WO2008037658A2 - Procede de realisation de cellule photovoltaique a heterojonction en face arriere - Google Patents

Procede de realisation de cellule photovoltaique a heterojonction en face arriere Download PDF

Info

Publication number
WO2008037658A2
WO2008037658A2 PCT/EP2007/060016 EP2007060016W WO2008037658A2 WO 2008037658 A2 WO2008037658 A2 WO 2008037658A2 EP 2007060016 W EP2007060016 W EP 2007060016W WO 2008037658 A2 WO2008037658 A2 WO 2008037658A2
Authority
WO
WIPO (PCT)
Prior art keywords
sacrificial
mask
layer
sacrificial mask
amorphous semiconductor
Prior art date
Application number
PCT/EP2007/060016
Other languages
English (en)
Other versions
WO2008037658A3 (fr
Inventor
Yannick Veschetti
Bruno Remiat
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Priority to JP2009528733A priority Critical patent/JP2010504636A/ja
Priority to EP07803574A priority patent/EP2067174A2/fr
Priority to US12/442,853 priority patent/US7972894B2/en
Publication of WO2008037658A2 publication Critical patent/WO2008037658A2/fr
Publication of WO2008037658A3 publication Critical patent/WO2008037658A3/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer or HIT® solar cells; solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the production of photovoltaic cells, particularly contact and heterojunction cells of the amorphous / crystalline type on the rear face.
  • Two types of photovoltaic structure currently make it possible to obtain conversion efficiencies greater than 21% in laboratory tests and close to 20% in industrial production.
  • the first structure commonly called
  • HIT Heterojunction with Intrinsic Thin Layers
  • a heterojunction formed by the deposition of thin layers of amorphous silicon on a crystalline silicon base.
  • This structure made entirely at low temperature, that is to say at temperatures of less than or equal to about 200 ° C., makes it possible to obtain good surface passivations and to reach high values of voltages in an open circuit compared to conventional photovoltaic cell production methods whose temperatures reached during their implementation is approximately 850 ° C. US 5,213,628 describes such a structure.
  • the second structure comprises a junction and a set of contacts on an opposite face, called the rear face, to the front face of the photovoltaic cell, that is to say the face intended to receive light radiation.
  • This structure is commonly referred to as RCC (Rear Contact Cells) or IBC
  • WO 03/083955 and FR 2 880 989 describe this type of structure.
  • An object of the present invention is to provide a process for producing a photovoltaic cell with heterojunction on the back which is industrially viable and improving the performance of cells manufactured.
  • the present invention proposes a method for producing a photovoltaic cell, comprising at least the steps of: a) depositing a passivation layer based on at least one intrinsic amorphous semiconductor on a rear face of a substrate based on at least one crystalline semiconductor, b) screen-printing on the passivation layer of a first sacrificial mask having at least one through opening, c) depositing a doped amorphous semiconductor layer of a first conductivity type at least in the opening, d) removing the first sacrificial mask, leaving, at the opening of the first sacrificial mask, the minus a doped amorphous semiconductor pad of the first conductivity type.
  • Step b) of producing the first etching mask may be implemented at a temperature less than or equal to approximately 250 ° C., or less than or equal to approximately 200 ° C.
  • the techniques employed in this method allow the photovoltaic cell to be exposed only at temperatures substantially lower than or equal to approximately 250 ° C. or 200 ° C. during the production of the rear face of the cell, which would not be possible. possible with, for example, a passivation layer on the rear face based on silicon nitride.
  • the use of intrinsic amorphous semiconductor on the rear face of the substrate makes it possible to obtain excellent passivation of the rear face of this substrate.
  • a standard sacrificial layer deposition method for example based on semiconductor oxide, which is generally carried out at high temperature, for example 1000 ° C.
  • the production of a screen-printing etching mask at a temperature less than 250 0 C or 200 0 C makes it possible not to deteriorate the passivation layer on which is deposited the etching mask and improve the performance of the cell thus produced.
  • the present invention also relates to a method for producing a photovoltaic cell, comprising at least the steps of: a) depositing a passivation layer based on at least one intrinsic amorphous semiconductor on a rear face of a substrate to base of at least one crystalline semiconductor, b) screen-printing on the passivation layer of a first sacrificial mask, c) deposition, in at least one pattern formed by the first etching mask, of a layer of amorphous semiconductor doped with a first type of conductivity, d) removing the first sacrificial mask.
  • the method, object of the present invention may further comprise, after step d) at least the steps of: e) screen-printing a second sacrificial mask, the second sacrificial mask covering at least the doped amorphous semiconductor of the first type of conductivity, f) depositing, in at least one pattern formed by the second sacrificial mask, a doped amorphous semiconductor layer of a second conductivity type, opposite to the first conductivity type, g) deleting the second sacrificial mask, leaving the pattern of the second sacrificial mask, at least one doped amorphous semiconductor pad of the second conductivity type.
  • the areas of doped amorphous silicon on the back face form the heterojunction of the photovoltaic cell.
  • the realization of the heterojunction is made with a high precision (+/- 20 ⁇ m) compared to conventional techniques of PECVD or catalytic CVD deposition through metal masks, the precisions achieved being of the order of about +/- 500 microns with these techniques.
  • the properties of the plasma may be modified according to the number of deposits established on the masks to form the heterojunction.
  • sacrificial masks makes it possible to have an industrially viable process, unlike the methods of the prior art using layers of the photovoltaic cell also serving as etching masks, these layers being able to be damaged during the etching steps.
  • this method makes it possible to obtain photovoltaic cells with a high conversion efficiency, for example greater than 22%.
  • the method may comprise, before step a) of deposition of the passivation layer, a step of depositing a layer based on at least one amorphous semiconductor on a front face of the substrate, opposite to the rear face of the substrate.
  • the amorphous semiconductor of the layer deposited on the side of the front face of the substrate may be intrinsic or doped of the same or opposite type of conductivity as the conductivity type of the substrate. It is thus possible to make a surface field on the front face, reducing the recombinations at this face, when the doping type is opposite to that of the substrate, or a floating junction when the doping is similar to that of the substrate.
  • the method may include, after the step of depositing the amorphous semiconductor-based layer on the front face of the substrate, a step of depositing an antireflection layer on said amorphous semiconductor layer.
  • Step b) of making the first sacrificial mask may comprise the steps of:
  • first sacrificial layer based on silicon oxide, and / or silicon carbide and / or silicon nitride on the passivation layer
  • the step b) of producing the first sacrificial mask may comprise the steps of:
  • first sacrificial layer based on silicon oxide, and / or silicon carbide and / or silicon nitride on the passivation layer
  • step b) of producing the first sacrificial mask may comprise a screen-printing deposit of a polymer-based paste and / or oxide forming the first sacrificial mask.
  • the step e) of producing the second sacrificial mask can comprise the steps of:
  • the step e) of producing the second sacrificial mask may comprise the steps of:
  • the step e) of producing the second sacrificial mask may comprise a screen-printing deposit of a polymer-based paste and / or oxide forming the second sacrificial mask.
  • the method may comprise, before step d) of removing the first sacrificial mask, a metallization deposition step.
  • the method may comprise, before step g) of removing the second sacrificial mask, a metallization deposition step.
  • the method may comprise, after step g) of removing the second sacrificial mask, a metallization deposition step on the doped amorphous semiconductor of the first conductivity type and on the doped amorphous semiconductor of second type of conductivity by evaporation and / or sputtering through a metal mask.
  • the metallizations are carried out by evaporation or sputtering through a metal mask, the deposition precisions are greater than the accuracies obtained by a plasma assisted deposition.
  • the metallizations can cover a maximum surface area on the doped amorphous semiconductor, thus optimizing the optical confinement of the incoming light rays in the photovoltaic cell.
  • the use of evaporation and sputtering techniques makes it possible to obtain low contact resistance metallizations between these and the doped amorphous semiconductor.
  • the method may further comprise, before the metallization deposition step or steps, a conductive transparent oxide sputtering deposition step on the doped amorphous semiconductor, the metallizations being then deposited on the transparent conductive oxide.
  • FIGS. 1A to 1R represent the steps of a method for producing photovoltaic cell, object of the present invention, according to a first embodiment
  • FIGS. 2A to 21 represent the steps of a method of making a cell photovoltaic, object of the present invention, according to a second embodiment.
  • FIGS. 1A to 1R represent the steps of a method for producing a photovoltaic cell 100 according to a first embodiment.
  • a substrate 2 based on at least one semiconductor Figure IA
  • This substrate 2 has a textured front face 4 and a polished back face 6.
  • the substrate 2 may be based on monocrystalline silicon or multicrystalline, P or N type.
  • a first layer 8 for example a thin layer with a thickness between about 1 nm and 5 nm, of hydrogenated amorphous silicon, doped or intrinsic, is deposited on the front face 4 of the substrate 2.
  • layer 8 can also be based on hydrogenated amorphous silicon carbide, doped or intrinsic.
  • the first layer 8 has a large bandgap (greater than 1.8 eV or 2 eV) to limit the absorption of the solar spectrum.
  • This first layer 8 is deposited by PECVD (chemical vapor deposition assisted by plasma) at a temperature for example between about 200 0 C and 400 0 C, this temperature being adapted depending on the nature of the first layer 8.
  • the first layer 8 is doped with the conductivity type opposite to the conductivity type of the substrate 2, during operation of the photovoltaic cell 100, a front surface field is formed at the front face 4 and the first layer 8, allowing the reduction of recombinations at this interface. It is also possible to form a floating junction if the first doped layer 8 is of the same type of conductivity as the substrate 2.
  • This layer 10 may, for example have a thickness between about 60 nm and 80 nm.
  • a passivation layer 12 based on hydrogenated intrinsic amorphous silicon a-Si: H is deposited by PECVD on the rear face 6 of the substrate 2 (FIG. The thickness of this passivation layer 12 may for example be between about 1 nm and 50 nm.
  • a first sacrificial layer 14 is then deposited on the passivation layer 12, as shown in FIG.
  • This first sacrificial layer 14 is deposited by PECVD at a temperature of less than or equal to about 200 ° C. or 250 ° C. in order not to recrystallize the amorphous silicon previously deposited from the layers 8 and 12, and thus to minimize the degradations of the layers 8 and 12 of amorphous silicon.
  • a heating support for receiving the substrate is first heated at low temperature (less than or equal to about 250 0 C or 200 0 C).
  • the deposition chamber used is then purged via a neutral gas, for example helium, in order to eliminate the air and more generally the oxygen present in the deposition chamber capable of oxidizing the substrate.
  • the substrate is then deposited on the previously heated support.
  • the plasma is then ignited from the SiH 4 gas alone or a mixture of SiH 4 and N 2 O, at a high pressure (for example greater than about 333 Pa).
  • N 2 O is then injected into the deposition chamber, thus forming the sacrificial layer 14.
  • This first sacrificial layer 14 may be based on silicon oxide, and / or silicon carbide, and / or silicon nitride .
  • the ion bombardment undergone by the amorphous semiconductor is minimized, for example by increasing the working pressure (for example greater than about 333 Pa).
  • a first etching mask 16 is deposited on the first sacrificial layer 14 (FIG.
  • This first etching mask 16 is made by screen printing an acid-resistant polymer paste that can be dissolved by a solvent.
  • the use of a pattern recognition system provides excellent accuracy, for example between about 50 microns and 100 microns, in terms of serigraphy alignment.
  • FIG. 1G the portions of the first sacrificial layer 14 not covered by the first etching mask 16 are etched in contact with a hydrofluoric acid bath. Only the portions of the first sacrificial layer 14 under the patterns formed by the first etching mask 16 are still present. Thus, the pattern formed by the first etching mask 16 is transferred to the level of the first sacrificial layer 14. The passivation layer 12 is not attacked by the acid.
  • the first mask 16 is then removed by a solvent ( Figure IH). We then obtain a first sacrificial mask 14.
  • a first variant it is possible to replace the deposition steps of the first etching mask 16, etching of the portions of the first sacrificial layer 14 not covered by the first etching mask 16 and of removing the first etching mask 16, that is to say, the three steps shown in Figures IF to IH, by a step of deposition by screen printing of a so-called "HF" paste, in a reverse pattern to the pattern of the first mask of etching 16, directly etching the first sacrificial layer after activation by heating (for example between 130 0 C and 150 0 C) locally to form the first sacrificial mask 14.
  • a rinsing step makes it possible to eliminate the etching residues and the HF paste .
  • a layer 18 of doped amorphous silicon of a first type of conductivity, here N, is deposited by PECVD at a temperature of about 200 ° C., on the first sacrificial mask 14 and on the parts of the passivation layer 12 not covered by the first sacrificial mask 14.
  • This layer 18 has for example a thickness between about 5 nm and 30 nm.
  • the first sacrificial mask 14 is etched with hydrofluoric acid and the doped amorphous silicon of the layer 18 on the first sacrificial mask 14 is removed, for example by "lift-off" (delamination by removal of the underlayer ) (figure IJ).
  • pads 20 of N-doped amorphous silicon are formed on the intrinsic amorphous silicon layer 12.
  • a second sacrificial layer 22 (FIG. 1K) is deposited by PECVD, for example at a temperature of less than or equal to approximately 200 ° C. in order not to recrystallize the amorphous silicon previously deposited from the layers 8 and 12 and the pads 20 on the silicon. amorphous of the layer 12 and the pads 20.
  • This second sacrificial layer 22 may for example be based on silicon oxide, and / or silicon carbide and / or silicon nitride.
  • a second etching mask 24 is deposited on the second sacrificial layer 22, at the level of the pads 20 of N-doped amorphous silicon (FIG.
  • This second etching mask 24 is deposited by screen printing an acid-resistant polymer paste that can be dissolved by a solvent.
  • a pattern recognition system provides accuracies, for example between about 50 microns and 100 microns, in terms of alignment screen printing.
  • the portions of the second sacrificial layer 22 not covered by the second etching mask 24 are etched in contact with a hydrofluoric acid bath. Only the portions of the second sacrificial layer 22 under the patterns formed by the second etching mask 24 are still present. Thus, the pattern formed by the second etching mask 24 is transferred to the level of the second sacrificial layer 22, making a second sacrificial mask 22. The passivation layer 12 is not attacked by the acid. The second etching mask 24 is then removed by a solvent (FIG.
  • the deposition steps of the second sacrificial layer 22, the deposition of the second etching mask 24, etching of the portions of the second sacrificial layer 22 not covered by the second etching mask 24 and the suppression of the second mask of 24, can be replaced by a step of direct deposition by screen printing of a paste based on polymer or oxide, such as oxide glass, in a pattern identical to the pattern of the second sacrificial mask 22 shown in FIG. .
  • a layer 26 of doped amorphous silicon of a second type of conductivity, here P, is deposited by PECVD at a temperature of about 200 ° C., on the second mask sacrificial 22 and the portions of the passivation layer 12 not covered by the second sacrificial mask 22.
  • This layer 26 has for example a thickness between about 5 nm and 30 nm.
  • the second sacrificial mask 22 is etched with hydrofluoric acid and the doped amorphous silicon of the layer 26 on the second sacrificial mask 22 is removed by "lift-off" (FIG. IP).
  • pads 28 of P-doped amorphous silicon are formed on the intrinsic amorphous silicon layer 12.
  • a heterojunction is thus obtained formed by the pads 20, 28 of amorphous silicon N and P and the substrate 2 based on crystalline silicon. at the rear face of the photovoltaic cell 100.
  • the metallizations of the solar cell 100 are then carried out.
  • a metal 30, for example based on aluminum, and / or copper and / or copper, is selectively deposited.
  • silver for example by evaporation, through a mask whose pattern is substantially similar to the pattern formed by the pads 20 and 28 of amorphous silicon doped N and P, or such that the deposited metallizations are arranged on the pads 20 and 28 ( figure IQ).
  • the metallization surface deposited is preferably as large as possible in order to improve the optical confinement when using a thin silicon substrate (thickness less than about 200 ⁇ m).
  • the thickness of the contacts 30 can be increased to a thickness of, for example, about 20 ⁇ m by autocatalytic deposition or by electrodeposition (IR Figure). We then obtain metallizations allowing an excellent conduction of the current, thus limiting the losses by resistance.
  • FIGS. 2A to 21 partially represent the steps of making a photovoltaic cell 200 according to a second embodiment.
  • the substrate 2 having at the front face the first layer 8 and the antireflection layer 10, and at the rear face the passivation layer 12 on which are arranged the pads of the first sacrificial mask 14 covered with the layer N-doped amorphous silicon 18.
  • a conductive transparent oxide (ITO) layer 32 and metallizations 30 are deposited, for example by sputtering.
  • the first sacrificial mask 14 is etched, then forming pads 20 of N-doped amorphous silicon coated with the ITO layer 32 and the metallizations 30 (FIG. 2B).
  • the oxide 32 and the metallizations 30 on the first sacrificial mask 14 are eliminated during the etching step of the first sacrificial mask 14.
  • a conductive transparent oxide layer (ITO) 32 and metallizations 30 are deposited ( Figure 2H).
  • ITO conductive transparent oxide layer
  • 32 oxide and metallizations 30 arranged on the second sacrificial mask 22 are eliminated during the etching step of the second sacrificial mask 22, the oxide 32 and the metallizations 30 remaining only on the pads 28 of P-doped amorphous silicon.

Abstract

L'invention concerne un procédé de réalisation de cellule photovoltaïque (100), comportant au moins les étapes de : a) dépôt d'une couche de passivation (12) à base de semi-conducteur amorphe intrinsèque sur une face arrière d'un substrat (2) à base de semi- conducteur cristallin, b) réalisation par sérigraphie sur la couche de passivation, à une température inférieure ou égale à 250°C, d'un premier masque sacrificiel comportant au moins une ouverture traversante, c) dépôt d'une couche (20) de semi-conducteur amorphe dopé d'un premier type de conductivité au moins dans l'ouverture, d) suppression du premier masque sacrificiel, laissant subsister, au niveau de l'ouverture du premier masque sacrificiel, au moins un plot (20) de semi-conducteur amorphe dopé du premier type de conductivité.

Description

PROCEDE DE REALISATION DE CELLULE PHOTOVOLTAIQUE A HETEROJONCTION EN FACE ARRIERE
DESCRIPTION
DOMAINE TECHNIQUE ET ART ANTÉRIEUR
L' invention concerne la réalisation de cellules photovoltaïques, et particulièrement de cellules à contacts et à hétéroj onction de type amorphe/cristallin en face arrière. Deux types de structure photovoltaïque permettent actuellement d'obtenir des rendements de conversion supérieurs à 21 % lors d'essais en laboratoire et proches de 20 % en production industrielle . La première structure, communément appelée
HIT (« Heterojunction with Intrinsic Thin layers » en anglais, ou hétéroj onction à couches fines intrinsèques) comporte une hétéroj onction formée par le dépôt de fines couches de silicium amorphe sur une base de silicium cristallin. Cette structure, entièrement réalisée à basse température, c'est-à-dire à des températures inférieures ou égales à environ 2000C permet d'obtenir de bonnes passivations de surface et d'atteindre de hautes valeurs de tensions en circuit ouvert par rapport aux procédés classiques de réalisation de cellule photovoltaïque dont les températures atteintes durant leur mise en œuvre est d'environ 8500C. Le document US 5 213 628 décrit une telle structure. La seconde structure comporte une jonction et un ensemble de contacts sur une face opposée, dite face arrière, à la face avant de la cellule photovoltaïque, c'est-à-dire la face destinée à recevoir un rayonnement lumineux. Cette structure est communément appelée RCC (« Rear Contact CeIl » en anglais, ou cellule à contacts arrières) ou IBC
(« Interdigitated Back Contact ») . Elle permet d'atteindre des hautes densités de courants grâce à l'absence de contacts sur la face avant. Les documents
WO 03/083955 et FR 2 880 989 décrivent ce type de structure .
EXPOSÉ DE L'INVENTION
Un but de la présente invention est de proposer un procédé de réalisation de cellule photovoltaïque à hétéroj onction en face arrière qui soit industriellement viable et améliorant les performances des cellules fabriquées.
Pour cela, la présente invention propose un procédé de réalisation de cellule photovoltaïque, comportant au moins les étapes de : a) dépôt d'une couche de passivation à base d'au moins un semi-conducteur amorphe intrinsèque sur une face arrière d'un substrat à base d'au moins un semi-conducteur cristallin, b) réalisation par sérigraphie sur la couche de passivation d'un premier masque sacrificiel comportant au moins une ouverture traversante, c) dépôt d'une couche de semi-conducteur amorphe dopé d'un premier type de conductivité au moins dans l'ouverture, d) suppression du premier masque sacrificiel, laissant subsister, au niveau de l'ouverture du premier masque sacrificiel, au moins un plot de semi-conducteur amorphe dopé du premier type de conductivité .
L'étape b) de réalisation du premier masque de gravure peut être mise en œuvre à une température inférieure ou égale à environ 2500C, ou inférieure ou égale à environ 2000C.
Les techniques employées dans ce procédé permettent à la cellule photovoltaïque de n'être exposée qu'à des températures sensiblement inférieures ou égales à environ 2500C ou 2000C durant la réalisation de la face arrière de la cellule, ce qui ne serait pas possible avec, par exemple, une couche de passivation en face arrière à base de nitrure de silicium.
De plus, l'utilisation de semi-conducteur amorphe intrinsèque sur la face arrière du substrat permet d'obtenir une excellente passivation de la face arrière de ce substrat. Contrairement à un procédé standard de dépôt de couche sacrificielle, par exemple à base d'oxyde de semi-conducteur, qui est généralement réalisé à haute température, par exemple 10000C, la réalisation d'un masque de gravure par sérigraphie à une température inférieure à 2500C ou 2000C permet de ne pas détériorer la couche de passivation sur laquelle est déposé le masque de gravure et d'améliorer les performances de la cellule ainsi réalisée.
La présente invention concerne également un procédé de réalisation de cellule photovoltaïque, comportant au moins les étapes de : a) dépôt d'une couche de passivation à base d'au moins un semi-conducteur amorphe intrinsèque sur une face arrière d'un substrat à base d'au moins un semi-conducteur cristallin, b) réalisation par sérigraphie sur la couche de passivation d'un premier masque sacrificiel, c) dépôt, dans au moins un motif formé par le premier masque de gravure, d'une couche de semi-conducteur amorphe dopé d'un premier type de conductivité, d) suppression du premier masque sacrificiel .
Le procédé, objet de la présente invention, peut comporter en outre après l'étape d) au moins les étapes de : e) réalisation par sérigraphie d'un second masque sacrificiel, le second masque sacrificiel recouvrant au moins le semi-conducteur amorphe dopé du premier type de conductivité, f) dépôt, dans au moins un motif formé par le second masque sacrificiel, d'une couche de semiconducteur amorphe dopé d'un second type de conductivité, opposé au premier type de conductivité, g) suppression du second masque sacrificiel, laissant subsister, au niveau du motif du second masque sacrificiel, au moins un plot de semiconducteur amorphe dopé du second type de conductivité . Les zones de silicium amorphe dopé en face arrière forment l' hétéroj onction de la cellule photovoltaïque . Grâce à l'utilisation de la sérigraphie, la réalisation de l' hétéroj onction est faite avec une grande précision (+/- 20 μm) par rapport aux techniques classiques de dépôt PECVD ou CVD catalytique à travers des masques métalliques, les précisions atteintes étant de l'ordre d'environ +/- 500 μm avec ces techniques. De plus, lors d'un dépôt PECVD pour la réalisation de l' hétéroj onction d'une cellule photovoltaïque, les propriétés du plasma risquent d'être modifiées en fonction du nombre de dépôts établis sur les masques pour former 1' hétéroj onction.
L'utilisation de masques sacrificiels permet d'avoir un procédé industriellement viable, contrairement aux procédés de l'art antérieur utilisant des couches de la cellule photovoltaïque servant également de masques de gravure, ces couches pouvant être endommagées lors des étapes de gravure.
Enfin, ce procédé permet d'obtenir des cellules photovoltaïques à fort rendement de conversion, par exemple supérieur à 22%.
Le procédé peut comporter, avant l'étape a) de dépôt de la couche de passivation, une étape de dépôt d'une couche à base d'au moins un semi-conducteur amorphe sur une face avant du substrat, opposée à la face arrière du substrat. Le semi-conducteur amorphe de la couche déposée du côté de la face avant du substrat peut être intrinsèque ou dopé du même type, ou du type opposé, de conductivité que le type de conductivité du substrat. II est ainsi possible de réaliser en face avant un champ de surface, réduisant les recombinaisons au niveau de cette face, lorsque le type de dopage est opposé à celui du substrat, ou une jonction flottante lorsque le dopage est similaire à celui du substrat. Le procédé peut comporter, après l'étape de dépôt de la couche à base de semi-conducteur amorphe sur la face avant du substrat, une étape de dépôt d'une couche antireflet sur ladite couche à base de semiconducteur amorphe. L'étape b) de réalisation du premier masque sacrificiel peut comprendre les étapes de :
- dépôt d'une première couche sacrificielle à base d'oxyde de silicium, et/ou de carbure de silicium et/ou de nitrure de silicium sur la couche de passivation,
- dépôt par sérigraphie d'un premier masque de gravure selon un motif similaire au motif du premier masque sacrificiel,
- suppression par gravure des parties de la première couche sacrificielle non recouvertes par le premier masque de gravure, les parties restantes de la première couche sacrificielle formant le premier masque sacrificiel,
- suppression du premier masque de gravure. Dans une variante, l'étape b) de réalisation du premier masque sacrificiel peut comprendre les étapes de :
- dépôt d'une première couche sacrificielle à base d'oxyde de silicium, et/ou de carbure de silicium et/ou de nitrure de silicium sur la couche de passivation,
- dépôt par sérigraphie d'une pâte gravante selon un motif inverse au motif du premier masque sacrificiel, formant dans la première couche sacrificielle le premier masque sacrificiel.
Selon une autre variante, l'étape b) de réalisation du premier masque sacrificiel peut comprendre un dépôt par sérigraphie d'une pâte à base de polymère et/ou d'oxyde formant le premier masque sacrificiel .
L'étape e) de réalisation du second masque sacrificiel peut comprendre les étapes de :
- dépôt d'une seconde couche sacrificielle à base d'oxyde de silicium, et/ou de carbure de silicium et/ou de nitrure de silicium sur la couche de passivation,
- dépôt par sérigraphie d'un second masque de gravure selon un motif similaire au motif du second masque sacrificiel,
- suppression par gravure des parties de la seconde couche sacrificielle non recouvertes par le second masque de gravure, les parties restantes de la seconde couche sacrificielle formant le second masque sacrificiel,
- suppression du second masque de gravure. Dans un variante, l'étape e) de réalisation du second masque sacrificiel peut comprendre les étapes de :
- dépôt d'une seconde couche sacrificielle à base d'oxyde de silicium, et/ou de carbure de silicium et/ou de nitrure de silicium sur la couche de passivation,
- dépôt par sérigraphie d'une pâte gravante selon un motif inverse au motif du second masque sacrificiel, formant dans la seconde couche sacrificielle le second masque sacrificiel.
Selon une autre variante, l'étape e) de réalisation du second masque sacrificiel peut comprendre un dépôt par sérigraphie d'une pâte à base de polymère et/ou d'oxyde formant le second masque sacrificiel .
Le procédé peut comporter, avant l'étape d) de suppression du premier masque sacrificiel, une étape de dépôt de métallisations . Le procédé peut comporter, avant l'étape g) de suppression du second masque sacrificiel, une étape de dépôt de métallisations.
Dans une autre variante, le procédé peut comporter, après l'étape g) de suppression du second masque sacrificiel, une étape de dépôt de métallisations sur le semi-conducteur amorphe dopé du premier type de conductivité et sur le semi-conducteur amorphe dopé du second type de conductivité par évaporation et/ou pulvérisation à travers un masque métallique. Lorsque les métallisations sont réalisées par évaporation ou pulvérisation à travers un masque métallique, les précisions de dépôt sont supérieures aux précisions obtenues par un dépôt assisté par plasma. Ainsi, les métallisations peuvent couvrir une surface maximale sur le semi-conducteur amorphe dopé, optimisant ainsi le confinement optique des rayons lumineux entrants dans la cellule photovoltaïque . De plus, l'utilisation des techniques d' évaporation et de pulvérisation permet d'obtenir des métallisations à faible résistance de contact entre celles-ci et le semi-conducteur amorphe dopé.
Enfin, le procédé peut comporter en outre, avant la ou les étapes de dépôt de métallisations, une étape de dépôt par pulvérisation d'oxyde transparent conducteur sur le semi-conducteur amorphe dopé, les métallisations étant ensuite déposées sur l'oxyde transparent conducteur.
BRÈVE DESCRIPTION DES DESSINS
La présente invention sera mieux comprise à la lecture de la description d'exemples de réalisation donnés à titre purement indicatif et nullement limitatif en faisant référence aux dessins annexés sur lesquels : - les figures IA à IR représentent les étapes d'un procédé de réalisation de cellule photovoltaïque, objet de la présente invention, selon un premier mode de réalisation,
- les figures 2A à 21 représentent les étapes d'un procédé de réalisation de cellule photovoltaïque, objet de la présente invention, selon un second mode de réalisation.
Des parties identiques, similaires ou équivalentes des différentes figures décrites ci-après portent les mêmes références numériques de façon à faciliter le passage d'une figure à l'autre.
Les différentes parties représentées sur les figures ne le sont pas nécessairement selon une échelle uniforme, pour rendre les figures plus lisibles.
Les différentes possibilités (variantes et modes de réalisation) doivent être comprises comme n'étant pas exclusives les unes des autres et peuvent se combiner entre elles.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
On se réfère tout d' abord aux figures IA à IR qui représentent les étapes d'un procédé de réalisation d'une cellule photovoltaïque 100 selon un premier mode de réalisation. On considère tout d'abord un substrat 2 à base d'au moins un semi-conducteur (figure IA) . Ce substrat 2 comporte une face avant 4 texturée et une face arrière 6 polie. Le substrat 2 peut être à base de silicium monocristallin ou multicristallin, de type P ou N.
Comme représenté sur la figure IB, une première couche 8, par exemple une couche mince d'épaisseur comprise entre environ 1 nm et 5 nm, de silicium amorphe hydrogéné, dopé ou intrinsèque, est déposée sur la face avant 4 du substrat 2. Cette couche 8 peut également être à base de carbure de silicium amorphe hydrogéné, dopé ou intrinsèque. De préférence, la première couche 8 comporte une grande largeur de bande interdite (supérieure à 1,8 eV ou 2 eV) afin de limiter l'absorption du spectre solaire. Cette première couche 8 est déposée par PECVD (Dépôt chimique en phase vapeur assisté par plasma) à une température par exemple comprise entre environ 2000C et 4000C, cette température étant adaptée en fonction de la nature de la première couche 8. Si la première couche 8 est dopée du type de conductivité opposé au type de conductivité du substrat 2, lors du fonctionnement de la cellule photovoltaïque 100, un champ de surface avant se forme au niveau de la face avant 4 et de la première couche 8, permettant la réduction des recombinaisons au niveau de cette interface. Il est également possible de former une jonction flottante si la première couche 8 dopée est du même type de conductivité que le substrat 2.
Une couche antireflet 10, représentée sur la figure IC, par exemple à base de nitrure de silicium, est déposée par PECVD à une température comprise entre environ 1500C et 4000C, sur la première couche 8. Cette couche 10 peut par exemple avoir une d'épaisseur comprise entre environ 60 nm et 80 nm. Une couche de passivation 12 à base de silicium amorphe intrinsèque hydrogéné a-Si:H est déposée par PECVD sur la face arrière 6 du substrat 2 (figure ID). L'épaisseur de cette couche de passivation 12 peut par exemple être comprise entre environ 1 nm et 50 nm. Une première couche sacrificielle 14 est ensuite déposée sur la couche de passivation 12, comme cela est représenté sur la figure IE. Cette première couche sacrificielle 14 est déposée par PECVD, à une température inférieure ou égale à environ 2000C ou 250°C afin de ne pas recristalliser le silicium amorphe préalablement déposé des couches 8 et 12, et ainsi minimiser les dégradations des couches 8 et 12 de silicium amorphe. Pour réaliser un tel dépôt à basse température, un support chauffant destiné à recevoir le substrat est tout d'abord chauffé à basse température (inférieure ou égale à environ 2500C ou 2000C) . La chambre de dépôt utilisée est ensuite purgée par l'intermédiaire d'un gaz neutre, par exemple de l'hélium, afin d'éliminer l'air et plus généralement le dioxygène présent dans la chambre de dépôt susceptible d'oxyder le substrat. Le substrat est alors déposé sur le support préalablement chauffé. Le plasma est alors allumé à partir du gaz SiH4 seul ou d'un mélange de SiH4 et de N2O, à une pression importante (par exemple supérieure à environ 333 Pa) . Du N2O est alors injecté dans la chambre de dépôt, formant ainsi la couche sacrificielle 14. Cette première couche sacrificielle 14 peut être à base d'oxyde de silicium, et/ou de carbure de silicium, et/ou de nitrure de silicium. Lors du dépôt de la couche sacrificielle 14, on minimise le bombardement ionique subi par le semi-conducteur amorphe par exemple en augmentant la pression de travail (par exemple supérieure à environ 333 Pa) . Un premier masque de gravure 16 est déposé sur la première couche sacrificielle 14 (figure IF) . Ce premier masque de gravure 16 est réalisé par sérigraphie d'une pâte à base de polymère résistante à l'acide et pouvant être dissoute par un solvant. L'utilisation d'un système de reconnaissance de mires permet d'obtenir une excellente précision, par exemple comprises entre environ 50 μm et 100 μm, en terme d'alignement par sérigraphie. Comme représenté sur la figure IG, les parties de la première couche sacrificielle 14 non recouvertes par le premier masque de gravure 16 sont gravées au contact d'un bain d'acide fluorhydrique . Seules les parties de la première couche sacrificielle 14 se trouvant sous les motifs formés par le premier masque de gravure 16 sont encore présentes. Ainsi, le motif formé par le premier masque de gravure 16 est reporté au niveau de la première couche sacrificielle 14. La couche de passivation 12 n'est pas attaquée par l'acide. Le premier masque 16 est ensuite supprimé par un solvant (figure IH) . On obtient alors un premier masque sacrificiel 14.
Selon une première variante, il est possible de remplacer les étapes de dépôt du premier masque de gravure 16, de gravure des parties de la première couche sacrificielle 14 non recouvertes par le premier masque de gravure 16 et de suppression du premier masque de gravure 16, c'est-à-dire des trois étapes représentées sur les figures IF à IH, par une étape de dépôt par sérigraphie d'une pâte dite « HF », selon un motif inverse au motif du premier masque de gravure 16, gravant directement la première couche sacrificielle après activation par chauffage (par exemple entre 1300C et 1500C) localement pour former le premier masque sacrificiel 14. Une étape de rinçage permet d'éliminer les résidus de gravure et la pâte HF. Selon une seconde variante, il peut également être envisagé de remplacer les étapes de dépôt de la première couche sacrificielle 14, de dépôt du premier masque de gravure 16, de gravure des parties de la première couche sacrificielle 14 non recouvertes par le premier masque de gravure 16 et de suppression du premier masque de gravure 16, par une étape de dépôt direct par sérigraphie d'une pâte de polymère ou d'oxyde, tel du verre d'oxyde, selon un motif identique au motif du premier masque sacrificiel 14 représenté sur la figure IH. Ces variantes permettent de réduire le nombre d'étapes du procédé de réalisation de cellules photovoltaïques .
Comme représenté sur la figure II, une couche 18 de silicium amorphe dopé d'un premier type de conductivité, ici N, est déposée par PECVD à température égale à environ 2000C, sur le premier masque sacrificiel 14 et sur les parties de la couche de passivation 12 non recouvertes par le premier masque sacrificiel 14. Cette couche 18 a par exemple une épaisseur comprise entre environ 5 nm et 30 nm.
Le premier masque sacrificiel 14 est gravé par de l'acide fluorhydrique et le silicium amorphe dopé de la couche 18 se trouvant sur le premier masque sacrificiel 14 est retiré, par exemple par « lift-off » (décollement par élimination de la sous-couche) (figure IJ) . Ainsi, des plots 20 de silicium amorphe dopé N sont formés sur la couche de silicium amorphe intrinsèque 12.
Une seconde couche sacrificielle 22 (figure IK) est déposée par PECVD, par exemple à une température inférieure ou égale à environ 2000C afin de ne pas recristalliser le silicium amorphe préalablement déposé des couches 8 et 12 et des plots 20, sur le silicium amorphe de la couche 12 et les plots 20. Cette seconde couche sacrificielle 22 peut par exemple être à base d'oxyde de silicium, et/ou de carbure de silicium et/ou de nitrure de silicium.
Un second masque de gravure 24 est déposé sur la seconde couche sacrificielle 22, au niveau des plots 20 de silicium amorphe dopé N (figure IL) . Ce second masque de gravure 24 est déposé par sérigraphie d'une pâte à base de polymère résistante à l'acide et pouvant être dissoute par un solvant. Là encore, l'utilisation d'un système de reconnaissance de mires permet d'obtenir des précisions, par exemple comprises entre environ 50 μm et 100 μm, en terme d'alignement par sérigraphie.
Comme représenté sur la figure IM, les parties de la seconde couche sacrificielle 22 non recouvertes par le second masque de gravure 24 sont gravées au contact d'un bain d'acide fluorhydrique . Seules les parties de la seconde couche sacrificielle 22 se trouvant sous les motifs formés par le second masque de gravure 24 sont encore présentes. Ainsi, le motif formé par le second masque de gravure 24 est reporté au niveau de la seconde couche sacrificielle 22, réalisant un second masque sacrificiel 22. La couche de passivation 12 n'est pas attaquée par l'acide. Le second masque de gravure 24 est ensuite supprimé par un solvant (figure IN) . De manière analogue à la première variante expliquée ci-dessus, il est possible de remplacer les étapes de dépôt du second masque de gravure 24, de gravure des parties de la seconde couche sacrificielle 22 non recouvertes par le second masque de gravure 24 et de suppression du second masque de gravure 24, c'est-à-dire des trois étapes représentées sur les figures IL à IN, par une étape de dépôt par sérigraphie d'une pâte dite « HF », selon un motif inverse au motif du second masque de gravure 24, gravant directement la seconde couche sacrificielle localement pour former le second masque sacrificiel 22. Une étape de rinçage permet d'éliminer les résidus de gravure et la pâte HF. Selon la seconde variante, les étapes de dépôt de la seconde couche sacrificielle 22, dépôt du second masque de gravure 24, de gravure des parties de la seconde couche sacrificielle 22 non recouvertes par le second masque de gravure 24 et de suppression du second masque de gravure 24, peuvent être remplacées par une étape de dépôt direct par sérigraphie d'une pâte à base de polymère ou d'oxyde, tel du verre d'oxyde, selon un motif identique au motif du second masque sacrificiel 22 représenté sur la figure IN.
Comme représenté sur la figure 10, une couche 26 de silicium amorphe dopé d'un second type de conductivité, ici P, est déposée par PECVD à température égale à environ 2000C, sur le second masque sacrificiel 22 et sur les parties de la couche de passivation 12 non recouvertes par le second masque sacrificiel 22. Cette couche 26 a par exemple une épaisseur comprise entre environ 5 nm et 30 nm. Le second masque sacrificiel 22 est gravé par de l'acide fluorhydrique et le silicium amorphe dopé de la couche 26 se trouvant sur le second masque sacrificiel 22 est enlevé par « lift-off » (figure IP) . Ainsi, des plots 28 de silicium amorphe dopé P sont formés sur la couche de silicium amorphe intrinsèque 12. On obtient ainsi une hétéroj onction formée par les plots 20, 28 de silicium amorphes N et P et le substrat 2 à base de silicium cristallin, au niveau de la face arrière de la cellule photovoltaïque 100. On réalise ensuite les métallisations de la cellule solaire 100. Pour cela, on dépose sélectivement un métal 30, par exemple à base d'aluminium, et/ou de cuivre et/ou d'argent, par exemple par évaporation, à travers un masque dont le motif est sensiblement similaire au motif formé par les plots 20 et 28 de silicium amorphe dopé N et P, ou tel que les métallisations déposées soit disposées sur les plots 20 et 28 (figure IQ) . La surface de métallisation déposée est de préférence la plus grande possible afin d'améliorer le confinement optique lors d'utilisation d'un substrat de silicium mince (épaisseur inférieure à environ 200 μm) . L'épaisseur des contacts 30 peut être augmentée jusqu'à une épaisseur par exemple d'environ 20 μm par un dépôt autocatalytique ou par électrodéposition (figure IR) . On obtient alors des métallisations permettant une excellente conduction du courant, limitant ainsi les pertes par résistance.
Les figures 2A à 21 représentent partiellement les étapes de réalisation d'une cellule photovoltaïque 200 selon un second mode de réalisation.
Tout d'abord, on réalise des étapes similaires à celles décrites précédemment dans le premier mode de réalisation correspondant aux figures IA à II. On a alors le substrat 2 comportant au niveau de la face avant la première couche 8 et la couche antireflet 10, et au niveau de la face arrière la couche de passivation 12 sur laquelle sont disposés les plots du premier masque sacrificiel 14 recouverts de la couche de silicium amorphe dopé N 18. On réalise alors, comme représenté sur la figure 2A, le dépôt d'une couche d'oxyde transparent conducteur (ITO) 32 et de métallisations 30, par exemple par pulvérisation. Puis, on grave le premier masque sacrificiel 14, formant alors des plots 20 de silicium amorphe dopé N recouverts de la couche d' ITO 32 et des métallisations 30 (figure 2B) . L'oxyde 32 et les métallisations 30 se trouvant sur le premier masque sacrificiel 14 sont éliminés lors de l'étape de gravure du premier masque sacrificiel 14. De manière similaire au premier mode de réalisation et tel que représenté aux figures 2C à 21, on réalise les plots 28 de silicium amorphe dopé P. Avant l'étape d'élimination du second masque sacrificiel 22, une couche d'oxyde transparent conducteur (ITO) 32 et des métallisations 30 sont déposées (figure 2H). L'oxyde 32 et les métallisations 30 disposées sur le second masque sacrificiel 22 sont éliminés lors de l'étape de gravure du second masque sacrificiel 22, l'oxyde 32 et les métallisations 30 ne subsistant que sur les plots 28 de silicium amorphe dopé P .
Les première et seconde variantes décrites précédemment pour le premier mode de réalisation peuvent également s'appliquer à ce second mode de réalisation .

Claims

REVENDICATIONS
1. Procédé de réalisation de cellule photovoltaïque (100, 200), comportant au moins les étapes de : a) dépôt d'une couche de passivation (12) à base d'au moins un semi-conducteur amorphe intrinsèque sur une face (6) arrière d'un substrat (2) à base d'au moins un semi-conducteur cristallin, b) réalisation par sérigraphie sur la couche de passivation (12), à une température inférieure ou égale à 2500C, d'un premier masque sacrificiel (14) comportant au moins une ouverture traversante, c) dépôt d'une couche (18, 20) de semiconducteur amorphe dopé d'un premier type de conductivité au moins dans l'ouverture, d) suppression du premier masque sacrificiel (14), laissant subsister, au niveau de l'ouverture du premier masque sacrificiel (14), au moins un plot (20) de semi-conducteur amorphe dopé du premier type de conductivité.
2. Procédé selon la revendication 1, l'étape b) de réalisation du premier masque de gravure étant mise en œuvre à une température inférieure ou égale à 2000C.
3. Procédé selon l'une des revendications précédentes, comportant, avant l'étape a) de dépôt de la couche de passivation (12), une étape de dépôt d'une couche (8) à base d'au moins un semi-conducteur amorphe sur une face (4) avant du substrat (2) opposée à la face arrière (6) du substrat (2) .
4. Procédé selon la revendication 3, comportant après l'étape de dépôt de la couche (8) à base de semi-conducteur amorphe sur la face avant (4) du substrat (2), une étape de dépôt d'une couche antireflet (10) sur ladite couche (8) à base de semi- conducteur amorphe.
5. Procédé selon l'une des revendications précédentes, l'étape b) de réalisation du premier masque sacrificiel comprenant les étapes de : - dépôt d'une première couche sacrificielle
(14) à base d'oxyde de silicium, et/ou de carbure de silicium et/ou de nitrure de silicium sur la couche de passivation,
- dépôt par sérigraphie d'un premier masque de gravure (16) selon un motif similaire au motif du premier masque sacrificiel,
- suppression par gravure des parties de la première couche sacrificielle non recouvertes par le premier masque de gravure (16), les parties restantes de la première couche sacrificielle formant le premier masque sacrificiel (14),
- suppression du premier masque de gravure (16) .
6. Procédé selon l'une des revendications 1 à 4, l'étape b) de réalisation du premier masque sacrificiel comprenant les étapes de :
- dépôt d'une première couche sacrificielle (14) à base d'oxyde de silicium, et/ou de carbure de silicium et/ou de nitrure de silicium sur la couche de passivation,
- dépôt par sérigraphie d'une pâte gravante selon un motif inverse au motif du premier masque sacrificiel, formant dans la première couche sacrificielle le premier masque sacrificiel (14) .
7. Procédé selon l'une des revendications 1 à 4, l'étape b) de réalisation du premier masque sacrificiel comprenant un dépôt par sérigraphie d'une pâte à base de polymère et/ou d'oxyde formant le premier masque sacrificiel (14) .
8. Procédé selon l'une des revendications précédentes, comportant en outre après l'étape d) , les étapes de : e) réalisation par sérigraphie d'un second masque sacrificiel (22), le second masque sacrificiel
(22) recouvrant au moins le semi-conducteur amorphe dopé du premier type de conductivité (20), f) dépôt, dans au moins un motif formé par le second masque sacrificiel (22), d'une couche (26, 28) de semi-conducteur amorphe dopé d'un second type de conductivité, opposé au premier type de conductivité, g) suppression du second masque sacrificiel (22), laissant subsister, au niveau du motif du second masque sacrificiel (22), au moins un plot (28) de semi-conducteur amorphe dopé du second type de conductivité .
9. Procédé selon la revendication 8, l'étape e) de réalisation du second masque sacrificiel comprenant les étapes de : - dépôt d'une seconde couche sacrificielle
(22) à base d'oxyde de silicium, et/ou de carbure de silicium et/ou de nitrure de silicium sur la couche de passivation,
- dépôt par sérigraphie d'un second masque de gravure (24) selon un motif similaire au motif du second masque sacrificiel,
- suppression par gravure des parties de la seconde couche sacrificielle non recouvertes par le second masque de gravure (24), les parties restantes de la seconde couche sacrificielle formant le second masque sacrificiel (22),
- suppression du second masque de gravure (24) .
10. Procédé selon la revendication 8, l'étape e) de réalisation du second masque sacrificiel comprenant les étapes de :
- dépôt d'une seconde couche sacrificielle (22) à base d'oxyde de silicium, et/ou de carbure de silicium et/ou de nitrure de silicium sur la couche de passivation, - dépôt par sérigraphie d'une pâte gravante selon un motif inverse au motif du second masque sacrificiel, formant dans la seconde couche sacrificielle le second masque sacrificiel (22).
11. Procédé selon la revendication 8, l'étape e) de réalisation du second masque sacrificiel comprenant un dépôt par sérigraphie d'une pâte à base de polymère et/ou d'oxyde formant le second masque sacrificiel (22).
12. Procédé selon l'une des revendications 8 à 11, comportant avant l'étape g) de suppression du second masque sacrificiel (22), une étape de dépôt de métallisations (30).
13. Procédé selon l'une des revendications 8 à 11, comportant après l'étape g) de suppression du second masque sacrificiel (22), une étape de dépôt de métallisations (30) sur le semi-conducteur amorphe dopé du premier type de conductivité (20) et sur le semiconducteur amorphe dopé du second type de conductivité (28) par évaporation et/ou pulvérisation à travers un masque métallique.
14. Procédé selon l'une des revendications précédentes, comportant avant l'étape d) de suppression du premier masque sacrificiel (14), une étape de dépôt de métallisations (30).
15. Procédé selon l'une des revendications 12 à 14, comportant en outre, avant la ou les étapes de dépôt de métallisations (30), une étape de dépôt par pulvérisation d'oxyde transparent conducteur (32) sur le semi-conducteur amorphe dopé (20, 28), les métallisations (30) étant ensuite déposées sur l'oxyde transparent conducteur (32).
PCT/EP2007/060016 2006-09-26 2007-09-21 Procede de realisation de cellule photovoltaique a heterojonction en face arriere WO2008037658A2 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009528733A JP2010504636A (ja) 2006-09-26 2007-09-21 背面ヘテロ接合太陽電池製造方法
EP07803574A EP2067174A2 (fr) 2006-09-26 2007-09-21 Procede de realisation de cellule photovoltaique a heterojonction en face arriere
US12/442,853 US7972894B2 (en) 2006-09-26 2007-09-21 Method of producing a photovoltaic cell with a heterojunction on the rear face

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0653943A FR2906406B1 (fr) 2006-09-26 2006-09-26 Procede de realisation de cellule photovoltaique a heterojonction en face arriere.
FR0653943 2006-09-26

Publications (2)

Publication Number Publication Date
WO2008037658A2 true WO2008037658A2 (fr) 2008-04-03
WO2008037658A3 WO2008037658A3 (fr) 2008-05-22

Family

ID=37963592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/060016 WO2008037658A2 (fr) 2006-09-26 2007-09-21 Procede de realisation de cellule photovoltaique a heterojonction en face arriere

Country Status (5)

Country Link
US (1) US7972894B2 (fr)
EP (1) EP2067174A2 (fr)
JP (1) JP2010504636A (fr)
FR (1) FR2906406B1 (fr)
WO (1) WO2008037658A2 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009524916A (ja) * 2006-01-26 2009-07-02 アライズ テクノロジーズ コーポレーション 太陽電池
US20100154869A1 (en) * 2008-12-24 2010-06-24 Min-Seok Oh Photoelectric conversion device and manufacturing method thereof
JP2011009615A (ja) * 2009-06-28 2011-01-13 Sino-American Silicon Products Inc 太陽電池の製造方法
US20120012170A1 (en) * 2010-07-19 2012-01-19 Institutt For Energiteknikk Processed silicon wafer, silicon chip, and method and apparatus for production thereof
JP2012519375A (ja) * 2009-09-14 2012-08-23 エルジー エレクトロニクス インコーポレイティド 太陽電池
CN102770973A (zh) * 2009-12-21 2012-11-07 现代重工业株式会社 背面场型异质结太阳能电池及其制造方法
EP2219222A3 (fr) * 2009-02-04 2013-02-20 Lg Electronics Inc. Cellule solaire et son procédé de fabrication
WO2014112500A1 (fr) * 2013-01-16 2014-07-24 シャープ株式会社 Élément de conversion photoélectrique et procédé de fabrication d'élément de conversion photoélectrique
WO2015122257A1 (fr) * 2014-02-13 2015-08-20 シャープ株式会社 Élément de conversion photoélectrique

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9012766B2 (en) 2009-11-12 2015-04-21 Silevo, Inc. Aluminum grid as backside conductor on epitaxial silicon thin film solar cells
US8524524B2 (en) * 2010-04-22 2013-09-03 General Electric Company Methods for forming back contact electrodes for cadmium telluride photovoltaic cells
US9214576B2 (en) 2010-06-09 2015-12-15 Solarcity Corporation Transparent conducting oxide for photovoltaic devices
US9773928B2 (en) 2010-09-10 2017-09-26 Tesla, Inc. Solar cell with electroplated metal grid
US9800053B2 (en) 2010-10-08 2017-10-24 Tesla, Inc. Solar panels with integrated cell-level MPPT devices
WO2012132616A1 (fr) * 2011-03-25 2012-10-04 三洋電機株式会社 Procédé de fabrication d'un élément de conversion photoélectrique
JP5842173B2 (ja) * 2011-03-28 2016-01-13 パナソニックIpマネジメント株式会社 光電変換装置及び光電変換装置の製造方法
WO2012132766A1 (fr) 2011-03-28 2012-10-04 三洋電機株式会社 Dispositif de conversion photoélectrique et son procédé de fabrication
GB2491209B (en) * 2011-05-27 2013-08-21 Renewable Energy Corp Asa Solar cell and method for producing same
US9054256B2 (en) 2011-06-02 2015-06-09 Solarcity Corporation Tunneling-junction solar cell with copper grid for concentrated photovoltaic application
CN102214719B (zh) * 2011-06-10 2013-05-01 山东力诺太阳能电力股份有限公司 基于n型硅片的背接触异质结太阳电池
WO2013038768A1 (fr) * 2011-09-12 2013-03-21 三洋電機株式会社 Cellule solaire et son procédé de fabrication
KR20130050721A (ko) 2011-11-08 2013-05-16 삼성에스디아이 주식회사 태양 전지
US20130146136A1 (en) * 2011-12-13 2013-06-13 Kyoung-Jin Seo Photovoltaic device and method of manufacturing the same
JP2013125890A (ja) * 2011-12-15 2013-06-24 Sharp Corp 光電変換素子およびその製造方法
US20130157409A1 (en) * 2011-12-16 2013-06-20 Kaushik Vaidya Selective atomic layer deposition of passivation layers for silicon-based photovoltaic devices
KR101948206B1 (ko) * 2012-03-02 2019-02-14 인텔렉츄얼 키스톤 테크놀로지 엘엘씨 태양 전지와, 이의 제조 방법
JP6032911B2 (ja) * 2012-03-23 2016-11-30 シャープ株式会社 光電変換素子およびその製造方法
JP5774204B2 (ja) * 2012-03-29 2015-09-09 三菱電機株式会社 光起電力素子およびその製造方法、太陽電池モジュール
WO2013172056A1 (fr) * 2012-05-14 2013-11-21 三菱電機株式会社 Dispositif de conversion photoélectrique, procédé de fabrication de ce dernier et module de conversion photoélectrique
JP6103867B2 (ja) * 2012-09-12 2017-03-29 シャープ株式会社 光電変換素子および光電変換素子の製造方法
JP2014072209A (ja) * 2012-09-27 2014-04-21 Sharp Corp 光電変換素子および光電変換素子の製造方法
AU2013326971B2 (en) 2012-10-04 2016-06-30 Tesla, Inc. Photovoltaic devices with electroplated metal grids
US9865754B2 (en) 2012-10-10 2018-01-09 Tesla, Inc. Hole collectors for silicon photovoltaic cells
US10074755B2 (en) 2013-01-11 2018-09-11 Tesla, Inc. High efficiency solar panel
US9219174B2 (en) 2013-01-11 2015-12-22 Solarcity Corporation Module fabrication of solar cells with low resistivity electrodes
JP2014183073A (ja) * 2013-03-18 2014-09-29 Sharp Corp 光電変換素子および光電変換素子の製造方法
JP6223424B2 (ja) * 2013-03-28 2017-11-01 シャープ株式会社 光電変換素子
JP6342386B2 (ja) * 2013-04-01 2018-06-13 シャープ株式会社 光電変換装置
US9624595B2 (en) 2013-05-24 2017-04-18 Solarcity Corporation Electroplating apparatus with improved throughput
KR102045001B1 (ko) * 2013-06-05 2019-12-02 엘지전자 주식회사 태양 전지 및 이의 제조 방법
US9577134B2 (en) * 2013-12-09 2017-02-21 Sunpower Corporation Solar cell emitter region fabrication using self-aligned implant and cap
US20150270421A1 (en) * 2014-03-20 2015-09-24 Varian Semiconductor Equipment Associates, Inc. Advanced Back Contact Solar Cells
WO2015189878A1 (fr) * 2014-06-13 2015-12-17 国立大学法人福島大学 Cellule solaire et son procédé de fabrication
US10309012B2 (en) 2014-07-03 2019-06-04 Tesla, Inc. Wafer carrier for reducing contamination from carbon particles and outgassing
CN106575676B (zh) * 2014-07-17 2019-06-28 光城公司 具有叉指背接触的太阳能电池
JP6639407B2 (ja) * 2014-11-07 2020-02-05 シャープ株式会社 光電変換素子
US9899546B2 (en) 2014-12-05 2018-02-20 Tesla, Inc. Photovoltaic cells with electrodes adapted to house conductive paste
US9947822B2 (en) 2015-02-02 2018-04-17 Tesla, Inc. Bifacial photovoltaic module using heterojunction solar cells
JP6380822B2 (ja) * 2015-03-16 2018-08-29 パナソニックIpマネジメント株式会社 太陽電池セル
KR101689471B1 (ko) * 2015-06-15 2016-12-26 한양대학교 산학협력단 금속 칼코겐 화합물 박막 및 그 제조 방법
DE102015112046A1 (de) * 2015-07-23 2017-01-26 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Verfahren zur Herstellung einseitig angeordneter strukturierter Kontakte in einer Schichtanordnung für ein photovoltaisches Bauelement
US9761744B2 (en) 2015-10-22 2017-09-12 Tesla, Inc. System and method for manufacturing photovoltaic structures with a metal seed layer
US9842956B2 (en) 2015-12-21 2017-12-12 Tesla, Inc. System and method for mass-production of high-efficiency photovoltaic structures
CN105449042A (zh) * 2015-12-29 2016-03-30 浙江晶科能源有限公司 钝化发射极背表面电池的制备方法
US9496429B1 (en) 2015-12-30 2016-11-15 Solarcity Corporation System and method for tin plating metal electrodes
US10115838B2 (en) 2016-04-19 2018-10-30 Tesla, Inc. Photovoltaic structures with interlocking busbars
US10672919B2 (en) 2017-09-19 2020-06-02 Tesla, Inc. Moisture-resistant solar cells for solar roof tiles
US11190128B2 (en) 2018-02-27 2021-11-30 Tesla, Inc. Parallel-connected solar roof tile modules
JP7053892B2 (ja) * 2018-12-27 2022-04-12 株式会社カネカ 太陽電池の製造方法
JP7274899B2 (ja) * 2019-03-22 2023-05-17 株式会社カネカ 太陽電池の製造方法
KR102365141B1 (ko) * 2019-09-17 2022-02-21 울산과학기술원 공극을 포함하는 투명 태양전지 및 이의 제조방법
JP7458834B2 (ja) 2020-03-12 2024-04-01 株式会社カネカ 太陽電池および太陽電池の製造方法
CN114883424B (zh) * 2022-05-25 2023-11-21 中国科学院电工研究所 一种基于丝网印刷制备全背接触晶硅异质结太阳电池结构的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5134090A (en) * 1982-06-18 1992-07-28 At&T Bell Laboratories Method of fabricating patterned epitaxial silicon films utilizing molecular beam epitaxy
US6500731B1 (en) * 1999-09-22 2002-12-31 Canon Kabushiki Kaisha Process for producing semiconductor device module
WO2003083955A1 (fr) * 2002-03-29 2003-10-09 Ebara Corporation Element photovoltaique et procede de fabrication

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6292485A (ja) * 1985-10-18 1987-04-27 Sanyo Electric Co Ltd 太陽電池の製造方法
US4927770A (en) 1988-11-14 1990-05-22 Electric Power Research Inst. Corp. Of District Of Columbia Method of fabricating back surface point contact solar cells
US5053083A (en) 1989-05-08 1991-10-01 The Board Of Trustees Of The Leland Stanford Junior University Bilevel contact solar cells
US5213628A (en) 1990-09-20 1993-05-25 Sanyo Electric Co., Ltd. Photovoltaic device
JP3203078B2 (ja) * 1992-12-09 2001-08-27 三洋電機株式会社 光起電力素子
JPH06204532A (ja) * 1992-12-28 1994-07-22 Canon Inc 太陽電池のグリッド電極の製造方法
DE19910816A1 (de) * 1999-03-11 2000-10-05 Merck Patent Gmbh Dotierpasten zur Erzeugung von p,p+ und n,n+ Bereichen in Halbleitern
JP4169463B2 (ja) * 2000-08-29 2008-10-22 三洋電機株式会社 光起電力素子の製造方法
CN100401532C (zh) * 2001-11-26 2008-07-09 壳牌阳光有限公司 太阳能电池及其制造方法
JP3902534B2 (ja) * 2001-11-29 2007-04-11 三洋電機株式会社 光起電力装置及びその製造方法
US7170001B2 (en) * 2003-06-26 2007-01-30 Advent Solar, Inc. Fabrication of back-contacted silicon solar cells using thermomigration to create conductive vias
JP4155899B2 (ja) * 2003-09-24 2008-09-24 三洋電機株式会社 光起電力素子の製造方法
FR2880989B1 (fr) 2005-01-20 2007-03-09 Commissariat Energie Atomique Dispositif semi-conducteur a heterojonctions et a structure inter-digitee
US7860841B2 (en) * 2005-09-09 2010-12-28 Sap Ag Method and apparatus to support mass changes to business objects in an integrated computer system
US8575474B2 (en) * 2006-03-20 2013-11-05 Heracus Precious Metals North America Conshohocken LLC Solar cell contacts containing aluminum and at least one of boron, titanium, nickel, tin, silver, gallium, zinc, indium and copper
FR2906405B1 (fr) * 2006-09-22 2008-12-19 Commissariat Energie Atomique Procede de realisation de regions dopees dans un substrat et de cellule photovoltaique
US8349644B2 (en) * 2007-10-18 2013-01-08 e-Cube Energy Technologies, Ltd. Mono-silicon solar cells
US8779280B2 (en) * 2009-08-18 2014-07-15 Lg Electronics Inc. Solar cell and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5134090A (en) * 1982-06-18 1992-07-28 At&T Bell Laboratories Method of fabricating patterned epitaxial silicon films utilizing molecular beam epitaxy
US6500731B1 (en) * 1999-09-22 2002-12-31 Canon Kabushiki Kaisha Process for producing semiconductor device module
WO2003083955A1 (fr) * 2002-03-29 2003-10-09 Ebara Corporation Element photovoltaique et procede de fabrication

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009524916A (ja) * 2006-01-26 2009-07-02 アライズ テクノロジーズ コーポレーション 太陽電池
US8802972B2 (en) 2008-12-24 2014-08-12 Samsung Sdi Co., Ltd. Photoelectric conversion device and manufacturing method thereof
US20100154869A1 (en) * 2008-12-24 2010-06-24 Min-Seok Oh Photoelectric conversion device and manufacturing method thereof
EP2202807A3 (fr) * 2008-12-24 2011-03-30 Samsung Electronics Co., Ltd. Dispositif de conversion photoélectrique et son procédé de fabrication
US8969713B2 (en) 2008-12-24 2015-03-03 Samsung Sdi Co., Ltd. Method of manufacturing photoelectric conversion device
EP2219222A3 (fr) * 2009-02-04 2013-02-20 Lg Electronics Inc. Cellule solaire et son procédé de fabrication
JP2015029126A (ja) * 2009-02-04 2015-02-12 エルジー エレクトロニクス インコーポレイティド 太陽電池及びその製造方法
JP2011009615A (ja) * 2009-06-28 2011-01-13 Sino-American Silicon Products Inc 太陽電池の製造方法
US9520517B2 (en) 2009-09-14 2016-12-13 Lg Electronics Inc. Solar cell
JP2012519375A (ja) * 2009-09-14 2012-08-23 エルジー エレクトロニクス インコーポレイティド 太陽電池
CN102770973A (zh) * 2009-12-21 2012-11-07 现代重工业株式会社 背面场型异质结太阳能电池及其制造方法
JP2013513966A (ja) * 2009-12-21 2013-04-22 ヒュンダイ ヘビー インダストリーズ カンパニー リミテッド 裏面電界型のヘテロ接合太陽電池及びその製造方法
US20120012170A1 (en) * 2010-07-19 2012-01-19 Institutt For Energiteknikk Processed silicon wafer, silicon chip, and method and apparatus for production thereof
WO2014112500A1 (fr) * 2013-01-16 2014-07-24 シャープ株式会社 Élément de conversion photoélectrique et procédé de fabrication d'élément de conversion photoélectrique
WO2015122257A1 (fr) * 2014-02-13 2015-08-20 シャープ株式会社 Élément de conversion photoélectrique

Also Published As

Publication number Publication date
EP2067174A2 (fr) 2009-06-10
FR2906406B1 (fr) 2008-12-19
US20100087031A1 (en) 2010-04-08
JP2010504636A (ja) 2010-02-12
WO2008037658A3 (fr) 2008-05-22
FR2906406A1 (fr) 2008-03-28
US7972894B2 (en) 2011-07-05

Similar Documents

Publication Publication Date Title
WO2008037658A2 (fr) Procede de realisation de cellule photovoltaique a heterojonction en face arriere
EP1839341B1 (fr) Dispositif semi-conducteur a heterojonctions et a structure inter-digitee
EP1903617B1 (fr) Procédé de réalisation de régions dopées dans un substrat et de cellules photovoltaïques
EP1903615B1 (fr) Procédé de métallisation de cellules photovoltaïques à multiples recuits
US9466750B2 (en) Hybrid polysilicon heterojunction back contact cell
AU2015210421B9 (en) Hybrid polysilicon heterojunction back contact cell
US20130233378A1 (en) High-efficiency photovoltaic back-contact solar cell structures and manufacturing methods using semiconductor wafers
US20130164879A1 (en) Hybrid polysilicon heterojunction back contact cell
JP5174635B2 (ja) 太陽電池素子
FR2463978A1 (fr) Cellule solaire integree avec une diode de derivation et son procede de fabrication
EP1846956B1 (fr) Procede de realisation de contacts metal/semi-conducteur a travers un dielectrique
FR2906403A1 (fr) Procede de recuit de cellules photovoltaiques
EP1618611B1 (fr) Procede de realisation d un dispositif semi-conducteur a met allisations auto-alignees.
WO2016203013A1 (fr) Procede de realisation d'une cellule photovoltaique a heterojonction
EP3314670A1 (fr) Procede d'isolation des bords d'une cellule photovoltaique a heterojonction
FR3048819A1 (fr) Compensation de dopage par irradiation laser pour la fabrication de cellules solaires a heterojonction
EP2888765A2 (fr) Procede de realisation de contacts electriques d'un dispositif semi-conducteur
EP4336569A1 (fr) Cellule photovoltaique a contacts passives en double face et comportant des portions d'otc localisées sous les métallisations avant
EP2876689B1 (fr) Procédé de formation d'une cellule photovoltaïque
EP4199122A1 (fr) Cellule photovoltaïque a contacts passives et a revêtement antireflet
WO2019158868A1 (fr) Dispositif photovoltaïque ou photodétecteur de type émetteur passivé contact arrière et procédé de fabrication d'un tel dispositif
EP3316319A1 (fr) Cellules photovoltaïques a contacts arriere et leur procede de fabrication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07803574

Country of ref document: EP

Kind code of ref document: A2

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2009528733

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2007803574

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007803574

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE