の電気信号に同期した1系統もしくは複数系統の第4の電気信号とを生成する第2の電気信号源と、
     送信データ信号に基づき、データ変調信号を生成するデータ変調部と、
     略直交する2つの偏波成分間の遅延差が、シンボル繰り返し周期Tsの半分(Ts/2)となる偏波多重信号を生成する偏波インタリーブ部と、
     を備え、
     時間軸上において各偏波成分が交互に存在し、同時に存在する時間が概略ゼロであり、各偏波成分の光信号の繰り返し周期はTsとなる光信号を生成することを特徴とする光送信装置。
  4.  前記第2の電気信号源は、I軸成分とQ軸成分に対応する少なくとも2系統の前記第3の電気信号を出力することを特徴とする請求項3に記載の光送信装置。
  5.  前記データ変調部は、単一偏波の光信号をデータ変調し、
     前記偏波インタリーブ部は、データ変調された単一偏波の光信号を2つの偏波成分に交互に分配することを特徴とする請求項4に記載の光送信装置。
  6.  前記偏波インタリーブ部は、前記第2の電気信号源から入力される前記第4の電気信号により、前記単一偏波の光信号を2つの偏波成分に交互に分配することを特徴とする請求項5に記載の光送信装置。
  7.  前記第2の電気信号源は、ペイロードの伝送レートが40Gb/sであるときに、16:2の多重化を行うことを特徴とする請求項5または6に記載の光送信装置。
  8.  前記偏波インタリーブ部は、偏波変調器により構成され、
     前記偏波変調器は前記第4の電気信号により駆動され、前記第4の電気信号の速度がビットレートの略1/4であり、前記偏波変調器を駆動する前記第4の電気信号の振幅が偏波変調器の半波長電圧に略等しいことを特徴とする請求項6に記載の光送信装置。
  9.  前記第4の電気信号の非遷移領域は、前記データ変調信号のデータ中央と略一致することを特徴とする請求項3乃至8のいずれか1つに記載の光送信装置。
  10.  前記第4の電気信号は、矩形波であることを特徴とする請求項3乃至9のいずれか1つに記載の光送信装置。
  11.  さらに、
     Ts/2以下となるパルス幅のパルス信号を生成するパルス信号生成部を有することを特徴とする請求項3乃至10のいずれか1つに記載の光送信装置。
  12.  前記パルス信号生成部は、前記第4の電気信号により駆動することを特徴とする請求項11に記載の光送信装置。
  13.  前記パルス信号生成部は、CSRZ(Carrier Suppressed Return to Zero)変調を行うことを特徴とする請求項11または12に記載の光送信装置。
  14.  前記データ変調部、前記パルス信号生成部、前記偏波インタリーブ部は、前記データ変調部、前記パルス信号生成部、前記偏波インタリーブ部の順で配置されることを特徴とする請求項11乃至13のいずれか1つに記載の光送信装置。
  15.  略直交する2つの偏波成分間の遅延差が、シンボル繰り返し周期Tsの半分(Ts/2)となり、時間軸上において各偏波成分の同時に存在する時間が概略ゼロとなる偏波多重信号を受信する光受信装置であって、
     受信した光信号の中心波長に対応する光を生成する局部発振光源と、
     前記局部発振光源によって生成された光と、前記受信した光信号と、を干渉させる光干渉部と、
     前記光干渉部からの出力を電気信号に変換する光電気変換部と、を有する光受信部と、 前記光受信部から出力される電気信号をデジタル信号に変換するアナログ・デジタル変換部と、
     前記デジタル信号に対し、各偏波信号成分間のTs/2の遅延差の除去と該遅延差以外の歪の適応等化とを行うデジタル信号処理部と、を有する受信電気信号処理部と、
     を備えることを特徴とする光受信装置。
  16.  電気帯域がシンボルレートの略40~70%であることを特徴とする請求項15に記載の光受信装置。
PCT/JP2011/072638 2010-11-30 2011-09-30 光伝送システム、光送信装置および光受信装置 WO2012073590A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11845299.4A EP2648346B1 (en) 2010-11-30 2011-09-30 Optical transport system, optical transmitter device and optical receiver device
US13/814,617 US8909066B2 (en) 2010-11-30 2011-09-30 Optical transfer system, optical transmission device, and optical reception device
CN201180047142.8A CN103141037B (zh) 2010-11-30 2011-09-30 光传送系统、光发送装置以及光接收装置
JP2012546729A JP5523582B2 (ja) 2010-11-30 2011-09-30 光伝送システム、光送信装置および光受信装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010006967 2010-11-30
JPPCT/JP2010/006967 2010-11-30

Publications (1)

Publication Number Publication Date
WO2012073590A1 true WO2012073590A1 (ja) 2012-06-07

Family

ID=46171545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072638 WO2012073590A1 (ja) 2010-11-30 2011-09-30 光伝送システム、光送信装置および光受信装置

Country Status (4)

Country Link
US (1) US8909066B2 (ja)
EP (1) EP2648346B1 (ja)
CN (1) CN103141037B (ja)
WO (1) WO2012073590A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014183377A1 (zh) * 2013-05-16 2014-11-20 华为技术有限公司 一种光信号分插复用器及光信号处理方法
WO2015099294A1 (en) * 2013-12-24 2015-07-02 Korea Advanced Institute Of Science And Technology Optical transmitter based on interferometric noise suppressed and pulsed bls
WO2018061303A1 (ja) * 2016-09-30 2018-04-05 三菱電機株式会社 光変調装置及び光変調装置のタイミング調整方法
US10128940B2 (en) 2014-05-08 2018-11-13 Mitsubishi Electric Corporation Optical transmission method and optical transmission system
US10212015B2 (en) 2015-02-25 2019-02-19 Fujitsu Limited Receiving device and sending device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9106343B2 (en) * 2011-07-29 2015-08-11 Zte (Usa) Inc. Method and apparatus for performing temporal polarization interleaving in an optical transmitting system
US9608732B2 (en) * 2012-02-21 2017-03-28 Nec Corporation Optical transmitter, optical communication system, and optical communication method
EP2688232B1 (en) * 2012-07-19 2017-06-14 Alcatel Lucent Optical transmitter for transmitting a multilevel amplitude-shift-keying modulated signal
CN105814816B (zh) * 2013-11-04 2018-02-23 中兴通讯股份有限公司 在光通信中的自适应预均衡
US9602217B2 (en) * 2014-04-17 2017-03-21 Nec Corporation Ultra-wide band signal generation using digitally jointed dual sidebands and RF up-conversion for single optical carrier transmission
US10110318B2 (en) * 2015-02-19 2018-10-23 Elenion Technologies, Llc Optical delay lines for electrical skew compensation
US10382159B2 (en) * 2015-04-27 2019-08-13 Mitsubishi Electric Corporation Dummy-light generating device, optical transmission apparatus, and dummy-light generating method
US9712252B2 (en) * 2015-11-23 2017-07-18 Tyco Electronics Subsea Communications Llc Adaptive equalizer with coefficients determined using groups of symbols to compensate for nonlinear distortions in optical fiber communications
US10120210B2 (en) * 2016-06-03 2018-11-06 International Business Machines Corporation Feed-forward optical equalization using an electro-optic modulator with a multi-segment electrode and distributed drivers
EP3531586B1 (en) * 2016-10-31 2022-01-26 Huawei Technologies Co., Ltd. Receiver and data reception method
CN114270733A (zh) * 2019-08-07 2022-04-01 比弗罗斯特通信有限公司 光传输系统、接收器和装置以及接收光信号的方法
US20240080106A1 (en) * 2022-09-07 2024-03-07 Lumentum Operations Llc Multi-carrier transmitter with integrated multiplexer and receiver with integrated demultiplexer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1188299A (ja) * 1997-09-10 1999-03-30 Nippon Telegr & Teleph Corp <Ntt> 時間多重光回路
JP2003021816A (ja) * 2001-07-06 2003-01-24 Kddi Submarine Cable Systems Inc 光送信装置及び方法並びに偏光分割多重光信号生成装置
JP2009027525A (ja) * 2007-07-20 2009-02-05 Nec Corp 光伝送システムおよび光伝送方法
JP2009060461A (ja) * 2007-08-31 2009-03-19 Fujitsu Ltd 偏光多重送信装置
JP2009278338A (ja) * 2008-05-14 2009-11-26 Nippon Telegr & Teleph Corp <Ntt> 光伝送システム
JP2010243953A (ja) * 2009-04-09 2010-10-28 Nippon Telegr & Teleph Corp <Ntt> 送信器、及び送信方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005260696A (ja) 2004-03-12 2005-09-22 Nec Corp 光送信装置、光伝送システム及び信号光変調方法
CN101438518A (zh) * 2006-03-06 2009-05-20 泰科电讯(美国)有限公司 用于高比特率系统的传输格式
JP5068240B2 (ja) 2008-11-12 2012-11-07 日本電信電話株式会社 光伝送方式、送信器及び受信器
US8611751B2 (en) * 2009-02-26 2013-12-17 Alcatel Lucent System, apparatus and method for communicating data via polarization multiplexing
JP5446586B2 (ja) * 2009-08-21 2014-03-19 富士通株式会社 偏波多重光送信器および偏波多重光信号の制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1188299A (ja) * 1997-09-10 1999-03-30 Nippon Telegr & Teleph Corp <Ntt> 時間多重光回路
JP2003021816A (ja) * 2001-07-06 2003-01-24 Kddi Submarine Cable Systems Inc 光送信装置及び方法並びに偏光分割多重光信号生成装置
JP2009027525A (ja) * 2007-07-20 2009-02-05 Nec Corp 光伝送システムおよび光伝送方法
JP2009060461A (ja) * 2007-08-31 2009-03-19 Fujitsu Ltd 偏光多重送信装置
JP2009278338A (ja) * 2008-05-14 2009-11-26 Nippon Telegr & Teleph Corp <Ntt> 光伝送システム
JP2010243953A (ja) * 2009-04-09 2010-10-28 Nippon Telegr & Teleph Corp <Ntt> 送信器、及び送信方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JIANJUN Y. ET AL.: "20x112Gbit/s, 50GHz spaced, PolMux-RZ-QPSK straight-line transmission over 1540km of SSMF employing digital coherent detection and pure EDFA amplification", ECOC 2008, September 2008 (2008-09-01), pages 1 - 2, XP031381169 *
TAKAHITO TANIMURA ET AL.: "Semi-blind Multi- Stage Dual-Polarization Nonlinear Compensation in 112 Gb/s DP-QPSK Coherent Receiver", IEICE TECHNICAL REPORT, HIKARI TSUSHIN SYSTEM, vol. 110, no. 152, 22 July 2010 (2010-07-22), pages 57 - 62, XP008170531 *
ZHANG B. ET AL.: "Penalty-free transmission of 127-Gb/s coherent PM-QPSK over 1500-km of NDSF with 10 cascaded 50-GHz ROADMs", OFC/NFOEC 2010, March 2010 (2010-03-01), XP031676677 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014183377A1 (zh) * 2013-05-16 2014-11-20 华为技术有限公司 一种光信号分插复用器及光信号处理方法
WO2015099294A1 (en) * 2013-12-24 2015-07-02 Korea Advanced Institute Of Science And Technology Optical transmitter based on interferometric noise suppressed and pulsed bls
KR101538914B1 (ko) * 2013-12-24 2015-07-29 한국과학기술원 간섭잡음이 억제된 펄스 bls 기반 광송신기
US10128940B2 (en) 2014-05-08 2018-11-13 Mitsubishi Electric Corporation Optical transmission method and optical transmission system
US10212015B2 (en) 2015-02-25 2019-02-19 Fujitsu Limited Receiving device and sending device
WO2018061303A1 (ja) * 2016-09-30 2018-04-05 三菱電機株式会社 光変調装置及び光変調装置のタイミング調整方法
JPWO2018061303A1 (ja) * 2016-09-30 2018-12-27 三菱電機株式会社 光変調装置及び光変調装置のタイミング調整方法
CN109792299A (zh) * 2016-09-30 2019-05-21 三菱电机株式会社 光调制装置以及光调制装置的定时调整方法
CN109792299B (zh) * 2016-09-30 2022-01-04 三菱电机株式会社 光调制装置以及光调制装置的定时调整方法

Also Published As

Publication number Publication date
EP2648346A1 (en) 2013-10-09
US20130136451A1 (en) 2013-05-30
CN103141037A (zh) 2013-06-05
EP2648346B1 (en) 2020-06-03
EP2648346A4 (en) 2017-08-09
CN103141037B (zh) 2016-03-30
US8909066B2 (en) 2014-12-09

Similar Documents

Publication Publication Date Title
WO2012073590A1 (ja) 光伝送システム、光送信装置および光受信装置
JP5128332B2 (ja) 光予等化送信器及び光予等化伝送システム
Winzer et al. Spectrally efficient long-haul optical networking using 112-Gb/s polarization-multiplexed 16-QAM
US8437645B2 (en) System and method for coherent detection of optical signals
Griffin et al. Optical differential quadrature phase-shift key (oDQPSK) for high capacity optical transmission
JP5298894B2 (ja) 歪み補償装置,光受信装置及び光送受信システム
JP4755690B2 (ja) 光電界受信器および光伝送システム
WO2018168061A1 (ja) 光伝送特性推定方法、光伝送特性補償方法、光伝送特性推定システム及び光伝送特性補償システム
WO2011052423A1 (ja) 予等化光送信器および予等化光ファイバ伝送システム
US8571416B2 (en) Dual polarization transceiver
CN103368656A (zh) 在相干光通信系统内处理数据
Liu et al. 300-km transmission of dispersion pre-compensated PAM4 using direct modulation and direct detection
Bayvel et al. Digital signal processing (DSP) and its applications in optical communications systems
JP5523582B2 (ja) 光伝送システム、光送信装置および光受信装置
US10090927B2 (en) Digital signal processing circuit and signal processing device that includes a plurality of digital signal processing circuits
US20080101797A1 (en) Method and receiver to increase the spectral efficiency of dpsk modulation format
WO2013140970A1 (ja) 高い位相雑音耐力を有する光通信システムおよび光通信方法
Puerta et al. Single-wavelength, single-photodiode per polarization 276 Gb/s PDM 8-QAM over 100 km of SSMF
WO2020121901A1 (ja) 光伝送システム、光送信機、光受信機及び伝達関数推定方法
JP2012129688A (ja) 光送受信器および光送受信方法
WO2015114800A1 (ja) 光伝送装置および光伝送方法
US20230085546A1 (en) Perturbative-based nonlinear compensation for digital subcarrier systems
Perin Spectrally and power efficient optical communication systems
He Advanced Digital Signal Processing for High Spectral Efficiency Multidimensional Transmission
Jiang High-speed electronic signal processing for pre-compensation in optical communications

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180047142.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11845299

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012546729

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13814617

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011845299

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE