WO2008013223A1 - Joint soudé en acier inoxydable austénitique et matériau de soudure en acier inoxydable austénitique - Google Patents

Joint soudé en acier inoxydable austénitique et matériau de soudure en acier inoxydable austénitique Download PDF

Info

Publication number
WO2008013223A1
WO2008013223A1 PCT/JP2007/064664 JP2007064664W WO2008013223A1 WO 2008013223 A1 WO2008013223 A1 WO 2008013223A1 JP 2007064664 W JP2007064664 W JP 2007064664W WO 2008013223 A1 WO2008013223 A1 WO 2008013223A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
content
stainless steel
austenitic stainless
group
Prior art date
Application number
PCT/JP2007/064664
Other languages
English (en)
French (fr)
Inventor
Takahiro Osuki
Kazuhiro Ogawa
Hirokazu Okada
Masaaki Igarashi
Original Assignee
Sumitomo Metal Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries, Ltd. filed Critical Sumitomo Metal Industries, Ltd.
Priority to EP07791364.8A priority Critical patent/EP2048255B1/en
Priority to CA2658495A priority patent/CA2658495C/en
Publication of WO2008013223A1 publication Critical patent/WO2008013223A1/ja
Priority to US12/320,306 priority patent/US20090196783A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium

Definitions

  • the present invention relates to an austenitic stainless steel welded joint and an austenitic stainless steel welded material. Specifically, austenitic stainless steel that has excellent weldability despite containing a high amount of P of 0.05% or more as well as being widely applicable to applications that require high-temperature strength and corrosion resistance, such as steel pipes and steel plates.
  • the present invention relates to steel welded joints and austenitic stainless steel welding materials.
  • austenitic stainless steels such as JIS SUS304H, SUS316H, SUS321H, SUS347H, and SUS310S have been used in boilers and chemical plants used in high-temperature environments.
  • the Cu phase that precipitates finely during creep due to the addition of Cu is also used to increase the creep strength.
  • P which is essentially an impurity element, contributes to the refinement of MC carbides and creep strength.
  • Patent Document 1 and Patent Document 2 contain P. Austenitic stainless steel has been proposed!
  • Patent Document 1 discloses an austenitic stainless steel having improved creep rupture strength by controlling the P content within a specific range and adjusting the Ti and Nb amounts according to the C amount. It is disclosed.
  • Patent Document 2 discloses that a ferrite phase having a significantly lower resistance to creep deformation than an austenite phase is suppressed, and a specific amount of P is included to enhance the precipitation enhancement effect of phosphide.
  • An austenitic stainless steel that has been used to prevent deterioration of creep rupture properties is disclosed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 62-243742
  • Patent Document 2 Japanese Patent Laid-Open No. 3-153847
  • an object of the present invention is to provide an austenitic stainless steel welded joint and austenitic stainless steel having a high P content, which are made of a base metal and a weld metal that have high creep strength and are economical and excellent in weldability. It is to provide a welding material.
  • weld solidification cracks are cracks that occur without being able to withstand the applied stress when the liquid phase existing between the dendrites during weld solidification remains in a film state up to a low temperature range. is there.
  • the increase in the P content increases the weld solidification cracking susceptibility, that is, the occurrence of weld solidification cracking increases.
  • P is significantly concentrated in the liquid phase during solidification and the solidification completion temperature of the liquid phase is increased. This is due to the fact that the liquid phase remains to a lower temperature range in order to greatly reduce the degree.
  • the present inventors have only found that the crystallization of the phase that crystallizes after the initial phase (for example, austenite in the case of "FA mode” solidification) is weld solidification. Based on the idea that it is effective in suppressing cracking, we investigated in detail the crystallization behavior of the phases that crystallize after the first phase in various austenitic stainless steel weld metals.
  • the crystal is formed after the primary phase. It was found that the eutectic phase is dominated by the separated eutectic type that crystallizes and grows from the center of the liquid phase during weld solidification.
  • the propagation direction of crack generation is controlled by controlling the crystallization timing of austenite or delta ferrite that crystallizes after the initial phase is crystallized, and by dividing the liquid phase remaining in the film form. If you divide the, the AF mode is not limited to the FA mode. In addition, the idea was that the increase in weld solidification cracking susceptibility, that is, the increase in the occurrence of weld solidification cracking with the increase in the P content could be suppressed.
  • the present inventors then set the contents of C, Si, Mn, S, Cr, Ni, sol. Al, and N in the austenitic stainless steel containing 0.05% or more of P. Various changes were made and various detailed studies were conducted.
  • the component is designed to satisfy the following formula (1), and the crystallization timing of the phase that crystallizes after the initial phase It was found that welding solidification cracks can be reliably and stably suppressed by controlling the welding.
  • the element symbol in (1) Formula represents content in the mass% of the element.
  • Second group Cu: 3% or less, 0: 5% or less and ⁇ : 10% or less ⁇ [0 + ( ⁇ / 2): 5% or less, B: 0. 03% or less, V: l 5% or less, Nb: l. 5% or less, Ti: 2% or less, Ta: 8% or less, Zr: l% or less, Hf: 1% or less, and Co: 5% or less ,
  • Group 3 Ca: 0.05% or less and Mg: 0.05% or less
  • element symbol in (2) Formula represents content in the mass% of the element.
  • the present invention has been completed based on the above findings, and the gist of the present invention is the austenitic stainless steel welded joint shown in the following (1) and (2), and (3) and (4) The austenitic stainless steel welding material shown in
  • the element symbol in (1) Formula represents content in the mass% of the element.
  • element symbol in (2) Formula represents content in the mass% of the element.
  • Second group Cu: 3% or less, 0: 5% or less and ⁇ : 10% or less ⁇ [0 + ( ⁇ ⁇ / 2): 5% B: 0.03% or less, V: l. 5% or less, Nb: l. 5% or less, Ti: 2% or less, Ta: 8% or less, Zr: l% or less, Hf: 1% or less And Co: 5% or less of 1 type or 2 types or more,
  • Group 3 Ca: 0.05% or less and Mg: 0.05% or less.
  • the element symbol in (1) Formula represents content in the mass% of the element.
  • element symbol in (2) Formula represents content in the mass% of the element.
  • Second group Cu: 3% or less, 0: 5% or less and ⁇ : 10% or less ⁇ [0 + ( ⁇ / 2): 5% or less, B: 0. 03% or less, V: l 5% or less, Nb: l. 5% or less, Ti: 2% or less, Ta: 8% or less, Zr: l% or less, Hf: 1% or less, and Co: 5% or less ,
  • Group 3 Ca: 0.05% or less and Mg: 0.05% or less.
  • the austenitic stainless steel welded joint of the present invention can be widely applied to steel pipes, steel plates, and the like that require high weld strength as well as high temperature strength and corrosion resistance despite its high P content. it can.
  • the austenitic stainless steel welding material of the present invention is It is optimal for producing the austenitic stainless steel welded joint.
  • FIG. 1 is a diagram showing the shape of a test piece used in a creep rupture test of an example.
  • the C is an effective and important element for securing the tensile strength and creep strength required when used in a high temperature environment.
  • the above effect cannot be exhibited unless the content is 0.05% or more, and the required high temperature strength cannot be obtained.
  • the C content is set to 0.05-5.25%. Note that the C content is preferably 0.06% to 0.2% or less. S is preferably 0.07 to 0.15%.
  • Si 2% or less
  • Si is an element that has a deoxidizing action during the melting of austenitic stainless steel, and is effective in enhancing oxidation resistance and steam oxidation resistance.
  • the content exceeds 2%, precipitation of intermetallic compound phases such as ⁇ phase is promoted, and toughness and ductility decrease due to deterioration of the structural stability at high temperature.
  • the Si content is set to 2% or less.
  • the Si content is more preferably 1% or less.
  • Mn is an element effective for the deoxidation effect during melting in addition to the suppression of hot work brittleness due to S contained as impurities in austenitic stainless steel. Therefore, it is necessary to contain at least 0.01% or more. However, if the content exceeds 3%, precipitation of intermetallic compound phases such as ⁇ phase is promoted, and toughness and ductility are reduced due to deterioration of the structural stability at high temperatures. Therefore, the content of ⁇ is set to 0.0;! To 3%. The content of ⁇ is more preferably 0 ⁇ 05 to 2%, and even more preferably 0 to 5 ⁇ 5%.
  • Soot is an important element in the present invention, and contributes to fine precipitation of carbides, and in order to improve the creep strength of the austenitic stainless steel of the present invention, the content needs to be 0.05% or more. .
  • the soot content was set to 0.05-0.5%.
  • the soot content is more preferably from 0.06 to 0.3%, more preferably from 0.08% to 0.2%.
  • S is an impure element mixed from raw materials when melting austenitic stainless steel. Increasing its content causes a decrease in corrosion resistance, and also deteriorates hot workability and weldability. In particular, when the S content exceeds 0.03%, the corrosion resistance is deteriorated, and the hot heat resistance and the weldability are remarkably deteriorated. Therefore, the S content is set to 0.03% or less. Since the S content is desirably reduced as much as possible, it is more preferably 0.01% or less, and extremely preferably 0.005% or less.
  • Cr is an important element for ensuring oxidation resistance, steam oxidation resistance, high-temperature corrosion resistance, and the like, and further contributes to the formation of Cr-based carbides and an increase in creep strength.
  • it is necessary to contain 15% or more of Cr.
  • the Cr content increases, the corrosion resistance improves.
  • the Cr content exceeds 30%, the austenite structure becomes unstable, and intermetallic compounds such as the ⁇ phase and ⁇ -Cr phase tend to be generated. If it is tough, high temperature strength will deteriorate. Therefore, the Cr content is 15-30%.
  • the Cr content is more preferably 18 to 28%.
  • Ni 6-55%
  • Ni is an essential element for securing a stable austenite structure, and its minimum content is that of ferrite-generating elements such as Cr, Mo, W, and Nb contained in austenitic stainless steel, Mn, It is determined by the content of austenite-generating elements such as C and N.
  • it is necessary to contain 15% or more of Cr, and when the Ni content is less than 6% with respect to this Cr content, it is difficult to form an austenite single phase structure, and at a high temperature. When used for a long time, the austenite structure becomes unstable, and high temperature strength and toughness deteriorate significantly due to precipitation of embrittled phase such as ⁇ phase.
  • the Ni content exceeds 55%, the effect is saturated and the economy is impaired. Therefore, the Ni content is 6-55%.
  • the solidification mode is “A mode”, that is, solidification in an austenite single phase and the above-mentioned formula (1) may not be satisfied. It is more preferable to make it 30%. It is more preferable if it is 8 to 25%.
  • sol. A1 0. 001—0.1%
  • Al has a deoxidizing action when austenitic stainless steel is melted. In order to exert this effect, it is necessary to contain 0.001% or more of A1 as sol. Al (“acid-soluble Al”). When the content of Al as sol. Al exceeds 0.1%, precipitation of intermetallic compounds such as ⁇ phase is promoted during use at high temperature, and toughness, ductility and high temperature strength are reduced. . Therefore, the content of sol. Al was set to 0.001–0.1%. The content of sol. Al is more preferably 0.005 to 0 ⁇ 05%, and more preferably 0 ⁇ 01 to 0.03%.
  • so the soot content is set to 0.03% or less.
  • Austenitic stainless steel which contains elements from C to N in the above-mentioned range, with the balance being Fe and impurities, is “(Cr + l. 5XSi + 2XP) / (Ni + 0.31 XMn + 22XC + 14.2XN + 5XP) ”is 1388 or more, that is, when the formula (1) is satisfied, the crystallization timing of the phase that crystallizes after the initial phase is controlled to ensure reliable and stable weld solidification cracking. Depress I can control.
  • the austenitic stainless steel welded joint according to the present invention (1) and the austenitic stainless steel welded material according to the present invention (3) contain the elements C to N within the above-mentioned range.
  • the remainder is made of Fe and impurities and satisfies the above formula (1).
  • the austenitic stainless steel welded joint according to the present invention (1) and the austenitic stainless steel welded material according to the present invention (3) may be further replaced with a part of Fe, if necessary.
  • Group 2 Cu: 3% or less, 0: 5% or less and ⁇ : 10% or less ⁇ [0 + ( ⁇ ⁇ / 2): 5% or less, B: 0.03% or less, V: l.5 % Or less, Nb: 1% or less, 5% or less, Ti: 2% or less, Ta: 8% or less, Zr: 1% or less, Hf: 1% or less, and Co: 5% or less,
  • Group 3 One or two of Ca: 0.05% or less and Mg: 0.05% or less,
  • One or more elements of each group can be selectively contained. That is, one or more elements from the first group to the third group may be added and contained as optional elements.
  • Nd which is an element of the first group, has an effect of improving creep ductility, and is particularly an element effective for obtaining good creep ductility in the austenitic stainless steel of the present invention containing a high amount of P of 0.05% or more. It is.
  • the Nd content is desirably 0.001% or more. However, if the Nd content exceeds 0.5%, inclusions such as oxides increase. Therefore, the content of Nd when added is set to 0.5% or less.
  • the Nd content is preferably 0.001-0.5%.
  • the more preferable Nd content is 0.001 to 0.2%.
  • An even more preferable Nd content is 0.005% or more and less than 0.1%.
  • Group 2 Cu: 3% or less, Mo: 5% or less and W: 10% or less and Mo + (W / 2): 5% or less, B: 0.03% or less, V: 1.5% or less Nb: 5% or less, Ti: 2% or less, Ta: 8% or less Lower, Zr: 1% or less, Hf: 1% or less, and Co: 5% or less
  • W 3% or less
  • Mo 5% or less
  • W 10% or less
  • B 0.03% or less
  • V 1.5% or less
  • Nb 5% or less
  • Ti 2% or less
  • Ta 8% or less
  • Zr 1% or less
  • Hf 1% or less
  • Co Co
  • the Cu is coherently precipitated in the austenite matrix as a fine Cu phase during use at high temperatures, and has the effect of greatly improving the tape strength.
  • the Cu content is desirably 0.01% or more.
  • the Cu content increases, especially if it exceeds 3%, hot workability, weldability and creep ductility are reduced. Therefore, when Cu is added, the content of Cu is set to 3% or less.
  • the Cu content is preferably 0.0;! To 3%.
  • the upper limit of the Cu content is more preferably 2.0%, and even more preferably 0.9%.
  • Mo 5% or less and W: 10% or less and Mo + (W / 2): 5% or less
  • Mo and W are effective elements for improving creep strength and high temperature strength.
  • the content should be 0.05% or more, respectively, and when both elements are added in combination, Mo + (W / 2) is 0.
  • a power of 05% or more is preferable.
  • Mo and W are added in excess of 5% and 10%, respectively, in the case of single addition, and Mo + (W / 2) is included in excess of 5% in the case of combined addition.
  • the above effects are saturated and the cost is increased, and the formation of intermetallic compounds such as sigma phase is induced, resulting in deterioration of structure stability and hot workability.
  • the contents of Mo and W when added are Mo: 5% or less and W: 10% or less and Mo + (W / 2): 5% or less.
  • the content when Mo and W are added alone is preferably MottO. 05-5%, and W is preferably 0.05 to 10%.
  • the content is preferably 0.05 to 5% in terms of Mo + (W / 2). Since Mo and W are ferrite-forming elements, the Mo and W contents are more preferably less than 4% for stabilizing the austenite structure.
  • B is present in carbonitrides and finely dispersed precipitation of carbonitrides during use at high temperatures
  • B alone exists at the grain boundary and strengthens the grain boundary and suppresses the sliding of the grain boundary.
  • the B content is desirably 0.0005% or more.
  • the B content is set to 0.03% or less.
  • the B content is preferably 0.0005-0.03%.
  • a more preferable content of B is 0.001 -0.1%.
  • An even more preferable content of B is 0.001 to 0.005%.
  • V l. 5% or less
  • V is a carbide forming element and is effective in improving creep strength and high temperature strength.
  • the V content is preferably 0.02% or more. However, if the V content exceeds 1.5%, mechanical properties such as toughness will be greatly degraded. Therefore, the content of V when added is set to 1.5% or less.
  • the V content is preferably 0.02-1.5%.
  • the V content is more preferably 0.04-1%.
  • Nb l. 5% or less
  • Nb is a carbide forming element and is effective in improving creep strength and high temperature strength.
  • the Nb content is preferably 0.05% or more.
  • the content of Nb when added is set to 1.5% or less.
  • the Nb content is preferably 0.05 to 1.5%.
  • a more preferable Nb content is 0.05 to 0.6%.
  • Ti is a carbide forming element and is effective in improving creep strength and high temperature strength.
  • the Ti content is desirably 0.005% or more.
  • the Ti content is preferably 0.005 to 2%. More preferable Ti content is 0.05 to 1%.
  • Ta 8% or less
  • Ta is also a carbide forming element and is effective in improving creep strength and high temperature strength. To obtain this effect with certainty, the Ta content is desirably 0.01% or more. However, if the Ta content exceeds 8%, mechanical properties such as toughness are greatly deteriorated. Therefore, when Ta is added, the content of Ta is set to 8% or less.
  • the Ta content is preferably 0.0;! To 8%. A more preferable content of Ta is 0.0;! To 7%. The more preferable Ta content is 0.05 to 6%.
  • Zr mainly contributes to grain boundary strengthening and improves creep strength.
  • the Zr content is desirably 0.0005% or more.
  • the content of Zr when added is set to 1% or less.
  • the Zr content is preferably 0.0005 to 1%.
  • a more preferable content of Zr is 0.01 to 0.8%.
  • the more preferable Zr content is 0.02-0.5%.
  • the Co content is preferably 0.05% or more. However, even if the Co content exceeds 5%, the above effect is saturated, and if the economic efficiency is lowered, it is a force. Therefore, the Co content when added is set to 5% or less.
  • the Co content is preferably 0.05 to 5%.
  • the Ca content has an effect of improving hot workability.
  • the Ca content is preferably 0.0001% or more.
  • the Ca content exceeds 0.05%, oxide inclusions are formed and hot workability is lowered, and ductility is deteriorated. Therefore, the Ca content when added is 0.05% or less.
  • the Ca content is preferably 0.0001-0.05%.
  • Content of more preferred Ca is 0.0 01-0.02 0/0.
  • Mg 0.05% or less
  • Mg also has the effect of improving hot workability.
  • the Mg content is preferably 0.0001% or more.
  • the Mg content is preferably 0.0001-0.05%.
  • Content of more preferred Mg is 0. 001-0.02 0/0.
  • the austenitic stainless steel containing at least one of the above is "(Cr + 1.5XSi + 2XNb + Ti + 2XP) / (Ni + 0.31 X Mn + 22 X C + 14. 2XN + Cu + 5XP)" Crystallization after the first phase when the value of 1 ⁇ 388 or more, that is, when formula (2) is satisfied.
  • the crystallization timing of the phase to be controlled is controlled, and weld solidification cracking can be reliably and stably suppressed
  • the austenitic stainless steel welded joint according to the present invention (2) and the austenitic stainless steel welded material according to the present invention (4) are austenitic stainless steel welded according to the present invention (1).
  • it contains at least one selected from the first group to the third group, and (2 ) Formula is satisfied.
  • the austenitic stainless steel welded joint according to the present invention (1) and the present invention (2) can be produced by various welding methods such as TIG welding and MIG welding. And, as the welding material used for producing the austenitic stainless steel welded joint, the austenitic stainless steel welding material according to the present invention (3) and the present invention (4) can be used.
  • Steels 1 to 12 and steels A to D which are austenitic stainless steels having the chemical composition shown in Table 1, were melted using a high-frequency heating vacuum furnace, and then formed into ingots.
  • Steels 1 to 12 in Table 1 are steels having chemical compositions within the range defined in the present invention.
  • steels A to D in Table 1 are steels of comparative examples whose chemical compositions deviate from the conditions specified in the present invention.
  • the P content is limited to 0.040% or less as defined in JIS G 3463. Therefore, the P content of steel A in Table 1 is 0.03% force S, which corresponds to the P content of general austenitic stainless steel used for boiler heat exchange.
  • the welding current was 165 A
  • the welding voltage was 15 V
  • the welding speed was lOcm / min.
  • Multi-layer welding is performed by TIG welding, specimens with the shape shown in Fig. 1 are collected, a creep rupture test is conducted at 700 ° C and 147 MPa, and the creep rupture time of the welded joint is investigated. It was.
  • the chemical composition of the weld metal is the same as that of the base metal because TIG welding hardly causes dilution.
  • Table 2 summarizes the results of the above tests, together with the value on the left side of the formula (1) or (2).
  • X indicates that the creep rupture time is less than 1000 hours
  • indicates that the creep rupture time is 100 hours or more.
  • the creep rupture time is 1000 hours or more, and the creep characteristics are excellent, but the above formula (2) is satisfied!
  • cracks have occurred inside the tube, and the maximum crack length in the transbalance test exceeds lmm, which is inferior in weldability and is not suitable for practical use.
  • the austenitic stainless steel welded joint according to the present invention can be widely applied to steel pipes, steel plates and the like that require high weldability as well as high temperature strength and corrosion resistance despite having a high P content. it can. Further, the austenitic stainless steel welding material of the present invention is optimal for producing the above-mentioned austenitic stainless steel welded joint.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Arc Welding In General (AREA)
  • Heat Treatment Of Steel (AREA)

Description

明 細 書
オーステナイト系ステンレス鋼溶接継手及びオーステナイト系ステンレス 鋼溶接材料
技術分野
[0001] 本発明は、オーステナイト系ステンレス鋼溶接継手及びオーステナイト系ステンレス 鋼溶接材料に関する。詳しくは、鋼管、鋼板等として、高温強度と耐食性が求められ る用途に幅広く適用できることはもちろん、 0. 05%以上という高い量の Pを含むにも 拘わらず優れた溶接性も有するオーステナイト系ステンレス鋼溶接継手及びオース テナイト系ステンレス鋼溶接材料に関する。
背景技術
[0002] 従来、高温環境下で使用されるボイラや化学プラント等においては、 JISの SUS30 4H、 SUS316H, SUS321H, SUS347H、 SUS310S等のオーステナィ卜系ステ ンレス鋼が使用されてきた。
[0003] しかしながら近年、ボイラー等の蒸気条件の高温高圧化が進み、それに伴って使 用材料に対する要求性能が厳しくなり、従来使用されてきたオーステナイト系ステン レス鋼では高温強度が著しく不足する状況となったため、より一層高温強度に優れた 経済的な鋼の開発が望まれてレ、る。
[0004] オーステナイト系ステンレス鋼の高温強度、特にクリープ強度の改善方法としては、 炭化物の析出が有効であり、 M C又は NbC等の炭化物による強化機構が用いら
23 6
れている。また、 Cu添加によりクリープ中に微細析出する Cu相もクリープ強度を高め るのに利用されている。
[0005] しかしながら、炭化物の析出のための C含有量の増加は耐食性の劣化をもたらすし 、また、炭化物による強化元素はいずれも高価であり、更に、 Cuの多量添加は熱間 加工性、溶接性及びクリープ延性を低下させるため、炭化物による強化元素及び Cu の含有量にも制限があった。
[0006] 一方、本来不純物元素である Pは、 M C炭化物の微細化に寄与しクリープ強度
23 6
に寄与することが知られており、例えば、特許文献 1や特許文献 2に Pを含有させた オーステナイト(系)ステンレス鋼が提案されて!/、る。
[0007] すなわち、特許文献 1に、 Pの含有量を特定範囲に制御し、かつ Tiと Nbの量を C量 との対応で調整することで、クリープ破断強度を向上させたオーステナイトステンレス 鋼が開示されている。
[0008] また、特許文献 2に、クリープ変形に対する抵抗力がオーステナイト相と比べて著し く低いフェライト相の生成を抑制するとともに、特定量の Pを含有させてリン化物の析 出強化作用を利用し、クリープ破断特性の劣化を防止したオーステナイト系ステンレ ス鋼が開示されている。
[0009] 特許文献 1 :特開昭 62— 243742号公報
特許文献 2:特開平 3— 153847号公報
発明の開示
発明が解決しょうとする課題
[0010] 前述の特許文献 1及び特許文献 2で開示された Pの含有量を増加させる技術は溶 接性の低下を招いてしまう。すなわち、 P含有量の増加、なかでも 0. 05%を超えるよ うな多量の P含有は、特に溶接凝固過程の終了期に近い、主として結晶粒界に膜状 の液相が存在する段階において、凝固収縮又は熱収縮により加わる歪みが溶接金 属の変形能以上になった場合に発生する割れ (以下、「溶接凝固割れ」という。)を著 しく誘発する。したがって、特に、 0. 05%を超えるような多量の P含有は、溶接性とい う観点からの制限を受けることになるため、特許文献 1及び特許文献 2で開示された オーステナイト(系)ステンレス鋼の場合には、必ずしも Pのクリープ強度向上への効 果が十分活用されてレ、るとは言レ、がたレ、。
[0011] そこで、本発明の目的は、クリープ強度が高くかつ経済的でありながら溶接性に優 れた母材及び溶接金属からなる P含有量の高いオーステナイト系ステンレス鋼溶接 継手及びオーステナイト系ステンレス鋼溶接材料を提供することにある。
課題を解決するための手段
[0012] 本発明者らは、クリープ強度が高くかつ経済的な、 Pを高濃度に含有させたオース テナイト系ステンレス鋼について、溶接凝固割れを防止して良好な溶接性を具備さ せることを目的に種々の検討を実施した。 [0013] なお、溶接凝固割れは、前述のように、溶接凝固中のデンドライト間に存在する液 相が低温域まで膜状に残存する場合に、付加される応力に耐えられずに生じる割れ である。
[0014] そして、 P含有量の増加によって溶接凝固割れ感受性が増大する、つまり、溶接凝 固割れの発生が増えるのは、 Pが凝固中の液相に著しく濃化して液相の凝固完了温 度を大きく低下させるため、液相がより低温域まで残存することに起因するものである
[0015] このため、不純物元素として含まれる Pに起因する溶接凝固割れの発生低減のた めの研究が種々行われており、例えば、特表 2003— 535213号公報の段落 0030 及び 0031に開示されているように、初相をフェライト凝固とするよう化学組成をバラン スさせた場合に、溶接凝固割れが抑制できることが知られている。
[0016] また、「ステンレス鋼の溶接第 1版 (著者:西本和俊、夏目松吾、小川和博、松本長 、発行年:平成 13年、発行所:産報出版)」の第 87〜88ページには、デルタフェライ トを活用した溶接凝固割れ抑制のためのメカニズムが詳細に記載され、溶接凝固割 れの抑制は、フェライトが初晶となる凝固モード、つまり、「FAモード」の場合に、デル タフエライトのオーステナイトへの変態による液相の分断によって実現できると説明さ れている。
[0017] これに対して、本発明者らは、上述の文献とは異なり、あくまでも初相の後に晶出す る相(例えば、「FAモード」の凝固の場合ではオーステナイト)の晶出が溶接凝固割 れの抑制に有効であるとの着想の下に、各種のオーステナイト系ステンレス鋼溶接金 属において初相の後に晶出する相の晶出挙動についての詳細な調査を行った。
[0018] その結果、先ず、凝固モードが前記したフェライトが初晶となる「FAモード」だけで なぐオーステナイトが初相となる凝固モードである「AFモード」の場合にも、初相の 後に晶出する相は溶接凝固中の液相中央部から晶出 ·成長する分離共晶型が支配 的となることが判明した。
[0019] そこで、初相が晶出した後に晶出するオーステナイト又はデルタフェライトの晶出タ イミングを早期化するよう制御して、膜状に残存する液相を分断することによって割れ 発生の伝播方向を分断すれば、「FAモード」の場合に限らず「AFモード」の場合に も、 P含有量の増加に伴う溶接凝固割れ感受性の増大、つまり、溶接凝固割れの発 生の増加を抑制できるとの着想に至った。
[0020] なお、 0.05%以上の Pを含む場合には、 Pの凝固モードに及ぼす影響は無視でき ないと考えられる。
[0021] このため、ステンレス鋼の凝固モードを予測できる Pの影響を考慮したミクロ偏析計 算モデルを作成した。
[0022] そして、このミクロ偏析計算モデルに基づ!/、て、凝固モードが「AFモード」又は「FA モード」となる種々の化学成分組成を有するオーステナイト系ステンレス鋼を作製し、 溶接凝固割れ感受性に関する研究を行った。
[0023] その結果、凝固モードが「FAモード」の場合はもちろん、「AFモード」の場合にお いても、初相の後に晶出する相の晶出タイミングを早期化すれば、たとえ 0.05%以 上の Pを含有する場合でも溶接凝固割れを抑制できることが明らかとなった。
[0024] そこで本発明者らは、次に、 Pを 0· 05%以上含むオーステナイト系ステンレス鋼に おいて、 C、 Si、 Mn、 S、 Cr、 Ni、 sol. Al及び Nの含有量を種々変化させて、更に詳 細な検討を行った。
[0025] その結果、 C:0.05—0.25%、 Si:2%以下、 Mn:0.01— 3%, P:0.05—0.5 %、 S:0.03%以下、 Cr:15〜30%、 Ni:6〜55%、 sol. A1:0.001—0. 1%及び
N:0.03%以下で、残部が Feと不純物のオーステナイト系ステンレス鋼の場合には 、下記の(1)式を満足するように成分設計して、初相の後に晶出する相の晶出タイミ ングを制御すれば、溶接凝固割れを確実かつ安定して抑制できることが判明した。
[0026] (Cr+1.5XSi + 2XP)/(Ni + 0.31 X Mn + 22 X C+ 14.2XN+5XP)≥1 .388···(1)式。
なお、(1)式中の元素記号は、その元素の質量%での含有量を表す。
[0027] 本発明者らは、更に、上記のオーステナイト系ステンレス鋼における Feの一部に代 えて、 Nd、 Cu、 Mo、 W、 B、 V、 Nb、 Ti、 Ta、 Zr、 Hf、 Co、 Ca及び Mgを含む場合 につ!/、ても検討を行った。
[0028] その結果、 Feの一部に代えて、下記第 1群ないし第 3群の中から選ばれた少なくと も 1種を含有するオーステナイト系ステンレス鋼の場合には、下記の(2)式を満足す るように成分設計して、初相の後に晶出する相の晶出タイミングを制御すれば、溶接 凝固割れを確実かつ安定して抑制できることが判明した。
[0029] 第 1群: Nd:0. 5%以下、
第 2群: Cu: 3%以下、 0:5%以下及ひ¥:10%以下でかっ^[0+(\¥/2) :5% 以下、 B:0. 03%以下、 V:l. 5%以下、 Nb:l. 5%以下、 Ti:2%以下、 Ta:8%以 下、 Zr:l%以下、 Hf :1%以下及び Co :5%以下の 1種又は 2種以上、
第 3群: Ca:0. 05%以下及び Mg:0.05%以下の 1種又は 2種、
(Cr+1. 5XSi + 2XNb + Ti + 2XP)/(Ni + 0. 31 X Mn + 22 X C+ 14. 2X
N + CU+5XP)≥1. 388···(2)式。
なお、(2)式中の元素記号は、その元素の質量%での含有量を表す。
[0030] 本発明は、上記の知見に基づいて完成されたものであり、その要旨は、下記(1)及 び(2)に示すオーステナイト系ステンレス鋼溶接継手、並びに(3)及び (4)に示すォ ーステナイト系ステンレス鋼溶接材料にある。
[0031] (1)質量%で、じ:0.05—0. 25%、3 2%以下、^[1 :0.01— 3%, Ρ:0.05〜0
. 5%、S:0.03%以下、 Cr:15〜30%、 Ni:6〜55%、 sol. A1:0. 001—0. 1%及 び N:0.03%以下を含有し、残部が Fe及び不純物からなり、かつ下記(1)式を満足 することを特徴とするオーステナイト系ステンレス鋼溶接継手。
(Cr+1. 5XSi + 2XP)/(Ni + 0. 31 X Mn + 22 X C+ 14. 2XN+5XP)≥1
. 388···(1)式。
なお、(1)式中の元素記号は、その元素の質量%での含有量を表す。
[0032] (2) Feの一部に代えて、質量%で、更に、下記第 1群ないし第 3群の中から選ばれ た少なくとも 1種を含有し、かつ下記(2)式を満足することを特徴とする請求項 1に記 載のオーステナイト系ステンレス鋼溶接継手。
(Cr+1. 5XSi + 2XNb + Ti + 2XP)/(Ni + 0. 31 X Mn + 22 X C+ 14. 2X N + CU+5XP)≥1. 388···(2)式。
なお、(2)式中の元素記号は、その元素の質量%での含有量を表す。
第 1群: Nd:0. 5%以下、
第 2群: Cu: 3%以下、 0:5%以下及ひ¥:10%以下でかっ^[0+(\¥/2) :5% 以下、 B:0. 03%以下、 V:l. 5%以下、 Nb:l. 5%以下、 Ti:2%以下、 Ta:8%以 下、 Zr:l%以下、 Hf :1%以下及び Co :5%以下の 1種又は 2種以上、
第 3群: Ca:0. 05%以下及び Mg:0.05%以下の 1種又は 2種。
[0033] (3)質量%で、じ:0.05—0. 25%、3 2%以下、^[1 :0.01— 3%, P:0.05〜0 . 5%、S:0.03%以下、 Cr:15〜30%、 Ni:6〜55%、 sol. A1:0. 001—0. 1%及 び N:0.03%以下を含有し、残部が Fe及び不純物からなり、かつ下記(1)式を満足 することを特徴とするオーステナイト系ステンレス鋼溶接材料。
(Cr+1. 5XSi + 2XP)/(Ni + 0. 31 X Mn + 22 X C+ 14. 2XN+5XP)≥1 . 388···(1)式。
なお、(1)式中の元素記号は、その元素の質量%での含有量を表す。
[0034] (4) Feの一部に代えて、質量%で、更に、下記第 1群ないし第 3群の中から選ばれ た少なくとも 1種を含有し、かつ下記(2)式を満足することを特徴とする請求項 3に記 載のオーステナイト系ステンレス鋼溶接材料。
(Cr+1. 5XSi + 2XNb + Ti + 2XP)/(Ni + 0. 31 X Mn + 22 X C+ 14. 2X N + CU+5XP)≥1. 388···(2)式。
なお、(2)式中の元素記号は、その元素の質量%での含有量を表す。
第 1群: Nd:0. 5%以下、
第 2群: Cu: 3%以下、 0:5%以下及ひ¥:10%以下でかっ^[0+(\¥/2) :5% 以下、 B:0. 03%以下、 V:l. 5%以下、 Nb:l. 5%以下、 Ti:2%以下、 Ta:8%以 下、 Zr:l%以下、 Hf :1%以下及び Co :5%以下の 1種又は 2種以上、
第 3群: Ca:0. 05%以下及び Mg:0.05%以下の 1種又は 2種。
[0035] 以下、上記(1)及び(2)に示すオーステナイト系ステンレス鋼溶接継手、並びに(3 )及び (4)に示すオーステナイト系ステンレス鋼溶接材料に係る発明を、それぞれ、「 本発明(1)」〜「本発明(4)」とレ、う。また、総称して「本発明」と!/、うことがある。
発明の効果
[0036] 本発明のオーステナイト系ステンレス鋼溶接継手は、 P含有量が高いにも拘わらず 、鋼管、鋼板等として、高温強度と耐食性はもちろん溶接性が要求される用途に幅広 く適用することカできる。また、本発明のオーステナイト系ステンレス鋼溶接材料は、 上記のオーステナイト系ステンレス鋼溶接継手を作製するのに最適である。
図面の簡単な説明
[0037] [図 1]図 1は、実施例のクリープ破断試験で用いた試験片の形状を示す図である。
発明を実施するための最良の形態
[0038] 以下、本発明の溶接継手及び溶接材料における成分元素の限定理由につ!/、て詳 しく説明する。なお、以下の説明において、各元素の含有量の「%」表示は「質量%」 を意味する。
[0039] C : 0. 05—0. 25%
Cは、高温環境下で使用される際に必要となる引張強さ及びクリープ強度を確保す るために有効かつ重要な元素である。本発明のオーステナイト系ステンレス鋼におい ては、その含有量を 0. 05%以上にしないと上記の効果が発揮されず、求められてい る高温強度が得られない。し力もながら、 0. 25%を超える量の Cを含有させても、溶 体化状態における未固溶炭化物量が増加するだけで高温強度の向上に寄与しなく なる。また、靱性などの機械的性質や耐食性を劣化させる。このため、 Cの含有量は 0. 05-0. 25%とした。なお、 Cの含有量は、 0. 06%超え 0. 2%以下とすること力 S 好ましく、 0. 07〜0. 15%であれば一層好ましい。
[0040] Si : 2%以下
Siは、オーステナイト系ステンレス鋼の溶製時に脱酸作用を有し、また耐酸化性及 び耐水蒸気酸化性等を高めるのに有効な元素である。前記の効果を必要とする際に は、 Siは 0. 1 %以上含有させるのが望ましい。し力もながら、その含有量が 2%を超 えると、 σ相等の金属間化合物相の析出を促進し、高温における組織安定性の劣化 に起因した靱性ゃ延性の低下を生じる。更に、完全オーステナイト相凝固する場合 には、溶接凝固割れ感受性が極めて大きくなつて、溶接凝固割れの発生が増える。 したがって、 Siの含有量は 2%以下とした。なお、 Siの含有量は 1 %以下であればより 好ましい。
[0041] Mn : 0. 0;!〜 3%
Mnは、オーステナイト系ステンレス鋼中に不純物として含まれる Sによる熱間加工 脆性の抑制の他、溶製時の脱酸効果に有効な元素であり、このような効果を得るた めに、少なくとも 0. 01 %以上含有させる必要がある。し力もながら、その含有量が 3 %を超えると σ相等の金属間化合物相の析出を助長し、高温における組織安定性 の劣化に起因した靱性ゃ延性の低下を生じる。したがって、 Μηの含有量は 0. 0;!〜 3%とした。なお、 Μηの含有量は 0· 05〜2%であればより好ましぐ 0.;!〜 1 · 5%で あれば更に好ましい。
[0042] Ρ : 0. 05—0. 5%
Ρは、本発明において重要な元素であり、炭化物の微細析出に寄与して、本発明 のオーステナイト系ステンレス鋼のクリープ強度を向上させるために、 0. 05%以上の 含有量とする必要がある。し力、しながら、 Ρの含有量が過剰になるとクリープ延性が低 下し、特に、その含有量が 0. 5%を超えるとクリープ延性の低下が著しくなる。したが つて、 Ρの含有量は 0. 05—0. 5%とした。なお、 Ρの含有量は 0. 06—0. 3%であれ ばより好ましく、 0. 08%を超えて 0. 2%以下であれば更に好ましい。
[0043] S : 0. 03%以下
Sは、オーステナイト系ステンレス鋼を溶製する際に原料などから混入してくる不純 物元素であり、その含有量が多くなると、耐食性の低下を招くとともに、熱間加工性と 溶接性も劣化させ、特に、 Sの含有量が 0. 03%を超えると、耐食性の低下、熱間加 ェ性と溶接性の劣化が著しくなる。したがって、 Sの含有量は 0. 03%以下とした。な お、 Sの含有量は可能な限り低減することが望ましいので、 0. 01 %以下とすれば更 に好ましく、 0· 005%以下とすれば極めて好ましい。
[0044] Cr: 15—30%
Crは、耐酸化性、耐水蒸気酸化性、耐高温腐食性等を確保する重要な元素であり 、更に Cr系炭化物を形成しクリープ強度を上昇させるのにも寄与する。前記した効果 を得るために、 Crは 15%以上含有させる必要がある。なお、 Crの含有量が多いほど 耐食性は向上するが、その含有量が 30%を超えると、オーステナイト組織が不安定 となって σ相等の金属間化合物や α— Cr相を生成しやすくなるので、靱性ゃ高温 強度の劣化が生じる。したがって、 Crの含有量は 15〜30%とした。なお、 Crの含有 量は 18〜28%であれば更に好ましい。
[0045] Ni : 6〜55% Niは、安定なオーステナイト組織を確保するために必須の元素であり、その必要最 少含有量は、オーステナイト系ステンレス鋼中に含まれる Cr、 Mo、 W、 Nb等のフェラ イト生成元素や Mn、 C、 N等のオーステナイト生成元素の含有量によって定まる。本 発明では 15%以上の Crを含有させる必要があり、この Cr量に対して Niの含有量が 6%未満の場合には、オーステナイト単相組織にするのが困難であり、更に、高温で の長時間使用でオーステナイト組織が不安定になり、 σ相等の脆化相析出に起因し て高温強度ゃ靱性が著しく劣化してしまう。一方、 Niの含有量が 55%を超えてもそ の効果は飽和し経済性が損なわれる。したがって、 Niの含有量は 6〜55%とした。な お、 Niを多量に含む場合には、凝固モードが「Aモード」、つまり、オーステナイト単 相での凝固となり前記した(1)式が満たされないことがあるため、 Niの含有量は 6〜3 0%とすることが好ましぐ 8〜25%であれば一層好ましい。
[0046] sol. A1:0. 001—0. 1%
Alは、オーステナイト系ステンレス鋼の溶製時に脱酸作用を有する。この効果を発 揮させるためには A1を sol. Al (「酸可溶性 Al」)として 0.001%以上含有させる必要 がある。し力、し、 sol. Alとしての Alの含有量が 0. 1%を超えると、高温での使用中に σ相等の金属間化合物の析出を促進し、靱性ゃ延性、高温強度を低下させる。した がって、 sol. Alの含有量は 0.001—0. 1%とした。なお、 sol. Alの含有量は 0.00 5〜0· 05%であればより好ましぐ 0· 01—0.03%であれば更に好ましい。
[0047] Ν:0. 03%以下
Νの含有量が 0. 03%を超えると、熱間加工性の低下をきたすため、 Ν含有量は 0. 03%以下とした。なお、 Νの含有量は少ないほど望ましぐより好ましいのは 0. 02% 以下、更に好ましいのは 0.015%以下である。
[0048] (Cr+1. 5XSi + 2XP)/(Ni + 0. 31 X Mn + 22 X C+ 14. 2XN+5XP)の値
:1. 388以上
上述した範囲の Cから Nまでの元素を含有し、残部が Fe及び不純物からなるオース テナイト系ステンレスま岡は、 「(Cr+l. 5XSi + 2XP)/(Ni + 0. 31 XMn+22XC + 14. 2XN+5XP)」の値が1· 388以上、つまり(1)式を満たす場合に、初相の後 に晶出する相の晶出タイミングが制御されて、溶接凝固割れを確実かつ安定して抑 制できる。
[0049] 上記の理由から、本発明(1)に係るオーステナイト系ステンレス鋼溶接継手及び本 発明(3)に係るオーステナイト系ステンレス鋼溶接材料は、上述した範囲の Cから N までの元素を含有し、残部は Fe及び不純物からなり、かつ前記(1)式を満たすことと 規定した。
[0050] なお、本発明(1)に係るオーステナイト系ステンレス鋼溶接継手及び本発明(3)に 係るオーステナイト系ステンレス鋼溶接材料は、その Feの一部に代えて、必要に応じ て更に、
第 1群: Nd:0.5%以下、
第 2群: Cu: 3%以下、 0:5%以下及ひ¥:10%以下でかっ^[0+(\¥/2):5% 以下、 B:0.03%以下、 V:l.5%以下、 Nb:l.5%以下、 Ti:2%以下、 Ta:8%以 下、 Zr:l%以下、 Hf :1%以下及び Co :5%以下の 1種又は 2種以上、
第 3群: Ca:0.05%以下及び Mg:0.05%以下の 1種又は 2種、
の各グループの元素の 1種以上を選択的に含有させることができる。すなわち、前記 第 1群〜第 3群のグループの元素の 1種以上を任意元素として添加し、含有させても よい。
[0051] 以下、上記の任意元素に関して説明する。
[0052] 第 1群: Nd:0.5%以下
第 1群の元素である Ndは、クリープ延性向上作用を有し、特に、 0.05%以上という 高い量の Pを含む本発明のオーステナイト系ステンレス鋼において良好なクリープ延 性を得るのに有効な元素である。上記の効果を確実に得るには、 Ndの含有量は 0. 001%以上とすることが望ましい。し力、しながら、 Ndの含有量が 0.5%を超えると、酸 化物など介在物の増加を招く。したがって、添加する場合の Ndの含有量は、 0.5% 以下とした。なお、 Ndの含有量は、 0.001-0.5%とすることが好ましい。より好まし い Ndの含有量は、 0.001—0.2%である。更に一層好ましい Ndの含有量は、 0.0 05%以上 0.1%未満である。
[0053] 第 2群: Cu: 3%以下、 Mo :5%以下及び W: 10%以下でかつ Mo+ (W/2) :5% 以下、 B:0.03%以下、 V:l.5%以下、 Nb:l.5%以下、 Ti:2%以下、 Ta:8%以 下、 Zr : l %以下、 Hf : 1 %以下及び Co : 5%以下の 1種又は 2種以上 第 2群の元素である Cu、 Mo、 W、 B、 V、 Nb、 Ti、 Ta、 Zr、 Hf及び Coはクリープ強 度を高める作用を有するので、この効果を得るために上記の元素を添加し、含有させ てもよい。以下、第 2群の元素について詳しく説明する。
[0054] Cu : 3%以下
Cuは、高温での使用中に微細な Cu相としてオーステナイト母相に整合析出し、タリ ープ強度を大幅に向上させる作用を有する。上記の効果を確実に得るには、 Cuの 含有量は 0. 01 %以上とすることが望ましい。し力もながら、 Cuの含有量が多くなり、 特に 3%を超えると、熱間加工性、溶接性及びクリープ延性の低下を招く。したがって 、添加する場合の Cuの含有量は、 3%以下とした。なお、 Cuの含有量は、 0. 0;!〜 3 %とすることが好ましい。 Cu含有量の上限は、 2. 0%とすることがより好ましぐ 0. 9 %とすれば一層好ましい。
[0055] Mo : 5%以下及び W : 10%以下でかつ Mo + (W/2): 5%以下
Mo及び Wは、クリープ強度及び高温強度の向上に有効な元素である。上記の効 果を確実に得るには、 Moと Wをそれぞれ単独で添加する場合、含有量はそれぞれ 0. 05%以上とし、両元素を複合添加する場合は Mo+ (W/2)で 0. 05%以上とす ること力好ましい。しかしながら、単独添加の場合に Mo及び Wをそれぞれ、 5%及び 10%を超えて含有させても、また、複合添加の場合に Mo+ (W/2)で 5%を超える Moと Wを含有させても、前記の効果が飽和してコストが嵩むうえに、 σ相等の金属 間化合物の生成を誘発し、組織安定性及び熱間加工性の劣化を招く。したがって、 添加する場合の Mo及び Wの含有量は、 Mo : 5%以下及び W : 10%以下でかつ Mo + (W/2) : 5%以下とした。なお、 Moと Wをそれぞれ単独で添加する場合の含有 量は、 MottO. 05—5%,また、 Wは 0. 05〜10とすることが好ましぐ一方、両元素 を複合添加する場合の含有量は、 Mo+ (W/2)で 0. 05〜5%とすることが好ましい 。 Mo及び Wはフェライト形成元素であるため、オーステナイト組織の安定化のために は Mo及び Wの含有量は、それぞれ 4%未満とすることがより好まし!/、。
[0056] B : 0. 03%以下
Bは、炭窒化物中に存在して高温での使用中における炭窒化物の微細分散析出 を促進するとともに、 B単体で粒界に存在して粒界を強化し粒界すベりを抑制するこ とによって、クリープ強度及び高温強度を改善する。こうした効果を確実に得るには、 Bの含有量は 0. 0005%以上とすることが望ましい。しかしながら、 Bの含有量が 0. 0 3%を超えると、溶接性の低下を招く。したがって、添加する場合の Bの含有量は、 0 . 03%以下とした。なお、 Bの含有量は、 0. 0005-0. 03%とすることカ好ましい。 より好ましい Bの含有量は、 0. 001 -0. 1 %である。更に一層好ましい Bの含有量は 、 0. 001—0. 005%である。
[0057] V: l . 5%以下
Vは、炭化物形成元素であり、クリープ強度及び高温強度の向上に有効である。こ の効果を確実に得るには、 Vの含有量は 0. 02%以上とすることが望ましい。しかしな がら、 Vの含有量が 1. 5%を超えると、靱性を始めとする機械的性質の大きな劣化を 招く。したがって、添加する場合の Vの含有量は、 1. 5%以下とした。なお、 Vの含有 量は、 0. 02-1. 5%とすることカ好ましい。より好ましい Vの含有量は、 0. 04-1 % である。
[0058] Nb : l . 5%以下
Nbは、炭化物形成元素であり、クリープ強度及び高温強度の向上に有効である。 この効果を確実に得るには、 Nbの含有量は 0. 05%以上とすることが望ましい。しか しながら、 Nbの含有量が 1. 5%を超えると、靱性を始めとする機械的性質の大きな 劣化を招く。したがって、添加する場合の Nbの含有量は、 1. 5%以下とした。なお、 Nbの含有量は、 0. 05-1. 5%とすることが好ましい。より好ましい Nbの含有量は、 0. 05—0. 6%である。
[0059] Ti : 2%以下
Tiは、炭化物形成元素であり、クリープ強度及び高温強度の向上に有効である。こ の効果を確実に得るには、 Tiの含有量は 0. 005%以上とすることが望ましい。しかし ながら、 Tiの含有量が 2%を超えると、靱性を始めとする機械的性質の大きな劣化を 招く。したがって、添加する場合の Tiの含有量は、 2%以下とした。なお、 Tiの含有量 は、 0. 005〜2%とすることカ好ましい。より好ましい Tiの含有量は、 0. 05〜; 1 %で ある。 [0060] Ta : 8%以下
Taも炭化物形成元素であり、クリープ強度及び高温強度の向上に有効である。こ の効果を確実に得るには、 Taの含有量は 0. 01 %以上とすることが望ましい。しかし ながら、 Taの含有量が 8%を超えると、靱性を始めとする機械的性質の大きな劣化を 招く。したがって、添加する場合の Taの含有量は、 8%以下とした。なお、 Taの含有 量は、 0. 0;!〜 8%とすること力 S好ましい。より好ましい Taの含有量は、 0. 0;!〜 7%で ある。更に一層好ましい Taの含有量は、 0. 05〜6%である。
[0061] Zr : l %以下
Zrは、主として粒界強化に寄与し、クリープ強度を向上させる。この効果を確実に 得るには、 Zrの含有量は 0. 0005%以上とすることが望ましい。しかしながら、 Zrの 含有量が 1 %を超えると、機械的性質や溶接性の劣化を招く。したがって、添加する 場合の Zrの含有量は、 1 %以下とした。なお、 Zrの含有量は、 0. 0005〜; 1 %とする ことが好ましい。より好ましい Zrの含有量は、 0. 01-0. 8%である。更に一層好まし い Zrの含有量は、 0. 02—0. 5%である。
[0062] Hf : l %以下
Hfも主として粒界強化に寄与し、クリープ強度を向上させる。この効果を確実に得 るには、 Hfの含有量は 0. 0005%以上とすること力 S望ましい。しかしながら、 Hfの含 有量が 1 %を超えると、機械的性質や溶接性の劣化をきたす。したがって、添加する 場合の Hfの含有量は、 1 %以下とした。なお、 Hfの含有量は、 0· 0005〜; 1 %とする ことが好ましい。より好ましい Hfの含有量は、 0. 01-0. 8%である。更に一層好まし い Hfの含有量は、 0· 02—0. 5%である。
[0063] Co : 5%以下
Coは、 Niと同様にオーステナイト組織を安定化し、クリープ強度向上に寄与する。 この効果を確実に得るには、 Coの含有量は 0. 05%以上とすることが望ましい。しか しながら、 Coの含有量が 5%を超えても前記の効果は飽和し、経済性が低下するば 力、りである。したがって、添加する場合の Coの含有量は、 5%以下とした。なお、 Co の含有量は、 0. 05〜5%とすることが好ましい。
[0064] なお、上記の Cu、 Mo、 W、 B、 V、 Nb、 Ti、 Ta、 Zr、 Hf及び Coは、そのうちのいず れか 1種のみ、又は 2種以上の複合で含有することができる。
[0065] 第 3群の元素である Ca及び Mgは熱間加工性を高める作用を有するので、この効 果を得るために上記の元素を添加し、含有させてもよい。以下、第 3群の元素につい て詳しく説明する。
[0066] Ca:0.05%以下
Caは、熱間加工性を高める作用を有する。この効果を確実に得るには、 Caの含有 量は 0.0001%以上とすることが好ましい。しかしながら、 Caの含有量が 0.05%を 超えると、酸化物系介在物を形成し却って熱間加工性が低下し、延性の劣化も生じ る。したがって、添加する場合の Caの含有量は、 0.05%以下とした。なお、 Caの含 有量は、 0.0001-0.05%とすることカ好ましい。より好ましい Caの含有量は、 0. 0 01-0.020/0である。更 ίこ一層好ましレヽ Caの含有量 (ま、 0.001-0.010/0である。
[0067] Mg:0.05%以下
Mgも熱間加工性を高める作用を有する。この効果を確実に得るには、 Mgの含有 量は 0.0001%以上とすることが好ましい。しかしながら、 Mgの含有量が 0.05%を 超えると、酸化物系介在物を形成し却って熱間加工性が低下し、延性の劣化も生じ る。したがって、添加する場合の Mgの含有量は、 0.05%以下とした。なお、 Mgの 含有量は、 0.0001-0.05%とすることカ好ましい。より好ましい Mgの含有量は、 0 . 001—0.020/0である。更 ίこ一層好ましレヽ Mgの含有量 (ま、 0.001—0.010/0であ
[0068] なお、上記の Ca及び Mgは、そのうちのいずれか 1種のみ、又は 2種の複合で含有 すること力 Sでさる。
[0069] (Cr+1. 5XSi + 2XNb + Ti + 2XP)/(Ni + 0. 31 X Mn + 22 X C+ 14. 2X N + CU+5XP)の値: 1. 388以上
前記本発明(1)に係るオーステナイト系ステンレス鋼溶接継手及び本発明(3)に係 るオーステナイト系ステンレス鋼溶接材料の Feの一部に代えて、上記第 1群ないし第 3群の中から選ばれた少なくとも 1種を含有するオーステナイト系ステンレス鋼は、「( Cr+1. 5XSi+2XNb + Ti+2XP)/(Ni + 0. 31 X Mn + 22 X C+ 14. 2XN + Cu+5XP)」の値が 1· 388以上、つまり(2)式を満たす場合に、初相の後に晶出 する相の晶出タイミングが制御されて、溶接凝固割れを確実かつ安定して抑制できる
[0070] 上記の理由から、本発明(2)に係るオーステナイト系ステンレス鋼溶接継手及び本 発明(4)に係るオーステナイト系ステンレス鋼溶接材料は、本発明(1)に係るオース テナイト系ステンレス鋼溶接継手及び本発明(3)に係るオーステナイト系ステンレス 鋼溶接材料の Feの一部に代えて、上記第 1群ないし第 3群の中から選ばれた少なく とも 1種を含有し、かつ前記(2)式を満たすことと規定した。
[0071] 本発明(1)及び本発明(2)に係るオーステナイト系ステンレス鋼溶接継手は、 TIG 溶接、 MIG溶接等の種々の溶接方法で作製することができる。そして、そのオーステ ナイト系ステンレス鋼溶接継手の作製に用いる溶接材料としては、本発明(3)及び本 発明(4)に係るオーステナイト系ステンレス鋼溶接材料を用いることができる。
[0072] 以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例 に限定されるものではない。
実施例
[0073] 表 1に示す化学組成を有するオーステナイト系ステンレス鋼である鋼 1〜 12及び鋼 A〜Dを高周波加熱真空炉を用いて溶解した後、インゴットに鍀造した。
[0074] 表 1中の鋼 1〜12は、化学組成が本発明で規定する範囲内にある鋼である。一方 、表 1中の鋼 A〜Dは、化学組成が本発明で規定する条件から外れた比較例の鋼で ある。
[0075] なお、ボイラの熱交換に用いられるオーステナイト系ステンレス鋼管では、 JIS G 3463で規定されているように Pの含有量は 0. 040%以下に制限されている。このた め、表 1中の鋼 Aの P含有量である 0. 03%力 S、ボイラの熱交換に用いられる一般的 なオーステナイト系ステンレス鋼の P含有量に相当する。
[0076] [表 1]
Figure imgf000018_0001
た各インゴットを通常の方法で熱間鍛造した後、 1200°Cで固溶化熱処理を 施し、突き合わせ部 1. 5mmの 60° V開先加工が施された厚さ 12mm、幅 50mm及 び長さ 150mmの拘束溶接割れ試験用試験片、並びに、厚さ 4mm、幅 100mm及 び長さ 100mmのトランスバレストレイン試験片を作製した。
[0078] このようにして得た各オーステナイト系ステンレス鋼の拘束溶接割れ試験用試験片 を用いて、周囲を拘束溶接し、突き合わせ部分に対して溶接電流 150A、溶接電圧 12V、溶接速度 10cm/minの条件にて TIG溶接によりノーフィラー溶接を行い、ビ ード表面割れ率、つまり、拘束溶接割れ試験片の溶接ビード長に対する凝固割れ発 生率を測定した。
[0079] また、各オーステナイト系ステンレス鋼の凝固割れ感受性をより詳細に評価するた めに、前記のトランスバレストレイン試験片を用いて、溶接電流 100A、溶接電圧 15V 、溶接速度 15cm/min、付加歪み 2%の条件にてトランスバレストレイン試験を行い 、最大割れ長さを測定した。なお、従来、耐熱用として使用されているオーステナイト 系ステンレス鋼溶接金属のトランスバレストレイン試験により評価された最大割れ長さ は lmm以下である。したがって、トランスバレストレイン試験により評価された最大割 れ長さ力 S lmm以下のオーステナイト系ステンレス鋼は溶接凝固割れに対して優れた 耐性を有してレ、ると考えられる。
[0080] 更に、あらかじめ各オーステナイト系ステンレス鋼の母材から作製した外径 1. 2mm の溶接材料 (溶接ワイヤー)を使用して、溶接電流 165A、溶接電圧 15V、溶接速度 lOcm/minの条件にて TIG溶接により多層盛り溶接を行い、図 1に示す形状の試 験片を採取して、 700°C、 147MPaの条件でクリープ破断試験を行い、溶接継手の クリープ破断時間を調査することも行った。なお、溶接金属の化学組成は、 TIG溶接 の場合希釈はほとんど生じないため、母材と同一である。
[0081] 表 2に、上記の各試験結果をまとめて、前記(1)式又は(2)式の左辺の値とともに 示す。なお、表 2においては、クリープ破断時間が 1000時間未満のものを「X」、 10 00時間以上のものを「〇」として示した。
[0082] [表 2] 表 2
Figure imgf000020_0001
表 2から、本発明で規定する条件を満たす鋼;!〜 12の場合、 Pを 0. 09-0. 29%と いう高い値で含むにも拘わらず、拘束溶接割れ試験でのビード表面割れ率が 0、つ まり、溶接金属中での割れが全く発生しておらず、しかも、トランスバレストレイン試験 での最大割れ長さも lmm以下であって、良好な溶接性を有していることが明らかで ある。更に、上記鋼 1〜; 12の場合、クリープ破断時間は 1000時間以上で、クリープ 特性にも優れて要ることが明らかである。 [0084] これに対して、本発明で規定する条件から外れた比較例の鋼 A〜Dの場合、溶接 性又はクリープ特性が劣っている。
[0085] すなわち、鋼 Aの場合、 P含有量が 0. 03%と低!/、ため、拘束溶接割れ試験でのビ ード表面割れ率が 0、つまり、溶接金属中での割れが全く発生しておらず、しかも、ト ランスバレストレイン試験での最大割れ長さも lmm以下であって、良好な溶接性を有 しているものの、クリープ破断時間が 1000時間に達しておらず、クリープ特性が劣つ ている。
[0086] 鋼 B〜Dの場合、クリープ破断時間は 1000時間以上でクリープ特性に優れている ものの、前記(2)式を満足して!/、な!/、ため拘束溶接割れ試験で溶接金属中に割れが 発生しており、しかも、トランスバレストレイン試験での最大割れ長さも lmmを超えるも ので溶接性に劣っており、実用に適さない。
産業上の利用可能性
[0087] 本発明のオーステナイト系ステンレス鋼溶接継手は、 P含有量が高いにも拘わらず 、鋼管、鋼板等として、高温強度と耐食性はもちろん溶接性が要求される用途に幅広 く適用することカできる。また、本発明のオーステナイト系ステンレス鋼溶接材料は、 上記のオーステナイト系ステンレス鋼溶接継手を作製するのに最適である。

Claims

請求の範囲
[1] 質量0 /0で、 C:0.05—0. 25%、Si:2% T、Mn:0.01— 3%, P:0.05—0. 5 %、 S:0.03%以下、 Cr:15〜30%、 Ni:6〜55%、 sol. A1:0.001—0. 1%及び N:0.03%以下を含有し、残部が Fe及び不純物からなり、かつ下記(1)式を満足す ることを特徴とするオーステナイト系ステンレス鋼溶接継手。
(Cr+1. 5XSi + 2XP)/(Ni + 0. 31 X Mn + 22 X C+ 14. 2XN+5XP)≥1 . 388··· (1)式
なお、(1)式中の元素記号は、その元素の質量%での含有量を表す。
[2] Feの一部に代えて、質量%で、更に、下記第 1群ないし第 3群の中から選ばれた少 なくとも 1種を含有し、かつ下記(2)式を満足することを特徴とする請求項 1に記載の オーステナイト系ステンレス鋼溶接継手。
(Cr+1. 5XSi + 2XNb + Ti + 2XP)/(Ni + 0. 31 X Mn + 22 X C+ 14. 2X N + CU+5XP)≥1. 388···(2)式
なお、(2)式中の元素記号は、その元素の質量%での含有量を表す。
第 1群: Nd:0. 5%以下
第 2群: Cu: 3%以下、 0:5%以下及ひ¥:10%以下でかっ^[0+(\¥/2) :5% 以下、 B:0. 03%以下、 V:l. 5%以下、 Nb:l. 5%以下、 Ti:2%以下、 Ta:8%以 下、 Zr:l%以下、 Hf :1%以下及び Co :5%以下の 1種又は 2種以上
第 3群: Ca:0. 05%以下及び Mg:0.05%以下の 1種又は 2種
[3] 質量0 /0で、 C:0.05—0. 25%、Si:2% T、Mn:0.01— 3%, P:0.05—0. 5 %、 S:0.03%以下、 Cr:15〜30%、 Ni:6〜55%、 sol. A1:0.001—0. 1%及び N:0.03%以下を含有し、残部が Fe及び不純物からなり、かつ下記(1)式を満足す ることを特徴とするオーステナイト系ステンレス鋼溶接材料。
(Cr+1. 5XSi + 2XP)/(Ni + 0. 31 X Mn + 22 X C+ 14. 2XN+5XP)≥1 . 388··· (1)式
なお、(1)式中の元素記号は、その元素の質量%での含有量を表す。
[4] Feの一部に代えて、質量%で、更に、下記第 1群ないし第 3群の中から選ばれた少 なくとも 1種を含有し、かつ下記(2)式を満足することを特徴とする請求項 3に記載の オーステナイト系ステンレス鋼溶接材料。
(Cr+1. 5XSi + 2XNb + Ti + 2XP)/(Ni + 0. 31 X Mn + 22 X C+ 14. 2X N + CU+5XP)≥1. 388···(2)式
なお、(2)式中の元素記号は、その元素の質量%での含有量を表す。
第 1群: Nd:0. 5%以下
第 2群: Cu: 3%以下、 0:5%以下及ひ¥:10%以下でかっ^[0+(\¥/2) :5% 以下、 B:0. 03%以下、 V:l. 5%以下、 Nb:l. 5%以下、 Ti:2%以下、 Ta:8%以 下、 Zr:l%以下、 Hf :1%以下及び Co :5%以下の 1種又は 2種以上
第 3群: Ca:0. 05%以下及び Mg:0.05%以下の 1種又は 2種
PCT/JP2007/064664 2006-07-27 2007-07-26 Joint soudé en acier inoxydable austénitique et matériau de soudure en acier inoxydable austénitique WO2008013223A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07791364.8A EP2048255B1 (en) 2006-07-27 2007-07-26 Austenitic stainless steel welded joint and austenitic stainless steel welding material
CA2658495A CA2658495C (en) 2006-07-27 2007-07-26 Austenitic stainless steel welded joint and austenitic stainless steel welding material
US12/320,306 US20090196783A1 (en) 2006-07-27 2009-01-23 Austenitic stainless steel welded joint and austenitic stainless steel welding material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-204598 2006-07-27
JP2006204598A JP4946242B2 (ja) 2006-07-27 2006-07-27 オーステナイト系ステンレス鋼溶接継手及びオーステナイト系ステンレス鋼溶接材料

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/320,306 Continuation US20090196783A1 (en) 2006-07-27 2009-01-23 Austenitic stainless steel welded joint and austenitic stainless steel welding material

Publications (1)

Publication Number Publication Date
WO2008013223A1 true WO2008013223A1 (fr) 2008-01-31

Family

ID=38981534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/064664 WO2008013223A1 (fr) 2006-07-27 2007-07-26 Joint soudé en acier inoxydable austénitique et matériau de soudure en acier inoxydable austénitique

Country Status (7)

Country Link
US (1) US20090196783A1 (ja)
EP (1) EP2048255B1 (ja)
JP (1) JP4946242B2 (ja)
KR (1) KR20090020701A (ja)
CN (1) CN101495662A (ja)
CA (1) CA2658495C (ja)
WO (1) WO2008013223A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009093676A1 (ja) * 2008-01-25 2009-07-30 Sumitomo Metal Industries, Ltd. 溶接材料および溶接継手構造体
WO2013065521A1 (ja) * 2011-11-02 2013-05-10 新日鐵住金株式会社 Ni基耐熱合金用溶接材料ならびにそれを用いてなる溶接金属および溶接継手
EP2199419A4 (en) * 2007-10-03 2016-07-06 Nippon Steel & Sumitomo Metal Corp AUSTENITIC STAINLESS STEEL

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101583733A (zh) * 2007-01-15 2009-11-18 住友金属工业株式会社 奥氏体系不锈钢焊接接头以及奥氏体系不锈钢焊接材料
JP5218200B2 (ja) * 2009-03-26 2013-06-26 新日鐵住金株式会社 溶接金属および溶接材料
WO2010150795A1 (ja) * 2009-06-24 2010-12-29 日立金属株式会社 高温強度に優れたエンジンバルブ用耐熱鋼
CN101664863B (zh) * 2009-09-24 2013-03-20 湖北猴王焊材有限公司 耐海水腐蚀埋弧焊丝
JP4835770B1 (ja) * 2010-06-07 2011-12-14 住友金属工業株式会社 オーステナイト系耐熱鋼用溶接材料ならびにそれを用いてなる溶接金属および溶接継手
JP4835771B1 (ja) * 2010-06-14 2011-12-14 住友金属工業株式会社 Ni基耐熱合金用溶接材料ならびにそれを用いてなる溶接金属および溶接継手
JP5143960B1 (ja) * 2011-05-11 2013-02-13 株式会社神戸製鋼所 高温強度と耐繰返し酸化特性に優れた耐熱オーステナイト系ステンレス鋼
JP5088457B1 (ja) 2011-05-13 2012-12-05 住友金属工業株式会社 溶接材料および溶接継手
KR101586590B1 (ko) * 2011-07-06 2016-01-18 신닛테츠스미킨 카부시키카이샤 오스테나이트강 용접 조인트
DE102011121705A1 (de) * 2011-12-12 2013-06-13 Salzgitter Flachstahl Gmbh Schweißzusatz zum Lichtbogen- und Laserstrahlschweißen von Mischverbindungen aus austenitischem und ferritischem Stahl
CN102581513B (zh) * 2012-03-06 2015-01-14 中国科学院金属研究所 一种用于核电站核岛主设备的镍基焊丝
CN102581512B (zh) * 2012-03-06 2016-04-20 中国科学院金属研究所 一种镍基焊缝点状缺陷控制方法
CN103317256A (zh) * 2013-05-15 2013-09-25 丹阳市华龙特钢有限公司 一种高温强度优异的奥氏体不锈钢埋弧焊焊丝
CN103836325A (zh) * 2014-03-14 2014-06-04 常熟市兰达兰基钢管附件有限公司 一种多功能焊接钢管
JP6398277B2 (ja) * 2014-04-14 2018-10-03 新日鐵住金株式会社 Ni基耐熱合金溶接継手の製造方法
KR101674748B1 (ko) * 2014-11-27 2016-11-10 주식회사 포스코 스테인리스강 레이저 용접 재료 및 이를 이용하여 제조된 용접이음부
CN104451432A (zh) * 2014-12-25 2015-03-25 春焱电子科技(苏州)有限公司 一种电子材料用不锈钢合金
EP3178958B1 (en) * 2015-06-05 2019-05-08 Nippon Steel & Sumitomo Metal Corporation Austenitic stainless steel
KR20170128549A (ko) * 2015-06-15 2017-11-22 신닛테츠스미킨 카부시키카이샤 고Cr계 오스테나이트 스테인리스강
BR112017028547B1 (pt) * 2015-07-01 2022-03-15 Sandvik Intellectual Property Ab Um método de junção de uma liga de fecral com uma liga de fenicr utilizando um metal de preenchimento por soldagem
CN106541222B (zh) * 2015-09-22 2021-03-26 中国科学院金属研究所 高温高强度无裂纹缺陷的核电用镍基焊丝及其制备和使用
CA3019556C (en) * 2016-03-31 2020-09-22 Nippon Steel & Sumitomo Metal Corporation Welding structure member
KR20180122675A (ko) * 2016-03-31 2018-11-13 신닛테츠스미킨 카부시키카이샤 용접 구조 부재
JP6638552B2 (ja) * 2016-05-09 2020-01-29 日本製鉄株式会社 オーステナイト系耐熱鋼用溶接材料
JP6795038B2 (ja) * 2016-10-03 2020-12-02 日本製鉄株式会社 オーステナイト系耐熱合金およびそれを用いた溶接継手
CN106949318A (zh) * 2017-03-22 2017-07-14 南通盛立德金属材料科技有限公司 一种奥氏体型耐酸不锈钢管
RU2639173C1 (ru) * 2017-05-04 2017-12-20 Юлия Алексеевна Щепочкина Сталь
CN107858589A (zh) * 2017-09-20 2018-03-30 常州凯旺金属材料有限公司 一种耐高温耐腐蚀的不锈铁和热处理方法
CN111183239B (zh) * 2017-10-03 2022-04-29 日本制铁株式会社 奥氏体系不锈钢焊接金属以及焊接结构物
KR102031424B1 (ko) * 2017-12-01 2019-10-11 주식회사 포스코 표면품질이 우수한 오스테나이트계 스테인리스 강 및 이의 제조방법
US11634804B2 (en) 2018-02-28 2023-04-25 Nippon Steel Corporation Austenitic stainless steel weld joint
JP6999479B2 (ja) * 2018-04-05 2022-02-04 日鉄ステンレス株式会社 完全オーステナイト系ステンレス鋼
KR102094614B1 (ko) * 2018-10-30 2020-03-27 동아대학교 산학협력단 하이퍼 듀플렉스 스테인리스강 용접부 조성물 및 이를 이용한 용접부의 제조방법
KR102696125B1 (ko) * 2019-07-25 2024-08-20 닛폰세이테츠 가부시키가이샤 오스테나이트계 스테인리스 강재 및 용접 이음
CN110484836B (zh) * 2019-09-24 2021-01-05 南京佑天金属科技有限公司 一种铪锆钛钼增强奥氏体不锈钢及其制备方法
CN110551951B (zh) * 2019-09-27 2020-11-13 常州长海焊材有限公司 一种超低碳耐高温焊丝及其制备方法
JP7301218B2 (ja) * 2020-03-30 2023-06-30 日鉄ステンレス株式会社 オーステナイト系ステンレス鋼
CN113388790B (zh) * 2021-06-08 2022-11-25 常州腾飞特材科技有限公司 一种06Cr19Ni10N奥氏体不锈钢管及其生产工艺
CN113549820B (zh) * 2021-06-29 2022-05-17 鞍钢股份有限公司 一种高碳低铁素体含量奥氏体不锈钢板及其生产方法
CN114505620B (zh) * 2022-04-19 2022-07-05 西安热工研究院有限公司 Fe-Cr-Mn焊丝及其制备方法和焊接工艺
CN114871624B (zh) * 2022-06-09 2023-04-18 上海工程技术大学 一种铁路货车车轮增材制造用药芯焊丝及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61103698A (ja) * 1984-10-26 1986-05-22 Nippon Steel Corp 高温クリ−プ破断強さとクリ−プ破断伸びが共に優れたオ−ステナイトステンレス鋼溶接用ワイヤ
JPS62243742A (ja) 1986-04-17 1987-10-24 Nippon Kokan Kk <Nkk> クリ−プ破断強度に優れたオ−ステナイトステンレス鋼
JPS62243743A (ja) * 1986-04-17 1987-10-24 Nippon Kokan Kk <Nkk> 高温用オ−ステナイトステンレス鋼
JPH03153847A (ja) 1989-11-13 1991-07-01 Nippon Steel Corp クリープ破断特性のすぐれたNi―Crオーステナイト系ステンレス鋼
JPH06279947A (ja) * 1991-08-30 1994-10-04 Nkk Corp プレス成形性に優れるオーステナイト系ステンレス鋼
JP2001107196A (ja) * 1999-10-07 2001-04-17 Sumitomo Metal Ind Ltd 耐溶接割れ性と耐硫酸腐食性に優れたオーステナイト鋼溶接継手およびその溶接材料
JP2003535213A (ja) 1998-12-17 2003-11-25 エイティーアイ・プロパティーズ・インコーポレーテッド 耐食性オーステナイト系ステンレス鋼
JP2005048284A (ja) * 2003-07-17 2005-02-24 Sumitomo Metal Ind Ltd 耐浸炭性と耐コーキング性を有するステンレス鋼およびステンレス鋼管

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2528637A (en) * 1947-08-14 1950-11-07 Armco Steel Corp Alloy steel
EP1867743B9 (en) * 2005-04-04 2015-04-29 Nippon Steel & Sumitomo Metal Corporation Austenitic stainless steel

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61103698A (ja) * 1984-10-26 1986-05-22 Nippon Steel Corp 高温クリ−プ破断強さとクリ−プ破断伸びが共に優れたオ−ステナイトステンレス鋼溶接用ワイヤ
JPS62243742A (ja) 1986-04-17 1987-10-24 Nippon Kokan Kk <Nkk> クリ−プ破断強度に優れたオ−ステナイトステンレス鋼
JPS62243743A (ja) * 1986-04-17 1987-10-24 Nippon Kokan Kk <Nkk> 高温用オ−ステナイトステンレス鋼
JPH03153847A (ja) 1989-11-13 1991-07-01 Nippon Steel Corp クリープ破断特性のすぐれたNi―Crオーステナイト系ステンレス鋼
JPH06279947A (ja) * 1991-08-30 1994-10-04 Nkk Corp プレス成形性に優れるオーステナイト系ステンレス鋼
JP2003535213A (ja) 1998-12-17 2003-11-25 エイティーアイ・プロパティーズ・インコーポレーテッド 耐食性オーステナイト系ステンレス鋼
JP2001107196A (ja) * 1999-10-07 2001-04-17 Sumitomo Metal Ind Ltd 耐溶接割れ性と耐硫酸腐食性に優れたオーステナイト鋼溶接継手およびその溶接材料
JP2005048284A (ja) * 2003-07-17 2005-02-24 Sumitomo Metal Ind Ltd 耐浸炭性と耐コーキング性を有するステンレス鋼およびステンレス鋼管

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KAZUTOSHI NISHIMOTO ET AL.: "Sutenresuko no Yosetsu (Welding of Stainless Steel", 2001, SANPO PUBLICATIONS, INC., pages: 87 - 88
See also references of EP2048255A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2199419A4 (en) * 2007-10-03 2016-07-06 Nippon Steel & Sumitomo Metal Corp AUSTENITIC STAINLESS STEEL
WO2009093676A1 (ja) * 2008-01-25 2009-07-30 Sumitomo Metal Industries, Ltd. 溶接材料および溶接継手構造体
US7951469B2 (en) 2008-01-25 2011-05-31 Sumitomo Metal Industries, Ltd. Welding material and welded joint structure
US8158274B2 (en) 2008-01-25 2012-04-17 Sumitomo Metal Industries, Ltd. Welding material and welded joint structure
WO2013065521A1 (ja) * 2011-11-02 2013-05-10 新日鐵住金株式会社 Ni基耐熱合金用溶接材料ならびにそれを用いてなる溶接金属および溶接継手
JP2013094827A (ja) * 2011-11-02 2013-05-20 Nippon Steel & Sumitomo Metal Corp Ni基耐熱合金用溶接材料ならびにそれを用いてなる溶接金属および溶接継手

Also Published As

Publication number Publication date
EP2048255A4 (en) 2011-04-20
CN101495662A (zh) 2009-07-29
EP2048255A1 (en) 2009-04-15
EP2048255B1 (en) 2013-06-05
KR20090020701A (ko) 2009-02-26
JP4946242B2 (ja) 2012-06-06
CA2658495A1 (en) 2008-01-31
CA2658495C (en) 2012-02-21
US20090196783A1 (en) 2009-08-06
JP2008030076A (ja) 2008-02-14

Similar Documents

Publication Publication Date Title
WO2008013223A1 (fr) Joint soudé en acier inoxydable austénitique et matériau de soudure en acier inoxydable austénitique
JP5218065B2 (ja) オーステナイト系ステンレス鋼溶接継手およびオーステナイト系ステンレス鋼溶接材料
CA2830155C (en) Carburization resistant metal material
JP6369632B2 (ja) 高Cr系オーステナイトステンレス鋼
KR101740164B1 (ko) 오스테나이트계 내열 합금
JP6519007B2 (ja) Ni基耐熱合金溶接継手の製造方法
JP2010150593A (ja) オーステナイト系耐熱合金
WO2009145347A1 (ja) 凝固結晶粒を微細にする二相ステンレス鋼溶接用フラックス入りワイヤ
JP3446294B2 (ja) 二相ステンレス鋼
JP5838933B2 (ja) オーステナイト系耐熱鋼
WO2017002524A1 (ja) オーステナイト系耐熱合金及び溶接構造物
JP6225598B2 (ja) オーステナイト系ステンレス鋼溶接材料
KR20200065067A (ko) 오스테나이트계 내열강 용접 금속, 용접 이음, 오스테나이트계 내열강용 용접 재료, 및 용접 이음의 제조 방법
JP4941267B2 (ja) オーステナイト系高合金溶接継手およびオーステナイト系高合金溶接材料
KR20090130334A (ko) 페라이트계 내열강
WO2000036173A1 (fr) Acier pour chaudieres excellent pour les produits soudes en bout, et tubes de chaudieres de cet acier obtenus par soudure electrique
JP2002331387A (ja) 高靱性マルテンサイト系ステンレス鋼用溶接ワイヤ
JPWO2018066573A1 (ja) オーステナイト系耐熱合金およびそれを用いた溶接継手
JP2014012877A (ja) オーステナイト系耐熱合金
JPH0361751B2 (ja)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780027903.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07791364

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020097000814

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2658495

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2007791364

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU