WO2011071024A1 - マグネシウム合金材 - Google Patents

マグネシウム合金材 Download PDF

Info

Publication number
WO2011071024A1
WO2011071024A1 PCT/JP2010/071849 JP2010071849W WO2011071024A1 WO 2011071024 A1 WO2011071024 A1 WO 2011071024A1 JP 2010071849 W JP2010071849 W JP 2010071849W WO 2011071024 A1 WO2011071024 A1 WO 2011071024A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium alloy
sample
plate
alloy material
speed
Prior art date
Application number
PCT/JP2010/071849
Other languages
English (en)
French (fr)
Inventor
水野 修
奥田 伸之
宏治 森
山川 真弘
正行 西澤
崇康 杉原
光治 井口
河部 望
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to KR1020127014877A priority Critical patent/KR101463319B1/ko
Priority to CN201080056199XA priority patent/CN102652180A/zh
Priority to RU2012129180/02A priority patent/RU2516128C2/ru
Priority to BR112012013855A priority patent/BR112012013855A2/pt
Priority to US13/515,169 priority patent/US8906294B2/en
Priority to EP10835944.9A priority patent/EP2511392B1/en
Publication of WO2011071024A1 publication Critical patent/WO2011071024A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/22Orthophosphates containing alkaline earth metal cations

Definitions

  • the present invention relates to a magnesium alloy material suitable as a constituent material for various parts such as automobile parts and casings of portable electric devices.
  • a magnesium alloy material excellent in impact resistance relates to a magnesium alloy material excellent in impact resistance.
  • Magnesium alloys that are lightweight and have excellent specific strength and specific rigidity have been studied as constituent materials for various parts such as casings for portable electrical devices such as mobile phones and notebook personal computers, and automobile parts such as wheel covers and paddle shifters. ing.
  • Parts made of magnesium alloys are mainly cast materials (ASTM standard AZ91 alloy) by die casting or thixomolding.
  • ASTM standard AZ31 alloy a plate made of a magnesium alloy for spreading represented by ASTM standard AZ31 alloy is being used.
  • Patent Documents 1 and 2 disclose that a rolled plate made of an AZ91 alloy or an alloy containing Al at the same level as the AZ91 alloy is manufactured under specific conditions and subjected to press working.
  • Magnesium is said to have excellent vibration energy absorption characteristics.
  • an alloy content that reduces Al content or does not contain Zn specifically, an ASTM standard AM60 alloy is used.
  • the above AM60 alloy is excellent in impact resistance, further improvement is desired.
  • the internal defect such as the nest is likely to exist, and the Al component is locally high concentration, the crystal grains are randomly oriented, etc. Tissue tends to be uneven.
  • a cast material such as a die-cast material made of an AZ91 alloy since the content of Al is large, Al does not completely dissolve and tends to precipitate as an intermetallic compound at the crystal grain boundary.
  • Casting materials such as die-cast materials made of AZ91 alloy have high impact resistance due to the above-mentioned defects and grain boundary precipitates becoming the starting point of fracture, and the above-mentioned composition and non-uniform structure are mechanical weak points. Inferior.
  • an object of the present invention is to provide a magnesium alloy material having excellent impact resistance.
  • the present inventors aimed at a magnesium alloy containing more than 7.5% by mass of Al, and produced plates by various manufacturing methods using this magnesium alloy. . And the impact resistance of the obtained board was investigated. As a result, it has been found that a magnesium alloy sheet produced under specific production conditions is very excellent in impact resistance.
  • a precipitate such as an intermetallic compound containing at least one of Mg and Al such as Mg 17 Al 12 and Al 6 (MnFe) in the magnesium alloy was investigated.
  • the precipitate particles were relatively small and uniformly dispersed, and coarse particles of 5 ⁇ m or more were not substantially present. Therefore, a method for controlling the particle size and the amount of the precipitates, that is, preventing the generation of coarse precipitates as described above and producing a certain amount of fine precipitates was studied.
  • the manufacturing conditions are controlled so that the total time for keeping the magnesium alloy material in a specific temperature range is within a specific range. It was found that it is preferable to do this.
  • the present invention is based on the above findings.
  • the present invention relates to a magnesium alloy material made of a magnesium alloy containing Al in excess of 7.5% by mass, and has a Charpy impact value of 30 J / cm 2 or more.
  • the magnesium alloy material of the present invention has a very large impact absorption energy, and has a Charpy impact value equal to or higher than that of AM60 alloy as shown in a test example described later, and is excellent in impact resistance. Therefore, when the magnesium alloy material of the present invention is used as a constituent material of a component that is desired to sufficiently absorb energy at the time of impact, such as an automobile component, even if stress is applied at a high speed, it is easily cracked. It does not occur and is expected to absorb shocks sufficiently. Therefore, it is expected that the magnesium alloy material of the present invention can be suitably used as a constituent material of the impact absorbing member.
  • the larger the Charpy impact value the greater the impact absorption energy, so 40 J / cm 2 or more is more preferable, and there is no upper limit.
  • the magnesium alloy material of the present invention contains more Al than AM60 alloy, so that it has excellent corrosion resistance compared to AM60 alloy. Especially this invention magnesium alloy material is excellent in corrosion resistance also from having a specific structure
  • the elongation in a high-speed tensile test at a tensile speed of 10 m / sec is 10% or more.
  • the magnesium alloy material of the present invention has a tensile rate of 10 m / sec, although the elongation in a general tensile test (tensile speed: about several mm / sec) is slightly inferior to that of the AM60 alloy.
  • the surprising result was that the elongation in the tensile test at such a high speed was higher than that of the AM60 alloy.
  • the magnesium alloy material of the present invention has such a high elongation in the high-speed tensile test, it is expected that the magnesium alloy material can be sufficiently deformed to absorb the shock when subjected to an impact (when an object contacts at a high speed). It is considered that the greater the elongation, the better the impact resistance, and it is preferably 12% or more, more preferably 14% or more, and no upper limit is set.
  • the tensile strength in a high-speed tensile test at a tensile speed of 10 m / sec is 300 MPa or more.
  • the magnesium alloy material of the present invention has high elongation and high toughness in the high-speed tensile test as described above, and also has high tensile strength and high strength in the high-speed tensile test.
  • the tensile strength is preferably as high as possible, 320 MPa or more, more preferably over 330 MPa, and no upper limit.
  • the elongation EL hg in a high-speed tensile test at a tensile speed of 10 m / sec is 1.3 times or more of the elongation EL low in a low-speed tensile test at a tensile speed of 2 mm / sec.
  • the elongation in the said high-speed tensile test is high, and the difference with the elongation in the said low-speed tensile test is large.
  • the AM60 alloy has a high elongation in the high-speed tensile test as shown in the test examples described later, but the elongation is almost the same as the elongation in the low-speed tensile test.
  • the absolute value of the elongation in the high-speed tensile test is high and the difference from the elongation in the low-speed tensile test is large. It can be said that it has the ability possible. Therefore, according to the said form, it is excellent in impact resistance.
  • a form satisfying EL hg ⁇ 1.5 ⁇ EL low can be obtained.
  • particles of precipitates are present dispersed in the magnesium alloy, and the average particle size of the particles of these precipitates is 0.05 ⁇ m or more and 1 ⁇ m or less, and in the cross section of the magnesium alloy material A form in which the ratio of the total area of the precipitate particles is 1% or more and 20% or less is mentioned.
  • the magnesium alloy material of the present invention is difficult to dent even when subjected to an impact due to the improvement in rigidity of the plate itself by the dispersion strengthening of the precipitates, and is excellent in impact resistance characteristics.
  • the magnesium alloy material of the present invention is excellent in impact resistance because it was possible to maintain the strength by suppressing the decrease in strength. Therefore, the magnesium alloy material of the present invention having the above specific structure is excellent in impact resistance.
  • the magnesium alloy material of the present invention since there are few coarse precipitates, it is excellent also in plastic workability, and press work can be performed easily.
  • the particles of the precipitate may include particles composed of an intermetallic compound containing at least one of Al and Mg.
  • the intermetallic compounds tend to have better corrosion resistance than magnesium alloys. Therefore, according to the said form, in addition to the impact resistance improvement by the dispersion
  • the magnesium alloy material of the present invention is excellent in impact resistance.
  • FIG. 1 is a graph showing the Charpy impact value of a magnesium alloy material.
  • FIG. 2 is a graph showing elongation in a high-speed tensile test and a low-speed tensile test of a magnesium alloy material.
  • FIG. 3 is a graph showing the tensile strength of a magnesium alloy material in a high-speed tensile test and a low-speed tensile test.
  • FIG. 4 is a graph showing 0.2% proof stress in a high-speed tensile test and a low-speed tensile test of a magnesium alloy material.
  • FIG. 5 is a plan view of a test piece used in the high-speed tensile test. 6 is a micrograph (magnification 5000) of the magnesium alloy material, FIG.
  • FIG. 6 (I) shows Sample No. 1
  • FIG. 6 (II) shows Sample No. 110.
  • FIG. 7 is a micrograph of a cross section of a magnesium alloy member having an anticorrosion layer
  • FIG. 7 (I) is Sample No. 1 (250,000 times)
  • FIG. 7 (II) is Sample No. 110 (100,000 times). ).
  • the magnesium alloy constituting the magnesium alloy material of the present invention includes those having various compositions containing an additive element in Mg (remainder: Mg and impurities, Mg: 50% by mass or more).
  • Mg residual material
  • impurities Mg: 50% by mass or more
  • an Mg-Al alloy containing at least 7.5% by mass of Al as an additive element is used.
  • the mechanical properties such as strength and plastic deformation resistance of the magnesium alloy itself can be improved, and the corrosion resistance is also excellent.
  • the content of Al is preferably 12% by mass or less.
  • Additive elements other than Al were selected from Zn, Mn, Si, Ca, Sr, Y, Cu, Ag, Be, Sn, Li, Zr, Ce, Ni, Au, and rare earth elements (excluding Y and Ce)
  • Mg-Al alloys include, for example, AZ alloys (Mg-Al-Zn alloys, Zn: 0.2 mass% to 1.5 mass%) and AM alloys (Mg-Al-Mn alloys) according to ASTM standards.
  • Mn 0.15 mass% to 0.5 mass%)
  • Mg-Al-RE rare earth element
  • AX alloy Mg-Al-Ca alloy, Ca: 0.2 mass% to 6.0 mass%)
  • AJ alloy Mg—Al—Sr alloy, Sr: 0.2 mass% to 7.0 mass%)
  • the form containing 8.3 mass% to 9.5 mass% of Al is excellent in strength and corrosion resistance.
  • an Mg-Al alloy containing 8.3% to 9.5% by mass of Al and 0.5% to 1.5% by mass of Zn typically an AZ91 alloy.
  • the magnesium alloy has a structure in which fine precipitates having an average particle size of 0.05 ⁇ m to 1 ⁇ m are dispersed. When the cross section of the magnesium alloy material is taken and the magnesium alloy material is 100% by area, the precipitate Is present from 1 area% to 20 area%.
  • the precipitate contains an additive element in the magnesium alloy, typically an intermetallic compound containing Mg or Al, more specifically composed of Mg 17 Al 12 (not limited to Mg 17 Al 12 ) Is mentioned. With an average particle size of 0.05 ⁇ m or more and a precipitate content of 1 area% or more, there are sufficient precipitates in the magnesium alloy, and excellent impact resistance is achieved by dispersion strengthening of these precipitates. Can have sex.
  • the average particle size of the precipitate is 1 ⁇ m or less and the content of the precipitate is 20 area% or less, there is no precipitate in the magnesium alloy, or there is no coarse precipitate. Suppresses a decrease in the amount of solid solution, and is excellent in strength.
  • a more preferable average particle diameter is 0.1 ⁇ m or more and 0.5 ⁇ m or less, and a more preferable precipitate content is 3 area% or more and 15 area% or less, further 12 area% or less, and particularly 5 area% or more and 10 area% or less.
  • the magnesium alloy material of the present invention typically includes a rectangular plate material (magnesium alloy plate), and may take various shapes such as a circular shape as well as a rectangular shape.
  • This plate-like material can take the form of a coil material obtained by winding a continuous long material, or a short material having a predetermined length and shape.
  • this plate-shaped material can be made into the form which has the hole etc. which the boss
  • this plate-like material can take various forms depending on the manufacturing process.
  • the magnesium alloy material of the present invention includes a molded body obtained by subjecting the plate-like material to plastic working such as press working such as bending or drawing.
  • the form, size (area) and thickness of the magnesium alloy material may be selected. In particular, when the thickness is 2.0 mm or less, further 1.5 mm or less, particularly 1 mm or less, it can be suitably used for thin and lightweight parts (typically, housings and automobile parts).
  • the molded body is, for example, a cross-sectional box having a top plate portion (bottom surface portion) and a side wall portion erected from the periphery of the top plate portion, a frame-like frame body, and the top plate portion being a disc.
  • the shape and size are not particularly limited, such as a covered cylindrical body having a cylindrical side wall portion.
  • the top plate or the like has a boss or the like formed or joined integrally, has a hole penetrating the front and back, a groove recessed in the thickness direction, has a stepped shape, plastic processing or cutting processing It may have a portion where the thickness is locally different.
  • this invention magnesium alloy material can be made into the form which provides the plastic processing part to which plastic processing called press processing was given only in part.
  • the portion where the deformation due to plastic deformation is small is the plate that is the material for plastic working.
  • the structure and mechanical properties of the shaped material (magnesium alloy plate) are generally maintained. Therefore, in the form having a molded body and a plastic working part, when measuring mechanical properties such as Charpy impact value and elongation, test specimens are collected from locations where there is little deformation due to the plastic deformation.
  • the magnesium alloy material of the present invention is characterized in that the Charpy impact value, the elongation in the high-speed tensile test, and the tensile strength are equal to or greater than those of the AM60 alloy as described above.
  • the magnesium alloy material of the present invention bends without breaking (breaking) when the Charpy impact test is performed, that is, when stress is applied at a high speed, as shown in a test example described later.
  • the magnesium alloy material of the present invention is sufficiently plastically deformed when subjected to an impact, and can absorb the energy at the time of the impact by deformation. For example, when used as a constituent material of an automobile part such as a chassis or a bumper. It is expected to contribute to the protection of passengers in the car.
  • the magnesium alloy material of the present invention can be a magnesium alloy member having on its surface an anticorrosive layer formed by surface treatment such as chemical conversion treatment or anodizing treatment.
  • the magnesium alloy member is further excellent in corrosion resistance by including a corrosion prevention layer in addition to the magnesium alloy material of the present invention which is also excellent in corrosion resistance.
  • the anticorrosion layer may have a specific structure (double layer structure). And the magnesium alloy member which has this anticorrosion layer of the specific structure was very excellent in corrosion resistance.
  • a specific structure of the anticorrosion layer is a two-layer structure including a lower layer formed on the magnesium alloy material side and a surface layer formed on the lower layer.
  • the surface layer is denser than the lower layer, and this lower layer is a porous layer.
  • the anticorrosion layer is very thin, and the total thickness of the anticorrosion layer having a two-layer structure is 50 nm to 300 nm (the lower layer is about 60% to 75% of the thickness).
  • the magnesium alloy material of the present invention having the above specific structure is a plate-like material, it can be produced, for example, by a method for producing a magnesium alloy plate comprising the following steps.
  • Preparation step A step of preparing a cast plate made of a magnesium alloy containing Al in excess of 7.5% by mass and manufactured by a continuous casting method.
  • Solution treatment step A step of producing a solid solution plate by subjecting the cast plate to a solution treatment at a temperature of 350 ° C. or higher.
  • Rolling step A step of producing a rolled plate by subjecting the solid solution plate to warm rolling.
  • the total time for maintaining the material plate (typically a rolled sheet) to be processed in a temperature range of 150 ° C. or more and 300 ° C. or less is 0.5 hours or more and 12 hours or less.
  • the thermal history of the material plate is controlled so as not to be heated to a temperature exceeding 300 ° C.
  • the manufacturing method can include a correction process for correcting the rolled plate.
  • straightening is performed in a state where the rolled sheet is heated to 100 ° C. or higher and 300 ° C. or lower, that is, warm correction is performed.
  • a time for holding the rolled sheet in the temperature range of 150 ° C. or more and 300 ° C. or less in the straightening process is included in the total time.
  • the form in which the magnesium alloy material of the present invention is a molded body and the form having a plastic working part are, for example, a rolled plate obtained by the above-described method for producing a magnesium alloy plate as a material, and a straightening obtained by the straightening process.
  • a plate can be prepared, and can be manufactured by a manufacturing method including a plastic processing step in which plastic processing is performed on the material.
  • the magnesium alloy member comprising the magnesium alloy material of the present invention and the anticorrosion layer is produced, for example, by a manufacturing method comprising a surface treatment step of subjecting the plastic-processed material to a chemical conversion treatment or an anodizing treatment. Can be manufactured.
  • the anticorrosion layer formed by the surface treatment can be prevented from being damaged during the plastic working.
  • the anticorrosion treatment can be applied to the material before the plastic working.
  • a step of preparing a rolled plate or a correction plate as described above on the material a step of applying an anticorrosion treatment to the material, and a step of applying the plastic working after the anticorrosion treatment
  • a method of providing in this manufacturing method since the anticorrosion treatment target is a flat shape such as a plate-like material, the anticorrosion treatment can be easily performed.
  • the magnesium alloy material of the present invention Al is sufficiently dissolved in the magnesium alloy by performing the solution treatment as described above. Then, in the manufacturing process after the solution treatment, by keeping the material composed of the magnesium alloy in a temperature range (150 ° C. to 300 ° C.) in which the precipitate is likely to be precipitated within a specific range, While precipitating, the amount can be within a specific range. In addition, by controlling the time for holding in the specific temperature range, excessive growth of the precipitate can be suppressed, and a structure in which fine precipitates are dispersed can be obtained.
  • a workpiece solution-treated material.
  • the plastic workability is improved and rolling is easy.
  • the Al content is as high as more than 7.5% by mass, so that precipitates such as the above-mentioned intermetallic compounds are likely to be deposited, or the deposited precipitates grow and become coarse particles It becomes easy to become.
  • precipitates are generated excessively or grow coarsely, the amount of solid solution of Al in the magnesium alloy decreases. And the fall of the strength and corrosion resistance of magnesium alloy itself is caused by the fall of the solid solution amount of Al. Further, due to the decrease in the amount of Al dissolved, it is difficult to further improve the corrosion resistance even if the anticorrosion layer is formed.
  • Patent Document 1 proposes that heat treatment (final annealing) after rolling is performed at 300 ° C. to 340 ° C. for the AZ91 alloy. Even when the heat treatment is performed at a heating temperature of more than 300 ° C., the precipitate grows and tends to become coarse particles. From these things, it proposes controlling the heat history of a raw material board with respect to the process after solution forming as mentioned above.
  • the cast plate it is preferable to use a cast plate produced by a continuous casting method such as a twin-roll method, in particular, a casting method described in WO / 2006/003899. Since the continuous casting method can be rapidly solidified, it can reduce oxides and segregation, and can suppress the formation of coarse crystal precipitates exceeding 10 ⁇ m that can be the starting point of cracking. Therefore, a cast plate having excellent rolling properties can be obtained.
  • the size of the cast plate is not particularly limited, but segregation is likely to occur if it is too thick.
  • the cast plate is subjected to a solution treatment so that the composition is homogenized and a solid solution plate in which an element such as Al is dissolved is manufactured.
  • the solution treatment is preferably performed at a holding temperature of 350 ° C. or higher, particularly a holding temperature: 380 ° C. to 420 ° C. and a holding time: 60 minutes to 2400 minutes (1 hour to 40 hours). Further, it is preferable that the holding time is longer as the Al content is higher.
  • forced cooling such as water cooling or blast is used to increase the cooling rate (for example, 50 ° C./min or more), it is possible to suppress the precipitation of coarse precipitates. This is preferable.
  • a desired plate thickness By rolling a plurality of times (multi-pass), a desired plate thickness can be obtained, and the average crystal grain size of the material can be reduced (for example, 10 ⁇ m or less), and plastic workability such as rolling and pressing can be improved.
  • the rolling may be performed using known conditions, for example, heating not only the raw material but also the rolling roll, or a combination of non-preheat rolling and controlled rolling disclosed in Patent Document 1. In rolling with a small rolling reduction such as finish rolling, the rolling may be performed cold. Furthermore, when the above-described rolling is appropriately used with a lubricant, the frictional resistance during rolling can be reduced, and the material can be prevented from being seized and rolled.
  • intermediate heat treatment may be performed between passes so long as the holding time in the temperature range of 150 ° C. to 300 ° C. described above is included in the total time.
  • the holding temperature is set to 300 ° C. or lower.
  • a preferable holding temperature is 250 ° C. or higher and 280 ° C. or lower.
  • the final heat treatment (final annealing) can be performed on the rolled sheet obtained by the rolling process as described in Patent Document 1, this final heat treatment is not performed and the warm correction is performed as described above. Is preferable because of excellent plastic workability such as press working. Correction is performed by using a roll leveler or the like in which a plurality of rolls are arranged in a staggered manner as described in Patent Document 2, and heating the rolled plate to 100 to 300 ° C., preferably 150 to 280 ° C. Is mentioned. When plastic processing such as press processing is performed on the straightened plate that has been subjected to such warm correction, dynamic recrystallization occurs during the plastic processing, and the plastic workability is excellent.
  • the said holding time in a correction process can be made very short by performing correction processing with respect to the raw material which became comparatively thin by rolling. For example, depending on the thickness of the material, the holding time can be set to several minutes, and further within one minute.
  • the plastic working property of the material is preferably increased in a temperature range of 200 ° C. to 300 ° C.
  • the time for holding the material at 200 ° C. to 300 ° C. at the time of plastic working is very short, for example, it may be within 60 seconds depending on the press working, and defects such as coarsening of precipitates as described above are substantially It is thought that it does not occur.
  • the heat treatment conditions include a heating temperature: 100 ° C. to 300 ° C. and a heating time: about 5 minutes to 60 minutes. However, also in this heat treatment, a holding time in a temperature range of 150 ° C. to 300 ° C. is included in the total time.
  • Total time to keep the material in a specific temperature range In order to produce the magnesium alloy material of the present invention having the above specific structure, the total time for maintaining the material in the temperature range of 150 ° C. or higher and 300 ° C. or lower in the steps from the solution forming step to obtaining the final product.
  • the greatest feature is that the material is controlled to be 0.5 to 12 hours and the material is not heated to a temperature exceeding 300 ° C.
  • Conventionally, for magnesium alloys with an Al content of over 7.5% by mass how much total time to keep the material in the temperature range of 150 ° C to 300 ° C in the process from solution treatment to final product It was not considered enough.
  • a specific amount of fine precipitates is dispersed by controlling the holding time in the above temperature range where the precipitates are easily generated or the products are likely to grow as described above.
  • the magnesium alloy material of the present invention having an existing structure can be obtained.
  • the temperature range 150 ° C. or more and 280 ° C. or less
  • the total time 1 hour or more and 6 hours or less
  • the processing degree of each pass in the rolling process and the total processing degree of the rolling process conditions during the intermediate heat treatment, Control conditions during correction.
  • the total time is preferably adjusted depending on the Al content.
  • the chemical conversion treatment can be performed under known conditions by appropriately using a known chemical conversion treatment liquid.
  • a known chemical conversion treatment liquid it is preferable to use a manganese phosphate / calcium-based solution which is a non-chromium treatment solution.
  • the corrosion resistance can be further improved and the commercial value can be increased.
  • the magnesium alloy material of sample No. 1 is a plate-like material (magnesium alloy plate) produced by a process of casting ⁇ solution treatment ⁇ rolling (warm) ⁇ correction (warm).
  • the heating time of the material to be rolled and the rolling speed (roll peripheral speed) are adjusted in each pass of the rolling process so that the material is maintained in the temperature range of 150 ° C to 300 ° C.
  • the total time was adjusted.
  • heating exceeding 300 degreeC was not performed.
  • the obtained rolled coil material was rewound and subjected to warm correction, and the obtained correction plate was wound up to produce a correction coil material.
  • warm correction was performed using the strain applying means described in Patent Document 2 and heating the rolled plate to 220 ° C.
  • the temperature was controlled so that the total time during which the material was kept in the temperature range of 150 ° C to 300 ° C by the straightening step was 0.5 to 12 hours.
  • Analysis of the composition of the obtained straight plate (both mass%), Al: 8.79%, Zn: 0.64%, Mn: 0.18%, balance: Mg and impurities, and has a composition equivalent to AZ91 alloy It could be confirmed.
  • the obtained long straight plate (coil material) was cut into an appropriate length to produce a plurality of short plate materials, and each plate material was cut appropriately to prepare test pieces for each test described later.
  • Example No.100,200 As a comparative sample, a commercially available plate material: AZ91 alloy material (casting material with a thickness of 2.1 mm: sample No. 100) and AM60 alloy material (casting material with a thickness of 2.4 mm: sample No. 200) were prepared. Composition analysis of these commercially available materials (both mass%) showed that AZ91 alloy material was Al: 8.89%, Zn: 0.73%, Mn: 0.24%, balance: Mg and impurities, AM60 alloy material was Al: 6.00 %, Mn: 0.3%, balance: Mg and impurities. A plurality of plate materials of each composition were prepared and cut appropriately from each plate material to prepare test pieces for each test described below.
  • the Charpy impact test was performed using a commercially available testing machine.
  • a test piece (thickness: 2.1 mm to 2.5 mm) having a width of about 9 mm and a length of 75 mm to 80 mm is cut out from the plate material of each sample, and the longitudinal direction of each test piece is hammered by a testing machine hammer.
  • Each test piece was attached to a testing machine so as to be orthogonal to the contact direction.
  • the high-speed tensile test was performed using a commercially available testing machine capable of high-speed tension (here, Shimadzu Corporation hydraulic servo type high-speed tensile testing machine). This test was performed by cutting out the constricted test piece 10 shown in FIG. 5 from the plate material of each sample with reference to JIS Z 2201 (1998) and attaching each test piece to a testing machine. A plastic strain gauge 11 is attached to the front and back of the constricted portion of the test piece 10, and the plastic strain (permanent strain) is measured with this gauge 11, and from the intersection of the shoulder portion and the parallel portion at the center line of one surface of the test piece 10.
  • the test conditions were tensile rate (target value): 10 m / sec, strain rate (target value): 1000 / sec, air atmosphere, room temperature (about 20 ° C.).
  • the test piece 10 is produced so that its longitudinal direction is parallel to the rolling direction (the traveling direction of the rolled plate). By this high-speed tensile test, tensile strength (MPa), 0.2% proof stress (MPa), and elongation (MPa) were measured.
  • the low speed tensile test was performed based on JIS Z 2241 (1998) using a commercially available testing machine.
  • the test conditions were: tensile rate (target value): 2 mm / sec, strain rate (target value): 0.2 / sec, air atmosphere, room temperature (about 20 ° C.).
  • tensile strength (MPa), 0.2% yield strength (MPa), and elongation (MPa) were measured.
  • the load (stress) is measured by the load cell of the testing machine.
  • Table 3 shows the magnitude relationship between the elongation, tensile strength, and 0.2% proof stress obtained from the results of the high-speed tensile test and the low-speed tensile test.
  • Each sample was subjected to a corrosion resistance test to examine the corrosion resistance.
  • a 5 mass% NaCl aqueous solution is prepared as a corrosive solution, and a test piece is cut out from the plate material of each sample, and the test piece is appropriately masked so that the exposed area of the test piece is 4 cm 2.
  • the test piece was held for 96 hours in a state of being completely immersed in 50 mL of the above NaCl aqueous solution (held at room temperature (25 ⁇ 2 ° C.) under air conditioning).
  • test piece was collected from the NaCl aqueous solution and analyzed for the elution amount of Mg ions in the NaCl aqueous solution by ICP emission spectroscopy (ICP-AES). Then, the value obtained by dividing the determined amount of Mg ions by the exposed area was defined as corrosion weight loss ( ⁇ g / cm 2 ). The results are shown in Table 1.
  • each of the AZ91 wrought materials of sample No. 1 made of a magnesium alloy containing Al in excess of 7.5% by mass and subjected to rolling and controlling the thermal history during production is Charpy. It can be seen that the impact value is 30 J / cm 2 or more, and further 40 J / cm 2 or more, and the impact value is very high. It can also be seen that the AZ91 wrought material of sample No. 1 has a larger Charpy impact value than the AM60 cast material of sample No. 200. Here, in the Charpy impact test, generally, the impact value until the test piece breaks (breaks) is measured. However, in the case of AZ91 wrought material of sample No.
  • Table 1 shows the maximum impact value that did not fall off. From this, the AZ91 wrought material of sample No. 1 has an impact value equal to or greater than the values shown in Table 1, and is expected to be very excellent in impact resistance.
  • the AZ91 cast material of Sample No. 100 has the same component as Sample No. 1, but has a small Charpy impact value of less than 30 J / cm 2 . From this, it can be seen that even with similar components, those having greatly different impact values depending on the production method can be obtained.
  • the AZ91 wrought material of sample No. 1 is excellent in all the properties of elongation, tensile strength, and 0.2% proof stress in the high-speed tensile test. Furthermore, all of the AZ91 wrought material of sample No. 1 has the AZ91 cast material and sample No. of sample No. 100 for any of the properties of elongation, tensile strength, and 0.2% proof stress in the high-speed tensile test. It can be seen that it has a higher value than 200 AM60 castings. Thus, it can be seen that the AZ91 wrought material of sample No. 1 has high strength and high toughness when subjected to a high-speed tensile test.
  • the AZ91 wrought material of sample No. 1 has a large absolute value of the average value of elongation, tensile strength, and 0.2% proof stress in the high-speed tensile test. It can be seen that the characteristics also have little variation. That is, it can be seen that the AZ91 wrought material of sample No. 1 has a uniform characteristic while being a long coil material.
  • the AZ91 cast material of sample No. 100 and the AM60 cast material of sample No. 200 have almost no difference in elongation in the high-speed tensile test and the low-speed tensile test.
  • the AZ91 wrought material of sample No. 1 has a very large difference between the elongation (average value) in the high-speed tensile test: EL gh and the elongation in the low-speed tensile test: EL low .
  • the elongation EL gh is 1.3 ⁇ EL low or more (here, about twice).
  • AZ91 expanded material of sample No. 1 was excellent in impact resistance was because it had a structure in which precipitates such as fine intermetallic compounds were uniformly dispersed, it is conceivable that. The metal structure will be described later.
  • the AZ91 wrought material of sample No. 1 is excellent in corrosion resistance even if it is not subjected to anticorrosion treatment such as chemical conversion treatment.
  • the AZ91 wrought material of sample No. 1 has the same components (element content) as the AZ91 cast material of sample No. 100, but has better corrosion resistance than the AZ91 cast material of sample No. 100. I understand.
  • One of the reasons why the corrosion resistance is excellent is that the specific structure is included.
  • a magnesium alloy plate was prepared as a base material, a chemical conversion treatment was performed on the surface of the base material to prepare a magnesium alloy member having an anticorrosion layer, and the metal structure of the base material, the form of the anticorrosion layer, and the corrosion resistance were examined.
  • Example No.1 The magnesium alloy member of sample No. 1 is manufactured by the steps of casting ⁇ solution treatment ⁇ rolling (warm) ⁇ correction (warm) ⁇ polishing ⁇ corrosion protection layer formation.
  • the basic manufacturing process and manufacturing conditions of the magnesium alloy plate are the same as in Test Example 1 described above, and the difference from the magnesium alloy material produced in Test Example 1 is that in Test Example 2, sheet material is used instead of coil material. The point which produced and the point which formed the anti-corrosion layer in this sheet
  • the heating time of the material to be rolled and the rolling speed (roll peripheral speed) are adjusted in each pass of the rolling process so that the material is maintained in the temperature range of 150 ° C to 300 ° C.
  • the total time was set to 3 hours.
  • the obtained rolled plate was warm-corrected in a state heated to 220 ° C. to prepare a corrected plate.
  • Warm correction was performed using the strain applying means described in Patent Document 2.
  • the time during which the material is maintained in the temperature range of 150 ° C. to 300 ° C. is as short as several minutes.
  • the obtained correction plate is further subjected to wet belt type polishing using a # 600 polishing belt, the surface of the correction plate is smoothed by polishing, and a polishing plate (hereinafter sometimes referred to as a sheet material) is obtained. Produced.
  • the obtained magnesium alloy member is designated as sample No. 1.
  • Example No.10 Prepare the same cast material (but thickness 4.2mm) as the sample No.1 mentioned above, and after rolling under the following conditions, do not correct (warm), replace with correct (warm) What was heat-treated at 320 ° C. for 30 minutes was produced. The heat-treated plate was polished in the same manner as in Sample No. 1, and then an anticorrosion layer was formed. The obtained magnesium alloy member is designated as sample No. 10.
  • Example No.110 A wrought material (thickness: 0.6 mm plate) made of a commercially available AZ31 alloy was prepared, polished in the same manner as Sample No. 1, and then an anticorrosion layer was formed. The obtained magnesium alloy member is designated as sample No. 110.
  • Example No.120 A cast material (thickness: 0.6 mm plate) made of a commercially available AZ91 alloy was prepared, polished in the same manner as Sample No. 1, and then an anticorrosion layer was formed. The obtained magnesium alloy member is designated as sample No. 120.
  • Sample No. 1 base material (corrected plate here), sample No. 10 base material (here heat treatment plate) prepared as described above, AZ31 alloy wrought material of sample No. 110 prepared On the other hand, the metallographic structure was observed as follows and the precipitates were examined.
  • FIG. 6 (I) shows an observation image of sample No. 1
  • FIG. 6 (II) shows an observation image of sample No. 110.
  • a light gray (white) small granular body is a precipitate.
  • the ratio of the total area of the precipitate particles to the cross section was determined as follows. As described above, each of the base material and the wrought material has five cross sections, and arbitrarily has three fields of view (here, a region of 22.7 ⁇ m ⁇ 17 ⁇ m) from the observation image of each cross section. For each observation field, calculate the total area by examining the area of all the precipitate particles existing in one observation field, and calculate the total area in the observation field with respect to the area of one observation field (here 385.9 ⁇ m 2 ). Ratio of total area of all particles: (total area of particles) / (area of observation field) is obtained, and this ratio is defined as the area ratio of the observation field. Table 4 shows the average area ratios of 15 observation fields for each of the base material and the wrought material.
  • the average particle size of the precipitate particles with respect to the cross section was determined as follows. For each observation field, create a histogram of particle diameters by calculating the diameter of the equivalent area circle of the area of each particle present in one observation field, and from all the particles in the observation field, The particle diameter of the particles reaching 50% of the total area of the particles, that is, 50% particle diameter (area) is defined as the average particle diameter of the observation field. Table 4 shows the average of the average particle diameters of 15 observation fields for each of the base material and the wrought material.
  • the area and diameter of the particles can be easily calculated by using a commercially available image processing apparatus. Further, when the precipitate was examined by EDS (Energy Dispersive X-ray Spectroscopy), it was an intermetallic compound containing Al or Mg such as Mg 17 Al 12 . The presence of the intermetallic compound particles can also be determined by examining the composition and structure using X-ray diffraction or the like.
  • each sample (magnesium alloy member) obtained was arbitrarily cut in the plate thickness direction to take a cross section, and in that cross section, the anticorrosion layer formed by chemical conversion treatment was observed with a transmission electron microscope (TEM).
  • FIG. 7 (I) shows an observation image of sample No. 1 (250,000 times)
  • FIG. 7 (II) shows an observation image of sample No. 110 (100,000 times).
  • the upper black region and the upper white region in FIG. 7 (II) are protective layers formed when taking a cross section.
  • the median value and variation when the observed image of the anticorrosion layer was expressed in 256 gray scales (in this case, the intermediate value method) were examined (n 1).
  • the results are shown in Table 4.
  • the median and variation of the gray scale can be easily obtained by using a commercially available image processing apparatus. When the variation value is small, the pores are small and dense, and when the variation value is large, the pores are many and porous.
  • the thickness of the anticorrosion layer (here, any five points of the observed image were selected and the average thickness of the five points) was examined using the observed images of the samples. The results are shown in Table 4.
  • each sample obtained was subjected to a corrosion resistance test to investigate the corrosion resistance.
  • the corrosion resistance test was performed according to JIS Z 2371 (2000) (salt water spray time: 96 hours, 35 ° C.), and the amount of change in weight (loss of corrosion) before and after salt water spray was measured. Then, the change amount ⁇ a 0.6 mg / cm 2 greater, 0.6 mg / cm 2 or less ⁇ , was evaluated less than 0.4 mg / cm 2 ⁇ with.
  • Table 4 The results are shown in Table 4.
  • the total time during which the material is maintained in the temperature range of 150 ° C to 300 ° C is set to a specific range, and heating above 300 ° C is not performed.
  • FIG. 6 (I) it can be seen that a magnesium alloy plate (sample No. 1 substrate) having a structure in which fine intermetallic compound particles are dispersed is obtained. More specifically, in this base material, the average particle size of the intermetallic compound particles satisfies 0.05 ⁇ m to 1 ⁇ m, and the ratio of the total area of the intermetallic compound particles satisfies 1% to 20%.
  • the anticorrosion layer provided on the sample No. 1 substrate is formed on the surface side with a relatively thick lower layer formed on the substrate side in the film thickness direction as shown in FIG. It can be seen that it has a two-layer structure with a relatively thin surface layer.
  • the lower layer has a lower gradation (median) than the surface layer, has a large variation value, and is porous, and the surface layer has a higher gradation, a smaller variation value, and is denser than the lower layer. I understand.
  • the phosphoric acid compound of manganese and calcium was the main component, and the lower layer on the substrate side had a content ratio of Al rather than the surface layer The surface layer had a higher content of manganese and calcium than the lower layer.
  • Sample No. 1 having the above configuration is excellent in corrosion resistance as shown in Table 4.
  • Sample No. 110 using the AZ31 alloy wrought material has very few precipitates as shown in FIG. 6 (II). Further, as shown in FIG. 7 (II), the anticorrosion layer is porous and very thick. As shown in Table 4, it can be seen that Sample No. 110 is inferior in corrosion resistance. The reason for this is that the dense surface layer like sample No. 1 does not exist in the anticorrosion layer, it is porous, and it is easy to penetrate the corrosive liquid due to the occurrence of cracks due to the thick film. In addition, it is thought that this is because the Al content (solid solution amount) of the substrate and the presence of intermetallic compounds are small.
  • Sample No. 120 using the cast material of AZ91 alloy, the anticorrosion layer was more porous than the surface layer of Sample No. 1, and was thicker than Sample No. 1. It can also be seen that Sample No. 120 is inferior in corrosion resistance to Sample No. 1. The reason for this is thought to be that the corrosive liquid easily penetrates due to the occurrence of cracks due to the thick film.
  • the total content time of the magnesium alloy with Al content exceeding 7.5% by mass and maintained in the temperature range of 150 ° C to 300 ° C in the manufacturing process after solution treatment is 0.5 hours to 12 hours.
  • a magnesium alloy material without heating above 300 ° C. it has a structure in which precipitates such as fine intermetallic compounds are uniformly dispersed as described above.
  • this magnesium alloy material is excellent in impact resistance as described in Test Example 1.
  • the magnesium alloy member which is excellent in corrosion resistance is obtained when this magnesium alloy material is used as a base material and the base material is subjected to chemical conversion treatment.
  • the structure was observed in the same manner for the AZ91 wrought material of sample No. 1 produced in Test Example 1, and as in the sheet material of Sample No. 1 produced in Test Example 2, a fine intermetallic compound was formed.
  • the precipitate had a dispersed structure.
  • the average particle diameter of the particles was 0.1 ⁇ m (100 nm), and the ratio of the total area of the precipitate particles was 6%.
  • the above-described embodiment can be appropriately changed without departing from the gist of the present invention, and is not limited to the above-described configuration.
  • the composition of the magnesium alloy (particularly the Al content), the thickness and shape of the magnesium alloy material, the constituent material of the anticorrosion layer, and the like can be appropriately changed.
  • the magnesium alloy material of the present invention is a component that is desired to have excellent impact resistance, typically automobile parts such as bumpers, parts of various electric devices, for example, portable and small casings of electric devices, It can be suitably used as a constituent material for parts in various fields where high strength is desired.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metal Rolling (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

耐衝撃性に優れるマグネシウム合金材を提供する。このマグネシウム合金材はAlを7.5質量%超含有するマグネシウム合金からなり、シャルピー衝撃値が30J/cm2以上である。代表的には、引張速度が10m/secでの高速引張試験における伸びが10%以上を満たす。このマグネシウム合金は、析出物、代表的にはAl及びMgの少なくとも一方を含む金属間化合物からなり、平均粒径が0.05μm以上1μm以下の粒子が分散し、これら粒子の合計面積は、1面積%以上20面積%以下である。このマグネシウム合金材は、微細な析出物の粒子が分散した組織を有することで、分散強化により、衝撃の吸収能力が高く、耐衝撃性に優れる。

Description

マグネシウム合金材
 本発明は、自動車部品、携帯用電気機器の筐体などの各種の部品の構成材料に適したマグネシウム合金材に関するものである。特に、耐衝撃性に優れるマグネシウム合金材に関するものである。
 携帯電話やノート型パーソナルコンピュータといった携帯用電気機器類の筐体、ホィールカバーやパドルシフトなどの自動車部品といった各種の部品の構成材料として、軽量で、比強度、比剛性に優れるマグネシウム合金が検討されている。マグネシウム合金からなる部品は、ダイカスト法やチクソモールド法による鋳造材(ASTM規格のAZ91合金)が主流である。上記筐体などの部品に対して、近年、ASTM規格のAZ31合金に代表される展伸用マグネシウム合金からなる板にプレス加工を施したものが使用されつつある。特許文献1,2では、AZ91合金やAZ91合金と同程度のAlを含有する合金からなる圧延板を特定の条件で作製し、この板にプレス加工を施すことを開示している。
 マグネシウムは、振動エネルギーの吸収特性に優れるとされている。例えば、自動車部品などの衝撃強さを求められる部品の構成材料には、Alの含有量を低減させたり、Znを含まない合金種、具体的には、ASTM規格のAM60合金が利用される。
国際公開2008/029497号 国際公開2009/001516号
 耐衝撃性により優れるマグネシウム合金材の開発が望まれている。
 上記AM60合金は、耐衝撃性に優れるものの、更なる向上が望まれる。一方、上述したAZ91合金のダイカスト材といった鋳造材では、巣といった内部欠陥が存在し易い上に、Al成分が局所的に高濃度になったり、結晶粒がランダムに配向したりするなど、組成や組織が不均一になり易い。また、AZ91合金からなるダイカスト材といった鋳造材では、Alの含有量が多いことから、Alが固溶しきれずに金属間化合物として結晶粒界に析出する傾向にある。上記欠陥部分や結晶粒界の析出物などが破壊の起点となったり、上記組成や組織の不均一が機械的弱点となることで、AZ91合金からなるダイカスト材といった鋳造材は、耐衝撃性に劣ると考えられる。
 そこで、本発明の目的は、耐衝撃性に優れるマグネシウム合金材を提供することにある。
 本発明者らは、マグネシウム合金自体の強度の向上を図るために、マグネシウム合金として、Alを7.5質量%超含有するものを対象とし、このマグネシウム合金を用いて種々の製造方法により板を作製した。そして、得られた板の耐衝撃性を調べた。その結果、特定の製造条件で作製したマグネシウム合金板は、耐衝撃性に非常に優れる、との知見を得た。
 具体的には、耐衝撃性に優れるマグネシウム合金板を調べたところ、マグネシウム合金中に、例えば、Mg17Al12、Al6(MnFe)といったMg及びAlの少なくとも一方を含む金属間化合物といった析出物がある程度存在しており、かつこの析出物の粒子が比較的小さく、均一的に分散しており、5μm以上といった粗大な粒子が実質的に存在していなかった。そこで、上記析出物の粒径及びその存在量を制御する、即ち、上述のような粗大な析出物が生成されないようにすると共に、ある程度の量の微細な析出物を生成する製法を検討した。その結果、鋳造以降、特に溶体化処理以降、最終製品となるまでの製造工程において、マグネシウム合金からなる素材を特定の温度域に保持する総合計時間が特定の範囲となるように製造条件を制御することが好ましい、との知見を得た。
 本発明は、上記知見に基づくものである。本発明は、Alを7.5質量%超含有するマグネシウム合金からなるマグネシウム合金材に係るものであり、シャルピー衝撃値が30J/cm2以上であることを特徴とする。
 本発明マグネシウム合金材は、衝撃吸収エネルギーが非常に大きく、後述する試験例に示すようにAM60合金と同等以上にシャルピー衝撃値が高く、耐衝撃性に優れる。そのため、本発明マグネシウム合金材は、自動車部品といった、衝撃時のエネルギーを十分に吸収することが望まれる部品の構成材料に利用された場合、高速で応力が与えられても、容易に割れなどが生じることが無く、衝撃を十分に吸収できると期待される。従って、本発明マグネシウム合金材は、衝撃吸収部材の構成材料に好適に利用できると期待される。シャルピー衝撃値は大きいほど、衝撃吸収エネルギーが大きいことから、40J/cm2以上がより好ましく、上限は設けない。
 また、本発明マグネシウム合金材は、AM60合金よりもAlを多く含有することで、AM60合金に比較して耐食性にも優れる。特に、本発明マグネシウム合金材は、後述するように特定の組織を有することからも、耐食性に優れる。
 本発明の一形態として、引張速度が10m/secでの高速引張試験における伸びが10%以上である形態が挙げられる。
 本発明者らが調べたところ、本発明マグネシウム合金材は、一般的な引張試験(引張速度:数mm/sec程度)における伸びがAM60合金と比較して若干劣るものの、引張速度が10m/secといった非常に速い速度での引張試験における伸びがAM60合金よりも高い、という驚くべき結果が得られた。本発明マグネシウム合金材は、このように高速引張試験における伸びが高いことで、衝撃を受けた場合(高速で物体が接触した場合)にも十分に変形して衝撃を吸収できると期待される。上記伸びが大きいほど、耐衝撃性に優れると考えられ、12%以上、更に14%以上が好ましく、上限は設けない。
 本発明の一形態として、引張速度が10m/secでの高速引張試験における引張強さが300MPa以上である形態が挙げられる。
 本発明マグネシウム合金材は、上述のように高速引張試験における伸びが高く、高靭性である上に、高速引張試験における引張強さも高く、高強度である。このように高速で応力を受けた場合でも高強度・高靭性であることから、上記形態によれば、衝撃を受けた際に破断し難く、十分に変形可能であり、衝撃吸収能が高く、耐衝撃性に優れる。上記引張強さは大きいほど好ましく、320MPa以上、更に330MPa超がより好ましく、上限は設けない。
 本発明の一形態として、引張速度が10m/secでの高速引張試験における伸びELhgが、引張速度が2mm/secでの低速引張試験における伸びELlowの1.3倍以上である形態が挙げられる。
 上記形態によれば、上記高速引張試験における伸びが高く、上記低速引張試験における伸びとの差が大きい。ここで、AM60合金は、後述する試験例に示すように、高速引張試験における伸びが高いものの、その伸びは、低速引張試験における伸びとほとんど差が無い。これに対して、上記形態によれば、上述のように高速引張試験における伸びの絶対値が高い上に、低速引張試験における伸びとの差が大きいことから、衝撃を受けた際に十分に変形可能な能力を有すると言える。従って、上記形態によれば、耐衝撃性に優れる。組成や組織によっては、ELhg≧1.5×ELlowを満たす形態とすることができる。
 本発明の一形態として、上記マグネシウム合金中に析出物の粒子が分散して存在しており、これら析出物の粒子の平均粒径が0.05μm以上1μm以下であり、上記マグネシウム合金材の断面において、上記析出物の粒子の合計面積の割合が1%以上20%以下である形態が挙げられる。
 上記形態によれば、粗大な析出物が実質的に存在せず、非常に微細な析出物が分散した組織を有する。微細な析出物が分散して存在することで、析出物の分散強化による板自体の剛性の向上により、本発明マグネシウム合金材は、衝撃を受けても凹み難く、耐衝撃特性に優れる。また、このような組織により、粗大な析出物の存在や過剰に析出物を析出したことによるマグネシウム合金中のAlの固溶量の低下が少なく、Alの固溶量の低下に伴うマグネシウム合金自体の強度の低下を抑えられて強度を維持できたことからも、本発明マグネシウム合金材は耐衝撃性に優れる、と考えられる。従って、上記特定の組織を有する本発明マグネシウム合金材は、耐衝撃性に優れる。更に、上記形態によれば、粗大な析出物が少ないことで、塑性加工性にも優れ、プレス加工を容易に施すことができる。
 本発明の一形態として、上記析出物の粒子は、Al及びMgの少なくとも一方を含む金属間化合物から構成される粒子を含む形態が挙げられる。
 上記金属間化合物は、マグネシウム合金よりも耐食性に優れる傾向にある。従って、上記形態によれば、析出物の分散強化による耐衝撃性の向上に加えて、耐食性に優れる金属間化合物の存在により耐食性にも優れる。
 本発明マグネシウム合金材は、耐衝撃性に優れる。
図1は、マグネシウム合金材のシャルピー衝撃値を示すグラフである。 図2は、マグネシウム合金材の高速引張試験及び低速引張試験における伸びを示すグラフである。 図3は、マグネシウム合金材の高速引張試験及び低速引張試験における引張強さを示すグラフである。 図4は、マグネシウム合金材の高速引張試験及び低速引張試験における0.2%耐力を示すグラフである。 図5は、高速引張試験に用いた試験片の平面図である。 図6は、マグネシウム合金材の顕微鏡写真(5000倍)であり、図6(I)は、試料No.1、図6(II)は、試料No.110を示す。 図7は、防食層を具えるマグネシウム合金部材の断面の顕微鏡写真であり、図7(I)は、試料No.1(250,000倍)、図7(II)は、試料No.110(100,000倍)を示す。
 以下、本発明をより詳細に説明する。
 [マグネシウム合金材]
 (組成)
 本発明マグネシウム合金材を構成するマグネシウム合金は、Mgに添加元素を含有した種々の組成のもの(残部:Mg及び不純物、Mg:50質量%以上)が挙げられる。特に、本発明では、添加元素に少なくともAlを7.5質量%超含有するMg-Al系合金とする。Alを7.5質量%超含有することで、マグネシウム合金自体の強度、耐塑性変形性といった機械的特性を高められる上に、耐食性にも優れる。Al量が多いほど、強度などの機械的特性や耐食性に優れる傾向にあるが、12質量%を超えると塑性加工性の低下を招き、圧延時などに素材を高温に加熱する必要があるため、Alの含有量は、12質量%以下が好ましい。
 Al以外の添加元素は、Zn,Mn,Si,Ca,Sr,Y,Cu,Ag,Be,Sn,Li,Zr,Ce,Ni,Au及び希土類元素(Y,Ceを除く)から選択された1種以上の元素が挙げられる。これらの元素を含む場合、各元素の含有量は、0.01質量%以上10質量%以下、好ましくは0.1質量%以上5質量%以下が挙げられる。より具体的なMg-Al系合金は、例えば、ASTM規格におけるAZ系合金(Mg-Al-Zn系合金、Zn:0.2質量%~1.5質量%)、AM系合金(Mg-Al-Mn系合金、Mn:0.15質量%~0.5質量%)、Mg-Al-RE(希土類元素)系合金、AX系合金(Mg-Al-Ca系合金、Ca:0.2質量%~6.0質量%)、AJ系合金(Mg-Al-Sr系合金、Sr:0.2質量%~7.0質量%)などが挙げられる。特に、Alを8.3質量%~9.5質量%を含有する形態は、強度に優れる上に耐食性にも優れる。より具体的には、Alを8.3質量%~9.5質量%、Znを0.5質量%~1.5質量%含有するMg-Al系合金、代表的にはAZ91合金が挙げられる。Y,Ce,Ca,及び希土類元素(Y,Ceを除く)から選択される少なくとも1種の元素を合計0.001質量%以上、好ましくは合計0.1質量%以上5質量%以下含有すると、耐熱性、難燃性に優れる。
 (組織:析出物)
 上記マグネシウム合金は、平均粒径が0.05μm~1μmといった微細な析出物が分散した組織を有し、マグネシウム合金材の断面をとったとき、マグネシウム合金材を100面積%とするとき、上記析出物が1面積%~20面積%存在する。上記析出物は、マグネシウム合金中の添加元素を含有するもの、代表的にはMgやAlを含む金属間化合物、より具体的にはMg17Al12からなるもの(Mg17Al12に限定されない)が挙げられる。平均粒径が0.05μm以上、かつ析出物の含有量が1面積%以上であることで、上記マグネシウム合金中に析出物が十分に存在して、これら析出物の分散強化により、優れた耐衝撃性を有することができる。析出物の平均粒径が1μm以下、及び析出物の含有量が20面積%以下であることで、上記マグネシウム合金中に析出物が過剰に存在したり、粗大な析出物が存在せず、Alの固溶量の低下を抑制して、強度に優れる。より好ましい平均粒径は、0.1μm以上0.5μm以下、より好ましい析出物の含有量は、3面積%以上15面積%以下、更に12面積%以下、とりわけ5面積%以上10面積%以下である。
 (形態)
 本発明マグネシウム合金材は、代表的には、矩形状の板状材(マグネシウム合金板)が挙げられ、矩形の他、円形状など種々の形状をとり得る。この板状材は、連続する長尺材を巻き取ったコイル材、所定の長さ・形状の短尺材といった形態をとり得る。また、この板状材は、ボスなどが接合されていたり、表裏に貫通する孔などを有する形態とすることができる。更に、この板状材は、製造工程によっても種々の形態をとり得る。例えば、圧延板、圧延板に後述する熱処理や矯正を施した熱処理板や矯正板、上記圧延板や熱処理板、矯正板に研磨を施した研磨板などの形態が挙げられる。その他、本発明マグネシウム合金材は、上記板状材に、曲げ加工や絞り加工といったプレス加工などの塑性加工を施した成形体が挙げられる。所望の用途に応じて、マグネシウム合金材の形態、大きさ(面積)や厚さを選択するとよい。特に、厚さが2.0mm以下、更に1.5mm以下、とりわけ1mm以下であると、薄型、軽量の部品(代表的には筐体や自動車部品)に好適に利用することができる。
 上記成形体は、例えば、天板部(底面部)と、天板部の周縁から立設される側壁部とを有する断面]状の箱体や]状の枠体、天板部が円板状で、側壁部が円筒状の有蓋筒状体などが挙げられ、形状・大きさは特に問わない。上記天板部などは、ボスなどを一体に成形又は接合していたり、表裏に貫通する孔や厚さ方向に凹んだ溝を有していたり、段差形状になっていたり、塑性加工や切削加工などにより局所的に厚さが異なる部分を有していてもよい。また、本発明マグネシウム合金材は、プレス加工といった塑性加工が施された塑性加工部を一部にのみ具える形態とすることができる。本発明マグネシウム合金材が上記成形体である形態や上記塑性加工部を有する形態では、塑性変形に伴う変形が少ない箇所(代表的には平坦な部分)は、塑性加工の素材となった上記板状材(マグネシウム合金板)の組織や機械的特性を概ね維持する。従って、成形体や塑性加工部を有する形態では、シャルピー衝撃値や伸びなどの機械的特性の測定にあたり、上記塑性変形に伴う変形が少ない箇所から試験片を採取する。
 (機械的特性)
 本発明マグネシウム合金材は、シャルピー衝撃値、高速引張試験における伸び、引張強さが上述のようにAM60合金と同等以上であることを最大の特徴とする。特に、本発明マグネシウム合金材は、後述する試験例に示すように、シャルピー衝撃試験を行った場合、即ち、高速で応力を受けた場合、試験片が折損(破断)せず、屈曲する。このように本発明マグネシウム合金材は、衝撃を受けた際、十分に塑性変形して、衝撃時のエネルギーを変形により吸収できることから、例えば、シャーシやバンパーといった自動車部品の構成材料に利用された場合、自動車内の乗員の保護に寄与することができると期待される。
 [マグネシウム合金部材]
 本発明マグネシウム合金材は、その表面に、化成処理や陽極酸化処理といった表面処理により形成された防食層を具えるマグネシウム合金部材とすることができる。このマグネシウム合金部材は、上述のように耐食性にも優れる本発明マグネシウム合金材に加えて防食層をも具えることで、耐食性に更に優れる。本発明者らが調べたところ、上記特定の組織を有するマグネシウム合金材に化成処理を施した場合、防食層が特定の構造(二層構造)を有することがある、との知見を得た。そして、この特定の構造の防食層を有するマグネシウム合金部材は、耐食性に非常に優れていた。上記防食層の具体的な構造は、上記マグネシウム合金材側に形成された下層と、上記下層の上に形成された表面層とを具える二層構造である。上記表面層は、上記下層よりも緻密であり、この下層は、ポーラス(多孔質)な層である。また、この防食層は、非常に薄く、二層構造の防食層の合計厚さが50nm以上300nm以下(下層が厚さの60%~75%程度)である。
 [製造方法]
 上記特定の組織を有する本発明マグネシウム合金材が板状材である場合、例えば、以下の各工程を具えるマグネシウム合金板の製造方法により、製造することができる。
 準備工程:Alを7.5質量%超含有するマグネシウム合金からなり、連続鋳造法で製造した鋳造板を準備する工程。
 溶体化工程:上記鋳造板に350℃以上の温度で溶体化処理を施して、固溶板を製造する工程。
 圧延工程:上記固溶板に温間圧延を施し、圧延板を製造する工程。
 特に、溶体化工程以降の製造工程において、加工対象である素材板(代表的には圧延板)を150℃以上300℃以下の温度域に保持する総合計時間を0.5時間以上12時間以内とすると共に、300℃超の温度に加熱しないように、上記素材板の熱履歴を制御する。
 更に、上記製造方法は、上記圧延板に矯正を施す矯正工程を具えることができる。この矯正工程では、上記圧延板を100℃以上300℃以下に加熱した状態で矯正を行う、即ち温間矯正を施すことが挙げられる。この場合、この矯正工程における圧延板を150℃以上300℃以下の温度域に保持する時間が、上記総合計時間に含まれるようにする。
 上記本発明マグネシウム合金材が成形体である形態や塑性加工部を具える形態は、例えば、素材として、上記マグネシウム合金板の製造方法により得られた圧延板や、上記矯正工程により得られた矯正板を用意し、この素材に塑性加工を施す塑性加工工程を具える製造方法により、製造することができる。上記本発明マグネシウム合金材と上記防食層とを具えるマグネシウム合金部材は、例えば、上記塑性加工が施された素材に化成処理又は陽極酸化処理の防食処理を施す表面処理工程を具える製造方法により、製造することができる。上記製造方法のように、上記表面処理工程より先に上記塑性加工工程を行う場合、表面処理により形成された防食層が塑性加工中に損傷することを防止することができる。上記防食処理は、上記塑性加工前の素材に施すことができる場合がある。この場合、上記マグネシウム合金部材の製造方法として、素材に上述のように圧延板や矯正板を用意する工程と、この素材に防食処理を施す工程と、上記防食処理後に上記塑性加工を施す工程とを具える方法が挙げられる。この製造方法では、防食処理対象が板状材といった平坦な形状であることから、防食処理を容易に施すことができる。
 本発明マグネシウム合金材の製造にあたり、上述のように、溶体化処理を行うことでマグネシウム合金中にAlを十分に固溶させられる。そして、溶体化処理以降の製造工程において、マグネシウム合金からなる素材を、析出物が析出され易い温度域(150℃~300℃)に保持する時間を特定の範囲内とすることで、析出物を析出させつつ、その量を特定の範囲内とすることができる。また、上記特定の温度域に保持する時間を制御することで、上記析出物の過度な成長を抑制して、微細な析出物が分散した組織とすることができる。
 例えば、圧延工程において、所望の板厚になるまで適宜な加工度(圧下率)で複数回(多パス)の圧延を行うときに、加工対象(溶体化処理後の素材。例えば、最終圧延が施されるまでの間の圧延板)を300℃超に加熱すると、塑性加工性を高められ、圧延を行い易い。しかし、300℃超の加熱を行うと、Alの含有量が7.5質量%超と多いことから上述した金属間化合物といった析出物が析出され易くなったり、析出した析出物が成長して粗大な粒子になり易くなったりする。析出物が過剰に生成されたり、粗大に成長すると、マグネシウム合金中のAlの固溶量が減少する。そして、Alの固溶量の低下により、マグネシウム合金自体の強度や耐食性の低下を招く。また、Alの固溶量の低下により、防食層を形成しても、耐食性の更なる向上が難しい。
 更に、圧延途中や圧延後、或いはプレス加工といった塑性加工後に、再結晶化によるプレス加工性の向上や、塑性加工に伴う歪の除去などを目的として、熱処理を施すことが行われている。これらの熱処理の加熱温度は、Alの含有量が多いほど高くする傾向にある。例えば、特許文献1では、AZ91合金に対して、圧延後の熱処理(最終焼鈍)を300℃~340℃で行うことを提案している。300℃超の加熱温度で熱処理を行うことでも、析出物が成長して粗大な粒子になり易くなる。これらのことから、上述のように溶体化以降の工程に対して、素材板の熱履歴を制御することを提案する。
 以下、各工程をより詳細に説明する。
 (準備工程)
 鋳造板は、双ロール法といった連続鋳造法、特に、WO/2006/003899に記載の鋳造方法で製造した鋳造板を利用することが好ましい。連続鋳造法は、急冷凝固が可能であるため、酸化物や偏析などを低減でき、割れの起点になり得る10μm超といった粗大な晶析出物の生成を抑制できる。従って、圧延性に優れる鋳造板が得られる。鋳造板の大きさは特に問わないが、厚過ぎると偏析が生じ易いため、10mm以下、特に5mm以下が好ましい。特に、長尺な鋳造板を巻き取った鋳造コイル材を作製する場合、素材における巻き取り直前の箇所を150℃以上に加熱した状態で巻き取ると、巻き取り径が小さい場合でも、割れなどが生じることなく巻き取ることができる。巻き取り径が大きい場合は、冷間で巻き取ってもよい。
 (溶体化工程)
 上記鋳造板に溶体化処理を施して、組成を均質化すると共に、Alといった元素を固溶させた固溶板を製造する。溶体化処理は、保持温度を350℃以上、特に、保持温度:380℃~420℃、保持時間:60分~2400分(1時間~40時間)とすることが好ましい。また、保持時間は、Alの含有量が高いほど長くすることが好ましい。更に、上記保持時間からの冷却工程において、水冷や衝風といった強制冷却などを利用して、冷却速度を速めると(例えば、50℃/min以上)、粗大な析出物の析出を抑制することができて好ましい。
 (圧延工程)
 上記固溶板に圧延を施すにあたり、素材(固溶板や圧延途中の板)を加熱することで塑性加工性を高められる。従って、少なくとも1パスは温間圧延を施す。但し、素材の加熱温度が高過ぎると、150℃~300℃の温度域の保持時間が過度に長くなり、上述のように析出物の過度な成長や過度の析出を招いたり、素材の焼き付きが発生したり、素材の結晶粒が粗大化して圧延後の板の機械的特性が低下したりする。そのため、圧延工程において素材の加熱温度も300℃以下とする。特に、150℃以上280℃以下が好ましい。複数回(多パス)の圧延を施すことで、所望の板厚にできると共に、素材の平均結晶粒径を小さくしたり(例えば、10μm以下)、圧延やプレス加工といった塑性加工性を高められる。圧延は、公知の条件、例えば、素材だけでなく圧延ロールも加熱したり、特許文献1に開示されるノンプレヒート圧延や制御圧延などを組み合わせて利用してもよい。また、仕上げ圧延などで圧下率が小さい圧延では、冷間で圧延を施してもよい。更に、上記圧延は、潤滑剤を適宜利用すると、圧延時の摩擦抵抗を低減でき、素材の焼き付きなどを防止して、圧延を施し易い。
 多パスの圧延を行う場合、上述した150℃~300℃の温度域の保持時間が上記総合計時間に含まれる範囲で、パス間に中間熱処理を行ってもよい。中間熱処理までの塑性加工(主として圧延)により加工対象である素材に導入された歪みや残留応力、集合組織などを除去、軽減すると、その後の圧延で不用意な割れや歪み、変形を防止して、より円滑に圧延を行える。中間熱処理を行う場合も保持温度を300℃以下とする。好ましい保持温度は、250℃以上280℃以下である。
 (矯正工程)
 上記圧延工程により得られた圧延板に、特許文献1に記載されるように最終熱処理(最終焼鈍)を施すことができるが、この最終熱処理を施さず、上述のように温間矯正を施す方がプレス加工といった塑性加工性に優れて好ましい。矯正は、特許文献2に記載されるような複数のロールが千鳥状に配置されたロールレベラなどを用い、圧延板を100℃~300℃、好ましくは150℃以上280℃以下に加熱して行うことが挙げられる。このような温間矯正を行った矯正板にプレス加工といった塑性加工を施すと、塑性加工時に動的再結晶化が生じることで、塑性加工性に優れる。なお、圧延により比較的薄くなった素材に対して矯正加工を施すことで、矯正工程における上記保持時間を非常に短くすることができる。例えば、素材の厚さによっては上記保持時間を数分程度、更に1分以内とすることができる。
 (塑性加工工程)
 上記圧延板や、上記圧延板に上記最終熱処理を施した熱処理板、上記圧延板に上記矯正を施した矯正板、上記圧延板・熱処理板・矯正板のいずれかに研磨(好ましくは湿式研磨)を施した研磨板にプレス加工といった塑性加工を施す場合、200℃~300℃の温度域で行うと、素材の塑性加工性を高められて好ましい。塑性加工時において素材を上記200℃~300℃に保持する時間は、非常に短く、例えば、プレス加工によっては60秒以内の場合があり、上述したような析出物の粗大化などの不具合は実質的に生じないと考えられる。
 上記塑性加工後に熱処理を施して、塑性加工により導入された歪みや残留応力の除去、機械的特性の向上を図ることができる。この熱処理条件は、加熱温度:100℃~300℃、加熱時間:5分~60分程度が挙げられる。但し、この熱処理においても150℃~300℃の温度域の保持時間が上記総合計時間に含まれるようにする。
 (素材を特定の温度域に保持する総合計時間)
 上記特定の組織を有する本発明マグネシウム合金材を製造するには、上記溶体化工程以降、最終製品を得るまでの工程において、素材を150℃以上300℃以下の温度域に保持する総合計時間が0.5時間~12時間となるように制御すると共に、素材を300℃超の温度に加熱しないことを最大の特徴とする。従来、Alの含有量が7.5質量%超であるマグネシウム合金に対して、溶体化処理以降、最終製品までの工程において、素材を150℃~300℃の温度域に保持する総合計時間をどの程度にするか十分に検討されていなかった。これに対して、上述のように析出物が生成され易かったり、生成物が成長し易い上記温度域の保持時間を特定の範囲に制御することで、特定量の微細な析出物が分散して存在する組織を有する本発明マグネシウム合金材を得ることができる。
 上記150℃~300℃の温度域に保持する総合計時間が0.5時間未満では、析出物が十分に析出されず、12時間を超えたり、素材を300℃超に加熱して圧延などすると、粒径が1μm以上の粗大な析出物が存在した組織や20面積%超といった過剰に析出物が存在した組織が得られる。好ましくは、温度域:150℃以上280℃以下、総合計時間:1時間以上6時間以下となるように、圧延工程における各パスの加工度や圧延工程の総加工度、中間熱処理時の条件、矯正時の条件などを制御する。また、Al量が多いほど、析出物が析出し易いため、上記総合計時間は、Alの含有量に応じても調整することが好ましい。
 (表面処理工程)
 化成処理は、公知の化成処理液を適宜用いて、公知の条件により行うことができる。化成処理には、ノンクロム処理液であるリン酸マンガン・カルシウム系溶液などを用いることが好ましい。
 上記化成処理や陽極酸化処理といった防食処理後、保護や装飾などを目的として塗装を行うと、耐食性を更に向上したり、商品価値を高めたりすることができる。
 以下、試験例を挙げて、本発明のより具体的な実施の形態を説明する。
 [試験例1]
 マグネシウム合金材を作製して、耐衝撃性、及び機械的特性を調べた。
 [試料No.1]
 試料No.1のマグネシウム合金材は、鋳造→溶体化処理→圧延(温間)→矯正(温間)という工程により作製した板状材(マグネシウム合金板)である。
 この試験では、AZ91合金相当の組成を有するマグネシウム合金からなり、双ロール連続鋳造法により得られた長尺な鋳造板(厚さ4mm)を作製して、一旦巻き取り、鋳造コイル材を作製した。この鋳造コイル材をバッチ加熱炉に装入して、400℃×24時間の溶体化処理を施した。溶体化処理を施した固溶コイル材を巻き戻して、以下の圧延条件で、厚さが2.5mmになるまで複数回圧延を施し、得られた圧延板を巻き取って圧延コイル材を作製した(長さ:400m)。
 (圧延条件)
 加工度(圧下率):5%/パス~40%/パス
 板の加熱温度:250℃~280℃
 ロール温度:100℃~250℃
 試料No.1では、圧延工程の各パスにおいて、圧延対象となる素材の加熱時間及び圧延速度(ロール周速)を調整することで、素材が150℃~300℃の温度域に保持される総合計時間を調整した。また、300℃超の加熱を行わなかった。
 得られた圧延コイル材を巻き戻して温間矯正を施して、得られた矯正板を巻き取って矯正コイル材を作製した。ここでは、温間矯正は、特許文献2に記載される歪付与手段を利用し、圧延板を220℃に加熱した状態で行った。溶体化工程以降、この矯正工程までに素材が150℃~300℃の温度域に保持される総合計時間が、0.5時間~12時間となるように、温度制御を行った。得られた矯正板の組成分析をしたところ(いずれも質量%)、Al:8.79%、Zn:0.64%、Mn:0.18%、残部:Mg及び不純物であり、AZ91合金相当の組成を有することが確認できた。得られた長尺な矯正板(コイル材)を適宜な長さに切断して短尺な板材を複数作製し、各板材を適宜切断して、後述する各試験の試験片を作製した。
 [試料No.100,200]
 比較の試料として、市販の板材:AZ91合金材(厚さ2.1mmの鋳造材:試料No.100)、AM60合金材(厚さ2.4mmの鋳造材:試料No.200)を用意した。これら市販材の組成分析をしたところ(いずれも質量%)、AZ91合金材は、Al:8.89%、Zn:0.73%、Mn:0.24%、残部:Mg及び不純物、AM60合金材は、Al:6.00%、Mn:0.3%、残部:Mg及び不純物であった。各組成の板材をそれぞれ複数用意し、各板材から適宜切断して、後述する各試験の試験片を作製した。
 [シャルピー衝撃値]
 作製した試料No.1のマグネシウム合金材(以下、AZ91展伸材と呼ぶことがある)、用意した試料No.100のAZ91鋳造材、試料No.200のAM60鋳造材に対して、シャルピー衝撃試験を行って、衝撃値を測定した。その結果を表1、及び図1に示す。
 シャルピー衝撃試験は、市販の試験機を用いて行った。この試験は、各試料の板材から、幅:9mm前後、長さ:75mm~80mmの試験片(厚さ:2.1mm~2.5mm)を切り出し、各試験片の長手方向が試験機のハンマの打ち当て方向と直交するように各試験片を試験機に取り付けて行った。
 [伸び、引張強さ、0.2%耐力]
 作製した試料No.1のAZ91展伸材、用意した試料No.100のAZ91鋳造材、試料No.200のAM60鋳造材に対して、高速引張試験、及び低速引張試験を行って、各試験における伸び、引張強さ、0.2%耐力を測定した。その結果を表2、及び図2~図4に示す。図2~図4において、白抜きの棒グラフは高速引張試験の結果、ハッチングを付した棒グラフは低速引張試験の結果、棒グラフ上に引かれた左右方向に延びる太線の直線は、平均値を示す。
 高速引張試験は、高速での引っ張りが可能な市販の試験機(ここでは、株式会社島津製作所製 油圧サーボ式高速引張試験機)を用いて行った。この試験は、各試料の板材から、JIS Z 2201(1998)を参照して、図5に示す括れ形状の試験片10を切り出し、各試験片を試験機に取り付けて行った。試験片10の括れ部分の表裏に塑性歪みゲージ11を取り付け、このゲージ11により、塑性歪み(永久歪み)を測定し、試験片10の一面の中心線において肩部と平行部との交点からl=25mmの地点に弾性歪みゲージ12を取り付け、このゲージ12の測定値により荷重(応力)を換算する。試験片10の仕様は、標点距離GL=10mm、括れ部分の幅W=4.3mm、掴み部の長さL1=35mm、L2=70mm、試験片の幅w=20mm、肩部の半径R=10mmである。試験条件は、引張速度(目標値):10m/sec、ひずみ速度(目標値):1000/sec、大気雰囲気、室温(20℃程度)とした。試験片10は、その長手方向が圧延方向(圧延板の進行方向)に平行するように作製している。この高速引張試験により、引張強さ(MPa)、0.2%耐力(MPa)、伸び(MPa)を測定した。
 低速引張試験は、市販の試験機を用いて、JIS Z 2241(1998)に基づいて行った。試験条件は、引張速度(目標値):2mm/sec、ひずみ速度(目標値):0.2/sec、大気雰囲気、室温(20℃程度)とした。この低速引張試験により、引張強さ(MPa)、0.2%耐力(MPa)、伸び(MPa)を測定した。低速引張試験では、試験機のロードセルにより荷重(応力)を測定する。
 また、各試料について、高速引張試験の結果及び低速引張試験の結果から得られた伸び、引張強さ、0.2%耐力の大小関係を表3に示す。
 各試料に対して、耐食性試験を行って耐食性を調べた。ここでは、腐食液として、5質量%NaCl水溶液を用意し、各試料の板材から試験片を切り出し、当該試験片の露出面積が4cm2となるように適宜マスキングを試験片に施した後、当該試験片を上記NaCl水溶液50mLに完全に浸漬した状態で96時間保持した(空調下の室温(25±2℃)に保持)。96時間の浸漬後、上記NaCl水溶液から試験片を回収し、ICP発光分光分析法(ICP-AES)にて、NaCl水溶液中のMgイオン溶出量を分析した。そして、定量したMgイオン量を上記露出面積で除した値を腐食減量(μg/cm2)とした。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1に示すように、Alを7.5質量%超含有したマグネシウム合金からなり、圧延を施すと共に製造時の熱履歴を制御して得られた試料No.1のAZ91展伸材はいずれも、シャルピー衝撃値が30J/cm2以上、更に40J/cm2以上と、非常に高い衝撃値を有することが分かる。また、試料No.1のAZ91展伸材はいずれも、シャルピー衝撃値が試料No.200のAM60鋳造材よりも大きいことが分かる。ここで、シャルピー衝撃試験では、一般に、試験片が折損(破断)するまでの衝撃値を測定する。しかし、試料No.1のAZ91展伸材では、更に大きな衝撃を加えた場合、試験片が破断することなく屈曲した状態で試験機の支持箇所から脱落して、更に大きな衝撃を適切に加えることが困難であった。従って、表1では、脱落しなかった最大衝撃値を示す。このことから、試料No.1のAZ91展伸材は、表1に示す値以上の衝撃値を有し、耐衝撃性に非常に優れると期待される。
 一方、試料No.100のAZ91鋳造材は、試料No.1と同程度の成分でありながら、シャルピー衝撃値が30J/cm2未満と小さい。このことから、同様な成分であっても、製造方法によって衝撃値が大きく異なるものが得られることが分かる。
 また、表2に示すように、試料No.1のAZ91展伸材はいずれも、高速引張試験における伸び、引張強さ、及び0.2%耐力のいずれの特性にも優れることが分かる。更に、試料No.1のAZ91展伸材はいずれも、高速引張試験における伸び、引張強さ、及び0.2%耐力のいずれの特性に対しても、試料No.100のAZ91鋳造材及び試料No.200のAM60鋳造材より高い値を有することが分かる。このように試料No.1のAZ91展伸材は、高速引張試験を行った場合に、高強度・高靭性であることが分かる。
 更に、試料No.1のAZ91展伸材は、図2~図4に示すように、高速引張試験における伸び、引張強さ、及び0.2%耐力の平均値の絶対値が大きい上に、いずれの特性もばらつきが小さいことが分かる。即ち、試料No.1のAZ91展伸材は長尺なコイル材でありながら、均一的な特性を有することが分かる。
 加えて、試料No.100のAZ91鋳造材及び試料No.200のAM60鋳造材は、高速引張試験及び低速引張試験における伸びにほとんど差が無い。これに対して、試料No.1のAZ91展伸材は、高速引張試験における伸び(平均値):ELghと、低速引張試験における伸び:ELlowとの差が非常に大きく、高速引張試験における伸びELghは、1.3×ELlow以上である(ここでは、約2倍程度)。このように、高速引張試験において非常に伸びの上昇率が高いことは、耐衝撃性の向上に寄与していると考えられる。
 上述のように試料No.1のAZ91展伸材が耐衝撃性に優れる結果となった理由の一つとして、微細な金属間化合物といった析出物が均一的に分散した組織を有していたため、と考えられる。金属組織については、後述する。
 また、試料No.1のAZ91展伸材はいずれも、化成処理といった防食処理を施していなくても、耐食性に優れることも分かる。特に、試料No.1のAZ91展伸材はいずれも、試料No.100のAZ91鋳造材と同様な成分(元素含有量)でありながら、試料No.100のAZ91鋳造材よりも耐食性に優れることが分かる。このような耐食性にも優れる結果となった理由の一つとして、上記特定の組織を有していたため、と考えられる。
 [試験例2]
 マグネシウム合金板を作製して基材とし、この基材の表面に化成処理を施して防食層を具えるマグネシウム合金部材を作製し、基材の金属組織、防食層の形態、耐食性を調べた。
 [試料No.1]
 試料No.1のマグネシウム合金部材は、鋳造→溶体化処理→圧延(温間)→矯正(温間)→研磨→防食層の形成、という工程により作製する。マグネシウム合金板の基本的な製造工程、製造条件は、上記試験例1と同様であり、試験例1で作製したマグネシウム合金材と異なる点は、試験例2では、コイル材ではなく、シート材を作製した点、このシート材に防食層を形成した点である。
 この試験では、AZ91合金相当の組成(Mg-9.0%Al-1.0%Zn(全て質量%))を有するマグネシウム合金からなり、双ロール連続鋳造法により得られた鋳造板(厚さ4mm)を複数用意した。得られた各鋳造板に、400℃×24時間の溶体化処理を施した。溶体化処理を施した固溶板に以下の圧延条件で、厚さが0.6mmなるまで複数回圧延を施した。
 (圧延条件)
 加工度(圧下率):5%/パス~40%/パス
 板の加熱温度:250℃~280℃
 ロール温度:100℃~250℃
 試料No.1では、圧延工程の各パスにおいて、圧延対象となる素材の加熱時間及び圧延速度(ロール周速)を調整することで、素材が150℃~300℃の温度域に保持される総合計時間が3時間となるようにした。
 得られた圧延板を220℃に加熱した状態で温間矯正を施して、矯正板を作製した。温間矯正は、特許文献2に記載される歪付与手段を利用して行った。この矯正工程において素材が150℃~300℃の温度域に保持される時間は数分程度と非常に短い。
 得られた矯正板に、更に、#600の研磨ベルトを用いて湿式ベルト式研磨を施して、矯正板の表面を研磨により平滑化して、研磨板(以下、シート材と呼ぶことがある)を作製した。
 得られた研磨板に、脱脂→酸エッチング→脱スマット→表面調整→化成処理→乾燥という手順で防食層を形成した。具体的な条件を以下に示す。得られたマグネシウム合金部材を試料No.1とする。
 脱脂:10%KOHとノニオン系界面活性剤0.2%溶液の攪拌下、60℃,10分
 酸エッチング:5%リン酸溶液の攪拌下、40℃,1分
 脱スマット:10%KOH溶液の攪拌下、60℃,10分
 表面調整:pH8に調整した炭酸水溶液の攪拌下、60℃,5分
 化成処理:ミリオン化学株式会社製商品名 グラインダー MC-1000(リン酸カルシウム・マンガン皮膜化成剤)、処理液温度35℃,浸漬時間60秒
 乾燥:120℃,20分
 [試料No.10]
 上述した試料No.1と同様の鋳造材(但し、厚さ4.2mm)を用意し、以下の条件で圧延を行った後、矯正(温間)を行わず、矯正(温間)に代えて320℃×30分の熱処理を行ったものを作製した。この熱処理板に、試料No.1と同様にして研磨した後、防食層の形成を行った。得られたマグネシウム合金部材を試料No.10とする。
 (圧延条件)
  [粗圧延] 厚さ4.2mm→1mm
 加工度(圧下率):20%/パス~35%/パス
 板の加熱温度:300℃~380℃
 ロール温度:180℃
  [仕上げ圧延] 厚さ1mm→0.6mm
 加工度(圧下率):平均7%/パス
 板の加熱温度:220℃
 ロール温度:170℃
 なお、試料No.10において溶体化処理以降の150℃~300℃の温度域に保持した総合計時間は、15時間である。
 [試料No.110]
 市販のAZ31合金からなる展伸材(厚さ:0.6mmの板)を準備し、試料No.1と同様にして研磨を施した後、防食層の形成を行った。得られたマグネシウム合金部材を試料No.110とする。
 [試料No.120]
 市販のAZ91合金からなる鋳造材(厚さ:0.6mmの板)を準備し、試料No.1と同様にして研磨を施した後、防食層の形成を行った。得られたマグネシウム合金部材を試料No.120とする。
 上述のようにして作製した試料No.1の基材(ここでは、矯正板)、試料No.10の基材(ここでは、熱処理板)、準備した試料No.110のAZ31合金の展伸材に対して、以下のようにして金属組織を観察し、析出物を調べた。
 上記基材及び展伸材をそれぞれ板厚方向に任意に切断して断面をとり、その断面を走査型電子顕微鏡:SEM(5000倍)で観察した。図6(I)に試料No.1の観察像、図6(II)に試料No.110の観察像を示す。図6において薄い灰色(白色)の小さい粒状体が析出物である。
 上記断面に対する析出物の粒子の合計面積の割合を以下のようにして求めた。上記基材及び展伸材に対してそれぞれ、上述のようにして5つの断面をとり、各断面の観察像から任意に3つの視野(ここでは22.7μm×17μmの領域)をそれぞれとる。観察視野ごとに、一つの観察視野内に存在する全ての析出物の粒子の面積をそれぞれ調べて合計面積を算出し、一つの観察視野の面積(ここでは385.9μm2)に対する当該観察視野中の全ての粒子の合計面積の割合:(粒子の合計面積)/(観察視野の面積)を求め、この割合を当該観察視野の面積割合とする。そして、上記基材及び展伸材のそれぞれについて、15個の観察視野の面積割合の平均を表4に示す。
 上記断面に対する析出物の粒子の平均粒径を以下のようにして求めた。上記観察視野ごとに、一つの観察視野内に存在する各粒子の面積の等価面積円の直径をそれぞれ求めて粒径のヒストグラムを作成し、粒径の小さい粒子から、当該観察視野内の全ての粒子の合計面積の50%に達する粒子の粒径、つまり50%粒径(面積)を当該観察視野の平均粒径とする。そして、上記基材及び展伸材のそれぞれについて、15個の観察視野の平均粒径の平均を表4に示す。
 上記粒子の面積や直径は、市販の画像処理装置を利用することで、容易に算出することができる。また、析出物をEDS(エネルギー分散型X線分析装置:Energy Dispersive X-ray Spectroscopy)により調べたところ、Mg17Al12といったAlやMgを含む金属間化合物であった。上記金属間化合物の粒子の存在は、X線回折などを利用して組成及び構造を調べることでも判別することができる。
 また、得られた各試料(マグネシウム合金部材)をそれぞれ板厚方向に任意に切断して断面をとり、その断面において、化成処理により形成された防食層を透過型電子顕微鏡(TEM)で観察した。図7(I)に試料No.1の観察像(250,000倍)、図7(II)に試料No.110の観察像(100,000倍)を示す。図7(I)において上方の黒い領域及び図7(II)において上方の白い領域は、断面をとる際に形成した保護層である。
 上記防食層の観察像を256階調のグレースケール(ここでは中間値法)で表したときの中央値とばらつきとを調べた(n=1)。その結果を表4に示す。グレースケールの中央値及びばらつきは、市販の画像処理装置を用いることで簡単に求められる。ばらつきの値が小さい場合、気孔が少なく緻密であり、ばらつきの値が大きい場合、気孔が多くポーラスであることを示す。
 また、上記各試料の観察像を用いて、防食層の厚さ(ここでは当該観察像の任意の5点を選択し、この5点厚さの平均厚さ)を調べた。その結果を表4に示す。
 更に、得られた各試料について耐食性試験を行って耐食性を調べた。ここでは、耐食性試験は、JIS Z 2371(2000)に準じて行い(塩水噴霧時間:96時間、35℃)、塩水噴霧の前後における重量の変化量(腐食減量)を測定した。そして、変化量が0.6mg/cm2超を×、0.6mg/cm2以下を○、0.4mg/cm2未満を◎と評価した。その結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、溶体化処理以降において、素材が150℃~300℃の温度域に保持される総合計時間を特定の範囲とすると共に、300℃超の加熱を行わないことで、図6(I)に示すように、微細な金属間化合物の粒子が分散した組織を有するマグネシウム合金板(試料No.1の基材)が得られることが分かる。より具体的には、この基材は、金属間化合物の粒子の平均粒径が0.05μm以上1μm以下、金属間化合物の粒子の合計面積の割合が1%以上20%以下を満たす。
 そして、この試料No.1の基材上に設けられた防食層は、図7(I)に示すように膜厚方向の基材側に形成された比較的厚い下層と、表面側に形成された比較的薄い表面層との二層構造であることが分かる。特に、下層は、表面層よりも階調(中央値)が低く、ばらつきの値が大きく、ポーラスであり、表面層は、下層よりも階調が高く、ばらつきの値が小さく、緻密であることが分かる。また、防食層の組成をEDX(エネルギー分散型X線分光装置)により調べたところ、マンガン及びカルシウムのリン酸化合物が主成分であり、基材側の下層は、表面層よりもAlの含有割合が高く、表面層は、下層よりもマンガン及びカルシウムの含有割合が高くなっていた。
 上記構成を具える試料No.1は、表4に示すように耐食性に優れていることが分かる。
 一方、AZ31合金の展伸材を用いた試料No.110は、図6(II)に示すように、析出物が非常に少ないことが分かる。また、防食層は、図7(II)に示すように、ポーラスな上に、非常に厚いことが分かる。そして、表4に示すように試料No.110は、耐食性に劣ることが分かる。この理由は、試料No.1のような緻密な表面層が防食層に存在せず、ポーラスな上に、厚膜であることでクラックが生じるなどして腐食液が浸透し易くなったことに加えて、基材のAlの含有量(固溶量)や金属間化合物の存在が少ないためであると考えられる。
 他方、AZ91合金の鋳造材を用いた試料No.120は、防食層が試料No.1の表面層よりもポーラスである上に、試料No.1よりも厚くなっていた。また、試料No.120は、試料No.1よりも耐食性に劣ることが分かる。この理由は、厚膜であることでクラックが生じるなどして、腐食液が浸透し易くなったためと考えられる。
 また、表4に示すように300℃超の熱処理を施した試料No.10では、析出物の面積割合が試料No.1よりも大きいことが分かる。この試料No.10の防食層は、上記試料No.1の表面層よりもポーラスとなっており、試料No.1よりも耐食性に劣ることが分かる。この理由は、緻密な表面層が実質的に存在しないことで、試料No.1よりも腐食液が浸透し易くなったためと考えられる。
 以上の結果から、Alの含有量が7.5質量%超のマグネシウム合金からなり、溶体化処理以降の製造工程において、150℃~300℃の温度域に保持する総合計時間を0.5時間~12時間とすると共に、300℃超の加熱を行わないようにしてマグネシウム合金材を作製することで、上述のように微細な金属間化合物といった析出物が均一的に分散した組織を有することが分かる。また、このマグネシウム合金材は、試験例1で説明したように耐衝撃性に優れることが分かる。更に、このマグネシウム合金材を基材とし、この基材に化成処理を施した場合、耐食性に優れるマグネシウム合金部材が得られることが分かる。
 試験例2で作製した防食層を具えるマグネシウム合金部材について、試験例1と同様にシャルピー衝撃値、高速引張試験及び低速引張試験における伸び、引張強さ、及び0.2%耐力を測定したところ、シャルピー衝撃値:30J/cm2以上、伸び(高速):10%以上、引張強さ(高速):300MPa以上、伸び(高速)ELhg≧1.3×伸び(低速)ELlowを満たしていた。
 試験例1で作製した試料No.1のAZ91展伸材について、同様にして組織観察を行ったところ、試験例2で作製した試料No.1のシート材と同様に金属間化合物からなる微細な析出物が分散した組織を有しており、当該粒子の平均粒径:0.1μm(100nm)、析出物の粒子の合計面積の割合:6%であった。
 なお、上述した実施形態は、本発明の要旨を逸脱することなく、適宜変更することが可能であり、上述した構成に限定されるものではない。例えば、マグネシウム合金の組成(特にAlの含有量)、マグネシウム合金材の厚さ・形状、防食層の構成材料などを適宜変更することができる。
 本発明マグネシウム合金材は、耐衝撃性に優れることが望まれる部品、代表的にはバンパーなどの自動車部品、各種の電気機器類の部品、例えば、携帯用や小型な電気機器類の筐体、高強度であることが望まれる種々の分野の部品の構成材料に好適に利用することができる。
 10 試験片 11 塑性歪みゲージ 12 弾性歪みゲージ

Claims (6)

  1.  Alを7.5質量%超含有するマグネシウム合金からなるマグネシウム合金材であって、
     シャルピー衝撃値が30J/cm2以上であることを特徴とするマグネシウム合金材。
  2.  引張速度が10m/secでの高速引張試験における伸びが10%以上であることを特徴とする請求項1に記載のマグネシウム合金材。
  3.  引張速度が10m/secでの高速引張試験における引張強さが300MPa以上であることを特徴とする請求項1又は2に記載のマグネシウム合金材。
  4.  引張速度が10m/secでの高速引張試験における伸びELhgが、引張速度が2mm/secでの低速引張試験における伸びELlowの1.3倍以上であることを特徴とする請求項1~3のいずれか1項に記載のマグネシウム合金材。
  5.  前記マグネシウム合金中に、析出物の粒子が分散して存在しており、
     前記析出物の粒子の平均粒径が0.05μm以上1μm以下であり、
     前記マグネシウム合金材の断面において、前記析出物の粒子の合計面積の割合が1%以上20%以下であることを特徴とする請求項1~4のいずれか1項に記載のマグネシウム合金材。
  6.  前記析出物の粒子は、Al及びMgの少なくとも一方を含む金属間化合物から構成される粒子を含むことを特徴とする請求項5に記載のマグネシウム合金材。
PCT/JP2010/071849 2009-12-11 2010-12-06 マグネシウム合金材 WO2011071024A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020127014877A KR101463319B1 (ko) 2009-12-11 2010-12-06 마그네슘 합금재
CN201080056199XA CN102652180A (zh) 2009-12-11 2010-12-06 镁合金构件
RU2012129180/02A RU2516128C2 (ru) 2009-12-11 2010-12-06 Материал из магниевого сплава
BR112012013855A BR112012013855A2 (pt) 2009-12-11 2010-12-06 material de liga de magnésio
US13/515,169 US8906294B2 (en) 2009-12-11 2010-12-06 Magnesium alloy material
EP10835944.9A EP2511392B1 (en) 2009-12-11 2010-12-06 Magnesium alloy material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009282081 2009-12-11
JP2009-282081 2009-12-11
JP2010260382A JP5522400B2 (ja) 2009-12-11 2010-11-22 マグネシウム合金材
JP2010-260382 2010-11-22

Publications (1)

Publication Number Publication Date
WO2011071024A1 true WO2011071024A1 (ja) 2011-06-16

Family

ID=44145568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071849 WO2011071024A1 (ja) 2009-12-11 2010-12-06 マグネシウム合金材

Country Status (9)

Country Link
US (1) US8906294B2 (ja)
EP (1) EP2511392B1 (ja)
JP (1) JP5522400B2 (ja)
KR (1) KR101463319B1 (ja)
CN (2) CN104250697B (ja)
BR (1) BR112012013855A2 (ja)
RU (1) RU2516128C2 (ja)
TW (1) TWI470087B (ja)
WO (1) WO2011071024A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112012014090A2 (pt) 2009-12-11 2016-07-05 Sumitomo Electric Industries membro estrutural de uma liga de magnésio.
JP5637386B2 (ja) * 2010-02-08 2014-12-10 住友電気工業株式会社 マグネシウム合金板
TWI515303B (zh) * 2010-12-28 2016-01-01 住友電氣工業股份有限公司 鎂合金材料
JP6048217B2 (ja) * 2013-02-28 2016-12-21 セイコーエプソン株式会社 マグネシウム基合金粉末およびマグネシウム基合金成形体
JP6048216B2 (ja) 2013-02-28 2016-12-21 セイコーエプソン株式会社 マグネシウム基合金粉末およびマグネシウム基合金成形体
JP6465338B2 (ja) * 2014-10-15 2019-02-06 住友電気工業株式会社 マグネシウム合金、マグネシウム合金板、マグネシウム合金部材、及びマグネシウム合金の製造方法
JPWO2018109947A1 (ja) * 2016-12-16 2019-06-24 三協立山株式会社 マグネシウム合金の製造方法およびマグネシウム合金
KR101889018B1 (ko) 2016-12-23 2018-09-20 주식회사 포스코 마그네슘 합금 판재 및 이의 제조방법
KR102356979B1 (ko) * 2017-01-18 2022-01-27 아르코닉 테크놀로지스 엘엘씨 접착제 접합용 7xxx 알루미늄 합금의 제조 방법, 및 이와 관련된 제품
US11268173B2 (en) 2017-11-17 2022-03-08 Sumitomo Electric Industries, Ltd. Magnesium alloy and magnesium alloy member
CN110408827A (zh) * 2018-04-28 2019-11-05 澳洋集团有限公司 一种铝-镁合金及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07224344A (ja) * 1993-12-17 1995-08-22 Mazda Motor Corp 塑性加工用マグネシウム合金鋳造素材、それを用いたマグネシウム合金部材及びそれらの製造方法
JPH0924338A (ja) * 1995-07-07 1997-01-28 Mazda Motor Corp マグネシウム合金材の高耐食性塗膜形成方法
WO2006003899A1 (ja) 2004-06-30 2006-01-12 Sumitomo Electric Industries, Ltd. マグネシウム合金材の製造方法
JP2007327115A (ja) * 2006-06-09 2007-12-20 Sumitomo Light Metal Ind Ltd 靭性に優れた高強度快削アルミニウム合金
WO2008029497A1 (fr) 2006-09-08 2008-03-13 Sumitomo Electric Industries, Ltd. Élément d'alliage de magnésium et son procédé de production
WO2009001516A1 (ja) 2007-06-28 2008-12-31 Sumitomo Electric Industries, Ltd. マグネシウム合金板材

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0665299B1 (en) * 1993-12-17 2000-03-08 Mazda Motor Corporation Magnesium alloy cast material for plastic processing, magnesium alloy member using the same, and manufacturing method thereof
IL125681A (en) * 1998-08-06 2001-06-14 Dead Sea Magnesium Ltd Magnesium alloy for high temperature applications
JP4667935B2 (ja) 2005-04-07 2011-04-13 明成化学工業株式会社 繊維構造物の撥水加工方法および当該方法により撥水加工された繊維構造物
JP2006291327A (ja) * 2005-04-14 2006-10-26 Mitsubishi Alum Co Ltd 耐熱マグネシウム合金鋳造品
DE102006009116A1 (de) * 2006-02-24 2007-09-06 Gerhard Heiche Gmbh Korrosionsbeständiges Substrat und Verfahren zu dessen Herstellung
CN101512028A (zh) * 2006-09-08 2009-08-19 住友电气工业株式会社 镁合金构件及其制造方法
JP2008106337A (ja) * 2006-10-27 2008-05-08 Shingijutsu Kenkyusho:Kk マグネシウム合金の圧延材およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07224344A (ja) * 1993-12-17 1995-08-22 Mazda Motor Corp 塑性加工用マグネシウム合金鋳造素材、それを用いたマグネシウム合金部材及びそれらの製造方法
JPH0924338A (ja) * 1995-07-07 1997-01-28 Mazda Motor Corp マグネシウム合金材の高耐食性塗膜形成方法
WO2006003899A1 (ja) 2004-06-30 2006-01-12 Sumitomo Electric Industries, Ltd. マグネシウム合金材の製造方法
JP2007327115A (ja) * 2006-06-09 2007-12-20 Sumitomo Light Metal Ind Ltd 靭性に優れた高強度快削アルミニウム合金
WO2008029497A1 (fr) 2006-09-08 2008-03-13 Sumitomo Electric Industries, Ltd. Élément d'alliage de magnésium et son procédé de production
WO2009001516A1 (ja) 2007-06-28 2008-12-31 Sumitomo Electric Industries, Ltd. マグネシウム合金板材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2511392A4 *

Also Published As

Publication number Publication date
EP2511392A4 (en) 2017-08-09
EP2511392B1 (en) 2018-11-28
JP2011140712A (ja) 2011-07-21
TWI470087B (zh) 2015-01-21
US20120282131A1 (en) 2012-11-08
CN104250697A (zh) 2014-12-31
CN104250697B (zh) 2017-10-27
RU2012129180A (ru) 2014-01-20
EP2511392A1 (en) 2012-10-17
JP5522400B2 (ja) 2014-06-18
CN102652180A (zh) 2012-08-29
KR20120081628A (ko) 2012-07-19
US8906294B2 (en) 2014-12-09
KR101463319B1 (ko) 2014-11-18
RU2516128C2 (ru) 2014-05-20
TW201134951A (en) 2011-10-16
BR112012013855A2 (pt) 2018-05-29

Similar Documents

Publication Publication Date Title
JP5522400B2 (ja) マグネシウム合金材
US9222161B2 (en) Magnesium alloy sheet and method for producing same
JP4189687B2 (ja) マグネシウム合金材
JP5757105B2 (ja) マグネシウム合金材及びその製造方法
US20110318603A1 (en) Magnesium alloy member
EP2453031A1 (en) Magnesium alloy plate
WO2019186927A1 (ja) ホットスタンプ用鋼板
JP5757104B2 (ja) マグネシウム合金材及びその製造方法
JP2014237896A (ja) マグネシウム合金板
JP5522000B2 (ja) マグネシウム合金部材
JP5688674B2 (ja) マグネシウム合金コイル材、マグネシウム合金板、及びマグネシウム合金コイル材の製造方法
WO2011071023A1 (ja) マグネシウム合金部材
EP2559780A1 (en) Impact-resistant member
JP5637378B2 (ja) マグネシウム合金板
JP2012107274A (ja) マグネシウム合金板の製造方法
US20200157662A1 (en) Magnesium alloy sheet

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080056199.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10835944

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 5012/CHENP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20127014877

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13515169

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010835944

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012129180

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012013855

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012013855

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120608