WO2008013210A1 - Polyimide hyperramifié à modification terminale, polyimide hyperramifié à modification terminale plaqué avec un métal, et procédé de production de ceux-ci - Google Patents

Polyimide hyperramifié à modification terminale, polyimide hyperramifié à modification terminale plaqué avec un métal, et procédé de production de ceux-ci Download PDF

Info

Publication number
WO2008013210A1
WO2008013210A1 PCT/JP2007/064611 JP2007064611W WO2008013210A1 WO 2008013210 A1 WO2008013210 A1 WO 2008013210A1 JP 2007064611 W JP2007064611 W JP 2007064611W WO 2008013210 A1 WO2008013210 A1 WO 2008013210A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
terminal
polyimide
triamine
general formula
Prior art date
Application number
PCT/JP2007/064611
Other languages
English (en)
French (fr)
Inventor
Kikuo Ataka
Tetsurou Tsuji
Original Assignee
Ube Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries, Ltd. filed Critical Ube Industries, Ltd.
Priority to KR1020097002776A priority Critical patent/KR101449961B1/ko
Priority to US12/375,211 priority patent/US8093349B2/en
Priority to JP2008526795A priority patent/JP5359273B2/ja
Publication of WO2008013210A1 publication Critical patent/WO2008013210A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/101Preparatory processes from tetracarboxylic acids or derivatives and diamines containing chain terminating or branching agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/101Preparatory processes from tetracarboxylic acids or derivatives and diamines containing chain terminating or branching agents
    • C08G73/1014Preparatory processes from tetracarboxylic acids or derivatives and diamines containing chain terminating or branching agents in the form of (mono)anhydrid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/101Preparatory processes from tetracarboxylic acids or derivatives and diamines containing chain terminating or branching agents
    • C08G73/1017Preparatory processes from tetracarboxylic acids or derivatives and diamines containing chain terminating or branching agents in the form of (mono)amine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/105Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/30Activating or accelerating or sensitising with palladium or other noble metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31681Next to polyester, polyamide or polyimide [e.g., alkyd, glue, or nylon, etc.]

Definitions

  • Terminal-modified multi-branched polyimide metal plating-coated terminal-modified multi-branched polyimide, and production methods thereof
  • the present invention relates to a terminal-modified multi-branched polyimide having a terminal group modified, or a terminal-modified multi-branched polyimide produced by imidizing a multi-branched polyamic acid having a terminal group modified. Furthermore, the present invention relates to a metal-coated terminal-modified multi-branched polyimide produced by subjecting terminal-modified multi-branched polyimide to electroless plating.
  • Polyimide is a highly useful and high molecular weight material with excellent heat resistance, moldability, mechanical and electrical properties, and many types of polyimide have been developed so far in various industrial fields. Widely used.
  • Polyimides having the above characteristics are often used in combination with inorganic materials.
  • composite materials combining polyimide having an insulating function and a conductive metal are used as electro-nitatas materials.
  • Metal-coated polyimide materials produced by combining film-formed polyimide films and metal foils are particularly useful, and are used for flexible printed circuit boards (FPC) and automatic tape bonding substrates (TAB)! /
  • Patent Document 1 discloses a compound comprising a silane coupling agent having a substituent having a metal-capturing ability in one molecule after pretreatment of a covering material with a solution containing an alkali metal salt.
  • an electroless plating method characterized in that after treatment with an aqueous solution of a noble metal compound in the following! /, The precious metal is captured by a silane coupling agent, and then the material to be plated is electrolessly attached.
  • Patent Document 2 discloses an organic disulfide compound having a primary amino group in the presence of an alkaline substance in advance in a method for producing a metal plating film for forming a conductive circuit pattern on the surface of a polyimide substrate.
  • a method for forming a metal plating film on a polyimide substrate characterized by treatment with a solution containing an organic thiol compound having a primary amino group, is disclosed.
  • Non-Patent Document 1 discusses a method of coating the surface of a chain polyimide film with a polymer compound having a pyridyl group having metal coordination ability in the main chain.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-226972
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-208768
  • Non Patent Literature l Macromol. Mater. Eng. Vol. 288, 152-163 (2003) Disclosure of the Invention
  • An object of the present invention is to provide a multi-branched polyimide that can be efficiently combined with an inorganic material and a method for producing the same.
  • the present invention can be obtained by simply adding an electroless plating catalyst precursor to a multi-branched polyimide and subjecting the multi-branched polyimide to electroless plating.
  • An object of the present invention is to provide a metal-coated multi-branched polyimide having good adhesion between a metal and a polyimide and a simple production method thereof.
  • the present invention relates to the following matters.
  • Component (b) As the amine component, a mixture of triamine and diamine (however, the total amount may be triamine),
  • Component As a terminal component, a compound selected from the general formulas (1— ;!) to (1-4), wherein at least a part of the polymer terminal is from the above general formulas (11 ;!) A terminal-modified multi-branched polyimide obtained by reacting so as to be derived from a selected compound.
  • X represents a direct bond or an alkylene group having 1 to 3 carbon atoms.
  • R 1 represents a nitrogen-containing heterocyclic group substituted with an arbitrary group selected from the substituent group ⁇ , and the substituent group ⁇ is a hydrogen atom, a halogen atom, a hydroxyl group, a nitro group, a carboxylic acid group and its group A salt, a sulfonic acid group and a salt thereof, an ester group, an amide group, a cyano group, an alkyl group, an alkoxy group, or an aryl group;
  • X represents a direct bond or an alkylene group having 1 to 3 carbon atoms.
  • R 1 represents a sulfur-containing heterocyclic group substituted with any group selected from the substituent group ⁇ . Or an aryl group having a thiol or thioether group in the molecule, and the substituent group ⁇ is as defined in the general formula (11).
  • R represents a nitrogen-containing heterocyclic group substituted with an arbitrary group selected from Substituent Group ⁇ , and Substituent Group ⁇ was defined by General Formula (11). ) [Chemical 2]
  • R represents a monovalent residue and has the same meaning as the substituent group ⁇ defined in the general formula (11). They may be the same or different.
  • the terminal component is selected from the general formulas (11) and (12), and the total amount of the amine component is triamine,
  • Tetracarboxylic dianhydride and triamine having a molar ratio of 3/2 or more (tetracarboxylic dianhydride / triamine molar ratio) and a compound selected from the general formulas (11) and (12) 2.
  • the terminal component is selected from the general formulas (13) and (14), and the total amount of the amine component is triamine,
  • terminal-modified multibranched polyimide according to 1 above which is obtained by reacting a tetracarboxylic dianhydride and triamine of (2) with a compound selected from the general formulas (13) and (14).
  • a polyamic acid obtained by reacting the component (a): tetracarboxylic dianhydride with the component (b): amine component and the component (c): terminal component are reacted. Obtained above
  • Terminal-modified multi-branched polyimide according to any one of! To 3.
  • the compound-modified force represented by the general formula (11) is a compound having at least one pyridinole group in the molecule. Polyimide.
  • a polyamic acid solution cast layer or a self-supporting film obtained by heating and drying a cast layer of a polyamic acid solution capable of obtaining a heat-resistant polyimide film, according to any one of 1 to 8 above 10.
  • the terminal-modified multibranched polyimide according to 9 above obtained by applying a polyamic acid solution capable of obtaining a terminal-modified multibranched polyimide by a coating method, a casting method or a printing method, followed by drying by heating and imidization.
  • End-modified multi-branching for electroless adhesion promotion characterized in that an electroless adhesion catalyst precursor is adsorbed to the terminal-modified multi-branched polyimide described in any one of 1 to 11 above. Polyimide.
  • a process for producing a metal-coated end-modified multi-branched polyimide comprising:
  • X represents a direct bond or an alkylene group having 1 to 3 carbon atoms.
  • R 1 is a nitrogen-containing heterocyclic group substituted with any group selected from substituent group ⁇ .
  • the substituent group ⁇ is a hydrogen atom, a halogen atom, a hydroxyl group, a nitro group, a carboxylic acid group and a salt thereof, a sulfonic acid group and a salt thereof, an ester group, an amide group, a cyano group, an alkyl group, an alkoxy group, Or an aryl group) H NXR (1-2)
  • X represents a direct bond or an alkylene group having 1 to 3 carbon atoms.
  • R 1 represents a sulfur-containing heterocyclic group substituted with any group selected from the substituent group ⁇ . Or an aryl group having a thiol or thioether group in the molecule, and the substituent group ⁇ is as defined in the general formula (11).
  • R represents a nitrogen-containing heterocyclic group substituted with an arbitrary group selected from Substituent Group ⁇ , and Substituent Group ⁇ was defined by General Formula (11). ) [Chemical 4]
  • R represents a monovalent residue and has the same meaning as the substituent group ⁇ defined in the general formula (11). They may be the same or different.
  • the terminal component is selected from the general formulas (11) and (12), the total amount of the amine component is triamine, and a molar ratio of 3/2 or more (tetracarboxylic acid 16.
  • the dianhydride / triamine molar ratio) tetracarboxylic dianhydride and triamine and a compound selected from the general formulas (1 1) and (12) are reacted.
  • the terminal component force S is selected from the general formulas (13) and (14), and the total amount of the amine component is triamine, from 1/2 or more to 3 / Tetracarboxylic dianhydrides with a molar ratio of less than 2 (tetracarboxylic dianhydride / triamine molar ratio) and 16.
  • M to M and M and to M are -H, -CN, -OCH,
  • the terminal-modified multi-branched polyimide for promoting electroless sticking according to the above 12 or 13, characterized in that it is the triamine s S or the aromatic triamine represented by the general formula (I).
  • a multi-branched polyimide obtained by using diamine containing triamine as a synthesis raw material is a polyimide having a highly branched molecular chain, and has a feature of having more terminal groups compared to a chain polymer. Therefore, the ability to modify the terminal, and the amino group, electroless plating catalyst precursor Can be easily adsorbed, electroless plating can be easily performed, and metal-coated polyimide can be easily produced.
  • the multibranched polyamic acid obtained from diamine containing triamine or the acid anhydride terminal group or amino group of polyimide has a chemical bond such as a coordinate bond with an inorganic compound.
  • the electroless plating catalyst precursor can be adsorbed and the electroless plating can be performed easily and easily, and the metal-coated polyimide can be easily produced.
  • the effect of lowering the dielectric constant can be expected by introducing a sulfur-containing group into the terminal group.
  • -d is a spectral diagram of a portion showing the absorption in the aromatic region.
  • -d is a spectral diagram of a portion showing the absorption in the aromatic region.
  • FIG. 1-3 is an ATR-IR spectrum diagram of the terminal-modified multibranched polyimide of Example I45.
  • FIG. 1-4 is a cross-sectional TEM photograph of the copper-coated multibranched polyimide film of Example 1-64.
  • FIG. 2-1 is a spectral diagram of a portion showing absorption in the aromatic region of 1 H-NMR (300 MHz, DMS Od) of the terminal-modified multibranched polyimide of Example II 20.
  • FIG. 2-2 is an ATR-IR spectrum diagram of the end-modified hyperbranched polyimide of Example II-25.
  • FIG. 3-1 is a spectrum diagram of a portion showing absorption in the aromatic region of 1 H-NMR (300 MHz, DMSO -d) of the terminal-modified multibranched polyimide of Example III-4.
  • FIG. 4-1 is a spectrum diagram of a portion showing absorption in the aromatic region of 1 H-NMR (300 MHz, DM 2 SO d) of the end group-modified hyperbranched polyimide of Example IV-1.
  • FIG. 4-2 is a spectrum diagram of a portion showing absorption in the aromatic region of 1 H-NMR (300 MHz, DM 2 SO d) of the end group-modified hyperbranched polyimide of Example IV-2.
  • FIG. 4-3 is a spectrum diagram of a portion showing absorption in the aromatic region of 1 H-NMR (300 MHz, DM 2 SO d) of the end group-modified hyperbranched polyimide of Example IV-3.
  • FIG. 4-4 is a spectrum diagram of a portion showing absorption in the aromatic region of 1 H-NMR (300 MHz, DM 2 SO-d) of the end group-modified multibranched polyimide of Example IV-4.
  • FIG. 4-5 is a spectrum diagram of a portion showing absorption in the aromatic region of 1 H-NMR (300 MHz, DM 2 SO-d) of the end group-modified hyperbranched polyimide of Example IV-5.
  • FIG. 4-6 is a spectrum diagram of a portion showing absorption in the aromatic region of 1 H-NMR (300 MHz, DM 2 SO-d) of the end group-modified hyperbranched polyimide of Example IV-6.
  • FIG. 4-7 is a spectrum diagram of a portion showing absorption in the aromatic region of 1 H-NMR (300 MHz, DM SO-d) of the end group-modified hyperbranched polyimide of Example IV-7.
  • FIG. 4-8 is a spectrum diagram of a portion showing absorption in the aromatic region of 1 H-NMR (300 MHz, DM 2 SO-d) of the end group-modified hyperbranched polyimide of Example IV-8.
  • FIG. 4-9 is a spectrum diagram of a portion showing absorption in the aromatic region of 1 H-NMR (300 MHz, DM 2 SO-d) of the end group-modified hyperbranched polyimide of Example IV-8.
  • FIG. 4-10 is an FTIR-ATR spectrum diagram of the end group-modified hyperbranched polyimide film of Example IV-10.
  • FIG. 5-1 is an FT-IR spectrum chart of the polyimide film obtained in Example V-7.
  • FIG. 5-2 is a chart of the FT-IR spectrum of the polyimide film obtained in Example V-8. BEST MODE FOR CARRYING OUT THE INVENTION
  • the present invention and the present application include several embodiments, and are roughly classified into the following first to fifth embodiments.
  • the amine component of the component (b) of the present invention is a mixture of triamine and diamine, wherein triamine is present as an essential component, diamine is not present in some cases, and triamine is 100%. Also good. In the following explanation, even if such a triamine is 100%, it may be described as “a diamine containing a triamine”.
  • the first aspect of the present invention mainly includes a tetracarboxylic dianhydride as the component (a), and a diamine containing a triamine represented by the general formula (2) as the amine component of the component (b).
  • a compound having a nitrogen-containing heterocyclic group represented by the general formula (11) as a terminal component of the component (c) (hereinafter, the compound of the formula (1-1) may be! /) May be reacted. End-modified multi-branched polyimide obtained It is about.
  • X represents a direct bond or an alkylene group having 1 to 3 carbon atoms.
  • R 1 is a nitrogen-containing heterocyclic group substituted with any group selected from substituent group ⁇ .
  • the substituent group ⁇ is a hydrogen atom, a halogen atom, a hydroxyl group, a nitro group, a carboxylic acid group and a salt thereof, a sulfonic acid group and a salt thereof, an ester group, an amide group, or a cyano group.
  • And represents an alkyl group, an alkoxy group, or an aryl group.
  • tetracarboxylic dianhydride and triamine having a molar ratio of 3/2 or more are reacted with the compound of the general formula (11).
  • the terminal-modified multibranched polyimide obtained by the above is preferable.
  • the second aspect of the present invention mainly includes a tetracarboxylic dianhydride as the component (a) and a diamine containing a triamine represented by the general formula (2) as the amine component of the component (b).
  • a sulfur-containing compound represented by the general formula (12) (or sometimes a compound having a sulfur-containing heterocyclic group; hereinafter may be referred to as a compound of the formula (12)) It relates to a terminal-modified multi-branched polyimide obtained by reacting.
  • X represents a direct bond or an alkylene group having 1 to 3 carbon atoms.
  • R 1 represents a sulfur-containing heterocyclic group substituted with any group selected from the substituent group ⁇ .
  • an aryl group having at least one thioether group or thiol in the molecule and the substituent group ⁇ is a hydrogen atom, a halogen atom, a hydroxyl group, a nitro group, a carboxylic acid group and a salt thereof, a sulfonic acid group and a salt thereof Represents an ester group, an amide group, a cyano group, an alkyl group, an alkoxy group, or an aryl group.
  • tetracarboxylic dianhydride and triamine having a molar ratio of 3/2 or more are reacted with the compound of the general formula (12).
  • the terminal-modified multibranched polyimide obtained by the above is preferable.
  • the third aspect of the present invention mainly includes a tetracarboxylic dianhydride as the component (a) and a diamine containing a triamine represented by the general formula (2) as the amine component of the component (b).
  • a compound having a nitrogen-containing heterocyclic group represented by general formula (13) as a terminal component of component (c) (hereinafter, represented by the formula (1-3) May be combined with a compound. ) And a terminal-modified multi-branched polyimide obtained by the reaction.
  • R represents a nitrogen-containing heterocyclic group substituted with an arbitrary group selected from the substituent group ⁇ , and the substituent group ⁇ is a hydrogen atom, a halogen atom, a hydroxyl group, or a nitro group.
  • tetracarboxylic dianhydride and triamine having a molar ratio (molar ratio of tetracarboxylic dianhydride / triamine) of 1/2 or more and less than 3/2, and a compound of the general formula (13)
  • a terminal-modified multibranched polyimide obtained by reacting a product is preferable.
  • the fourth aspect of the present invention mainly includes a tetracarboxylic dianhydride as the component (a) and a diamine containing a triamine represented by the general formula (2) as the amine component of the component (b).
  • a terminal obtained by reacting an aromatic o-hydroxyaldehyde represented by the general formula (14) as a terminal component of the component (c) (hereinafter sometimes referred to as a compound of the formula (1-4) and! /). It relates to a modified multi-branched polyimide.
  • R represents a monovalent residue, a hydrogen atom, a halogen atom, a hydroxyl group, a nitro group, a carboxylic acid group and a salt thereof, a sulfonic acid group and a salt thereof, an ester group, R represents an amide group, a cyano group, an alkyl group, an alkoxy group or an aryl group. Or different.
  • tetracarboxylic dianhydride and triamine having a molar ratio (molar ratio of tetracarboxylic dianhydride / triamine) of 1/2 or more and less than 3/2, and a compound of the general formula (14)
  • a terminal-modified multibranched polyimide obtained by reacting a product is preferable.
  • the terminal-modified multi-branched polyimides of the above first to fourth embodiments can be made into an electroless adhesion promoting polyimide by adsorbing an electroless adhesion catalyst precursor. Furthermore, these polyimides for promoting electroless plating can be subjected to electroless metal plating to form a metal-coated polyimide.
  • the terminal-modified multi-branched polyimide of the present invention includes a tetracarboxylic dianhydride, a diamine containing a triamine represented by the general formula (2), and a sulfur-containing compound represented by the general formulas (11) to (; 14).
  • a terminal-modified multi-branched polyimide obtained by reacting a compound having a group.
  • the fifth aspect of the present invention relates to the following matters.
  • M to M and M and to M are —H, —CN, —OCH,
  • the triamine represented by the general formula (I) is suitable as the triamine used in the first to fifth embodiments of the present invention.
  • the triamine represented by the general formula (2) commonly used in the first to fourth embodiments of the present invention has the following structure.
  • Y represents a trivalent residue
  • A, A ′, and A ′′ each represent a monovalent residue bonded to Y and each containing an amino group.
  • A, A 'and A may be the same or different from each other.
  • a method for synthesizing the triamine represented by the general formula (2) when one, two or three of the triamines represented by the general formula (2) are nitro groups, the nitro group is represented by Manufacture by reducing the product.
  • a reduction method of the nitro group a known reduction method can be appropriately selected and used. For example, a method of performing reduction or catalytic reduction with tin chloride (sodium) or sodium dithionate in a solvent is used.
  • the In catalytic reduction it is possible to use palladium, Raney nickel, or platinum as a catalyst, and to use molecular hydrogen, hydrazine, formic acid, or ammonium formate as a hydrogen source.
  • Solvents used for the reduction include aromatic solvents such as alcohols, dioxane and toluene xylene, sulfoxide solvents such as dimethyl sulfoxide and jetyl sulfoxide, N, N-dimethylformamide, N, N-ger.
  • aromatic solvents such as alcohols, dioxane and toluene xylene
  • sulfoxide solvents such as dimethyl sulfoxide and jetyl sulfoxide
  • N, N-dimethylformamide N, N-ger.
  • Formamide solvents such as tilformamide, acetoamide solvents such as N, N-dimethylacetamide, N, N-jetylacetamide, pyrrolidones such as N-methyl-2-pyrrolidone, N-bur-2-pyrrolidone Solvents such as phenol solvents, phenols, o-, m-, or p-cresenoles, xylenols, nonogenated phenols, catechols and other phenolic solvents, hexamethylphosphoramide, ⁇ -bu tyrolatatone, etc. First, it can dissolve amino compounds that are reduction products and nitro compounds that are raw materials. If it is, it will not be limited.
  • triamine represented by the general formula (2) known and novel triamines can be used.
  • aromatic triamines are preferred, and ⁇ , ⁇ 'and ⁇ "represented by the general formula (2) are generally used.
  • it is a monovalent residue of aminobenzene represented by formula (3)! /.
  • 1 to M are — H, -CN, -OCH, — COOH, — C 4 3
  • M to M are each independently the same
  • triamine represented by the general formula (2) include an aromatic triamine represented by the general formula (4), preferably an aromatic triamine represented by the general formula (6). [0067] [Chemical 11]
  • M to M are — H, —CN, —OCH, — COOH, — C
  • M to M are each independently the same
  • A, A ′ and A ′′ are monovalent residues containing aminobenzene shown in the general formula (7).
  • A, A ′ and A ′′ are each independently the same. It may or may not be.
  • M to M are H, -CN, -OCH, — COOH, — C
  • M to M are independently the same,
  • Examples of the triamine represented by the general formula (2) include 1,3,5-triaminobenzene and the like as the triamine excluding the aromatic triamine represented by the general formula (4).
  • Aromatic triamines represented by YI in the general formula (4) include 3, 5 di (4 aminophenoxy) aniline, 3,5-di (3-methinore, 4-aminophenoxy) aniline, 3, 5— Di (3-methoxy, 4 aminophenoxy) aniline, 3,5 di (2 methinore, 4 aminophenoxy) aniline, 3,5 di (2 methoxy, 4 aminophenoxy) aniline, 3,5 di (3 ethyl, 4 aminophenoxy) Can be mentioned.
  • the aromatic triamines represented by Y—II in the general formula (4) include 1, 3, 5 tri (4 aminophenoxy) benzene, 1, 3, 5-trimethyl (3-methinole, 4-aminophenoxy). ) Benzene, 1, 3, 5 tri (3 methoxy, 4 aminophenoxy) benzene, 1, 3, 5 tri (2 methinole, 4 amino) Nophenoxy) benzene, 1,3,5 tri (2 methoxy, 4 aminophenoxy) benzene, 1,3,5-tri (3-ethyl, 4-aminophenoxy) benzene, and the like.
  • the aromatic triamines represented by ⁇ — ⁇ in the general formula (4) include 1, 3, 5-tri (4 aminophenylamino) benzene, 1, 3, 5-tri (3-methinole, 4- (Aminophenylamino) benzene, 1, 3, 5 ((3 methoxy, 4-aminoaminoamino) benzene, 1, 3, 5 5 (2 methinore, 4 aminophenylamino) Examples include benzene, 1, 3, 5 tri (2 methoxy, 4-aminophenylamino) benzene, 1,3,5-tri (3-ethyl, 4-aminophenylamino) benzene, and so on.
  • the aromatic triamines represented by Y—IV in the general formula (4) include 1, 3, 5 tri (4 aminophenenole) benzene, 1, 3, 5-tri (3-methinole, 4-aminophenol). Ninole) benzene, 1,3,5- (3-methoxy, 4-aminophenol), 1,3,5- (2-methinore, 4-aminophenole) benzene, 1,3,5 tri ( 2 methoxy, 4-aminomino) benzene, 1,3,5 tri (3-ethyl, 4-aminophenyl) benzene, and the like.
  • the aromatic triamines represented by Y—V in the general formula (4) include 1, 3, 5 tri (4 aminophenenole) amine, 1, 3, 5 tri (3-methinole, 4-aminophenol) Nole) amine, 1,3,5-tri (3-methoxy, 4-aminophenyl) amine, 1,3,5 tri (2 methyl, 4-aminophenyl) amine, 1,3,5-tri (2-methoxy, 4-) (Aminophen) amamine, 1,3,5-tri (3-ethyl, 4-aminophenyl) amine.
  • aromatic triamine represented by Y-VI in the general formula (4) tris (4- (4-aminophenoxy) phenole) methane, tris (4- (3-methinole, 4-aminophenoxy)) Phenol) methane, Tris (4- (3 methoxy, 4-aminophenoxy) phenyl) methane, Tris (4- (2 methyl, 4-aminophenoxy) phenyl) methane, Tris (4- (2 methoxy, 4-aminophenol) Ninore) methane, Tris (4 (3-Ethinore, 4-aminophenoxy) phenenole) methane, etc.
  • the aromatic triamine represented by Y-VII in the general formula (4) includes tris (4- (4-aminophenoxy) phenenole) ethane, tris (4- (3-methinole, 4 'aminophenoxy)).
  • Phenyleno) ethane tris (4- (3 methoxy, 4-aminophenoxy) phenyl) ethane, tris (4- (2-methyl, 4-aminophenoxy) phenyl) ethane, tris (4- (2 methoxy, 4-aminopheno) Xy) phenenole) ethane, tris (41- (3-ethynole, 4-1 aminophenoxy) fenenore) ethane, and the like.
  • Diamine is a diamine containing a triamine represented by the general formula (2), and the content of the triamine represented by the general formula (2) is appropriately selected depending on the purpose of use and the reaction method used.
  • Rukoto is possible, preferably in Jiamin triamines represented by the general formula (2), 1: 100 mol%, more preferably 10 to; 100 mole 0/0, more preferably 20; 100 mole 0 / 0 , more preferably 50 to 100 mol%, particularly preferably 80 to 100 mol%.
  • Diamines other than the triamine represented by the general formula (2) include p-phenylenediamine, m-phenylenediamine, 2methyl-p-phenylenediamine, 3methyl-m-phenylenediamine, 3, 3 '-Diclonal Benzydin, 3, 3' Dimethinolevenedidine, 2, 2 'Dimethinole benzidine, 3, 3'-Dimethoxybenzidine, 3, 3'-Diaminodiphenyl ether, 3, 4'-Diaminodiphenyl ether, 4 , 4'-diaminodiphenyl ether, 3,3'-diaminodiphenylsulfide, 3,4'-diaminodiphenylsulfide, 4,4'-diaminodiphenylsulfide, 3,3'-diaminodiphenylsulfone, 3, 4'-diaminodiphenyls norephone, 4, 4'-di
  • diamine in addition to the above aromatic diamine, aliphatic, alicyclic, and siloxane-containing diamines can be used as long as the characteristics of the present invention are not impaired.
  • tetracarboxylic dianhydride pyromellitic dianhydride, 3, 3 ', 4, 4'-biphenyl tetracarboxylic dianhydride, 2, 3, 3', 4'-biphenyltetra Carboxylic dianhydride, oxydiphthalic dianhydride, diphenylsulfone-3, 4, 3 ', 4, 4-tetracarboxylic dianhydride, bis (3,4 dicarboxyphenyl) sulfide dianhydride, 2, 2 Bis (3,4-dicarboxyphenyl) 1,1,1,1,3,3,3--hexafluoropropane dianhydride, 3, 3 ,, 4, 4 'monobenzophenone tetracarboxylic acid Dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, 2, 2 bis (3,4 dicarboxyphenyl) propane dianhydride, p phen
  • tetracarboxylic dianhydride in addition to the aromatic tetracarboxylic dianhydride, an aliphatic, alicyclic or siloxane-containing tetracarboxylic dianhydride may be used without impairing the characteristics of the present invention. ! / Can be used in a range.
  • the compound having a nitrogen-containing heterocyclic group represented by the general formula (1 1) has one amino group and at least one nitrogen-containing heterocycle in the molecule.
  • X represents a direct bond or an alkylene group having 13 carbon atoms.
  • R 1 represents a nitrogen-containing heterocyclic group substituted with any group selected from the substituent group ⁇ .
  • the substituent group ⁇ is a hydrogen atom, a halogen atom, a hydroxyl group, a nitro group, a carboxylic acid group and a salt thereof, a sulfonic acid group and a salt thereof, an ester group, an amide group, a cyano group, Represents an alkyl group, an alkoxy group, or an aryl group.
  • R 1 is a monovalent residue having at least one nitrogen-containing heterocyclic group, and is substituted with any group selected from substituent group ⁇
  • a 5- to 14-membered aromatic heterocyclic group is preferable, and a pyridyl group is particularly preferable because it can be efficiently complexed with an inorganic compound.
  • pyridyl hydroxypyridyl, pyridinecarboxylic acid amide, pyraduryl, pyrimidinyl, quinolyl, isoquinolyl, bibilidyl, phenanthryl, oxazolyl, benzoxazolyl, isoxazolyl, thiazolyl, isothiazolyl, benzothiazolyl, imidazolyl, benzimidazolyl, pyrrolyl, pyrazolyl, And aromatic heterocyclic groups such as triazolyl, tetrazolyl, pyridazinyl and indolyl.
  • examples include non-aromatic heterocyclic groups such as pyrrolidinyl, oxazolidinyl, imidazolininole, piperidinyl, piperazil, monoreforinole, thiomorpholinyl and the like. These may be used alone or in combination of two or more.
  • X is a direct bond or an alkylene group having 13 carbon atoms, for example,
  • the alkyl group, alkoxy group, or aryl group of the substituent group ⁇ is an alkyl group (particularly having 1 to 2 4 or 5 carbon atoms) that may have a substituent.
  • Specific examples of the compound having a nitrogen-containing heterocyclic group represented by the general formula (11) include amino acids.
  • Noviridine (Aminomethyl) pyridine, (Aminoethyl) pyridine, (Aminopropyl) pyridine, Aminohydroxypyridine, Aminochloropyridine, Aminobromopyridine, Aminodopyridin, Minoni: ⁇ Tinamide ', Minovirazine, Minopyrimidine And minoquinoline, minoisoquinoline, aminobipyridyl, aminophenantorin, aminovirazole, aminoimidazole, aminobenzimidazole and the like.
  • a polyamic acid is produced by reacting a tetracarboxylic dianhydride and a diamine containing triamine, and then a polyamic acid and a compound of the general formula (11) are reacted to produce a terminal-modified amic acid.
  • a tetracarboxylic dianhydride, a diamine containing a triamine, and a compound of the general formula (11) are reacted to produce a terminally modified amic acid, which is chemically or thermally ring-closed and imidized.
  • a method for obtaining a terminal-modified multi-branched polyimide
  • Tetracarboxylic dianhydride and diamine containing triamine are chemically or thermally closed to imidize to produce polyimide, and then react the imide with the compound of formula (1-1).
  • Tetracarboxylic dianhydride and diamine containing triamine are chemically or thermally cyclized to imidize to produce polyimide, and then imide and compound of general formula (1-1) are chemically converted.
  • a method of obtaining a terminal-modified multi-branched polyimide by thermally ring-closing and imidizing
  • a tetracarboxylic dianhydride, a diamine containing a triamine, and a compound of the general formula (11) are reacted to produce a terminal-modified amic acid, which is chemically or thermally closed to imidize.
  • a method for obtaining a terminal-modified multi-branched polyimide
  • tetracarboxylic dianhydride and triamine having a molar ratio of 3/2 or more (tetracarboxylic dianhydride / triamine molar ratio) are used.
  • the polyamic acid can be produced by a known method, for example, diamine containing tetracarboxylic dianhydride and triamine, or diamine containing tetracarboxylic dianhydride and triamine, and a general formula (11 1 ) Compound in an organic polar solvent at a reaction temperature of about 100 ° C. or less, preferably 80 ° C. or less, particularly 0 to 50 ° C.
  • the reaction is preferably carried out in an inert gas such as nitrogen or argon, but it can also be used under other conditions.
  • the terminal-modified multi-branched polyimide can be produced by a known method for synthesizing polyimide. For example,
  • Etc. can be manufactured.
  • the polyimide After the polyimide is synthesized, it can be reprecipitated with a poor solvent, dried, re-introduced into another soluble organic polar solvent, dissolved, and used as a solution.
  • the reaction is preferably carried out in an inert gas such as nitrogen or argon, but it can also be used under other conditions.
  • Diamine containing tetracarboxylic dianhydride and triamine is used for synthesizing polyamic acid or polyimide, and further synthesizing polyamic acid or polyimide with compound of general formula (11) at a time. If a polymerization reaction is performed in addition to a solvent, gelation may occur.
  • tetracarboxylic dianhydride which may be in powder form or dissolved in the solvent, may be added at once, gradually, or sequentially in several times. preferable.
  • the compound of the general formula (11) may be added as it is when it is added to a solution containing a multi-branched polyamic acid obtained by the reaction of a diamine containing tetracarboxylic dianhydride and a triamine. Alternatively, it may be added after being dissolved in an organic solvent such as a reaction solvent.
  • the terminal modification of the acid anhydride terminal or carboxylic acid terminal present in the polyamic acid or polyimide by the general formula (11) compound may be appropriately selected according to the intended use or purpose.
  • the general formula ( 1 1) The compound is preferably 0.;! To 20 equivalents, preferably 0.2 to 10%, based on the number of acid anhydride terminals and / or the number of carboxylic acid terminals present in the polyamic acid or polyimide. Equivalent, more preferably 0.5 to 5 equivalents, more preferably 0.8 to 3 equivalents, particularly preferably 1 to 2 equivalents. It is considered undesirable because of the low efficiency.
  • an organic acid anhydride such as acetic anhydride or propionic anhydride is used as a dehydrating agent, and pyridine,
  • An amine such as picoline or triethylamine can be used in combination.
  • One type of dehydrating agent and one catalyst may be used, or two or more types may be used in combination.
  • the polymer concentration in the production of the polyamic acid and the polyimide is not particularly specified, but 1 to 50% by mass is preferable 2 to 30% by mass, and particularly 2 to 5% by mass is preferable. so is there.
  • the firing temperature for imidization is in a range where the imidization reaction proceeds and the polymer does not deteriorate. ⁇ 600 ° C is preferred, more preferably 300 to 450 ° C.
  • the heating time is not particularly limited, but is preferably 30 minutes to 10 hours.
  • the firing atmosphere is not particularly limited, and may be in the presence of a reducing gas or an inert gas. However, it is preferable to carry out the firing in the atmosphere because it is economically advantageous. Although there is no restriction
  • an organic polar solvent that dissolves a known polyamic acid and / or polyimide can be used.
  • the organic solvent used in the production of polyamic acid and / or polyimide include, for example, N, N dimethylacetamide (DMAc), N, N jetylacetamide, N methyl 2-pyrrolidone (NMP), N methyl uniprolatam, N, N dimethylformamide, N, N jetylformamide, 1,3 dimethyl-2 imidazolidinone, hexamethylphosphoramide, phenol, crezo monole, o chlorophenol, p-chlorophenol, dimethyl sulfoxide, dimethyl sulfone , Sulfolane, ⁇ -butyroratatone, diglyme, dimethyltriglyme
  • aprotic polar solvents such as cetylt
  • the molar ratio to diamine should be greater than (2 + X / 100) / 2, preferably the molar ratio is (5x (2 + X / 100 ) + l) / 10-3 / l, more preferably in the range of ((2 + ⁇ / 100) +1) / 2-3 / 1.
  • the diamine containing triamine when the triamine in the diamine is 100 mol%, the multi-branched polyamic acid produced by the reaction of tetracarboxylic dianhydride and triamine is the tetracarboxylic dianhydride that is the raw material.
  • the molar ratio of tetracarboxylic dianhydride to triamine used (tetracarboxylic acid dianhydride).
  • tetracarboxylic acid dianhydride tetracarboxylic acid dianhydride
  • the molar specific force is 8/5 to 3/1, more preferably 2 /;! To 3/1, particularly preferably the amount of acid anhydride groups and / or force rubonic acid groups in the multi-branched polyamic acid.
  • the multi-branched polyimide Since the amount of heterocyclic groups in the multi-branched polyimide produced after reacting with a compound having a sulfur-containing group represented by the general formula (11) is large, the multi-branched polyimide is an inorganic compound. This is the case of 2/1.
  • the multi-branched polyamic acid When the molar ratio of tetracarboxylic dianhydride / triamine is less than 8/5, the multi-branched polyamic acid has a smaller amount of acid anhydride groups and / or carboxylic acid groups in the polymer, and the general formula (11) Since the amount of the heterocyclic group in the multi-branched polyimide produced after reacting with the compound is reduced, there is a problem that the compounding with the inorganic compound may be insufficient.
  • the compound having a sulfur-containing group represented by the general formula (1-2) has one amino group and at least one sulfur-containing group in the molecule. And a compound having an amino group capable of reacting with the tetracarboxylic dianhydride used in the present invention.
  • X represents a direct bond or an alkylene group having 1 to 3 carbon atoms.
  • R 1 represents a sulfur-containing heterocyclic group substituted with any group selected from the substituent group ⁇ .
  • the substituent group ⁇ is a hydrogen atom, a halogen atom, a hydroxyl group, a nitro group, a carboxylic acid group and a salt thereof, a sulfonic acid group and a salt thereof, an ester group , An amide group, a cyano group, an alkyl group, an alkoxy group, or an aryl group.
  • R 1 is a monovalent residue having at least one sulfur-containing group.
  • a 5- to 13-membered (monocyclic, bicyclic or tricyclic) sulfur-containing heterocyclic group substituted with any group selected from the substituent group ⁇ , thiol or thioether in the molecule examples include aryl groups having groups.
  • it is a 5- to 13-membered sulfur-containing aromatic heterocyclic group, an aryl group having a thioether group in the molecule, particularly preferably a thiophenyl group, a methylthiophenenyl group, since it can be efficiently complexed with an inorganic compound, A phenylthiophenyl group is mentioned.
  • Specific examples of the 5- to 13-membered sulfur-containing heterocyclic group include thiophenyl, benzothiophene, dibenzothiopheneyl and the like.
  • Specific examples of aryl groups having a thiol or thioether group in the molecule include thiol phenyl, methylthiophenyl, ethylthiophenyl, propenoretinoninole, butinoretiofeninore, pentinoretinophenol. , Phenyloretinophenol, thianthrenyl, phenoxathiinyl, phenothiazinyl, thixanthonyl and the like. These may be used singly or in combination of two or more.
  • X is a direct bond or an alkylene group having 13 carbon atoms, for example,
  • the alkyl group, alkoxy group, or aryl group of the substituent group ⁇ is an alkyl group that can have a substituent (particularly, an alkyl group having 1 2 3 4 or 5 carbon atoms). ), An alkoxy group (particularly an alkoxy group having 1 2 3 4 or 5 carbon atoms), or an aryl group (particularly an aryl group having 6 7 8 9 or 10 carbon atoms).
  • Specific examples of the compound having a sulfur-containing group represented by the general formula (12) include (aminomethyl) thiophene, methylthioaniline, phenylthioaniline and the like.
  • the compound of the general formula (1 2) is used instead of the compound of the general formula (1 1) as described in the first embodiment. Can be synthesized in exactly the same way.
  • the compound having a nitrogen-containing heterocyclic group represented by the general formula (13) contains one acid anhydride group and at least one compound in the molecule. It is a compound having a nitrogen heterocyclic group and a compound having an acid anhydride group that can react with a diamine containing a triamine of the present invention. [0115] [Chemical 15]
  • R represents a nitrogen-containing heterocyclic group substituted with an arbitrary group selected from the substituent group ⁇ , and the substituent group ⁇ is a hydrogen atom, a halogen atom, a hydroxyl group, or a nitro group.
  • R is a divalent residue having at least one nitrogen-containing heterocyclic group, and is substituted with any group selected from the substituent group ⁇ .
  • 5- to 14-membered (monocyclic, bicyclic or tricyclic) aromatic heterocyclic groups which may contain sulfur and oxygen atoms in addition to nitrogen atoms as heteroatoms constituting the ring, 5- to 10-membered Ring non-aromatic heterocyclic group and the like.
  • a 5- to 14-membered aromatic heterocyclic group is preferable, and a pyridyl group is particularly preferable because it can be efficiently complexed with an inorganic compound.
  • pyridyl hydroxypyridyl, pyridinecarboxylic acid amide, pyraduryl, pyrimidinyl, quinolyl, isoquinolyl, bibilidyl, phenanthryl, oxazolyl, benzoxazolyl, isoxazolyl, thiazolyl, isothiazolyl, benzothiazolyl, imidazolyl, benzimidazolyl, pyrrolyl, pyrazolyl, And aromatic heterocyclic groups such as triazolyl, tetrazolyl, pyridazinyl and indolyl.
  • examples include non-aromatic heterocyclic groups such as pyrrolidinyl, oxazolidinyl, imidazolininole, piperidinyl, piperazil, monoreforinole, thiomorpholinyl and the like. These may be used alone or in combination of two or more.
  • the alkyl group, alkoxy group, or aryl group of the substituent group ⁇ is an alkyl group that may have a substituent (particularly, 1, 2, 3, 4 or 5 carbon atoms).
  • Specific examples of the compound having a nitrogen-containing heterocyclic group represented by the general formula (13) include Gindicarboxylic acid anhydride, pyrazine dicarboxylic acid anhydride, pyrimidine dicarboxylic acid anhydride, quinoline dicarboxylic acid anhydride, isoquinoline dicarboxylic acid anhydride, imidazole dicarboxylic acid anhydride, benzimidazole dicarboxylic acid anhydride, pyrrole dicarboxylic acid anhydrous And so on.
  • a polyamic acid is produced by reacting a tetracarboxylic dianhydride and a diamine containing triamine, and then a polyamic acid and a compound of the general formula (13) are reacted to produce a terminal-modified amic acid.
  • a tetracarboxylic dianhydride, a diamine containing a triamine, and a compound of the general formula (13) are reacted to produce a terminal-modified amic acid, which is chemically or thermally ring-closed to imidize.
  • a method for obtaining a terminal-modified multi-branched polyimide
  • Tetracarboxylic dianhydride and diamine containing triamine are chemically or thermally closed to imidize to produce polyimide, and then react the imide with the compound of general formula (13).
  • a method of obtaining a terminal-modified multi-branched polyimide by producing a terminal amic acid polyimide and then chemically or thermally ring-closing and imidizing,
  • Tetracarboxylic dianhydride and diamine containing triamine are chemically or thermally closed to imidize to produce polyimide, and then imide and general formula (13) compound are chemically or A method of thermally ring-closing and imidizing to obtain a terminal-modified multi-branched polyimide,
  • a tetracarboxylic dianhydride, a diamine containing a triamine, and a compound of the general formula (13) are reacted to produce a terminally modified amic acid, which is chemically or thermally cyclized to imidize.
  • a method for obtaining a terminal-modified multi-branched polyimide
  • Tetracarboxylic dianhydride, diamine containing triamine, and a compound having a nitrogen-containing heterocyclic group represented by the general formula (13) are chemically or thermally closed to imidize to form terminal A method of obtaining a modified multi-branched polyimide,
  • Tetracarboxylic dianhydride and triamine having a molar ratio of more than 1/2 to less than 3/2 (molar ratio of tetracarboxylic dianhydride / triamine), and a nitrogen-containing compound represented by the general formula (13)
  • a method of producing a terminal-modified multi-branched polyimide by reacting with a compound having a heterocyclic group to produce a terminal-modified amic acid, chemically or thermally ring-closing and imidizing,
  • Tetracarboxylic dianhydride and triamine having a molar ratio of more than 1/2 to less than 3/2 are chemically or thermally closed to form an imide.
  • the polyimide is then reacted with the imide and the compound of the general formula (13) to produce a terminal amic acid polyimide, which is further chemically or thermally cyclized to imidize, and end-modified
  • Tetracarboxylic dianhydride and triamine having a molar ratio of more than 1/2 to less than 3/2 are chemically or thermally cyclized to form an imide.
  • a polyimide is produced, and then the imide and the compound of the general formula (13) are chemically or thermally cyclized to imidize to obtain a terminal-modified multi-branched polyimide,
  • the polyamic acid can be produced by a known method, for example, diamine containing tetracarboxylic dianhydride and triamine, or tetracarboxylic dianhydride, diamine containing triamine and the general formula (13). And a compound having a nitrogen-containing heterocyclic group
  • the reaction is carried out with a reaction force S at a reaction temperature of about 100 ° C. or less, preferably 80 ° C. or less, particularly 0 to 50 ° C.
  • reaction is preferably carried out in an inert gas such as nitrogen or argon, but it can also be used under other conditions.
  • inert gas such as nitrogen or argon
  • the terminal-modified multi-branched polyimide can be produced by a known method for synthesizing polyimide, for example,
  • Etc. can be manufactured.
  • the polyimide After the polyimide is synthesized, it can be reprecipitated with a poor solvent, dried, re-introduced into another soluble organic polar solvent, dissolved, and used as a solution.
  • reaction is preferably carried out in an inert gas such as nitrogen or argon, but it can also be used under other conditions.
  • inert gas such as nitrogen or argon
  • Diamine containing tetracarboxylic dianhydride and triamine is used for synthesizing polyamic acid or polyimide, and further synthesizing polyamic acid or polyimide with compound of general formula (13) at a time. If a polymerization reaction is performed in addition to a solvent, gelation may occur.
  • tetracarboxylic dianhydride which may be in powder form or dissolved in the solvent, may be added at once, gradually, or sequentially in several times. preferable.
  • the compound of the general formula (13) may be added as it is when it is added to a solution containing a multi-branched polyamic acid obtained by the reaction of a diamine containing tetracarboxylic dianhydride and a triamine. Alternatively, it may be added after being dissolved in an organic solvent such as a reaction solvent.
  • the terminal modification of the terminal of the amino group present in the polyamic acid or polyimide by the general formula (13) compound may be appropriately selected depending on the intended use or purpose.
  • the compound represented by the general formula (13) Preferably it is 0.;! To 20 equivalents, preferably 0.2 to 10 equivalents, more preferably 0.5 to 5 equivalents, more preferably 0.5 to 5 equivalents relative to the number of amino group terminals present in the polyamic acid or polyimide.
  • the amount is preferably 0.8 to 3 equivalents, particularly preferably 1 to 2 equivalents, and if it is 0.1 equivalents or less, it is considered that the efficiency of complexing with the inorganic compound is lowered, which is not preferable.
  • polyamic acid is chemically imidized using a dehydrating agent and a catalyst
  • an organic acid anhydride such as acetic anhydride or propionic anhydride
  • pyridine an organic acid anhydride such as acetic anhydride or propionic anhydride
  • An amine such as picoline or triethylamine can be used in combination.
  • Dehydrating agent one type of catalyst and one type of catalyst may be used, or two or more types may be used in combination.
  • the polymer concentration in producing the polyamic acid and the polyimide is not particularly specified, but 1 to 50% by mass is preferable 2 to 30% by mass, and particularly 2 to 5% by mass is preferable. It is.
  • the firing temperature for imidization is in a range where the imidization reaction proceeds and the polymer does not deteriorate. ⁇ 600 ° C is preferred, more preferably 300 to 450 ° C.
  • the heating time is not particularly limited, but is preferably 30 minutes to 10 hours.
  • the firing atmosphere is not particularly limited, and may be in the presence of a reducing gas or an inert gas. However, it is preferable to carry out the firing in the atmosphere because it is economically advantageous. Although there is no restriction
  • Examples of the organic polar solvent used in the terminal modification reaction with a polyamic acid, polyimide, or a compound having a nitrogen-containing heterocyclic group represented by the general formula (13) include known polyamic acids and / or polyimides.
  • An organic polar solvent that dissolves polyamic acid and / or polyimide can be used as the organic solvent, for example, N, N dimethinoacetamide (DMAc), N, N jetylacetamide, N-methyl-2-pyrrolidone (N MP), N-methyl-force prolatatam, N, N dimethylformamide, N, N ethinoleformamide, 1,3 dimethyl-2 imidazolidinone, hexamethylphosphoramide, Feno monore, Crezo monore, o Chlorphenol, p-chlorophenol, dimethyl sulfoxide, dimethyl sulfone, sulfolane, ⁇ butyrololata
  • aprotic polar solvents such as styrene, diglyme, dimethyltriglyme, jettil liglyme, tetrahydrofuran, dioxane, and the like. is there. These solvents may be used singly or as a mixture of two or more
  • the molar specific force S is from 1/2 or more to less than (2 + X / 100) / 2, more preferably from l / 2 to (5x (2 + X / 100) — 1) / 10, more preferably 1 / 2 to ((2 + X / 100) — 1) / 2.
  • the diamine when 100 mol% of the aromatic triamine represented by the general formula (2) is used, the tetracarboxylic dianhydride used when producing the polyamic acid which is the polyimide precursor of the present invention and
  • the aromatic triamine molar ratio (tetracarboxylic dianhydride / triamine) should be less than 3/2.
  • the molar ratio is from 1/2 or more to less than 3/2, more preferably from 1/2 to 7/5, more preferably from 1/2 to; 1/1, particularly preferably polyimide is an inorganic compound. This is the case of 1/1.
  • the polybranched polyamic acid has a small amount of triamine in the polymer, and the nitrogen-containing heterocyclic group represented by the general formula (13) Since the amount of the heterocyclic group in the multi-branched polyimide produced after reacting with the compound having a small amount, there is a problem that the compounding with the inorganic compound may be insufficient.
  • the molar ratio of tetraforce sulfonic acid dianhydride / triamine is less than 1/2, the molecular weight of polyamic acid is low, and the physical properties such as heat resistance of the terminal-modified multi-branched polyimide produced are low. This is preferable because it may decrease.
  • the aromatic o-hydroxyaldehyde represented by the general formula (14) can be expressed as: salicino oleanoldehyde, 2, 3 dihydroxybenzanoldehyde, 2 , 6-dihydroxybenzaldehyde, ⁇ vanillin, 2 hydroxy-4-methoxybenzaldehyde, 2 hydroxy-1-5 methoxybenzaldehyde, 2 hydroxy-1-3 ethoxybenzaldehyde, 2 hydroxy-3 ditrobensaldehyde, 2 hydroxy-5 ditrobenzaldehyde, 3— Isopropyl salicylaldehyde, 3-sec butyl salicyl aldehyde, 3-t butyl salicyl aldehyde, 3-tert-butyl-5-cyclosalicyl aldehyde, 5-bromo-3-tert-butyl salicyl aldehyde, 3-tert-butyl-5-meth
  • the alkyl group, the alkoxy group, or the aryl group is an alkyl group (particularly an alkyl group having 1, 2, 3, 4 or 5 carbon atoms) which may have a substituent, Examples include an alkoxy group (particularly an alkoxy group having 1, 2, 3, 4 or 5 carbon atoms) or an aryl group (particularly an aryl group having 6, 7, 8, 9 or 10 carbon atoms).
  • Modification of the terminal group of the terminal of the amino group present in the polyamic acid or polyimide with the aromatic o-hydroxyaldehyde represented by the general formula (14) may be appropriately selected according to the intended use or purpose.
  • the aromatic o hydroxyl aldehyde is 0.;!
  • the number of amino end groups of the hyperbranched polyamic acid obtained by reacting tetracarboxylic dianhydride and diamine containing triamine 0.5 to 8 equivalents, more preferably 0.8 to 5 equivalents, more preferably 1 to 2 equivalents, particularly preferably 1 to; 1.5 equivalents can be used.
  • the solubility of the group-modified multi-branched polyimide in the organic solvent may be low, and if it exceeds 10 equivalents, side reactions may occur, which is not preferable.
  • aromatic o hydroxyl aldehyde is an amino acid of a branched polyamic acid obtained by the reaction of tetracarboxylic dianhydride and triamine calculated from the formula (1).
  • 0.1 to 10 equivalents preferably 0.5 to 8 equivalents, more preferably 0.8 to 5 equivalents, more preferably;!
  • the molar specific force S is from 1/2 or more to less than (2 + X / 100) / 2, more preferably from l / 2 to (5x (2 + X / 100) — 1) / 10, more preferably 1 / 2 to ((2 + X / 100) — 1) / 2.
  • the multibranched polyamic acid produced by the reaction of tetracarboxylic dianhydride and triamine is used to produce the polyamic acid which is the polyimide precursor of the present invention.
  • the molar ratio of tetracarboxylic dianhydride and aromatic triamine used (tetracarboxylic dianhydride / triamine) should be less than 3/2.
  • the molar ratio is from 1/2 or more to less than 3/2, more preferably from 1/2 to 7/5, even more preferably from 1/2 to; 1/1, particularly preferably in a multi-branched polyamic acid.
  • the organic property of the multibranched polyimide Due to the increased amount of Schiff base groups in the multibranched polyimide obtained by reacting with the aromatic o-hydroxylaldehyde represented by the general formula (14) with a large amount of triamine, the organic property of the multibranched polyimide This is the case when the solubility in the solvent is high and it can be efficiently combined with inorganic compounds.
  • the molar ratio of tetracarboxylic dianhydride / triamine is greater than 7/5! / In some cases, the amount of triamine in the multibranched polyamic acid is small.
  • the amount of Schiff base groups in the multibranched polyimide obtained by reacting with the polybranched polyimide decreases, the solubility of the multibranched polyimide in the organic solvent decreases, and the compounding with the inorganic compound may be insufficient. There is a problem. Also, when the molar ratio of tetracarboxylic dianhydride / triamine is less than 1/2, the molecular weight of the polyamic acid is low! /, And the physical properties such as heat resistance of the terminal-modified multibranched polyimide produced are reduced. This is preferable because there are cases.
  • An example of a method for producing a terminal group-modified multi-branched polyimide in the fourth aspect is as follows.
  • Tetracarboxylic dianhydride and diamine containing triamine are chemically or thermally closed to imidize to produce a polyimide, and then represented by the amide amino group and the general formula (1-4).
  • a polyamic acid is produced by reacting tetracarboxylic dianhydride and triamine in a molar ratio (molar ratio of tetracarboxylic dianhydride / triamine) of 1/2 or more to less than 3/2, and then polyamic acid Amino acid of the end group modification is produced by reacting the amino group of the aromatic group with the aromatic ⁇ -hydroxy aldehyde represented by the general formula (14), and imidized by chemical or thermal ring closure, A method of obtaining a terminal group-modified multi-branched polyimide,
  • Tetracarboxylic dianhydride and triamine having a molar ratio of more than 1/2 to less than 3/2 are chemically or thermally cyclized to form an imide.
  • Tetracarboxylic dianhydride / triamine molar ratio are chemically or thermally cyclized to form an imide.
  • Polyamic acid can be produced by a known method.
  • tetracarboxylic dianhydride and diamine containing triamine are mixed in an organic polar solvent at about 100 ° C or lower, preferably 80 ° C. It can be produced by reacting at a reaction temperature of C or lower, particularly 0 to 50 ° C.
  • the reaction is preferably carried out in an inert gas such as nitrogen or argon, but it can also be used under other conditions.
  • Polyimide can be produced by a known method, for example,
  • Polyamic acid is reacted with diamine containing tetracarboxylic dianhydride and triamine in an organic polar solvent at a reaction temperature of about 100 ° C or lower, preferably 80 ° C or lower, particularly 0 to 50 ° C.
  • Etc. can be manufactured.
  • the polyimide After the polyimide is synthesized, it can be reprecipitated with a poor solvent, dried, re-introduced into another soluble organic polar solvent, dissolved, and used as a solution.
  • the reaction is preferably carried out in an inert gas such as nitrogen or argon, but it can also be used under other conditions.
  • diamine is 100 mol% triamine
  • tetracarboxylic dianhydride and triamine at a molar ratio (tetracarboxylic dianhydride / triamine molar ratio) of 1/2 or more and less than 3/2. Preferably it is done.
  • diamine containing tetracarboxylic dianhydride and triamine further synthesizes polyamic acid or polyimide with aromatic o-hydroxyaldehyde represented by the general formula (14).
  • the aromatic o-hydroxyaldehyde represented by the general formula (14) When added to a solution containing a hyperbranched polyamic acid obtained by the reaction of diamine containing water and triamine, it may be added as it is, or it may be added quickly to an organic solvent such as a reaction solvent. Also good.
  • the end-group-modified multi-branched polyamic acid is obtained by reacting a multi-branched polyamic acid and / or a multi-branched polyimide with an aromatic o-hydroxylaldehyde represented by the general formula (14). And / or an aromatic o-hydroxylaldehyde reacts with an amino group of a multi-branched polyimide to form a Schiff base to produce a polymer in which the terminal group represented by the general formula (8) is modified. it can.
  • n is a real number of 1 or more.
  • an organic acid anhydride such as acetic anhydride or propionic anhydride is used as the dehydrating agent, and pyridine,
  • An amine such as picoline or triethylamine can be used in combination.
  • One type of dehydrating agent and one catalyst may be used, or two or more types may be used in combination.
  • the polymer concentration in producing the polyamic acid and the polyimide is not particularly specified, but 1 to 50% by mass is preferable, 2 to 30% by mass is preferable, and 2 to 5% by mass is particularly preferable. It is.
  • the firing temperature for imidization is in a range where the imidization reaction proceeds and the polymer does not deteriorate. ⁇ 600 ° C is preferred, more preferably 300 to 450 ° C.
  • the heating time is not particularly limited, but is preferably 30 minutes to 10 hours.
  • the firing atmosphere is not particularly limited, and may be in the presence of a reducing gas or an inert gas. However, it is preferable to carry out the firing in the atmosphere because it is economically advantageous. There are no restrictions on the firing equipment, but the tubular furnace is a pine furnace. It can be used suitably.
  • DMAc dimethylacetamide
  • N jetylacetamide N methyl-2-pyrrolidone
  • NMP N methyl-force prolatatam
  • aprotic polar solvents such as rataton, diglyme, dimethyltriglyme, jettil liglyme, tetrahydrofuran, and dioxane.
  • DMAc and ⁇ are used because they are readily available and can produce high molecular weight polyamic acid. is there. These solvents may be used alone or in combination of two or more.
  • polyimide or terminal-modified multi-branched polyimide, polyamic acid, terminal group-modified multi-branched polyamic acid (hereinafter collectively referred to as terminal-modified multi-branched polyimide, etc.) in the above first to fourth embodiments? It may have any shape, and may be a powder such as particles, a film, or a film. Polyimide formed into a film shape can be suitably manufactured by imidizing a polyamic acid processed into a film shape, and any thickness can be used as long as there is no problem in handling. It is preferably 1 111 to 200 m, more preferably 5 ⁇ m to 100 ⁇ m.
  • the terminal-modified multi-branched polyimide or the like may contain other polyimides or other polymers in addition to the polyimide of the present invention, or may be a lubricant such as silica, an inorganic filler, or a glass fiber.
  • a reinforcing material such as a reinforcing material may contain other components such as a release agent.
  • the terminal-modified multi-branched polyimide or the like can be used by being formed on a base material such as plastic such as polyimide, glass, silicon wafer, ceramics, copper, silver, gold or the like.
  • the terminal-modified multi-branched polyimide or the like has a range in which further deterioration does not occur.
  • the heating time is not particularly limited at a temperature of 200 to 600 ° C, preferably 300 to 450 ° C, but 30 minutes to 10 hours. It can be used by heating in a range.
  • the terminal-modified multi-branched polyimide of the present invention is a conductive substrate such as a printed wiring board, a flexible printed circuit board, a material for electronic parts such as COF, COB, and TAB tape, a material for electronic equipment, a conductive particle, a conductive film, and the like. It can be used as a material.
  • the terminal-modified multi-branched polyimide of the present invention can be applied or printed on a heat-resistant polyimide film used as a material for electronic components such as printed wiring boards, flexible printed boards, and TAB tapes as a polyamic acid solution. Thereafter, the solution is removed, the polyamic acid is dehydrated and imidized, and a polyimide film having a terminal-modified multi-branched polyimide formed on one side or both sides of the heat-resistant polyimide film (that is, having a heat-resistant polyimide film). Terminal-modified multi-branched polyimide) can be obtained.
  • a polyamic acid cast layer or a polyamic acid cast layer that can be used to obtain a heat-resistant polyimide film can be dried to remove the support strength and the self-supporting film.
  • the force S can be provided on the entire surface or part of the surface of the heat-resistant polyimide film.
  • the terminal-modified multi-branched polyimide can be formed into a wiring shape and printed on a heat-resistant polyimide film by a method such as printing.
  • Terminal-modified multi-branched polyimide is formed in a heat-resistant polyimide film in the shape of a wiring, so that only the wiring part is electrolessly plated and has a wiring-shaped metal wiring terminal-modified multi-branched polyimide on one or both sides. Can be produced.
  • the terminal-modified multi-branched polyimide of the present invention is one of heat-resistant polyimide film and / or metal foil used as a material for electronic components such as printed wiring boards, flexible printed boards, and TAB tapes as a polyamic acid solution. A part or the whole is coated or printed, then the solution is removed, the polyamic acid is dehydrated and imidized, and the heat-resistant polyimide film and the metal foil are passed through the layer obtained from the polyamic acid of the present invention. Crimp or add The bonding can be performed directly by a method such as thermocompression bonding or through another adhesive.
  • a polyamic acid cast layer or a polyamic acid cast layer from which a heat-resistant polyimide film can be obtained is dried and a self-supporting film that can be peeled off from the support is used. , You may process similarly.
  • the polyamic acid of the terminal-modified multi-branched polyimide can also be coextruded with a polyamic acid dope that can provide a heat-resistant polyimide film.
  • the terminal-modified multi-branched polyimide of the present invention is a part of a heat-resistant polyimide film and / or metal foil used as a material for electronic components such as a printed wiring board, a flexible printed circuit board, and a TAB tape as a polyimide solution.
  • the whole solution is applied or printed, and then the solution is removed, and the heat-resistant polyimide film and the metal foil are directly or further bonded using the laminating apparatus or the like via the polyimide of the present invention. It is possible to obtain a heat-resistant polyimide film metal foil laminate by bonding with an agent.
  • a polyamic acid cast layer or a polyamic acid cast layer from which a heat-resistant polyimide film can be obtained is dried and a self-supporting film that can be peeled off from the support is used. , You may process similarly.
  • the heat-resistant polyimide film metal foil laminate can be used as a material for electronic components and electronic devices such as printed wiring boards, flexible printed boards, COF, COB, and TAB tapes.
  • the heat-resistant polyimide film is a heat-resistant polyimide film used as a material for electronic components such as printed wiring boards, flexible printed boards, and TAB tapes.
  • a heat-resistant polyimide film used as a material for electronic components such as printed wiring boards, flexible printed boards, and TAB tapes.
  • trade names“ Kapton ” manufactured by Toray • DuPont, DuPont
  • trade names“ Abical ” manufactured by Kaneka Chemical Co., Ltd.
  • Ingredients and diamine components such as acid components (eg, components containing 3, 3, 4, 4, 4'-biphenyltetracarboxylic dianhydride, pyromellitic acid, etc.) and diamine components (P-phenylene diamine, 4 , 4-diaminodiphenyl ether, m-tolidine, 4, 4'-diaminobenzanilide, etc.) Door can be.
  • the laminating apparatus includes a pair of crimping metal rolls (the crimping part may be made of either metal or ceramic sprayed metal), vacuum laminating, double belt press, hot press, and the like. Of these, a hydraulic double belt press is particularly preferable.
  • metal foil various metal foils such as copper, aluminum, gold and alloy foils can be used, and copper foils such as rolled copper foil and electrolytic copper foil are preferable.
  • the metal foil preferably has a surface roughness Rz of 0.5 ⁇ m or more, which can be used with any surface roughness. Further, it is preferable that the surface roughness Rz of the metal foil is 7 m or less, particularly 5 mm or less.
  • Such metal foils for example copper foils, are known as VLP, LP or HT E).
  • the thickness of the metal foil is not particularly limited, but is preferably 2 to 35 111, particularly 5 to 18 m.
  • a metal foil with a carrier for example, a copper foil with an aluminum foil carrier or a copper foil with a copper foil carrier can be used.
  • metal foil a metal foil that can be used particularly for a wiring circuit can be preferably used.
  • a solid or solution (terminal-modified) multi-branched polyimide is electrolessly electrocatalyzed.
  • Producing a metal-coated (terminal-modified) multi-branched polyimide by adsorbing a precursor material to promote electroless plating (terminal-modified) multi-branched polyimide and then performing electroless metal plating. .
  • the adsorption is carried out in the first embodiment by a nitrogen-containing heterocyclic group derived from the compound of the general formula (1 1), in the second embodiment by a sulfur-containing group derived from the compound of the general formula (1 2), In the embodiment, an electroless plating catalyst precursor for the nitrogen-containing heterocyclic group derived from the general formula (13), and in the fourth embodiment, the Schiff base generated by the reaction of the general formula (14) and the amino group, respectively. Adsorbs.
  • the electroless plating catalyst precursor was adsorbed to the terminal-modified multibranched polyimide by dissolving the electroless plating catalyst precursor. This can be performed by immersing the terminal-modified multi-branched polyimide in a solution such as an aqueous solution or an organic solvent, or a colloidal liquid dispersed in the organic solvent.
  • the electroless plating catalyst precursor is a metal compound that promotes electroless plating, for example, a palladium compound.
  • the noradium compound may be one having an oxidation number of 0, or may be a metal complex or metal fine particles, which may be divalent or tetravalent.
  • the solvent used for adjusting the electroless plating catalyst substance-containing liquid may be an aqueous solvent or an organic solvent.
  • aqueous solvent deionized water or the like can be used.
  • organic solvent include alcohols such as methyl alcohol, ethyl alcohol, and propyl alcohol, ketones such as acetone, esters such as ethyl acetate, ethers such as tetrahydrofuran and dioxane, benzene, toluene, and xylene. Aromatics can be suitably used. These solvents may be used alone or in combination.
  • the concentration of the electroless plated catalytic material of the electroless plated catalyst material-containing solution can be appropriately selected, for example, is preferable instrument more preferably it is lmol 'dm_ 3 from 10_ 6 is from 10- 5 10- 2 mol 'dm- 3 . 10- 6 mol 'if less than dm- 3 is can take a long time to adsorb the electroless plating catalyst material hyperbranched polyimide, 1 mol' electroless Me when more than dm- 3 In some cases, the amount of attached catalytic material increases and the manufacturing cost increases, which is economically disadvantageous.
  • the electroless plating catalyst substance-containing liquid may promote the adsorption of the electroless plating catalyst substance to the terminal-modified multi-branched polyimide, so acids such as hydrochloric acid, sulfuric acid, nitric acid, ammonia, etc. It is preferable to carry out the reaction by adding a base such as sodium hydroxide, potassium hydroxide, sodium hydrogen carbonate or potassium carbonate, an inorganic salt such as sodium chloride, potassium chloride or ammonium chloride, or an organic salt such as tetrabutylammonium chloride.
  • a base such as sodium hydroxide, potassium hydroxide, sodium hydrogen carbonate or potassium carbonate
  • an inorganic salt such as sodium chloride, potassium chloride or ammonium chloride
  • organic salt such as tetrabutylammonium chloride.
  • the time for immersing the terminal-modified multi-branched polyimide in the electroless plating catalyst substance-containing solution may be appropriately selected, preferably 5 The time is from 1 second to 1 hour, more preferably from 30 seconds to 30 minutes. When the immersion time is shorter than 5 seconds, the electroless catalyst material may not be sufficiently adsorbed on the multi-branched polyimide. When the immersion time is longer than 1 hour, the treatment time becomes longer, which is economically disadvantageous.
  • the temperature at which the terminal-modified multi-branched polyimide is immersed in the electroless plating catalyst substance-containing solution may be appropriately selected.
  • the range of 100 ° C is preferred, and the range of room temperature to 60 ° C is preferred. If the temperature is lower than 0 ° C, the solvent may be frozen, and if it is higher than 100 ° C, the solvent may be vaporized.
  • the terminal-modified multi-branched polyimide for promoting electroless plating is immersed in a liquid containing an electroless plating catalyst material, and then washed with an aqueous solvent, an organic solvent, or a mixture thereof. Alternatively, it may be further dried by air drying.
  • a terminal-modified multibranched polyimide for promoting electroless plating is produced by electroless metal plating by a known method such as immersion in an electroless plating solution. be able to.
  • Conditions for electroless metal plating can be performed by appropriately selecting known conditions.
  • electroless plating solution conventionally known electroless plating solutions containing various metal compounds can be used.
  • the metal compound a metal element belonging to Periods 4, 5, and 6 of the periodic table can be used, and a metal element belonging to Groups 1B, 2B, and VIII is preferable.
  • cobalt, nickel, palladium, platinum, copper, silver, gold, and zinc are preferred because the metal-coated multi-branched polyimide produced is highly useful.
  • the concentration of the metal compound of the electroless-plating solution has preferably tool more preferably lmo preparative Dm_ 3 from the force example if 10-3 can be performed by appropriately selecting, lC from 10_ 2 ⁇ mo to dm— 3 . 10- 3 mol 'if less than dm- 3 is located Rukoto force S Yosu a long time in an electroless plated, I mol' when more than Dm_ 3 Cases are increasing the amount of the metal compound, manufacturing co Since the strike is high, it is economically disadvantageous.
  • electroless plating solutions include reducing agents such as formaldehyde, dimethylamine borane, sodium borohydride, hydrazine, hydroxylamine, sodium hypophosphite, and acetic acid, an organic acid.
  • reducing agents such as formaldehyde, dimethylamine borane, sodium borohydride, hydrazine, hydroxylamine, sodium hypophosphite, and acetic acid, an organic acid.
  • Buffers such as certain boric acids and their metal salts, cyanides, thioureas, bibilidyl Contains stabilizers such as phenanthrin, neocuproine, accelerators such as adenine, guanine, 8-hydroxy-7-odo-5-quinoline sulfonic acid, surfactants such as polyethylene glycol, etc. ! / [0194]
  • the time for immersing the end-modified multi-branched polyimide for promoting electroless plating in the electroless plating solution is a force that can be selected as appropriate, preferably 30 seconds to 12 hours, and more preferably. 1 minute to 6 hours. If the immersion time is shorter than 30 seconds, there is a case where the mating is insufficient, and if it is longer than 12 hours, the treatment time becomes longer, which is economically disadvantageous.
  • the temperature for immersing the terminally modified multi-branched polyimide for promoting electroless plating in a solution containing the electroless plating catalyst is preferably 0 to; more preferably in the range of 100 ° C to room temperature to 80 ° C. The range is preferred. If the temperature is lower than 0 ° C, the electroless plating solution may freeze, and if it is higher than 100 ° C, the electroless plating solution may deteriorate or the electroless plating solution may vaporize. Therefore, it is not preferable.
  • the obtained metal-coated end-modified multi-branched polyimide is dipped in an electroless plating solution, and may be washed with an aqueous solvent, an organic solvent, or a mixture thereof, or may be further air-dried. You may be fi.
  • the metal-coated terminal-modified multi-branched polyimide can be used as a substrate for electronic parts and electronic devices such as printed wiring boards, flexible printed boards, COF, COB, and TAB tapes.
  • the metal-coated terminal-modified multi-branched polyimide when in a granular form, it can be used as a conductive binder or conductive particle with a force S.
  • the aromatic triamine represented by the general formula (I) relating to the fifth aspect of the present invention can be produced by reducing the nitro group of the aromatic monoamine represented by the general formula (II). .
  • a method for reducing the nitro group a method of performing reduction or catalytic reduction with tin chloride (11) and sodium dithionate in a solvent is used.
  • tin chloride (11) and sodium dithionate in a solvent
  • palladium, Raney nickel, or platinum can be used as a catalyst
  • molecular hydrogen, hydrazine, formic acid, or ammonium formate can be used as a hydrogen source.
  • Solvents used for the reduction include aromatic solvents such as alcohols, dioxane and toluene xylene, sulfoxide solvents such as dimethyl sulfoxide and jetyl sulfoxide, N, N-dimethylformamide, N, N-ger.
  • aromatic solvents such as alcohols, dioxane and toluene xylene
  • sulfoxide solvents such as dimethyl sulfoxide and jetyl sulfoxide
  • N, N-dimethylformamide N, N-ger.
  • Formamides such as tilformamide Solvents, N, N dimethylacetamide, N, N Acetamide solvents such as Jetylacetoamide, N Methyl-2-pyrrolidone, N-Buyl-2-pyrrolidone and other pyrrolidone solvents, phenol, o-, m — Or p Cresol Monore, Xylenol, Nonogenated phenol, Phenolic solvents such as catechol, or Hexamethylphosphoramide, ⁇ -Butylolaton, etc., which do not inhibit the reaction and dissolve diamine dinitrate If it is, it will not be limited.
  • the aromatic monoamines represented by the general formula (II) include 3,5 di (4-12 tropenoxy) aniline, 3,5-di (3-methinore, 412 tropenoxy) aniline, 3 , 5-di (3-methoxy, 4-12 tropphenoxy) aniline, 3,5 di (2 methinore, 4-12 tropphenoxy) aniline, 3,5 di (2 methoxy, 4-12 tropphenoxy) aniline, 3,5 di (3 ethyl, 4 twelve trophenoxy) aniline, etc.
  • a synthesis method of these compounds as shown in the Examples, for example, a method of reacting 3,5-dihydroxydiline with substituted or unsubstituted ⁇ fluoronitrobenzene can be mentioned.
  • the aromatic triamines represented by the general formula (I) include 3,5 di (4 aminophenoxy) aniline, 3,5-di (3-methyl, 4-aminophenoxy) aniline, 3,5-di (3-methoxy, 4 aminophenoxy) aniline, 3,5 di (2 methinore, 4 aminophenoxy) aniline, 3,5 di (2 methoxy, 4 aminophenoxy) aniline, 3,5 di (3 ethynole, 4 aminophenoxy) urine, And so on.
  • TG—DTA Simultaneous differential thermal thermogravimetric measurement
  • TG / DTA320 manufactured by Seiko Denshi Kogyo Co., Ltd., measuring temperature range: 200 ° C to 800 ° C, heating rate: 10 ° C / min, atmospheric gas : Nitrogen, Atmospheric gas flow rate: 30 mL / min.
  • X-ray photoelectron spectroscopy Using 1600S manufactured by PHI, X-ray source: MgKa.
  • X-ray diffraction analysis (XRD): RAD-RX manufactured by Rigaku Denki Co., Ltd. Using X-ray diffractometer, X-ray source: CuKa.
  • ICP—AES Inductively coupled plasma atomic emission spectrometry
  • FT-IR Fourier transform infrared spectroscopy
  • C is the capacitance
  • d is the sample film thickness
  • ⁇ ° is the dielectric constant in vacuum
  • is the electrode area
  • An acid dianhydride and anhydrous N, N dimethylacetamide (hereinafter abbreviated as DMAc) shown in Table 1 were added to a four-necked flask equipped with a dropping funnel. While stirring at room temperature, the solution of triamine and / or diamine shown in Table 1 dissolved in anhydrous DMAc was gradually added over 57 hours. The mixture was stirred at room temperature overnight to obtain a 2.5% by weight DMAc solution of hyperbranched polyamic acid. The number average molecular weight of the hyperbranched polyamic acid was analyzed by GPC, and the results are shown in Table 1.
  • Example 1-40 ifi-NMR analysis (300 MHz, DMSO-d) of the terminal-modified multi-branched polyimide of I 41 was measured, and the results are shown in FIGS. 1-1 and 1-2. 1 H shown in Fig. 1-1
  • a DMAc solution of terminal-modified multibranched polyamic acid having a concentration shown in Table 4 was prepared by concentrating the DMAc solution of 5% by weight of terminal-modified multibranched polyamic acid under reduced pressure.
  • a DMAc solution of terminal-modified multi-branched polyamic acid concentrated on a glass substrate was applied by spin coating so that the film thickness after imidization was as shown in Table 4.
  • the terminal-modified multi-branched polyimide film was formed on the glass substrate by baking at 350 ° C. in the air using a baking furnace. The thickness of the terminal-modified multibranched polyimide film was measured by optical microscope observation of the film cross section.
  • the terminal-modified hyperbranched polyimide film formed on a glass substrate was immersed for 3 minutes at room temperature in a small amount of 1.
  • the polyimide film was peeled from the substrate, washed with water for 30 minutes, and then air-dried to obtain a terminal-modified multibranched polyimide for promoting electroless adhesion.
  • the amount of palladium adhering to the terminally modified multi-branched polyimide for electroless adhesion promotion was measured by surface analysis using XPS, and the results are shown in Table 6.
  • the terminal-modified multi-branched polyimide film formed on the glass substrate is peeled off from the substrate, tin chloride dihydrate (2. Og), concentrated hydrochloric acid (lmL), water (50mU force, 40 ° C in a solution of Then, it was immersed in water at 40 ° C. for 10 seconds, and further immersed in a solution consisting of palladium chloride (25 mg) and concentrated hydrochloric acid (0.25 mU, water (50 mL) at 40 ° C. for 2 minutes. Thereafter, the polyimide film was lightly washed with running water and then air-dried to obtain end-modified multi-branched polyimide for promoting electroless plating as shown in Table 6.
  • the terminal-modified multi-branched polyimide film formed on the glass substrate was immersed in a 1.5 g / L palladium nanoparticle-containing toluene solution at room temperature for 3 minutes. Next, the polyimide film was peeled off from the substrate with, and washed with ethanol and water for 30 minutes and then air-dried to obtain end-modified multi-branched polyimide for promoting electroless adhesion. From the surface analysis by XPS, the amount of palladium adhering to the terminally modified multi-branched polyimide for promoting electroless adhesion was measured.
  • Example I 62 (Synthesis of multi-layer terminal-modified multi-branched polyimide for promoting electroless adhesion)
  • Example I except that terminal-modified multi-branched polyimide film AF81 was used as the terminal-modified multi-branched polyimide film.
  • a multibranched polyimide A B81 for promoting electroless adhesion was obtained. From the surface analysis by XPS, palladium having a surface atomic concentration of 0.24% adhered to the side of terminal-modified multi-branched polyamic acid A-1 coated with terminal-modified multi-branched polyimide AB8 1 for promoting electroless adhesion. Turned out to be.
  • Example I 63 (Synthesis of multi-layer end-modified multi-branched polyimide for promoting electroless adhesion) Except for using the terminal-modified multi-branched polyimide film AF81 as the terminal-modified multi-branched polyimide film, a multi-branched polyimide for promoting electroless adhesion A B811 was obtained in the same manner as in Example I54. From the surface analysis by XPS, palladium having a surface atomic concentration of 0.67% adhered to the side of terminal-modified multi-branched polyamic acid A-1 of terminal-modified multi-branched polyimide AB81 for promoting electroless adhesion. Turned out to be.
  • Electroless copper plating was applied to the terminal-modified multi-branched polyimide for promoting electroless plating.
  • a copper thin film having a thickness of about 0.0 was formed on the surface of the terminal-modified multi-branched polyimide for promoting electroless adhesion, and a copper-coated terminal-modified multi-branched polyimide formed with the copper thin film was obtained.
  • the surface resistance of the copper-coated terminal-modified multi-branched polyimide was measured, and the results are shown in Table 6.
  • the obtained copper-coated end-modified multi-branched polyimide was tested using a cellophane tape made by Nichiban Co., Ltd. and tested, and copper did not peel off from all polyimide films, resulting in good adhesion. Indicated. (In Examples I 73 and I 74, adhesion was evaluated on the surface of the end-modified multi-branched polyimide coating.)
  • the electroless copper plating carried out in Examples I 64 to 74 and Comparative Example I 2 was performed by immersing polyimide in an electroless copper plating solution having the following composition at room temperature for 3 minutes for 60 seconds.
  • a 50 mL two-necked flask equipped with a condenser tube was charged with 400 mg (1 ⁇ 78 mmol) of sodium acetate and 500 mg (0.451 mmol) of tetraoctadecyl ammonium bromide and purged with argon. After adding toluene (20 mL) and THF (4 mL), the mixture was stirred at 30 ° C, and further ethanol (2.5 m U was added and the mixture was stirred for 14 hours at 65 ° C. After cooling to room temperature, the mixture was vigorously stirred.
  • the mixture was further stirred for 5 hours at room temperature, and the precipitated gray solid was collected by filtration, washed with ethanol, and dried under reduced pressure to obtain the desired product (338 mg). From the ICP-A ES analysis, the palladium concentration in the radium nanoparticles was found to be 47% by weight.
  • Example II About the terminal-modified multi-branched polyimide of 20 from the 1 H-NMR analysis (300 MHz, DMSO d) of the terminal group-modified multi-branched polyimide BP1-8 shown in FIG. 2-1,
  • a DMAc solution of terminal-modified multibranched polyamic acid having a concentration shown in Table 9 was prepared by concentrating the DMAc solution of 5% by weight of terminal-modified multibranched polyamic acid under reduced pressure. Glass base A DMAc solution of terminal-modified multi-branched polyamic acid concentrated on the plate was applied by spin coating or casting. Subsequently, the terminal-modified multi-branched polyimide film was formed on the glass substrate shown in Table 9 by baking at 350 ° C. in the air using a baking furnace.
  • the relative dielectric constant of the film of Example II 25 was 3.32. Absorption due to the carbonyl group of the terminal group-modified multi-branched polyimide was observed at 1714 cm- by FTIR-ATR analysis shown in FIG. 2-2.
  • Terminal-modified multi-branched polyamic acid B1-1 coated side is subjected to FTIR-ATR analysis. Absorption due to the carbonyl group of the branched polyimide was observed in l YlScnT 1 .
  • the terminal-modified multi-branched polyimide film formed on the glass substrate shown in Table 10 was added to an aqueous solution containing a small amount of sodium chloride (pH 4.3) containing 1.0 x 10_ 3 mol 'dm- 3 sodium tetrachromate. Soaked for 3 minutes.
  • the polyimide film was peeled off from the substrate with /, and washed with water for 30 minutes and then air-dried to obtain terminally modified multi-branched polyimide for promoting electroless adhesion.
  • the palladium adhesion atom concentration and sulfur atom concentration on the surface were measured, and the results are shown in Table 10.
  • Example II 32, II 37 (Synthesis of terminal-modified multi-branched polyimide for promoting electroless adhesion)
  • the terminal-modified multi-branched polyimide film formed on the glass substrate shown in Table 10 was peeled off from the substrate and chlorinated. Tin dihydrate (2. Og), concentrated hydrochloric acid (lmL), water (50 mU force, soaked for 2 minutes at 40 ° C. Then soaked in 40 ° C for 10 seconds, and further Palladium chloride (25 mg), concentrated hydrochloric acid (0.25 mL), water (soaked in 50 mU solution for 2 minutes at 40 ° C.
  • the polyimide film was lightly washed with running water, air-dried, and electroless plating A terminal-modified multi-branched polyimide for acceleration was obtained, and the surface-attached multi-branched polyimide film for electroless adhesion promotion was measured by XPS to measure the palladium atom concentration and sulfur atom concentration on the surface. Show.
  • the linear polyimide film I was formed on a glass substrate at room temperature for 3 minutes to 1 ⁇ OX 10_ 3 mol'dm 3 of tetrachloroethene port palladium sodium-containing aqueous solution containing a small amount of sodium chloride (pH 4.3) Immersion did. Next, the polyimide film was peeled off from the substrate, washed with water for 30 minutes, and then air-dried to obtain an electroless adhesion promoting polyimide film I. Surface analysis by XPS revealed that palladium with a surface atom concentration of 0.18% was attached to polyimide film I for electroless plating, which was less than when a multibranched polyimide film was used.
  • Electroless copper plating was applied to the terminal-modified multi-branched polyimide for promoting electroless plating shown in Table 11. As a result, the surface of all end-modified multi-branched polyimides for promoting electroless adhesion is not uneven. A copper thin film was formed, and a copper-coated terminal-modified multi-branched polyimide formed with the copper thin film was obtained. The surface resistance of the copper-coated end-modified multi-branched polyimide was measured and the results are shown in Table 11. Further, when the copper-coated terminal-modified multi-branched polyimide was peeled off using a cellophane tape manufactured by Nichiban Co., Ltd., copper was not peeled off from the polyimide film.
  • Comparative Example II 2 Comparative Example II As a result of applying electroless copper plating to the electroless adhesion promoting polyimide film I prepared in 1, only a slight copper thin film was formed on the surface of the electroless adhesion promoting polyimide film I. there were.
  • Example II 39 46 and Comparative Example II 2 The electroless copper plating performed in Example II 39 46 and Comparative Example II 2 was performed by immersing polyimide in an electroless copper plating solution having the following composition at room temperature for 13 minutes.
  • Example III Prepared DMAc solution of end-modified multi-branched polyamic acid with concentrated concentration shown in Table 14 by concentrating 2.5% by weight of DMAC solution of terminal-modified multi-branched polyamic acid synthesized in Ill 8 under reduced pressure did.
  • a DMAc solution of concentrated end-modified multi-branched polyamic acid was applied to a glass substrate by spin coating or casting. Subsequently, a terminal-modified multi-branched polyimide film was formed on the glass substrate by firing at 350 ° C. in the air using a firing furnace.
  • the end-modified multi-branched polyimide film formed on the above glass substrate contains a small amount of sodium chloride. 1.
  • OX 10_ 3 mol 'dm- 3 aqueous solution containing sodium tetrachloropalladate (PH4.3) at room temperature. Immerse for a minute. Next, the polyimide film was peeled from the substrate, washed with water for 30 minutes, and then air-dried to obtain a terminal-modified multi-branched polyimide for promoting electroless adhesion.
  • Example III 10a (Synthesis of terminal-modified multi-branched polyimide for promoting electroless adhesion) End-modified multi-branched polyimide film CPa-2 formed on a glass substrate was peeled from the substrate, and tin chloride dihydrate ( 2. Og), concentrated hydrochloric acid (lmU, water (soaked in 50mU for 2 minutes at 40 ° C.), Then immersed in water at 40 ° C for 10 seconds, further palladium chloride (25mg), concentrated hydrochloric acid (0 25 mL) and water (50 mL) for 2 minutes at 40 ° C.
  • the polyimide film was lightly washed with running water and then air-dried to obtain end-modified multi-branched polyimide for promoting electroless adhesion. From surface analysis by XPS, terminal modification for promoting electroless adhesion It was found that palladium with a surface atom concentration of 1.63% was attached to the polyimide CBal-21.
  • Electroless copper plating was applied to the terminal-modified multi-branched polyimide for promoting electroless plating shown in Table 14 above.
  • a copper-coated terminal-modified multibranched polyimide having a copper thin film formed on the surface of all terminally-modified multibranched polyimides for promoting electroless adhesion was obtained.
  • Table 15 shows the surface resistance of the copper-coated end-modified multi-branched polyimide.
  • the obtained copper-coated terminal-modified multi-divided polyimide was subjected to a peeling test using cellophane tape manufactured by Nichiban Co., Ltd., and showed good adhesion without copper peeling off from the polyimide film.
  • Electroless adhesion promoting polyimide film A prepared in 1 was subjected to electroless copper adhesion. As a result, a slight copper film was formed on the surface of the electroless adhesion promoting polyimide film A. Met.
  • Electroless plating conditions The electroless copper plating performed in Examples III 13 to 11116 and Comparative Example III 2 was performed by immersing polyimide in an electroless copper plating solution having the following composition at room temperature for 13 minutes.
  • Electroless plating catalyst precursor synthesis of sodium tetrachloropalladate
  • Example IV-1 and Example IV- 4 to Example IV-9 H-NMR analysis (300 MHz, DMSO d) was performed, and Fig. 4-1 and Fig. 4-4
  • the end group-modified multibranched polyimide of Example IV-2 was subjected to 1 NMR analysis (300 MHz, DMSO-d). As shown in Fig. 4-2, the terminal amino acid of the multibranched polyamic acid was analyzed.
  • Example IV-3 The end group-modified multibranched polyimide of Example IV-3 was subjected to ifi-NMR analysis (300 MHz, DMSO-d). As shown in FIG.
  • Example IV-1 End-group-modified multi-branched polyimide DPI-1 synthesized in DMA-1 was dissolved in DMAc to prepare a 20% by weight end-group-modified multi-branched polyimide solution, and a film was formed on a glass substrate using a spin coating method. The solution was applied to. Subsequently, the film of the terminal group-modified multi-branched polyimide was formed on the glass substrate by baking at 180 ° C. in the air using a baking furnace to evaporate the solvent.
  • the end group-modified multi-branched polyimide film formed on the glass substrate prepared in Example IV-10 was immersed in an ethanol solution containing 1.0 X 10 3 mol. Dm- 3 of palladium acetate for 3 minutes at room temperature. Then, after washing with ethanol and water for 30 minutes, it was air-dried to obtain a multi-branched polyimide film with attached radium. Surface analysis by XPS revealed that palladium with a surface atom concentration of 0.40% was adhered to this palladium-adhered multi-layer polyimide film.
  • the palladium-attached multi-branched polyimide film obtained in Example IV-11 was immersed in an electroless copper plating solution at room temperature (about 25 ° C.) for 60 seconds to perform electroless copper plating.
  • a copper thin film was formed on the surface of the obtained palladium-adhered multi-branched polyimide A-1 film without any spots, and the surface resistance was 4. ⁇ ⁇ ⁇ ⁇ / mouth.
  • copper-coated multi-branched polyimide film was peeled off using cellophane tape made by Nichiban Co., Ltd., copper did not peel from the multi-branched polyimide film and showed good adhesion. .
  • the mixture was stirred at room temperature overnight to obtain a 2.5% by weight polyamic acid VB solution. From the GPC analysis, the number average molecular weight of the polyamic acid was 1.7 ⁇ 10 4 .
  • a 2.5 wt% polyamic acid solution synthesized in Examples V-3 and V-4 was concentrated under reduced pressure to prepare a 10 wt% polyamic acid solution.
  • the concentrated solution was clear and fluid.
  • a 10% by weight polyamic acid solution was applied to a glass substrate by spin coating.
  • polyimide film VA2 and polyimide film VB2 were formed on a glass substrate by firing at 350 ° C. in the air using a firing furnace.
  • the FT-IR spectrum of the obtained film was measured, and the results are shown in Figure 5-1 and Figure 5-2. From Fig. 5-1, absorption due to the imidocarbonyl group was confirmed at 1714 cm- 1 . From Fig. 5-2, the absorption due to the imidocananol group was confirmed at 1715 cm- 1 .
  • Example V-7 The polyimide film formed on the glass substrate obtained in Example 7 contains a small amount of sodium chloride in an aqueous solution containing OX 10_ 3 (mol / dm 3 ) sodium tetrachloropalladate (pH 4.3). Immerse for 3 minutes at room temperature. Next, the polyimide film was peeled off from the substrate with /, washed with water for 30 minutes and then air-dried. Surface analysis by XPS revealed that the polyimide film had palladium with a surface atomic concentration of 0.38%.
  • the surface resistance of the copper plating side of the copper plating polyimide film was 9. S X ICT ⁇ / mouth.
  • the obtained copper-plated polyimide film was peeled off using a cellophane tape manufactured by Nichiban Co., Ltd., and showed good adhesion and long life without copper peeling off from the polyimide film.
  • Copper sulfate pentahydrate 3. Og, potassium sodium tartrate tetrahydrate: 14. Og, sodium hydroxide: 4.0 g, 37% formalin: 10 mL, water: 100 mL.
  • the terminal-modified multi-branched polyimide of the present invention is a material such as a flexible printed wiring board and TAB. It is useful as a fee.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Chemically Coating (AREA)

Description

明 細 書
末端変性多分岐ポリイミド、金属メツキ被覆末端変性多分岐ポリイミド及び これらの製造方法
技術分野
[0001] 本発明は、末端基が修飾された末端変性多分岐ポリイミド、又は末端基が修飾され た多分岐ポリアミック酸をイミド化することで製造される末端変性多分岐ポリイミドに関 する。更には、末端変性多分岐ポリイミドに無電解めつき処理を行うことで製造される 金属被覆末端変性多分岐ポリイミドに関する。
背景技術
[0002] ポリイミドは耐熱性、成形性、機械的及び電気的性質に優れた有用性の高!/、高分 子材料であり、これまでに多くのタイプのポリイミドが開発され、様々な産業分野で広 く使用されている。
[0003] 前記の特徴を持つポリイミドは無機材料と組み合わせて用いられることが多ぐ例え ば、絶縁機能をもつポリイミドと導電性の金属とを組み合わせた複合材料は、エレクト ロニタス材料として使用されている。特にフィルム化されたポリイミドフィルムと金属箔 との複合化により製造される金属被覆ポリイミド材料は有用であり、フレキシブルプリ ント配線基板 (FPC)やテープ自動ボンディング用基板 (TAB)等に用いられて!/、る。
[0004] そのような金属被覆ポリイミド材料を製造する手法としては、これまでにいくつかの態 様が知られている。一つには、ポリイミドを無電解めつきまたは電解めつき処理する方 法が知られている。即ち、ポリイミドフィルムに無電解めつきを施し、続いて必要に応 じて電解めつき処理することにより、ポリイミドフィルム表面上に金属層を形成させる方 法がある。
[0005] 特許文献 1には、被めつき材をアルカリ金属塩を含有する溶液で前処理した後、一 分子中に金属捕捉能を持つ置換基を有するシランカップリング剤を有効成分とする 化合物で処理し、次!/、で貴金属化合物の水溶液で処理して貴金属をシランカツプリ ング剤に捕捉させた後、該被めっき材を無電解めつきすることを特徴とする無電解め つき方法が開示されている。 [0006] 特許文献 2には、ポリイミド基体の表面に導電回路パターンを形成する金属メツキ膜 の作成方法において、予め該ポリイミド基体の表面を、アルカリ性物質共存下で 1級 アミノ基を有する有機ジスルフイド化合物又は 1級アミノ基を有する有機チオール化 合物を含む溶液で処理することを特徴とするポリイミド基体への金属メツキ膜形成方 法が開示されている。
[0007] 又非特許文献 1では、金属配位能を有するピリジル基を主鎖に有する高分子化合 物で鎖状ポリイミドフィルム表面を被覆する方法が検討されている。
[0008] 特許文献 1:特開 2002— 226972号公報
特許文献 2:特開 2002— 208768号公報
非特許文献 l : Macromol. Mater. Eng. Vol. 288, 152 - 163 (2003) 発明の開示
発明が解決しょうとする課題
[0009] 本発明の目的は、無機材料との複合化を効率良く行うことが出来る多分岐ポリイミド 及びその製造方法を提供することである。
[0010] さらに本発明は、多分岐ポリイミドに無電解めつき処理を行う際に、多分岐ポリイミド に無電解めつき触媒前駆物質を簡便に付加し、それに無電解めつきを施すことで得 られる、金属とポリイミドの密着性が良好である金属被覆多分岐ポリイミド及びその簡 便な製造法を提供することを目的とする。
課題を解決するための手段
[0011] 本発明は、次の事項に関する。
[0012] 1. 成分(a):テトラカルボン酸二無水物と、
成分 (b):ァミン成分として、トリァミンとジァミンとの混合物(但し、全量がトリァミンで あってもよい。)と、
成分 ):末端成分として、一般式(1—;!)〜(1—4)から選ばれる化合物とを、 ポリマー末端の少なくとも一部が前記一般式(1一;!)〜(1 4)から選ばれる化合 物に由来するように反応させて得られる末端変性多分岐ポリイミド。
[0013] H N-X-R1 (1 - 1)
2
(一般式(1 1 )において、 Xは直接結合、又は炭素数 1〜3のアルキレン基を示す。 R1は、置換基群 αより選択される任意の基で置換された含窒素複素環基を示し、置 換基群 αは、水素原子、ハロゲン原子、水酸基、ニトロ基、カルボン酸基及びその塩 、スルホン酸基及びその塩、エステル基、アミド基、シァノ基、アルキル基、アルコキシ 基、又は、ァリール基を示す。)
H N-X-R1 (1 - 2)
2
(一般式(1 2)において、 Xは直接結合、又は炭素数 1〜3のアルキレン基を示す。 R1は、置換基群 αより選択される任意の基で置換された含硫黄複素環基、もしくは 分子内にチオール,もしくはチォエーテル基を有するァリール基を示し、置換基群 α は、一般式(1 1)で定義されたとおりである。 )
[化 1]
Figure imgf000005_0001
(一般式(1 3)において、 Rは置換基群 αより選択される任意の基で置換された含 窒素複素環基を示し、置換基群 αは、一般式(1 1)で定義されたとおりである。 ) [化 2]
Figure imgf000005_0002
(一般式(1—4)につ!/、て、 Rは一価の残基を示し、一般式(1 1)で定義された置 換基群 αと同じ意味を有し、 Rは、同一であっても、異なってもよい。 )
2. 前記末端成分が、一般式(1 1)および(1 2)から選ばれ、前記アミン成分 の全量がトリァミンであって、
3/2以上のモル比(テトラカルボン酸二無水物/トリァミンのモル比)のテトラカル ボン酸二無水物及びトリァミンと、前記一般式(1 1)および(1 2)から選ばれる化 合物とを反応させて得られる上記 1記載の末端変性多分岐ポリイミド。
[0016] 3. 前記末端成分が、一般式(1 3)および(1 4)から選ばれ、前記アミン成分 の全量がトリァミンであって、
1/2以上から 3/2未満のモル比(テトラカルボン酸二無水物/トリァミンのモル比
)のテトラカルボン酸二無水物及びトリァミンと、前記一般式(1 3)および(1 4)か ら選ばれる化合物とを反応させて得られる上記 1記載の末端変性多分岐ポリイミド。
[0017] 4. 前記成分(a):テトラカルボン酸二無水物と、前記成分 (b):ァミン成分とを反応 させて得られるポリアミック酸と、前記成分 (c):末端成分とを反応させて得られる上記
;!〜 3のいずれかに記載の末端変性多分岐ポリイミド。
[0018] 5. 前記一般式(1 1)で表される化合物力 分子内に少なくとも一つのピリジノレ 基を有する化合物であることを特徴とする上記 1〜4のいずれかに記載の末端変性 多分岐ポリイミド。
[0019] 6. 前記一般式(1 2)で表される化合物力 S、分子内に少なくとも一つのチォエー テル部位を有する化合物であることを特徴とする上記 1〜4のいずれかに記載の末端 変性多分岐ポリイミド。
[0020] 7. 前記一般式(1 3)で表される化合物力 S、分子内に少なくとも一つのピリジノレ 基を有する化合物であることを特徴とする上記 1〜4のいずれかに記載の末端変性 多分岐ポリイミド。
[0021] 8. 前記一般式(1 4)で表される化合物が、サリチルアルデヒドであることを特徴 とする上記 1〜4のいずれかに記載の末端変性多分岐ポリイミド。
[0022] 9. 耐熱性のポリイミドフィルムの片面または両面に形成されている上記 1〜8のい ずれかに記載の末端変性多分岐ポリイミド。
[0023] 10. 耐熱性のポリイミドフィルムを得ることができるポリアミック酸溶液のキャスト層 若しくはポリアミック酸溶液のキャスト層を加熱乾燥して得られる自己支持性フィルム に、上記 1〜8のいずれかに記載の末端変性多分岐ポリイミドを得ることができるポリ ァミック酸溶液を塗工法、流延法または印刷法によって塗布した後、加熱乾燥し、イミ ド化して得られる上記 9記載の末端変性多分岐ポリイミド。
[0024] 11. 前記耐熱性のポリイミドフィルム力 3, 3 ' , 4, 4 '—ビフエニルテトラカルボン 酸二無水物を含む酸成分と、 p—フエ二レンジアミンを含むジァミン成分とから得られ るポリイミド、またはピロメリット酸二無水物を含む酸成分と、 4, 4'ージアミノジフエ二 ルエーテルを含むアミン成分とから得られるポリイミドであることを特徴とする上記 9ま たは 10記載の末端変性多分岐ポリイミド。
[0025] 12. 上記 1〜; 11のいずれかに記載の末端変性多分岐ポリイミドに、無電解めつき 触媒前駆物質が吸着されていることを特徴とする無電解めつき促進用末端変性多分 岐ポリイミド。
[0026] 13. 前記無電解めつき触媒前駆物質は、パラジウム化合物であることを特徴とす る上記 12記載の無電解めつき促進用末端変性多分岐ポリイミド。
[0027] 14. 上記 12又は上記 13記載の無電解めつき促進用末端変性多分岐ポリイミドに 、無電解金属めつきが施されて!/、ることを特徴とする金属被覆末端変性多分岐ポリイ ミド。
[0028] 15. 1)成分(a) :テトラカルボン酸二無水物と、成分 (b) :ァミン成分として、トリアミ ンとジァミンとの混合物 (但し、全量がトリァミンであってもよい。)と、成分 (c):末端成 分として、一般式(1一;!)〜(1—4)から選ばれる化合物とを、ポリマー末端の少なくと も一部が前記一般式(1 1)〜(; 1 4)から選ばれる化合物から誘導されるように反 応させて、末端変性多分岐ポリイミドを製造する工程、
2)前記末端変性多分岐ポリイミドに、無電解めつき触媒前駆物質を吸着させて無 電解めつき促進用末端変性多分岐ポリイミドを製造する工程、
3)前記無電解めつき促進用末端変性多分岐ポリイミドに無電解金属めつきを行い 金属被覆末端変性多分岐ポリイミドを製造する工程、
を有することを特徴とする金属被覆末端変性多分岐ポリイミドの製造方法。
[0029] H N-X-R1 (1 - 1)
2
(一般式(1 1)において、 Xは直接結合、又は炭素数 1〜3のアルキレン基を示す。 R1は、置換基群 αより選択される任意の基で置換された含窒素複素環基を示し、置 換基群 αは、水素原子、ハロゲン原子、水酸基、ニトロ基、カルボン酸基及びその塩 、スルホン酸基及びその塩、エステル基、アミド基、シァノ基、アルキル基、アルコキシ 基、又は、ァリール基を示す。) H N-X-R (1 - 2)
(一般式(1 2)において、 Xは直接結合、又は炭素数 1〜3のアルキレン基を示す。 R1は、置換基群 αより選択される任意の基で置換された含硫黄複素環基、もしくは 分子内にチオール,もしくはチォエーテル基を有するァリール基を示し、置換基群 α は、一般式(1 1)で定義されたとおりである。 )
[0030] [化 3]
Figure imgf000008_0001
(一般式(1 3)において、 Rは置換基群 αより選択される任意の基で置換された含 窒素複素環基を示し、置換基群 αは、一般式(1 1)で定義されたとおりである。 ) [化 4]
Figure imgf000008_0002
(一般式(1—4)につ!/、て、 Rは一価の残基を示し、一般式(1 1)で定義された置 換基群 αと同じ意味を有し、 Rは、同一であっても、異なってもよい。 )
16. 前記工程 1)において、前記末端成分が、一般式(1 1)および(1 2)から 選ばれ、前記アミン成分の全量がトリァミンであって、 3/2以上のモル比(テトラカル ボン酸二無水物/トリァミンのモル比)のテトラカルボン酸二無水物及びトリァミンと、 前記一般式(1 1 )および(1 2)から選ばれる化合物とを反応させることを特徴とす る上記 15記載の金属被覆末端変性多分岐ポリイミドの製造方法。
[0032] 17. 前記工程 1)において、前記末端成分力 S、一般式(1 3)および(1 4)から 選ばれ、前記アミン成分の全量がトリァミンであって、 1/2以上から 3/2未満のモル 比(テトラカルボン酸二無水物/トリァミンのモル比)のテトラカルボン酸二無水物及 びトリァミンと、前記一般式(1 3)および(1 4)から選ばれる化合物とを反応させる ことを特徴とする上記 15記載の金属被覆末端変性多分岐ポリイミドの製造方法。
[0033] 18. 前記工程 1)の末端変性多分岐ポリイミドを製造する工程において、前記成 分(a):テトラカルボン酸二無水物と、前記成分 (b):ァミン成分とを反応させて得られ るポリアミック酸と、前記成分 (c):末端成分とを反応させることを特徴とする上記 15〜 17のいずれかに記載の金属被覆末端変性多分岐ポリイミドの製造方法。
[0034] 19. 前記トリアミンカ S、一般式 (I)で表される芳香族トリァミンであることを特徴とす る上記 1〜; 11のいずれかに記載の末端変性多分岐ポリイミド。
[0035] [化 5]
Figure imgf000009_0001
(但し、一般式(I)において、 M 〜M及び M, 〜M, は、—H, -CN, —OCH ,
1 4 1 4 3
-COOH, -CH , 一 C H ,又は、—CFを示し、 M 〜M及び M, 〜M, は、そ
3 2 5 3 1 4 1 4 れぞれ独立して、同一であっても、異なってもよい。 )
20. 前記トリアミンカ S、前記一般式 (I)で表される芳香族トリァミンであることを特徴 とする上記 12または 13記載の無電解めつき促進用末端変性多分岐ポリイミド。
[0036] 21. 前記トリアミンカ S、前記一般式 (I)で表される芳香族トリァミンであることを特徴 とする上記 14記載の金属被覆末端変性多分岐ポリイミド。
発明の効果
[0037] トリアミンを含むジァミンを合成原料として得られる多分岐ポリイミドは、分子鎖が高 度に分岐したポリイミドであり、鎖状高分子と比較して末端基を多く有する特徴を有し ている。そこで末端を変性する力、、アミノ基とすることで、無電解めつき触媒前駆物質 を吸着しやすくなり、容易に無電解めつきを行うことが出来、金属被覆ポリイミドを簡 便に製造することができる。
[0038] 特に、本発明の末端変性多分岐ポリイミドでは、トリアミンを含むジァミンから得られ る多分岐ポリアミック酸又はポリイミドの酸無水物末端基またはァミノ基が、無機化合 物と配位結合等の化学結合形成能の高!/、基を有する化合物で変性されて!/、る。そこ で、無機化合物との親和性が高ぐ容易に有機 無機複合化を行うことができる。こ のため、無電解めつき触媒前駆物質を吸着しやすぐ容易に無電解めつきを行うこと が出来、金属被覆ポリイミドを簡便に製造することができる。
[0039] さらに、硫黄を含む基を末端基に導入することで誘電率を下げる効果も期待できる 図面の簡単な説明
[0040] [図 1-1]実施例 I 40の末端変性多分岐ポリイミドの1 H— NMR(300MHz, DMSO
-d )の芳香族領域の吸収を示す部分のスペクトル図である。
6
[図 1-2]実施例 I 41の末端変性多分岐ポリイミドの1 H— NMR(300MHz, DMSO
-d )の芳香族領域の吸収を示す部分のスペクトル図である。
6
[図 1-3]実施例 I 45の末端変性多分岐ポリイミドの ATR— IRスペクトル図である。
[図 1-4]実施例 1— 64の銅被覆多分岐ポリイミドフィルムの断面 TEM写真である。
[図 2-1]実施例 II 20の末端変性多分岐ポリイミドの1 H— NMR (300MHz, DMS O-d )の芳香族領域の吸収を示す部分のスペクトル図である。
6
[図 2-2]実施例 II— 25の末端変性多分岐ポリイミドの ATR—IRスペクトル図である。
[図 3-1]実施例 III 4の末端変性多分岐ポリイミドの1 H— NMR (300MHz, DMSO -d )の芳香族領域の吸収を示す部分のスペクトル図である。
6
[図 4-1]実施例 IV— 1の末端基修飾多分岐ポリイミドの1 H— NMR(300MHz, DM SO d )の芳香族領域の吸収を示す部分のスペクトル図である。
6
[図 4-2]実施例 IV— 2の末端基修飾多分岐ポリイミドの1 H— NMR(300MHz, DM SO d )の芳香族領域の吸収を示す部分のスペクトル図である。
6
[図 4-3]実施例 IV— 3の末端基修飾多分岐ポリイミドの1 H— NMR(300MHz, DM SO d )の芳香族領域の吸収を示す部分のスペクトル図である。 [図 4-4]実施例 IV— 4の末端基修飾多分岐ポリイミドの1 H— NMR(300MHz, DM SO— d )の芳香族領域の吸収を示す部分のスペクトル図である。
6
[図 4-5]実施例 IV— 5の末端基修飾多分岐ポリイミドの1 H— NMR(300MHz, DM SO— d )の芳香族領域の吸収を示す部分のスペクトル図である。
6
[図 4-6]実施例 IV— 6の末端基修飾多分岐ポリイミドの1 H— NMR(300MHz, DM SO— d )の芳香族領域の吸収を示す部分のスペクトル図である。
6
[図 4-7]実施例 IV— 7の末端基修飾多分岐ポリイミドの1 H— NMR(300MHz, DM SO— d )の芳香族領域の吸収を示す部分のスペクトル図である。
6
[図 4-8]実施例 IV— 8の末端基修飾多分岐ポリイミドの1 H— NMR(300MHz, DM SO— d )の芳香族領域の吸収を示す部分のスペクトル図である。
6
[図 4-9]実施例 IV— 8の末端基修飾多分岐ポリイミドの1 H— NMR(300MHz, DM SO— d )の芳香族領域の吸収を示す部分のスペクトル図である。
6
[図 4-10]実施例 IV— 10の末端基修飾多分岐ポリイミドフィルムの FTIR—ATRスぺ クトノレ図である。
[図 5-1]実施例 V— 7で得たポリイミドフィルムの FT— IRスペクトルのチャート図である
[図 5-2]実施例 V— 8で得たポリイミドフィルムの FT— IRスペクトルのチャート図である 発明を実施するための最良の形態
[0041] 本発明および本出願は、いくつかの態様を包含しており、次の第 1〜第 5の態様に 大別される。尚、本発明の成分 (b)のァミン成分は、トリァミンとジァミンの混合物であ り、ここで、トリアミンは必須成分として存在し、ジァミンは場合によっては存在せずに トリアミンが 100%であってもよい。以下の説明では、このようなトリァミンが 100%の場 合も含めて、「トリアミンを含むジァミン」と記載する場合がある。
[0042] 本発明の第 1の態様は、主として、成分(a)としてテトラカルボン酸二無水物と、成 分 (b)のァミン成分として、一般式(2)に示すトリアミンを含むジァミンと、成分 (c)の 末端成分として一般式(1 1)で示される含窒素複素環基を有する化合物(以下、式 (1 - 1)化合物と!/、う場合がある。 )とを反応させて得られる末端変性多分岐ポリイミド に関するものである。
[0043] H N-X-R1 (1 - 1)
2
(一般式(1 1)において、 Xは直接結合、又は炭素数 1〜3のアルキレン基を示す。 R1は、置換基群 αより選択される任意の基で置換された含窒素複素環基を有する 1 価の残基を示し、置換基群 αは、水素原子、ハロゲン原子、水酸基、ニトロ基、カル ボン酸基及びその塩、スルホン酸基及びその塩、エステル基、アミド基、シァノ基、ァ ルキル基、アルコキシ基、又は、ァリール基を示す。)
第 1の態様では、 3/2以上のモル比(テトラカルボン酸二無水物/トリァミンのモル 比)のテトラカルボン酸二無水物及びトリァミンと、前記一般式(1 1)化合物とを反 応させて得られる末端変性多分岐ポリイミドが好ましい。
[0044] 本発明の第 2の態様は、主として、成分(a)としてテトラカルボン酸二無水物と、成 分 (b)のァミン成分として、一般式(2)に示すトリアミンを含むジァミンと、成分 (c)の 末端成分として一般式(1 2)で示される含硫黄化合物(または含硫黄複素環基を 有する化合物という場合もある。以下、式(1 2)化合物という場合がある。)とを反応 させて得られる末端変性多分岐ポリイミドに関するものである。
[0045] H N-X-R1 (1 - 2)
2
(一般式(1 2)において、 Xは直接結合、又は炭素数 1〜3のアルキレン基を示す。 R1は、置換基群 αより選択される任意の基で置換された含硫黄複素環基、もしくは 分子内に少なくとも一つのチォエーテル基もしくはチオールを有するァリール基を示 し、置換基群 αは、水素原子、ハロゲン原子、水酸基、ニトロ基、カルボン酸基及び その塩、スルホン酸基及びその塩、エステル基、アミド基、シァノ基、アルキル基、ァ ルコキシ基、又は、ァリール基を示す。)
第 2の態様では、 3/2以上のモル比(テトラカルボン酸二無水物/トリァミンのモル 比)のテトラカルボン酸二無水物及びトリァミンと、前記一般式(1 2)化合物とを反 応させて得られる末端変性多分岐ポリイミドが好ましい。
[0046] 本発明の第 3の態様は、主として、成分(a)としてテトラカルボン酸二無水物と、成 分 (b)のァミン成分として、一般式(2)に示すトリアミンを含むジァミンと、成分 (c)の 末端成分として一般式(1 3)で示される含窒素複素環基を有する化合物(以下、式 (1 - 3)化合物とレ、う場合がある。 )とを反応させて得られる末端変性多分岐ポリイミド に関するものである。
[0047] [化 6]
Figure imgf000013_0001
(一般式(1 3)において、 Rは置換基群 αより選択される任意の基で置換された含 窒素複素環基を示し、置換基群 αは、水素原子、ハロゲン原子、水酸基、ニトロ基、 カルボン酸基及びその塩、スルホン酸基及びその塩、エステル基、アミド基、シァノ基 、アルキル基、アルコキシ基、又は、ァリール基を示す。)
第 3の態様では、 1/2以上から 3/2未満のモル比(テトラカルボン酸二無水物/ト リアミンのモル比)のテトラカルボン酸二無水物及びトリァミンと、一般式(1 3)化合 物とを反応させて得られる末端変性多分岐ポリイミドが好ましい。
[0048] 本発明の第 4の態様は、主として、成分(a)としてテトラカルボン酸二無水物と、成 分 (b)のァミン成分として、一般式(2)に示すトリアミンを含むジァミンと、成分 (c)の 末端成分として一般式(1 4)で示される芳香族 o ヒドロキシアルデヒド (以下、式( 1 -4)化合物と!/、う場合がある。 )とを反応させて得られる末端変性多分岐ポリイミド に関するものである。
[0049] [化 7]
Figure imgf000013_0002
(一般式(1—4)について、 Rは一価の残基を示し、水素原子、ハロゲン原子、水酸 基、ニトロ基、カルボン酸基及びその塩、スルホン酸基及びその塩、エステル基、アミ ド基、シァノ基、アルキル基、アルコキシ基又はァリール基を示す。 Rは、同一であつ ても、異なってもよい。 )
第 4の態様では、 1/2以上から 3/2未満のモル比(テトラカルボン酸二無水物/ト リアミンのモル比)のテトラカルボン酸二無水物及びトリァミンと、一般式(1 4)化合 物とを反応させて得られる末端変性多分岐ポリイミドが好ましい。
[0050] 以上の第 1〜第 4の態様の末端変性多分岐ポリイミドを製造する際には、成分 (a) のテトラカルボン酸二無水物と、成分 (b)のァミン成分を反応させて、ポリアミック酸を 合成し、ポリアミック酸と成分 (c)の末端成分を反応させる方法が好まし!/、。
[0051] また、以上の第 1〜第 4の態様の末端変性多分岐ポリイミドは、無電解めつき触媒 前駆物質を吸着させて無電解めつき促進用ポリイミドとすることができる。さらに、これ らの無電解めつき促進用ポリイミドに、無電解金属めつきを施して、金属被覆ポリイミ ドとすることができる。
[0052] 本発明の末端変性多分岐ポリイミドは、テトラカルボン酸二無水物と、一般式(2)に 示すトリアミンを含むジァミンと、一般式(1 1)〜(; 1 4)に示す含硫黄基を有する 化合物とを反応させて得られる末端変性多分岐ポリイミドである。
本発明の第 5の態様は、次の事項に関する。
[0053] 1. 一般式 (I)で表される芳香族トリァミン。
[0054] [化 8]
Figure imgf000014_0001
(但し、一般式(I)において、 M 〜M及び M, 〜M, は、 H, -CN
1 4 1 4
-COOH, -CH , 一 C H ,又は、—CFを示し、 M 〜M及び M,
3 2 5 3 1 4 1
れぞれ独立して、同一であっても、異なってもよい。 )
2. 一般式 (II)で表される芳香族モノアミン。 [0055] [化 9]
Figure imgf000015_0001
(但し、一般式(II)において、 M 〜M及び M, 〜M, は、—H, -CN, —OCH ,
1 4 1 4 3
-COOH, -CH , 一 C H ,又は、—CFを示し、 M 〜M及び M, 〜M, は、そ
3 2 5 3 1 4 1 4 れぞれ独立して、同一であっても、異なってもよい。 )
3. 一般式 (II)で表される芳香族モノアミンを還元することを特徴とする一般式 (I) に示す芳香族トリァミンの製造方法。
[0056] 4. 上記 1に記載する一般式 (I)で表される芳香族トリアミンを含むジァミンと、テト ラカルボン酸二無水物とから得られるポリアミック酸。
[0057] 5. 上記 1に記載する一般式 (I)で表される芳香族トリアミンを含むジァミンと、テト ラカルボン酸二無水物とから得られるポリイミド。
[0058] 上記一般式 (I)で表されるトリアミンは、本発明の第 1〜第 5の態様で使用されるトリ ァミンとして好適である。
[0059] 本発明の第 1〜第 4の態様において共通して使用される一般式(2)で表されるトリ アミンは次の構造を有する。
[0060] ΥΑΑΆ" (2)
(一般式(2)におついて、 Yは三価の残基を示し、 A、 A'及び A"は、 Yに結合してお り、それぞれアミノ基を含む一価の残基を示す。 A、 A'及び A"がそれぞれ独立して、 同一であっても、異なってもよい。)
[0061] 一般式(2)で表されるトリァミンの合成法の一例として、一般式(2)で表されるトリア ミンの例えば一つ、二つ又は三つがニトロ基の場合、そのニトロ基を還元などを行うこ とにより製造することカでさる。 [0062] ニトロ基の還元方法としては、公知の還元法を適宜選択して用いることができ、例え ば溶媒中で塩化スズ (Π)、ジチオン酸ナトリウムによる還元又は接触還元を行う手法が 使用される。接触還元では、触媒としてパラジウム、ラネーニッケル、又は白金を用い ること力 Sでき、また、分子状水素、ヒドラジン、ギ酸、ギ酸アンモニゥムを水素源として 用いること力 Sできる。特に、触媒にパラジウム化合物を用い、水素源に分子状水素を 用いて有機溶剤中で還元反応を行うことが経済的であり好ましい。
[0063] 還元に用いられる溶媒としては、アルコール類、ジォキサン、トルエンゃキシレン等 芳香族系溶媒、ジメチルスルホキシド、ジェチルスルホキシドなどのスルホキシド系溶 媒、 N, N—ジメチルホルムアミド、 N, N—ジェチルホルムアミドなどのホルムアミド系 溶媒、 N, N—ジメチルァセトアミド、 N, N—ジェチルァセトアミドなどのァセトアミド系 溶媒、 N—メチル—2—ピロリドン、 N—ビュル— 2—ピロリドンなどのピロリドン系溶媒 、フエノーノレ、 o—、 m—、または p—クレゾ一ノレ、キシレノーノレ、 ノヽロゲン化フエノーノレ 、カテコールなどのフエノール系溶媒、あるいはへキサメチルホスホルアミド、 γーブ チロラタトン等、反応を阻害せず、還元生成物であるアミノ化合物やその原料である ニトロ化合物を溶解するものであれば限定されない。
[0064] 一般式(2)に示すトリァミンとしては、公知及び新規のトリアミンを用いることが出来 、特に芳香族トリァミンが好ましぐさらに一般式 (2)に示す Α、 Α '及び Α"が一般式( 3)に示すアミノベンゼンの一価の残基であることが好まし!/、。
[0065] [化 10]
Figure imgf000016_0001
(但し、一般式(3)において、 M
1〜Mは、— H, -CN, -OCH , — COOH, — C 4 3
H , —C H ,又は、—CFを示す。 M〜Mは、それぞれ独立して、同一であっても
3 2 5 3 1 4
、異なってもよい。 )
一般式 (2)に示すトリァミンの具体例としては、一般式 (4)に示す芳香族トリァミン、 好ましくは一般式 (6)に示す芳香族トリアミンを挙げることができる。 [0067] [化 11]
Figure imgf000017_0001
Y-V Y-VI Y-VII
(一般式(4)において、 A、 A'及び Α"は一般式(5)に示すアミノベンゼンを含む一価 の残基を示す。 A、 A'及び A"がそれぞれ独立して、同一であっても、異なってもよい 。)
[0068] [化 12]
Figure imgf000017_0002
(但し、一般式(5)において、 M〜Mは、— H, -CN, -OCH , — COOH, — C
1 4 3
H , —C H ,又は、—CFを示す。 M〜Mは、それぞれ独立して、同一であっても
3 2 5 3 1 4
、異なってもよい。 )
[0069] [化 13]
Figure imgf000018_0001
Figure imgf000018_0002
(一般式(6)において、 A、 A'及び A"は一般式(7)に示すアミノベンゼンを含む一価 の残基を示す。 A、 A'及び A"がそれぞれ独立して、同一であっても、異なっても よい。 )
[0070] [化 14]
Figure imgf000018_0003
(但し、一般式(7)において、 M 〜Mは、 H, -CN, -OCH , — COOH, — C
1 4 3
H , —C H ,又は、—CFを示す。 M 〜Mは、それぞれ独立して、同一であっても
3 2 5 3 1 4
、異なってもよい。 )
[0071] 一般式 (2)に示すトリァミンとしては、一般式 (4)に示す芳香族トリアミンを除くトリアミ ンとしては、 1 , 3, 5—トリァミノベンゼン、などを挙げることができる。
[0072] 一般式 (4)の Y Iで表される芳香族トリァミンとしては、 3, 5 ジ (4 ァミノフエノキ シ)ァニリン、 3, 5—ジ(3—メチノレ, 4 アミノフエノキシ)ァニリン、 3, 5—ジ(3—メト キシ, 4 アミノフエノキシ)ァニリン、 3, 5 ジ(2 メチノレ, 4 アミノフエノキシ)ァニリ ン、 3, 5 ジ(2 メトキシ, 4 アミノフエノキシ)ァニリン、 3, 5 ジ(3 ェチル, 4 アミノフエノキシ)ァニリン、などを挙げることができる。
[0073] 一般式 (4)の Y— IIで表される芳香族トリァミンとしては、 1 , 3, 5 トリ(4 アミノフ エノキシ)ベンゼン、 1 , 3, 5—卜リ(3—メチノレ, 4 アミノフエノキシ)ベンゼン、 1 , 3, 5 トリ(3 メトキシ, 4 アミノフエノキシ)ベンゼン、 1 , 3, 5 トリ(2 メチノレ, 4 アミ ノフエノキシ)ベンゼン、 1 , 3, 5 トリ(2 メトキシ, 4 アミノフエノキシ)ベンゼン、 1 , 3, 5—トリ(3—ェチル, 4—アミノフエノキシ)ベンゼン、などを挙げることができる。
[0074] 一般式 (4)の Υ— ΠΙで表される芳香族トリァミンとしては、 1 , 3, 5—トリ(4 アミノフ ェニルァミノ)ベンゼン、 1 , 3, 5—トリ(3—メチノレ, 4—ァミノフエニルァミノ)ベンゼン、 1 , 3, 5 卜リ(3 メ卜キシ, 4ーァミノフエニノレアミノ)ベンゼン、 1 , 3, 5 卜リ(2 メチ ノレ, 4 ァミノフエニルァミノ)ベンゼン、 1 , 3, 5 トリ(2 メトキシ, 4 ァミノフエニル ァミノ)ベンゼン、 1 , 3, 5—トリ(3—ェチル, 4ーァミノフエニルァミノ)ベンゼン、など を挙げること力 Sでさる。
[0075] 一般式 (4)の Y— IVで表される芳香族トリァミンとしては、 1 , 3, 5 トリ(4 アミノフ ェニノレ)ベンゼン、 1 , 3, 5—トリ(3—メチノレ, 4—ァミノフエ二ノレ)ベンゼン、 1 , 3, 5- 卜リ(3 メ卜キシ, 4ーァミノフエ二ノレ)ベンゼン、 1 , 3, 5 卜リ(2 メチノレ, 4 アミノフ ェニノレ)ベンゼン、 1 , 3, 5 トリ(2 メトキシ, 4ーァミノフエ二ノレ)ベンゼン、 1 , 3, 5 トリ(3—ェチル, 4ーァミノフエニル)ベンゼン、などを挙げることができる。
[0076] 一般式 (4)の Y—Vで表される芳香族トリァミンとしては、 1 , 3, 5 トリ(4 アミノフ ェニノレ)ァミン、 1 , 3, 5—トリ(3—メチノレ, 4ーァミノフエ二ノレ)ァミン、 1 , 3, 5—トリ(3 —メトキシ, 4 ァミノフエニル)ァミン、 1 , 3, 5 トリ(2 メチル, 4 ァミノフエニル) ァミン、 1 , 3, 5—トリ(2—メトキシ, 4—ァミノフエ二ノレ)ァミン、 1 , 3, 5—トリ(3—ェチ ル, 4ーァミノフエニル)ァミン、などを挙げることができる。
[0077] 一般式 (4)の Y— VIで表される芳香族トリァミンとしては、トリス(4— (4—ァミノフエ ノキシ)フエ二ノレ)メタン、トリス(4一(3—メチノレ, 4 アミノフエノキシ)フエ二ノレ)メタン 、トリス(4— (3 メトキシ, 4 アミノフエノキシ)フエニル)メタン、トリス(4— (2 メチ ル, 4 アミノフエノキシ)フエニル)メタン、トリス(4— (2 メトキシ, 4ーァミノフエノキ シ)フエ二ノレ)メタン、トリス(4一(3—ェチノレ, 4 アミノフエノキシ)フエ二ノレ)メタン、な どを挙げること力 Sできる。
[0078] 一般式 (4)の Y— VIIで表される芳香族トリァミンとしては、トリス(4— (4 ァミノフエ ノキシ)フエ二ノレ)ェタン、トリス(4一(3—メチノレ, 4' アミノフエノキシ)フエ二ノレ)エタ ン、トリス(4— (3 メトキシ, 4 アミノフエノキシ)フエニル)ェタン、トリス(4— (2 メ チル, 4 アミノフエノキシ)フエニル)ェタン、トリス(4— (2 メトキシ, 4 アミノフエノ キシ)フエ二ノレ)ェタン、トリス(4一(3—ェチノレ, 4一アミノフエノキシ)フエ二ノレ)ェタン 、などを挙げることができる。
[0079] ジァミンは、一般式(2)で表されるトリアミンを含むジァミンであり、一般式(2)で表さ れるトリアミンの含有量は使用する目的や使用する反応方法により適宜選択して用い ることが出来、好ましくは一般式(2)で表されるトリアミンをジァミン中、 1〜; 100モル% 、さらに好ましくは 10〜; 100モル0 /0、より好ましくは 20〜; 100モル0 /0、より好ましくは 5 0〜; 100モル%、特に好ましくは 80〜; 100モル%を含むことができる。
[0080] 一般式(2)で表されるトリアミンを除くジァミンとしては、 p フエ二レンジァミン、 m— フエ二レンジァミン、 2 メチルー p—フエ二レンジァミン、 3 メチルー m—フエ二レン ジァミン、 3, 3'ージクロ口べンジジン、 3, 3' ジメチノレべンジジン、 2, 2' ジメチノレ ベンジジン、 3, 3'ージメトキシベンジジン、 3, 3'ージアミノジフエニルエーテル、 3, 4'ージアミノジフエニルエーテル、 4, 4'ージアミノジフエニルエーテル、 3, 3'ージァ ミノジフエニルスルフイド、 3, 4'—ジアミノジフエニルスルフイド、 4, 4'ージアミノジフ ェニルスルフイド、 3, 3'ージアミノジフエニルスルホン、 3, 4'—ジアミノジフエニルス ノレホン、 4, 4'ージアミノジフエニルスルホン、 3, 3'ージァミノべンゾフエノン、 3, 3' ージアミノー 4, 4'ージクロ口べンゾフエノン、 3, 3,ージアミノー 4, 4'ージメトキシべ ンゾフエノン、 3, 3'—ジアミノジフエニルメタン、 3, 4'—ジアミノジフエニルメタン、 4, 4' ジアミノジフエニルメタン、 2, 2 ビス(3 ァミノフエ二ノレ)プロパン、 2, 2 ビス( 4 ァミノフエ二ノレ)プロノ ン、 2, 2 ビス(3 ァミノフエ二ノレ)一 1, 1, 1, 3, 3, 3— へキサフルォロプロパン、 2, 2 ビス(4 ァミノフエ二ル)一 1, 1, 1, 3, 3, 3 へキ サフルォロプロパン、 3, 3,ージアミノジフエニルスルホキシド、 3, 4'—ジアミノジフエ ニルスルホキシド、 4, 4'ージアミノジフエニルスルホキシド、 1, 3—ビス(3—アミノフ ェニノレ)ベンゼン、 1, 3—ビス(4—ァミノフエ二ノレ)ベンゼン、 1, 4—ビス(3—アミノフ ェニノレ)ベンゼン、 1, 4—ビス(4—ァミノフエ二ノレ)ベンゼン、 1, 3—ビス(4—アミノフ エノキシ)ベンゼン、 1, 4—ビス(3—アミノフエノキシ)ベンゼン、 1, 4—ビス(4—ァミノ フエノキシ)ベンゼン、 1, 3—ビス(3—アミノフエノキシ) 4—トリフルォロメチルベン ゼン、 3, 3,一ジァミノ一 4— (4—フエ二ノレ)フエノキシベンゾフエノン、 3, 3,一ジアミ ノ一 4、 4'—ジ(4—フエユルフェノキシ)ベンゾフエノン、 1, 3—ビス(3—ァミノフエ二 ルスルフイド)ベンゼン、 1 , 3—ビス(4—ァミノフエニルスルフイド)ベンゼン、 1 , 4—ビ ス(4—ァミノフエニルスルフイド)ベンゼン、 1 , 3—ビス(3—ァミノフエニルスルホン) ベンゼン、 1 , 3—ビス(4—ァミノフエニルスルホン)ベンゼン、 1 , 4—ビス(4—アミノフ ェニルスルホン)ベンゼン、 1 , 3—ビス〔2— (4—ァミノフエニル)イソプロピル〕ベンゼ ン、 1 , 4 ビス〔2—(3 ァミノフエニル)イソプロピル〕ベンゼン、 1 , 4 ビス〔2—(4 —ァミノフエニル)イソプロピル〕ベンゼン、 3, 3, 一ビス(3—アミノフエノキシ)ビフエ二 ノレ、 3, 3,一ビス(4—アミノフエノキシ)ビフエニル、 4, 4'—ビス(3—アミノフエノキシ) ビフエニル、 4, 4,一ビス(4—アミノフエノキシ)ビフエニル、ビス〔3— (3—アミノフエノ キシ)フエニル〕エーテル、ビス〔3—(4 アミノフエノキシ)フエニル〕エーテル、ビス〔4 - (3—アミノフエノキシ)フエニル〕エーテル、ビス〔4— (4—アミノフエノキシ)フエニル 〕エーテル、ビス〔3— (3—アミノフエノキシ)フエニル〕ケトン、ビス〔3— (4—ァミノフエ ノキシ)フエニル〕ケトン、ビス〔4一(3—アミノフエノキシ)フエニル〕ケトン、ビス〔4一(4 —アミノフエノキシ)フエニル〕ケトン、ビス〔3— (3—アミノフエノキシ)フエニル〕スルフィ ド、ビス〔3— (4—アミノフエノキシ)フエニル〕スルフイド、ビス〔4— (3—ァミノフエノキ シ)フエニル〕スルフイド、ビス〔4一(4 アミノフエノキシ)フエニル〕スルフイド、ビス〔3 - (3—アミノフエノキシ)フエ二ノレ〕スルホン、ビス〔3— (4—アミノフエノキシ)フエニル 〕スルホン、ビス〔4— (3—アミノフエノキシ)フエ二ノレ〕スルホン、ビス〔4— (4—アミノフ エノキシ)フエ二ノレ〕スルホン、ビス〔3—(3—アミノフエノキシ)フエ二ノレ〕メタン、ビス〔3 - (4—アミノフエノキシ)フエニル〕メタン、ビス〔4— (3—アミノフエノキシ)フエニル〕メ タン、ビス〔4一(4 アミノフエノキシ)フエ二ノレ〕メタン、 2, 2 ビス〔3—(3 ァミノフエ ノキシ)フエ二ノレ〕プロパン、 2, 2 ビス〔3—(4 アミノフエノキシ)フエ二ノレ〕プロパン 、 2, 2 ビス〔4一(3 アミノフエノキシ)フエ二ノレ〕プロパン、 2, 2 ビス〔4一(4 アミ ノフエノキシ)フエ二ノレ〕プロパン、 2, 2 ビス〔3— (3 アミノフエノキシ)フエ二ル〕一 1 , 1 , 1 , 3, 3, 3 へキサフルォロプロパン、 2, 2 ビス〔3— (4 アミノフエノキシ)フ ェニノレ〕一 1 , 1 , 1 , 3, 3, 3—へキサフノレオ口プロパン、 2, 2—ビス〔4— (3—アミノフ エノキシ)フエ二ル〕一 1 , 1 , 1 , 3, 3, 3 へキサフルォロプロパン、 2, 2 ビス〔4— ( 4—アミノフエノキシ)フエ二ル〕一 1 , 1 , 1 , 3, 3, 3—へキサフルォロプロパンなどの 芳香族ジァミンを挙げることができる。これらは単独でも、 2種以上混合しても用いるこ と力 Sできる。
[0081] ジァミンとしては、上記芳香族ジァミン以外に、脂肪族系、脂環式系、シロキサン含 有のジァミンを、本発明の特性を損なわない範囲で用いることができる。
[0082] テトラカルボン酸二無水物としては、ピロメリット酸二無水物、 3, 3 ' , 4, 4 'ービフエ ニルテトラカルボン酸二無水物、 2, 3, 3 ' , 4 '—ビフエニルテトラカルボン酸二無水 物、ォキシジフタル酸二無水物、ジフエニルスルホン— 3, 4, 3 ' , 4,ーテトラカルボン 酸二無水物、ビス(3, 4 ジカルボキシフヱニル)スルフイド二無水物、 2, 2 ビス(3 , 4ージカルボキシフエニル) 1 , 1 , 1 , 3, 3, 3—へキサフルォロプロパン二無水物 、 3, 3,, 4, 4 '一べンゾフエノンテトラカルボン酸二無水物、ビス(3, 4—ジカルボキ シフエニル)メタン二無水物、 2, 2 ビス(3, 4 ジカルボキシフエニル)プロパン二 無水物、 p フエ二レンビス(トリメリット酸モノエステル酸無水物)、 p ビフヱ二レンビ ス(トリメリット酸モノエステル酸無水物)、 m—ターフェ二ルー 3, 4, 3 ' , 4 '—テトラ力 ルボン酸二無水物、 p ターフェ二ルー 3, 4, 3 ' , 4 '—テトラカルボン酸二無水物、 1 , 3—ビス(3, 4—ジカルボキシフエノキシ)ベンゼン二無水物、 1 , 4 ビス(3 , 4— ジカルボキシフエノキシ)ベンゼン二無水物、 1 , 4 ビス(3, 4—ジカルボキシフエノ キシ)ビフエニルニ無水物、 2, 2 ビス〔(3, 4 ジカルボキシフエノキシ)フエ二ノレ〕プ 口パンニ無水物、 2, 3, 6 , 7 ナフタレンテトラカルボン酸二無水物、 1 , 4, 5, 8— ナフタレンテトラカルボン酸二無水物などの芳香族テトラカルボン酸二無水物を挙げ ること力 Sでさる。これらは単独であ、 2種以上混合してあ用いること力 Sでさる。
[0083] テトラカルボン酸二無水物としては、上記の芳香族テトラカルボン酸二無水物以外 に、脂肪族や脂環式或いはシロキサン含有のテトラカルボン酸二無水物を、本発明 の特性を損なわな!/、範囲で用いることができる。
[0084] 次に、本発明の各態様において使用される一般式(1一;!)〜(1 4)化合物の説 明と各態様における末端基修飾多分岐ポリイミドの製造方法について説明する。
[0085] 本発明の第 1の態様において、一般式(1 1 )で表される含窒素複素環基を有す る化合物は、分子内に 1個のアミノ基と少なくとも 1個の含窒素複素環基を有する化 合物で、本発明で用いるテトラカルボン酸二無水物と反応できるアミノ基を有する化 合物である。 [0086] H N-X-R1 (1 - 1)
2
(一般式(1 1)において、 Xは直接結合、又は、炭素数 1 3のアルキレン基を示す R1は、置換基群 αより選択される任意の基で置換された含窒素複素環基を有する 1価の残基を示し、置換基群 αは、水素原子、ハロゲン原子、水酸基、ニトロ基、カル ボン酸基及びその塩、スルホン酸基及びその塩、エステル基、アミド基、シァノ基、ァ ルキル基、アルコキシ基、又は、ァリール基を示す。)
[0087] 一般式(1 1)において、 R1は、少なくとも 1個の含窒素複素環式基を有する 1価の 残基であり、置換基群 αより選択される任意の基で置換された、環を構成するへテロ 原子として窒素原子以外に硫黄原子及び酸素原子を含んでも良い、 5ないし 14員環 (単環、 2環又は 3環式)の芳香族複素環式基、 5ないし 10員環の非芳香族複素環式 基などが挙げられる。好ましくは、 5ないし 14員環の芳香族複素環式基、特に好まし くは、無機化合物と効率良く複合化できるので、ピリジル基が挙げられる。具体的に は、例えばピリジル、ヒドロキシピリジル、ピリジンカルボン酸アミド、ピラジュル、ピリミ ジニル、キノリル、イソキノリル、ビビリジル、フエナントリル、ォキサゾリル、ベンゾォキ サゾリル、イソキサゾリル、チアゾリル、イソチアゾリル、ベンゾチアゾリル、イミダゾリル 、ベンゾイミダゾリル、ピロリル、ピラゾリル、トリァゾリル、テトラゾリル、ピリダジニル、ィ ンドリルなどの芳香族複素環式基などが挙げられる。また、例えばピロリジニル、ォキ サゾリジニル、イミダゾリニノレ、ピペリジニル、ピぺラジュル、モノレホリニノレ、チオモルホ リニルなどの非芳香族複素環式基などが挙げられる。これらは単独で用いても良いし 、または 2種類以上を組み合わせて使用しても良い。
[0088] 一般式(1 1)において、 Xは直接結合、又は炭素数 1 3のアルキレン基、例えば
-CH -CH CH -CH CH CH 又は、 CH (CH ) CH—を示す
2 2 2 2 2 2 3 2
[0089] 一般式(1 1)において、置換基群 αのアルキル基、アルコキシ基、又は、ァリール 基は、置換基を有することもできるアルキル基(特に炭素数 1 2 3 4、又は、 5のァ ルキル基)、アルコキシ基(特に炭素数 1 2 3 4、又は、 5のアルコキシ基)、又は、 ァリール基(特に炭素数 6 7 8 9、又は、 10のァリール基)を挙げることができる。
[0090] 一般式(1 1)で表される含窒素複素環基を有する化合物の具体例としては、アミ ノビリジン、 (アミノメチル)ピリジン、 (アミノエチル)ピリジン、 (ァミノプロピル)ピリジン、 アミノヒドロキシピリジン、アミノクロロピリジン、アミノブロモピリジン、アミノョードピリジ ン、 ミノ二: πチンアミド'、 ミノビラジン、 ミノピリミジン、 ミノキノリン、 ミノイソキノリ ン、アミノビピリジル、ァミノフエナント口リン、アミノビラゾール、ァミノイミダゾール、アミ ノベンズイミダゾールなどを挙げることができる。
[0091] 末端変性多分岐ポリイミドの製造法の一例を示すと、
1)テトラカルボン酸二無水物及びトリアミンを含むジァミンとを反応させてポリアミック 酸を製造し、その後ポリアミック酸と一般式(1 1)化合物とを反応させて、末端変性 のァミック酸を製造し、化学的又は熱的に閉環させてイミド化して、末端変性多分岐 ポリイミドを得る方法、
2)テトラカルボン酸二無水物と、トリアミンを含むジァミンと、一般式(1 1)化合物と を反応させて末端変性のァミック酸を製造し、化学的又は熱的に閉環させてイミド化 して、末端変性多分岐ポリイミドを得る方法、
3)テトラカルボン酸二無水物及びトリアミンを含むジァミンとを化学的又は熱的に閉 環させてイミド化して、ポリイミドを製造し、その後イミドと一般式(1— 1)化合物とを反 応させて、末端ァミック酸のポリイミドを製造し、さらに化学的又は熱的に閉環させて イミド化して、末端変性多分岐ポリイミドを得る方法、
4)テトラカルボン酸二無水物及びトリアミンを含むジァミンとを化学的又は熱的に閉 環させてイミド化して、ポリイミドを製造し、その後イミドと一般式(1— 1)化合物とを化 学的又は熱的に閉環させてイミド化して、末端変性多分岐ポリイミドを得る方法、
5)テトラカルボン酸二無水物と、トリアミンを含むジァミンと、一般式(1 1)化合物と を反応させて、末端変性のァミック酸を製造し、化学的又は熱的に閉環させてイミド 化して、末端変性多分岐ポリイミドを得る方法、
6)テトラカルボン酸二無水物と、トリアミンを含むジァミンと、一般式(1 1)化合物と を化学的又は熱的に閉環させてイミド化して、末端変性多分岐ポリイミドを得る方法、 などを挙げること力 Sできる。
[0092] ジァミンが 100モル%トリァミンの場合には、 3/2以上のモル比(テトラカルボン酸 二無水物/トリァミンのモル比)のテトラカルボン酸二無水物及びトリァミンで行う。 [0093] ポリアミック酸は、公知の方法で製造することができ、例えば、テトラカルボン酸二無 水物及びトリアミンを含むジァミン、又はテトラカルボン酸二無水物、トリアミンを含む ジァミン及び一般式(1 1)化合物とを、有機極性溶媒中で、約 100°C以下、好まし くは 80°C以下、特に 0〜50°Cの反応温度で反応させて製造することができる。
[0094] 反応は、窒素、アルゴン等の不活性ガス中で行わせることが好ましいが、その他の 条件下でも用いることができる。
[0095] 末端変性多分岐ポリイミドは、ポリイミドを合成する公知の方法で製造することがで き、例えば、
1)テトラカルボン酸二無水物及びトリアミンを含むジァミン、又はテトラカルボン酸二 無水物、トリアミンを含むジァミン及び一般式(1 1)化合物とを、有機極性溶媒中で 、約 100°C以下、好ましくは 80°C以下、特に 0〜50°Cの反応温度で反応させてポリ ァミック酸を製造し、約 0〜; 140°Cの低温で酸無水物とァミンなどの脱水剤と触媒のィ ミド化剤を用いて化学的に閉環してイミド化する方法力、、あるいは、 140°C〜250°C に加熱して、必要に応じて共沸剤などを加えて、脱水'環化させてイミド化する方法、
2)テトラカルボン酸二無水物及びトリアミンを含むジァミン、又はテトラカルボン酸二 無水物、トリアミンを含むジァミン及び一般式(1 1)化合物とを、有機極性溶媒中で 、 140°C〜250°Cに加熱して、重合、脱水、環化させてイミド化する方法、 又は
3)テトラカルボン酸二無水物及びトリアミンを含むジァミン、又はテトラカルボン酸二 無水物、トリアミンを含むジァミン及び一般式(1 1)化合物とを、有機極性溶媒中で 、約 100°C以下、好ましくは 80°C以下、特に 0〜50°Cの反応温度で反応させてポリ ァミック酸を製造し、ポリアミック酸を気体中で 150°C以上、好ましくは 180〜450°C の温度に加熱する方法、
などにより製造することができる。
[0096] ポリイミドを合成した後に、貧溶媒で再沈させて乾燥し、他の可溶な有機極性溶媒 へ再投入して溶解させて溶液として用いることも可能である。
[0097] 反応は、窒素、アルゴン等の不活性ガス中で行わせることが好ましいが、その他の 条件下でも用いることができる。 [0098] テトラカルボン酸二無水物及びトリアミンを含むジァミンは、ポリアミック酸又はポリィ ミドの合成の時、さらに一般式(1 1)化合物を伴うポリアミック酸又はポリイミドの合 成の時、それらを一度に溶媒に加えて重合反応を行うとゲル化を起こす場合がある ので、
1)テトラカルボン酸二無水物を含む溶媒中に、粉体状でも溶媒に溶解していても良 いトリアミンを含むジァミンを一度に或いは徐々に、或いは数回に分けて逐次に加え る方法、
2)トリアミンを含む溶媒中に、粉体状でも溶媒に溶解していても良いテトラカルボン酸 二無水物を一度に或いは徐々に、或いは数回に分けて逐次に加える方法、 などで行うことが好ましい。
[0099] 一般式(1 1)化合物は、テトラカルボン酸二無水物及びトリアミンを含むジァミン の反応により得られる多分岐ポリアミック酸を含む溶液に添加する際に、そのままの 状態で加えても良いし、反応溶媒等の有機溶媒に溶解して加えても良い。
[0100] ポリアミック酸及びポリイミドに一般式(1 1)化合物を反応させる場合は、上記のポ リアミック酸又はポリイミドの方法と同様にして行うことができる。
[0101] 一般式(1 1)化合物によるポリアミック酸又はポリイミドに存在する酸無水物末端 或いはカルボン酸末端の末端変性は、用いる用途又は目的に応じて適宜選択して 行えばよぐ例えば一般式(1 1)化合物が、ポリアミック酸又はポリイミドに存在する 酸無水物末端数及び/又はカルボン酸末端数の半数に対して、好ましくは 0.;!〜 2 0当量、好ましくは 0. 2〜; 10当量、であり、さらに好ましくは 0. 5〜5当量、より好まし くは 0. 8〜3当量、特に好ましくは 1〜2当量であり、 0. 1当量以下では、無機化合物 との複合化の効率が低くなり好ましくないと考える。
[0102] ポリアミック酸を、脱水剤と触媒とを用いて化学的にイミド化する場合について、脱 水剤としては無水酢酸、無水プロピオン酸等の有機酸無水物を利用し、触媒として、 ピリジン、ピコリン、トリェチルァミン等のアミンを併用して用いることができる。脱水剤 及び触媒は、それぞれ 1種類でも良いし、 2種類以上組み合わせて使用しても良い。
[0103] ポリアミック酸及びポリイミドを製造する際のポリマー濃度は、特に規定されるもので はないが、 1〜50質量%が好ましぐ更に 2〜30質量%、特に 2〜5質量%が好適で ある。
[0104] ポリアミック酸を気体中で焼成することでイミド化する場合には、イミド化を行うため の焼成温度はイミド化反応が進行し、且つ高分子の劣化が生じなレ、範囲である 200 〜600°Cが好ましぐ更に好ましくは 300から 450°Cである。加熱時間は特に限定は 無いが、 30分〜 10時間が好ましい。焼成雰囲気には特に限定はなぐ大気中でも還 元性ガス存在下でも不活性ガス存在下でも良!/、が、経済的に有利であることから大 気中で行うことが好ましい。焼成を行う装置に制限は無いが、管状炉ゃマツフル炉を 好適に用いることができる。
[0105] ポリアミック酸、ポリイミド又は一般式(1 1)化合物による末端変性の反応に用いる 有機極性溶媒としては、公知のポリァミック酸及び/又はポリイミドを溶解する有機極 性溶媒を使用することができ、ポリアミック酸及び/又はポリイミドの製造に用いられる 有機溶媒としては、例えば、 N, N ジメチルァセトアミド(DMAc)、 N, N ジェチ ノレァセトアミド、 N メチル 2—ピロリドン(NMP)、 N メチル一力プロラタタム、 N, N ジメチルホルムアミド、 N, N ジェチルホルムアミド、 1 , 3 ジメチル— 2 イミ ダゾリジノン、へキサメチルホスホラミド、フエノーノレ、クレゾ一ノレ、 o クロルフエノール 、 p—クロルフエノーノレ、ジメチルスルホキシド、ジメチルスルホン、スルホラン、 γ—ブ チロラタトン、ジグライム、ジメチルトリグライム、ジェチルトリグライム、テトラヒドロフラン 、ジォキサンなどの非プロトン性極性溶媒を挙げることができ、好ましくは入手が容易 で高分子量のポリアミック酸を製造できることから DMAc及び ΝΜΡである。これらの 溶媒は単独で用いても良レ、し、 2種類以上を混合したものを用いても良レ、。
[0106] トリアミンを含むジァミンとして、ジァミン中トリァミン力 モル0 /0の場合には、テトラ力 ルボン酸二無水物とトリアミンを含むジァミンの反応により製造される多分岐ポリアミツ ク酸は、その原料であるテトラカルボン酸二無水物の未反応酸無水物基及び/又は カルボン酸基をポリアミック酸の末端基に有する構造をとることを特徴とすることから、 用いるテトラカルボン酸二無水物とトリアミンを含むジァミンとのモル比(テトラカルボ ン酸ニ無水物/トリアミンを含むジァミン)は、(2 + X/100) /2より大きい必要があ り、好ましくはモル比が、 (5x (2 + X/100) + l) /10〜3/l、より好ましくは、 ( (2 + Χ/100) + 1) /2〜3/1の範囲が好ましい。 [0107] トリアミンを含むジァミンとして、ジァミン中トリァミンが 100モル%の場合には、テトラ カルボン酸二無水物とトリァミンの反応により製造される多分岐ポリアミック酸は、その 原料であるテトラカルボン酸二無水物の未反応酸無水物基及び/又はカルボン酸 基をポリアミック酸の末端基に有する構造をとることを特徴とすることから、用いるテト ラカルボン酸二無水物とトリァミンのモル比(テトラカルボン酸二無水物/トリァミン) は、 3/2より大きい必要がある。好ましくはモル比力 8/5〜3/1、より好ましくは、 2/;!〜 3/1、特に好ましくは、多分岐ポリアミック酸中の酸無水物基及び/又は力 ルボン酸基の量が多ぐ一般式(1 1)で表される含硫黄基を有する化合物と反応さ せた後に製造される多分岐ポリイミド中の複素環式基の量が多くなるために多分岐ポ リイミドが無機化合物とを効率良く複合化できるので 2/1の場合である。テトラカルボ ン酸ニ無水物/トリァミンのモル比が 8/5より小さい場合には多分岐ポリアミック酸 はポリマー中の酸無水物基及び/又はカルボン酸基の量が少なくなり、一般式(1 1)化合物と反応させた後に製造される多分岐ポリイミド中の複素環式基の量が少な くなるために、無機化合物との複合化が不十分となる場合がある問題がある。また、 テトラカルボン酸二無水物/トリァミンのモル比が 3/1より大きい場合にはポリアミツ ク酸の分子量は低いものとなり、製造される末端変性多分岐ポリイミドの耐熱性等の 物性が低下する場合があるので好ましくな!/、。
[0108] 次に、本発明の第 2の態様において、一般式(1— 2)で表される含硫黄基を有する 化合物は、分子内に 1個のアミノ基と少なくとも 1個の含硫黄基を有する化合物で、本 発明で用いるテトラカルボン酸二無水物と反応できるアミノ基を有する化合物である。
[0109] H N-X-R1 (1 - 2)
2
(一般式(1 2)において、 Xは直接結合、又は炭素数 1〜3のアルキレン基を示す。 R1は、置換基群 αより選択される任意の基で置換された含硫黄複素環基、もしくは 分子内にチオール,もしくはチォエーテル基を有するァリール基を示し、置換基群 α は、水素原子、ハロゲン原子、水酸基、ニトロ基、カルボン酸基及びその塩、スルホン 酸基及びその塩、エステル基、アミド基、シァノ基、アルキル基、アルコキシ基、又は 、ァリール基を示す。)
[0110] 一般式(1 2)において、 R1は、少なくとも 1個の含硫黄基を有する 1価の残基であ り、置換基群 αより選択される任意の基で置換された、 5ないし 13員環(単環、 2環又 は 3環式)の含硫黄複素環式基、分子内にチオール,もしくはチォエーテル基を有す るァリール基などが挙げられる。好ましくは、 5ないし 13員環の含硫黄芳香族複素環 式基、分子内にチォエーテル基を有するァリール基、特に好ましくは、無機化合物と 効率良く複合化できるので、チォフェンーィル基、メチルチオフエニル基、フエニルチ オフェニル基が挙げられる。 5ないし 13員環の含硫黄複素環式基の具体例としては 、チォフェン ィル、ベンゾチォフェン ィル、ジベンゾチォフェンーィルなどが挙げ られる。また、分子内にチオール,もしくはチォエーテル基を有するァリール基の具 体例としては、チオールフエニル、メチルチオフエニル、ェチルチオフエニル、プロピ ノレチォフエ二ノレ、ブチノレチォフエニノレ、ペンチノレチォフエニノレ、フエニノレチォフエ二 ノレ、チアンスレニル、フエノキサチイニル、フエノチアジニル、チォキサントニルなどが 挙げられる。これらは単独で用いても良いし、または 2種類以上を組み合わせて使用 しても良い。
[0111] 一般式(1 2)において、 Xは直接結合、又は炭素数 1 3のアルキレン基、例えば
-CH -CH CH -CH CH CH 又は、 CH (CH ) CH—を示す
2 2 2 2 2 2 3 2
。一般式(1 2)において、置換基群 αのアルキル基、アルコキシ基、又は、ァリール 基は、置換基を有することもできるアルキル基(特に炭素数 1 2 3 4、又は、 5のァ ルキル基)、アルコキシ基(特に炭素数 1 2 3 4、又は、 5のアルコキシ基)、又は、 ァリール基(特に炭素数 6 7 8 9、又は、 10のァリール基)を挙げることが出来る。
[0112] 一般式(1 2)で表される含硫黄基を有する化合物の具体例としては、(アミノメチ ル)チォフェン、メチルチオァニリン、フエ二ルチオァニリンなどを挙げることができる。
[0113] 第 2の態様において、末端変性多分岐ポリイミドを製造するには、上述の第 1の態 様にぉレ、て、一般式(1 1)化合物に代えて一般式(1 2)化合物を使用することで 、まったく同様にして合成することができる。
[0114] 本発明の第 3の態様において、一般式(1 3)で表される含窒素複素環基を有す る化合物は、分子内に 1個の酸無水物基と少なくとも 1個の含窒素複素環基を有する 化合物で、本発明のトリアミンを含むジァミンと反応できる酸無水物基を有する化合 物である。 [0115] [化 15]
Figure imgf000030_0001
(一般式(1 3)において、 Rは置換基群 αより選択される任意の基で置換された含 窒素複素環基を示し、置換基群 αは、水素原子、ハロゲン原子、水酸基、ニトロ基、 カルボン酸基及びその塩、スルホン酸基及びその塩、エステル基、アミド基、シァノ基 、アルキル基、アルコキシ基、又は、ァリール基を示す。)
[0116] 一般式(1 3)において、 Rは、少なくとも 1個の含窒素複素環式基を有する 2価の 残基であり、置換基群 αより選択される任意の基で置換された、環を構成するへテロ 原子として窒素原子以外に硫黄原子及び酸素原子を含んでも良い、 5ないし 14員環 (単環、 2環又は 3環式)の芳香族複素環式基、 5ないし 10員環非芳香族複素環式 基などが挙げられる。好ましくは、 5ないし 14員環の芳香族複素環式基、特に好まし くは、無機化合物と効率良く複合化できるので、ピリジル基が挙げられる。具体的に は、例えばピリジル、ヒドロキシピリジル、ピリジンカルボン酸アミド、ピラジュル、ピリミ ジニル、キノリル、イソキノリル、ビビリジル、フエナントリル、ォキサゾリル、ベンゾォキ サゾリル、イソキサゾリル、チアゾリル、イソチアゾリル、ベンゾチアゾリル、イミダゾリル 、ベンゾイミダゾリル、ピロリル、ピラゾリル、トリァゾリル、テトラゾリル、ピリダジニル、ィ ンドリルなどの芳香族複素環式基などが挙げられる。また、例えばピロリジニル、ォキ サゾリジニル、イミダゾリニノレ、ピペリジニル、ピぺラジュル、モノレホリニノレ、チオモルホ リニルなどの非芳香族複素環式基などが挙げられる。これらは単独で用いても良いし 、または 2種類以上を組み合わせて使用しても良い。
[0117] 一般式(1 3)において、置換基群 αのアルキル基、アルコキシ基、又は、ァリール 基は、置換基を有することもできるアルキル基(特に炭素数 1、 2、 3、 4又は 5のアル キル基)、アルコキシ基(特に炭素数 1、 2、 3、 4又は 5のアルコキシ基)、又は、ァリー ル基(特に炭素数 6、 7、 8、 9又は 10のァリール基)を挙げることができる。
[0118] 一般式(1 3)で表される含窒素複素環基を有する化合物の具体例としては、ピリ ジンジカルボン酸無水物、ピラジンジカルボン酸無水物、ピリミジンジカルボン酸無水 物、キノリンジカルボン酸無水物、イソキノリンジカルボン酸無水物、イミダゾールジカ ノレボン酸無水物、ベンゾイミダゾールジカルボン酸無水物、ピロールジカルボン酸無 水物などを挙げることができる。
[0119] 第 3の態様における末端変性多分岐ポリイミドの製造法の一例を示すと、
1)テトラカルボン酸二無水物及びトリアミンを含むジァミンとを反応させてポリアミック 酸を製造し、その後ポリアミック酸と一般式(1 3)化合物とを反応させて、末端変性 のァミック酸を製造し、化学的又は熱的に閉環させてイミド化して、末端変性多分岐 ポリイミドを得る方法、
2)テトラカルボン酸二無水物と、トリアミンを含むジァミンと、一般式(1 3)化合物と を反応させて末端変性のァミック酸を製造し、化学的又は熱的に閉環させてイミド化 して、末端変性多分岐ポリイミドを得る方法、
3)テトラカルボン酸二無水物及びトリアミンを含むジァミンとを化学的又は熱的に閉 環させてイミド化して、ポリイミドを製造し、その後イミドと一般式(1 3)化合物とを反 応させて、末端ァミック酸のポリイミドを製造し、さらに化学的又は熱的に閉環させて イミド化して、末端変性多分岐ポリイミドを得る方法、
4)テトラカルボン酸二無水物及びトリアミンを含むジァミンとを化学的又は熱的に閉 環させてイミド化して、ポリイミドを製造し、その後イミドと一般式(1 3)化合物とを化 学的又は熱的に閉環させてイミド化して、末端変性多分岐ポリイミドを得る方法、
5)テトラカルボン酸二無水物と、トリアミンを含むジァミンと、一般式(1 3)化合物と を反応させて、末端変性のァミック酸を製造し、化学的又は熱的に閉環させてイミド 化して、末端変性多分岐ポリイミドを得る方法、
6)テトラカルボン酸二無水物と、トリアミンを含むジァミンと、一般式(1 3)で表され る含窒素複素環基を有する化合物とを化学的又は熱的に閉環させてイミド化して、 末端変性多分岐ポリイミドを得る方法、
などを挙げること力 Sできる。
[0120] 第 3の態様における末端変性多分岐ポリイミドの製造法の別の一例を示すと、
1) 1/2以上から 3/2未満のモル比(テトラカルボン酸二無水物/トリァミンのモル 比)のテトラカルボン酸二無水物及びトリァミンとを反応させてポリアミック酸を製造し、 その後ポリアミック酸と一般式(1 3)化合物とを反応させて、末端変性のァミック酸 を製造し、化学的又は熱的に閉環させてイミド化して、末端変性多分岐ポリイミドを得 る方法、
2) 1/2以上から 3/2未満のモル比(テトラカルボン酸二無水物/トリァミンのモル 比)のテトラカルボン酸二無水物及びトリァミンと、一般式(1 3)で表される含窒素 複素環基を有する化合物とを反応させて末端変性のァミック酸を製造し、化学的又 は熱的に閉環させてイミド化して、末端変性多分岐ポリイミドを得る方法、
3) 1/2以上から 3/2未満のモル比(テトラカルボン酸二無水物/トリァミンのモル 比)のテトラカルボン酸二無水物及びトリァミンとを化学的又は熱的に閉環させてイミ ド化して、ポリイミドを製造し、その後イミドと一般式(1 3)化合物とを反応させて、末 端ァミック酸のポリイミドを製造し、さらに化学的又は熱的に閉環させてイミド化して、 末端変性多分岐ポリイミドを得る方法、
4) 1/2以上から 3/2未満のモル比(テトラカルボン酸二無水物/トリァミンのモル 比)のテトラカルボン酸二無水物及びトリァミンとを化学的又は熱的に閉環させてイミ ド化して、ポリイミドを製造し、その後イミドと一般式(1 3)化合物とを化学的又は熱 的に閉環させてイミド化して、末端変性多分岐ポリイミドを得る方法、
5) 1/2以上から 3/2未満のモル比(テトラカルボン酸二無水物/トリァミンのモル 比)のテトラカルボン酸二無水物及びトリァミンと、一般式(1 3)化合物とを反応させ て、末端変性のァミック酸を製造し、化学的又は熱的に閉環させてイミド化して、末端 変性多分岐ポリイミドを得る方法、
6) 1/2以上から 3/2未満のモル比(テトラカルボン酸二無水物/トリァミンのモル 比)のテトラカルボン酸二無水物及びトリァミンと、一般式(1 3)化合物とを化学的 又は熱的に閉環させてイミド化して、末端変性多分岐ポリイミドを得る方法、 などを挙げること力 Sできる。
ポリアミック酸は、公知の方法で製造することができ、例えば、テトラカルボン酸二無 水物及びトリアミンを含むジァミン、又はテトラカルボン酸二無水物、トリアミンを含む ジァミン及び一般式( 1 3)で表される含窒素複素環基を有する化合物とを、有機極 性溶媒中で、約 100°C以下、好ましくは 80°C以下、特に 0〜50°Cの反応温度で反応 させて製造すること力 Sでさる。
[0122] 反応は、窒素、アルゴン等の不活性ガス中で行わせることが好ましいが、その他の 条件下でも用いることができる。
[0123] 末端変性多分岐ポリイミドは、ポリイミドを合成する公知の方法で製造することがで き、例えば、
1)テトラカルボン酸二無水物及びトリアミンを含むジァミン、又はテトラカルボン酸二 無水物、トリアミンを含むジァミン及び一般式(1 3)化合物とを、有機極性溶媒中で 、約 100°C以下、好ましくは 80°C以下、特に 0〜50°Cの反応温度で反応させてポリ ァミック酸を製造し、約 0〜; 140°Cの低温で酸無水物とァミンなどの脱水剤と触媒のィ ミド化剤を用いて化学的に閉環してイミド化する方法力、、あるいは、 140°C〜250°C に加熱して、必要に応じて共沸剤などを加えて、脱水'環化させてイミド化する方法、
2)テトラカルボン酸二無水物及びトリアミンを含むジァミン、又はテトラカルボン酸二 無水物、トリアミンを含むジァミン及び一般式(1 3)化合物とを、有機極性溶媒中で 、 140°C〜250°Cに加熱して、重合、脱水、環化させてイミド化する方法、 又は
3)テトラカルボン酸二無水物及びトリアミンを含むジァミン、又はテトラカルボン酸二 無水物、トリアミンを含むジァミン及び一般式(1 3)化合物とを、有機極性溶媒中で 、約 100°C以下、好ましくは 80°C以下、特に 0〜50°Cの反応温度で反応させてポリ ァミック酸を製造し、ポリアミック酸を気体中で 150°C以上、好ましくは 180〜450°C の温度に加熱する方法、
などにより製造することができる。
[0124] ポリイミドを合成した後に、貧溶媒で再沈させて乾燥し、他の可溶な有機極性溶媒 へ再投入して溶解させて溶液として用いることも可能である。
[0125] 反応は、窒素、アルゴン等の不活性ガス中で行わせることが好ましいが、その他の 条件下でも用いることができる。
[0126] ジァミンが 100モル%トリァミンの場合には、 1/2以上から 3/2未満のモル比(テト ラカルボン酸二無水物/トリァミンのモル比)のテトラカルボン酸二無水物及びトリアミ ンで fiう。
[0127] テトラカルボン酸二無水物及びトリアミンを含むジァミンは、ポリアミック酸又はポリィ ミドの合成の時、さらに一般式(1 3)化合物を伴うポリアミック酸又はポリイミドの合 成の時、それらを一度に溶媒に加えて重合反応を行うとゲル化を起こす場合がある ので、
1)テトラカルボン酸二無水物を含む溶媒中に、粉体状でも溶媒に溶解していても良 いトリアミンを含むジァミンを一度に或いは徐々に、或いは数回に分けて逐次に加え る方法、
2)トリアミンを含む溶媒中に、粉体状でも溶媒に溶解していても良いテトラカルボン酸 二無水物を一度に或いは徐々に、或いは数回に分けて逐次に加える方法、 などで行うことが好ましい。
[0128] ジァミンが 100モル%トリァミンの場合には、 1/2以上から 3/2未満のモル比(テト ラカルボン酸二無水物/トリァミンのモル比)のテトラカルボン酸二無水物及びトリアミ ンで fiう。
[0129] 一般式(1 3)化合物は、テトラカルボン酸二無水物及びトリアミンを含むジァミン の反応により得られる多分岐ポリアミック酸を含む溶液に添加する際に、そのままの 状態で加えても良いし、反応溶媒等の有機溶媒に溶解して加えても良い。
[0130] ポリアミック酸及びポリイミドに一般式(1 3)化合物を反応させる場合は、上記のポ リアミック酸又はポリイミドの方法と同様にして行うことができる。
[0131] 一般式(1 3)化合物によるポリアミック酸又はポリイミドに存在するァミノ基末端の 末端変性は、用いる用途又は目的に応じて適宜選択して行えばよぐ例えば一般式 (1 3)化合物がポリアミック酸又はポリイミドに存在するァミノ基末端数に対して好ま しくは 0.;!〜 20当量、好ましくは 0. 2〜; 10当量、であり、さらに好ましくは 0. 5〜5当 量、より好ましくは 0. 8〜3当量、特に好ましくは 1〜2当量であり、 0. 1当量以下では 、無機化合物との複合化の効率が低くなり好ましくないと考える。
[0132] ポリアミック酸を、脱水剤と触媒とを用いて化学的にイミド化する場合について、脱 水剤としては無水酢酸、無水プロピオン酸等の有機酸無水物を利用し、触媒として、 ピリジン、ピコリン、トリェチルァミン等のアミンを併用して用いることができる。脱水剤 及び触媒は、それぞれ 1種類でも良いし、 2種類以上組み合わせて使用しても良い。
[0133] ポリアミック酸及びポリイミドを製造する際のポリマー濃度は、特に規定されるもので はないが、 1〜50質量%が好ましぐ更に 2〜30質量%、特に 2〜5質量%が好適で ある。
[0134] ポリアミック酸を気体中で焼成することでイミド化する場合には、イミド化を行うため の焼成温度はイミド化反応が進行し、且つ高分子の劣化が生じなレ、範囲である 200 〜600°Cが好ましぐ更に好ましくは 300から 450°Cである。加熱時間は特に限定は 無いが、 30分〜 10時間が好ましい。焼成雰囲気には特に限定はなぐ大気中でも還 元性ガス存在下でも不活性ガス存在下でも良!/、が、経済的に有利であることから大 気中で行うことが好ましい。焼成を行う装置に制限は無いが、管状炉ゃマツフル炉を 好適に用いることができる。
[0135] ポリアミック酸、ポリイミド又は一般式(1 3)で表される含窒素複素環基を有する化 合物による末端変性の反応に用いる有機極性溶媒としては、公知のポリアミック酸及 び/又はポリイミドを溶解する有機極性溶媒を使用することができ、ポリアミック酸及 び/又はポリイミドの製造に用いられる有機溶媒としては、例えば、 N, N ジメチノレ ァセトアミド(DMAc)、 N, N ジェチルァセトアミド、 N メチルー 2—ピロリドン(N MP)、 N メチルー力プロラタタム、 N, N ジメチルホルムアミド、 N, N ジェチノレ ホルムアミド、 1 , 3 ジメチルー 2 イミダゾリジノン、へキサメチルホスホラミド、フエノ 一ノレ、クレゾ一ノレ、 o クロルフエノーノレ、 p—クロルフエノーノレ、ジメチルスルホキシド 、ジメチルスルホン、スルホラン、 γ ブチロラタトン、ジグライム、ジメチルトリグライム 、ジェチルトリグライム、テトラヒドロフラン、ジォキサンなどの非プロトン性極性溶媒を 挙げることができ、好ましくは入手が容易で高分子量のポリアミック酸を製造できるこ と力も DMAc及び ΝΜΡである。これらの溶媒は単独で用いても良いし、 2種類以上 を混合したものを用いても良レ、。
[0136] トリアミンを含むジァミンとして、ジァミン中トリァミン力 モル0 /0の場合には、テトラ力 ルボン酸二無水物とトリアミンを含むジァミンの反応により製造される多分岐ポリアミツ ク酸は、用いるテトラカルボン酸二無水物とトリアミンを含むジァミンのモル比(テトラ力 ルボン酸二無水物/トリアミンを含むジァミン)は、(2 + X/100) /2未満である必 要がある。好ましくはモル比力 S、 1/2以上から(2 + X/100) /2未満、より好ましく は l/2〜(5x (2 + X/100)— 1) /10、更に好ましくは、 1/2〜((2 + X/100)— 1) /2の場合である。
[0137] ジァミンとして、一般式(2)で表される芳香族トリアミンを 100モル%用いる場合には 、本発明のポリイミド前駆体であるポリアミック酸を製造する際に用いるテトラカルボン 酸二無水物と芳香族トリァミンのモル比(テトラカルボン酸二無水物/トリァミン)は、 3 /2未満である必要がある。好ましくはモル比が 1/2以上から 3/2未満、より好まし くは 1/2〜7/5、更に好ましくは、 1/2〜; 1/1、特に好ましくは、ポリイミドが無機 化合物とを効率良く複合化できるので 1/1の場合である。テトラカルボン酸二無水 物/トリァミンのモル比が 7/5より大きい場合には多分岐ポリアミック酸はポリマー中 のトリァミンの量が少なくなり、一般式(1 3)で表される含窒素複素環基を有する化 合物と反応させた後に製造される多分岐ポリイミド中の複素環式基の量が少なくなる ために、無機化合物との複合化が不十分となる場合がある問題がある。また、テトラ力 ルボン酸二無水物/トリァミンのモル比が 1/2より小さい場合にはポリアミック酸の分 子量は低レ、ものとなり、製造される末端変性多分岐ポリイミドの耐熱性等の物性が低 下する場合があるので好ましくなレ、。
[0138] 本発明の第 4の態様において、一般式(1 4)で表される芳香族 o ヒドロキシアル デヒドとして、 ί列えば'サリチノレアノレデヒド、 2, 3 ジヒドロキシベンズァノレデヒド、 2, 6 ージヒドロキシベンズアルデヒド、 ο バニリン、 2 ヒドロキシー 4ーメトキシベンズァ ルデヒド、 2 ヒドロキシ一 5 メトキシベンズアルデヒド、 2 ヒドロキシ一 3 エトキシ ベンズアルデヒド、 2 ヒドキシー3 二トロべンズアルデヒド、 2 ヒドキシー5 二トロ ベンズアルデヒド、 3—イソプロピルサリチルアルデヒド、 3— sec ブチルサリチルァ ルデヒド、 3— t ブチルサリチルアルデヒド、 3— tーブチルー 5—クロ口サリチルアル デヒド、 5—ブロモー 3— t ブチルサリチルアルデヒド、 3— tーブチルー 5—メトキシ サリチノレアノレデヒド、 3— t ブチルー 5—メチルサリチルアルデヒド、 3, 5—ジー t— ブチルサリチルアルデヒド、 5—クロロー 3— i プロピルサリチルアルデヒド、 4 クロ ロー 3— i プロピルサリチルアルデヒド、 4 メチル 3— i プロピルサリチルアルデ ヒド、 5—メチルー 3— i—プロピルサリチルアルデヒド、 6—メチルー 3— i—プロピルサ リチノレアノレデヒド、 3—t ブチルー 4 メチルサリチルアルデヒド、 3—t ブチノレー 6 メチルサリチルアルデヒド、 3— sec ブチルー 4 メチルサリチルアルデヒド、 3— s ec ブチルー 5—メチノレサリチルアルデヒド、 3— sec ブチル 6—メチルサリチル アルデヒド等が挙げられる。特に安価で入手容易であることから、サリチルアルデヒド を用いることが好ましい。これらは単独で用いても良いし、または 2種類以上を組み合 わせて使用しても良い。
[0139] 一般式(1 4)において、アルキル基、アルコキシ基、又は、ァリール基は、置換基 を有することもできるアルキル基(特に炭素数 1、 2、 3、 4又は 5のアルキル基)、アル コキシ基(特に炭素数 1、 2、 3、 4又は 5のアルコキシ基)、又は、ァリール基(特に炭 素数 6、 7、 8、 9又は 10のァリール基)を挙げることが出来る。
[0140] 一般式(1 4)で表される芳香族 o ヒドロキシアルデヒドによるポリアミック酸又は ポリイミドに存在するァミノ基末端の末端基修飾は、用いる用途又は目的に応じて適 宜選択して行えばよぐ例えば芳香族 o ヒドロキシルアルデヒドは、テトラカルボン酸 二無水物とトリアミンを含むジァミンとを反応させて得られる多分岐ポリアミック酸のァ ミノ末端基数に対して、 0. ;!〜 10当量、好ましくは 0. 5〜8当量、さらに好ましくは 0. 8〜5当量、より好ましくは 1〜2当量、特に好ましくは 1〜; 1. 5当量用いることができ、 0. 1当量未満では、得られる末端基修飾多分岐ポリイミドの有機溶媒への溶解性が 低くなる場合があり、 10当量を超えると副反応が起こる場合があるので好ましくない。
[0141] ジァミンとしてトリアミンを 100モル%用いる場合には、一般式(1—4)で表される芳 香族 o ヒドロキシアルデヒドによるポリアミック酸又はポリイミドに存在するアミノ基末 端の末端基修飾は、用いる用途又は目的に応じて適宜選択して行えばよぐ例えば 芳香族 o ヒドロキシルアルデヒドは、数式(1)より計算されるテトラカルボン酸二無水 物とトリァミンの反応により得られる分岐状ポリアミック酸のアミノ末端基数に対して、 0 . 1〜; 10当量、好ましくは 0. 5〜8当量、さらに好ましくは 0. 8〜5当量、より好ましく は;!〜 2当量、特に好ましくは 1〜; 1. 5当量用いることができ、 0. 1当量未満では、得 られる末端基修飾多分岐ポリイミドの有機溶媒への溶解性が低くなる場合があり、 10 当量を超えると副反応が起こる場合があるので好ましくなレ、。
[0142] 数式(1) : ァミノ末端基数 = 3 Xトリァミンの当量数 2 Xテトラカルボン酸二無水物の当量 数
[0143] トリアミンを含むジァミンとして、ジァミン中トリァミン力 モル0 /0の場合には、テトラ力 ルボン酸二無水物とトリアミンを含むジァミンの反応により製造される多分岐ポリアミツ ク酸は、用いるテトラカルボン酸二無水物とトリアミンを含むジァミンのモル比(テトラ力 ルボン酸二無水物/トリアミンを含むジァミン)は、(2 + X/100) /2未満である必 要がある。好ましくはモル比力 S、 1/2以上から(2 + X/100) /2未満、より好ましく は l/2〜(5x (2 + X/100)— 1) /10、更に好ましくは、 1/2〜((2 + X/100)— 1) /2の場合である。
[0144] ジァミンとしてトリアミンを 100モル%用いる場合には、テトラカルボン酸二無水物と トリァミンの反応により製造される多分岐ポリアミック酸は、本発明のポリイミド前駆体 であるポリアミック酸を製造する際に用いるテトラカルボン酸二無水物と芳香族トリアミ ンのモル比(テトラカルボン酸二無水物/トリァミン)は、 3/2未満である必要がある 。好ましくはモル比が 1/2以上から 3/2未満、より好ましくは 1/2〜7/5、更に好 ましくは、 1/2〜; 1/1、特に好ましくは、多分岐ポリアミック酸中のトリァミンの量が多 ぐ一般式(1 4)で表される芳香族 o ヒドロキシルアルデヒドと反応させることで得 られる多分岐ポリイミド中のシッフ塩基基の量が多くなるために多分岐ポリイミドの有 機溶媒への溶解性が高くなり、また無機化合物と効率良く複合化できるので 1/1の 場合である。テトラカルボン酸二無水物/トリァミンのモル比が 7/5より大き!/、場合に は多分岐ポリアミック酸中のトリァミンの量が少なぐ一般式(1 4)で表される芳香族 o ヒドロキシルアルデヒドと反応させることで得られる多分岐ポリイミド中のシッフ塩基 基の量が少なくなるために多分岐ポリイミドの有機溶媒への溶解性は低くなり、また 無機化合物との複合化が不十分となる場合がある問題がある。また、テトラカルボン 酸二無水物/トリァミンのモル比が 1/2より小さい場合にはポリアミック酸の分子量 は低!/、ものとなり、製造される末端変性多分岐ポリイミドの耐熱性等の物性が低下す る場合があるので好ましくなレ、。
[0145] 第 4の態様における末端基修飾多分岐ポリイミドの製造法の一例を示すと、
1)テトラカルボン酸二無水物及びトリアミンを含むジァミンとを反応させてポリアミック 酸を製造し、その後ポリアミック酸のアミノ基と一般式(1 4)で表される芳香族 o ヒ ドロキシアルデヒドとを反応させて、末端基修飾のァミック酸を製造し、化学的又は熱 的に閉環させてイミド化して、末端基修飾多分岐ポリイミドを得る方法、
2)テトラカルボン酸二無水物及びトリアミンを含むジァミンとを化学的又は熱的に閉 環させてイミド化して、ポリイミドを製造し、その後イミドのァミノ基と一般式(1—4)で 表される芳香族 ο ヒドロキシアルデヒドとを反応させて、末端基修飾多分岐ポリイミド を得る方法、
などを挙げること力 Sできる。
[0146] 第 4の態様における末端基修飾多分岐ポリイミドの製造法の別の一例を示すと、
1) 1/2以上から 3/2未満のモル比(テトラカルボン酸二無水物/トリァミンのモル 比)のテトラカルボン酸二無水物及びトリァミンとを反応させてポリアミック酸を製造し、 その後ポリアミック酸のアミノ基と一般式(1 4)で表される芳香族 ο ヒドロキシアル デヒドとを反応させて、末端基修飾のァミック酸を製造し、化学的又は熱的に閉環さ せてイミド化して、末端基修飾多分岐ポリイミドを得る方法、
2) 1/2以上から 3/2未満のモル比(テトラカルボン酸二無水物/トリァミンのモル 比)のテトラカルボン酸二無水物及びトリァミンとを化学的又は熱的に閉環させてイミ ド化して、ポリイミドを製造し、その後イミドのァミノ基と一般式(1—4)で表される芳香 族 ο ヒドロキシアルデヒドとを反応させて、末端基修飾多分岐ポリイミドを得る方法、 などを挙げること力 Sできる。
[0147] ポリアミック酸は、公知の方法で製造することができ、例えば、テトラカルボン酸二無 水物及びトリアミンを含むジァミンとを、有機極性溶媒中で、約 100°C以下、好ましく は 80°C以下、特に 0〜50°Cの反応温度で反応させて製造することができる。
[0148] 反応は、窒素、アルゴン等の不活性ガス中で行わせることが好ましいが、その他の 条件下でも用いることができる。
[0149] ポリイミドは、公知の方法で製造することができ、例えば、
1)テトラカルボン酸二無水物及びトリアミンを含むジァミンとを、有機極性溶媒中で、 約 100°C以下、好ましくは 80°C以下、特に 0〜50°Cの反応温度で反応させてポリア ミック酸を製造し、約 0〜; 140°Cの低温で酸無水物とァミンなどの脱水剤と触媒のイミ ド化剤を用いて化学的に閉環してイミド化する方法力、、あるいは、 140°C〜250°Cに 加熱して、必要に応じて共沸剤などを加えて、脱水'環化させてイミド化する方法、
2)テトラカルボン酸二無水物及びトリアミンを含むジァミンとを、有機極性溶媒中で、 140°C〜250°Cに加熱して、重合、脱水、環化させてイミド化する方法、
又は
3)テトラカルボン酸二無水物及びトリアミンを含むジァミンとを、有機極性溶媒中で、 約 100°C以下、好ましくは 80°C以下、特に 0〜50°Cの反応温度で反応させてポリア ミック酸を製造し、ポリアミック酸を気体中で 150°C以上、好ましくは 180〜450°Cの 温度に加熱する方法、
などにより製造することができる。
[0150] ポリイミドを合成した後に、貧溶媒で再沈させて乾燥し、他の可溶な有機極性溶媒 へ再投入して溶解させて溶液として用いることも可能である。
[0151] 反応は、窒素、アルゴン等の不活性ガス中で行わせることが好ましいが、その他の 条件下でも用いることができる。
[0152] ジァミンが 100モル%トリァミンの場合には、 1/2以上から 3/2未満のモル比(テト ラカルボン酸二無水物/トリァミンのモル比)のテトラカルボン酸二無水物及びトリアミ ンで行うことが好ましい。
[0153] テトラカルボン酸二無水物及びトリアミンを含むジァミンは、ポリアミック酸又はポリィ ミドを合成する際、さらに一般式(1 4)で表される芳香族 o ヒドロキシアルデヒドを 伴うポリアミック酸又はポリイミドを合成する際、
1)テトラカルボン酸二無水物を含む溶媒中に、粉体状でも溶媒に溶解していても良 いトリアミンを含むジァミンを一度に或いは徐々に、或いは数回に分けて逐次に加え る方法、
2)トリアミンを含むジァミン溶媒中に、粉体状でも溶媒に溶解していても良いテトラ力 ルボン酸二無水物を一度に或いは徐々に、或いは数回に分けて逐次に加える方法 を用いることが好ましい。
[0154] 一般式(1 4)で表される芳香族 o ヒドロキシアルデヒドは、テトラカルボン酸二無 水物及びトリアミンを含むジァミンの反応により得られる多分岐ポリアミック酸を含む溶 液に添加する際に、そのままの状態で加えても良いし、反応溶媒等の有機溶媒に溶 角早して加えても良い。
[0155] 末端基修飾多分岐ポリアミック酸は、多分岐ポリアミック酸及び/又は多分岐ポリイ ミドと、一般式(1 4)で表される芳香族 o ヒドロキシルアルデヒドを反応させることで 、多分岐ポリアミック酸及び/又は多分岐ポリイミドのァミノ基と、芳香族 o ヒドロキシ ルアルデヒドが反応してシッフ塩基を形成することで、一般式(8)で表される末端基 が修飾されたポリマーを製造することができる。
[0156] [化 16]
Figure imgf000041_0001
(一般式(8)において、 nは 1以上の実数。 )
[0157] ポリアミック酸を、脱水剤と触媒とを用いて化学的にイミド化する場合について、脱 水剤としては無水酢酸、無水プロピオン酸等の有機酸無水物を利用し、触媒として、 ピリジン、ピコリン、トリェチルァミン等のアミンを併用して用いることができる。脱水剤 及び触媒は、それぞれ 1種類でも良いし、 2種類以上組み合わせて使用しても良い。
[0158] ポリアミック酸及びポリイミドを製造する際のポリマー濃度は、特に規定されるもので はないが、 1〜50質量%が好ましぐ更に 2〜30質量%、特に 2〜5質量%が好適で ある。
[0159] ポリアミック酸を気体中で焼成することでイミド化する場合には、イミド化を行うため の焼成温度はイミド化反応が進行し、且つ高分子の劣化が生じなレ、範囲である 200 〜600°Cが好ましぐ更に好ましくは 300から 450°Cである。加熱時間は特に限定は 無いが、 30分〜 10時間が好ましい。焼成雰囲気には特に限定はなぐ大気中でも還 元性ガス存在下でも不活性ガス存在下でも良!/、が、経済的に有利であることから大 気中で行うことが好ましい。焼成を行う装置に制限は無いが、管状炉ゃマツフル炉を 好適に用いることができる。
[0160] ポリアミック酸、ポリイミド又は一般式(1 4)で表される芳香族 o ヒドロキシアルデ ヒドによる末端基修飾の反応に用いる有機極性溶媒としては、公知のポリアミック酸 及び/又はポリイミドを溶解する有機極性溶媒を使用することができ、ポリアミック酸 及び/又はポリイミドの製造に用いられる有機溶媒としては、例えば、 N, N ジメチ ルァセトアミド(DMAc)、 N, N ジェチルァセトアミド、 N メチルー 2—ピロリドン( NMP)、 N メチルー力プロラタタム、 N, N ジメチルホルムアミド、 N, N ジェチ ルホルムアミド、 1 , 3 ジメチルー 2 イミダゾリジノン、へキサメチルホスホラミド、フエ ノーノレ、クレゾ一ノレ、 o クロノレフエノーノレ、 p—クロノレフエノーノレ、ジメチノレスノレホキシ ド、ジメチルスルホン、スルホラン、 Ί ブチロラタトン、ジグライム、ジメチルトリグライ ム、ジェチルトリグライム、テトラヒドロフラン、ジォキサンなどの非プロトン性極性溶媒 を挙げることができ、好ましくは入手が容易で高分子量のポリアミック酸を製造できる ことから DMAc及び ΝΜΡである。これらの溶媒は単独で用いても良いし、 2種類以 上を混合したものを用いても良レ、。
[0161] 以上の第 1〜第 4の態様におけるポリイミドもしくは末端変性多分岐ポリイミド、ポリア ミック酸、末端基修飾多分岐ポリアミック酸 (以下、まとめて末端変性多分岐ポリイミド 等という)は、どのような形状でも構わず、粒子などの粉体でも、フィルム状に成形され たものでも、成型されたものでも構わない。フィルム状に成形されたポリイミドは、ポリ ァミック酸をフィルム状に加工したものをイミド化することで好適に製造することができ 、その厚さは取扱に問題なければどのような厚さでも良ぐ好ましくは 1 111〜200 mであることが好ましく、より好ましくは 5 μ m〜100 μ mである。
[0162] 末端変性多分岐ポリイミド等は、本発明のポリイミド等以外に他のポリイミドゃ、その 他の高分子を含むものであってもよいし、シリカ等の易滑剤、無機フィラー、ガラス繊 維強化材等の補強材ゃ剥離剤等の他の成分を含有するものであっても良い。
[0163] 末端変性多分岐ポリイミド等は、ポリイミドなどのプラスチック、ガラス、シリコンウェハ 一、セラミックス、銅、銀、金などの金属等の基材上に形成して用いることができる。
[0164] 末端変性多分岐ポリイミド等は、さらに劣化が生じない範囲である 200〜600°C、 好ましく 300〜450°Cの温度で、加熱時間は特に限定は無いが、 30分〜 10時間の 範囲で加熱して用いることができる。
[0165] 本発明の末端変性多分岐ポリイミドは、プリント配線板、フレキシブルプリント基板、 COF、 COB、 TABテープ等の電子部品や電子機器類の素材、導電性粒子や導電 性フィルムなどの導電性基材として用いることができる。
[0166] 本発明の末端変性多分岐ポリイミドは、ポリアミック酸溶解溶液として、プリント配線 板、フレキシブルプリント基板、 TABテープ等の電子部品の素材として用いられる耐 熱性のポリイミドフィルム上に塗布又は印刷などをして、その後、溶液を除去し、ポリ ァミック酸を脱水してイミド化し、耐熱性ポリイミドフィルムの片面または両面に末端変 性多分岐ポリイミドが形成されたポリイミドフィルム(即ち、耐熱性ポリイミドフィルムを 有する末端変性多分岐ポリイミド)を得ることができる。
[0167] また、耐熱性のポリイミドフィルムの代わりに、耐熱性のポリイミドフィルムを得ること ができるポリアミック酸のキャスト層またはポリアミック酸のキャスト層を乾燥して支持体 力、ら剥離可能な自己支持フィルムを用いて、前述の末端変性多分岐ポリイミドのポリ ァミック酸溶解溶液を塗布又は印刷などをし、同様にして、耐熱性ポリイミドフィルム の片面または両面に末端変性多分岐ポリイミドが形成されたポリイミドフィルム(即ち、 耐熱性ポリイミドフィルムを有する末端変性多分岐ポリイミド)を得ることができる。
[0168] 本発明の末端変性多分岐ポリイミドを耐熱性のポリイミドフィルムの片面または両面 に設ける場合、末端変性多分岐ポリイミドを耐熱性ポリイミドフィルムの表面の全体ま たは一部に設けること力 Sできる。例えば、末端変性多分岐ポリイミドを配線状に、耐熱 性ポリイミドフィルムに印刷等の方法で形成することができる。末端変性多分岐ポリイ ミドは、耐熱性のポリイミドフィルムに配線の形状に形成することにより、配線部分のみ 無電解メツキを行い、配線形状の金属配線末端変性多分岐ポリイミドを片面または両 面に有する耐熱性のポリイミドフィルムを製造することができる。
[0169] 本発明の末端変性多分岐ポリイミドは、ポリアミック酸溶解溶液として、プリント配線 板、フレキシブルプリント基板、 TABテープ等の電子部品の素材として用いられる耐 熱性のポリイミドフィルム及び/又は金属箔の一部または全部に塗布または印刷等 をして、その後溶液を除去し、ポリアミック酸を脱水してイミド化し、本発明のポリアミツ ク酸から得られる層を介して、耐熱性のポリイミドフィルムと金属箔とを、圧着又は加 熱圧着などの方法のより直接或いはさらに他の接着剤を介してはりあわせることがで きる。このとき、耐熱性のポリイミドフィルムに代えて、耐熱性のポリイミドフィルムを得 ることができるポリアミック酸のキャスト層またはポリアミック酸のキャスト層を乾燥して 支持体から剥離可能な自己支持フィルムを用いて、同様に処理してもよい。
末端変性多分岐ポリイミドのポリアミック酸は、耐熱性のポリイミドフィルムを得ること が出来るポリアミック酸のドープと共押出することもできる。
[0170] 本発明の末端変性多分岐ポリイミドは、ポリイミド溶解溶液として、プリント配線板、 フレキシブルプリント基板、 TABテープ等の電子部品の素材として用いられる耐熱性 のポリイミドフィルム及び/又は金属箔の一部または全部に塗布または印刷等をして 、その後溶液を除去し、本発明のポリイミドを介して、耐熱性のポリイミドフィルムと金 属箔とを、ラミネート装置などを用いて、直接或いはさらに他の接着剤を介してはりあ わせて、耐熱性ポリイミドフィルム金属箔積層体を得ることができる。このとき、耐熱性 のポリイミドフィルムに代えて、耐熱性のポリイミドフィルムを得ることができるポリアミツ ク酸のキャスト層またはポリアミック酸のキャスト層を乾燥して支持体から剥離可能な 自己支持フィルムを用いて、同様に処理してもよい。
[0171] 耐熱性ポリイミドフィルム金属箔積層体は、プリント配線板、フレキシブルプリント基 板、 COF、 COB、 TABテープ等の電子部品や電子機器類の素材として用いること ができる。
[0172] 耐熱性のポリイミドフィルムは、プリント配線板、フレキシブルプリント基板、 TABテ ープ等の電子部品の素材として用いられる耐熱性のポリイミドフィルムであり、具体例 としては、例えば、商品名「ユーピレックス」(宇部興産社製)、商品名「カプトン」(東レ •デュポン社製、デュポン社製)、商品名「アビカル」(鐘淵化学社製)などのポリイミド フィルム及び、これらのフィルムを構成する酸成分及びジァミン成分、例えば酸成分( 例えば、 3, 3,、 4, 4'ービフエニルテトラカルボン酸二無水物、ピロメリット酸などを含 む成分)及びジァミン成分(P—フエ二レンジァミン、 4, 4ージアミノジフエニルエーテ ル、 m—トリジン、 4, 4'—ジァミノべンズァニリドなどを含む成分)とから得られる、ポリ イミドなどを挙げることができる。
[0173] ポリァミック酸溶解溶液及びポリイミド溶解溶液を塗布する方法としては、公知の方 法を用いることができ、例えば、グラビアコート法、スピンコート法、シルクスクリーン法 、ディップコート法、スプレーコート法、バーコート法、ナイフコート法、ロールコート法 、ブレードコート法、ダイコート法、キャスト法などの公知の塗布方法を挙げる事がで きる。
[0174] ラミネート装置は、一対の圧着金属ロール (圧着部は金属製、セラミック溶射金属製 のいずれでもよい)、真空ラミネート、ダブルベルトプレス、ホットプレスなどが挙げられ 、特に加圧下に熱圧着および冷却できるものであって、そのなかでも特に液圧式の ダブルベルトプレスを好適に挙げることができる。
[0175] 金属箔としては、銅、アルミニウム、金、合金の箔など各種金属箔を用いることがで き、好適には圧延銅箔、電解銅箔などの銅箔が好ましい。
[0176] 金属箔としては、どのような表面粗さでも用いることができる力 表面粗さ Rzが 0. 5 〃m以上であるものが好ましい。また、金属箔の表面粗さ Rzが 7 m以下、特に 5〃 m以下であるものが好ましい。このような金属箔、例えば銅箔は VLP、 LPほたは HT E)として知られている。
[0177] 金属箔の厚さは特に制限はないが、 2〜35 111、特に 5〜; 18 mであるものが好ま しい。金属箔の厚みが 0. 5〜5 111のものは、キャリア付き金属箔、例えばアルミユウ ム箔キャリア付き銅箔、銅箔キャリア付き銅箔が使用できる。
[0178] 金属箔は特に配線回路用に用いることができる金属箔を好ましく用いることができ
[0179] 本発明の(末端変性)多分岐ポリイミドから、金属被覆 (末端変性)多分岐ポリイミド を得るには、固体状または溶液状の(末端変性)多分岐ポリイミドに、無電解めつき触 媒前駆物質を吸着させて無電解めつき促進用(末端変性)多分岐ポリイミドを製造し 、その後無電解金属めつきを行うことで、金属被覆 (末端変性)多分岐ポリイミドを得る こと力 Sでさる。
[0180] 吸着は、第 1の態様では、一般式(1 1)化合物に由来する含窒素複素環基、第 2 の態様では一般式(1 2)化合物に由来する含硫黄基、第 3の態様では一般式(1 3)に由来する含窒素複素環基、第 4の態様では一般式(1 4)とァミノ基の反応 で生じたシッフ塩基に対して、それぞれ無電解めつき触媒前駆物質が吸着する。 [0181] 無電解めつき促進用末端変性多分岐ポリイミドを製造する際に、末端変性多分岐 ポリイミドへの無電解めつき触媒前駆物質の吸着法としては、無電解めつき触媒前駆 物質が溶解した水溶液や有機溶媒中などの溶液、又は有機溶媒中に分散したコロイ ド状液に、末端変性多分岐ポリイミドを浸漬することで行うことができる。
[0182] 無電解めつき触媒前駆物質は、無電解めつきを促進する金属化合物であり、例え ばパラジウム化合物である。ノ ラジウム化合物は酸化数が 0価のものを用いても良い し、 2価や 4価のものを用いても良ぐ金属錯体でも金属微粒子でも構わない。具体 的には、例えば、酢酸パラジウム、塩化パラジウム、臭化パラジウム、硝酸パラジウム 、硫酸パラジウム、テトラクロ口パラジウム酸、テトラクロ口パラジウム酸ナトリウム、テトラ クロ口パラジウム酸カリウム、へキサクロ口パラジウム酸、へキサクロ口パラジウム酸ナト リウム、へキサクロ口パラジウム酸カリウム、テトラブロモパラジウム酸、テトラブロモパラ ジゥム酸ナトリウム、テトラブロモパラジウム酸カリウム、へキサブロモパラジウム酸、へ キサブロモパラジウム酸ナトリウム、へキサブロモパラジウム酸カリウム、ビス(ォキサラ ト)パラジウム酸ナトリウム、ビス (ォキサラト)パラジウム酸カリウム、テトラアンミンパラジ ゥム塩化物、ビス(エチレンジァミン)パラジウム塩化物、ジクロロ(エチレンジァミン)パ ラジウム、ジクロロ(ビビリジル)パラジウム、ジクロロ(フエナント口リン)パラジウム、テト ラキス(トリフエニルホスフィン)パラジウム、ビス(ジベンジリデンアセトン)パラジウム、ト リス(ジベンジリデンアセトン)二パラジウム、テトラニトロパラジウム酸、テトラニトロパラ ジゥム酸ナトリウム、テトラュトロパラジウム酸カリウム、テトラシァノパラジウム酸ナトリウ ム、テトラシァノパラジウム酸カリウム、テトラキス(ァセトニトリル)パラジウムテトラフル ォロボレートなどのパラジウム錯体ゃパラジウムナノ粒子などのパラジウム微粒子、錫 化合物及びパラジウム化合物から調整されるパラジウムコロイドを挙げることができる 。中でも、酢酸パラジウム、塩化パラジウム、硝酸パラジウム、テトラクロ口パラジウム酸 、テトラクロ口パラジウム酸ナトリウム、テトラアンミンパラジウム塩化物、テトラキス(ァセ トニトリル)パラジウムテトラフルォロボレートやパラジウムナノ粒子、錫化合物及びパ ラジウム化合物から調整されるパラジウムコロイドは入手が容易であり、また無電解め つきを促進する効果が高レ、ことから好ましレ、。これらのパラジウム化合物は単独で用 いても良いし、または 2種類以上を組み合わせて使用しても良い。 [0183] 無電解めつき触媒物質含有液を調整するために用いられる溶媒は、水溶媒でも有 機溶媒でも構わない。水溶媒としては脱イオン水などを用いることができる。有機溶 媒としては、例えばメチルアルコール、エチルアルコール、プロピルアルコールなどの アルコール類、アセトンなどのケトン類、酢酸ェチルなどのエステル類、テトラヒドロフ ラン、ジォキサンなどのエーテル類、ベンゼン、トルエン、キシレンなどの芳香族類を 好適に用いることができる。これらの溶媒は単独で使用しても良いし、複数を混合し て使用しても良い。
[0184] 無電解めつき触媒物質含有液中の無電解めつき触媒物質の濃度は、適宜選択し て用いることができ、例えば、 10_6から lmol ' dm_3である事が好ましぐ更に好ましく は、 10— 5から 10— 2mol' dm— 3である。 10— 6mol' dm— 3より少ない場合には、無電解 めっき触媒物質を多分岐ポリイミドに吸着させる為に長い時間を要することがあり、 1 mol' dm— 3より多い場合には無電解めつき触媒物質の使用量が多くなり、製造コスト が高くなることから経済的に不利となる場合が有る。
[0185] 無電解めつき触媒物質含有液には、末端変性多分岐ポリイミドへの無電解めつき 触媒物質の吸着を促進する場合があることから、塩酸、硫酸、硝酸などの酸、アンモ 二了、水酸化ナトリウム、水酸化カリウム、炭酸水素ナトリウム、炭酸カリウムなどの塩 基、塩化ナトリウム、塩化カリウム、塩化アンモニゥムなどの無機塩や塩化テトラプチ ルアンモニゥムなどの有機塩を添加しても行うことが好ましい。
[0186] 無電解めつき促進用末端変性多分岐ポリイミドにおいて、末端変性多分岐ポリイミ ドを、無電解めつき触媒物質含有液に浸漬する時間は、適宜選択して行えばよいが 、好ましくは 5秒から 1時間であり、更に好ましくは 30秒から 30分である。浸漬時間が 5秒より短いと、無電解めつき触媒物質の多分岐ポリイミドへの吸着が不十分となる場 合があり、 1時間より長いと処理時間が長くなり経済的に不利となる。
[0187] 無電解めつき促進用末端変性多分岐ポリイミドにおいて、末端変性多分岐ポリイミ ドを、無電解めつき触媒物質含有液に浸漬する温度は、適宜選択して行えばよいが 、 0〜; 100°Cの範囲が好ましぐ更に室温〜 60°Cの範囲が好ましい。 0°Cより低い温 度では溶媒が凍結する場合があり、 100°Cより高い場合には溶媒が気化する場合が あるので好ましくない。 [0188] 無電解めつき促進用末端変性多分岐ポリイミドにおいて、末端変性多分岐ポリイミ ドは、無電解めつき触媒物質含有液に浸漬した後、水溶媒や有機溶媒、及びそれら の混合物で洗浄してもよぐ更に風乾するなどして乾燥を行ってもよい。
[0189] 無電解めつき促進用末端変性多分岐ポリイミドは、無電解めつき溶液に浸漬するな どの公知の方法で無電解金属めつきを行うことにより金属被覆末端変性多分岐ポリイ ミドを製造することができる。
[0190] 無電解金属めつきの条件などは、公知の条件を適宜選択して行うことが出来る。
[0191] 無電解めつき溶液としては、各種の金属化合物を含んでなる従来公知の無電解め つき溶液を用いることができる。金属化合物としては、周期律表第 4、 5、 6周期に属 する金属元素を用いることができ、好ましくは 1B、 2B、 VIII族に属する金属元素であ る。特にコバルト、ニッケル、パラジウム、白金、銅、銀、金、亜鉛が、製造される金属 被覆多分岐ポリイミドの有用性が高レ、ので好ましレ、。
[0192] 無電解めつき溶液中の金属化合物の濃度は、適宜選択して行うことができる力 例 えば 10— 3から lmoト dm_3である事が好ましぐ更に好ましくは、 10_2から lC^moト dm— 3である。 10— 3mol ' dm— 3より少ない場合には、無電解めつきに長い時間を要す ること力 Sあり、 lmol ' dm_3より多い場合には金属化合物の使用量が多くなり、製造コ ストが高くなることから経済的に不利となる。
[0193] 無電解めつき溶液には金属化合物に加えて、ホルムアルデヒド、ジメチルァミンボラ ン、水素化ホウ素ナトリウム、ヒドラジン、ヒドロキシルァミン、次亜リン酸ナトリウムなど の還元剤、有機酸である酢酸、乳酸、シユウ酸、コハク酸、マロン酸、フタル酸、酒石 酸、クェン酸、サリチル酸、チォグリコール酸及びそれらの金属塩やアミノ酸であるグ リシン、ァラニン、ァスパラギン、グルタミン酸、エチレンジァミン四酢酸及びそれらの 金属塩や有機塩基であるアンモニア、ヒドラジン、トリエタノールァミン、エチレンジアミ ンなどの錯化剤、有機酸である酢酸、プロピオン酸、シユウ酸、グリコール酸、クェン 酸、酒石酸、乳酸や無機酸であるホウ酸及びそれらの金属塩などの緩衝剤、シアン 化物、チォ尿素、ビビリジル、フエナント口リン、ネオクプロインなどの安定剤、アデ二 ン、グァニン、 8—ヒドロキシー7—ョードー 5—キノリンスルホン酸などの促進剤、ポリ エチレングリコールなどの界面活性剤等を含んで!/、ても良!/、。 [0194] 無電解めつき促進用末端変性多分岐ポリイミドを無電解めつき溶液に浸漬する時 間は、適宜選択して行うことができる力 好ましくは 30秒から 12時間であり、更に好ま しくは 1分から 6時間である。浸漬時間が 30秒より短いとめつきが不十分となる場合が あり、 12時間より長いと処理時間が長くなり経済的に不利となる。
[0195] 無電解めつき促進用末端変性多分岐ポリイミドを、無電解めつき触媒物質を含む溶 液中に浸漬する温度は 0〜; 100°Cの範囲が好ましぐ更に室温〜 80°Cの範囲が好ま しい。 0°Cより低い温度では無電解めつき溶液が凍結する場合があり、 100°Cより高 い場合には無電解めつき溶液が劣化したり、無電解めつき溶液が気化する場合があ るので好ましくない。
[0196] 得られる金属被覆末端変性多分岐ポリイミドは、無電解めつき溶液に浸漬した後、 水溶媒や有機溶媒、及びそれらの混合物で洗浄してもよぐ更に風乾するなどして乾 燥を fiつてもよい。
[0197] 金属被覆末端変性多分岐ポリイミドは、フィルム状では、プリント配線板、フレキシブ ルプリント基板、 COF、 COB、 TABテープ等の電子部品や電子機器類の基板として 用いること力 Sでさる。
[0198] 金属被覆末端変性多分岐ポリイミドは、粒状では、導電性バインダーや導電性粒 子として、用いること力 Sでさる。
[0199] 本発明の第 5の態様に関する一般式 (I)で表される芳香族トリアミンは、一般式 (II) で表される芳香族モノアミンのニトロ基を還元することにより製造することができる。
[0200] ニトロ基の還元方法としては、溶媒中で塩化スズ (11)、ジチオン酸ナトリウムによる還 元又は接触還元を行う手法が使用される。接触還元では、触媒としてパラジウム、ラ ネーニッケル、又は白金を用いることができ、また、分子状水素、ヒドラジン、ギ酸、ギ 酸アンモニゥムを水素源として用いることができる。特に、触媒にパラジウム化合物を 用い、水素源に分子状水素を用いて有機溶剤中で還元反応を行うことが経済的であ り好ましい。
[0201] 還元に用いられる溶媒としては、アルコール類、ジォキサン、トルエンゃキシレン等 芳香族系溶媒、ジメチルスルホキシド、ジェチルスルホキシドなどのスルホキシド系溶 媒、 N, N—ジメチルホルムアミド、 N, N—ジェチルホルムアミドなどのホルムアミド系 溶媒、 N, N ジメチルァセトアミド、 N, N ジェチルァセトアミドなどのァセトアミド系 溶媒、 N メチル—2—ピロリドン、 N—ビュル— 2—ピロリドンなどのピロリドン系溶媒 、フエノーノレ、 o—、 m—、または p クレゾ一ノレ、キシレノーノレ、 ノヽロゲン化フエノーノレ 、カテコールなどのフエノール系溶媒、あるいはへキサメチルホスホルアミド、 γーブ チロラタトン等、反応を阻害せず、ジアミンゃジニトロ化物を溶解するものであれば限 定されない。
[0202] 一般式 (II)で表される芳香族モノアミンとしては、 3, 5 ジ (4一二トロフエノキシ)ァ 二リン、 3, 5—ジ(3—メチノレ, 4一二トロフエノキシ)ァニリン、 3, 5—ジ(3—メトキシ, 4一二トロフエノキシ)ァニリン、 3, 5 ジ(2 メチノレ, 4一二トロフエノキシ)ァニリン、 3 , 5 ジ(2 メトキシ, 4一二トロフエノキシ)ァニリン、 3, 5 ジ(3 ェチル, 4一二トロ フエノキシ)ァニリン、などを挙げること力 Sできる。これらの化合物の合成法としては、実 施例に示すように、例えば 3, 5—ジヒドロキシァ二リンと置換または無置換の ρ フル ォロニトロベンゼンとを反応する方法が挙げられる。
[0203] 一般式 (I)で表される芳香族トリァミンとしては、 3, 5 ジ (4 アミノフエノキシ)ァニ リン、 3, 5—ジ(3—メチル, 4 アミノフエノキシ)ァニリン、 3, 5—ジ(3—メトキシ, 4 アミノフエノキシ)ァニリン、 3, 5 ジ(2 メチノレ, 4 アミノフエノキシ)ァニリン、 3, 5 ジ(2 メトキシ, 4 アミノフエノキシ)ァニリン、 3, 5 ジ(3 ェチノレ, 4 アミノフ エノキシ)ァュリン、などを挙げることができる。
実施例
[0204] 以下、実施例によって本発明を詳述するが、本発明は実施例に記載された範囲に 限定されるものではない。
[0205] 尚、以下の例で用いた主な分析方法及び測定方法は下記のとおりである。
1)分子量分布:ポリアミック酸の数平均分子量 (Mn)の測定は、ゲル浸透クロマトダラ フ(GPC)で行った。下記に測定方法を示す。
( 1 )測定装置: 東ソー製 HLC - 8220装置を使用した。
(2)測定サンプル: ポリアミック酸溶液を室温、濃度 0. 3wt/vol%で溶媒 (N メ チルー 2—ピロリドン、 NMP)に溶解させた。
(3)分子量分布測定:上記(2)の測定サンプル 0· 3mlを GPCカラム ShodexKD— 8 06M X 2本に注入し、溶媒 NMP、温度 40°C、 1. Oml/分の流速で分析を行った。
GPCによる測定は 35分間行った。 GPCカラムにより分離された溶液中のポリマー濃 度は、示差屈折計 (RI)で測定した。分子量は、ポリスチレンスタンダードにより換算し た。
(4)データ処理:データ処理は、東ソー製 HLC— 8220装置に付属のソフトを用いた
2)示差熱熱重量同時測定 (TG— DTA):セイコー電子工業社製 TG/DTA320を 用いて、測定温度範囲: 200°C〜800°C、昇温速度: 10°C/分、雰囲気ガス:窒素、 雰囲気ガス流量: 30mL/分で行った。
3) X線光電子分光分析(XPS): PHI社製 1600Sを用いて、 X線源: MgK aで行つ た。
4)電気伝導度測定:三菱化学製ロレスタ MCP— T610を用いて、測定プローブ: PS Pで fiつた。
5) X線回折分析 (XRD):理学電気製 RAD— RX 広角 X線回折装置を用いて、 X線 源: CuK aで行った。
6)透過電子顕微鏡分析 (TEM):日本電子 EM— 201 OF電界放射型透過電子 顕微鏡を用いて行った。
7)誘導結合プラズマ発光分光分析 (ICP— AES) :セイコー電子工業社製 SPS400 0を用いて行った。
8)フーリエ変換赤外分光(FT— IR)の測定:分析装置: VARIAN社製 FTS7000e を用いて、測定方法:顕微 ATR法、検出器: MCTで行った。
9)比誘電率測定: 1MHzにおける静電容量を、ヒューレットパッカード社製 LCRメー ター 4192Aを用いて室温で測定し、下記式により比誘電率( ε )を求めた。 ε = C - d/ ( e °-A)
但し、 Cは静電容量、 dは試料膜厚、 ε °は真空中の誘電率、 Αは電極面積である。
[0206] 以下、本発明の実施例をパート I〜パート IVおよび新規化合物の合成についてパ ート Vに分けて説明する。
[0207] 実施例及び比較例で使用した酸二無水物、トリアミン、ジァミン及び末端変性剤を 以下に示す。
1)酸二無水物成分
'酸 Α:3, 3', 4, 4'—ビフエニルテトラカルボン酸二無水物 •酸 B:ピロメリット酸二無水物
'酸 C:4, 4' (へキサフルォロイソプロピリデン)ジフタル酸無水物 '酸 D:4, 4'ーォキシジフタル酸二無水物
2)トリァミン成分
'トリアミン A:3, 5—ジ(4 アミノフエノキシ)ァニリン
'トリァミン B:トリ(4—ァミノフエュル)ァミン
'トリァミン C:l, 3, 5—トリ(4—アミノフエノキシ)ベンゼン
3)ジァミン成分
'ジァミン A:l, 4-フエ二レンジァミン
4)末端変性剤成分
•変性剤 A1: 4 アミノビリジン
•変性剤 A2: 4 (アミノメチル)ピリジン
•変性剤 A3: 2 アミノー 3—ヒドロキシピリジン
•変性剤 A4: 6 ァミノニコチンアミド
•変性剤 A5: 2 -アミノビリミジン
•変性剤 A6: 3 アミノビラゾール
•変性剤 A7: 2 ァミノべンズイミダゾール
'変性剤 A8:5—アミノー 1, 10—フエナント口リン
•変性剤 A9: 2 ァミノチアゾール
'変性剤 B1 :2—(フエ二ルチオ)ァニリン
'変性剤82:4 (メチルチオ)ァニリン
'変性剤 B3: 4—アミノチォフエノール
•変性剤 B4: 2 - (アミノメチル)チォフェン
'変性剤 C1 :2, 3 ピリジンジカルボン酸無水物
•変性剤 C2: 3, 4 ピリジンジカルボン酸無水物 •変性剤 Dl:サリチルアルデヒド
'変性剤 D2 : 2 ヒドロキシ 5 二トロべンズアルデヒド
'変性剤 D3 : o バニリン
[0208] < <パート I〉〉 第 1の態様の実施例
(参考例 I I 6) (多分岐ポリアミック酸の合成)
滴下漏斗を備えた四口フラスコに表 1に示す酸二無水物と無水 N, N ジメチルァ セトアミド(以下、 DMAcと略す。)を加えた。室温で攪拌しながら、無水 DMAcに溶 解した表 1に示すトリァミン及び/またはジァミンを溶液を 5 7時間かけて徐々に添 加した。混合物を室温で終夜攪拌することで 2. 5重量%の多分岐ポリアミック酸の D MAc溶液を得た。多分岐ポリアミック酸の数平均分子量を GPCより分析し、結果を 表 1に示す。
[0209] (参考例 I 7) (多分岐ポリアミック酸 Gの合成)
滴下漏斗を備えたに 3, 3' , 4, 4'—ビフエニルテトラカルボン酸二無水物(4. 76m mol)と無水 DMAcを加えた。室温で攪拌しながら 3, 5—ジ(4 アミノフエノキシ)ァ 二リン(0· 952mmol)と 1 , 4 フエ二レンジァミン(2· 85mmol)を無水 DMAcに溶 解した溶液を 7時間かけて徐々に添加した。混合物を室温で終夜攪拌することで 2. 5重量%の多分岐ポリアミック酸 A7の DMAc溶液を得た。多分岐ポリアミック酸 Gの GPC分析より、数平均分子量は 2. 7xl04であった。
[0210] [表 1]
Figure imgf000054_0001
(実施例 I I 22) (末端変性ポリアミック酸の合成)
ナスフラスコに参考例 I 1 1 7で合成した表 2に示す質量の 2· 5重量%多分岐 ポリアミック酸の DMAc溶液と表 2に示す質量の末端基変性剤とを加え、室温で終夜 攪拌することで、表 2に示す 2. 5重量%の末端変性多分岐ポリアミック酸の DMAc溶 液を得た。
[表 2]
Figure imgf000055_0001
(実施例 I 23〜I— 44) (末端変性多分岐ポリイミドの合成)
ディーンスタークトラップを取り付けたナスフラスコに、表 3に示す 2. 5重量%の末端 変性多分岐ポリアミック酸の DMAc溶液(5· OOg)とキシレン(2. 5mUとを加え、 15 0〜160°Cで 3時間加熱撹拌した。反応終了後、エタノール及びへキサンを加え、析 出した固体を濾取した。エタノール及びへキサンで洗浄後、減圧乾燥することで表 3 に示す末端変性多分岐ポリイミドが得られた。 TG— DTA分析より、末端変性多分岐 ポリイミドの 10%質量減少温度を求め、結果を表 3に示す。
[表 3]
Figure imgf000056_0001
実施例 1— 40、 I 41の末端変性多分岐ポリイミドについて、 ifi— NMR分析(300 MHz, DMSO-d )を測定し、結果を図 1— 1、図 1—2に示す。図 1—1に示す1 H
6
NMR分析(300MHz, DMSO-d )より、末端変性多分岐ポリイミド AP5— 1に
6
組み込まれた 4 アミノビリジン由来のピリジル基の窒素 α位水素に起因する吸収が 8. 6 - 8. 8ppmに観察された。図 1—2に示す1 H— NMR分析(300MHz, DMSO -d )より、末端変性多分岐ポリイミド AP5— 2に組み込まれた 4 (アミノメチル)ピリ
6
ジン由来のピリジル基の窒素 α位水素に起因する吸収が 8. 4- 8. 6ppmに観察さ れ 。
[0216] (実施例 I 45〜1 51) (末端変性多分岐ポリイミドフィルムの作成)
2. 5重量%の末端変性多分岐ポリアミック酸の DMAc溶液を減圧濃縮することで、 表 4に示す濃度の末端変性多分岐ポリアミック酸の DMAc溶液を調整した。ガラス基 板に濃縮した末端変性多分岐ポリアミック酸の DMAc溶液をイミド化後のフィルム厚 みが表 4に示す厚みになるようにスピンコート法により塗布した。続いて、焼成炉を用 いて大気中 350°Cで焼成することで、ガラス基板上に末端変性多分岐ポリイミドフィ ルムを形成した。フィルム断面の光学顕微鏡観察により、末端変性多分岐ポリイミドフ イルムの厚さを測定した。
[0217] [表 4]
Figure imgf000057_0001
実施例 I 45のフィルムについて、図 1 3に示す FTIR— ATR分析より、末端基 変性多分岐ポリイミドのカルボニル基に起因する吸収が l YlScnT1に観察された。 他のフィルムについても実施例 I 45のフィルムと同様に FTIR— ATR分析より、末 端基変性多分岐ポリイミドのカルボニル基に起因する吸収が l YlScnT1に観察され た。
[0219] (実施例 I 52) (多層の末端変性多分岐ポリイミドフィルムの作成)
3, 3' , 4, 4'—ビフエニルテトラカルボン酸二無水物と等モル量の p—フエ二レンジ ァミンとを N, N ジメチルァセトアミド溶媒中、室温で反応させることで 10重量%の ポリアミック酸溶液を調整した。この溶液をガラス基板上にキャスト法により塗布した後 、その上に 2. 5重量%の末端変性多分岐ポリアミック酸 A1— 1の DMAc溶液を減圧 濃縮することで得られる 10重量%の末端変性多分岐ポリアミック酸 A1— 1の DMAc 溶液をキャスト法により塗布した。続いて、焼成炉を用いて大気中 350°Cで焼成する ことで、ガラス基板上に末端変性多分岐ポリイミドフィルム AF8 1を形成した。末端 変性多分岐ポリイミドフィルム AF8 1の末端変性多分岐ポリアミック酸を塗布した側 を FTIR— ATR分析すると、末端基変性多分岐ポリイミドのカルボニル基に起因する 吸収が m^nT1に観察された。
[0220] (実施例 1— 53、 I- 56-I- 61) (無電解めつき促進用末端変性多分岐ポリイミドの 合成)
ガラス基板上に形成した末端変性多分岐ポリイミドフィルムを、少量の塩化ナトリウ ムを含む 1. O X 10_3mol' dm— 3のテトラクロ口パラジウム酸ナトリウム含有水溶液(pH 4.3)に室温で 3分間浸漬した。次いでポリイミドフィルムを基板から剥離し、 30分間 水洗した後に風乾し、無電解めつき促進用末端変性多分岐ポリイミドを得た。 XPSに よる表面分析より、無電解めつき促進用末端変性多分岐ポリイミドに付着のパラジゥ ム量を測定し、結果を表 6に示す。
[0221] (実施例 I 54) (無電解めつき促進用末端変性多分岐ポリイミドの合成)
ガラス基板上に形成した末端変性多分岐ポリイミドフィルムを基板から剥離し、塩化 スズ · 2水和物(2. Og)、濃塩酸(lmL)、水(50mU力、らなる溶液に 40°Cで 2分間浸 漬した。次いで、 40°Cの水に 10秒間浸漬し、更に塩化パラジウム(25mg)、濃塩酸( 0. 25mU、水(50mL)からなる溶液に 40°Cで 2分間浸漬した。その後、ポリイミドフ イルムを流水で軽く洗浄した後に風乾し、表 6に示す無電解めつき促進用末端変性 多分岐ポリイミドを得た。 XPSによる表面分析より、無電解めつき促進用末端変性多 分岐ポリイミドに付着のパラジウム量を測定し、結果を表 6に示す。 [0222] (実施例 I 55) (無電解めつき促進用末端変性多分岐ポリイミドの合成)
ガラス基板上に形成した末端変性多分岐ポリイミドフィルムを、 1.5g/Lパラジウム ナノ粒子含有トルエン液に室温で 3分間浸漬した。次!/、でポリイミドフィルムを基板か ら剥離し、エタノールと水で 30分間洗浄した後に風乾し、無電解めつき促進用末端 変性多分岐ポリイミドを得た。 XPSによる表面分析より、無電解めつき促進用末端変 性多分岐ポリイミドに付着のパラジウム量を測定し、結果を表 6に示す。
[0223] [表 5]
Figure imgf000059_0001
[0224] (実施例 I 62) (多層の無電解めつき促進用末端変性多分岐ポリイミドの合成) 末端変性多分岐ポリイミドフィルムとして末端変性多分岐ポリイミドフィルム AF8 1 を用いた以外は、実施例 I 53と同様にして無電解めつき促進用多分岐ポリイミド A B8 1を得た。 XPSによる表面分析より、無電解めつき促進用末端変性多分岐ポリ イミド AB8 1の末端変性多分岐ポリアミック酸 A— 1を塗布した側には表面原子濃 度 0. 24%のパラジウムが付着していることが判明した。
[0225] (実施例 I 63) (多層の無電解めつき促進用末端変性多分岐ポリイミドの合成) 末端変性多分岐ポリイミドフィルムとして末端変性多分岐ポリイミドフィルム AF8 1 を用いた以外は、実施例 I 54と同様にして無電解めつき促進用多分岐ポリイミド A B8 11を得た。 XPSによる表面分析より、無電解めつき促進用末端変性多分岐ポリ イミド AB8 11の末端変性多分岐ポリアミック酸 A— 1を塗布した側には表面原子濃 度 0. 67%のパラジウムが付着していることが判明した。
[0226] (比較例 I 1)
(ポリイミド、フィルム A)
3, 3' , 4, 4'—ビフエニルテトラカルボン酸二無水物と等モル量の p—フエ二レンジ ァミンとを N, N ジメチルァセトアミド溶媒中、室温で反応させることで 10重量%の ポリアミック酸溶液を調整した。この溶液をガラス基板上にスピンコートし、次いで 350 °Cで焼成することでポリイミドフィルム Aを得た。
[0227] ガラス基板上に形成した直鎖ポリイミドフィルム Aを、少量の塩化ナトリウムを含む 1 . 0 X 10_3mol' dm— 3のテトラクロ口パラジウム酸ナトリウム含有水溶液(ρΗ4·3)に室 温で 3分間浸漬した。次!/、でポリイミドフィルムを基板から剥離し、 30分間水洗した後 に風乾し、無電解めつき促進用ポリイミドフィルム Αをえた。 XPSによる表面分析より、 無電解めつき促進用ポリイミドフィルム Aには表面原子濃度 0. 18%のパラジウムが 付着しており、多分岐ポリイミドフィルムを用いた場合よりも少ないことが判明した。
[0228] (実施例 I 64〜1 72) (銅被覆末端変性多分岐ポリイミドの作成)
無電解めつき促進用末端変性多分岐ポリイミドに無電解銅めつきを施した。その結 果、無電解めつき促進用末端変性多分岐ポリイミドの表面に斑無く約 0. の厚さ の銅薄膜が形成され、銅薄膜が形成した銅被覆末端変性多分岐ポリイミドを得た。 銅被覆末端変性多分岐ポリイミドの表面抵抗を測定し、結果を表 6に示す。得られた 銅被覆末端変性多分岐ポリイミドは、ニチバン (株)製セロハンテープを用いて引き剥 力 Sしテストを行ったところ、全てのポリイミドフィルムから銅が剥離することはなく良好な 密着性を示した。 (実施例 I 73及び I 74では末端変性多分岐ポリイミド被覆表面 で密着性を評価した。 )
[0229] [表 6]
Figure imgf000061_0001
[0230] 実施例 I 64の銅被覆末端変性多分岐ポリイミドフィルムについて、図 1—4に示す フィルム断面の TEM分析より、銅と多分岐ボリイミドフィルムが密着している様子が観 察された。
[0231] (比較例 I 2) 比較例 I 1で調整した無電解めつき促進用ポリイミドフィルム Aに無電解銅めつき を施した結果、無電解めつき促進用ポリイミドフィルム Aの表面に僅かに銅薄膜の形 成が見られるのみであった。
[0232] 無電解メツキ条件
実施例 I 64〜 74及び比較例 I 2で実施した無電解銅めつきは、下記組成の無 電解銅めつき液にポリイミドを室温で 60秒間 3分間浸漬することで行った。
(無電解銅めつき液の調合組成)
•硫酸銅五水和物: 3. Og、酒石酸ナトリウムカリウム四水和物: 14. Og、水酸化ナトリ ゥム: 4. 0g、 37%ホルマリン: 10mL、水: 100mL。
[0233] (参考例 I 8)
(3, 5-ジ(4—ニトロフエノキシ)ァニリンの合成)
パート Vを参照のこと。
[0234] (参考例 I 9)
(3, 5-ジ (4—アミノフエノキシ)ァニリンの合成)
パート Vを参照のこと。
[0235] (参考例 I 10) (トリ(4ーァミノフエニル)ァミンの合成)
還流管を備えた 300mL三口フラスコにトリ(4 ニトロフエニル)ァミン 1 · 52g (4. 0 Ommol)と 5%Pd/C (200mg)をカロえ、アルゴン置換を行った。ジォキサン(50mL )とエタノール(25mUを加え、 80°Cで撹拌しながらヒドラジン一水和物(8· OmUを 3時間かけて滴下し、更に 80°Cで 20時間撹拌した。触媒を濾別した後、反応混合物 を氷水(400mL)に加えた。得られる灰色の固体を濾取し、水で洗浄後に減圧乾燥 することで目的物が得られた(収量: 1. 02g, 3. 51mmol,収率: 88%)。
(分析結果)
D 'HNMR (300MHz, DMSO-d ) : 6. 62— 6, 54 (m, 6H) , 6. 46— 6. 40 (m
6
, 6H) , 4. 68 (br, 6H)。
2)元素分析: C H N。
18 18 4
測定値 C : 74. 33%、H : 6. 16%, N : 19. 13%。
理論値 C : 74. 46%、H : 6. 25%、 N : 19. 30%。 [0236] (参考例 I 11) (1, 3, 5 トリ(4一二トロフヱノキシ)ベンゼンの合成) ディーンスタークトラップと還流管を取り付けた 500mL三口フラスコにフロログルシ ンニ水和物 6.32g(50. lmmol)と無水 DMF(120mL)を加え、室温で撹拌した。 アルゴン下で炭酸カリウム 18· 0g(130mmol)とトルエン(20mUを加えた後、 100 °Cで 2時間撹拌した。反応混合物を冷却し、 p—フルォロニトロベンゼン 23.4g(166 mmol)を加えて再び 100°Cで 25時間撹拌した。トルエンを減圧留去し、反応混合物 を 500mLの氷水中に注ぎ込むと黄色の固体が析出した。固体を濾取して少量の水 で洗浄後、ピリジン-水(1:1)から再結晶することで目的物が得られた (収量: 11. lg , 22.6mmol,収率: 45%)。
(分析結果)
D'HNMR (300MHz, DMSO-d ) :8.31— 8.24 (m, 6H) , 7.35— 7.28 (m
6
, 6H), 6.97(s, 3H)。
2)元素分析: C H N O。
24 15 3 9
測定値 C:58.84%、H:3.05%、N:8.62%。
理論値 C:58.90%, H:3.09%, N:8.59%。
[0237] (参考例 I— 12) (1, 3, 5 トリ(4 アミノフエノキシ)ベンゼンの合成)
300mL四口フラスコ ίこ 1, 3, 5 トリ(4 ニトロフエノキシ)ベンゼン 2.46g(5.03 mmol)と 5%Pd/C(149mg)を加え、アルゴン置換した。エタノール(50mUと TH F(50mUを加えた後、フラスコに水素バルーンを取り付け、混合物を常圧水素下室 温で 3日間撹拌した。触媒を濾別した後、溶媒を減圧留去することで目的物が得られ た(収量: 2.01g, 5.03mmol,収率; 100%)。
(分析結果)
D'HNMR (300MHz, CDC1 ) :6.87— 6.81 (m, 6H) , 6.67— 6.60 (m, 6H
3
), 6.16(s, 3H), 3.65-3.45 (br, 6H)。
2)元素分析: C H N O。
24 21 3 3
測定値 C: 72.17%、 H: 5.20%、N:10.35%。
理論値 C: 72.16%、 H: 5.30%、N:10.52%。
[0238] (参考例 I— 13) (無電解めつき触媒前駆物質:テトラクロ口パラジウム酸ナトリウムの合 成)
50mLフラスコに塩ィ匕ノ ラジウム 3. 54g (20. Ommol)と塩ィ匕ナトリウム 2. 34g (40 . lmmol)とを加え、水(20mL)を加えた。混合物を 120°Cで加熱攪拌し、溶媒を蒸 発させることで目的物が定量的に得られた。
[0239] (参考例 I 14) (無電解めつき触媒前駆物質:パラジウムナノ粒子の合成)
冷却管を備えた 50mL二口フラスコに酢酸ノ ラジウム 400mg (1 · 78mmol)と臭化 テトラオクタデシルアンモニゥム 500mg (0. 451mmol)をカロえ、アルゴン置換した。ト ルェン(20mL)と THF (4mL)を加えた後に 30°Cで撹拌し、更にエタノール(2. 5m Uを加えて混合物を 65°Cで 14時間攪拌した。室温まで冷却した後、激しく攪拌しな 力 エタノールを加え、更に室温で 5時間攪拌を行った。析出した灰色の固体を濾取 し、エタノールで洗浄した後に減圧乾燥することで目的物が得られた(338mg)。 XR D分析より lOnm以下の 0価パラジウムナノ粒子であることが判明した。また、 ICP—A ES分析より、ノ ラジウムナノ粒子中のパラジウム濃度は 47重量%であることが判明し た。
< <パート II〉〉 第 2の態様の実施例
[0240] (参考例 II— 8) (3, 5-ジ(4一二トロフヱノキシ)ァニリンの合成)
パート Vを参照のこと。
[0241] (参考例 II 9) (3, 5-ジ(4 アミノフエノキシ)ァニリンの合成)
パート Vを参照のこと。
[0242] (参考例 II 10) (トリ(4ーァミノフエニル)ァミンの合成)
パート Iの参考例 I 10を参照のこと。
[0243] (参考例 II 11) (1 , 3, 5 トリ(4一二トロフヱノキシ)ベンゼンの合成)
パート Iの参考例 I 11を参照のこと。
[0244] (参考例 II— 12) (1 , 3, 5—トリ(4 アミノフエノキシ)ベンゼンの合成)
パート Iの参考例 I 12を参照のこと。
[0245] (参考例 II 13) (無電解めつき触媒前駆物質:テトラクロ口パラジウム酸ナトリウムの 合成)
50mLフラスコに塩ィ匕ノ ラジウム 3. 54g (20. Ommol)と塩ィ匕ナトリウム 2. 34g (40 . lmmol)とを加え、水(20mL)を加えた。混合物を 120°Cで加熱攪拌し、溶媒を蒸 宪させることで目的物が定量的に得られた。
[0246] (実施例 II II 12) (末端変性ポリアミック酸の合成)
表 1に示す質量の 2· 5重量%多分岐ポリアミック酸 Aの DMAc溶液と表 7に示す質 量の末端変性剤とを加え、室温で終夜攪拌することで、 2. 5重量%の末端変性多分 岐ボリアミック酸の DMAc溶液を得た。
[0247] [表 7]
Figure imgf000065_0001
[0248] (実施例 II 13〜II 24) (末端変性多分岐ポリイミドの合成)
ディーンスタークトラップを取り付けたナスフラスコに、表 8に示す 2· 5重量%の末端 変性多分岐ポリアミック酸の DMAc溶液(5. OOg)とキシレン(2. 5mUとを加え、 15 0〜; 160°Cで 3時間加熱撹拌した。反応終了後、エタノール及びへキサンを加え、析 出した固体を濾取した。エタノール及びへキサンで洗浄後、減圧乾燥することで末端 変性多分岐ポリイミドが得られた。末端変性多分岐ポリイミドの TG— DTA分析を行 い、 10%質量減少温度を求め結果を表 8に示す。
[0249] [表 8]
Figure imgf000066_0001
[0250] 実施例 II— 20の末端変性多分岐ポリイミドについて、図 2—1に示す末端基変性多 分岐ポリイミド BP1— 8の1 H— NMR分析(300MHz, DMSO d )より、多分岐ポリ
6
イミドの芳香族炭素に結合した水素原子に起因する吸収が 8. 5〜6. 6ppmに観察さ れ 。
[0251] (実施例 II 25〜11 29) (末端変性多分岐ポリイミドフィルムの作成)
2. 5重量%の末端変性多分岐ポリアミック酸の DMAc溶液を減圧濃縮することで、 表 9に示す濃度の末端変性多分岐ポリアミック酸の DMAc溶液を調整した。ガラス基 板に濃縮した末端変性多分岐ポリアミック酸の DMAc溶液をスピンコート法もしくは キャスト法により塗布した。続いて、焼成炉を用いて大気中 350°Cで焼成することで、 表 9に示すガラス基板上に末端変性多分岐ポリイミドフィルムを形成した。
実施例 II 25のフィルムの比誘電率は 3. 32であり、図 2— 2に示す FTIR— ATR 分析より、末端基変性多分岐ポリイミドのカルボニル基に起因する吸収が 1714cm— に観察された。
実施例 II— 26〜11 29のフィルムについても FTIR—ATR分析より、末端基変性 多分岐ポリイミドのカルボニル基に起因する吸収が 1710cm―1〜 1721cm— 1の範囲 に観察された。
[表 9]
Figure imgf000067_0001
(実施例 II 30) (末端変性多分岐ポリイミドフィルムの作成)
3, 3' , 4, 4'—ビフエニルテトラカルボン酸二無水物と等モル量の p—フエ二レンジ ァミンとを N, N ジメチルァセトアミド溶媒中、室温で反応させることで 10重量%の ポリアミック酸溶液を調整した。この溶液をガラス基板上にキャスト法により塗布した後 、その上に 2. 5重量%の末端変性多分岐ポリアミック酸 B1— 1の DMAc溶液を減圧 濃縮することで得られる 10重量%の末端変性多分岐ポリアミック酸 A— 1の DMAc溶 液をキャスト法により塗布した。続いて、焼成炉を用いて大気中 350°Cで焼成すること で、ガラス基板上に末端変性多分岐ポリイミドフィルム BF8 1を形成した。末端変性 多分岐ポリアミック酸 B1— 1を塗布した側を FTIR— ATR分析すると、末端基変性多 分岐ポリイミドのカルボニル基に起因する吸収が l YlScnT1に観察された。
[0254] (実施例 II 31、 II 33〜36、 II 38) (多層の無電解めつき促進用末端変性多分 岐ポリイミドの合成)
表 10に示すガラス基板上に形成した末端変性多分岐ポリイミドフィルムを、少量の 塩化ナトリウムを含む 1. 0 X 10_3mol' dm— 3のテトラクロ口パラジウム酸ナトリウム含有 水溶液 (pH4.3)に室温で 3分間浸漬した。次!/、でポリイミドフィルムを基板から剥離 し、 30分間水洗した後に風乾し、無電解めつき促進用末端変性多分岐ポリイミドを得 た。無電解めつき促進用末端変性多分岐ポリイミドフィルムの XPSによる表面分析よ り、表面のパラジウム付着原子濃度及び硫黄原子濃度を測定し、結果を表 10に示す
[0255] (実施例 II 32、 II 37) (無電解めつき促進用末端変性多分岐ポリイミドの合成) 表 10に示すガラス基板上に形成した末端変性多分岐ポリイミドフィルムを基板から 剥離し、塩化スズ · 2水和物(2. Og)、濃塩酸(lmL)、水(50mU力、らなる溶液に 40 °Cで 2分間浸漬した。次いで、 40°Cの水に 10秒間浸漬し、更に塩化パラジウム(25 mg)、濃塩酸(0. 25mL)、水(50mU力もなる溶液に 40°Cで 2分間浸漬した。その 後、ポリイミドフィルムを流水で軽く洗浄した後に風乾し、無電解めつき促進用末端変 性多分岐ポリイミドを得た。無電解めつき促進用末端変性多分岐ポリイミドフィルムの XPSによる表面分析より、表面のパラジウム付着原子濃度及び硫黄原子濃度を測定 し、結果を表 10に示す。
[0256] [表 10]
無電解めつき促進用
末端変性多分岐ホ'リイミト'
末端変性
ホ°リイミト'フィルム Aラシ'ゥム付着量 硫黄
表面原子濃度 表 iS原子;辰度 種類
(%) (%) 実施例 Π— 31 BF1 -1 BB1 -1 0.43 0.38 実施例 Π— 32 BF1 -1 BB1 -11 0.73 ― 実施例 Π— 33 BF1 -2 BB1 -2 0.37 0.56 実施例 Π— 34 BF1一 4 BB1 -4 0.55 0.24 実施例 Π— 35 BF4-1 BB4-1 0.27 0.31 実施例 Π_36 BB7-1 0.41 0.34 実施例 Π— 37 BF7-1 BBフ一 11 1.05 一 実施例 Π— 38 BF8-1 BB8-1 0.90 一
[0257] (比較例 II 1)
(ポリイミドフィルム I)
3, 3,, 4, 4,ービフエニルテトラカルボン酸二無水物と等モル量の p—フエ二レンジ ァミンとを N, N ジメチルァセトアミド溶媒中、室温で反応させることで 10重量%の ポリアミック酸溶液を調整した。この溶液をガラス基板上に塗布し、次いで 350°Cで焼 成することでポリイミドフィルム Iを得た。 FTIR—ATR分析より、ポリイミドのカルボ二 ル基に起因する吸収が ΙΖΟ^π 1に観察された。
[0258] ガラス基板上に形成した直鎖ポリイミドフィルム Iを、少量の塩化ナトリウムを含む 1· OX 10_3mol'dm 3のテトラクロ口パラジウム酸ナトリウム含有水溶液(pH4.3)に室温 で 3分間浸漬した。次レ、でポリイミドフィルムを基板から剥離し、 30分間水洗した後に 風乾し、無電解めつき促進用ポリイミドフィルム Iを得た。 XPSによる表面分析より、無 電解めつき促進用ポリイミドフィルム Iには表面原子濃度 0. 18%のパラジウムが付着 しており、多分岐ボリイミドフィルムを用いた場合よりも少ないことが判明した。
[0259] (実施例 II 39〜11 46) (銅被覆末端変性多分岐ポリイミドの作成)
表 11に示す無電解めつき促進用末端変性多分岐ポリイミドに無電解銅めつきを施 した。その結果、全ての無電解めつき促進用末端変性多分岐ボリイミドの表面に斑無 く銅薄膜が形成され、銅薄膜が形成した銅被覆末端変性多分岐ポリイミドを得た。銅 被覆末端変性多分岐ポリイミドの表面抵抗を測定し結果を表 11に示す。また銅被覆 末端変性多分岐ポリイミドは、ニチバン (株)製セロハンテープを用いて引き剥がしテ ストを行ったところ、全てポリイミドフィルムから銅が剥離することはなかった。
[表 11]
Figure imgf000070_0001
(比較例 II 2) 比較例 II 1で調整した無電解めつき促進用ポリイミドフィルム Iに無電解銅めつき を施した結果、無電解めつき促進用ポリイミドフィルム Iの表面に僅かに銅薄膜の形成 が見られるのみであった。
[0262] 無電解メツキ条件
実施例 II 39 46及び比較例 II 2で実施した無電解銅めつきは、下記組成の 無電解銅めつき液にポリイミドを室温で 1 3分間浸漬することで行った。
(無電解銅めつき液の調合組成)
•硫酸銅五水和物: 3. Og、酒石酸ナトリウムカリウム四水和物: 14. Og、水酸化ナトリ ゥム: 4. 0g 37%ホルマリン: 10mL、水: 100mL
[0263] < <パート III〉〉 第 3の態様の実施例
(参考例 III III 5 III 7 ΠΙ— 9) (多分岐ポリアミック酸の合成)
滴下漏斗を備えた四口フラスコに表 12に示す酸二無水物と無水 N, N ジメチノレ ァセトアミド(以下、 DMAcと略す。)を加えた。室温で攪拌しながら、無水 DMAcに 溶解した表 12に示すトリァミン及び/またはジァミンを溶液を 5 7時間かけて徐々 に添加した。混合物を室温で終夜攪拌することで 2. 5重量%の多分岐ポリアミック酸 の DMAc溶液を得た。多分岐ポリアミック酸の数平均分子量を GPCより分析し、結果 を表 1に示す。
[0264] (参考例 III 6) (共重合系の多分岐ポリアミック酸の合成)
滴下漏斗を備えた 200mL三口フラスコに、 3, 5 ジ(4 アミノフエノキシ)ァニリン (1. 38mmol)、 1 , 4 フエ二レンジァミン(4. 15mmol)と無水 DMAcを加えた。室 温で攪拌しながら 3, 3' , 4, 4'—ビフエニルテトラカルボン酸二無水物(5. 53mmol )を 6時間かけて徐々に添加した。混合物を室温で終夜攪拌することで、 2. 5重量% の多分岐ポリアミック酸 A6 'の DMAc溶液を得た。多分岐ポリアミック酸 A6 'の GPC 分析より、数平均分子量は 4. OxlO4であった。
[0265] [表 12]
Figure imgf000072_0001
(実施例 III一;!〜 Ill一 8) (末端変性ポリアミック酸の合成)
ナスフラスコに表 12の参考例で合成した 2. 5重量。 /。多分岐ポリアミック酸の DMAc 溶液 (表 13に示す量)と表 13に示す末端変性剤(表 13に示す量)とを加え、室温で 終夜攪拌することで、 2. 5重量%の末端変性多分岐ポリアミック酸の DMAc溶液を 得た。
[0267] (末端変性多分岐ポリイミドの合成)
ディーンスタークトラップを取り付けたシュレンク管に、上記で重合した 2. 5重量% の末端変性多分岐ポリアミック酸の DMAc溶液(5. OOg)とキシレン(2. 5mL)とを加 え、 150〜; 160°Cで 3時間加熱撹拌した。反応終了後、エタノール及びへキサンを加 え、析出した固体を濾取した。エタノール及びへキサンで洗浄後、減圧乾燥すること で末端変性多分岐ポリイミドが得られた。末端変性多分岐ポリイミドの 10%質量減少 温度を TG— DTA分析により求め、結果を表 13に示す。
[0268] 実施例 III 4の末端変性多分岐ポリイミドについて、 NMR分析(300MHz, DMSO-d )を行い、その測定結果を図 3 1に示す。図 3 1より多分岐ポリイミド
6
に組み込まれた 3, 4—ピリジンジカルボン酸無水物由来のピリジル基の窒素 α位水 素に起因する吸収が 9. 3- 8. 6ppmに観察された。
[0269] [表 13]
Figure imgf000074_0002
Figure imgf000074_0001
実施例 III Ill 8で合成した 2. 5重量%の末端変性多分岐ポリアミック酸の D MAc溶液を減圧濃縮することで、表 14に示す濃縮濃度の末端変性多分岐ポリアミツ ク酸の DMAc溶液を調整した。ガラス基板に濃縮末端変性多分岐ポリアミック酸の D MAc溶液をスピンコート法もしくはキャスト法により塗布した。続いて、焼成炉を用い て大気中 350°Cで焼成することで、ガラス基板上に末端変性多分岐ポリイミドフィル ムを形成した。
全てのガラス基板上に末端変性多分岐ポリイミドフィルムは FTIR— ATR分析より、 末端基変性多分岐ポリイミドのカルボニル基に起因する吸収が 1712cm―1 1714c π 1の範囲に観察された。
[0271] (無電解めつき促進用末端変性多分岐ポリイミドの合成)
上記のガラス基板上に形成した末端変性多分岐ポリイミドフィルムを、少量の塩化 ナトリウムを含む 1. O X 10_3mol' dm— 3のテトラクロ口パラジウム酸ナトリウム含有水溶 液 (PH4.3)に室温で 3分間浸漬した。次いでポリイミドフィルムを基板から剥離し、 30 分間水洗した後に風乾し、無電解めつき促進用末端変性多分岐ポリイミドを得た。無 電解めつき促進用末端変性多分岐ポリイミドについて XPSによる表面分析を行い、 無電解めつき促進用末端変性多分岐ポリイミドの表面に付着するパラジウムの表面 原子濃度を測定し、結果を表 14に示す。
[0272] [表 14]
Figure imgf000076_0001
(実施例 III 10a) (無電解めつき促進用末端変性多分岐ポリイミドの合成) ガラス基板上に形成した末端変性多分岐ポリイミドフィルム CPa— 2を基板から剥離 し、塩化スズ · 2水和物(2. Og)、濃塩酸(lmU、水(50mUからなる溶液に 40°Cで 2分間浸漬した。次いで、 40°Cの水に 10秒間浸漬し、更に塩化パラジウム(25mg)、 濃塩酸 (0. 25mL)、水(50mL)からなる溶液に 40°Cで 2分間浸漬した。その後、ポ リイミドフィルムを流水で軽く洗浄した後に風乾し、無電解めつき促進用末端変性多 分岐ポリイミドを得た。 XPSによる表面分析より、無電解めつき促進用末端変性多分 岐ポリイミド CBal— 21には表面原子濃度 1. 63%のパラジウムが付着していること が判明した。
[0274] (比較例 III 1)
(ポリイミド、フィルム A)
3, 3' , 4, 4'—ビフエニルテトラカルボン酸二無水物と等モル量の p—フエ二レンジ ァミンとを N, N ジメチルァセトアミド溶媒中、室温で反応させることで 10重量%の ポリアミック酸溶液を調整した。この溶液をガラス基板上にスピンコートし、次いで 350 °Cで焼成することでポリイミドフィルム Aを得た。
[0275] ガラス基板上に形成した直鎖ポリイミドフィルム Aを、少量の塩化ナトリウムを含む 1 . 0 X 10_3mol' dm— 3のテトラクロ口パラジウム酸ナトリウム含有水溶液(ρΗ4·3)に室 温で 3分間浸漬した。次!/、でポリイミドフィルムを基板から剥離し、 30分間水洗した後 に風乾し、無電解めつき促進用ポリイミドフィルム Αを得た。 XPSによる表面分析より、 無電解めつき促進用ポリイミドフィルム Aには表面原子濃度 0. 18%のパラジウムが 付着しており、多分岐ポリイミドフィルムを用いた場合よりも少ないことが判明した。
[0276] (実施例 III 13〜111 16) (銅被覆末端変性多分岐ポリイミドの合成)
上記の表 14に示す無電解めつき促進用末端変性多分岐ポリイミドに無電解銅めつ きを施した。その結果、全ての無電解めつき促進用末端変性多分岐ポリイミドの表面 に斑無く銅薄膜が形成した銅被覆末端変性多分岐ポリイミドを得た。銅被覆末端変 性多分岐ポリイミドの表面抵抗を求め、表 15に示す。得られた銅被覆末端変性多分 岐ポリイミドは、ニチバン (株)製セロハンテープを用いて引き剥がしテストを行ったと ころ、全てポリイミドフィルムから銅が剥離することはなく良好な密着性を示した。
[0277] [表 15]
Figure imgf000078_0001
[0278] (比較例 III 2)
比較例 III 1で調整した無電解めつき促進用ポリイミドフィルム Aに無電解銅めつき を施した結果、無電解めつき促進用ポリイミドフィルム Aの表面に僅かに銅薄膜の形 成が見られるのみであった。
[0279] 無電解メツキ条件 実施例 III 13〜111 16及び比較例 III 2で実施した無電解銅めつきは、下記組 成の無電解銅めつき液にポリイミドを室温で 1 3分間浸漬することで行った。
(無電解銅めつき液の調合組成)
•硫酸銅五水和物: 3. Og、酒石酸ナトリウムカリウム四水和物: 14. Og、水酸化ナトリ ゥム: 4. 0g、 37%ホルマリン: 10mL、水: 100mL。
[0280] (参考例 III 7) (3, 5-ジ(4一二トロフヱノキシ)ァニリンの合成)
パート Vを参照のこと。
[0281] (参考例 III 8) (3, 5-ジ(4 アミノフエノキシ)ァニリンの合成)
パート Vを参照のこと。
[0282] (参考例 III 9) (トリ(4ーァミノフエニル)ァミンの合成)
パート Iを参照のこと。
[0283] (参考例 III 10)
(無電解めつき触媒前駆物質:テトラクロ口パラジウム酸ナトリウムの合成)
50mLフラスコに塩ィ匕ノ ラジウム(3. 54g ; 20. Ommol)と塩ィ匕ナトリウム(2. 34g ;, 40. Immol)とを加え、水(20mL)を加えた。混合物を 120°Cで加熱攪拌し、溶媒を 蒸発させることで目的物が定量的に得られた。
[0284] < <パート IV〉〉 第 4の態様の実施例
[0285] (実施例 IV—;!〜 IV— 9) (末端基変性多分岐ポリイミド製造の工程)
表 12に記載の 2. 5重量%末端変性多分岐ポリアミック酸溶液(10. lg)にキシレン (5. OmL)を加え、フラスコにディーンスタークトラップを取り付けた後、 150〜; 160°C で 3時間加熱撹拌した。反応終了後、エタノール及びへキサンを加え、析出した固体 を濾取した。固体をエタノール及びへキサンで洗浄後、減圧乾燥して、末端基変性 多分岐ポリイミドを得た。
末端基変性多分岐ポリイミドの TG— DTA分析より、末端基変性多分岐ポリイミドの 1 0%質量減少温度を求め、結果を表 16に示す。
得られた末端基変性多分岐ポリイミドは、全て DMAc及び DMSOにそれぞれ溶解 十生を示した。
実施例 IV— 1と実施例 IV— 4〜実施例 IV— 9の末端基変性多分岐ポリイミドにつ いて、 H— NMR分析(300MHz, DMSO d )を行ったところ、図 4—1と図 4— 4
6
〜図 4 9に示すように多分岐ポリアミック酸の末端アミノ基とサリチルアルデヒドが反 応することで形成されたィミノ基炭素に結合した水素原子に起因する吸収が 9. ;!〜 8 . 8ppmに観察された。
実施例 IV— 2の末端基変性多分岐ポリイミドについて、ェ^1 NMR分析(300MHz , DMSO-d )を行ったところ、図 4— 2に示すように多分岐ポリアミック酸の末端アミ
6
ノ基と 2 ヒドロキシー 5 二トロべンズアルデヒドが反応することで形成されたィミノ基 炭素に結合した水素原子に起因する吸収が 9. 3〜8. 9ppmに観察された。
実施例 IV— 3の末端基変性多分岐ポリイミドについて、 ifi— NMR分析(300MHz , DMSO-d )を行ったところ、図 4— 3に示すように末端基変性多分岐ポリイミドの
6
末端アミノ基と o バニリンが反応することで形成されたィミノ基炭素に結合した水素 原子に起因する吸収が 9. ;!〜 8. 8ppmに観察された。
[表 16]
〔〕0872
Figure imgf000081_0001
Figure imgf000081_0002
実施例 IV— 1で合成した末端基変性多分岐ポリイミド DPI— 1を DMAcに溶解し て 20質量%の末端基変性多分岐ポリイミド溶液を調整し、ガラス基板上にスピンコー ト法を用いて膜状に溶液を塗布した。続いて、焼成炉を用いて大気中 180°Cで焼成 して溶媒を気化させることで、ガラス基板上に末端基変性多分岐ポリイミドのフィルム を形成した。
図 4— 10に示す末端基変性多分岐ポリイミドフィルムの FTIR—ATR分析より、末 端基変性多分岐ポリイミドのカルボニル基に起因する吸収が 1715CHT 1に観察され た。
[0288] (実施例 IV— 11) (パラジウム付着多分岐ポリイミドフィルムの合成)
実施例 IV— 10で調整したガラス基板上に形成した末端基変性多分岐ポリイミドフィ ルムを、 1. 0 X 10 3 mol. dm— 3の酢酸パラジウム含有エタノール溶液に室温で 3分 間浸漬して、次いで 30分間エタノールと水で洗浄した後に風乾して、ノ ラジウム付着 多分岐ポリイミドフィルムを得た。 XPSによる表面分析より、このパラジウム付着多分 岐ポリイミドフィルムには表面原子濃度 0. 40%のパラジウムが付着していることが判 明した。
[0289] (実施例 IV— 12) (銅被覆多分岐ポリイミドの合成)
実施例 IV— 11で得られたパラジウム付着多分岐ポリイミドフィルムを、無電解銅め つき液に室温 (約 25°C)で 60秒間浸漬して無電解銅めつきを行った。得られたパラジ ゥム付着多分岐ポリイミド A— 1フィルムの表面には斑無く銅薄膜が形成され、表面抵 抗は 4. Ο Χ ΙΟ^ Ω /口を示した。得られた銅被覆多分岐ポリイミドフィルムは、ニチ バン (株)製セロハンテープを用いて引き剥がしテストを行ったところ、多分岐ポリイミ ドフィルムから銅が剥離することはなく良好な密着性を示した。
< <パート V〉〉 第 5の態様の実施例
(実施例 V— 1) :
[3, 5-ジヒドロキシァ二リンの合成]
200mL二口フラスコに 1 , 3, 5 トリヒドロキシベンゼン 31 · 5g (250mmO:L)をカロえ た。アルゴン置換した後、 28%アンモニア水と水 25mLを加えて水浴中で 18時間攪 拌した。水を減圧留去し、イソプロパノール 50mLを加えた。得られる混合物を 2時間 氷冷し、析出した固体を濾取した。イソプロパノールで洗浄後、減圧乾燥することで 目的物が得られた(収量: 11.4g, 91.3mmoL,収率: 37%)。
[0290] 得られた化合物は以下の分析を行った。尚、ァミノ基の吸収は幅広であり特定する ことはできなかった。
D'HNMR (300MHz, CD OD): δ 5.75(d, 2Η) , 5.69 (t, 1Η)。
3
[0291] [3, 5-ジ(4一二トロフエノキシ)ァニリンの合成]
ディーンスタークトラップと還流管を取り付けた lOOmL三口フラスコに、 3,5-ジヒドロ キシァ二リン 15· 8g(126mmoL)と無水 N, N—ジメチルホルムアミド(DMF) 250m Lを加え、室温で撹拌した。炭酸カリウム 30.0g(217mmoUとトルエン 25mLを加え た後、 100°Cで 2時間撹拌した。反応混合物を 70°Cまで冷却し、 p—フルォロニトロ ベンゼン 38.9g(276mmoL)を加えて、再び 100°Cで 7時間撹拌した。トルエンを減 圧留去し、反応混合物を 1Lの氷水中に注ぎ込むと、黄色の固体が析出した。固体を 濾取し、少量の水で洗浄後、減圧乾燥することで目的物が得られた (収量: 39. Og, 106mmoL,収率: 84%)。
[0292] 得られた化合物は以下の分析を行った。
D'HNMR (300MHz, CDCL ): δ 8.25— 8.17(m, 4H) , 7. 12— 7.04 (m,
3
4H), 6.25(d, 2H), 6.18 (t, 1H), 4.04— 3.84 (br, 2H)。
2)融点: 180〜; 182°C。
3)元素分析: C H N O。
18 13 3 6
測定値 C:58.74%、H:3.53%、N:11.42%。
理論値 C:58.86%、H:3.57%、N:11.44%。
[0293] (実施例 V— 2)
(3, 5-ジ (4—アミノフエノキシ)ァニリンの合成)
500mL二口フラスコ ίこ 3, 5—ジ(4—ニトロフエノキシ)ァニリン 7.34g(20. Ommo Uと 5%Pd/C(427mg)とを加え、無水エタノール 400mLを加えた。その後、常圧 の水素雰囲気下、室温で 13時間撹拌した。反応終了後、触媒を濾別し、溶媒を減圧 留去することで目的物が得られた(収量: 5.89g, 19.2mmoL,収率: 96%)。
[0294] 得られた化合物は以下の分析を行った。 D'HNMROOOMHz, CDCL ): 66.90-6.81 (m, 4H) , 6.78— 6.60 (m,
3
4H), 5.98 (t, 1H), 5.87(d, 2H) , 4.20— 2.80 (br, 6H)。
2)融点: 177〜; 178°C。
3)元素分析: C H N O。
18 17 3 2
測定値 C: 70.15%、 H: 5.39%、N:13.50%。
理論値 C: 70.34%、 H: 5.58%、N:13.67%。
[0295] (実施例 V— 3:ポリアミック酸の合成)
滴下漏斗を備えた lOOmL三口フラスコに、実施例 V— 2で得た 3, 5—ジ (4ーァミノ フエノキシ)ァニリン 3.32mmoLと無水 N, N—ジメチルァセトアミドとを加えた。室温 で攪拌しながら 3, 3', 4, 4'—ビフエニルテトラカルボン酸二無水物 3.32mmoLを 6時間かけて添加し、混合物を室温で終夜攪拌することで、 2.5重量%のポリアミック 酸 VA溶液を得た。 GPC分析より、ポリアミック酸 VAの数平均分子量は 3.7X104で あった。
[0296] (実施例 V— 4:ポリアミック酸の合成)
滴下漏斗を備えた 500mL四口フラスコに、 3, 3', 4, 4'—ビフエニルテトラカルボ ン酸ニ無水物 11· 2mmoLと無水 N, N—ジメチルァセトアミドとを加えた。室温で攪 拌しながら実施例 V— 2で得た 3, 5-ジ(4—アミノフエノキシ)ァニリン 5.58mmoLを 無水 N, N—ジメチルァセトアミドに溶解した溶液を 5時間かけて滴下した
。混合物を室温で終夜攪拌することで 2.5重量%のポリアミック酸 VB溶液を得た。 G PC分析より、ポリアミック酸の数平均分子量は 1.7X104であった。
[0297] 3, 3', 4, 4'—ビフエニルテトラカルボン酸二無水物と 3, 5_ジ(4ーァミノフエノキシ )ァ二リンとのモル比(酸/ジァミン)は、 2.01である。
[0298] (実施例 V— 5、実施例 V— 6:ポリイミドの合成)
ディーンスタークトラップを取り付けた 25mLシュレンク管に実施例 V— 3及び V— 4 で合成したポリアミック酸溶液(5.00g)とキシレン(2· 5mUを加え、 150〜; 160°Cで 3時間加熱撹拌した。反応終了後、エタノール及びへキサンを加え、析出した固体を 濾取した。エタノール及びへキサンで洗浄後、減圧乾燥することでポリイミド VA及び VBが得られた。 TG— DTA分析より、ポリイミド VA及び VBの 10%質量減少温度は 562。。及び596。。でぁった。
[0299] (実施例 V— 7、 V- 8):ポリイミドフイノレム)
実施例 V— 3及び V— 4で合成した 2. 5重量%ポリアミック酸溶液を減圧濃縮するこ とで、 10重量%ポリアミック酸溶液を調整した。濃縮溶液は透明で、流動性を有して いた。ガラス基板に 10重量%ポリアミック酸溶液をスピンコート法により塗布した。続 いて、焼成炉を用いて大気中 350°Cで焼成することで、ガラス基板上にポリイミドフィ ルム VA2及びポリイミドフィルム VB2を形成した。得られたフィルムの FT— IRスぺタト ルを測定し、結果を図 5—1及び図 5— 2に示す。図 5—1より、 1714cm— 1にイミドカ ルポニル基に起因する吸収が確認できた。図 5— 2より、 1715cm— 1にイミドカノレポ二 ル基に起因する吸収が確認された。
[0300] (実施例 V— 9:無電解めつき促進用ポリイミドフィルムの合成)
実施例 V— 7で得られたガラス基板上に形成したポリイミドフィルムを、少量の塩化 ナトリウムを含む 1. O X 10_3 (mol/dm3)のテトラクロ口パラジウム酸ナトリウム含有 水溶液 (pH4.3)に室温で 3分間浸漬した。次!/、でポリイミドフィルムを基板から剥離 し、 30分間水洗した後に風乾した。 XPSによる表面分析より、ポリイミドフィルムには 表面原子濃度 0. 38%のパラジウムが付着していることが判明した。
[0301] ノ ラジウム付着ポリイミドフィルムに無電解銅めつき (メツキ条件:室温、浸漬時間: 2 分)を行い、洗浄、乾燥し、ポリイミドフィルム表面に斑無く銅薄膜が形成された銅メッ キポリイミドフィルムを得た。
[0302] 銅メツキポリイミドフィルムの銅メツキ側の表面抵抗は、 9. S X ICT^ /口を示した 。得られた銅メツキポリイミドフィルムは、ニチバン (株)製セロハンテープを用いて引き 剥がしテストを行ったところ、ポリイミドフィルムから銅が剥離することはなく良好な密着 十生を示した。
[0303] (無電解銅めつき液の調合組成)
硫酸銅五水和物: 3. Og、酒石酸ナトリウムカリウム四水和物: 14. Og、水酸化ナトリウ ム: 4. 0g、 37%ホルマリン: 10mL、水: 100mL。
産業上の利用可能性
[0304] 本発明の末端変性多分岐ポリイミドは、フレキシブルプリント配線板、 TAB等の材 料として有用である。

Claims

請求の範囲
成分(a):テトラカルボン酸二無水物と、
成分 (b):ァミン成分として、トリァミンとジァミンとの混合物(但し、全量がトリァミンで あってもよい。)と、
成分 ):末端成分として、一般式(1—;!)〜(1—4)から選ばれる化合物とを、 ポリマー末端の少なくとも一部が前記一般式(1一;!)〜(1 4)から選ばれる化合 物に由来するように反応させて得られる末端変性多分岐ポリイミド。
H N-X-R1 (1 - 1)
2
(一般式(1 1)において、 Xは直接結合、又は炭素数 1〜3のアルキレン基を示す。 R1は、置換基群 αより選択される任意の基で置換された含窒素複素環基を示し、置 換基群 αは、水素原子、ハロゲン原子、水酸基、ニトロ基、カルボン酸基及びその塩 、スルホン酸基及びその塩、エステル基、アミド基、シァノ基、アルキル基、アルコキシ 基、又は、ァリール基を示す。)
H N-X-R1 (1 - 2)
2
(一般式(1 2)において、 Xは直接結合、又は炭素数 1〜3のアルキレン基を示す。 R1は、置換基群 αより選択される任意の基で置換された含硫黄複素環基、もしくは 分子内にチオール,もしくはチォエーテル基を有するァリール基を示し、置換基群 α は、一般式(1 1)で定義されたとおりである。 )
Figure imgf000087_0001
(一般式(1 3)において、 Rは置換基群 αより選択される任意の基で置換された含 窒素複素環基を示し、置換基群 αは、一般式(1 1)で定義されたとおりである。 ) [化 2]
Figure imgf000088_0001
(一般式(1—4)につ!/、て、 Rは一価の残基を示し、一般式(1 1)で定義された置 換基群 αと同じ意味を有し、 Rは、同一であっても、異なってもよい。 )
[2] 前記末端成分が、一般式(1 1)および(1 2)から選ばれ、前記アミン成分の全 量がトリァミンであって、
3/2以上のモル比(テトラカルボン酸二無水物/トリァミンのモル比)のテトラカル ボン酸二無水物及びトリァミンと、前記一般式(1 1)および(1 2)から選ばれる化 合物とを反応させて得られる請求項 1記載の末端変性多分岐ポリイミド。
[3] 前記末端成分が、一般式(1 3)および(1 4)から選ばれ、前記アミン成分の全 量がトリァミンであって、
1/2以上から 3/2未満のモル比(テトラカルボン酸二無水物/トリァミンのモル比 )のテトラカルボン酸二無水物及びトリァミンと、前記一般式(1 3)および(1 4)か ら選ばれる化合物とを反応させて得られる請求項 1記載の末端変性多分岐ポリイミド
[4] 前記成分(a):テトラカルボン酸二無水物と、前記成分 (b):ァミン成分とを反応させ て得られるポリアミック酸と、前記成分 (c):末端成分とを反応させて得られる請求項 1
〜3のいずれかに記載の末端変性多分岐ポリイミド。
[5] 前記一般式(1 1)で表される化合物が、分子内に少なくとも一つのピリジル基を 有する化合物であることを特徴とする請求項;!〜 4のいずれかに記載の末端変性多 分岐ポリイミド。
[6] 前記一般式(1 2)で表される化合物が、分子内に少なくとも一つのチォエーテル 部位を有する化合物であることを特徴とする請求項 1〜4のいずれかに記載の末端 変性多分岐ポリイミド。
[7] 前記一般式(1 3)で表される化合物が、分子内に少なくとも一つのピリジル基を 有する化合物であることを特徴とする請求項;!〜 4のいずれかに記載の末端変性多 分岐ポリイミド。
[8] 前記一般式(1 4)で表される化合物が、サリチルアルデヒドであることを特徴とす る請求項 1〜4のいずれかに記載の末端変性多分岐ポリイミド。
[9] 耐熱性のポリイミドフィルムの片面または両面に形成されている請求項 1〜8のいず れかに記載の末端変性多分岐ポリイミド。
[10] 耐熱性のポリイミドフィルムを得ることができるポリアミック酸溶液のキャスト層若しく はポリアミック酸溶液のキャスト層を加熱乾燥して得られる自己支持性フィルムに、請 求項 1〜8のいずれかに記載の末端変性多分岐ポリイミドを得ることができるポリアミツ ク酸溶液を塗工法、流延法または印刷法によって塗布した後、加熱乾燥し、イミド化 して得られる請求項 9記載の末端変性多分岐ポリイミド。
[11] 前記耐熱性のポリイミドフィルム力 3, 3 ' , 4, 4,ービフエニルテトラカルボン酸二 無水物を含む酸成分と、 p—フエ二レンジアミンを含むジァミン成分とから得られるポリ イミド、またはピロメリット酸二無水物を含む酸成分と、 4, 4 'ージアミノジフエニルエー テルを含むアミン成分とから得られるポリイミドであることを特徴とする請求項 9または 10記載の末端変性多分岐ポリイミド。
[12] 請求項 1〜; 11のいずれかに記載の末端変性多分岐ポリイミドに、無電解めつき触 媒前駆物質が吸着されていることを特徴とする無電解めつき促進用末端変性多分岐 ポリイミド。
[13] 前記無電解めつき触媒前駆物質は、パラジウム化合物であることを特徴とする請求 項 12記載の無電解めつき促進用末端変性多分岐ポリイミド。
[14] 請求項 12又は請求項 13記載の無電解めつき促進用末端変性多分岐ポリイミドに、 無電解金属めつきが施されていることを特徴とする金属被覆末端変性多分岐ポリイミ ド、。
[15] 1)成分(a):テトラカルボン酸二無水物と、成分 (b):ァミン成分として、トリァミンとジ ァミンとの混合物(但し、全量がトリァミンであってもよい。)と、成分 (c):末端成分とし て、一般式(1一;!)〜(1—4)から選ばれる化合物とを、ポリマー末端の少なくとも一 部が前記一般式(1 1)〜(; 1 4)から選ばれる化合物から誘導されるように反応さ せて、末端変性多分岐ポリイミドを製造する工程、
2)前記末端変性多分岐ポリイミドに、無電解めつき触媒前駆物質を吸着させて無 電解めつき促進用末端変性多分岐ポリイミドを製造する工程、
3)前記無電解めつき促進用末端変性多分岐ポリイミドに無電解金属めつきを行い 金属被覆末端変性多分岐ポリイミドを製造する工程、
を有することを特徴とする金属被覆末端変性多分岐ポリイミドの製造方法。
H N-X-R1 (1 - 1)
2
(一般式(1 1)において、 Xは直接結合、又は炭素数 1〜3のアルキレン基を示す。 R1は、置換基群 αより選択される任意の基で置換された含窒素複素環基を示し、置 換基群 αは、水素原子、ハロゲン原子、水酸基、ニトロ基、カルボン酸基及びその塩 、スルホン酸基及びその塩、エステル基、アミド基、シァノ基、アルキル基、アルコキシ 基、又は、ァリール基を示す。)
H N-X-R1 (1 - 2)
2
(一般式(1 2)において、 Xは直接結合、又は炭素数 1〜3のアルキレン基を示す。 R1は、置換基群 αより選択される任意の基で置換された含硫黄複素環基、もしくは 分子内にチオール,もしくはチォエーテル基を有するァリール基を示し、置換基群 α は、一般式(1 1)で定義されたとおりである。 )
Figure imgf000090_0001
(一般式(1 3)において、 Rは置換基群 αより選択される任意の基で置換された含 窒素複素環基を示し、置換基群 αは、一般式(1 1)で定義されたとおりである。 ) [化 4]
Figure imgf000091_0001
(一般式(1—4)につ!/、て、 Rは一価の残基を示し、一般式(1 1)で定義された置 換基群 αと同じ意味を有し、 Rは、同一であっても、異なってもよい。 )
[16] 前記工程 1)において、前記末端成分が、一般式(1 1)および(1 2)から選ばれ 、前記アミン成分の全量がトリァミンであって、 3/2以上のモル比(テトラカルボン酸 二無水物/トリァミンのモル比)のテトラカルボン酸二無水物及びトリァミンと、前記一 般式(1 1 )および(1 2)から選ばれる化合物とを反応させることを特徴とする請求 項 15記載の金属被覆末端変性多分岐ポリイミドの製造方法。
[17] 前記工程 1)において、前記末端成分が、一般式(1 3)および(1 4)から選ばれ 、前記アミン成分の全量がトリァミンであって、 1/2以上から 3/2未満のモル比(テト ラカルボン酸二無水物/トリァミンのモル比)のテトラカルボン酸二無水物及びトリアミ ンと、前記一般式(1 3)および(1 4)から選ばれる化合物とを反応させることを特 徴とする請求項 15記載の金属被覆末端変性多分岐ポリイミドの製造方法。
[18] 前記工程 1)の末端変性多分岐ポリイミドを製造する工程において、前記成分(a): テトラカルボン酸二無水物と、前記成分 (b):ァミン成分とを反応させて得られるポリア ミック酸と、前記成分 (c):末端成分とを反応させることを特徴とする請求項 15〜; 17の いずれかに記載の金属被覆末端変性多分岐ポリイミドの製造方法。
[19] 前記トリァミンが、一般式 (I)で表される芳香族トリァミンであることを特徴とする請求 項 1〜; 11の!/、ずれかに記載の末端変性多分岐ポリイミド。
[化 5]
Figure imgf000092_0001
(但し、一般式(I)において、 M 〜M及び M, 〜M, は、—H, -CN, —OCH ,
1 4 1 4 3
-COOH, -CH , 一 C H ,又は、—CFを示し、 M 〜M及び M, 〜M, は、そ
3 2 5 3 1 4 1 4 れぞれ独立して、同一であっても、異なってもよい。 )
[20] 前記トリァミンが、前記一般式 (I)で表される芳香族トリァミンであることを特徴とする 請求項 12または 13記載の促進用末端変性多分岐ポリイミド。
[21] 前記トリァミンが、前記一般式 (I)で表される芳香族トリァミンであることを特徴とする 請求項 14記載の金属被覆末端変性多分岐ポリイミド。
PCT/JP2007/064611 2006-07-25 2007-07-25 Polyimide hyperramifié à modification terminale, polyimide hyperramifié à modification terminale plaqué avec un métal, et procédé de production de ceux-ci WO2008013210A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020097002776A KR101449961B1 (ko) 2006-07-25 2007-07-25 말단변성 다분기 폴리이미드, 금속도금 피복 말단변성 다분기 폴리이미드 및 이들의 제조방법
US12/375,211 US8093349B2 (en) 2006-07-25 2007-07-25 Terminally modified polybranched polyimide, metal-plated terminally modified polybranched polyimide, and method for producing the same
JP2008526795A JP5359273B2 (ja) 2006-07-25 2007-07-25 末端変性多分岐ポリイミド、金属メッキ被覆末端変性多分岐ポリイミド及びこれらの製造方法

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2006202568 2006-07-25
JP2006202570 2006-07-25
JP2006-202570 2006-07-25
JP2006202567 2006-07-25
JP2006-202568 2006-07-25
JP2006-202567 2006-07-25
JP2006223517 2006-08-18
JP2006-223517 2006-08-18
JP2007182820 2007-07-12
JP2007-182820 2007-07-12

Publications (1)

Publication Number Publication Date
WO2008013210A1 true WO2008013210A1 (fr) 2008-01-31

Family

ID=38981521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/064611 WO2008013210A1 (fr) 2006-07-25 2007-07-25 Polyimide hyperramifié à modification terminale, polyimide hyperramifié à modification terminale plaqué avec un métal, et procédé de production de ceux-ci

Country Status (4)

Country Link
US (1) US8093349B2 (ja)
JP (1) JP5359273B2 (ja)
KR (1) KR101449961B1 (ja)
WO (1) WO2008013210A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100322586A1 (en) * 2009-06-23 2010-12-23 Nitto Denko Corporation Polyimide compound, preparation method therefor, and optical film and optical waveguide produced by employing the compound
JP2011101977A (ja) * 2009-11-10 2011-05-26 Mitsui Chemicals Inc ポリイミド金属積層体およびポリイミド接着シート
WO2013146967A1 (ja) * 2012-03-29 2013-10-03 東レ株式会社 ポリアミド酸およびそれを含有する樹脂組成物
JP2014210896A (ja) * 2013-04-22 2014-11-13 住友ベークライト株式会社 ポリイミド樹脂およびポリイミドフィルム
WO2018070398A1 (ja) * 2016-10-12 2018-04-19 コニカミノルタ株式会社 透明ポリイミド樹脂、透明ポリイミド樹脂組成物、透明ポリイミド樹脂フィルム、赤外線吸収組成物、赤外線カットフィルター及び透明ポリイミド樹脂フィルムの製造方法
JP2022515834A (ja) * 2018-12-28 2022-02-22 ドゥーサン コーポレイション ポリアミック酸組成物及びこれを用いた透明ポリイミドフィルム

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7997997B2 (en) * 2007-12-18 2011-08-16 Acushnet Company Interchangeable shaft system
JP6020833B2 (ja) * 2011-04-12 2016-11-02 日産化学工業株式会社 ハイパーブランチポリマー及び金属微粒子を含む無電解めっき下地剤
US8987357B2 (en) 2011-05-27 2015-03-24 Basf Se Thermoplastic molding composition
EP2527402A1 (de) 2011-05-27 2012-11-28 Basf Se Thermoplastische Formmasse
CN105439985A (zh) * 2014-08-13 2016-03-30 江苏扬子江天悦新材料有限公司 六缩水甘油基三氨基三苯胺制备方法
US10029887B2 (en) * 2016-03-29 2018-07-24 Otis Elevator Company Electroless metal coating of load bearing member for elevator system
CN110540643B (zh) * 2019-08-15 2021-02-23 武汉华星光电半导体显示技术有限公司 聚酰亚胺及其制备方法与柔性oled面板
KR20220117281A (ko) 2019-12-16 2022-08-23 바스프 에스이 폴리알킬렌 테레프탈레이트를 포함하는 열가소성 성형 조성물
CN114920927B (zh) * 2022-05-27 2024-03-22 浙江华特新材料有限公司 一种聚酰胺蜡及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10260531A (ja) * 1997-03-17 1998-09-29 Nippon Zeon Co Ltd ポリイミド系樹脂組成物
JPH11130858A (ja) * 1997-10-31 1999-05-18 Hitachi Chem Co Ltd ポリイミド、その前駆体、それらの製造法及び感光性樹脂組成物
WO2002012926A1 (fr) * 2000-08-09 2002-02-14 Mitsui Chemicals, Inc. Elements optiques constitues de resines de polyimide
JP2002226972A (ja) * 2001-02-01 2002-08-14 Nikko Materials Co Ltd 無電解めっき方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1161505A (en) * 1965-09-13 1969-08-13 Toyo Rayon Co Ltd Thermally Stable Polymer and processes for the preparation thereof
JPH0411670A (ja) * 1990-05-01 1992-01-16 Dainippon Ink & Chem Inc フッ素樹脂塗料及びその塗装物
US5965687A (en) * 1996-03-05 1999-10-12 The United States Of America Represented By The Adminstrator Of The National Aeronautics And Space Administration Method of preparing polymers with low melt viscosity
JP4411670B2 (ja) 1998-09-08 2010-02-10 凸版印刷株式会社 非接触icカードの製造方法
JP2002208768A (ja) 2001-01-12 2002-07-26 Hitachi Ltd ポリイミド基体への金属メッキ膜形成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10260531A (ja) * 1997-03-17 1998-09-29 Nippon Zeon Co Ltd ポリイミド系樹脂組成物
JPH11130858A (ja) * 1997-10-31 1999-05-18 Hitachi Chem Co Ltd ポリイミド、その前駆体、それらの製造法及び感光性樹脂組成物
WO2002012926A1 (fr) * 2000-08-09 2002-02-14 Mitsui Chemicals, Inc. Elements optiques constitues de resines de polyimide
JP2002226972A (ja) * 2001-02-01 2002-08-14 Nikko Materials Co Ltd 無電解めっき方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100322586A1 (en) * 2009-06-23 2010-12-23 Nitto Denko Corporation Polyimide compound, preparation method therefor, and optical film and optical waveguide produced by employing the compound
US8470959B2 (en) * 2009-06-23 2013-06-25 Nitto Denko Corporation Polyimide compound, preparation method therefor, and optical film and optical waveguide produced by employing the compound
JP2011101977A (ja) * 2009-11-10 2011-05-26 Mitsui Chemicals Inc ポリイミド金属積層体およびポリイミド接着シート
CN104204037A (zh) * 2012-03-29 2014-12-10 东丽株式会社 聚酰胺酸和含有其的树脂组合物
JP5472540B1 (ja) * 2012-03-29 2014-04-16 東レ株式会社 ポリアミド酸およびそれを含有する樹脂組成物
WO2013146967A1 (ja) * 2012-03-29 2013-10-03 東レ株式会社 ポリアミド酸およびそれを含有する樹脂組成物
CN104204037B (zh) * 2012-03-29 2016-08-24 东丽株式会社 聚酰胺酸和含有其的树脂组合物
TWI572640B (zh) * 2012-03-29 2017-03-01 東麗股份有限公司 聚醯胺酸及含有其之樹脂組成物
US9822281B2 (en) 2012-03-29 2017-11-21 Toray Industries, Inc. Polyamide acid and resin composition containing same
JP2014210896A (ja) * 2013-04-22 2014-11-13 住友ベークライト株式会社 ポリイミド樹脂およびポリイミドフィルム
WO2018070398A1 (ja) * 2016-10-12 2018-04-19 コニカミノルタ株式会社 透明ポリイミド樹脂、透明ポリイミド樹脂組成物、透明ポリイミド樹脂フィルム、赤外線吸収組成物、赤外線カットフィルター及び透明ポリイミド樹脂フィルムの製造方法
JPWO2018070398A1 (ja) * 2016-10-12 2019-07-25 コニカミノルタ株式会社 透明ポリイミド樹脂、透明ポリイミド樹脂組成物、透明ポリイミド樹脂フィルム、赤外線吸収組成物、赤外線カットフィルター及び透明ポリイミド樹脂フィルムの製造方法
JP7036021B2 (ja) 2016-10-12 2022-03-15 コニカミノルタ株式会社 透明ポリイミド樹脂、透明ポリイミド樹脂組成物、透明ポリイミド樹脂フィルム、赤外線吸収組成物、赤外線カットフィルター及び透明ポリイミド樹脂フィルムの製造方法
JP2022515834A (ja) * 2018-12-28 2022-02-22 ドゥーサン コーポレイション ポリアミック酸組成物及びこれを用いた透明ポリイミドフィルム
JP7387742B2 (ja) 2018-12-28 2023-11-28 ドゥーサン コーポレイション ポリアミック酸組成物及びこれを用いた透明ポリイミドフィルム

Also Published As

Publication number Publication date
KR20090034965A (ko) 2009-04-08
US20100009206A1 (en) 2010-01-14
JPWO2008013210A1 (ja) 2009-12-17
JP5359273B2 (ja) 2013-12-04
KR101449961B1 (ko) 2014-10-14
US8093349B2 (en) 2012-01-10

Similar Documents

Publication Publication Date Title
JP5359273B2 (ja) 末端変性多分岐ポリイミド、金属メッキ被覆末端変性多分岐ポリイミド及びこれらの製造方法
CN101523510B (zh) 导电糊膏以及用它制成的导电涂膜和导电薄膜
US20100316877A1 (en) Method for preparing polyimide and polyimide prepared using the same
US20100233476A1 (en) Copper foil with primer resin layer and laminated sheet using the same
JP5417595B2 (ja) ポリイミド樹脂層の形成方法
EP2535367A1 (en) Polyimide film, polyimide laminate comprising same, and polyimide/metal laminate comprising same
JP5275604B2 (ja) ポリイミド樹脂層の製造方法
JP5139986B2 (ja) ポリイミド系樹脂組成物及びその製造方法、ならびに金属積層体
JP2020104340A (ja) 金属張積層板及び回路基板
JP5119781B2 (ja) 無電解めっき促進用多分岐ポリイミド、金属被覆多分岐ポリイミド及びこれらの製造方法
JP7461475B2 (ja) ポリイミドフィルム、その製造方法、およびこれを含む軟性金属箔積層板
JP5287692B2 (ja) ポリイミド系材料、組成物及びフィルム、並びにその製造方法
JP2008238572A (ja) フレキシブル積層板の製造方法
Hsiao et al. Synthesis and characterization of new polyimides based on 3, 6-bis (4-aminophenoxy) benzonorbornane
JP4428491B2 (ja) 電着用ポリイミド樹脂組成物、その製造方法、電着成形体及びその製造方法
JP4907142B2 (ja) 芳香族ポリアミド酸、ポリイミド及び配線基板用積層体
JP6852970B2 (ja) ポリイミドフィルムの製造方法
JP6645880B2 (ja) ポリイミドフィルムの製造方法
JPH02225522A (ja) 含フッ素ポリイミドおよびポリイミド酸
JP6788976B2 (ja) ポリイミドフィルムの製造方法
JP2005314630A (ja) 芳香族ポリアミド酸及びポリイミド
JP4935406B2 (ja) 高耐熱性ポリイミド樹脂組成物
KR100867528B1 (ko) 폴리이미드 합성용 단량체, 및 이를 포함하는 폴리이미드전구체 조성물 및 연성 금속박 적층체
JP4017034B2 (ja) 新規なポリイミドフィルム
JP2017165910A (ja) ポリイミドフィルムの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07791327

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008526795

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12375211

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020097002776

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07791327

Country of ref document: EP

Kind code of ref document: A1