WO2008029497A1 - Élément d'alliage de magnésium et son procédé de production - Google Patents

Élément d'alliage de magnésium et son procédé de production Download PDF

Info

Publication number
WO2008029497A1
WO2008029497A1 PCT/JP2007/000751 JP2007000751W WO2008029497A1 WO 2008029497 A1 WO2008029497 A1 WO 2008029497A1 JP 2007000751 W JP2007000751 W JP 2007000751W WO 2008029497 A1 WO2008029497 A1 WO 2008029497A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium alloy
rolling
alloy member
treatment
film
Prior art date
Application number
PCT/JP2007/000751
Other languages
English (en)
French (fr)
Inventor
Nobuyuki Okuda
Masatoshi Majima
Shoichiro Sakai
Shinji Inazawa
Nobuyuki Mori
Ryuichi Inoue
Yukihiro Oishi
Nozomu Kawabe
Masatada Numano
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Priority to BRPI0715865-3A priority Critical patent/BRPI0715865A2/pt
Priority to EP07790247.6A priority patent/EP2060642B1/en
Priority to KR1020097004844A priority patent/KR101412245B1/ko
Priority to AU2007292778A priority patent/AU2007292778B2/en
Priority to US12/377,916 priority patent/US8501301B2/en
Priority to JP2008533034A priority patent/JP5201535B2/ja
Publication of WO2008029497A1 publication Critical patent/WO2008029497A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/18Orthophosphates containing manganese cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/364Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also manganese cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/37Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also hexavalent chromium compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/30Anodisation of magnesium or alloys based thereon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24364Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.] with transparent or protective coating

Definitions

  • the present invention relates to a magnesium alloy member and a method for producing the same.
  • the present invention relates to a magnesium alloy member in which the surface of a magnesium alloy plate is subjected to a surface treatment such as formation or coating of an anticorrosive film.
  • Magnesium has a specific gravity (density g / cm 3 , 20 ° C) of 1.74, and is the lightest metal among the metal materials used for structures.
  • the magnesium can be strengthened by adding various elements to form an alloy. For this reason, in recent years, examples of using magnesium alloys in the case of small portable devices such as mobile phones and mopile devices that are required to be light weight, the case of notebook computers, or automobile parts are increasing.
  • magnesium alloys with a high aluminum content for example, AZ91 in ASTM standards
  • magnesium alloy products used as the above-mentioned casings are mainly forged materials manufactured by die casting or thixo mold methods. .
  • AZ31, etc. which is relatively easy to plastically process, it is considered that the ingot-forged forged material is rolled into a plate material, and this plate material is press-molded to be used as a casing (similar technology Patent Document 1).
  • Patent Document 1 JP-A-2005-2378
  • the forged material has a problem that the surface treatment becomes complicated.
  • magnesium alloy sheets for casings are surface treated to improve corrosion resistance and appearance quality.
  • This surface treatment can be broadly divided into base treatment and painting treatment. You can In the base treatment, degreasing ⁇ acid etching ⁇ desmating ⁇ surface adjustment ⁇ chemical conversion treatment or anodizing treatment is performed with the above-mentioned forged material or press-molded molded plate as the material to be treated. In the painting process, the material to be treated after the ground treatment is subjected to undercoating ⁇ putty ⁇ polishing ⁇ topcoating.
  • forged materials have many surface defects, and it is usually necessary to repeat the process of filling the surface defects with a putty after polishing and then polishing them several times. As a result, the yield in the surface treatment process is very low, which increases the product cost.
  • forged materials also have a problem that mechanical properties such as tensile strength, ductility, and toughness are poor compared to a formed plate that has undergone a rolling process.
  • the molded plate of AZ31 has a problem that the corrosion resistance of the material itself is low and the adhesion of the film formed by the surface treatment is also low.
  • AZ31 is easier to form than AZ91, etc. If it is made into a plate material by rolling or the like, it has better mechanical properties than forged materials and can reduce surface defects. Along with this, it is possible to improve the low yield of surface treatment, which has been a problem with forging materials.
  • AZ31 is inferior in corrosion resistance of the material itself compared to AZ91, and it is difficult to satisfy the required characteristics. Considering only the improvement in corrosion resistance, for example, it is conceivable to increase the thickness of the chemical film formed by the base treatment.
  • the present invention has been made in view of the above circumstances, and one of its purposes is to provide a magnesium alloy member having both mechanical properties and corrosion resistance and a method for producing the same (fo ⁇ ).
  • Another object of the present invention is to provide a magnesium alloy member capable of improving the yield of surface treatment and a method for producing the same. Means for solving the problem
  • the magnesium alloy member of the present invention is a magnesium alloy member having a base material made of a magnesium alloy and an anticorrosion film formed on the base material, wherein the base material has an AI of 5 to 11. It is a rolled material made of a magnesium alloy containing mass%.
  • a magnesium alloy member having excellent mechanical properties and high corrosion resistance can be obtained.
  • the rolled material is a member that has undergone a rolling process, and includes members that have been subjected to other processes such as a leveler process and a polishing process after the rolling process.
  • the magnesium alloy member of the present invention preferably further includes a shearing portion.
  • a magnesium alloy member having a predetermined size and shape excellent in corrosion resistance and mechanical characteristics can be obtained.
  • the shearing portion is a portion of the magnesium alloy member that has undergone shearing such as cutting or punching on the rolled material.
  • shearing such as cutting or punching on the rolled material.
  • the cut (punched) end face of the plate piece becomes a sheared portion.
  • magnesium alloy member of the present invention provided with a shearing portion, it is preferable to further include a plastic working portion.
  • a magnesium alloy member having a predetermined size and shape excellent in corrosion resistance and mechanical characteristics can be obtained.
  • it can be a three-dimensional solid magnesium alloy member.
  • the plastic working part is a part of the magnesium alloy member that has undergone plastic working. Examples of the plastic working include at least one of pressing, deep drawing, forging, blowing, and bending. Various forms of magnesium alloy members can be obtained by these plastic workings.
  • the base material that has undergone press working is suitable for forming the housing of electronic equipment. It is.
  • the base material satisfies the following requirements.
  • Average crystal grain size is 30; u m or less
  • the average crystal grain size of the magnesium alloy constituting the base material By setting the average crystal grain size of the magnesium alloy constituting the base material to 30 m or less, it is possible to eliminate coarse particles as a starting point such as cracking and to improve plastic workability. In addition, if the average grain size of the magnesium alloy is small, the grain boundary tends to become a resistance that hinders the movement of electrons compared to the case where the grain size is large, and by suppressing the movement of electrons on the surface portion of the substrate, It also contributes to improving corrosion resistance.
  • the average crystal grain size of the magnesium alloy is more preferably 20 m or less, further preferably the same grain size is 10 ⁇ m or less, and the particularly preferred same grain size is 5 m or less.
  • the crystal grain size is determined by the cutting method defined in JIS G 0551 (2005) at the surface and the center of the substrate, and the average value is used.
  • the surface portion of the base material is a region corresponding to 20% of the thickness of the base material from the surface in the thickness direction of the cross section of the base material, and the central portion is the thickness direction of the cross section of the base material.
  • the area is 10% of the thickness of the base material from the center.
  • the average grain size can be changed by adjusting the rolling conditions (total rolling reduction, temperature, etc.) during the production of the substrate and the heat treatment conditions (temperature, time, etc.) after rolling.
  • the crystal grain size in the vicinity of the processed portion may change. Therefore, it is preferable to obtain the average crystal grain size of the base material in the magnesium alloy member from a non-processed portion other than the vicinity of the chopped portion or the plastic processed portion.
  • the size of the crystal precipitates on the substrate is 20; um or less, it is possible to further improve the workability when the material member is later subjected to plastic processing such as press working. Coarse crystal precipitates of more than 20 m become the starting point of cracking during this plastic working.
  • the size of the more preferable crystal precipitate is as follows. Such a base material is usually obtained from a forging material, and in order to make the crystal precipitate size of the base material 20 m or less, it solidifies during the forging.
  • the cooling rate at the time of heating is set to 50 K / second or more and 10,000 K / second or less. As a result, a forged material with small crystal precipitates can be obtained.
  • the cooling rate it is more desirable to make the cooling rate uniform in the width direction and the longitudinal direction of the forged material.
  • the size of the crystal precipitate is determined by observing the cross section of the base material with a metallographic microscope, obtaining the length of the longest cutting line of the crystal precipitate in the cross section, and calculating the length of the crystal precipitate in the cross section.
  • the cross-sectional cross section is arbitrarily taken, and the size of crystal precipitates is similarly determined in each cross-section, and the largest value among the crystal precipitates in 20 cross-sections is set as the size of crystal precipitates of the base material. adopt.
  • the size of the crystal precipitates appearing on the surface of the substrate is 5 m or less. Crystal precipitates on the surface of the substrate have a significant effect on the quality of the surface treatment layer including the anticorrosion film and paint film. Therefore, if the size force of this crystal precipitate is ⁇ 5; um or less, the influence on the quality of the surface treatment layer can be minimized.
  • the surface of the base material is observed with a microscope of 1000 times or more, and the length of the longest cutting line of the crystal precipitates appearing on the surface of the base material is obtained. The size of the object.
  • the size of the crystallized product is obtained for 20 fields of view, and the largest value is adopted as the monster of the crystal precipitates on the substrate surface.
  • a rapid cooling of 400 K / second or more can be performed by always bringing the molten metal into close contact with the mold during solidification of the forging.
  • the distance between the nozzle for supplying the molten metal to the vertical mold and the roll (the vertical mold) can be mentioned.
  • the surface defect depth 10 ⁇ 1 ⁇ 2 or less of the thickness of the base material is less likely to become the starting point of cracking, especially when bending is performed, improving the flexibility it can.
  • the amount of polishing can be reduced in the polishing process to smooth the surface of the rolled material later, resulting in lower product costs. It is effective for.
  • Such a base material can be obtained by using a forged material having a small surface defect. In order to reduce the depth of surface defects to less than 10% of the thickness of the forged material, it is possible to lower the temperature of the molten metal and increase the cooling rate.
  • a more preferable depth of surface defects in the substrate is 3 ⁇ 1 ⁇ 2 or less of the thickness of the substrate, and a particularly preferable depth is 1 ⁇ 1 ⁇ 2 or less of the thickness of the substrate. For the depth of surface defects, select any two points in the area of 1 m in the longitudinal direction of the plate, take the cross-section of the two points, and each of the four cross-sections has an emery of # 4000 or less.
  • polishing using a piece of paper and diamond abrasive grains with a particle size of 1; um. Then, the entire circumference of the outer peripheral edge of each cross section is observed with a metal microscope with a magnification of 200 times, and the largest value among the recognized depths of the surface defects is defined as the depth of the surface defect.
  • the length of the surface defects in the substrate is preferably 20;
  • the length of the surface defect is 20 m or less, when plastic working is performed later, the surface defect is less likely to become a starting point of cracking and the workability can be improved, and the amount of polishing by surface polishing of the rolled material can be reduced. .
  • the length of the surface defect is specified by the “penetration inspection” specified in JISZ 2343.
  • the penetrant test is also called a red check.
  • the developer in that area changes color due to the dye remaining in the surface defect, and the presence or absence of a scratch that is difficult to recognize from the surface is specified. Then remove the developer from the specified scratch and observe the scratch with a 500x microscope.
  • the length of each flaw is determined by the maximum distance between two points selected from the periphery of one flaw when the substrate is viewed in plan. The maximum flaw length of the 10 observed flaws is taken as the surface defect length.
  • the forging temperature is preferably 680 ° C or less.
  • the polishing method the surface of the material member is polished using a # 120 or higher abrasive. At that time, it is preferable to polish within a range in which internal defects of the forged material, for example, crystal precipitates of 20 m or more are not exposed.
  • the anticorrosion film is preferably a chemical conversion film or a positive oxide film.
  • the corrosion resistance of the alloy member can be effectively increased.
  • the content of Gr or Mn contained in the anti-corrosion coating is preferably 0.1% by mass or less.
  • Gr is a RoHS (Restriction of the use of certain Hazardo us Substances in electrical and electronic equipment) directive. It is an element that produces hexavalent chromium, which is subject to regulation, and Mn is a relevant substance in the PRTR (Pollutant Release and Transfer Register), so it has a large impact on the environment.
  • the RoHS directive requires that the hexavalent chromium content be 1000 ppm or less. Therefore, if the Gr content in the anticorrosion coating is 0.1 mass% or less, this directive can be met.
  • the Mn content in the anti-corrosion coating is 0.1% by mass or less, the burden on the environment can be reduced.
  • the anticorrosion coating does not contain Gr or Mn.
  • the anticorrosive film in which the content of Gr or Mn in the anticorrosive film is 0.1% by mass or less include a phosphate film.
  • the anticorrosion film has a corrosion area ratio of 1% or less after the 24-hour salt spray test (JIS Z 2371), and the resistance measured by the two-probe method is 0.2 ⁇ . ⁇ Desirable to be cm or less.
  • a magnesium alloy member having high corrosion resistance can be obtained by providing characteristics that pass the salt spray test.
  • the 24-hour salt spray test is a test in which 5% salt water is sprayed in a test tank set at 35 ° C, and the corrosivity of the specimen in the test tank is evaluated. Corroded areas are blacker than healthy areas. Therefore, the corroded area should not be obtained by photographing the specimen surface after the test and processing the image. Can be easily obtained. Then, the ratio of the corrosion area to the total area of the test piece may be calculated.
  • the magnesium alloy member is used for the casing of an electronic device such as a mobile phone.
  • the housing itself can be expected to have high-frequency current removal and electromagnetic shielding functions.
  • a lead wire for grounding may be connected to the housing of the electronic device, but the contact resistance between the lead wire and the housing can also be reduced.
  • the thickness of the anticorrosion film can be reduced.
  • the corrosion resistance decreases.
  • the resistance of the anti-corrosion film can be made as small as possible.
  • the magnesium alloy member of the present invention it is preferable to provide a coating film on the anticorrosion film.
  • the coating film includes an undercoat layer and an overcoat layer, and that the coating film does not include a putty material that fills in defects on the surface of the undercoat layer.
  • the alloy member of the present invention preferably includes an antibacterial film as an uppermost layer.
  • the alloy member has antibacterial properties. This makes it possible to provide a more hygienic alloy member.
  • the antibacterial film preferably contains antibacterial metal particles.
  • antibacterial metal fine particles particles made of nickel, copper, silver, gold, platinum, palladium, or an alloy containing two or more of these can be suitably used.
  • the coating film itself is an antibacterial film. This saves the labor of forming an antibacterial film separately from the paint film.
  • the antibacterial metal fine particles described above may be included in the paint.
  • an antibacterial film may be formed on the anticorrosion film.
  • the magnesium alloy member of the present invention has a tensile strength of 280 MPa or more and a 0.2% proof stress.
  • the elongation is 10% or more.
  • Magnesium alloy members that satisfy these mechanical properties can be suitably used as housings and structural materials for various devices. This limitation of mechanical properties is especially true for AZ61.
  • the tensile strength is 320 MPa or more
  • the 0.2% proof stress is 220 MPa or more
  • the elongation is 10 ⁇ 1 ⁇ 2 or more.
  • Further preferable mechanical properties of AZ91 are a tensile strength of 340 MPa or more, a 0.2% proof stress of 240 MPa or more, and an elongation of 10% or more.
  • the tensile strength here is determined from the tensile test specified in JI S Z 2201. 0.2% resistance and elongation are also determined using the results of the tensile test.
  • the magnesium alloy member of the present invention can be suitably used as a casing of an electronic device. More specifically, cases of mobile telephones, portable information terminals, notebook computers, thin TVs such as liquid crystals and plasmas, etc. can be used as the application target of the alloy member of the present invention.
  • the alloy members of the present invention are also used for structural panels such as body panels, sheet panels, engines, parts around the chassis, glasses pipes, mufflers such as motorcycles, pipes, etc. Can.
  • the material members used in the alloy members of the present invention are then subjected to cutting or plastic processing, and surface treatment such as anti-corrosion treatment or coating treatment is omitted, so that surface treatment is not required, for example, automotive parts.
  • a magnesium alloy member equivalent to AZ61 or AZ91 is suitable as a member without surface treatment.
  • the method for producing a magnesium alloy member of the present invention comprises a step of preparing a raw material member made of a magnesium alloy rolled material containing 5 to 11% by mass of AI, and a step of subjecting the raw material member to anticorrosion treatment. It is characterized by providing.
  • the method of the present invention is basically provided with "preparation of material members” and “anticorrosion treatment”. Further, as a variation of combination with other processes, the necessity of shearing, plasticity The following items are also included depending on the necessity of processing and the necessity of painting.
  • the first group is anti-corrosion treatment on rolled material
  • shear processing is plastic processing
  • a typical product form of the magnesium alloy member obtained by this first group of methods is a long plate wound in a roll shape.
  • the second group is a method in which the material member is sheared and then subjected to anticorrosion treatment.
  • the anticorrosion treatment can be applied to the sheared material that has been subdivided into the predetermined dimensions (1) and shapes.
  • a typical form of an alloy member that performs shearing and does not perform plastic working is a piece of a plate.
  • plastic processing is performed in addition to shear processing, if the anti-corrosion treatment is performed after plastic processing, there is no risk of damage to the anti-corrosion coating during plastic processing.
  • Typical product forms of alloy members that have undergone plastic working in addition to shearing include housings for various electronic and electrical equipment.
  • the third group is a method in which a material member is subjected to anticorrosion treatment and then subjected to shearing or plastic processing. According to this method, the anticorrosion treatment can be continuously performed on a rolled material which is generally long. Therefore, compared to the case of handling already sheared materials and applying anticorrosion treatment to each of the sheared materials, the total productivity up to the production of alloy members can be greatly improved. .
  • the coating process when a coating process is performed, the coating process usually includes an undercoat and a topcoat. In that case, it is preferable to apply the primer and topcoat once.
  • the raw material member preparation step includes a step of obtaining a forged material containing 5 to 11% by mass of AI, and a rolling step for warm rolling the forged material. Is preferred.
  • the forged material is preferably obtained by twin roll forging.
  • Twin roll forging belongs to the forging method using movable molds, and has few surface defects. You can get no forged material.
  • the step of obtaining the forged material is preferably performed by rapid solidification forging at a solidification rate of 50 K / sec or more.
  • the forged material obtained by such rapid solidification has few internal defects such as oxide segregation.
  • a rolled material obtained by rolling a rapidly solidified forged material is preferable because surface defects are further reduced.
  • a more preferred lower limit of the solidification rate is 200 K / second or more, a further preferred lower limit of the solidification rate is 300 K / second or more, and a particularly preferred lower limit of the solidification rate is 400 K / second or more.
  • An example of rapid solidification forging that enables a solidification rate of 50 K / sec or more includes twin-roll forging.
  • the twin roll forging method allows rapid solidification using twin rolls, so that the resulting material has few internal defects such as segregation of oxides.
  • Magnesium alloy with a high AI content is prone to crystallized material and partial prayer during forging, and even after heat treatment and rolling processes after forging, the crystallized material and Segregated material may remain and become the starting point of fracture during plastic working.
  • these problems can be alleviated by obtaining material members using the twin-roll manufacturing method.
  • the magnesium alloy member of the present invention can have both high corrosion resistance and mechanical properties.
  • the magnesium alloy member of the present invention can form a highly reliable surface treatment layer when performing surface treatment including anticorrosion treatment.
  • FIG. 1 is a photomicrograph of the anticorrosive film of a magnesium alloy member according to Test Example 15, wherein FIG. 1a shows a flat portion and FIG. 1b shows a corner R portion.
  • the magnesium alloy used in the present invention is an alloy containing 5 to 11% by mass of AI. If the AI content is below this lower limit, the corrosion resistance of the material will decrease, and if it exceeds the upper limit, formability will tend to decrease. More preferably, the AI content is 6.0 to 10.0. %. In particular, an alloy containing 1 to 8.3% by mass to 9.5% by mass is preferable in terms of mechanical properties if it is corrosion resistant. Furthermore, an alloy containing 0.2 to 1.5% by mass of Zn can also be suitably used as a material for the member of the present invention. In addition, the magnesium alloy may contain 0.1 to 0.5% by mass of Mn. Other than these additive elements, it may be composed of impurities and Mg. Specific examples of alloys containing 5 to 11% by mass of AI include ASTM standards AZ61, AZ63, AZ80, AZ81, AZ91, AM60, and AM100.
  • the material member is a member to be subjected to anticorrosion treatment later.
  • the material member is typically a rolled material obtained by rolling a forged material.
  • a heat-treated rolled material, or a rolled material that has undergone a leveler process and a polishing process, which will be described later, may be referred to as a material member.
  • the forging conditions and rolling conditions will be described in more detail.
  • the forging is preferably performed by the forging method described in WO / 2006/003899.
  • This forging method includes a melting step of melting a magnesium alloy in a melting furnace to form a molten metal, a transfer step of transferring the molten metal from the melting furnace to a sump, and a movable trough from the sump through a pouring port. It includes a forging process in which molten metal is supplied to a mold and solidified to continuously produce a forging material having a thickness of 0.1 or more and 10. or less. And the part which a molten metal contacts in the process ranging from the said melting process to a forging process is formed with a low oxygen material whose oxygen content is 20 mass% or less.
  • magnesium oxide When a magnesium alloy is used for the continuous fabrication of magnesium alloy, the use of a member made of an oxide as described above at the contact portion of the magnesium alloy produces magnesium oxide, which reduces the surface quality.
  • secondary processing such as rolling is performed on the material, cracking occurs Cause. Magnesium oxide does not re-melt, so if mixed into the forging material along the flow of the molten metal, solidification will become uneven and the surface quality of the forging material will be reduced, or rolling to the forging material will be difficult.
  • the material deprived of oxygen may be lost in the molten magnesium alloy, resulting in partial melting and lowering of the molten metal temperature, resulting in uneven solidification and lowering of the surface quality of the forged material.
  • a material with low oxygen content as the constituent material of the part that comes into contact with the molten metal during forging, the production of magnesium oxide is suppressed and the occurrence of surface defects such as cracks during secondary processing is reduced.
  • the yield in the surface treatment process can be reduced. Can be improved.
  • the solidification of the molten metal is preferably completed when discharged from the movable saddle type (roll).
  • the movable saddle type is a pair of rolls
  • solidification of the molten metal has been completed when passing through the smallest gap between the rolls. That is, it is preferable to solidify so that a solidification completion point exists between the plane including the rotation axis of the roll and the tip of the pouring gate (offset section).
  • the magnesium alloy introduced from the pouring spout is in contact with the vertical mold until the final solidification and is removed from the vertical mold.
  • the surface temperature of the magnesium alloy material (forged material) discharged from the movable saddle mold is preferably 400 ° C or lower. At this time, when a closed section sandwiched between movable rolls such as rolls is released into an atmosphere containing oxygen (air, etc.), the forged material is prevented from abruptly oxidizing and causing discoloration. Can do.
  • the obtained forged material may be subjected to heat treatment or aging treatment for homogenizing the composition.
  • temperature 200 to 450 ° C.
  • time about 1 to 40 hours are preferable.
  • the temperature and time may be appropriately selected depending on the alloy composition.
  • the thickness of the forged material is preferably 0.1 country or more and 10.0 country or less. 0. With less than 1 country Then, it is difficult to stably supply the molten metal, and it is difficult to obtain a long body. On the other hand, if it is more than 10.0 countries, centerline prayers are likely to occur in the resulting timber.
  • the obtained forged material has a tensile strength of 150 MPa or more and a breaking elongation of 1% or more, it is possible to reduce a decrease in plastic workability of the magnesium alloy material subjected to the secondary processing. preferable. In order to improve the strength and ductility, it is preferable to make the structure finer, reduce the scratch on the surface, and apply the reduction to the forged material.
  • the rolling condition is preferably rolling condition 1 or rolling condition 2 described below.
  • rolling condition 1 examples include rolling conditions described in WO / 2006/003899.
  • the total rolling reduction is preferably 20 ⁇ 1 ⁇ 2 or more.
  • columnar crystals which are the structure of the forged material, remain, and the mechanical characteristics tend to be uneven.
  • Rolling may be one pass or a plurality of passes.
  • the rolling reduction rate of 1 / s is 1% or more and 50 ⁇ 1 ⁇ 2 or less.
  • the rolling reduction per pass is less than 1%, the number of times of rolling is increased in order to obtain a rolled material (rolled sheet) with a desired thickness, which takes time and is inferior in productivity.
  • the rolling reduction of one pass exceeds 50%, the degree of work is large, so it is desirable to improve the plastic workability by appropriately heating the material before rolling. When the heating force is applied, the crystal structure becomes coarse, which may reduce the workability of the press working after rolling.
  • T (° C) of the material temperature t1 (° C) before rolling and the material temperature t2 (° C) before rolling is selected, and this temperature is selected.
  • Rolling may be provided such that T (° C) and reduction ratio c (%) satisfy 100> (T / c)> 5.
  • T / c) When the force ⁇ 5 or less, since the material temperature is low and the rolling workability is small, it has a high degree of workability, so cracks occur on the surface and inside of the material during rolling. Easy to do.
  • the rolling step includes rolling in which the surface temperature of the material immediately before being inserted into the rolling roll is 100 ° C or lower and the surface temperature of the rolling roll is 100 to 300 ° C.
  • the material is indirectly heated by contacting the heated rolling roll in this way.
  • the rolling method in which the surface temperature of the material before rolling is kept within 100 ° C and the surface temperature of the rolling roll during actual rolling is heated to 100 ° C or higher and 300 ° C or lower is called “non-preheat rolling”.
  • Non-preheat rolling may be performed in multiple passes, or non-preheat rolling may be applied to only the last pass after performing multiple passes other than non-preheat rolling. That is, rolling other than non-preheat rolling may be rough rolling, and non-preheat rolling may be used as finish rolling. By performing non-preheat rolling in at least the last pass, a magnesium alloy rolled material having sufficient strength and excellent plastic workability can be obtained.
  • Rolling other than non-preheat rolling is preferably warm rolling in which the material is heated to 100 ° C or higher and 500 ° C or lower. In particular, it is preferably 150 ° C or higher and 350 ° C or lower. An appropriate rolling reduction per pass is 5% to 20%.
  • the material is subjected to a solution treatment at 350 to 450 ° C for 1 hour or longer before rolling. It is preferable.
  • this solution treatment residual stress or distortion introduced by processing such as rough rolling before finish rolling can be removed, and the texture formed during the previous processing can be reduced. In subsequent rolling, it is possible to prevent inadvertent cracking, distortion and deformation of the material.
  • the solution treatment temperature is less than 350 ° C or less than 1 hour, the effect of sufficiently removing the residual stress and reducing the texture is small.
  • the temperature exceeds 450 ° C, effects such as residual stress removal Saturates and wastes the energy required for solution treatment.
  • the upper limit of the solution treatment time is about 5 hours.
  • the magnesium alloy rolled material is preferably subjected to heat treatment.
  • heat treatment may be performed for each pass or for each of a plurality of passes.
  • Examples of the heat treatment conditions include temperature: 100 to 450 ° C, time: about 5 minutes to 40 hours.
  • the temperature is low within the above temperature range (for example, 100 to 350 ° C.) and short within the above time range.
  • Heat treatment for a time for example, about 5 minutes to 3 hours can be mentioned.
  • heat treatment can be performed at a high temperature (for example, 200 to 450 ° C.) within the above temperature range and for a long time (for example, about 1 to 40 hours) within the above time range.
  • the rolling process should include controlled rolling under the following conditions (1) and (2), where M (mass%) is the AI content in the magnesium alloy that constitutes the rolling target plate. Is also preferable.
  • the surface temperature Tb (° C) of the magnesium alloy sheet immediately before insertion into the rolling roll is set to a temperature satisfying the following formula.
  • the surface temperature Tr of the rolling roll is set to 150 to 180 ° C.
  • rolling roll temperature Tr and the surface temperature Tb of the alloy plate as described above, rolling can be performed within a range in which the crystal grains of the magnesium alloy are not recrystallized. This suppresses the coarsening of the crystal grains of the alloy and enables rolling that does not easily cause cracks on the surface of the rolled material.
  • the surface temperature Tr of the rolling roll is set to 150 to 180 ° C. If the temperature is less than 150 ° C and the rolling reduction / pass is increased, fine cracks in the form of leather may occur in the direction perpendicular to the traveling direction of the alloy sheet when the alloy sheet is rolled. Also, if the temperature exceeds 180 ° C, during the rolling process, the strain of the alloy plate accumulated by the previous rolling is eliminated by recrystallization of the alloy crystal grains, and the amount of processing strain decreases, and the crystal grains are reduced. It is difficult to miniaturize.
  • a method of arranging a heating element such as a heater inside the rolling roll, a method of blowing warm air on the surface of the rolling roll, or the like can be used.
  • the lower limit of the surface temperature Tb is about 177 ° C, and the upper limit is about 257 ° C.
  • This temperature Tb depends on the AI content M (mass%) in the magnesium alloy. Specifically, in the case of ASTM standard AZ61, the temperature Tb may be set to about 185 to 215 ° O, and in the case of AZ91, about 210 to 247 ° C. Below the lower limit temperature of each composition, fine leather-like cracks may occur in the direction perpendicular to the traveling direction of the alloy sheet, as in the case where the surface temperature of the rolling roll is low. Also, when the upper limit temperature of each composition is exceeded, the strain of the alloy plate accumulated during the rolling process is eliminated by recrystallization of the alloy crystal grains during the rolling process, and the amount of processing strain is reduced. It is difficult to miniaturize.
  • the total rolling reduction of the controlled rolling is preferably 10 to 75 ⁇ 1 ⁇ 2.
  • the total rolling reduction is expressed as (sheet thickness before controlled rolling minus sheet thickness after controlled rolling) / sheet thickness before controlled rolling X 100.
  • the total rolling reduction is less than 10%, the processing distortion of the processing target is small and the effect of refining the crystal grains is small.
  • it exceeds 75% the applied strain near the surface to be processed increases and cracks may occur.
  • controlled rolling may be performed on a plate material of 0.56 to 2.0 countries.
  • a more preferable range of the total rolling reduction of control rolling is 20% or more and 50% or less.
  • the rolling reduction / pass (average rolling reduction per pass) of controlled rolling is preferably about 5 to 20%. If the rolling reduction / pass is too low, it is difficult to perform efficient rolling. Conversely, if the rolling reduction / pass is too high, defects such as cracks are likely to occur in the rolling target.
  • the above-described controlled rolling is performed in a plurality of passes, and at least one of the plurality of passes is performed with the rolling direction reversed with respect to the other passes.
  • the processing strain is more likely to enter the rolling target evenly, and the variation in crystal grain size after the final heat treatment usually performed after controlled rolling is reduced. Can be small.
  • the rolling of an alloy sheet usually includes rough rolling and finish rolling.
  • the finish rolling is the above-described controlled rolling.
  • this finish rolling is preferably controlled rolling.
  • rough rolling other than finish rolling is not restricted by the rolling conditions of controlled rolling.
  • the surface temperature of the rough rolled alloy sheet there is no particular limitation on the surface temperature of the rough rolled alloy sheet.
  • the surface temperature and rolling reduction of the alloy sheet to be rough rolled it is only necessary to select conditions that allow the crystal grain size of the alloy sheet to be as small as possible. For example, if the initial sheet thickness before rolling is 4.0 countries and the final sheet thickness is 0.5 countries, rough rolling is performed from the initial alloy sheet to a sheet thickness of 0.56 to 2.0 countries. Subsequent rolling may be finish rolling.
  • the processing efficiency in the rough rolling can be improved by setting the surface temperature of the rolling roll in the rough rolling to a temperature of 180 ° C or higher and increasing the rolling reduction / pass to perform the rough rolling.
  • the rolling reduction / pass is preferably 20 ⁇ 1 ⁇ 2 or more and 40 ⁇ 1 ⁇ 2 or less.
  • the roll surface temperature is preferably about 250 ° C or lower in order to suppress recrystallization of alloy crystal grains.
  • the plate after rough rolling if the surface temperature Tb of the alloy plate immediately before being inserted into the rolling roll is 300 ° C or higher and the surface temperature Tr of the rolling nozzle is 180 ° C or higher, the plate after rough rolling The surface condition can be improved, and edge cracking does not occur, which is preferable. If the sheet surface temperature is less than 300 ° C and the roll surface temperature is less than 180 ° C, the rolling reduction cannot be increased, so that the processing efficiency in the rough rolling process is deteriorated.
  • the upper limit of the plate surface temperature is not particularly limited, but if the temperature is high, the surface state of the plate material after rough rolling may be deteriorated. Also, the upper limit of the surface temperature of the roll during rough rolling is not particularly limited, but at a high temperature, the roll itself may be damaged by thermal fatigue.
  • the rolling reduction per pass of rough rolling performed in the temperature range as described above is set to 20% or more and 40% or less, variation in crystal grains in the magnesium alloy sheet subjected to finish rolling after rough rolling Can be reduced, which is preferable. If the rolling reduction per 1 s during rough rolling is less than 20 ⁇ 1 ⁇ 2, the effect of reducing the variation in crystal grains after rolling is poor, and if it exceeds 40%, edge cracking occurs at the end of the magnesium alloy sheet during rolling. Occurs. In addition, the number of rolling operations (pass number) performed at a rolling reduction in this range is less effective in one pass, so it is preferable to perform at least two passes.
  • the temperature of the alloy sheet is increased and the rolling reduction is increased within the above rolling reduction range.
  • the temperature of the alloy plate is about 300 ° C and the rolling reduction is about 20%.
  • finish rolling is performed following this rough rolling. It is possible to further improve the plastic workability of the magnesium alloy sheet obtained by applying the above. Specifically, the surface state of the alloy plate can be improved, the occurrence of edge cracking can be suppressed, and the variation in crystal grain size in the alloy plate can be reduced. In addition, the amount of segregation in the magnesium alloy sheet can be reduced.
  • a solution treatment may be applied to the forged material before rolling, if necessary.
  • the conditions for the solution treatment are, for example, about 380 to 420 ° C. x about 60 minutes to 600 minutes, and preferably about 390 to 410 ° ⁇ 360 to 600 minutes.
  • strain relief annealing may be performed during the rolling process (regardless of whether it is controlled rolling or not).
  • the strain relief annealing is preferably performed between some passes in the rolling process. It is preferable to select how many times this strain relief annealing is performed at which stage of the rolling process in consideration of the amount of strain accumulated in the magnesium alloy sheet. By performing this strain relief annealing, rolling of subsequent passes is performed more smoothly.
  • This strain relief annealing condition is, for example, about 250 to 350 ° C x 20 minutes to 60 minutes.
  • the rolled material that has been all rolled is also desirable to final annealing. Since the crystal structure of the magnesium alloy sheet after finish rolling has accumulated enough processing strain, it is recrystallized in a fine state when final annealing is performed. That is, even if the alloy plate is subjected to final annealing to eliminate strain, it has a fine recrystallized structure and thus maintains a high strength state.
  • the rolled material in which the structure of the alloy sheet is recrystallized in advance is coarse in the crystal grains of the structure of the alloy sheet when plastic processing such as pressing is performed at a temperature of about 250 ° C. The crystal structure does not change significantly before and after plastic working.
  • the strength of the plastically deformed portion during plastic working is improved by work hardening, and the strength of the portion that has not been plastically deformed can be maintained at the pre-working strength.
  • This final annealing condition is about 200 to 350 ° C. ⁇ 10 minutes to 60 minutes.
  • the AI content in the magnesium alloy is 8.5 to 10.0% and the zinc content is 0.
  • the final annealing is preferably performed at 300 to 340 ° C for 10 to 30 minutes.
  • a plate made of a twin-roll forged material causes uneven prayer at the center of the plate thickness during forging.
  • the segregating substance is an intermetallic compound mainly composed of Mg 17 AI 12 , and an alloy having a higher impurity content in a magnesium alloy is more likely to be generated.
  • ASTM standard AZ alloy as an example, the amount of segregation after fabrication is greater in AZ91 with an AI content of about 9% by mass than with AZ31 with about 3% by mass.
  • the thickness of the magnesium alloy sheet can be increased by performing the roughing process and solution treatment before finish rolling under appropriate conditions as described in ⁇ Rolling condition 2 ''.
  • the length of direction prayer can be distributed to 20 m or less.
  • “dispersing segregation” means dividing linear segregation in the thickness direction or in the length direction. Thickness of segregation that does not interfere with plastic processing such as pressing.
  • the standard length of the direction is 20 m or less. It is presumed that the length in the thickness direction of the prayer is preferably smaller than 20 m, and that the strength characteristics are further improved when the maximum length of the prayer is dispersed smaller than the crystal grain size of the base material.
  • the leveler process and the polishing process is applied to the rolled magnesium alloy material as a preliminary process before shearing.
  • the rolling material is passed through a roller and a leveler, thereby correcting the undulation of the rolling material and the orientation of crystal grains.
  • the polishing step the surface of the rolled material or the rolled material after the leveler treatment is polished, and the surface of the object to be polished is smoothed.
  • a typical example of this polishing is wet belt type polishing.
  • the abrasive condition of the abrasive belt is # 240. More preferred is # 320, and even more preferred is # 600 abrasive belt.
  • the plastic working is preferably performed warm. If the plastic processing is press processing, deep drawing processing, forging processing, blow processing, and bending processing, the temperature of the material member during processing (if the anticorrosion treatment is applied, the material member having an anticorrosion coating) is 200 to 250 It is preferable to set to ° C. If the temperature during plastic processing is about 250 ° C, the average crystal grain size of the non-processed part (the part that has not been plastically deformed by plastic processing) among the material members does not change much. Therefore, there is almost no difference in the tensile strength of the non-processed part before and after plastic processing.
  • the plastic working material may be subjected to heat treatment.
  • the heat treatment conditions include temperature: 100 to 450 ° C., time: about 5 minutes to about 40 hours.
  • the above time at a low temperature for example, 100 to 350 ° C
  • Heat treatment for a short time for example, about 5 minutes to 24 hours
  • heat treatment can be performed at a high temperature (eg, 200 to 450 ° C.) within the above temperature range and for a long time (eg, about 1 to 40 hours) within the above time range.
  • the surface treatment layer typically includes a base layer obtained by a base treatment and a coating film obtained by a paint treatment.
  • the base treatment includes degreasing, acid etching, desmutting, surface adjustment, anticorrosion treatment, and drying.
  • Degreasing removes cutting oil by alkali degreasing, and softens the mold release agent used at the time of roll rolling or pressing to facilitate removal.
  • the preferred temperature and time for degreasing are 20-70 ° C, 1-20 minutes.
  • Acid etching dissolves and removes the release metal and impurity metals (Fe, Ni, Go, Si, etc.) of the alloy deposited on the surface of the material member together with the surface layer. At that time, a metal salt is deposited.
  • the preferred temperature and time for acid etching are 20 to 70 ° C. and 0.5 to 10 minutes.
  • smut (surface oxide) deposited during acid etching is dissolved and removed with an alkaline solution, and at the same time, a passivation film is formed by reaction with magnesium.
  • the preferred temperature and time for desmutting is 20-70 ° C, 2-20 minutes.
  • the anticorrosion treatment forms a film on the surface of the magnesium alloy to improve corrosion resistance.
  • chemical conversion treatment and anodizing treatment can be mentioned.
  • the chemical conversion treatment is a treatment that forms an oxide film (chemical conversion film) by reaction with a magnesium alloy. This treatment improves the corrosion resistance of the magnesium alloy member and improves the adhesion of the coating film formed on the chemical conversion film.
  • Chemical treatment liquids can be broadly classified into P, P-Mn, and Gr. In consideration of the environmental impact of this waste solution, it is preferable to use a P-based treatment solution that does not contain Gr or Mn. When a P-type treatment solution is used, the preferred temperature and time for the chemical conversion treatment are 20 to 70 ° C. and 0.5 to 4 minutes.
  • the anodic oxidation process is a process in which a magnesium metal oxide is applied to the anode to form a magnesium metal oxide on the electrode surface. More specifically, it is preferable to perform a positive electrode oxidation treatment as defined in JIS H8651 (1995). It is desirable to use a treatment solution that does not contain Gr or Mn as an anti-corrosion film by anodizing treatment, and it is also desirable to use an anti-corrosion film having a low surface resistance.
  • Wash with water between the above steps from degreasing to drying is preferably performed with deionized water.
  • undercoating ⁇ drying ⁇ topcoating ⁇ drying is usually performed. Undercoating is performed by applying an epoxy resin paint or the like to the molded plate that has undergone the base treatment. If there is a surface defect when the primer is applied, fill the defect with a putty, polish it, and apply the primer again. Repeat this undercoating, putty filling, polishing, and undercoating multiple times if necessary.
  • the top coat is applied on the undercoat using acrylic resin paint.
  • the drying process in the painting process may be baked and dried at 100 to 200 ° C depending on the type and performance of the paint. Note that the average grain size of the material material hardly changes even when the temperature of the material material reaches about 160 ° C during the painting process. Along with this, the tensile strength does not change much before and after painting.
  • a metal colloid solution described in JP-A-2005-248204.
  • This metal colloid solution comprises metal fine particles having a primary particle size of 200 nm or less deposited by reducing metal ions in water, a dispersant having a molecular weight of 200 to 30,000, and a dispersion medium. Mixed solvent of water and water-soluble organic solvent and including.
  • An antibacterial film can be formed by mixing such a metal colloid solution into the paint or by forming a film separately from the paint film.
  • the metal fine particles are preferably contained in a proportion of 0.1 to 90% by weight.
  • the dispersant is an organic compound that does not contain S, P, B, and halogen atoms. In addition, it is preferable to contain the dispersant in a ratio of 2 to 30 parts by weight per 100 parts by weight of the metal fine particles.
  • the water-soluble organic solvent include at least one selected from the group consisting of alcohols, ketones, glycol ethers, and water-soluble nitrogen-containing organic compounds.
  • a magnesium alloy member is produced by the following step 1 using the AZ91 twin-roll continuous forged rolled material as a material member A.
  • Table 1 shows the forging conditions and characteristics of the AZ91 twin roll continuous forging
  • Table 2 shows the rolling conditions and characteristics of the AZ91 double neck forging.
  • This forging condition is the condition described in W0 / 200 6/003899
  • the rolling condition is a condition based on “Rolling condition 2” described above. More specific rolling conditions are as follows: Thickness obtained by twin roll continuous forging method 4.2 Roughly rolled magnesium alloy sheet of 2 countries to thickness of 1 country, rough rolled sheet with average grain size of 6.8 m Get. Rough rolling was performed by preheating the material to be rolled to 300 to 380 ° C and rolling the material with a rolling roll having a roll surface temperature of 180 ° C.
  • the average crystal grain size was determined using the calculation formula described in the cutting method of JISG 0551 2005.
  • this rough rolled sheet is finish-rolled to a thickness of 0.6 under the controlled rolling conditions shown in Table 2.
  • Finish rolling is performed in multiple passes, of which at least one pass is performed with the rolling direction reversed from the other passes.
  • the finished rolled material is then heat-treated at 320 ° C x 30 minutes.
  • the leveler process the rolled material is passed through a roller leveler, thereby correcting the undulation of the rolled material and the orientation of crystal grains. Polishing is performed using a # 240 polishing belt and wet belt type polishing to smooth the surface of the rolled material. Press working The mold temperature is set to 250 ° C, and the object to be processed is heated by holding it between the molds for 12 seconds, and the press speed is 2.5 mm / sec. This press process gives a case for a demonstration PDA.
  • a magnesium alloy member is produced by the following step 2.
  • the forging conditions were known conditions.
  • the AZ31 ingot forging conditions were known conditions.
  • the forged material characteristics are shown in Table 3, and the rolling conditions and rolled material characteristics of the forged material are shown in Table 4.
  • the base treatment is degreasing ⁇ acid etching ⁇ desmutting—surface adjustment—chemical conversion treatment—drying 1. Wash with water between each process of the ground treatment.
  • the painting process is undercoating ⁇ (putty filling) ⁇ (polishing) ⁇ overcoating ⁇ drying 2.
  • putty filling and polishing are surface defects when primed When there is. Repeat filling, polishing, and undercoating as required.
  • the concentration of the solution indicates mass%.
  • Drying 2 Drying at room temperature for more than 24 hours
  • the AZ91 press material that has been warm-pressed from the above double-mouth continuous forging was used as the treated substrate.
  • the treated substrate is subjected to a ground treatment and a coating treatment.
  • the base treatment was a chemical conversion treatment at 40 ° C. for 2 minutes under ultrasonic agitation using a P-type treatment solution manufactured by Company A containing 10% phosphoric acid as a main component and 1% K0H as the treatment solution.
  • the undercoat and the topcoat are each performed once, and the putty is not filled and polished.
  • Example 3 The same press material as in Example 1 is used as a treated substrate, and the treated substrate is subjected to a ground treatment and a coating treatment.
  • chemical conversion treatment was performed at 90 ° C. for 1 minute under ultrasonic agitation using P-type treatment solution manufactured by B company mainly composed of 10% phosphoric acid and 1% K0H as the treatment solution.
  • the same press material as in Example 1 is used as a treated substrate, and the treated substrate is subjected to a ground treatment and a coating treatment.
  • the base treatment was a chemical conversion treatment at 40 ° C for 2 minutes under ultrasonic agitation using a P-Mn-based treatment solution made by Company G, whose main component is 10% manganese phosphate.
  • Example 1 The same press material as in Example 1 is used as the treated substrate. After the phosphoric acid treatment in the etching step, the same treatment as in Example 1 was performed except that the treatment was performed with 3% HF at 30 ° C for 1 minute. The chemical conversion treatment was carried out in the same manner as in Example 1 except that a P-Mn-based treatment solution manufactured by D company containing 10% manganese phosphate as a main component was used as the treatment solution.
  • Example 2 The same press material as in Example 1 is used as the treated substrate.
  • Magnesium alloy was treated with reference to one type of magnesium alloy anticorrosion treatment method (JIS 8651 1 995), provisional anticorrosion method for unfinished parts. That is, 180 g / sodium dichromate and nitric acid (60%) 260 ml / L solution was immersed in a liquid temperature of 25 ° C. for 1 minute, dropped for 5 seconds, washed with water and dried to obtain a Gr-based chemical film. The procedure was the same as in Example 1 except for the chemical conversion treatment step.
  • Magnesium alloy anti-corrosion treatment method (JISH 8651 1 995), refer to the provisional anti-corrosion method for unfinished parts, 15 g of sodium acid fluoride, 180 g of sodium dichromate, 180 g of sodium dichromate, 10 g of aluminum sulfate, and nitric acid ⁇ ( ⁇ ! / Liquid temperature in the solution? ⁇ Soaked for 2 minutes, washed with water, and dried to obtain a Gr-based chemical conversion coating. The same procedure as in Example 1 was performed except for the chemical conversion treatment step.
  • Example 2 The same press material as in Example 1 is used as the treated substrate.
  • Magnesium alloy corrosion treatment method JISH 8651 1 995
  • magnesium alloy was treated with reference to good corrosion prevention method for finished parts. That is, as a first step, hydrofluoric acid (46%) was immersed in 250 ml / L at a liquid temperature of 20 ° C. for 5 minutes and washed with water. After that, as the second step, sodium dichromate 120-130g / calcium fluoride 2.5g / L liquid temperature 90 ° C, A Gr-based chemical conversion film was obtained by immersion for 60 minutes, washing with water, immersion in warm water, and drying. The same procedure as in Example 1 was performed except for the chemical conversion treatment step.
  • Example 1 The same press material as in Example 1 is used as the treated substrate. Alkaline degreasing, pickling, anodizing, and drying were performed for the base treatment. The alkaline degreasing solution and the pickling solution were the chemical conversion degreasing solution and the acid etching solution, respectively.
  • Anodizing treatment reference was made to Type 1 of the magnesium alloy anticorrosion treatment method (JISH 8651 1 995), which is a good anticorrosion method for finished products. Specifically, a treatment solution of potassium hydroxide 1 65 g / fluorination power lithium 35 g / sodium phosphate 35 g / aluminum hydroxide 35 g / so potassium permanganate 20 g / L is used.
  • the treated substrate was immersed for 20 minutes at a temperature of 20 ° C and a current density of 2. OA / dm 2 and a voltage of 70V, then washed with water and dried to obtain a P-Mn anodized film. Then, the coating process was performed on the conditions mentioned above.
  • Example 8 The same press material as in Example 1 is used as the treated substrate.
  • the same procedure as in Example 8 was performed except that a P-based treatment solution manufactured by Company E containing phosphate was used as the anodization treatment solution.
  • Comparative examples 1 to 7 were treated with the same method as in Examples 1 to 7, except that the forged material obtained by the AZ91 thixomold method was used as the treated substrate.
  • the top coat is performed once, but the undercoat, putty filling, and polishing are performed a plurality of times.
  • Comparative examples 8 to 14 were prepared by the same method as in Examples 1 to 7, except that AZ31 ingot forging, rolling, polishing, and press materials were used as the processing base materials. In Comparative Examples 8 to 14, the undercoat and the topcoat are each applied once, and the putty is not filled and polished.
  • Comparative examples 15 and 16 were treated in the same manner as in Examples 8 and 9, except that the forged material obtained by the AZ91 thixomold method was used as the treated substrate. In this comparative example 1 5 and 1 6 the overcoating force ⁇ 1 time, but undercoating, padding and polishing are performed several times. ing.
  • Comparative examples 17 and 18 were treated in the same manner as in Examples 8 and 9, except that AZ31 ingot was fabricated, rolled, ground, and pressed as the treated substrate. In Comparative Examples 17 and 18, the undercoat and the topcoat are each applied once, and the putty is not filled or polished.
  • the surface resistance of the film obtained was measured by a two-probe method using a two-probe probe type MGP-TPAP using a Mitsubishi Chemical Corporation Lorester.
  • the adhesion of the anticorrosion film and the adhesion of the coating film were evaluated by the JIS cross-cut peel test (JI S K 5400 8. 5. 2 1 990).
  • Corrosion resistance was measured by the salt spray test (SST (Salt Spray Test) JI S Z 2371 (2000)).
  • SST Salt Spray Test
  • 5% salt water is sprayed on a test tank set at 35 ° C, and the corrosiveness of the specimen after 24 hours is evaluated in the test tank.
  • the material plate on which the anticorrosion film is formed is used as a test piece.
  • Corroded areas are darker than healthy areas. For this reason, the corroded area can be easily obtained by taking an image of the specimen surface after the test and processing the image. Then, the ratio of the corrosion area to the total area of the test piece is calculated, and if this ratio is 1% or less, it is accepted.
  • Examples 1 to 9 are excellent in corrosion resistance, adhesion of the anticorrosion film, and coating adhesion.
  • the surface resistance of the anticorrosion film is 0.2 ⁇ ′cm or less except in Examples 4, 7, and 8.
  • the use of P-type treatment liquid for the anti-corrosion treatment has little impact on the environmental load.
  • the undercoating and the topcoating were each performed once in the painting process, and therefore it was not necessary to perform putty filling and subsequent polishing.
  • Comparative Examples 1 to 7 use AZ91, which is excellent in the adhesion of the chemical conversion film and the adhesion of the coating film, but is a forged material. The strength is low compared to Examples 1-9. In addition, Comparative Examples 1 and 2 are much more resistant to corrosion than Examples 1 and 2. The sex is inferior. Furthermore, since Comparative Examples 1 to 7 are forged materials, there are many surface defects, and all of them require padding and subsequent polishing in the coating process, and the undercoating is performed several times.
  • Comparative Examples 8 to 14, 17 and 18 are AZ31, the corrosion resistance or the adhesion of the chemical conversion (anodizing) film and the coating film is lower than the examples. . Furthermore, the surface resistance of the chemical conversion film is generally large. In addition, Comparative Examples 15 and 16 are excellent in the adhesion of the anodized film and the adhesion of the coating film because AZ91 is used. However, since it is a forged material, it is stronger than Examples 1-9. Is low.
  • the material member that has undergone press forming has been described as an example.
  • the above-described implementation is also performed when the material member is subjected to deep drawing processing, forging processing, blow processing, and bending processing other than press forming. Similar to the example, simplification of the surface treatment process can be expected.
  • the material plate was subjected to press molding and surface treatment (base treatment + coating treatment).
  • the properties of each material plate after rolling and the film-formability of the surface treatment layer were evaluated.
  • the forging conditions, the leveler after rolling, the polishing, the heat treatment conditions, or the pressing conditions are the same as the material member A of Test Example 1.
  • the surface treatment conditions are the same as in Example 1 of Test Example 1. Table 8 shows the rolling conditions and evaluation results.
  • Rolling direction “R” reverses rolling direction
  • sheet temperature is the surface temperature of the sheet just before finish rolling
  • Roll temperature indicates the surface temperature of the rolling roll of finish rolling
  • R in the rolling direction indicates that the rolling direction was reversed for each pass
  • 1 pass average rolling reduction indicates finish rolling (in this case, plate thickness) Total rolling reduction / number of passes in rolling from 1 country to 0.6 countries).
  • Surface condition indicates that the rolled material has no cracks or wrinkles.
  • Edge crack indicates that the side edge of the rolled material has no cracks.
  • “Squeezeability” indicates that the corner of the processed product has no cracks. The meanings and evaluation criteria of the terms in these tables are the same in other test examples described later.
  • the plate material here contains 9.8% by mass of AI and 1.0% by mass of Zn, and also contains additional elements other than A and Zn allowed by AZ91. The remainder is Mg and inevitable impurities.
  • the forging conditions, the leveler after rolling, the polishing, and the heat treatment conditions are the same as the material A in Test Example 1.
  • the sample after heat treatment is subjected to the same press molding as in Test Example 1 and the same surface treatment as in Example 1, and the status of the surface treatment is evaluated. Table 9 shows the rolling conditions and evaluation results.
  • Rolling direction “R” reverses rolling direction
  • a twin roll forging material having a thickness of 4.0 is prepared, and the forging material is roughly rolled to a predetermined thickness to obtain rough rolled sheets having different thicknesses.
  • This rough rolling was also performed by preheating the forged material to 300 to 380 ° C. and rolling the forged material with a rolling roll at room temperature.
  • the rough rolled sheet was finish-rolled at a total rolling reduction of up to a final sheet thickness of 0.5 countries to obtain a finished rolled material.
  • the surface temperature of the rough rolled plate immediately before the finish rolling was set to 210 to 240 ° C, and the surface temperature of the finish rolling roll at that time was controlled in the range of 150 to 180 ° C.
  • this finished rolled material was heat-treated at 320 ° C. for 30 minutes to prepare a sample.
  • the forging conditions are the same as the material part A of Test Example 1 except for the thickness of the forged material, and the leveling and polishing conditions after rolling are the same as the material member A of Test Example 1. Further, the obtained sample is subjected to press molding similar to Test Example 1 and surface treatment similar to Example 1, and the status of the surface treatment is evaluated.
  • the “total rolling reduction” is the total rolling reduction in finish rolling from the thickness of the rough rolled material to the final thickness, that is, the total rolling reduction in rolling with the surface temperature of the plate being 210-240 ° C.
  • the plate material here contains 9.8% by mass of AI and 1.0% by mass of Zn, and additionally contains an additive element other than A and Zn allowed by AZ91. The balance is Mg and inevitable impurities.
  • the finish rolling the surface temperature of the rough rolled plate immediately before the finish rolling was set to 217 to 247 ° C, and the surface temperature of the finish rolling roll at that time was controlled in the range of 150 to 180 ° C. Manufacturing conditions other than the chemical composition and finish rolling of the magnesium alloy and the evaluation method of the magnesium alloy sheet are the same as in Test Example 4. Further, the obtained sample was press-molded in the same manner as in Test Example 1, and the same surface as in Example 1. And evaluate the surface treatment status. Table 11 summarizes the finish rolling conditions and the test results.
  • a magnesium alloy material of 4 countries with a composition equivalent to AZ91 containing Mg-9.0% A ⁇ 1.0% Zn (all mass%) and obtained by the twin roll continuous forging method Prepare a board. This material sheet is roughly rolled to a thickness of 1 country under different conditions to obtain a plurality of roughly rolled sheets. Next, the plurality of rough rolled sheets were finish-rolled under the same conditions until the final sheet thickness reached 0.5 countries to obtain magnesium alloy sheets. The finish rolling was carried out by controlling the surface temperature of the rough rolled sheet immediately before the finish rolling to 210 to 240 ° C and the surface temperature of the finish rolling roll to the range of 150 to 180 ° C. In addition, the reduction rate per pass at that time was set to 15%.
  • the magnesium alloy plate obtained by finish rolling was heat-treated at 320 ° C. for 30 minutes to prepare a sample.
  • the average grain size is measured, the plate surface condition is evaluated, and the edge cracks are evaluated in the same manner as in Test Example 2.
  • the forging conditions, the leveler after rolling, and the polishing conditions are the same as the material member A in Test Example 1.
  • the obtained sample is subjected to press molding similar to Test Example 1 and surface treatment similar to Example 1, and the surface treatment status is evaluated.
  • Table 12 summarizes the rough rolling conditions and the test results.
  • “Rough rolled plate temperature” is the surface temperature of the plate material just before rough rolling
  • “Rough rolling roll temperature” is the surface temperature of the rolling roll of rough rolling
  • “Rolling ratio / pass” is the thickness of 4 countries ⁇ Indicates the rolling reduction / pass in rolling up to 1.0 countries.
  • a magnesium alloy twin-roll forged material with a different AI content from that of Test Example 6 was used to investigate the effects of the temperature of the plate material and the roll temperature during rough rolling.
  • the plate material here contains 9.8% by mass of AI, 1.0% by mass of Zn, and additionally contains an additive element other than A and Zn allowed by AZ91. The balance is Mg and inevitable impurities.
  • Manufacturing conditions other than the chemical composition of magnesium alloy and rough rolling, and the evaluation method of the magnesium alloy sheet are the same as in Test Example 6.
  • test sample 1 and The same press forming and the same surface treatment as in Example 1 are performed, and the condition of the surface treatment is evaluated. Table 13 summarizes the rough rolling conditions and the above test results.
  • a rolled material having an excellent surface condition can be obtained by setting the rough rolled sheet temperature to 300 to 380 ° C and the rough rolling roll temperature to 180 to 300 ° C. Further, when the rolling reduction per pass of the rough rolling is set to 20 to 30 ⁇ 1 ⁇ 2, it is possible to reduce the average crystal grains in the magnesium alloy sheet that is subjected to finish rolling after the rough rolling. It was also found that when the base plate and press treatment were applied to the press-formed material plate, the undercoat and topcoat were applied only once, and it was not necessary to fill and putty.
  • the surface temperature of the plate immediately before rough rolling is set to 350 ° C., and the surface temperature of the rough rolling roll at that time is controlled in the range of 200 to 230 ° C.
  • the reduction ratio was changed.
  • the finish rolling was carried out by controlling the surface temperature of the rough rolled sheet immediately before the finish rolling to 210 to 240 ° C and the surface temperature of the finish roll to 150 to 180 ° C.
  • the reduction rate per pass at that time was set to 15%.
  • this finished rolled material was heat-treated at 320 ° C for 30 minutes to prepare a sample. For these samples, the average crystal grain size is measured, the plate surface condition is evaluated, and the edge cracks are evaluated in the same manner as in Test Example 6.
  • this test example also evaluates the variation in crystal grain size.
  • the evaluation criteria for particle size variation are as follows.
  • the obtained sample was subjected to press molding similar to Test Example 1 and surface treatment similar to Example 1, and the film forming property of the surface treatment layer was also evaluated.
  • Table 14 shows the number of rolling reductions of 20 ⁇ 1 ⁇ 2 to 40 ⁇ 1 ⁇ 2 and the evaluation results per pass in rough rolling.
  • “Number of rough rollings with 20-40% rolling reduction” indicates the number of rough rollings where the rolling reduction during one rough rolling was 20-40%
  • “Maximum rolling reduction / pass” is Shows the maximum rolling reduction per pass among multiple passes of rough rolling.
  • Such a forged material was processed under the following three conditions and then subjected to rolling.
  • the magnesium alloy sheet obtained by performing the above treatment was rolled to a thickness of 0.6 countries under the following conditions, and heat-treated under appropriate conditions to obtain a sheet material having an average crystal grain size of:
  • Elongation at break (Distance between gauge points when the fracture ends are matched—50 countries) / 50 countries *
  • the width in the thickness direction of the center line bias is reduced by solution treatment of the forged material produced by the twin-roll continuous forging method, and it has excellent mechanical properties. It was confirmed that a magnesium alloy plate was obtained. In particular, magnesium alloys with high AI content, including magnesium alloys equivalent to AZ91, were able to obtain magnesium alloy sheets with better mechanical properties by performing solution treatment for a long time.
  • magnesium alloy forging material (thickness 4.0 countries) Obtained by continuous roll casting.
  • Magnesium alloy sheets obtained by subjecting these forged materials to a solution treatment at 405 ° C for 10 hours were rolled to a thickness of 0.6 countries under the following conditions.
  • the centerline segregation produced in the magnesium alloy sheet obtained at this time was 20 m at the maximum in the thickness direction of the sheet material.
  • a magnesium alloy plate obtained by rolling under the above conditions was heat-treated at 320 ° C for 30 minutes to obtain a plate for evaluation.
  • the plate heat-treated at 320 ° C for 30 minutes eliminates the accumulated strain on the magnesium alloy plate due to rolling and completely recrystallizes.
  • the crystal grains in the structure of the plate material do not become coarse due to the temperature rise during tensioning (250 ° C or less), and the average grain size before and after the processing. There was almost no difference in diameter. Therefore, it can be inferred that, in the plate material, the deformation is accumulated at the portion deformed during the tensile processing, and the hardness and strength are improved, and the hardness and strength are not changed in the undeformed portion.
  • the plate material that had been heat-treated at 320 ° C for 30 minutes had high tensile strength, yield strength, and elongation at break at room temperature, and stable and high elongation at 200 ° C and 250 ° C. .
  • the plate material in which the metal structure is completely recrystallized is less likely to change in the metal structure before and after the processing, so that the plastic workability is stable and the part deformed by the processing is mechanical.
  • the properties are improved, and it is presumed that the mechanical properties before machining are maintained even in the parts that did not deform. Therefore, the plate material that has eliminated the processing strain accumulated during the rolling process has stable mechanical properties even when subjected to strong processing such as press forming, so it can be used for the manufacture of casing products manufactured by press forming. Is suitable.
  • the obtained heat-treated material was subjected to press molding similar to Test Example 1 and surface treatment similar to Example 1, and the film formation state of the surface treatment layer was evaluated.
  • the base plate and press treatment were applied to the material plate after press molding, the undercoat and the top coat were applied only once, and it was not necessary to fill and putty.
  • Sample dimensions width 20 countries, length 1 20 countries, thickness 0.6 mm
  • Test temperature ... 200 ° C, 250 ° C
  • a bending characteristic value was defined as an index indicating the degree of processing.
  • the bending characteristic value is expressed by the sample bending radius (country) / sample thickness (country).
  • local pressure acts on the bend radius as the sample's bend radius is smaller, so the sample is more likely to be damaged, such as cracks. Such damage is likely to occur. Therefore, the smaller the bending characteristic value expressed by the above formula, the stronger the severer the machining conditions.
  • Table 18 shows the results of the surface condition, springback, and bending characteristics described above.
  • Sample No. 1 2-1 to 1 2-4 shows the test results with magnesium alloy plate with Mg_9.0% A ⁇ 1.0% Zn composition
  • Sample No. 1 2-5 to 1 2-8 The test results for a magnesium alloy sheet having the Mg-9.8% A1.0% Zn composition are shown.
  • magnesium alloy sheet having a thickness of 0.6 (Mg_9.0% 0% A ⁇ 1.0% Zn, and Mg_9 8% A ⁇ 1.0% Zn (all mass%)) was prepared.
  • this magnesium alloy plate was heat-treated at 320 ° C. for 30 minutes to produce a sample for evaluation. A press test was conducted using this evaluation sample, and the surface condition of the sample after pressing was examined.
  • the sample was pressed by a hot press machine.
  • the pressing was performed by placing a sample on a lower mold having a rectangular parallelepiped concave portion so as to cover the concave portion and pressing the rectangular parallelepiped upper die.
  • the upper mold has a rectangular parallelepiped shape of 60 countries x 90 countries, with four corners that abut the sample rounded, and each corner has a constant bending radius.
  • the upper and lower molds were embedded with heaters and thermocouples, so that the temperature conditions during pressing could be adjusted to the desired temperature.
  • Test temperature ... 200 ° C, 250 ° C
  • Karoe is degree ⁇ (). 8m / min, 1.7m / min n 3.4m / min 5. Om / min
  • the obtained press-molded plate was subjected to the same surface treatment as in Example 1. As a result, it was found that when the press-molded plate was subjected to base treatment and paint treatment, the undercoat and topcoat were applied once, and it was not necessary to fill and polish the putty.
  • the average grain size of both the unbent flat part and the bent R part Find the diameter.
  • Tensile strength, 0.2% resistance and elongation are obtained by cutting out a JISZ 2201 13B (1 998) test piece from the flat part of the base plate, press-formed plate or painted plate, and conducting a tensile test with this test piece. .
  • Finishing roll surface temperature 180 ° C
  • the surface resistance value and the adhesion test result of this chemical conversion film were 0.1 ⁇ ⁇ cm and 100/100, respectively.
  • the press-processed product was subjected to the same coating treatment as in Test Example 1.
  • the process of this example until coating is as follows: twin roll continuous forging ⁇ warm rolling ⁇ leveler process ⁇ polishing ⁇ chemical conversion ⁇ cutting ⁇ pressing ⁇ painting.
  • the adhesion test result of this coating film was 100/100, and the result of the corrosion resistance test was a corrosion area ratio ⁇ 1% or less.
  • a metal colloid solution described in JP-A-2005-248204 is mixed with a paint for overcoating (black lacquer lacquer spray A manufactured by Campehapio Co., Ltd.). Use it for overcoating.
  • the metal colloid solution may be prepared as follows.
  • the obtained silver colloid solution is centrifuged under the condition of 20000G x 20 minutes to repeat the operation of removing impurities lighter than the silver fine particles.
  • this silver colloid solution is concentrated using a mouth-to-mouth evaporator.
  • acetone as a water-soluble organic solvent is added to produce a silver colloid solution in which the dispersion medium is a mixed solvent of water and acetone.
  • silver colloid solution silver fine particles (Ag), water (W) and acetone (Ac
  • the magnesium alloy member of the present invention is expected to be used in various fields where corrosion resistance, mechanical properties, and surface quality are required. Specifically, it can be suitably used for mobile phones, personal digital assistants, notebook computers, casings for thin TVs such as liquid crystal and plasma, and parts for transportation equipment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Forging (AREA)
  • Laminated Bodies (AREA)

Description

明 細 書
マグネシゥム合金部材とその製造方法
技術分野
[0001 ] 本発明は、 マグネシウム合金部材とその製造方法に関するものである。 特 に、 マグネシウム合金板の表面に防食皮膜の形成や塗装などの表面処理が施 されたマグネシゥム合金部材に関する。
背景技術
[0002] マグネシウムは、 比重(密度 g/cm3、 20°C)が 1 . 74で、 構造用に利用される金 属材料の中で最も軽い金属である。 このマグネシウムには、 種々の元素を添 加して合金化することで強度を高めることができる。 そのため、 近年、 軽量 化が要求されている携帯電話ゃモパイル機器などの小型携帯機器類の筐体や ノートパソコンの筐体、 あるいは自動車部品などにマグネシウム合金を利用 する例が増加してきている。 特に、 アルミニウム含有量の高いマグネシウム 合金 (例えば ASTM規格における AZ91 ) は、 耐食性や強度が高く、 今後の大き な需要が期待されている。
[0003] ところが、 マグネシウム合金は、 塑性加工性に乏しい hep構造を有するため 、 上記の筐体として利用されているマグネシウム合金製品は、 ダイカストや チクソモールド法により製造された錶造材が主流である。 その他、 比較的塑 性加工し易い AZ31などでは、 インゴット錶造した錶造材を圧延して板材とし 、 この板材をプレス成形して筐体として利用することが考えられている (類 似の技術として特許文献 1 ) 。
[0004] 特許文献 1 :特開 2005-2378号公報
発明の開示
発明が解決しょうとする課題
[0005] しかし、 上記の錶造材では、 その表面処理が煩雑になるという問題がある 。 通常、 筐体用のマグネシウム合金板は、 耐食性や外観品質の向上のため、 表面処理が行われる。 この表面処理は、 大別して下地処理と塗装処理とに分 けられる。 下地処理では、 上記の錶造材またはプレス成形した成形板を処理 対象材として、 脱脂→酸エッチング→脱スマツト→表面調整→化成処理また は陽極酸化処理が行われる。 また、 塗装処理では、 下地処理後の処理対象材 に対して、 下塗り→パテ→研磨—上塗りが行われる。 ところが、 錶造材では 表面欠陥が多く、 通常、 下塗り後に表面欠陥をパテで埋めてから研磨すると いう作業を複数回繰り返す必要がある。 その結果、 表面処理工程での歩留ま りが非常に低く、 このことが製品コストの増大要因となっている。 その他、 錶造材の場合、 引張強度や延性、 靭性といった機械的特性が圧延工程を経た 成形板に比べて乏しいという問題もある。
[0006] 一方、 AZ31の成形板では、 材料自体の耐食性が低く、 表面処理により形成 された皮膜の密着性も低いという問題がある。 AZ31は AZ91などに比べれば成 形しやすく、 圧延などで板材とすれば、 錶造材よりも機械的特性に優れ、 か つ表面欠陥も減少できる。 それに伴い、 錶造材で問題とされていた表面処理 の歩留まりの低さを改善することもできる。 しかし、 AZ31は AZ91などに比べ れば材料自体の耐食性が劣り、 その要求特性を満たすことが難しい。 耐食性 の改善だけを考えれば、 例えば下地処理で生成される化成皮膜を厚くするこ とが考えられる。 ところが、 AZ31の成形板の場合、 高い密着性で化成皮膜を 形成できないことが多く、 厚く形成できたとしても、 その皮膜の表面抵抗が 大きくなる。 携帯電話などの電子機器の筐体にマグネシウム合金を適用する 場合、 筐体自体に接地や高周波電流除去或いは電磁波シールドとしての特性 も求められており、 化成皮膜の表面抵抗を極力小さくすることが望まれてい る。 そのため、 AZ31の成形板では化成皮膜を厚く形成することで耐食性の改 善を図ることも難しい。
[0007] 本発明は上記の事情に鑑みてなされたもので、 その目的の一つは、 機械的 特性と耐食性とを兼ね備えたマグネシウム合金部材とその製造方法を提供す しと fo ^)。
[0008] 本発明の他の目的は、 表面処理の歩留まりを改善できるマグネシウム合金 部材とその製造方法を提供することにある。 課題を解決するための手段
[0009] 本発明マグネシウム合金部材は、 マグネシウム合金からなる基材と、 その 基材の上に形成された防食皮膜とを有するマグネシウム合金部材であって、 前記基材は、 A Iを 5〜1 1質量%含有するマグネシウム合金からなる圧延材であ ることを特徴とする。
[0010] この構成によれば、 A Iを多く含有する基材を用いることで、 機械的特性に 優れ、 かつ耐食性も高いマグネシウム合金部材とすることができる。 また、 圧延材を用いることで、 錶造時の表面欠陥が少なく、 後に塗装処理を行う場 合に、 下塗りやパテ埋め等の補修作業を行う回数を低減できる。 ここでの圧 延材は、 圧延工程を経た部材のことであり、 圧延工程後にさらにレベラーェ 程や研磨工程など、 他の工程が行われた部材も含む。
[001 1 ] この本発明マグネシウム合金部材において、 さらに、 せん断加工部を備え ることが好ましい。
[0012] この構成によれば、 耐食性と機械的特性に優れた所定の寸法■形状のマグ ネシゥム合金部材とすることができる。 せん断加工部は、 マグネシウム合金 部材のうち、 圧延材に対して切断や打ち抜きなどのせん断加工がなされた部 分である。 代表的には、 長尺の圧延板にせん断加工を施すことで、 所定の寸 法■形状のマグネシウム板片を得た場合、 その板片の切断 (打ち抜き) 端面 がせん断加工部となる。
[0013] せん断加工部を備える本発明マグネシウム合金部材において、 さらに、 塑 性加工部を備えることが好ましい。
[0014] この構成によれば、 耐食性と機械的特性に優れた所定の寸法■形状のマグ ネシゥム合金部材とすることができる。 特に、 三次元立体形状のマグネシゥ ム合金部材とすることができる。 塑性加工部とは、 マグネシウム合金部材の うち、 塑性加工がなされた部分である。 塑性加工としては、 プレス加工、 深 絞り加工、 鍛造加工、 ブロー加工および曲げ加工の少なくとも一つが挙げら れる。 これらの塑性加工により種々の形態のマグネシウム合金部材を得るこ とができる。 特に、 プレス加工を経た基材は、 電子機器の筐体の形成に好適 である。
[0015] また、 本発明マグネシウム合金部材では、 基材が以下の要件を満たすこと が好ましい。
(1 )平均結晶粒径が30;u m以下
(2)晶析出物の大きさが 20 m以下
(3)表面欠陥深さが基材の厚みの 10%以下
[0016] 基材を構成するマグネシウム合金の平均結晶粒径を 30 m以下とすることで 、 割れなどの起点となる粗大な粒子をなくし、 塑性加工性を向上することが できる。 また、 マグネシウム合金の平均結晶粒径が小さければ、 この粒径が 大きい場合に比べて粒界が電子の移動を妨げる抵抗となりやすく、 基材の表 面部での電子の移動を抑制することで、 耐食性を高めることにも寄与する。 より好ましいマグネシウム合金の平均結晶粒径は 20 m以下、 さらに好ましい 同粒径は 10 ;u m以下、 特に好ましい同粒径は 5 m以下である。 平均結晶粒径 は、 基材の表面部及び中央部において、 J I S G 0551 (2005) に定められた 切断法によってそれぞれ結晶粒径を求め、 その平均値を用いる。 基材の表面 部とは、 基材の横断面の厚さ方向において、 表面から基材の厚さの 20%にあ たる領域とし、 中央部とは、 基材の横断面の厚さ方向における中心から基材 の厚さの 10%にあたる領域とする。 平均結晶粒径は、 基材を製造する際の圧 延条件(総圧下率や温度など)や、 圧延後の熱処理条件 (温度や時間など)を調 整することで変化させることができる。 なお、 素材部材 (圧延材) にせん断 加工ゃ塑性加工を施すと、 その加工箇所近傍の結晶粒径が変化することがあ る。 そのため、 マグネシウム合金部材における基材の平均結晶粒径は、 せん 断加工部ゃ塑性加工部の近傍以外の非加工部から求めることが好ましい。
[0017] 基材の晶析出物の大きさが 20 ;u m以下であれば、 後に素材部材にプレス加工 などの塑性加ェを行う際の加工性をより向上することができる。 20 m超とい つた粗大な晶析出物は、 この塑性加工の際に割れの起点となる。 より好まし ぃ晶析出物の大きさは 以下である。 このような基材は、 通常、 錶造材か ら得られ、 基材の晶析出物の大きさを 20 m以下とするには、 錶造時に凝固す る際の冷却速度を 50K/秒以上 10000K/秒以下にすることが挙げられる。 これに より、 晶析出物の小さな錶造材を得ることができる。 特に、 錶造材の幅方向 、 長手方向に亘り冷却速度を均一化することがより望ましい。 また、 冷却速 度の制御に加えて、 溶解炉や湯だめなどにおいて溶湯を攪拌することも合わ せて行うとより効果的である。 このとき、 部分的に晶析出物が生成される温 度以下にならないように溶湯の温度を管理することが好ましい。 晶析出物の 大きさは、 基材の横断面を金属顕微鏡で観察し、 その横断面において晶析出 物の最も長い切断線の長さを求めて、 この長さをその横断面における晶析出 物の大きさとする。 そして、 横断面を任意に複数とつて、 各横断面で同様に 晶析出物の大きさを求め、 20の横断面における晶析出物のうち最も大きい値 を基材の晶析出物の大きさとして採用する。
[0018] この晶析出物のうち、 特に、 基材の表面に現われる晶析出物の大きさを 5 m以下とすることが望ましい。 基材表面の晶析出物は、 防食皮膜や塗装膜を含 む表面処理層の品質に大きな影響を及ぼす。 そのため、 この晶析出物の大き さ力《5 ;u m以下であれば、 表面処理層の品質への影響を極力小さくすることが できる。 この表面の晶析出物の怪は、 基材の表面を 1000倍以上の顕微鏡で観 察し、 基材の表面に現われる晶析出物の最も長い切断線の長さを求めてこの 長さを個々の晶析出物の大きさとする。 そして、 20視野について同様に晶析 出物の大きさを求め、 最も大きい値を基材表面の晶析出物の怪として採用す る。 基材表面の晶析出物を小さくする方法としては、 錶造の凝固時において 、 溶湯を錶型と常に密着させることで 400K/秒以上の急冷を施すことなどが 挙げられる。 溶湯を錶型と常に密着させるには、 双ロール錶造において、 例 えば溶湯を錶型に供給するノズルとロール (錶型) との間隔を小さくするこ とが挙げられる。
[001 9] さらに、 表面欠陥深さを基材の厚みの 10<½以下とすることで、 特にプレス 加工などで折り曲げ加工を行う際、 表面欠陥が割れの起点となりにくく、 加 ェ性を向上できる。 その上、 表面欠陥の深さが浅いと、 後に圧延材の表面を 平滑にするための研磨工程において研磨量を少なくでき、 製品の低コスト化 に有効である。 このような基材は、 表面欠陥の小さい錶造材を用いることで 得られる。 表面欠陥の深さを錶造材の厚さの 10%未満にするには、 溶湯の温 度を低めにし、 冷却速度を高めにすることが挙げられる。 錶造時、 熱伝導性 と可動錶型に対する溶湯の濡れ性に優れる金属被覆層を具える可動錶型を利 用したり、 注湯口の横断面幅方向における溶湯の温度のばらつきを 1 o°c以下 に抑えることなどを行ってもよい。 基材における表面欠陥のより好ましい深 さは基材の厚さの 3<½以下、 特に好ましい深さは基材の厚さの 1 <½以下である 。 表面欠陥の深さは、 板材の長手方向における長さ 1 mの領域において任意の 2 点を選出して、 その 2点の横断面をとり、 計 4つの断面の各々を #4000以下のェ メリ一紙と粒径 1 ;u mのダイヤモンド砥粒を用いて研磨する。 そして、 各断面 の外周縁部の全周に亘り倍率 200倍の金属顕微鏡で観察し、 認識された表面欠 陥の深さのうち、 最も大きな値を表面欠陥の深さとする。
[0020] その他、 基材における表面欠陥の長さを 20 ;u m以下とすることも好ましい。
表面欠陥の長さが 20 m以下であれば、 後に塑性加工を行う際、 表面欠陥が割 れの起点となりにくく加工性を向上でき、 かつ圧延材の表面研磨による研磨 量を少なくすることができる。
[0021 ] 表面欠陥の長さは J I S Z 2343に規定する 「浸透探傷試験」 を用いて欠陥 場所を特定する。 浸透探傷試験は、 レッドチェックとも呼ばれ、 まず洗浄後 の探傷対象に浸透性のよい染色剤を塗布し、 それを洗浄液で流した後、 次に 現像剤を塗布する。 そして、 表面欠陥中に染み込んで残った染料により、 そ の部分の現像剤が変色し、 表面からでは認識し難い傷の有無、 場所を特定す る。 次いで、 場所の特定された傷の現像剤を除去してから、 その傷を倍率 500 倍の顕微鏡で観察する。 個々の傷の長さは、 基材を平面視した場合、 一つの 傷の周縁から選択した 2点間の最大距離で求める。 そして、 観察された 10の傷 のうち最大の傷の長さを表面欠陥の長さとする。
[0022] 基材における表面欠陥の長さを 20 ;u m以下とするには、 素材部材を研磨しな い方法と、 研磨する方法とがある。 研磨しない方法では、 溶湯の流動性を損 なわない範囲で錶造温度を低くすることが効果的である。 例えば、 AZ61の場 合は、 700°C以下、 AZ91の場合は、 680°C以下の錶造温度とすることが好まし し、。 また、 研磨する方法では、 #120以上の番手の研磨材を用いて素材部材表 面を研磨する。 その際、 錶造材の内部欠陥、 例えば 20 m以上の晶析出物が暴 露しない範囲で研磨することが好ましい。
[0023] 本発明マグネシウム合金部材において、 前記防食皮膜は化成皮膜または陽 極酸化膜とすることが望ましい。
[0024] 防食皮膜を化成皮膜または陽極酸化膜とすることで、 合金部材の耐食性を 効果的に高めることができる。
[0025] また、 防食皮膜に含まれる Grまたは Mnの含有量は 0.1質量%以下であること が好まししゝ Grは RoHS (Restriction of the use of certain Hazardo us Substances in electrical and electronic equipment) 指令の規 制対象である六価クロムを生成する元素であり、 Mnは PRTR (Pol lutant Rele ase and Transfer Register:化学物質排出移動量届出制度) の該当物質 であるため、 環境に及ぼす影響が大きい。 RoHS指令では、 六価クロムの含有 量を 1000ppm以下にすることが求められているため、 防食皮膜中の Gr含有量を 0.1質量%以下とすれば、 この指令に対応することができる。 また、 防食皮膜 中の Mn含有量も 0.1質量%以下とすれば、 環境に対する負荷を低減できる。 も ちろん、 防食皮膜には Grまたは Mnが含まれていないことが理想的である。 防 食皮膜中の Grまたは Mnの含有量を 0.1質量%以下となる防食皮膜としては、 リ ン酸塩皮膜が挙げられる。
[0026] さらに、 防食皮膜は 24時間塩水噴霧試験 (JIS Z 2371) 後の腐食面積の 比率が 1 %以下であり、 この防食皮膜の電気抵抗を二探針法で測定した値が 0 .2Ω ■ cm以下であることが望ましい。
[0027] この塩水噴霧試験に合格する特性を備えることで、 高い耐食性を有するマ グネシゥム合金部材とすることができる。 24時間塩水噴霧試験は、 35°Cに設 定された試験槽に 5%の塩水を噴霧し、 その試験槽中での試験片の腐食性を評 価する試験である。 腐食した箇所は健全箇所に比べて黒くなる。 そのため、 腐食面積は、 試験後に試験片表面を撮影し、 その画像を画像処理することな どで容易に求めることができる。 そして、 試験片の全体面積に対する腐食面 積の比率を演算すればよい。
[0028] また、 防食皮膜の電気抵抗を二探針法で測定した値で 0. 2 Ω ■ cm以下とする ことで、 マグネシウム合金部材を携帯電話などの電子機器の筐体に用いた場 合、 筐体自体に高周波電流の除去や電磁シールドの機能を持たせることが期 待できる。 その他、 電子機器の筐体には接地をとるためのリード線が接続さ れることもあるが、 そのリード線と筐体との接触抵抗を低減することもでき る。 この電気抵抗を 0. 2 Ω ■ cm以下とするには、 例えば防食皮膜の膜厚を薄く することが挙げられる。 防食皮膜の膜厚が薄ければ耐食性が低下するが、 特 に表面欠陥の少ない素材部材を用いることで、 薄い防食皮膜であっても十分 な耐食性を実現することができ、 かつ防食皮膜の抵抗を極力小さくすること ができる。
[0029] さらに、 本発明マグネシウム合金部材において、 防食皮膜の上に塗装膜を 備えることが好ましい。
[0030] 塗装膜を備えることで、 さらなる耐食性の改善に加えて、 部材表面に色彩 や模様を施すことができ、 部材のデザインの選択肢を広げることができる。
[0031 ] 特に、 その塗装膜は下塗り層と上塗り層とを備え、 その塗装膜には下塗り 層表面の欠陥を穴埋めするパテ材が含まれていないことが好適である。
[0032] 表面欠陥の多い素材部材に下地処理を行って塗装工程を行うと、 下塗り層 を塗った時点で初めて欠陥の存在が明らかになることが多い。 その場合、 欠 陥箇所にパテ材を埋めて研磨する作業が必要となる。 従来の錶造材では、 通 常、 この下塗り、 パテ埋めおよび研磨は複数回行う必要があり、 塗装工程に おける作業が非常に煩雑になっていた。 これに対して、 表面欠陥の少ない素 材部材を用いれば、 パテ埋めと研磨作業を回避することができ、 塗装工程の 作業効率を大幅に改善することができる。 その場合、 塗装膜にはパテ埋めで 用いたパテ材が存在しておらず、 均質な塗装膜を形成することができる。
[0033] 本発明合金部材において、 最上層となる抗菌膜を備えることが好ましい。
[0034] 合金部材の最上層として抗菌膜を備えることで、 合金部材に抗菌性を持た せ、 より衛生的な合金部材を提供することが可能になる。
[0035] この抗菌膜には、 抗菌性金属粒子を含有させたものが好ましい。 抗菌性金 属微粒子としては、 ニッケル、 銅、 銀、 金、 白金、 パラジウムまたはこれら の 2種以上を含む合金からなる粒子が好適に利用できる
[0036] このような抗菌膜は、 上記の塗装膜とは別に形成することもできるが、 塗 装膜自体を抗菌膜とすることが好適である。 それにより、 塗装膜とは別に抗 菌膜を形成する手間を省くことができる。 塗装膜自体に抗菌性を持たせるに は、 例えば塗料の中に上述した抗菌性金属微粒子を含ませればよい。 塗装膜 がなく、 防食皮膜だけの合金部材の場合は、 防食皮膜の上に抗菌膜を形成す ればよい。
[0037] 本発明マグネシウム合金部材は、 その引張強度が 280MPa以上、 0. 2%耐力が
200MPa以上、 伸びが 10%以上であることが好ましい。 これらの機械的特性を 満たすマグネシウム合金部材は、 種々の機器の筐体や構造材として好適に利 用することができる。 このような機械的特性の限定は、 特に AZ61の場合に適 合する。 AZ91の場合、 引張強度が 320MPa以上、 0. 2%耐力が 220MPa以上、 伸び が 10<½以上であることが好ましい。 さらに好ましい AZ91における機械的特性 は、 引張強度が 340MPa以上、 0. 2%耐力が 240MPa以上、 伸びが 10%以上である 。 ここでの引張強度は、 J I S Z 2201に規定する引張試験から求める。 0. 2% 耐カおよび伸びも、 その引張試験での結果を利用して求める。
[0038] 本発明マグネシウム合金部材は、 電子機器の筐体として好適に利用するこ とができる。 より具体的には、 携帯電話、 携帯情報端末、 ノートパソコン、 液晶やプラズマなどの薄型 TVなどの筐体が本発明合金部材の適用対象として 挙げられる。 その他、 自動車、 航空機などの輸送機用ボディーパネル、 シ一 トパネル、 エンジン、 シャーシ周りの部品、 メガネフレーム、 バイクなどの マフラーなどの金属管、 パイプなどの構造部材にも本発明合金部材を利用す ることができる。 なお、 本発明合金部材で用いる素材部材は、 その後にせん 断加工ゃ塑性加工を施し、 防食処理や塗装処理などの表面処理を省略するこ とで、 表面処理の必要でない分野、 例えば自動車用部品などの分野において 、 表面欠陥が少なく耐食性に優れるマグネシウム合金部材として好適に利用 することができる。 とりわけ、 AZ61あるいは AZ91相当材のマグネシウム合金 部材が表面処理のない部材として好適である。
[0039] 一方、 本発明マグネシウム合金部材の製造方法は、 AIを 5〜11質量%含有す るマグネシウム合金の圧延材からなる素材部材を準備する工程と、 この素材 部材に防食処理を施す工程とを備えることを特徴とする。
[0040] この方法によれば、 AIを多く含有する素材部材を用いることで、 機械的特 性に優れ、 かつ耐食性も高いマグネシウム合金部材とすることができる。 ま た、 素材部材に圧延材を用いることで、 錶造時の表面欠陥が少なく、 後の防 食処理で下塗りやパテ埋め等の補修作業を行う回数を低減できる。
[0041 ] つまり、 本発明方法は、 「素材部材の準備」 と 「防食処理」 とを備えるこ とを基本とするが、 さらに他の工程との組み合わせのバリエーションとして 、 せん断加工の要否、 塑性加工の要否、 塗装の要否などに応じて、 次のもの も含まれる。
[0042] <第 _群>
素材部材の準備- >防食処理
素材部材の準備- >防食処理→塗装
[0043] <第二群>
素材部材の準備- >せん断加工→防食処理
素材部材の準備- >せん断加工→防食処理- 素材部材の準備- >せん断加工→塑性加工- >防食処理
素材部材の準備- >せん断加工→塑性加工- >防食処理→塗装
[0044] <第三群 >
素材部材の準備- >防食処理→せん断加工
素材部材の準備- >防食処理→せん断加工- >塑性加工
素材部材の準備- >防食処理→せん断加工- >塑性加工—塗装
素材部材の準備- >防食処理→せん断加工- [0045] これらのうち、 第- -群は圧延材に防食処理を行い、 せん断加工ゃ塑性加工 を行っていない形態の合金部材を得る方法である。 この第一群の方法により 得られるマグネシウム合金部材の代表的な製品形態としては、 ロール状に巻 き取られた長尺板が挙げられる。
[0046] 次に、 第二群は、 素材部材をせん断加工してから防食処理を行う方法であ る。 この方法によれば、 予め所定の寸法■形状に小分けしたせん断加工材に 防食処理を施すことができる。 せん断加工を行い、 塑性加工を行わない合金 部材の代表的形態としては、 板片が挙げられる。 せん断加工に加えて塑性加 ェを行う場合、 塑性加工後に防食処理を施せば、 塑性加工時に防食皮膜が損 傷する虞がない。 せん断加工に加え塑性加工も施した合金部材の代表的な製 品形態としては、 各種電子■電気機器の筐体が挙げられる。
[0047] そして、 第三群は、 素材部材に防食処理を施してからせん断加工や塑性加 ェなどを行う方法である。 この方法によれば、 防食処理は、 一般に長尺であ る圧延材に対して連続的に行うことができる。 そのため、 既に小分けされた せん断加工材をハンドリングして、 そのせん断加工材の個々に防食処理を施 す場合に比べて、 合金部材を作製するまでのトータルの生産性を大幅に向上 することができる。
[0048] 本発明方法において、 塗装処理を行う場合、 通常、 塗装処理には下塗りと 上塗りとが含まれる。 その場合、 下塗りと上塗りを 1回ずっとすることが好ま しい。
[0049] 既に上述したように、 表面欠陥の少ない素材部材を用いれば、 パテ埋めと 研磨作業を回避することができるため、 下塗りと上塗りを 1回ずつ行えば塗装 処理が終了でき、 塗装処理工程を効率化することができる。
[0050] この本発明製造方法において、 素材部材の準備工程は、 AIを 5〜11質量%含 有する錶造材を得る工程と、 その錶造材を温間圧延する圧延工程とを含むこ とが好ましい。
[0051 ] 錶造材を温間圧延することで、 表面欠陥が少なく、 機械的特性に優れる素 材部材を得ることができる。 特に、 錶造材は双ロール錶造により得ることが 好ましい。 双ロール錶造は可動錶型を用いる錶造方法に属し、 表面欠陥の少 ない錶造材を得ることができる。
[0052] この錶造材を得る工程は、 凝固速度を 50K/秒以上とする急冷凝固錶造によ り行うことが好適である。 このような急冷凝固により得られた錶造材は、 酸 化物ゃ偏析などの内部欠陥が少ない。 特に、 急冷凝固された錶造材を圧延し た圧延材は、 さらに表面欠陥が減少されて望ましい。 より好ましい凝固速度 の下限は 200K/秒以上、 さらに好ましい凝固速度の下限は 300K/秒以上、 特 に好ましい凝固速度の下限は 400K/秒以上である。
[0053] 50K/秒以上の凝固速度を可能にする急冷凝固錶造には、 双ロール錶造が挙 げられる。 双ロール錶造法は、 双ロールを用いた急冷凝固が可能なため、 得 られる素材部材に酸化物ゃ偏析などの内部欠陥が少ない。 A I含有量の多いマ グネシゥム合金は、 錶造時に晶出物や偏祈が発生しやすく、 錶造後に熱処理 工程や圧延工程を経ても、 最終的に得られる合金板の内部に晶出物や偏析物 が残存して塑性加工時の破断の起点になることがある。 しかし、 双ロール錶 造法を用いて素材部材を得ることで、 これらの問題を軽減することができる 発明の効果
[0054] 本発明マグネシウム合金部材は、 高い耐食性と機械的特性とを兼備するこ とができる。 また、 本発明マグネシウム合金部材は、 防食処理を含む表面処 理を施す際に、 信頼性の高い表面処理層を形成することができる。
図面の簡単な説明
[0055] [図 1 ]試験例 15に係るマグネシウム合金部材の防食皮膜の顕微鏡写真であって 、 図 1 aは平坦部、 図 1 bはコーナー R部を示す。
発明を実施するための最良の形態
[0056] 以下、 本発明の構成要件をより詳しく説明する。
[0057] <マグネシウム合金の化学成分 >
本発明で用いられるマグネシウム合金は、 A Iを 5〜1 1質量%含有する合金と する。 A Iの含有量がこの下限を下回ると材料の耐食性が低下し、 上限を超え ると成形性が低下する傾向がある。 より好ましい、 A Iの含有量は 6. 0〜10. 0質 量%である。 特に、 1を8. 3〜9. 5質量%含有する合金が耐食性ゃ機械的特性 の点で好ましい。 さらに Znを 0. 2〜1. 5質量%含有する合金も本発明部材の材 料として好適に利用できる。 その他、 マグネシウム合金には Mnを 0. 15〜0. 5質 量%含有してもよい。 これら添加元素以外は不純物と Mgから構成すればよい 。 AIを 5〜11質量%含有する合金の具体例としては、 ASTM規格の AZ61、 AZ63、 AZ80、 AZ81、 AZ91、 AM60、 AM100などが挙げられる。
[0058] <素材部材の製造方法 >
素材部材は後に防食処理の対象となる部材である。 この素材部材は、 代表 的には錶造材を圧延した圧延材が挙げられる。 その他、 熱処理を施した圧延 材、 あるいは後述するレベラ一工程や研磨工程を経た圧延材を素材部材と呼 ぶこともある。 以下、 錶造条件および圧延条件をより詳しく説明する。
[0059] <錶造条件 >
錶造は、 WO/2006/003899に記載の錶造方法により行うことが好ましい。 こ の錶造方法は、 マグネシウム合金を溶解炉で溶解して溶湯とする溶解工程と 、 前記溶解炉から溶湯を湯だめに移送する移送工程と、 前記湯だめから注湯 口を介して可動錶型に溶湯を供給して凝固させ、 厚さ 0. 1國以上 10. 0國以下の 錶造材を連続的に製造する錶造工程とを備える。 そして、 上記溶解工程から 錶造工程に亘る工程において溶湯が接触する部分を酸素の含有量が 20質量% 以下の低酸素材料にて形成する。
[0060] 従来、 アルミニウムやアルミニウム合金、 銅、 銅合金などで利用されてい る連続錶造装置において溶解炉の坩堝、 坩堝からの溶湯を貯留する湯だめ(タ ンディッシュ)、 可動錶型に溶湯を導入する注湯口などは、 耐熱性及び保温性 に優れるシリ力(酸化ケィ素 (S i 02)、 酸素含有量: 47質量%)やアルミナ(酸化ァ ルミニゥム (Al 203)、 酸素含有量: 53質量%)、 酸化カルシウム (Ga0、 酸素含有 量: 29質量%)などのセラミックにて形成されている。 マグネシゥム合金の連 続錶造を行うにあたり、 マグネシウム合金が接触する部分に上記のような酸 化物からなる部材を利用すると、 酸化マグネシウムを生成して、 表面品質を 低下させたり、 得られた錶造材に圧延などの二次加工を施す場合、 割れ発生 の原因となる。 酸化マグネシウムは、 再溶解することがないため、 溶湯の流 れに沿って錶造材に混入すると凝固を不均一にして錶造材の表面品質を低下 させたり、 錶造材に圧延などの二次加工を行う際、 異物となって割れが発生 して品質を劣化させたり、 最悪の場合二次加工が行えない、 といった不具合 を生じる。 また、 酸素を奪われた材料がマグネシウム合金の溶湯に欠落、 溶 損して溶湯の温度を部分的に低下させ、 凝固を不均一にして錶造材の表面品 質を低下させることがある。 錶造時、 溶湯が接触する部分の構成材料に酸素 の含有量が少ない材料を用いることで、 酸化マグネシウムの生成を抑制し、 二次加工時に割れなどの表面欠陥が生じることを低減する。 その結果、 表面 欠陥のきわめて少ない錶造材、 さらにはその錶造材を圧延した圧延材を得る ことができ、 その圧延材に防食処理を含む表面処理を施すことで、 表面処理 工程における歩留まりを改善することができる。
[0061 ] 溶湯の凝固は、 可動錶型 (ロール) から排出された際に完了していること が好ましい。 例えば、 可動錶型を一対のロールとする場合、 ロール間が最も 接近する最小ギヤップを通過する際に溶湯の凝固が完了していることが挙げ られる。 即ち、 ロールの回転軸を含む平面と注湯口の先端間(オフセット区間 )内に凝固完了点が存在するように凝固させることが好ましい。 この間で凝固 を完了する場合、 注湯口から導入されたマグネシウム合金は、 最終凝固まで 錶型に接触して錶型から抜熱されるため、 中心線偏祈の発生を抑制すること ができる。
[0062] 可動錶型から排出されたマグネシウム合金材(錶造材)の表面温度は、 400°C 以下とすることが好ましい。 このとき、 ロールなどの可動錶型で挟まれた密 閉区間から酸素を含む雰囲気 (大気など)中に開放された際、 錶造材が急激に 酸化して、 変色が発生することを防止ことができる。
[0063] 得られた錶造材には、 組成を均質化するための熱処理や時効処理などを施 してもよい。 具体的な条件としては、 温度: 200〜450°C、 時間: 1〜40時間程度 が好ましい。 温度や時間は、 合金組成によって適宜選択するとよい。
[0064] 錶造材の厚さは 0. 1國以上 10. 0國以下とすることが好ましい。 0. 1國未満と すると、 溶湯を安定して供給することが難しく、 長尺体を得ることが困難で ある。 逆に 10. 0國超とすると、 得られた錶造材に中心線偏祈が生じ易い。
[0065] 得られた錶造材は、 引張強度が 150MPa以上、 破断伸びが 1 %以上であると、 二次加工が施されたマグネシウム合金材の塑性加工性の低下を低減すること ができて好ましい。 強度、 延性を向上するには、 組織を微細にし、 表面のキ ズを小さくし、 錶造材に圧下が加わるようにすることが好ましい。
[0066] <圧延条件 >
圧延条件は、 以下に説明する圧延条件 1または圧延条件 2とすることが好 ましい。
[0067] (圧延条件 1 )
圧延条件 1としては、 WO/2006/003899に記載の圧延条件が挙げられる。 この 圧延工程では、 総圧下率を 20<½以上とすることが好ましい。 総圧下率 20<½未 満の圧延では、 錶造材の組織である柱状晶が残存し、 機械的特性が不均一と なり易い。 特に、 錶造組織を実質的に圧延組織 (再結晶組織)とするためには 、 30%以上とすることが好ましい。 総圧下率 Gは、 錶造材の厚さを A (國)、 圧 延材の厚さを B (mm)とするとき、 G (o/o) = (A_B) /A x 100とする。
[0068] 圧延は 1パスとしてもよいし、 複数パスとしてもよい。 複数パスに亘る圧延 を行う場合、 1 / スの圧下率が 1 %以上 50<½以下の圧延を含むことが好ましい 。 1パスの圧下率が 1 %未満の場合、 所望の厚さの圧延材(圧延板)を得るため に圧延を繰り返す回数が多くなり、 時間がかかって生産性に劣る。 また、 1パ スの圧下率が 50%を越える場合、 加工度が大きいため、 圧延前の素材を適宜 加熱して塑性加工性を高めることが望まれる。 し力、し、 加熱を行うことで、 結晶組織の粗大化が起こるため、 圧延後に施すプレス加工の加工性を低下さ せる恐れがある。 1パスの圧下率 cは、 圧延前の素材の厚さを a (國)、 圧延後の 素材の厚さを b (國)とするとき、 c (%) = (a-b) /a x 100とする。
[0069] また、 圧延工程には、 圧延前の素材の温度 t1 (°C)及び圧延時の素材の温度 t 2 (°C)のうち高い方の温度 T (°C)を選び、 この温度 T (°C)と圧下率 c (%)とが 100 > (T/c) >5を満たすような圧延を備えていてもよい。 (T/c)力《100以上の場合 、 素材の温度が高いことから圧延加工性に富み、 大きな加工度をとることが 可能であるにもかかわらず、 小さな加工度で圧延していることになるため、 経済的に無駄が多い。 (T/c)力《5以下の場合、 素材の温度が低いことから圧延 加工性が小さいにもかかわらず大きな加工度をとつているため、 圧延時、 素 材の表面や内部に割れが発生し易い。
[0070] 更に、 圧延工程には、 圧延ロールに挿入する直前の素材の表面温度を 100°C 以下とし、 圧延ロールの表面温度を 100〜300°Cとする圧延を具えていること が好ましい。 このように加熱された圧延ロールと接触することで、 素材は間 接的に加熱される。 圧延前の素材の表面温度を 100°C以内に抑え、 実際に圧延 するときの圧延ロールの表面温度を 100°C以上 300°C以下で加熱する圧延方法 を 「ノンプレヒート圧延」 と呼ぶ。 ノンプレヒート圧延は、 複数パス行って もよいし、 ノンプレヒート圧延以外の圧延を複数パス行った後、 最後の 1パス のみにノンプレヒート圧延を適用してもよい。 即ち、 ノンプレヒート圧延以 外の圧延を粗圧延とし、 ノンプレヒ一ト圧延を仕上げ圧延として利用しても よい。 少なくとも最後の 1パスにおいて、 ノンプレヒート圧延を行うことによ り、 十分な強度を具えると共に、 塑性加工性に優れたマグネシウム合金圧延 材を得ることができる。
[0071 ] ノンプレヒート圧延以外の圧延は、 素材を 100°C以上 500°C以下に加熱した 温間圧延とすることが好ましい。 特に、 150°C以上 350°C以下が好ましい。 1パ スあたりの圧下率は、 5 %〜 20%が適当である。
[0072] 連続錶造の後オフラインで圧延を行う場合や、 粗圧延とは独立して仕上げ 圧延などを行う場合、 圧延前に素材に 350〜450°Cで 1時間以上の溶体化処理を 施すことが好ましい。 この溶体化処理により、 仕上圧延前までの粗圧延など の加工により導入された残留応力又は歪みを取り除き、 かつそれまでの加工 中に形成された集合組織を軽減することができる。 そして、 その後に続く圧 延において素材の不用意な割れ、 歪み、 変形を防ぐことができる。 溶体化処 理温度が 350°C未満又は 1時間未満では、 十分に残留応力を除去したり集合組 織を軽減する効果が少ない。 逆に 450°Cを超えると、 残留応力除去などの効果 が飽和し、 溶体化処理に必要なエネルギーを浪費することになる。 溶体化処 理時間の上限は 5時間程度である。
[0073] マグネシウム合金圧延材には、 熱処理を施すことが好ましい。 また、 複数 のパスの圧延を行う場合、 1パスごとに、 或いは複数パスごとに熱処理を施し てもよい。 熱処理条件としては、 温度: 100〜450°C、 時間: 5分〜 40時間程度が 挙げられる。 圧延加工によって導入された残留応力又は歪みを除去して、 機 械的特性の向上を図るには、 上記温度範囲内で低い温度 (例えば、 100〜350°C )で、 上記時間範囲内で短い時間(例えば、 5分〜 3時間程度)の熱処理を施すこ とが挙げられる。 温度が低すぎたり、 時間が短すぎると、 再結晶が不十分で 歪みが残存し、 温度が高すぎたり、 時間が長すぎると、 結晶粒が粗大化し過 ぎて、 プレス加工、 鍛造加工などの塑性加工性を悪化させる。 溶体化を図る 場合、 上記温度範囲内で高い温度 (例えば、 200〜450°C)で、 上記時間範囲内 で長い時間(例えば、 1〜40時間程度)の熱処理を施すことが挙げられる。
[0074] 圧延材の表面部の平均結晶粒径と同中央部の平均結晶粒径との差 (絶対値) を 20<½以内とすると、 更にプレス加工性を向上できる。 この差が 20<½超の場 合、 組織が不均一であることに起因して機械的特性も不均一となり、 成形限 界が低下する傾向にある。 上記平均結晶粒径の差を 20<½以内とするには、 例 えば、 少なくとも最後の 1パスにおいてノンプレヒ一ト圧延を行うことが挙げ られる。 即ち、 低温で圧延することで、 均一に歪みを導入させることが好ま しい。
[0075] (圧延条件 2)
その他、 圧延工程には、 圧延対象板を構成するマグネシウム合金中の A I含 有量を M (質量%) としたとき、 次の(1 )、 (2)の条件にて行う制御圧延を含む ことも好ましい。
(1 )圧延ロールへ挿入する直前におけるマグネシウム合金板の表面温度 Tb ( °C) を下記の式を満たす温度とする。
8. 33 x M + 135≤Tb≤8. 33 X M + 1 65
ただし、 5. 0≤M≤1 1 . 0 (2)圧延ロールの表面温度 Trを 150〜180°Cとする。
[0076] 圧延ロール温度 Trと合金板の表面温度 Tbを上記のように規定することで、 マグネシウム合金の結晶粒が再結晶化しない範囲での圧延を可能にする。 そ れにより、 合金の結晶粒の粗大化を抑制し、 かつ圧延材の表面に亀裂が発生 しにくい圧延を可能にする。
[0077] 圧延ロールの表面温度 Trは 150〜180°Cとする。 150°C未満の場合、 圧下率/ パスを高くすると、 合金板が圧延される際、 合金板の進行方向と直交する方 向にヮニ革状の細かい割れが発生する場合がある。 また、 180°Cを超えると、 圧延加工中に、 それまでの圧延で蓄積した合金板の歪が、 合金結晶粒の再結 晶により解消されてしまって加工歪量が少なくなり、 結晶粒を微細化するこ とが難しい。
[0078] 圧延ロールの表面温度を制御するには、 圧延ロールの内部にヒータなどの 発熱体を配置する方法や、 圧延ロールの表面に温風を吹き付ける方法などが 利用できる。
[0079] 圧延口一ルへ揷入する直前におけるマグネシゥム合金板の表面温度 Tb (°C) は、 下記の式を満たすようにする。
8. 33 x M + 135≤Tb≤8. 33 X M + 1 65
ただし、 5. 0≤M≤1 1 . 0
[0080] つまり、 この表面温度 Tbの下限は約 1 77°C、 上限は約 257°Cとする。 この温 度 Tbはマグネシウム合金中の A I含有量 M (質量%) に依存する。 具体的には、 ASTM規格 AZ61の場合、 約185〜215°〇、 AZ91の場合、 約 210〜247°Cに温度 Tbを 設定すればよい。 各組成の下限温度を下回ると、 圧延ロールの表面温度が低 い場合と同様に、 合金板の進行方向と直交する方向にヮニ革状の細かい割れ が発生する場合がある。 また、 各組成の上限温度を上回ると、 圧延加工中に 、 それまでの圧延で蓄積した合金板の歪が、 合金結晶粒の再結晶により解消 されてしまって加工歪量が少なくなり、 結晶粒を微細化することが難しい。
[0081 ] 合金板の表面温度 Tbを上記の規定範囲内としても、 例えば圧延ロールの表 面温度が常温であれば、 合金板がロールに接触した時点で温度が低下し、 合 金板表面に割れが発生する。 圧延ロール表面の温度のみならず、 合金板の表 面温度をも規定することで、 この割れを効果的に抑制できる。
[0082] 制御圧延の総圧下率は 10〜75<½であることが好ましい。 総圧下率とは、 ( 制御圧延を行う前の板厚一制御圧延後の板厚) /制御圧延を行う前の板厚 X 1 00で表される。 総圧下率が 10%未満の場合、 加工対象の加工歪が少なく、 結 晶粒の微細化効果が少ない。 逆に 75%を超えると、 加工対象の表面付近の加 ェ歪が多くなり、 ひび割れが発生する場合がある。 例えば、 最終板厚が 0. 5國 の場合、 0. 56〜2. 0國の板材に対して制御圧延を行えばよい。 より好ましい制 御圧延の総圧下率の範囲は 20%以上 50%以下である。
[0083] また、 制御圧延の圧下率/パス (1パス当たりの平均圧下率) は 5〜20%程 度とすることが好ましい。 圧下率/パスが低すぎると効率的な圧延を行うこ とが難しく、 逆に高すぎると圧延対象に割れなどの欠陥が生じやすくなる。
[0084] 上述した制御圧延を複数パスで行い、 これら複数パスのうち、 少なくとも 1 パスは他のパスと圧延方向を逆転させて行うことが好ましい。 圧延方向を逆 転させることで、 同一方向のみで圧延した場合に比べて、 圧延対象に加工歪 が均等に入りやすくなり、 通常、 制御圧延後に行なわれる最終熱処理後の結 晶粒径のばらつきを小さくできる。
[0085] その他、 上述したように、 通常、 合金板の圧延には粗圧延と仕上圧延とが 含まれる。 その場合、 少なくとも仕上圧延を上記制御圧延とすることが望ま しい。 塑性加工性の更なる向上を考慮すると、 圧延工程の全範囲にわたって 制御圧延を行うことが好ましいが、 最終的に得られるマグネシウム合金板の 結晶粒径の粗大化抑制には、 仕上圧延が最も関与するため、 この仕上圧延を 制御圧延とすることが好ましい。
[0086] 換言すれば、 仕上圧延以外の粗圧延は制御圧延の圧延条件に制約されない 。 特に、 粗圧延される合金板の表面温度には格別の制限はない。 粗圧延され る合金板の表面温度と圧下率を調整することで、 合金板の結晶粒径が極力小 さくできる条件を選択すればよい。 例えば、 圧延前の初期板厚が 4. 0國、 最終 板厚が 0. 5國の場合、 初期合金板から板厚 0. 56〜2. 0國までを粗圧延とし、 そ れ以降の圧延を仕上圧延とすれば良い。
[0087] 特に、 この粗圧延における圧延ロールの表面温度を 180°C以上の温度にし、 圧下率/パスを上げて粗圧延を行うことで、 粗圧延における加工効率を高め ることが期待できる。 その場合、 例えば、 圧下率/パスは、 20<½以上 40<½以 下とすることが好ましい。 ただし、 この温度が 180°C以上の場合でも、 合金結 晶粒の再結晶を抑制するため、 ロールの表面温度は 250°C以下程度とすること が好ましい。
[0088] その他、 粗圧延工程において、 圧延ロールへ挿入する直前における合金板 の表面温度 Tbを 300°C以上、 圧延口ールの表面温度 Trを 180°C以上とすると、 粗圧延後の板表面状態を良くすることができ、 縁割れが生じることがなく、 好ましい。 板表面温度を 300°C未満、 ロール表面温度を 180°C未満とすると、 圧下率を高くすることができないので、 粗圧延工程における加工効率が悪く なる。 ここで、 板表面温度の上限は特に限定しないが、 高温にすると、 粗圧 延後の板材の表面状態が悪くなる場合があるので、 400°C以下にすることが好 ましい。 また、 粗圧延時におけるロールの表面温度の上限も特に限定しない が、 高温ではロール自体が熱疲労により損傷する恐れがあるので、 300°C以下 にすることが好ましい。
[0089] 上記のような温度範囲で行なう粗圧延の 1パス当たりの圧下率を 20%以上 4 0%以下にすると、 粗圧延後に仕上圧延を行なつたマグネシゥム合金板におけ る結晶粒のばらつきを小さくすることができるので好ましい。 粗圧延時の 1 / スあたりの圧下率が 20<½未満だと、 圧延後の結晶粒のばらつきを小さくする 効果が乏しく、 40%超だと、 圧延時にマグネシウム合金板の端部に縁割れが 発生する。 また、 この範囲の圧下率で行う圧延の回数 (パス数) は 1パスで は効果が小さいので、 少なくとも 2パス以上行うことが好ましい。
[0090] また、 錶造合金板の圧延 (初期の粗圧延) では、 合金板の温度を高くする とともに、 上記の圧下率範囲内で圧下率を高くし、 仕上圧延の直前の粗圧延 では、 合金板の温度を 300°C程度、 圧下率を 20%程度にすることが好ましい。
[0091 ] 以上のような条件で粗圧延することにより、 この粗圧延に続いて仕上圧延 を施して得られたマグネシウム合金板の塑性加工性をより向上させることが できる。 具体的には、 合金板の表面状態を良くしたり、 縁割れの発生を抑制 したり、 合金板中の結晶粒径のばらつきを小さくしたりすることができる。 また、 マグネシウム合金板中の偏析量を小さくすることができる。
[0092] その他の圧延条件 2に関連した加工条件として、 必要に応じて、 圧延する前 の錶造材に溶体化処理を施してもよい。 溶体化処理の条件は、 例えば、 380〜 420°C x 60分〜 600分程度、 好ましくは390〜410°〇 360〜600分程度でぁる。 このように溶体化処理を施すことによって、 偏析を小さくすることができる 。 特に、 A I含有量の高い AZ91相当のマグネシウム合金の場合、 溶体化処理を 長時間行なうことが好ましい。
[0093] また、 必要に応じて、 圧延工程 (制御圧延かどうかは問わない) の間に歪 取り焼鈍を行ってもよい。 歪取り焼鈍は、 圧延工程の一部のパス間で行なう ことが好ましい。 この歪取り焼鈍を圧延工程のどの段階で何回行なうかは、 マグネシウム合金板に蓄積される歪の量を考慮して、 適宜選択すると良い。 この歪取り焼鈍を行うことで、 その後のパスの圧延をより円滑に行わしめる 。 この歪取り焼鈍条件は、 例えば、 250〜350°C x 20分〜 60分程度である。
[0094] さらに、 全ての圧延加工を終えた圧延材に最終焼鈍を施すことも望ましい 。 仕上圧延後のマグネシウム合金板の結晶組織は、 加工歪を十分蓄積してい るため、 最終焼鈍を行なった場合、 微細な状態で再結晶化する。 即ち、 最終 焼鈍を行なつて歪を解消した合金板であっても、 微細な再結晶組織を有する ために、 強度が高い状態に維持される。 また、 このように予め合金板の組織 を再結晶化た圧延材は、 後に 250°C程度の温度条件でプレス加工などの塑性加 ェを行なったときに、 合金板の組織の結晶粒が粗大化するなど、 塑性加工の 前後で結晶組織が大きく変化することがない。 従って、 最終焼鈍を施したマ グネシゥム合金板では、 塑性加工時に塑性変形した部分は加工硬化により強 度が向上し、 塑性変形していない部分の強度は加工前の強度を維持すること ができる。 この最終焼鈍条件は、 200〜350°C x 10分〜 60分程度である。 具体 的には、 マグネシウム合金中の A I含有量が 8. 5〜10. 0%で、 亜鉛の含有量が 0. 5〜1. 5%のときは、 300〜340°Cで 10〜30分の最終焼鈍を行なうと良い。
[0095] 双ロール錶造材で作製した板は、 錶造時に板厚の中心部に偏祈が発生する 。 AIを含有するマグネシウム合金の場合、 偏析する物質は、 主として Mg17AI 12 の組成からなる金属間化合物であり、 マグネシウム合金中における不純物の 含有量が多い合金ほど発生しやすい。 ASTM規格の AZ系合金を例にとると、 AI の含有量が約 9質量%の AZ91の方が約 3質量%の AZ31よりも錶造後の偏析量が 多くなる。 偏析量の多い AZ91であっても、 この 「圧延条件 2」 において既に述 ベたように粗圧延工程や仕上圧延前の溶体化処理を適切な条件で行うことに よって、 マグネシゥム合金板における厚さ方向の偏祈の長さを 20 m以下に分 散させることができる。 ここで 「偏析を分散させる」 とは、 線状の偏析を厚 さ方向に分断したり、 長さ方向に分断したりすることをいい、 プレス加工な どの塑性加工に支障のない偏析の厚さ方向の長さの目安は、 20 m以下である 。 偏祈の厚さ方向の長さは、 20 mよりもさらに小さくすることが好ましく、 偏祈の最大長さが母材の結晶粒径より小さく分散するとさらに強度特性が向 上することが推察される。
[0096] <圧延後加工前の予備加工 >
圧延されたマグネシウム合金材には、 レベラ一工程と研磨工程の少なくと も一方をせん断加工前の予備加工として施すことが好ましい。 レベラ一工程 は、 例えば圧延材をローラ一レベラ一に通すことで、 圧延材のうねり、 結晶 粒の配向などを矯正する。 研磨工程は、 圧延材またはレベラ一処理後の圧延 材の表面を研磨し、 これら研磨対象の表面を平滑化する。 この研磨の代表例 としては、 湿式ベルト式研磨が挙げられる。 その際の研磨ベルトの砥粒条件 としては #240が挙げられる。 より好ましくは #320、 さらに好ましくは # 600 の研磨ベルトとする。
[0097] <塑性加工 >
塑性加工は、 温間にて行うことが好適である。 塑性加工がプレス加工、 深 絞り加工、 鍛造加工、 ブロー加工および曲げ加工の場合、 加工時の素材部材 (防食処理がされていれば、 防食皮膜を持つ素材部材) の温度は、 200〜250 °Cとすることが好ましい。 塑性加工時の温度が 250°C程度であれば、 素材部材 のうち非加工部 (塑性加工により塑性変形していない箇所) の平均結晶粒径 はさほど変化しない。 そのため、 塑性加工前後で非加工部の引張強度もほと んど違いがない。
[0098] 塑性加工材には、 熱処理を施してもよい。 熱処理条件としては、 温度: 100 〜450°C、 時間: 5分〜 40時間程度が挙げられる。 例えば、 加工による歪みの除 去、 加工の際に導入された残留応力の除去、 機械的特性の向上を図る場合、 上記温度範囲内で低い温度 (例えば、 100〜350°C)で、 上記時間範囲内で短い 時間 (例えば、 5分〜 24時間程度)の熱処理を施すことが挙げられる。 溶体化を 図る場合、 上記温度範囲内で高い温度 (例えば、 200〜450°C)で、 上記時間範 囲内で長い時間(例えば、 1〜40時間程度)の熱処理を施すことが挙げられる。
[0099] <表面処理層とその形成方法 >
表面処理層は、 代表的には、 下地処理により得られる下地層と、 塗装処理 により得られる塗装膜とを備える。
[0100] 下地処理は、 代表的には、 脱脂→酸エッチング→脱スマット→表面調整→ 防食処理→乾燥が行われる。
[0101 ] 脱脂は、 アルカリ脱脂により切削油を除去し、 ロール圧延時やプレス加工 時に使用される離型剤を軟化して除去しやすくする。 脱脂の好ましい温度と 時間は 20〜70°C、 1〜20分である。
[0102] 酸エッチングは、 離型剤や素材部材表面に析出した合金の不純物金属 (Fe 、 N i、 Go、 S iなど) を表面層ごと溶解除去する。 その際に金属塩が析出され る。 酸エッチングの好ましい温度と時間は 20〜70°C、 0. 5〜10分である。
[0103] 脱スマットは、 酸エッチング時に析出したスマット (表面酸化物) をアル 力リ溶液で溶解除去し、 同時にマグネシウムとの反応により不動態化膜を生 成する。 脱スマットの好ましい温度と時間は 20〜70°C、 2〜20分である。
[0104] 表面調整は、 脱スマツ卜で使用したアル力リ溶液を清浄して除去する。 表 面調整の好ましい温度と時間は 20〜70°C、 1〜10分である。
[0105] 防食処理は、 マグネシウム合金の表面に耐食性を向上するための皮膜を形 成する処理である。 具体的には、 化成処理と陽極酸化処理が挙げられる。 化 成処理は、 マグネシウム合金との反応により酸化皮膜 (化成皮膜) を形成す る処理である。 この処理により、 マグネシウム合金部材の耐食性を向上する と共に、 化成皮膜の上に形成される塗装膜の密着性を向上させる。 化成処理 の処理液は、 P系、 P-Mn系、 Gr系に大別できる。 この処理液の廃液が環境に及 ぼす影響を考慮すると、 Grや Mnを含まない P系の処理液を用いることが好まし し、。 P系の処理液を用いた場合、 化成処理の好ましい温度と時間は、 20〜70°C 、 0. 5〜4分である。 一方、 陽極酸化処理は、 陽極にマグネシウム合金を用い て直流電圧を印加することによって、 マグネシゥムの金属酸化物を電極表面 に形成する処理である。 より具体的には、 J I S H8651 (1 995)に規定される陽 極酸化処理を行うことが好ましい。 陽極酸化処理による防食皮膜も、 Grや Mn を含まない処理液を用いることが望ましく、 また表面抵抗の小さい防食皮膜 とすることが望ましい。
[01 06] 上記の脱脂から乾燥までの各工程間では水洗いを行う。 水洗いは脱イオン 水による水洗が好ましい。
[01 07] 塗装処理では、 通常、 下塗り→乾燥→上塗り→乾燥が行われる。 下塗りは 、 下地処理を終えた成型板にエポキシ樹脂塗料などを塗布して行われる。 下 塗りを行った際、 表面欠陥があれば、 その欠陥をパテで埋め、 研磨して再度 下塗りを行う。 必要に応じて、 この下塗り、 パテ埋め、 研磨、 下塗りを複数 回繰り返す。 上塗りは、 アクリル樹脂塗料などを用いて下塗りの上に施され る。 なお、 塗装処理での乾燥処理は、 塗料の種類や性能によって、 1 00〜200 °Cでの焼付乾燥を行う場合もある。 なお、 塗装処理で素材部材が 1 60°C程度の 温度となっても、 素材部材の平均結晶粒径はほとんど変化しない。 それに伴 し、、 引張強度も塗装の前後でさほど大きく変化はしない。
[01 08] 一方、 抗菌膜の形成には、 特開 2005-248204号公報に記載の金属コロイ ド溶 液を用いることが好ましい。 この金属コロイ ド溶液は、 水中で、 金属のィォ ンを還元して析出させた、 一次粒径が 200nm以下の金属微粒子と、 分子量が 20 0〜30000の分散剤と、 分散媒としての、 水と水溶性有機溶媒との混合溶媒と を含む。 このような金属コロイ ド溶液を塗料に混ぜて、 或いは塗装膜とは別 に成膜することで、 抗菌膜を形成することができる。 金属コロイ ド溶液にお いて、 金属微粒子は 0. 1〜90重量%の割合で含有することが好ましい。 また、 分散剤が、 S、 P、 B、 およびハロゲン原子を含有しない有機化合物であること が望ましい。 その他、 分散剤を、 金属微粒子 100重量部あたり 2〜30重量部の 割合で含有することが好適である。 水溶性有機溶媒としては、 アルコール、 ケトン、 グリコールエーテル、 および水溶性の含窒素有機化合物からなる群 より選ばれた少なくとも 1種が挙げられる。
[0109] [試験例 1 ]
以下、 本発明の実施例を比較例と併せて説明する。
[0110] ( 1 ) AZ91の双ロール連続錶造圧延材を素材部材 Aとして次の工程 1により マグネシゥム合金部材を作製する。
工程 1 :錶造→温間圧延→レベラ一工程→研磨→切断→温間プレス加工 →下地処理→塗装処理→乾燥
[0111 ] AZ91の双ロール連続錶造の錶造条件および錶造材特性を表 1に、 AZ91双口 ール錶造材の圧延条件および圧延材特性を表 2に示す。 この錶造条件は W0/200 6/003899に記載の条件であり、 圧延条件は上述した 「圧延条件 2」 に基づく条 件である。 より具体的な圧延条件は、 双ロール連続錶造法により得られた厚 さ 4. 2國のマグネシウム合金板を 1國の厚さまで粗圧延し、 平均結晶粒径 6. 8 mの粗圧延板を得る。 粗圧延は、 圧延対象材を 300〜380°Cに予熱し、 その対象 材をロール表面温度 180°Cの圧延ロールで圧延することにより行った。 平均結 晶粒径は、 J I S G 0551 2005の切断法に記載される算出式を用いて求めた 。 次に、 この粗圧延板を、 表 2に記載の制御圧延条件で厚さ 0. 6國まで仕上圧 延する。 仕上圧延は複数パスで行っており、 そのうち少なくとも 1パスは他の パスと圧延方向を逆転させて行う。 そして、 仕上圧延材に 320°C x 30分の熱処 理を行う。 レベラ一工程は、 圧延材をローラーレベラ一に通すことで、 圧延 材のうねり、 結晶粒の配向などを矯正する。 研磨は、 #240の研磨ベルトを用 いて湿式ベルト式研磨を行い、 圧延材の表面を平滑化する。 プレス加工は、 金型温度を 250°Cとし、 加工対象を金型間に 12秒間保持することで加熱して、 プレス速度 2. 5mm/secにて行う。 このプレス加工により、 デモ用 PDAのケース を得る。
[0112] [表 1 ]
AZ91 双ロール铸造
Figure imgf000028_0001
[0113]
ほ 2]
AZ91
Figure imgf000029_0001
[0114] ( 2 ) AZ91チクソモールド錶造材を素材部材 Bとして次の工程 2によりマグ ネシゥム合金部材を作製する。 この錶造条件は公知の条件とした。
工程 2 :錶造→研磨→下地処理→塗装処理→乾燥
[0115] ( 3 ) AZ31インゴット錶造圧延材を素材部材 Gとして前記工程 1と同様にマ グネシゥム合金部材を作製する。
[0116] AZ31インゴット錶造条件は公知の条件とした。 その錶造材特性を表 3に、 同 錶造材の圧延条件および圧延材特性を表 4に示す。
[0117] ほ 3]
AZ31 インゴッ ト铸造
Figure imgf000030_0001
[0118] [表 4]
AZ31 圧延
Figure imgf000030_0002
[0119] 以上の製造工程において、 下地処理は、 脱脂→酸エッチング→脱スマット —表面調整—化成処理—乾燥 1が行われる。 下地処理を構成する各工程間には 水洗いを行う。 また、 塗装処理は、 下塗り→ (パテ埋め) → (研磨) →上塗 り→乾燥 2が行われる。 ここで、 パテ埋めと研磨は下塗りした時点で表面欠陥 があった場合に行う。 必要に応じて、 パテ埋め、 研磨、 下塗りを繰り返し行 ラ。
[0120] 脱脂〜表面調整、 乾燥 1は特に断らない限り、 以下の方法で実施した。 なお
、 溶液の濃度は質量%を示す。
[0121 ] 脱脂: 10%K0Hとノ二オン系界面活性剤 0. 2%溶液の攪拌下、 60°C, 10分 酸エッチング: 5%リン酸溶液の攪拌下、 40°C, 1分
脱スマツト : 10%K0H溶液の攪拌下、 60°C, 10分
表面調整: PH8に調整した炭酸水溶液の攪拌下、 60°C, 5分
乾燥 1 : 120°C, 20分
[0122] 塗装処理は、 次の条件で行なった。
塗装:株式会社カンペハピオ製非鉄金属用密着スプレーを用い、 下塗り ( プライマ一処理) を行った後、 同社製アクリルラッカ一スプレー Aのブラック を用い、 上塗りを行う。
パテ埋め:ポリエステルパテ
乾燥 2 :室温で 24時間以上乾燥
[0123] 各実施例および比較例の製造条件は次のとおりである。
[0124] <実施例 1 >
上記の双口ール連続錶造から温間プレスを経た AZ91のプレス材を処理基材 とした。 この処理基材に下地処理および塗装処理を施す。 下地処理は、 10% リン酸を主成分とする A社製 P系処理液および 1 %K0Hを処理液として使用し、 超音波攪拌下、 40°C, 2分で化成処理を行った。 この実施例 1および後述する 実施例 2〜実施例 7は下塗りおよび上塗りが各々 1回で、 パテ埋め、 研磨は行 つていない。
[0125] <実施例 2 >
実施例 1 と同じプレス材を処理基材とし、 その処理基材に下地処理および 塗装処理を施す。 下地処理は、 10%リン酸を主成分とする B社製 P系処理液お よび 1 %K0Hを処理液として使用し、 超音波攪拌下、 90°C, 1分で化成処理を行 つた。 [0126] <実施例 3 >
実施例 1 と同じプレス材を処理基材とし、 その処理基材に下地処理および 塗装処理を施す。 下地処理は、 10%リン酸マンガンを主成分とする G社製 P-Mn 系処理液を処理液として用い、 超音波攪拌下、 40°C, 2分で化成処理を行った
[0127] <実施例 4 >
実施例 1 と同じプレス材を処理基材とする。 エツチング工程でリン酸処理 後、 3 %HFで 30°C、 1分処理する以外は実施例 1 と同様の処理を行った。 化成 処理は処理液に 10%リン酸マンガンを主成分とする D社製 P-Mn系処理液を用い たこと以外実施例 1と同様にした。
[0128] <実施例 5 >
実施例 1 と同じプレス材を処理基材とする。 マグネシウム合金防食処理方 法 (J I S H 8651 1 995) の 1種、 未完成部品に対する仮防食方法を参照し 、 マグネシウム合金を処理した。 すなわち重クロム酸ナトリウム 180g/し 硝 酸 (60%) 260m l /L液で液温 25°C、 1分間浸漬、 5秒間脱滴後水洗、 乾燥を行い 、 Gr系化成皮膜を得た。 化成処理工程以外は実施例 1と同様にした。
[0129] <実施例 6 >
実施例 1 と同じプレス材を処理基材とする。 マグネシウム合金防食処理方 法 (J I S H 8651 1 995) の 8種、 未完成部品に対する仮防食方法を参照し 、 酸性フッ化ナトリゥム 15g/し 重クロム酸ナトリゥム 180g /し 硫酸アルミ二 ゥム 10g/し 硝酸 ^(^ ^!/し液で液温?。^、 2分間浸潰し、 水洗、 乾燥を行い 、 Gr系化成皮膜を得た。 化成処理工程以外は実施例 1と同様にした。
[0130] <実施例 7 >
実施例 1 と同じプレス材を処理基材とする。 マグネシウム合金防食処理方 法 (J I S H 8651 1 995) の 3種、 完成部品に対する良好な防食方法を参照 し、 マグネシウム合金を処理した。 すなわち第一工程としてフッ化水素酸 (4 6%) 250m l /Lで液温 20°C、 5分間浸潰し、 水洗した。 その後、 第二工程として 重クロム酸ナトリゥム 120〜130g /し フッ化カルシウム 2. 5g/L液で液温 90°C、 60分間浸漬、 水洗、 温水に浸漬、 乾燥することで Gr系化成皮膜を得た。 化成 処理工程以外は実施例 1と同様にした。
[0131 ] <実施例 8 >
実施例 1 と同じプレス材を処理基材とする。 下地処理にアルカリ脱脂→酸 洗→陽極酸化処理→乾燥を行った。 アルカリ脱脂液、 酸洗の溶液はそれぞれ 化成処理の脱脂液、 酸エッチング液を使用した。 陽極酸化処理はマグネシゥ ム合金防食処理方法 (J I S H 8651 1 995) の 1 1種、 完成品に対する良好な 防食方法の Aタイプを参照した。 具体的には、 水酸化カリウム 1 65g/し フッ化 力リゥム 35g/し リン酸ナトリゥム 35g/し 水酸化アルミニウム 35g/し 過マン ガン酸カリウム 20g/Lの処理液を用い、 この処理液に液温 20°C、 電流密度 2. OA /dm2, 電圧 70Vで 20分間処理基材を浸漬後、 水洗、 乾燥を行い、 P-Mn系陽極酸 化皮膜を得た。 その後、 上述した条件にて塗装処理を行った。
[0132] <実施例 9 >
実施例 1 と同じプレス材を処理基材とする。 陽極酸化処理液にリン酸塩を 含有する E社製 P系処理液を用いたこと以外は実施例 8と同様にした。
[0133] <比較例 1〜7 >
AZ91チクソモールド法で得た錶造材を処理基材としたこと以外、 実施例 1〜 7と同様の方法で処理したものを各々比較例 1〜7とした。 この比較例 1〜比較 例 7は上塗りが 1回であるが、 下塗り、 パテ埋め、 研磨は複数回行っている。
[0134] <比較例 8〜 1 4 >
AZ31インゴット錶造、 圧延、 研磨、 プレス材を処理基材としたこと以外、 実施例 1〜7と同様の方法で処理したものを各々比較例 8〜14とした。 この比較 例 8〜比較例 14は下塗りおよび上塗りが各々 1回で、 パテ埋め、 研磨は行って いない。
[0135] <比較例 1 5、 1 6 >
AZ91チクソモールド法で得た錶造材を処理基材としたこと以外、 実施例 8 、 9と同様の方法で処理したものを各々比較例 1 5、 1 6とした。 この比較 例 1 5、 1 6は上塗り力《1回であるが、 下塗り、 パテ埋め、 研磨は複数回行つ ている。
[0136] <比較例 1 7、 1 8 >
AZ31インゴット錶造、 圧延、 研磨、 プレス材を処理基材としたこと以外、 実施例 8、 9と同様の方法で処理したものを各々比較例 1 7、 1 8とした。 この比較例 1 7、 1 8は下塗りおよび上塗りが各々 1回で、 パテ埋め、 研磨は 行っていない。
[0137] そして、 得られた実施例 1〜9、 比較例 1〜18について、 化成皮膜の電気抵抗 の評価、 耐食性の評価、 化成皮膜の密着性評価、 塗装膜の密着性評価ならび に環境負荷の評価を行つた。 各評価手法は次のとおりである。
[0138] <電気抵抗評価 >
得られた皮膜の表面抵抗は、 三菱化学社製ロレスターを用い、 2探針プロ —ブタイプ MGP— TPAPで二探針法により測定を行つた。
[0139] <密着性評価 >
防食皮膜の密着性および塗装膜の密着性評価は J I S碁盤目剥離試験 (J I S K 5400 8. 5. 2 1 990) により行った。 防食皮膜または塗装膜にカッターナイ フを用いて 1國間隔の切傷を付け、 100個の碁盤目を作る。 この碁盤目上にセ 口ファン粘着テープを強く圧着し、 このテープの端を持ち瞬間的に引き剥が し、 素材部材上に剥離せず残存している碁盤目の数を観察する。
[0140] <耐食性評価 >
耐食性は塩水噴霧試験 (SST (Sa l t Spray Test i ng) J I S Z 2371 (2000 ) ) により実施した。 24時間塩水噴霧試験は、 35°Cに設定された試験槽に 5% の塩水を噴霧し、 その試験槽中で 24時間経過後の試験片の腐食性を評価する 。 ここでは、 防食皮膜を形成した素材板を試験片とする。 腐食した箇所は健 全箇所に比べて黒くなる。 そのため、 腐食面積は、 試験後に試験片表面を撮 影し、 その画像を画像処理することなどで容易に求めることができる。 そし て、 試験片の全体面積に対する腐食面積の比率を演算し、 この比率が 1 %以下 の場合に合格とする。
[0141 ] <環境負荷 > PRTR該当物質または RoHS指令対象物質が化成処理の処理液に含まれる場合 に不適 (△または X ) 、 これらの物質が含まれていない場合を適 (〇) とす る。
[0142] 各試験結果を表 5〜表 7に示す。 表中の 「素材板」 は上記の各素材部材を 示す。
[0143] [表 5]
Figure imgf000035_0001
[0144] ほ 6]
Figure imgf000036_0001
ほ 7]
Figure imgf000037_0001
[0146] 表 5の結果から明らかなように、 実施例 1〜9は耐食性、 防食皮膜の密着性 、 塗装密着性に優れることがわかる。 また、 防食皮膜の表面抵抗も実施例 4、 7、 8以外は全て 0. 2 Ω ' cm以下である。 さらに防食処理の処理液に P系の処理 液を用いたものは、 環境負荷に及ぼす影響が少ないこともわかる。 そして、 いずれの実施例も、 塗装工程で下塗りおよび上塗りは各々 1回であるため、 パテ埋めとその後の研磨は行う必要がなかった。
[0147] これに対して、 表 6に示すように、 比較例 1〜7は AZ91を用いているため化成 皮膜の密着性、 塗装膜の密着性に優れているが、 錶造材であるため、 実施例 1 〜9に比べて強度が低い。 また、 比較例 1、 2は実施例 1、 2に比べて大きく耐食 性が劣っている。 さらに、 比較例 1〜7は錶造材であるため表面欠陥が多く、 いずれも塗装処理においてパテ埋めとその後の研磨が必要であり、 下塗りを 複数回行っている。
[0148] また、 表 7に示すように、 比較例 8〜14、 17、 18は、 AZ31であるため、 耐食 性あるいは化成 (陽極酸化) 皮膜、 塗装膜の密着性が実施例に比べて低い。 さらに、 全般的に化成皮膜の表面抵抗が大きい。 その他、 比較例 15、 16は、 A Z91を用いているため陽極酸化皮膜の密着性、 塗装膜の密着性に優れているが 、 錶造材であるため、 実施例 1〜9に比べて強度が低い。
[0149] 以上の実施例ではプレス成形を経た素材部材を例として説明したが、 プレ ス成形以外の深絞り加工、 鍛造加工、 ブロー加工および曲げ加工を素材部材 に施した場合においても、 上記実施例と同様に表面処理工程の簡略化が期待 できる。
[0150] [試験例 2 ]
次に、 試験例 1 とは異なる仕上圧延条件を経て得られた AZ91の素材板 (素 材部材) を用いて、 その素材板にプレス成形と表面処理 (下地処理 +塗装処 理) を行い、 各素材板の圧延後の特性および表面処理層の成膜性について評 価した。 錶造条件、 圧延後のレベラ一、 研磨、 熱処理条件、 あるいはプレス 条件は試験例 1の素材部材 Aと同様である。 また、 表面処理条件は試験例 1の実 施例 1と同様である。 圧延条件と評価結果を表 8に示す。
[0151 ] [表 8]
Figure imgf000038_0001
圧延方向: 「R」 は圧延方向を逆転
[0152] 表 8において、 「板温度」 は仕上圧延直前における板材の表面温度、 ール温度」 は仕上圧延の圧延ロールの表面温度、 圧延方向の 「R」 は各パス毎 に圧延方向を逆転したことを示し、 「1パス平均圧下率」 は仕上圧延 (ここで は板厚 1國→0. 6國までの圧延) における総圧下率/パス数を示す。 また、 「板 表面状態」 は圧延材に割れやしわのないものを〇とし、 「縁割れ」 は圧延材 の側縁部に割れがないものを〇、 ごく微小な割れだけのものを△とし、 「絞 り性」 は加工品の角部に割れがないものを〇とする。 これら表中の語句の意 義および評価基準は、 後述する他の試験例でも同様である。
[0153] 表 8から明らかなように、 いずれの試料も平均結晶粒径が小さく、 加工性に 優れることがわかる。 また、 プレス成形板に下地処理および塗装処理を施す 場合、 下塗りおよび上塗りが各々 1回で、 パテ埋め、 研磨は行う必要がない ことがわかった。
[0154] [試験例 3 ]
次に、 試験例 1 とは AIの含有量が異なる双ロール錶造材を用いて試験例 2と 同様に仕上圧延時の板材の温度やロール温度などの影響について評価を行つ た。 ここでの板材は、 AIが 9. 8質量%、 Znが 1. 0質量%を含み、 他に AZ91で許 容される Aし Zn以外の添加元素を含んでいる。 その残部は Mgと不可避的不純 物である。 錶造条件、 圧延後のレベラ一、 研磨、 熱処理条件は試験例 1の素材 部材 Aと同様である。 また、 熱処理後の試料に、 試験例 1 と同様のプレス成形 と、 実施例 1と同様の表面処理とを行い、 表面処理の状況について評価する。 圧延条件と評価結果を表 9に示す。
[0155] [表 9]
Figure imgf000039_0001
圧延方向: 「R」 は圧延方向を逆転
この表に示すように、 AIを 9. 8質量%含むマグネシウム合金の素材板でも、 AZ91と同様に加工性に優れた素材板が得られることがわかる。 また、 プレス 成形後の素材板に下地処理および塗装処理を施す場合、 下塗りおよび上塗り が各々 1回で、 パテ埋め、 研磨は行う必要がないことも試験例 2と同様であ る。
[0157] [試験例 4 ]
次に、 厚さが 4. 0國の双ロール錶造材を用意し、 この錶造材を所定の厚さま で粗圧延して、 厚さの異なる粗圧延板を得る。 この粗圧延も、 錶造材を 300〜 380°Cに予熱し、 その錶造材を常温の圧延ロールで圧延することにより行った 。 その粗圧延板を最終板厚 0. 5國にまで異なる総圧下率で仕上圧延して、 仕上 圧延材を得た。 仕上圧延は、 仕上圧延直前における粗圧延板の表面温度を 210 〜240°Cとし、 その際の仕上圧延ロールの表面温度を 150〜180°Cの範囲に制御 して行った。 次に、 この仕上圧延材にも試験例 1と同様に、 320°C x 30分の熱 処理を行い、 試料とした。 錶造条件は錶造材の厚みを除き試験例 1の素材部 材 Aと同様であり、 圧延後のレベラ一、 研磨条件も試験例 1の素材部材 Aと同様 である。 さらに、 得られた試料に試験例 1と同様のプレス成形と、 実施例 1と 同様の表面処理とを行い、 表面処理の状況について評価する。
[0158] これらのサンプルについても試験例 2と同様の方法で、 平均結晶粒径の測定 、 板表面状態の評価、 縁割れの評価を行う。 仕上圧延条件と評価結果を表 10 に示す。 「総圧下率」 は、 粗圧延材の板厚から最終板厚までの仕上圧延にお ける総圧下率、 つまり板の表面温度を 210〜240°Cとした圧延における総圧下 率である。
[0159]
ほ 10]
Figure imgf000041_0001
[01 60] この表に示すように、 制御圧延における 1パス当たりの平均圧下率は 5〜15 %の範囲で、 総圧下率は 10〜50%の範囲で良好な結果が得られていることが わかる。 また、 プレス成形後の素材板に下地処理および塗装処理を施す場合 、 下塗りおよび上塗りが各々 1回で、 パテ埋め、 研磨は行う必要がないこと もわかった。
[01 61 ] [試験例 5 ]
次に、 試験例 4とは A Iの含有量が異なるマグネシウム合金の双ロール錶造 材を用いて、 試験例 4と同様に仕上圧延時の 1パスあたりの平均圧下率と総圧 下率の影響を試験した。 ここでの板材は、 A Iが 9. 8質量%、 Znが 1 . 0質量%を 含み、 他に AZ91で許容される Aし Zn以外の添加元素を含んでいる。 その残部 は Mgと不可避的不純物である。 仕上圧延は、 仕上圧延直前における粗圧延板 の表面温度を 21 7〜247°Cとし、 その際の仕上圧延ロールの表面温度を 150〜18 0°Cの範囲に制御して行った。 マグネシウム合金の化学成分と仕上圧延以外の 製造条件や、 マグネシウム合金板の評価方法は、 試験例 4と同様である。 さ らに、 得られた試料に試験例 1と同様のプレス成形と、 実施例 1と同様の表面 処理とを行い、 表面処理の状況について評価する。 仕上圧延条件と上記試験 結果を表 11にまとめて示す。
[0162] [表 11]
Figure imgf000042_0001
[0163] 表 11から明らかなように、 制御圧延における 1パス当たりの平均圧下率が 8 〜10%の範囲で、 総圧下率が 18〜50%の範囲で良好な結果が得られているこ とがわかる。 また、 プレス成形後の素材板に下地処理および塗装処理を施す 場合、 下塗りおよび上塗りが各々 1回で、 パテ埋め、 研磨は行う必要がない こともわかった。
[0164] [試験例 1 〜 5のまとめ]
以上の試験例 1〜試験例 5の結果から、 錶造材を構成するマグネシウム合 金中の AI含有量を M (質量%) としたとき、 圧延ロールへ挿入する直前におけ る錶造材の表面温度 Tb (°C) と Mとの関係をグラフ化して整理した。 その結果 、 素材板の表面温度 Tbを下記の式を満たす温度とし、 圧延ロールの表面温度 T rを 150〜180°Cとする制御圧延を行えば、 結晶粒径が微細化されて塑性加工性 に優れたマグネシゥム合金板を得られることが判明した。
8.33xM + 135≤Tb≤8.33XM + 165
ただし、 8.3≤M≤9.8
[0165] 今回の試験例では、 AI含有量が AZ91よりも少ないマグネシウム合金および A Iの含有量が 9.8質量%を超えるマグネシウム合金については評価を行ってい ないが、 A Iの含有量の多い方が加工性に乏しいことや、 A Iの含有量が少ない 方が耐食性に劣ることなどを考慮すると、 A Iの含有量が 5.0〜11.0質量%程度 までの範囲で上記の式が成立すると推測される。 [01 66] [試験例 6 ]
次に、 Mg-9. 0%A卜 1 . 0%Zn (全て質量%) を含有する AZ91相当の組成を持 ち、 双ロール連続錶造法により得られた厚さ 4國のマグネシウム合金素材板を 用意する。 この素材板を異なる条件で厚さ 1國まで粗圧延して、 複数の粗圧延 板を得る。 次いで、 この複数の粗圧延板を最終板厚 0. 5國になるまで同一の条 件で仕上圧延して、 マグネシウム合金板を得た。 仕上圧延は、 仕上圧延直前 における粗圧延板の表面温度を 210〜240°C、 仕上圧延ロールの表面温度を 150 〜180°Cの範囲に制御して実施した。 また、 その際の 1パス当たりの圧下率が 1 5%となるようにした。 そして、 仕上圧延して得られたマグネシウム合金板を 、 320°C x 30分熱処理し、 試料とした。 これらの試料について、 試験例 2と同 様の方法で、 平均結晶粒径の測定、 板表面状態の評価、 縁割れの評価を行う 。 錶造条件、 圧延後のレベラ一、 研磨条件は試験例 1の素材部材 Aと同様であ る。 さらに、 得られた試料に試験例 1と同様のプレス成形と、 実施例 1と同様 の表面処理とを行い、 表面処理の状況について評価する。
[01 67] 粗圧延条件と上記試験結果を表 12にまとめて示す。 この表において、 「粗 圧延板温度」 は粗圧延直前における板材の表面温度を、 「粗圧延ロール温度 」 は粗圧延の圧延ロールの表面温度を、 「圧下率/パス」 は板厚 4國→1 . 0國 までの圧延における圧下率/パスを示す。
[01 68]
ほ 12]
Figure imgf000044_0001
[01 69] この表から粗圧延板温度を 300〜380°C、 粗圧延ロール温度を 180〜300°Cに することで、 表面状態に優れた圧延材が得られることがわかる。 また、 粗圧 延の 1パス当たりの圧下率を 20〜35<½にすると、 粗圧延後に仕上圧延を行な つたマグネシゥム合金板における平均結晶粒を小さくすることができる。 そ して、 プレス成形後の素材板に下地処理および塗装処理を施す場合、 下塗り および上塗りが各々 1回で、 パテ埋め、 研磨は行う必要がないこともわかつ た。
[01 70] [試験例 7 ]
また、 試験例 6とは A Iの含有量が異なるマグネシウム合金の双ロール錶造 材を用いて、 粗圧延時の板材の温度やロール温度などの影響を調べた。 ここ での板材は、 A Iが 9. 8質量%、 Znが 1 . 0質量%を含み、 他に AZ91で許容される A し Zn以外の添加元素を含んでいる。 その残部は Mgと不可避的不純物である。 マグネシウム合金の化学成分と粗圧延以外の製造条件や、 マグネシウム合金 板の評価方法は、 試験例 6と同様である。 さらに、 得られた試料に試験例 1と 同様のプレス成形および実施例 1と同様の表面処理を行い、 表面処理の状況に ついて評価する。 粗圧延条件と上記試験結果を表 13にまとめて示す。
[01 71 ] [表 13]
Figure imgf000045_0001
[01 72] この表から、 粗圧延板温度を 300〜380°C、 粗圧延ロール温度を 180〜300°C にすることで、 表面状態に優れた圧延材が得られることがわかる。 また、 粗 圧延の 1パス当たりの圧下率を 20〜30<½にすると、 粗圧延後に仕上圧延を行 なつたマグネシゥム合金板における平均結晶粒を小さくすることができる。 そして、 プレス成形後の素材板に下地処理および塗装処理を施す場合、 下塗 りおよび上塗りが各々 1回で、 パテ埋め、 研磨は行う必要がないこともわか つた。
[01 73] [試験例 8 ]
次に、 試験例 6で用いた錶造材と同じ AZ91錶造材 (厚さ 4國) を用意した。 この錶造材を異なる条件で厚さ 1國まで粗圧延し、 粗圧延板を得た。 その粗圧 延板を最終板厚 0. 5國になるまで同一の条件で仕上圧延して、 マグネシウム合 金板を得た。
[01 74] ここで、 粗圧延は、 粗圧延直前における板の表面温度を 350°Cとし、 その際 の粗圧延ロールの表面温度を 200〜230°Cの範囲に制御し、 1パス当たりの圧下 率を変えて行った。 一方、 仕上圧延は、 仕上圧延直前における粗圧延板の表 面温度を 210〜240°C、 仕上圧延ロールの表面温度を 150〜180°Cの範囲に制御 して実施した。 また、 その際の 1パス当たりの圧下率が 15%となるようにした [01 75] 次に、 この仕上圧延材も試験例 1と同様に、 320°C x 30分の熱処理を行い、 試料とした。 そして、 これらの試料について、 試験例 6と同様の方法で、 平均 結晶粒径の測定、 板表面状態の評価、 縁割れの評価を行う。 加えて、 本試験 例では結晶粒径のばらつきの評価も行う。 粒径ばらつきの評価基準は次の通 りである。
大…最大粒径/最小粒径≥ 2、 中… 2 >最大粒径/最小粒径≥1 . 5 小…最大粒径/最小粒径ぐ 1 . 5
[01 76] さらに、 得られた試料に試験例 1 と同様のプレス成形および実施例 1 と同 様の表面処理を行ない、 表面処理層の成膜性についても評価した。
[01 77] 粗圧延における 1パス当たり圧下率 20<½以上 40<½以下の圧延回数と評価結 果を表 14に示す。 この表における 「20〜40%圧下率の粗圧延回数」 は、 1回の 粗圧延時の圧下率が 20〜40%であった粗圧延の回数を示し、 「最高圧下率/ パス」 は、 複数パスの粗圧延のうち、 1パス当たりの最高圧下率を示す。
[01 78]
ほ 1 4]
Figure imgf000047_0001
[01 79] この表から明らかなように、 粗圧延に 1パス当たりの圧下率が 20〜40%の 圧延が含まれると、 粗圧延後に仕上圧延を行なったマグネシウム合金板にお ける結晶粒径のばらつきを小さくすることができる。 それに伴い、 優れた表 面状態の圧延材を得ることができる。 そして、 プレス成形後の素材板に下地 処理および塗装処理を施す場合、 下塗りおよび上塗りが各々 1回で、 パテ埋 め、 研磨は行う必要がないことがわかつた。
[0180] [試験例 9 ]
次に、 試験例 8とは A Iの含有量が異なるマグネシウム合金の双ロール錶造 材を用いて、 試験例 8と同様に粗圧延時の素材板の温度やロール温度などの 影響を調べた。 錶造材の化学成分以外の製造条件や、 マグネシウム合金板の 評価方法は、 試験例 8と同様である。 ここでの板材は、 A Iが 9. 8質量%、 Znが 1 . 0質量%を含み、 他に AZ91で許容される Aし Zn以外の添加元素を含んでいる 。 その残部は Mgと不可避的不純物である。 圧延条件と上記試験結果を表 1 5に まとめて示す。 さらに、 得られた試料に試験例 1 と同様のプレス成形および 実施例 1 と同様の表面処理を行ない、 表面処理層の成膜性についても評価し た。
[01 81 ] [表 1 5]
Figure imgf000048_0001
[01 82] この表から明らかなように、 粗圧延の 1パス当たりの圧下率を 20〜38%に すると、 粗圧延後に仕上圧延を行なったマグネシウム合金板における結晶粒 径のばらつきを小さくすることができる。 それに伴い、 優れた表面状態の圧 延材を得ることができる。 そして、 プレス成形後の素材板に下地処理および 塗装処理を施す場合、 下塗りおよび上塗りが各々 1回で、 パテ埋め、 研磨は 行う必要がないこともわかった。
[0183] [試験例 6〜 9のまとめ]
以上の試験例 6〜 9の結果から、 適切な条件で粗圧延を実施することによ り、 最終的に得られるマグネシウム合金板の結晶粒径のばらつきが小さく、 板表面の欠陥や縁割れなどの不具合のない塑性加工性に優れたマグネシウム 合金板が得られることがわかる。
[0184] [試験例 1 0 ]
次に、 Mg-9. 0%A卜 1 . 0%Zn組成 (全て質量%) 、 および、 Mg-9. 8%A卜 1 . 0 %Zn組成 (全て質量%) を有するマグネシウム合金の錶造材 (厚み 4.0國) を 試験例 1の素材部材 Aと同様の双ロール連続錶造により得た。 このとき得られ た錶造材に生じた中心線偏析は、 板材の厚み方向に最大幅が 50 mであった。 このような錶造材を以下に示す 3種類の条件により処理した後、 圧延に供した
[0185] Mg_9.0%A卜 1·0%Ζη組成 (全て質量%) について
試料 10-1■■ -405°C X 1時間 (溶体化処理)
試料 10-2- -405°C X 10時間 (溶体化処理)
[0186] Mg_9.8%A卜 1·0%Ζη組成 (全て質量0 /&) について
試料 10-3- -405°C X 1時間 (溶体化処理)
試料 10-4·■ -405°C X 10時間 (溶体化処理)
[0187] 上記の処理を施して得られたマグネシウム合金板を以下の条件にて 0.6國の 厚さまで圧延し、 適切な条件で熱処理を施すことにより、 の平均結晶 粒径を有する板材にした。
[0188] <粗圧延 4.0國〜 1.0國>
ロール表面温度: 200°C
板加熱温度: 330〜360°C
1パス当たりの圧下率: 20〜25%
[0189] <仕上圧延 1.0國〜0.6國>
ロール表面温度: 180°C
板加熱温度: 230°C
1パス当たりの圧下率: 10〜15%
[0190] <熱処理 >
320°C X 30分間
[0191] 次に、 この板材から JIS Z 2201 13B号 (1998) の引張試験用サンプルを 作製し、 室温環境において、 歪み速度 1.4x10- 3 (s- で引張試験を行った。 また、 0.6國の板材断面の合金組織を観察し、 中心線偏析の量 (厚み方向の最 大幅) を測定した。 各試験の方法および意義は、 以下の通りである。 評価結 果を表 16に示す。
引張強度 =破断した時の荷重/ (試験片の板厚 X板幅)
降伏強度 = 0. 2%耐力で測定
降伏比 =降伏強度 引張強度
破断伸び = (破断端を突き合わせたときの標点間距離— 50國) /50國 ※
1
※ 試験前に予め設定した 2つの標点の間の距離 (50國) と、 試験後に破 断したサンプルの破断端を突き合わせたときの標点間の距離とから求める、 いわゆる突き合わせ方法により測定した。
[0192] [表 16]
Figure imgf000050_0001
[0193] 表 16に示すように、 双ロール連続錶造方法により作製した錶造材を溶体化 処理することにより中心線偏祈の厚さ方向の幅が小さくなり、 優れた機械的 特性を有するマグネシウム合金板が得られることが確認出来た。 特に、 AZ91 相当のマグネシウム合金を含む AI含有量の高いマグネシウム合金では、 溶体 化処理を長時間行なうことで、 より機械的特性の優れたマグネシウム合金板 を得ることができた。
[0194] そして、 得られた圧延材に試験例 1と同様のプレス成形と実施例 1と同様の 表面処理を行い、 表面処理層の成膜状況について評価を行った。 その結果、 いずれの試料もプレス成形後の素材板に下地処理および塗装処理を施す場合 、 下塗りおよび上塗りが各々 1回で、 パテ埋め、 研磨は行う必要がないこと がわかった。 [0195] [試験例 1 1 ]
AZ91相当の Mg-9.0%A卜 1.0%Zn組成 (全て質量%) 、 および、 Mg-9.8%A卜 1.0%Zn組成 (全て質量%) を有するマグネシウム合金錶造材 (厚み 4.0國) を双ロール連続錶造により得た。 これらの錶造材に 405°Cx10時間の溶体化処 理を施して得られたマグネシウム合金材を以下に示す条件にて 0.6國の厚さま で圧延してマグネシウム合金板を得た。 このとき得られたマグネシウム合金 板に生じた中心線偏析は、 板材の厚み方向に最大で 20 mであった。
[0196] <粗圧延 4.0國〜 1.0國>
ロール表面温度: 200°C
板加熱温度: 330〜360°C
1パス当たりの圧下率: 20〜25%
[0197] <仕上圧延 1.0國〜0.6國>
ロール表面温度: 180°C
板加熱温度: 230°C
1パス当たりの圧下率: 10〜15%
[0198] 上記の条件で圧延して得られたマグネシウム合金板を 320°Cx 30分間の条件 で熱処理し、 評価用板材を得た。
[0199] 次に、 この板材から JIS Z 2201 13B号 (1998) の引張試験用サンプルを 作製し、 3種類の温度環境 (室温 (25°C) 、 200°C、 250°C) において、 歪み 速度 1.4X10-3 (s- で引張試験を行った。 また、 0.6國の板材断面の引張試験 前後における合金組織を観察した。 各試験の方法および用語の意義は、 試験 例 10と同様である。 この試験の結果を表 17に示す。 試料 No.11-1〜11-3は、 Mg -9.0%A卜 1.0%Zn組成を有するマグネシウム合金板での試験結果を、 試料 No. 11-4〜11-6は、 Mg-9.8%A卜 1.0%Zn組成を有するマグネシウム合金板での試 験結果を示す。
[0200] ほ 1 7]
Figure imgf000052_0001
[0201 ] 表 1 7に示すように、 320°C、 30分間熱処理した板材は、 圧延加工によるマグ ネシゥム合金板に蓄積された歪みが消えており、 完全に再結晶化している。 また、 この熱処理を施し、 完全に再結晶化した板材では、 引張加工時の昇温 (250°C以下) によって板材の組織中の結晶粒が粗大化せず、 加工の前後で平 均結晶粒径にほとんど差が生じなかった。 従って、 板材のうち、 引張加工時 に変形した部分では加工歪が蓄積されて硬度および強度が向上し、 変形して いない部分では硬度および強度に変化が生じないと推察される。 さらに、 320 °C、 30分間の熱処理を施した板材は、 室温における引張強度、 降伏強度およ び破断伸びが高く、 また、 200°C、 250°Cにおいて安定して高い破断伸びを示 した。
[0202] 以上の結果から、 金属組織が完全に再結晶化した板材は、 加工の前後で金 属組織に変化が生じ難いため、 塑性加工性が安定するとともに、 加工により 変形した部分の機械的特性は向上し、 変形しなかった部分でも加工前の機械 的特性を維持すると推察される。 従って、 圧延加工時に蓄積した加工歪を解 消した板材は、 プレス成形などの強加工を行なつた場合でも安定した機械的 特性を有するので、 プレス成形などにより製造される筐体製品の製造に適し ている。
[0203] そして、 得られた熱処理材に試験例 1と同様のプレス成形と実施例 1と同様 の表面処理を行い、 表面処理層の成膜状況について評価を行った。 その結果 、 いずれの試料もプレス成形後の素材板に下地処理および塗装処理を施す場 合、 下塗りおよび上塗りが各々 1回で、 パテ埋め、 研磨は行う必要がないこ とがわかった。
[0204] [試験例 1 2 ]
次に、 試験例 1 1に記載の条件で錶造、 粗圧延、 仕上圧延をし、 厚さ 0. 6國の マグネシウム合金板 (Mg_9. 0%A卜 1 . 0%Zn、 および、 Mg_9. 8%A卜 1 · 0%Zn ( 全て質量%) ) を作製した。 そして、 仕上圧延後のマグネシウム合金板に 320 。C、 30分の熱処理を施して評価用サンプルを作製し、 このサンプルを用いて 曲げ試験を実施した。 曲げ試験は、 各サンプルを 2点で支持して、 これら支持 点とは反対の方向から曲げ成形用工具 (パンチ) によりサンプルが曲がるよ うに圧力を加える、 いわゆる 3点曲げ試験とした。 曲げ試験の条件を以下に示 す。
[0205] <試験条件 >
サンプルの寸法…幅 20國、 長さ 1 20國、 厚さ 0. 6mm
試験温度… 200°C、 250°C
パンチの先端角度… 30°
パンチの半径 (=サンプルの曲げ半径) ■■■(). 5國
支点間距離… 30國
パンチの押し込み深さ… 40國
パンチの押し込み速度 (加工速度) 0m/m i n 5. Om/m i n
[0206] 上記の条件のもと試験を行い、 サンプルの曲げ半径部分の表面状態および スプリングバック量を調べた。 スプリングバックとは、 パンチにより加えら れた荷重により板状のサンプルに生じた変形が、 パンチによる荷重が抜けた 後に戻る現象をいう。 即ち、 サンプルのスプリングバックの量が大きい場合 、 変形性が悪く、 小さい場合、 変形性が良いと判断できる。 従って、 スプリ ングバック量を調べることで、 サンプルの加工容易性を判断することができ る。 表面状態は、 亀裂が生じなかった場合を 「〇」 とする。 スプリングバッ クは、 (パンチにより荷重を加えているときのサンプルの曲げ半径部分を挟 んだ平面の成す角) 一 (荷重を取り除いたときの曲げ半径部分を挟んだ平面 の成す角) を求め、 この角度差が 1 0° 未満の場合に 「少」 とする。
[0207] また、 加工の度合いを示す指標として曲げ特性値を規定した。 曲げ特性値 は、 サンプルの曲げ半径(國) /サンプルの厚さ(國)で表される。 ここで、 サ ンプルの曲げ半径が小さいほどこの曲げ半径部分に局所的な圧力が作用する ので、 サンプルに亀裂などの損傷が生じやすく、 サンプルの厚さが厚いほど サンプルの成形性が悪く、 亀裂などの損傷が生じ易い。 従って、 上記の式で 表される曲げ特性値は、 小さいほど加工条件の厳しい強加工を示すことにな る。
[0208] 以上、 説明した表面状態、 スプリングバック、 曲げ特性値の結果を表 1 8に 示す。 試料 No. 1 2-1〜1 2-4は、 Mg_9. 0%A卜 1 . 0%Zn組成を有するマグネシウム 合金板での試験結果を、 試料 No. 1 2-5〜1 2-8は、 Mg-9. 8%A卜 1 . 0%Zn組成を有 するマグネシゥム合金板での試験結果を示す。
[0209] [表 1 8]
Figure imgf000054_0001
[021 0] Mg-9. 0%A卜 1 . 0%Znのサンプル、 Mg_9. 8%A卜 1 . 0%Znのサンプルのいずれ も、 試験温度が 200°C以上の場合に、 スプリングバックが小さく、 表面状態が 良かった。 従って、 200°C以上で曲げ加工を施せば、 成形性がよいことがわか る。 [021 1 ] さらに、 曲げ加工後の試料に実施例 1 と同様の表面処理を行ない、 表面処 理層の成膜性についても評価した。 その結果、 曲げ加工材に下地処理および 塗装処理を施す場合、 下塗りおよび上塗りが各々 1回で、 パテ埋め、 研磨は 行う必要がないことがわかつた。
[0212] [試験例 1 3 ]
次に、 試験例 11および 12に記載の条件で錶造、 粗圧延、 仕上圧延をし、 厚 さ 0. 6國のマグネシウム合金板 (Mg_9. 0%A卜 1. 0%Zn、 および、 Mg_9. 8%A卜 1 . 0%Zn (全て質量%) ) を作製した。 次いで、 このマグネシウム合金板に 320 °C、 30分間の熱処理を施し、 評価用サンプルを作製した。 この評価用サンプ ルを用いてプレス試験を実施し、 プレス後のサンプルの表面状態を調べた。
[0213] サ一ポプレス機によりサンプルをプレスした。 プレスは、 直方体状の凹部 を有する下型に、 この凹部を覆うようにサンプルを載置して、 直方体状の上 型を押し付けることにより行なった。 上型は、 60國 X 90國の直方体状で、 サ ンプルに当接する四つの角が丸められており、 各角は一定の曲げ半径を有す る。 また、 上型と下型にはヒーターと熱電対を埋め込み、 プレス時の温度条 件を所望の温度に調節することができるようにした。
[0214] <試験条件 >
上型の曲げ半径… 0. 5國
試験温度… 200°C、 250°C
カロェ is度■■■(). 8m/mi n、 1. 7m/mi n 3. 4m/mi n 5. Om/mi n
[0215] 上記の条件のもとプレス成形を行い、 プレス後のサンプルの曲げ半径部分 の表面状態を調べた。 この結果を表 19に示す。 試料 No. 13_1〜13_4は、 Mg_9. 0 %A卜 1. 0%Zn組成を有するマグネシウム合金板での試験結果を、 試料 No. 13-5 〜13-8は、 Mg-9. 8%A卜 1. 0%Zn組成を有するマグネシウム合金板での試験結 果を示す。 ここで、 表面状態の意義は、 試験例 12と同一であり、 曲げ特性値 は、 上型の曲げ半径/サンプルの板厚により求めた。
[0216] ほ 1 9]
Figure imgf000056_0001
[021 7] Mg-9. 0%A卜 1 . 0%Znのサンプルでは、 プレス時のサンプルの温度が 200°Cの 場合、 加工速度が遅いとき (試料 No. 1 3-1 ) に、 表面状態が良かった。 また、 プレス時のサンプルの温度が 250°Cの場合、 加工速度が速くても表面状態が良 かった。 Mg-9. 8%A卜 1 . 0%Znのサンプルでもプレス成形時の温度が高い場合 、 加工速度が速くてもプレス後のサンプルの表面状態が良かった。 特に、 熱 処理を行なったマグネシウム合金板を 250°Cの条件でプレス成形する場合、 5. Om/m i nの加工速度で強加工 (曲げ特性値 0. 83) を行なつてもプレス成形性が 良いことが明らかとなった。
[0218] 得られたプレス成形板に実施例 1 と同様の表面処理を行った。 その結果、 プレス成形板に下地処理および塗装処理を施す場合、 下塗りおよび上塗りが 各々 1回で、 パテ埋め、 研磨は行う必要がないことがわかった。
[021 9] [試験例 1 1〜試験例 1 3のまとめ]
以上、 試験例 1 1〜1 3の結果から、 圧延後のマグネシウム合金板を適切な温 度で熱処理して合金板の組織を再結晶化させることにより、 成形性が安定す ることが明らかとなった。 成形性が安定する原因は、 塑性加工 (プレス成形 を含む) を行なう前に金属組織を再結晶化させているため、 塑性加工時の昇 温によって金属組織が大きく変化しないためと推察される。
[0220] [試験例 1 4 ] 次に、 錶造■圧延を経て得られた AZ91の素材板を用意し、 素材板自体、 素 材板にプレス成形を施したプレス成形板および素材板にプレス成形、 下地処 理および塗装処理を施した塗装板を試料とする。 そして、 試料の各々につい て、 平均結晶粒径、 引張強度、 0. 2%耐カ (降伏強度) および伸びを調べた。 平均結晶粒径は、 素材板の表面部及び中央部において、 J I S G 0551 (2005 ) に定められた切断法によってそれぞれ結晶粒径を求め、 その平均値を用い る。 ここでのプレス成形板および塗装板はデモ用 PDAのケースであり、 その成 形板 (塗装板) のうち、 曲げ加工されていない平坦部と曲げ加工された R部と の双方について平均結晶粒径を求める。 引張強度、 0. 2%耐カおよび伸びは、 素材板、 プレス成形板または塗装板の平坦部から J I S Z 2201 13B号 (1 998 ) の試験片を切り出し、 この試験片で引張試験を行って求める。
[0221 ] 試験片は、 試験例 1における表 2の圧延条件や仕上圧延後の熱処理条件を下 記のように変え、 他の錶造条件、 圧延条件、 プレス条件は試験例 1の素材部 材 Aと共通とした。
粗圧延の 1パスあたりの圧下率: 20〜30%
仕上圧延のロール表面温度: 180°C
仕上圧延後の熱処理
試料 14-1 : 340°C x 30分
試料 14-2: 360°C x 30分
試料 14- 3: 380°C x 30分
[0222] また、 本試験例での下地処理条件、 塗装処理条件も試験例 1で述べた実施例 1と同様とした。 試験結果を表 20に示す。
[0223] ほ 20]
Figure imgf000058_0001
[0224] この表に示すように、 素材板、 成形板、 塗装板のいずれであっても、 平均 結晶粒径、 引張強度、 0. 2%耐カ、 伸びに大きな変化のないことがわかる。 らに、 曲げ加工の加わった R部では、 平坦部に比べて平均結晶粒径が若干小 <なっていることがわかる。
[0225] [試験例 1 5 ] 試験例 1に示した工程 1のうち、 双口一ル連続錶造→温間圧延→レベラ一 工程—研磨の各工程を経た AZ91板材を処理基材とし、 下地処理として、 実施 例 1 と同じ処理液で揺動攪拌下、 40°C、 2分の化成処理を行った。 この化成処 理材を切断した後、 実施例 1 と同様のプレス加工を行った。 プレス加工後の デモ用 PDAケースの表面をマイクロスコープで観察した結果を図 1に示す。 こ の結果より、 プレス後の平坦部 (図 1 a ) 、 コーナ _ R部 (図 1 b ) ともに 化成皮膜の亀裂、 脱落等はなく均一な化成皮膜が形成されていることがわか る。 また、 この化成皮膜の表面抵抗値、 密着性試験の結果はそれぞれ 0. 1 Ω ■ cm, 100/100であった。 さらに、 このプレス加工品に試験例 1 と同様の塗装処 理を施した。 つまり塗装までの本例の工程は、 双ロール連続錶造→温間圧延 →レベラ一工程→研磨→化成処理→切断→プレス加工→塗装処理となる。 こ の塗装膜の密着性試験結果は 100/100であり、 耐食性試験の結果は腐食面積比 力《1 %以下であった。 上記の結果、 プレス加工前に防食処理を行い、 プレス加 ェ後に塗装処理したマグネシウム合金部材も、 プレス加工後に順次防食処理 、 塗装処理したものと同様の性能を示すことがわかる。
[0226] [試験例 1 6 ]
試験例 1に記載する工程 1において、 塗装処理の上塗り用塗料 (株式会社 カンペハピオ製ァクリルラッカ一スプレー Aのブラック) に特開 2005-248204 号公報に記載の金属コロイ ド溶液を混ぜ、 この混合塗料を用いて上塗りを行 う。 金属コロイ ド溶液は、 次のようにして作製すればよい。
[0227] 硝酸銀 24gを純水 150gに溶解した後、 アンモニア水を加えて、 液の pHを 1 1 . 0 に調整して、 硝酸銀アンモニア溶液を調製する。 次に、 この硝酸銀アンモニ ァ溶液に、 分散剤としてのポリビニルピロリ ドン (分子量 30000) 12gを加え て、 溶解させた後、 還元剤としてのエチレングリコール 100gを添加して、 力、 く拌速度 1000rpmでかく拌しながら、 40°Cで 180分間、 反応させて、 黄色のプ ラズモン吸収を有する水系の銀コロイ ド溶液を得る。
[0228] 次に、 得られた銀コロイ ド溶液を、 20000G X 20分間の条件で遠心分離して 、 銀微粒子よりも軽い不純物を除去する操作を繰り返し行う。 分離された銀 微粒子を純水によって洗浄した後、 銀微粒子の粒度分布を、 レーザードッブ ラー法を応用した粒度分布測定装置 〔日機装 (株)製の商品名マイクロ トラッ ク
UPA150EX] を用いて測定したところ、 5nmの位置に鋭いピークが見られる。
[0229] 次に、 この銀コロイ ド溶液を、 口一タリ一エバポレータを用いて濃縮して
、 含水分量を 20重量%まで減らした後、 水溶性有機溶媒としてのアセトンを 加えて、 分散媒が水とアセトンとの混合溶媒である銀コロイ ド溶液を製造す る。 この銀コロイ ド溶液における、 銀微粒子 (Ag) と水 (W) とアセトン (Ac
) の配合割合は、 重量比で、 Ag: W: Ac = 80: 20: 100である。
[0230] この銀コロイ ド溶液 10重量部と上塗り用塗料 20重量部とを混合して混合塗 料とする。 そして、 その混合塗料で下塗りの上に上塗りを行う。 下塗りおよ び上塗りは各々 1回で、 パテ埋め、 研磨は行わない。
[0231 ] このような塗装処理を行えば、 最上層に抗菌性金属微粒子である銀微粒子 を含有する上塗り層を形成することができ、 塗装膜に抗菌性を持たせること が期待できる。
産業上の利用可能性
[0232] 本発明マグネシウム合金部材は、 耐食性、 機械的特性、 表面品質が求めら れる種々の分野において利用が期待される。 具体的には携帯電話、 携帯情報 端末、 ノートパソコン、 液晶やプラズマなどの薄型 TVなどの筐体や輸送機器 の部品などに好適に利用することができる。

Claims

請求の範囲
[I ] マグネシウム合金からなる基材と、 その基材の上に形成された防食皮膜 とを有するマグネシウム合金部材であって、
前記基材は、 AIを 5〜11質量%含有するマグネシウム合金からなる圧延材で あることを特徴とするマグネシゥム合金部材。
[2] さらに、 前記マグネシウム合金部材は、 せん断加工部を備えることを特 徵とする請求の範囲第 1項に記載のマグネシウム合金部材。
[3] さらに、 前記マグネシウム合金部材は、 塑性加工部を備えることを特徴 とする請求の範囲第 2項に記載のマグネシウム合金部材。
[4] 前記塑性加工部はプレス加工で成形されてなることを特徴とする請求の 範囲第 3項に記載のマグネシウム合金部材。
[5] 前記塑性加工部は深絞り加工、 鍛造加工、 ブロー加工および曲げ加工の 少なくとも一つで成形されてなることを特徴とする請求の範囲第 3項に記載の マグネシウム合金部材。
[6] 前記基材が以下の要件を満たすことを特徴とする請求の範囲第 1項〜第 3 項のいずれかに記載のマグネシウム合金部材。
(1 )平均結晶粒径が30;u m以下
(2)晶析出物の大きさが 20 m以下
(3)表面欠陥深さが基材の厚みの 10%以下
[7] 前記防食皮膜が化成皮膜であることを特徴とする請求の範囲第 1項〜第 3 項のいずれかに記載のマグネシウム合金部材。
[8] 前記防食皮膜が陽極酸化膜であることを特徴とする請求の範囲第 1項〜第
3項のいずれかに記載のマグネシウム合金部材。
[9] 前記防食皮膜中の Gr含有量が 0. 1質量%以下であることを特徴とする請求 の範囲第 1項〜第 3項のいずれかに記載のマグネシウム合金部材。
[10] 前記防食皮膜中の Mn含有量が 0. 1質量%以下であることを特徴とする請求 の範囲第 1項〜第 3項のいずれかに記載のマグネシウム合金部材。
[I I ] 前記防食皮膜がリン酸塩皮膜であることを特徴とする請求の範囲第 1項〜 第 3項のいずれかに記載のマグネシウム合金部材。
[12] 前記防食皮膜は 24時間塩水噴霧試験 (J I S Z 2371 ) 後の腐食面積の比 率が 1 %以下であり、
この防食皮膜の電気抵抗を二探針法で測定した値が 0. 2 Ω ■ cm以下であるこ とを特徴とする請求の範囲第 1項〜第 3項のいずれかに記載のマグネシウム合 金部材。
[13] さらに、 防食皮膜の上に塗装膜を備えることを特徴とする請求の範囲第 1 項〜第 3項のいずれかに記載のマグネシウム合金部材。
[14] 前記塗装膜は、 下塗り層と上塗り層とを備え、 その塗装膜には下塗り層 表面の欠陥を穴埋めするパテ材が含まれていないことを特徴とする請求の範 囲第 13項に記載のマグネシウム合金部材。
[15] さらに、 最上層となる抗菌膜を備え、 その抗菌膜は抗菌性金属微粒子を 含有することを特徴とする請求の範囲第 1項〜第 3項のいずれかに記載のマグ ネシゥム合金部材。
[16] 前記抗菌膜が、 防食皮膜の上に形成された塗装膜であることを特徴とす る請求の範囲第 15項に記載のマグネシウム合金部材。
[17] 前記抗菌性金属微粒子が、 ニッケル、 銅、 銀、 金、 白金、 パラジウムま たはこれらの 2種以上を含む合金からなることを特徴とする請求の範囲第 15項 に記載のマグネシウム合金部材。
[18] マグネシウム合金部材の引張強度が 280MPa以上、 0. 2%耐力が 200MPa以上
、 伸びが 10%以上であることを特徴とする請求の範囲第 1項〜第 3項のいずれ かに記載のマグネシウム合金部材。
[19] マグネシウム合金部材が電子機器の筐体であることを特徴とする請求の 範囲第 1項〜第 3項のいずれかに記載のマグネシウム合金部材。
[20] AIを 5〜11質量%含有するマグネシウム合金の圧延材からなる素材部材を 準備する工程と、
この素材部材に防食処理を施す工程とを備えることを特徴とするマグネシ ゥム合金部材の製造方法。
[21 ] 前記防食処理を施す工程の前に、 素材部材にせん断加工を施す工程を備 えることを特徴とする請求の範囲第 20項に記載のマグネシウム合金部材。
[22] 前記せん断加工を施す工程の後、 防食処理を施す工程の前に、 せん断加 ェ材に塑性加工を施す工程を備えることを特徴とする請求の範囲第 21項に記 載のマグネシウム合金部材。
[23] 前記防食処理材にせん断加工を施す工程を備えることを特徴とする請求 の範囲第 20項に記載のマグネシウム合金部材の製造方法。
[24] 前記せん断加工材に塑性加工を施す工程を備えることを特徴とする請求 の範囲第 23項に記載のマグネシウム合金部材の製造方法。
[25] 前記防食処理材に塗装処理を施す工程を備えることを特徴とする請求の 範囲第 20項〜第 22項のいずれかに記載のマグネシウム合金部材の製造方法。
[26] 前記せん断加工材に塗装処理を施す工程を備えることを特徴とする請求 の範囲第 23項に記載のマグネシウム合金部材の製造方法。
[27] 前記塑性加工材に塗装処理を施す工程を備えることを特徴とする請求の 範囲第 24項に記載のマグネシウム合金部材の製造方法。
[28] 前記塗装処理は、 下塗りと上塗りとを含み、
その下塗りと上塗り力《1回ずつであることを特徴とする請求の範囲第 26項ま たは第 27項に記載のマグネシウム合金部材の製造方法。
[29] 前記素材部材の準備工程は、 AIを 5〜11質量%含有する錶造材を得る工程 と、 その錶造材を温間圧延する圧延工程とを含むことを特徴とする請求の範 囲第 20項に記載のマグネシウム合金部材の製造方法。
[30] 前記錶造材を得る工程は、 凝固速度を 50K/秒以上とする急冷凝固錶造に より行うことを特徴とする請求の範囲第 29項に記載のマグネシウム合金部材 の製造方法。
[31 ] 前記急冷凝固錶造が双ロール錶造であることを特徴とする請求の範囲第 3 0項に記載のマグネシウム合金部材の製造方法。
PCT/JP2007/000751 2006-09-08 2007-07-10 Élément d'alliage de magnésium et son procédé de production WO2008029497A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BRPI0715865-3A BRPI0715865A2 (pt) 2006-09-08 2007-07-10 elemento de liga de magnÉsio e mÉtodo de fabricaÇço do mesmo
EP07790247.6A EP2060642B1 (en) 2006-09-08 2007-07-10 Magnesium alloy member and method for producing the same
KR1020097004844A KR101412245B1 (ko) 2006-09-08 2007-07-10 마그네슘 합금 부재와 그 제조 방법
AU2007292778A AU2007292778B2 (en) 2006-09-08 2007-07-10 Magnesium alloy member and method for producing the same
US12/377,916 US8501301B2 (en) 2006-09-08 2007-07-10 Magnesium alloy member and method of manufacturing the same
JP2008533034A JP5201535B2 (ja) 2006-09-08 2007-07-10 マグネシウム合金部材とその製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-244887 2006-09-08
JP2006244887 2006-09-08
JP2006-263645 2006-09-27
JP2006263645 2006-09-27

Publications (1)

Publication Number Publication Date
WO2008029497A1 true WO2008029497A1 (fr) 2008-03-13

Family

ID=39156943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/000751 WO2008029497A1 (fr) 2006-09-08 2007-07-10 Élément d'alliage de magnésium et son procédé de production

Country Status (9)

Country Link
US (1) US8501301B2 (ja)
EP (1) EP2060642B1 (ja)
JP (1) JP5201535B2 (ja)
KR (1) KR101412245B1 (ja)
AU (1) AU2007292778B2 (ja)
BR (1) BRPI0715865A2 (ja)
RU (1) RU2414518C2 (ja)
TW (1) TWI406719B (ja)
WO (1) WO2008029497A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010069699A (ja) * 2008-09-18 2010-04-02 Sumitomo Electric Ind Ltd マグネシウム合金部材およびその製造方法
JP2010076339A (ja) * 2008-09-29 2010-04-08 Sumitomo Electric Ind Ltd マグネシウム合金部材
WO2010047045A1 (ja) * 2008-10-22 2010-04-29 住友電気工業株式会社 マグネシウム合金成形体及びマグネシウム合金板
WO2010103971A1 (ja) * 2009-03-12 2010-09-16 住友電気工業株式会社 マグネシウム合金部材
WO2011071024A1 (ja) 2009-12-11 2011-06-16 住友電気工業株式会社 マグネシウム合金材
WO2011071023A1 (ja) 2009-12-11 2011-06-16 住友電気工業株式会社 マグネシウム合金部材
JP2011189743A (ja) * 2011-04-15 2011-09-29 Sumitomo Electric Ind Ltd マグネシウム合金部材およびその製造方法
EP2386670A1 (en) * 2009-01-09 2011-11-16 Sumitomo Electric Industries, Ltd. Magnesium alloy member
JP2011230188A (ja) * 2010-04-27 2011-11-17 Ichia Technologies Inc 金属板微細成形プロセス及び成形型の細線を形成する方法
RU2451105C1 (ru) * 2010-10-29 2012-05-20 Федеральное государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Способ изготовления листов из сплава системы алюминий-магний-марганец
US20120128997A1 (en) * 2010-03-30 2012-05-24 Sumitomo Electries Industries, Ltd. Coil material and method for manufacturing the same
JP2012107285A (ja) * 2010-11-16 2012-06-07 Sumitomo Electric Ind Ltd マグネシウム合金部材
JP2012107284A (ja) * 2010-11-16 2012-06-07 Sumitomo Electric Ind Ltd マグネシウム合金部材の製造方法
US9181608B2 (en) 2010-02-08 2015-11-10 Sumitomo Electric Industries, Ltd. Magnesium alloy sheet
JP2016083696A (ja) * 2014-10-29 2016-05-19 権田金属工業株式会社 マグネシウム合金板材、マグネシウム合金板材の製造方法、マグネシウム合金製品、マグネシウム合金製品の製造方法及びマグネシウム合金最終製品
CN115747545A (zh) * 2022-12-29 2023-03-07 中北大学 一种加压熔炼和自由流体快速冷却相结合的镁合金制备方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100055570A1 (en) * 2008-08-26 2010-03-04 Pacesetter, Inc. Biobattery with nanocrystalline material anode
RU2445409C1 (ru) * 2011-03-17 2012-03-20 Учреждение Российской академии наук Институт химии Дальневосточного отделения Российской академии наук (Институт химии ДВО РАН) Способ получения антикоррозионных кальцийсодержащих покрытий на сплавах магния
WO2015168439A1 (en) 2014-04-30 2015-11-05 Nitto Denko Corporation Inorganic oxide coated fluorescent chromophores for use in highly photostable wavelength conversion films
CN104109827B (zh) * 2014-08-11 2016-04-13 重庆科技学院 Mg-Zn系镁合金板材的轧制工艺
US20160373154A1 (en) * 2015-06-16 2016-12-22 Ii-Vi Incorporated Electronic Device Housing Utilizing A Metal Matrix Composite
WO2017066933A1 (en) 2015-10-21 2017-04-27 Hewlett-Packard Development Company, L.P. Coating compositions with improved durabilities, coating layers and preparing method thereof
JP6173532B1 (ja) * 2016-06-21 2017-08-02 東京特殊電線株式会社 銅被覆マグネシウム線及びその製造方法
CN109055841B (zh) * 2018-09-06 2020-08-25 中国石油大学(华东) 铸造可溶镁合金复合材料压裂球表面防护层制备方法
CN110714219A (zh) * 2019-11-04 2020-01-21 吉林大学 镁合金微弧氧化表面电镀镍的方法
CN111058022B (zh) * 2019-11-28 2021-09-28 广州市敬业金属实业有限公司 一种铁艺栏杆的防腐抑菌处理方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001049493A (ja) * 1999-08-03 2001-02-20 Chiyoda Kiki Hanbai Kk マグネシウム合金の皮膜生成方法及びその電解液
JP2001073194A (ja) * 1999-09-02 2001-03-21 Shimano Inc 塗装部品
JP2001288580A (ja) * 2000-03-31 2001-10-19 Nippon Parkerizing Co Ltd マグネシウム合金の表面処理方法、およびマグネシウム合金部材
JP2003055795A (ja) * 2001-08-10 2003-02-26 Niigata Prefecture マグネシウム合金製薄肉製品の製造方法
JP2005002378A (ja) 2003-06-10 2005-01-06 Sumitomo Metal Ind Ltd マグネシウム合金板の製造方法
JP2005120212A (ja) * 2003-10-16 2005-05-12 Toto Ltd 機能性コーティング材及び機能性複合材並びにその製造方法
JP2005248204A (ja) 2004-03-01 2005-09-15 Sumitomo Electric Ind Ltd 金属コロイド溶液
JP2005281717A (ja) * 2004-03-26 2005-10-13 Kurimoto Ltd マグネシウム合金の化成処理皮膜の形成方法
WO2006003899A1 (ja) 2004-06-30 2006-01-12 Sumitomo Electric Industries, Ltd. マグネシウム合金材の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59180832A (ja) * 1983-03-31 1984-10-15 Nippon Light Metal Co Ltd 磁気記録材用アルマイト基板
DE3481322D1 (de) * 1983-12-02 1990-03-15 Sumitomo Electric Industries Aluminiumlegierungen und verfahren zu ihrer herstellung.
US5874175A (en) * 1988-11-29 1999-02-23 Li; Chou H. Ceramic composite
EP0665299B1 (en) * 1993-12-17 2000-03-08 Mazda Motor Corporation Magnesium alloy cast material for plastic processing, magnesium alloy member using the same, and manufacturing method thereof
US5700424A (en) * 1996-03-06 1997-12-23 Sky Aluminium Co., Ltd. System for preparing aluminum alloy strip having improved formability and bake hardenability
JP3500911B2 (ja) * 1997-05-28 2004-02-23 スズキ株式会社 Mg基複合材料又はMg合金基複合材料の製造方法
EP0972852B1 (en) * 1997-11-14 2005-04-06 Sumitomo Osaka Cement Co., Ltd. Method of producing antimicrobial metal articles and antimicrobial metal articles produced by the method
US20030213771A1 (en) * 2000-03-31 2003-11-20 Kenichirou Ohshita Surface treatment method for magnesium alloys and magnesium alloy members thus treated
US6929705B2 (en) * 2001-04-30 2005-08-16 Ak Steel Corporation Antimicrobial coated metal sheet
US7393440B2 (en) * 2005-05-09 2008-07-01 National Research Council Of Canada Hydrogen generation system
WO2009038844A2 (en) * 2007-06-13 2009-03-26 Thixomat, Inc. High impact resistant metal alloy plate

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001049493A (ja) * 1999-08-03 2001-02-20 Chiyoda Kiki Hanbai Kk マグネシウム合金の皮膜生成方法及びその電解液
JP2001073194A (ja) * 1999-09-02 2001-03-21 Shimano Inc 塗装部品
JP2001288580A (ja) * 2000-03-31 2001-10-19 Nippon Parkerizing Co Ltd マグネシウム合金の表面処理方法、およびマグネシウム合金部材
JP2003055795A (ja) * 2001-08-10 2003-02-26 Niigata Prefecture マグネシウム合金製薄肉製品の製造方法
JP2005002378A (ja) 2003-06-10 2005-01-06 Sumitomo Metal Ind Ltd マグネシウム合金板の製造方法
JP2005120212A (ja) * 2003-10-16 2005-05-12 Toto Ltd 機能性コーティング材及び機能性複合材並びにその製造方法
JP2005248204A (ja) 2004-03-01 2005-09-15 Sumitomo Electric Ind Ltd 金属コロイド溶液
JP2005281717A (ja) * 2004-03-26 2005-10-13 Kurimoto Ltd マグネシウム合金の化成処理皮膜の形成方法
WO2006003899A1 (ja) 2004-06-30 2006-01-12 Sumitomo Electric Industries, Ltd. マグネシウム合金材の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2060642A4

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010069699A (ja) * 2008-09-18 2010-04-02 Sumitomo Electric Ind Ltd マグネシウム合金部材およびその製造方法
JP2010076339A (ja) * 2008-09-29 2010-04-08 Sumitomo Electric Ind Ltd マグネシウム合金部材
JPWO2010047045A1 (ja) * 2008-10-22 2012-03-15 住友電気工業株式会社 マグネシウム合金成形体及びマグネシウム合金板
WO2010047045A1 (ja) * 2008-10-22 2010-04-29 住友電気工業株式会社 マグネシウム合金成形体及びマグネシウム合金板
JP2015034350A (ja) * 2008-10-22 2015-02-19 住友電気工業株式会社 マグネシウム合金成形体、マグネシウム合金板、マグネシウム合金成形体の製造方法、及びマグネシウム合金板の製造方法
US20110203706A1 (en) * 2008-10-22 2011-08-25 Yukihiro Oishi Formed product of magnesium alloy and magnesium alloy sheet
EP2386670A4 (en) * 2009-01-09 2013-06-26 Sumitomo Electric Industries MAGNESIUM ALLOY ELEMENT
EP2386670A1 (en) * 2009-01-09 2011-11-16 Sumitomo Electric Industries, Ltd. Magnesium alloy member
WO2010103971A1 (ja) * 2009-03-12 2010-09-16 住友電気工業株式会社 マグネシウム合金部材
JP2010209452A (ja) * 2009-03-12 2010-09-24 Sumitomo Electric Ind Ltd マグネシウム合金部材
WO2011071023A1 (ja) 2009-12-11 2011-06-16 住友電気工業株式会社 マグネシウム合金部材
US8906294B2 (en) 2009-12-11 2014-12-09 Sumitomo Electric Industries, Ltd. Magnesium alloy material
US9103010B2 (en) 2009-12-11 2015-08-11 Sumitomo Electric Industries, Ltd. Magnesium alloy structural member
WO2011071024A1 (ja) 2009-12-11 2011-06-16 住友電気工業株式会社 マグネシウム合金材
US9181608B2 (en) 2010-02-08 2015-11-10 Sumitomo Electric Industries, Ltd. Magnesium alloy sheet
US20120128997A1 (en) * 2010-03-30 2012-05-24 Sumitomo Electries Industries, Ltd. Coil material and method for manufacturing the same
US9222160B2 (en) * 2010-03-30 2015-12-29 Sumitomo Electric Industries, Ltd. Coil material and method for manufacturing the same
JP2011230188A (ja) * 2010-04-27 2011-11-17 Ichia Technologies Inc 金属板微細成形プロセス及び成形型の細線を形成する方法
RU2451105C1 (ru) * 2010-10-29 2012-05-20 Федеральное государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Способ изготовления листов из сплава системы алюминий-магний-марганец
JP2012107284A (ja) * 2010-11-16 2012-06-07 Sumitomo Electric Ind Ltd マグネシウム合金部材の製造方法
JP2012107285A (ja) * 2010-11-16 2012-06-07 Sumitomo Electric Ind Ltd マグネシウム合金部材
JP2011189743A (ja) * 2011-04-15 2011-09-29 Sumitomo Electric Ind Ltd マグネシウム合金部材およびその製造方法
JP2016083696A (ja) * 2014-10-29 2016-05-19 権田金属工業株式会社 マグネシウム合金板材、マグネシウム合金板材の製造方法、マグネシウム合金製品、マグネシウム合金製品の製造方法及びマグネシウム合金最終製品
CN115747545A (zh) * 2022-12-29 2023-03-07 中北大学 一种加压熔炼和自由流体快速冷却相结合的镁合金制备方法
CN115747545B (zh) * 2022-12-29 2023-08-11 中北大学 一种加压熔炼和自由流体快速冷却相结合的镁合金制备方法

Also Published As

Publication number Publication date
US8501301B2 (en) 2013-08-06
AU2007292778A1 (en) 2008-03-13
EP2060642A4 (en) 2016-12-21
JPWO2008029497A1 (ja) 2010-01-21
JP5201535B2 (ja) 2013-06-05
RU2009113020A (ru) 2010-10-20
BRPI0715865A2 (pt) 2013-03-12
AU2007292778B2 (en) 2011-01-06
TWI406719B (zh) 2013-09-01
KR20090051080A (ko) 2009-05-20
TW200821064A (en) 2008-05-16
RU2414518C2 (ru) 2011-03-20
EP2060642A1 (en) 2009-05-20
EP2060642B1 (en) 2018-08-22
US20110217514A1 (en) 2011-09-08
KR101412245B1 (ko) 2014-06-25

Similar Documents

Publication Publication Date Title
JP5201535B2 (ja) マグネシウム合金部材とその製造方法
EP2738273B1 (en) Aluminum alloy sheet and method for manufacturing same
TWI511875B (zh) Molten galvanized steel sheet
KR101679159B1 (ko) 용융 아연 도금 강판
KR101721483B1 (ko) 프레스 가공용 용융 아연 도금 강판
CN108350554B (zh) 镀覆钢板
CN111527232A (zh) 加工后耐蚀性优异的镀锌合金钢材及其制造方法
JP7332943B2 (ja) ホットスタンプ成形体
TW201807210A (zh) Al-Mg-Si系合金材、Al-Mg-Si系合金板及Al-Mg-Si系合金板之製造方法
CN116670317A (zh) 密封剂粘合性优异的镀覆钢板及其制造方法
CN101512028A (zh) 镁合金构件及其制造方法
JP4889212B2 (ja) 高張力合金化溶融亜鉛めっき鋼板およびその製造方法
EP3178961B1 (en) High-strength hot-dip-galvanized steel sheet
TWI588293B (zh) 熱壓印成形體
JP4720618B2 (ja) 合金化溶融亜鉛めっき鋼板及びその製造方法
EP3178960B1 (en) High-strength hot-dip-galvanized steel sheet
JP2004010982A (ja) 曲げ加工性とプレス成形性に優れたアルミニウム合金板
CN116710579A (zh) 热压构件
EP2511391A1 (en) Magnesium alloy member
EP4230760A1 (en) Plated steel material
JP7445113B2 (ja) 熱間プレス成形用めっき鋼板
JP7265217B2 (ja) ホットスタンプ用めっき鋼板
WO2016059743A1 (ja) 溶融亜鉛めっき鋼板
CN116801996A (zh) 热冲压用镀覆钢板和热冲压成型体的制造方法、以及热冲压成型体
JP2004190126A (ja) 耐食性に優れたマグネシウム合金板材

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780033349.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07790247

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008533034

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007292778

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 12377916

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007790247

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2007292778

Country of ref document: AU

Date of ref document: 20070710

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020097004844

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1333/CHENP/2009

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2009113020

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: PI0715865

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090220