WO2008004660A1 - Procédé de fabrication d'une dispersion aqueuse de polymère contenant du fluor et dispersion aqueuse de polymère contenant du fluor - Google Patents

Procédé de fabrication d'une dispersion aqueuse de polymère contenant du fluor et dispersion aqueuse de polymère contenant du fluor Download PDF

Info

Publication number
WO2008004660A1
WO2008004660A1 PCT/JP2007/063570 JP2007063570W WO2008004660A1 WO 2008004660 A1 WO2008004660 A1 WO 2008004660A1 JP 2007063570 W JP2007063570 W JP 2007063570W WO 2008004660 A1 WO2008004660 A1 WO 2008004660A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
fluoropolymer
aqueous dispersion
aqueous
containing polymer
Prior art date
Application number
PCT/JP2007/063570
Other languages
English (en)
French (fr)
Inventor
Chie Sawauchi
Nobuhiko Tsuda
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to JP2008523751A priority Critical patent/JP5417847B2/ja
Priority to US12/307,304 priority patent/US20090312443A1/en
Publication of WO2008004660A1 publication Critical patent/WO2008004660A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/02Monomers containing chlorine
    • C08F214/04Monomers containing two carbon atoms
    • C08F214/08Vinylidene chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/18Monomers containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/02Neutralisation of the polymerisation mass, e.g. killing the catalyst also removal of catalyst residues
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/14Treatment of polymer emulsions
    • C08F6/16Purification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/14Treatment of polymer emulsions
    • C08F6/20Concentration

Definitions

  • the present invention relates to a method for producing a fluoropolymer aqueous dispersion and a fluoropolymer aqueous dispersion.
  • Fluorine-containing polymer aqueous dispersions can be used to form films, coatings, and the like that exhibit excellent chemical stability, non-adhesiveness, weather resistance, and the like by methods such as coating and impregnation. Widely used in applications such as appliances, piping linings, and glass cloth impregnated membranes.
  • the aqueous fluoropolymer dispersion is generally obtained by polymerization in the presence of a fluorosurfactant.
  • it is desirable to remove the fluorine-containing surfactant from the fluorine-containing polymer aqueous dispersion because it causes a loss of the excellent properties of the fluorine-containing polymer.
  • the above-mentioned fluorine-containing surfactant is generally expensive, it is preferable to collect and reuse it.
  • Patent Document 2 discloses a method in which an anion exchange resin is used as a moving bed without filling a column or the like, and the fluoropolymer aqueous dispersion is brought into contact with stirring. However, there is no description regarding pH adjustment in such a method.
  • Patent Document 1 Japanese Translation of Special Publication 2002-532583
  • Patent Document 2 Pamphlet of International Publication No. 03/099879 Disclosure of the invention
  • an object of the present invention is to effectively remove a fluorine-containing surfactant by adjusting pH, and to obtain a good fluorine-containing polymer aqueous dispersion having a low fluorine-containing surfactant content. It is to provide a method of obtaining.
  • the present invention comprises a contact treatment in which an anion exchanger and a crude fluorine-containing polymer aqueous dispersion are brought into contact with each other, and the contact treatment adjusts the crude fluorine-containing polymer aqueous dispersion to pH 29.
  • This is a method for producing an aqueous fluoropolymer dispersion.
  • the present invention is also a fluoropolymer aqueous dispersion obtained by the above-described method for producing a fluoropolymer aqueous dispersion.
  • the present invention promotes dissociation of the fluorine-containing surfactant by adjusting the pH of the aqueous fluoropolymer dispersion (hereinafter referred to as the crude fluoropolymer aqueous dispersion) during the treatment, and is efficient.
  • This is a method for producing a fluoropolymer aqueous dispersion from which a fluorosurfactant has been removed.
  • an ammonium salt of perfluorocarboxylic acid is used as the fluorine-containing surfactant will be described.
  • the ammonium salt of perfluorocarboxylic acid exhibits a dissociation equilibrium represented by the following formula.
  • the contact treatment is carried out by using a crude fluoropolymer aqueous dispersion as p. Adjust while adjusting to H2-9. By adjusting the pH to the above range, the dissociation of the fluorine-containing surfactant is promoted, and the fluorine-containing surfactant is efficiently removed.
  • the method for producing an aqueous fluoropolymer dispersion according to the present invention comprises a contact treatment in which the anion exchanger and the crude fluoropolymer aqueous dispersion are brought into contact with each other.
  • the pH of the crude fluoropolymer aqueous dispersion is adjusted to 2-9. When the pH exceeds 9, the removal efficiency of the fluorine-containing surfactant is deteriorated. If the pH is less than 2, the stability of the crude fluoropolymer aqueous dispersion is lowered and aggregation occurs.
  • the pH is more preferably 3-8.
  • the above-mentioned crude fluoropolymer aqueous dispersion is obtained by dispersing a fluoropolymer in an aqueous medium.
  • the fluorine-containing polymer in the present invention is not particularly limited.
  • polytetrafluoroethylene [PTFE], tetrafluoroethylene [TFE] / hexafluoropropylene [HFP] copolymer [FEP] tetrafluoroethylene
  • FEP tetrafluoroethylene
  • HFP hexafluoropropylene
  • PAVE TFE / perfluoro (Alkyl vinyl ether)
  • PFA polytetrafluoroethylene
  • ETFE Ethylene / TFE copolymer
  • PVDF Polyvinylidene fluoride
  • PCTFE Polychlorotrifluoroethylene
  • the PTFE may be a tetrafluoroethylene [TFE] homopolymer or a modified polytetrafluoroethylene [modified PTFE].
  • the modified PTFE means a non-melt processable fluorine-containing polymer obtained by polymerizing TFE and a small amount of monomer.
  • trace monomer examples include HFP, fluoroolefin such as black trifluoroethylene [0113 ⁇ 4], alkyl having carbon atoms:! To 5, particularly carbon atoms:!
  • Fluoro alkyl butyl ether having a group
  • Fluorodixol Perfluoroalkyl ethylene
  • Perfluoroalkyl ethylene Perfluoroalkyl ethylene
  • ⁇ -hydroperfluoro olefin Among the above-mentioned fluoropolymers, TFE homopolymer and modified PTFE are more preferable, although perfluoropolymer is preferred.
  • the aqueous fluoropolymer dispersion of the present invention preferably contains fluoropolymer dispersion particles having an average primary particle size of 50 to 400 nm.
  • the average primary particle diameter is 550% with respect to the unit length of the aqueous dispersion whose fluoropolymer concentration is adjusted to 0.22% by mass. It is determined from the above transmittance based on a calibration curve of the transmittance of nm projected light and the average primary particle diameter determined by measuring the unidirectional diameter in a transmission electron micrograph.
  • the aqueous medium in the crude fluoropolymer aqueous dispersion is not particularly limited as long as it is a liquid containing water, and in addition to water, for example, a fluorine-free organic solvent such as alcohol, ether, ketone, paraffin wax, and the like. It may also contain a fluorine-containing organic solvent.
  • a fluorine-free organic solvent such as alcohol, ether, ketone, paraffin wax, and the like. It may also contain a fluorine-containing organic solvent.
  • the above-mentioned crude fluoropolymer aqueous dispersion may be a dispersion after polymerization that has not undergone concentration or dilution, or may be concentrated, diluted, etc. by phase separation concentration, ultrafiltration concentration, or the like. It may be. Also, it may have undergone a general fluorine-containing surfactant removal treatment. These treatments may be performed before or after the fluorine-containing surfactant removing step in the present invention.
  • the concentration of the fluoropolymer contained in the crude fluoropolymer aqueous dispersion is not particularly limited, but is preferably 40% by mass or less from the viewpoint of the removal efficiency of the fluorosurfactant.
  • the above concentration includes the case where the above-described processing such as concentration and dilution is performed. In terms of concentration efficiency, the concentration is preferably 15% by mass or more.
  • the fluorine-containing surfactant is not particularly limited as long as it is a surfactant having a fluorine atom, but an anionic surfactant is preferable from the viewpoint of excellent dispersibility of the fluorine-containing polymer.
  • fluorine-containing anionic surfactant examples include perfluorooctanoic acid and / or a salt thereof (hereinafter, "perfluorooctanoic acid and / or a salt thereof” is abbreviated as “PFOA”).
  • PFOA perfluorooctanoic acid and / or a salt thereof
  • Perfluorocarboxylic acid and / or salt thereof; perfluorooctylsulfonic acid and / or salt thereof hereinafter referred to as “perfluorooctylsulfonic acid and / or salt thereof”
  • PFOS perfluorooctylsulfonic acid and / or salt thereof
  • perfluorocarboxylic acid and Z or a salt thereof are preferable.
  • examples of the counter ion forming the salt include an alkali metal ion or NH +, and examples of the alkali metal ion include
  • the fluorine-containing surfactant preferably has a number average molecular weight of 1000 or less, more preferably 500 or less, in terms of easy removal. Further, those having 5 to 12 carbon atoms are preferred. In the present specification, the number average molecular weight is a measured value in terms of polystyrene by GPC (gel permeation matrix).
  • the anion exchanger is not particularly limited, and examples thereof include inorganic compounds such as hydrated talcite, rhodium and idlocalumite, anion exchange membranes, anion exchange resins, and the like. However, anion exchange resins are preferred.
  • the above-mentioned contact treatment using an anion exchanger includes a method of passing through an anion exchanger packed in a column, a method of adding directly to a crude fluoropolymer aqueous dispersion, stirring and then separating, etc. Can be mentioned.
  • anion exchange resin examples include a —N + X— (CH 3) group (X represents C1
  • the anion exchange resin preferably has a counter ion corresponding to an acid having a pKa value of 3 or more, and is preferably used in an OH-type.
  • anion exchange resin it is preferable to use a C1-type resin that has been treated with OH-type with 1M NaOH aqueous solution and thoroughly washed with pure water.
  • the contact treatment is not particularly limited as long as the anion exchanger and the crude fluoropolymer aqueous dispersion are brought into contact with each other. Specifically, conditions can be appropriately set based on a conventionally known method such as JP-T-2002-532583, but for example, the space velocity [SV] is 0.1.
  • the power to do to be ⁇ 10, preferably 0.5-5.
  • the method for adjusting the pH of the aqueous fluoropolymer dispersion during the contact treatment is not particularly limited.
  • a method of treating with a cation exchanger, an acidic compound for adjusting pH, and the like examples include a method of sequentially measuring pH with a pH meter while adding, a method of covering a buffer, and the like.
  • the acidic compound is not particularly limited, and examples thereof include an acid such as nitric acid, perchloric acid, and sulfuric acid.
  • a method of performing treatment with a cation exchanger is particularly preferable. This When the pH is adjusted, excess cations are removed, which is preferable in that the efficiency of reducing the amount of impurities in the obtained fluorine-containing polymer aqueous dispersion can be increased.
  • the treatment with the cation exchanger is preferable in that it can remove cationic impurities such as alkali metal ions, heavy metal ions, and fluorine-free organic acids derived from the polymerization initiator.
  • cationic impurities such as alkali metal ions, heavy metal ions, and fluorine-free organic acids derived from the polymerization initiator.
  • an aqueous dispersion with less color after treatment such as baking can be obtained, which is preferable.
  • the alkali metal is not particularly limited, and examples thereof include sodium and potassium.
  • Examples of the heavy metal include iron, chromium, nickel and the like. By reducing the heavy metal concentration in the aqueous dispersion, for example, when used in battery applications, there is an advantage that the electrode is less likely to rust.
  • Examples of the fluorine-free organic acid include formic acid, acetic acid, butyric acid, oxalic acid, and succinic acid. These fluorine-free organic acids are desirable to reduce because they cause corrosion of the electrode metal when used in battery binders.
  • Examples of the cation exchanger include cation exchange resins.
  • the cation exchange resin is not particularly limited. For example, a strong acid having a so-group as a functional group.
  • Cation exchange resin weakly acidic cation exchange resin having —coo— group as functional group, etc.
  • H + type strongly acidic cation exchange resins are more preferred from the viewpoint of removal efficiency.
  • the cation exchange resin it is preferable to use a Na-type resin that has been treated with 1M HC1 aqueous solution to form H + and washed thoroughly with pure water.
  • Examples of the cation exchange resin include Amberlite IRA120B Na (trade name, manufactured by Rohm and Haas), IRA120BN Na (trade name, manufactured by Rohm and Haas), Inverjet IRA1006F H (trade name) Rohm and Haas) and other commercial products can be used.
  • Examples of the method for performing the treatment with the cation exchanger include a method using a mixed bed composed of a cation exchange resin and an anion exchange resin.
  • the cation exchange resin may be used by filling the column as described in the above anion exchange resin or may be used by directly adding to the crude fluoropolymer aqueous dispersion and stirring. Les.
  • cation exchange resin and anion ⁇ Mixed bed consisting of exchange resin '' is not particularly limited, and when both are packed in the same column, when both are packed in different columns, both are dispersed in the crude fluoropolymer aqueous dispersion. This includes cases where the That is, the form is not particularly limited as long as the crude fluoropolymer aqueous dispersion is in contact with the anion exchange resin and the cation exchange resin in the contact treatment.
  • the volume ratio of the cation exchange resin to the anion exchange resin in the mixed bed (hereinafter referred to as the mixed bed ratio) is not particularly limited as long as the pH can be maintained. .:! ⁇ 10 is preferred 0.2 to 5 is more preferred.
  • the proportion of the cation exchange resin is increased, and the use of a cation exchange resin in excess of the necessary amount is excessively costly.
  • the ratio of anion exchange resin increases, the pH tends to be alkaline and the organic acid removal efficiency decreases.
  • the ion exchange resin is used after being uniformly dispersed in pure water, and the mixed bed ratio is a value based on the volume at that time.
  • the volume of the ion exchange resin once used in the aqueous dispersion treatment varies, but the mixed bed ratio is a value obtained from the volume of a new ion exchange resin or a thoroughly washed used ion exchange resin.
  • a non-fluorine-containing nonionic surfactant it is preferable to add a non-fluorine-containing nonionic surfactant to the crude fluoropolymer aqueous dispersion during the contact treatment. It is preferable to have the fluorine-free nonionic surfactant because the dispersibility of the fluorine-containing polymer can be stabilized.
  • the non-fluorine-containing nonionic surfactant is not particularly limited as long as it is made of a nonionic compound containing no fluorine, and a known one can be used.
  • the nonionic surfactant include ether type nonionic surfactants such as polyoxyethylene alkyl phenyl ether, polyoxyethylene alkyl ether, and polyoxyethylene alkylene alkyl ether; ethylene oxide / propylene oxide block copolymer, etc.
  • the hydrophobic group may be any of an alkylphenol group, a linear alkyl group, and a branched alkyl group.
  • polyoxyethylene alkyl ether type nonionic surfactants are preferred.
  • polyoxyethylene alkyl ether type nonionic surfactant polyoxyethylene alkyl ether having an alkyl group having 10 to 20 carbon atoms is preferred, and those having 10 to 15 carbon atoms are preferred. More preferred is a polyoxyethylene alkyl ether structure.
  • the alkyl group in the polyoxyethylene alkyl ether structure preferably has a branched structure.
  • polyoxyethylene alkyl ether type nonionic surfactants include, for example, Genapol X080 (product name, manufactured by Clariant Tone), Taditol 9-S-15 (product name, manufactured by Clariant), Neugen TDS — 80 (product name, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), Leocol TD90 (product name, manufactured by Lion), etc.
  • the addition amount of the non-fluorine-containing nonionic surfactant is 100% by mass of the fluoropolymer (solid content). 1 to 40% by mass is preferable:! To 30% by mass is more preferable:! To 20% by mass is more preferable.
  • the method for producing an aqueous fluoropolymer dispersion of the present invention it is preferable to concentrate as necessary after the contact treatment.
  • the concentration can be performed by a conventionally known method such as a phase separation concentration method, an ultrafiltration method, or an electric concentration method.
  • a non-fluorine-containing nonionic surfactant it is preferable to add a non-fluorine-containing nonionic surfactant to the fluoropolymer aqueous dispersion.
  • the fluorine-free nonionic surfactant is not particularly limited, and examples thereof include those described above.
  • a fluoropolymer aqueous dispersion obtained by the method for producing a fluoropolymer aqueous dispersion of the present invention is also one aspect of the present invention.
  • the fluorine-containing polymer aqueous dispersion of the present invention contains a fluorine-containing polymer. It has reduced surface active agent and has excellent properties.
  • the content of the fluorosurfactant is preferably 1 OOOppm or less with respect to the fluoropolymer in the dispersion.
  • the above content is more preferably 500 PP m or less.
  • the upper limit of the above contents is more preferably 100 ppm, 50 ppm, and 30 ppm in this order.
  • the fluorine-containing surfactant is a fluorine-containing anion surfactant
  • the content of the fluorine-containing anion surfactant is preferably lOOppm or less with respect to the fluorine-containing polymer.
  • the content of the fluorine-containing surfactant is determined by adding so much methanol as the fluorine-containing polymer aqueous dispersion to coagulate, soxhlet extraction, It is measured by chromatography [HPLC].
  • the content of the fluoropolymer is preferably 25 to 75% by mass. If it is less than 25% by mass, it may be disadvantageous in terms of cost during transfer. When it exceeds 75 mass%, there is a possibility that a problem of easy aggregation occurs. Preferably it is 30-70 mass%, More preferably, it is 50-65 mass%.
  • the content of the non-fluorine-containing nonionic surfactant is 2 to 15 mass% with respect to 100 mass% of the fluoropolymer in the dispersion. preferable. If it is less than 2% by mass, the stability may deteriorate. If it exceeds 15 mass%, the cost is inferior. Preferably 3 to 13 mass%, more preferably 4 to 10 mass%.
  • the aqueous fluoropolymer dispersion of the present invention is obtained by using a mixed bed of an anion exchange resin and a cation exchange resin.
  • an anion exchange resin and a cation exchange resin.
  • it is a fluorine-containing polymer aqueous dispersion with reduced heavy metals and the like, it is preferred.
  • the alkali metal content is preferably 1 ppm or less, more preferably 0.5 ppm or less.
  • the content of the fluorine-free organic acid is preferably 10 ppm or less, more preferably 50 ppm or less.
  • the content of the heavy metal is preferably 1 ppm or less, and more preferably 0.5 ppm or less.
  • the heavy metal content can be measured by a measuring method using a flameless atomic absorption spectrophotometer described in International Patent Application Publication W094Z28394.
  • This method involves ashing a predetermined amount of sample, depending on the type of metal to be quantified, under ashing conditions including an ashing temperature of about 400-1200 ° C and an ashing time of at least about 100 seconds. It consists of measuring the absorbance with a flameless atomic absorption spectrophotometer.
  • the flameless atomic absorption spectrophotometer is a spectrophotometer that uses a measurement method that electrically heats a sample, atomizes the contained metal, and quantifies the amount of metal from the absorbance of the atomized metal. Means. Specifically, for example, it can be measured using a so-called polarized Zeeman atomic absorption altimeter.
  • the aqueous fluoropolymer dispersion of the present invention can be processed into a coating, a cast film, an impregnated body or the like as it is or with various additives.
  • fluoropolymer aqueous dispersion examples include coating materials for cooking utensils such as oven linings and ice trays, electric wires, pipes, ship bottoms, high-frequency printed circuit boards, conveyor belts, and iron bottom plates; Woven fabric and non-woven fabric.
  • the fiber substrate is not particularly limited, and for example, it can be processed into an impregnated material containing glass fiber, carbon fiber, aramid fiber (Kepler (registered trademark) fiber, etc.) to be impregnated;
  • the fluororesin aqueous dispersion can be processed by a conventionally known method. The invention's effect
  • the method for producing an aqueous fluoropolymer dispersion of the present invention can efficiently reduce the fluorosurfactant.
  • Mass means “mass%”.
  • the sample was concentrated as necessary, and then measured by capillary electrophoresis 3DCE (manufactured by YOKOGAWA H EWLETT PACKARD) under the following conditions.
  • a nonionic surfactant (Neugen TDS-80, manufactured by Daiichi Kogyo Co., Ltd.) is added to an aqueous polytetrafluoroethylene [PTFE] dispersion (primary average particle size 240 nm, fluorine-containing polymer content 33%).
  • PTFE polytetrafluoroethylene
  • An amount corresponding to 5% of the fluoropolymer and PFOA corresponding to 200 Oppm of the fluoropolymer was added, and water was added to adjust the content of the fluoropolymer to 30%.
  • the resulting fluoropolymer aqueous dispersion had a pH of 3.5 at 25 ° C.
  • aqueous dispersion obtained in Preparation Example 1 500 ml of the aqueous dispersion obtained in Preparation Example 1 was placed in a 1 L beaker, and 12 ml of an anion exchange resin ink jet IRA4002OH was added, and the same operation as in Example 1 was performed.
  • the concentration of PFOA in the obtained aqueous dispersion was 1400 ppm of the fluoropolymer, and the pH at 25 ° C. was 11.0.
  • Nonionic surfactant (Neugen TDS-80, manufactured by Daiichi Kogyo Co., Ltd.) is added to an aqueous polytetrafluoroethylene [PTFE] dispersion (primary average particle size 270 nm, fluorine-containing polymer content 34%).
  • the amount of fluorine-containing polymer was adjusted to 5% and the amount of PFOA corresponding to 250 Oppm of the fluorine-containing polymer, and further with water to 30% of the fluorine-containing polymer.
  • the resulting fluoropolymer aqueous dispersion had a pH of 3.5 at 25 ° C.
  • the obtained aqueous dispersion had a pH of 3.6 at 25 ° C, a PFO A concentration of less than the detection limit, and a fluoropolymer content of 30%. Both the iron concentration and sodium concentration in the obtained aqueous dispersion were below the detection limit.
  • Anion exchange resin Amberjet IRA4002OH 225 ml, packed in a column (diameter 2 cm), 2 of Neugen TDS-80 (Daiichi Kogyo Seiyaku). 225 ml of / 0 aqueous solution was passed at [SV] 1.
  • the PFOA concentration gradually started to increase to 150 ppm of the fluoropolymer.
  • the aqueous dispersion had a pH of 10.8 at 25 ° C and a fluorine-containing polymer content of 30%.
  • the obtained aqueous dispersion was found to have an iron concentration of 35 ppb and a sodium concentration of 15 ppm.
  • the aqueous fluoropolymer dispersion obtained by the present invention can be suitably used for cooking utensils, piping linings, glass cloth impregnated membranes and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

明 細 書
含フッ素ポリマー水性分散液の製造方法及び含フッ素ポリマー水性分散 液
技術分野
[0001] 本発明は、含フッ素ポリマー水性分散液の製造方法及び含フッ素ポリマー水性分散 液に関する。
背景技術
[0002] 含フッ素ポリマー水性分散液は、コーティング、含浸等の方法で、化学的安定性、非 粘着性、耐候性等に優れた特性を示すフィルム、被膜等を形成することができるので 、調理器具、配管のライニング、ガラスクロス含浸膜等の用途に広く使われている。含 フッ素ポリマー水性分散液は、一般に、含フッ素界面活性剤の存在下での重合によ り得られる。し力、しながら、含フッ素界面活性剤は、含フッ素ポリマーの優れた特性を 損なう原因となるので、含フッ素ポリマー水性分散液から除去することが望ましい。ま た、上記含フッ素界面活性剤は、一般的に高価であるので、回収して再利用すること が好ましい。
[0003] 含フッ素界面活性剤の回収方法として、安定化のために非イオン性乳化剤を加えた 含フッ素ポリマー水性分散液を塩基性陰イオン交換樹脂と接触させる方法が提案さ れている(例えば、特許文献 1参照。)。し力しながら、このような方法を継続的に行う と、水性分散液の pHがアルカリ性に傾くという問題があった。水性分散液がアルカリ 性に傾きすぎると、含フッ素界面活性剤の解離が停滞するため好ましくない。特許文 献 1には、分散液の安定性を高めるために塩基を用いて pHを 7〜9に調整してもよい との記載はあるものの、具体的な開示はない。
[0004] 特許文献 2には、陰イオン交換樹脂をカラム等に充填せずに移動床として使用し、含 フッ素ポリマー水性分散液を攪拌させながら接触させる方法が開示されてレ、る。しか しながら、このような方法も pH調整に関する記載はない。
特許文献 1 :特表 2002— 532583号公報
特許文献 2:国際公開第 03/099879号パンフレット 発明の開示
発明が解決しょうとする課題
[0005] 本発明の目的は、上記現状に鑑み、 pH調整により含フッ素界面活性剤の除去を効 率的に行い、含フッ素界面活性剤の含有率の低い良好な含フッ素ポリマー水性分散 液を得る方法を提供することにある。
課題を解決するための手段
[0006] 本発明は、陰イオン交換体と粗含フッ素ポリマー水性分散液とを接触させる接触処 理からなり、上記接触処理は、上記粗含フッ素ポリマー水性分散液を pH2 9に調 整しながら行うことを特徴とする含フッ素ポリマー水性分散液の製造方法である。 本発明は、上述の含フッ素ポリマー水性分散液の製造方法により得られることを特徴 とする含フッ素ポリマー水性分散液でもある。
以下に本発明を詳細に説明する。
[0007] 本発明は、処理時の含フッ素ポリマー水性分散液(以下、粗含フッ素ポリマー水性分 散液という)の pHを調整することにより、含フッ素界面活性剤の解離を促進し、効率 的に含フッ素界面活性剤が除去された含フッ素ポリマー水性分散液を製造する方法 である。例えば、含フッ素界面活性剤としてパーフルォロカルボン酸のアンモニゥム 塩を使用した場合について説明する。上記パーフルォロカルボン酸のアンモニゥム 塩は下記式に示した解離平衡を示す。
[0008] [化 1]
RfCOONH4 RfCOO + NH4 +
[0009] 陰イオン交換体は、 RfCOO—を吸着するものであるから、除去効率を良好なものとす るためには、上記平衡反応が右へと進行することが好ましい。し力 ながら、低減処 理を進めていくと、 NH + が含フッ素水性ポリマー水性分散液中に多量に存在し、 p
4
Hが上昇し、水性分散液の pHが 9〜: 11程度のアルカリ側となる。したがって、平衡が 解離方向には促進されず、ひいては含フッ素界面活性剤の低減が効率的に行われ ないという問題があった。
[0010] 本発明の製造方法において、上記接触処理は、粗含フッ素ポリマー水性分散液を p H2〜9に調整しながら行う。 pHを上述の範囲に調整することによって、含フッ素界面 活性剤の解離が促進され、かつ、含フッ素界面活性剤の除去が効率的に行われるも のである。
[0011] 本発明の含フッ素ポリマー水性分散液の製造方法は、陰イオン交換体と粗含フッ素 ポリマー水性分散液とを接触させる接触処理を行うものであり、上記接触処理を行う 間、継続的に粗含フッ素ポリマー水性分散液の pHを 2〜9に調整することを特徴とす る。 pHが 9を超えると、含フッ素界面活性剤の除去効率が悪くなる。上記 pHが 2未満 であると、粗含フッ素ポリマー水性分散液の安定性が低下し、凝集が起こる。上記 pH は、 3〜8がより好ましい。
[0012] 上記粗含フッ素ポリマー水性分散液は、含フッ素ポリマーが水性媒体に分散してな るものである。
本発明における含フッ素ポリマーとしては、特に限定されず、例えば、ポリテトラフノレ ォロエチレン〔PTFE〕、テトラフルォロエチレン〔TFE〕 /へキサフルォロプロピレン〔 HFP〕共重合体〔FEP〕、 TFE/パーフルォロ(アルキルビニルエーテル) [PAVE] 共重合体〔PFA〕、エチレン/ TFE共重合体〔ETFE〕、ポリビリニデンフルオライド〔 PVDF〕、ポリクロ口トリフルォロエチレン〔PCTFE〕等が挙げられる。
[0013] 上記 PTFEとしては、テトラフルォロエチレン〔TFE〕ホモポリマーであってもよいし、 変性ポリテトラフルォロエチレン〔変性 PTFE〕であってもよレ、。本明細書において、変 性 PTFEとは、 TFEと微量単量体とを重合して得られる非溶融加工性の含フッ素ポリ マーを意味する。上記微量単量体としては、例えば、 HFP、クロ口トリフルォロェチレ ン〔011¾〕等のフルォロォレフイン、炭素原子:!〜 5個、特に炭素原子:!〜 3個を有 するアルキル基を持つフルォロ(アルキルビュルエーテル);フルォロジォキソール; パーフルォロアルキルエチレン; ω—ヒドロパーフルォロォレフイン等が挙げられる。 上記含フッ素ポリマーとしては、パーフルォロポリマーが好ましぐなかでも、 TFEホ モポリマー、変性 PTFEがより好ましい。
[0014] 本発明の含フッ素ポリマー水性分散液は、平均一次粒子径 50〜400nmの含フッ素 ポリマー分散粒子を含有するものであることが好ましい。上記平均一次粒子径は、含 フッ素ポリマー濃度を 0. 22質量%に調整した水性分散液の単位長さに対する 550 nmの投射光の透過率と、透過型電子顕微鏡写真における定方向径を測定して決定 された平均一次粒子径との検量線をもとにして、上記透過率から決定するものである
[0015] 上記粗含フッ素ポリマー水性分散液における水性媒体は、水を含む液体であれば 特に限定されず、水に加え、例えば、アルコール、エーテル、ケトン、パラフィンヮック ス等のフッ素非含有有機溶媒及び/又はフッ素含有有機溶媒をも含むものであって あよい。
[0016] 上記粗含フッ素ポリマー水性分散液は、濃縮や希釈を経ていない重合上がりのディ スパージヨンであってもよいし、また、相分離濃縮、限外濾過濃縮等による濃縮、希釈 等をしたものであってもよい。また、一般的な含フッ素界面活性剤除去処理を経たも のであってもよレ、。これらの処理は、本発明における含フッ素界面活性剤除去工程の 前でも後でも行ってよい。
[0017] 上記粗含フッ素ポリマー水性分散液に含まれる含フッ素ポリマー濃度は特に限定さ れないが、含フッ素界面活性剤の除去効率の面から、 40質量%以下であることが好 ましい。上記濃度は、上述の濃縮、希釈等の処理を行った場合も含む。また、濃縮効 率面から上記濃度は、 15質量%以上であることが好ましい。
[0018] 上記含フッ素界面活性剤は、フッ素原子を有する界面活性剤であれば特に限定され ないが、含フッ素ポリマーの分散性に優れる点で、ァニオン界面活性剤が好ましい。
[0019] 上記含フッ素ァニオン界面活性剤としては、例えば、パーフルォロオクタン酸及び/ 又はその塩(以下、「パーフルォロオクタン酸及び/又はその塩」をまとめて「PFOA」 と略記することがある。)等のパーフルォロカルボン酸及び/又はその塩;パーフルォ ロォクチルスルホン酸及び/又はその塩(以下、「パーフルォロォクチルスルホン酸 及び/又はその塩」をまとめて「PFOS」と略記することがある。)等が挙げられる。な かでも、パーフルォロカルボン酸及び Z又はその塩が好ましい。
[0020] 上記含フッ素ァニオン界面活性剤が塩である場合、該塩を形成する対イオンとして は、アルカリ金属イオン又は NH +等が挙げられ、アルカリ金属イオンとしては、例え
4
ば、 Na+、 K+等が挙げられる。上記対イオンとしては、 NH +が好ましい。上記含フッ
4
素界面活性剤は、 1種を用いてもよいし、 2種以上を用いてもよい。 [0021] 上記含フッ素界面活性剤は、除去容易である点で、数平均分子量が 1000以下であ るものが好ましぐ 500以下であるものがより好ましい。また、炭素数が 5〜: 12であるも のが好ましい。本明細書において、数平均分子量は、 GPC (ゲルパーミエーシヨンク 口マトグラフ)測定によるポリスチレン換算の測定値である。
[0022] 上記陰イオン交換体としては特に限定されず、例えば、ハイド口タルサイト、ノ、イドロカ ルマイト等の無機化合物、陰イオン交換膜、陰イオン交換樹脂等を挙げることができ るが、なかでも陰イオン交換樹脂が好ましい。上記陰イオン交換体を用いた接触処 理は、カラムに充填した陰イオン交換体中を通液する方法、粗含フッ素ポリマー水性 分散液に直接添加'攪拌して使用した後分離する方法等を挙げることができる。
[0023] 上記陰イオン交換樹脂としては、例えば、官能基として— N+X— (CH ) 基 (Xは、 C1
3 3
又は〇Hを表す。)を有する強塩基性陰イオン交換樹脂、 _N+X_ (CH ) (C H〇
3 3 2 4
H)基 (Xは、上記と同じ。)を有する強塩基性陰イオン交換樹脂等、公知のものが挙 げられる。
[0024] 上記陰イオン交換樹脂は、 pKa値が 3以上の酸に対応する対イオンを有することが 好ましぐまた OH—型で使用することが好ましい。
上記陰イオン交換樹脂は、 C1型樹脂を 1M NaOH水溶液で OH—型に処理し、純 水で充分に洗浄したものを用いることが好ましい。
[0025] 上記接触処理としては特に限定されず、陰イオン交換体と粗含フッ素ポリマー水性 分散液が接触すればよい。具体的には、特表 2002— 532583号公報等、従来公知 の方法に基づき適宜条件を設定することができるが、例えば、空間速度〔SV〕が 0. 1
〜10、好ましくは 0. 5〜5となるよう行うこと力 S好ましレ、。
[0026] 上記接触処理中の含フッ素ポリマー水性分散液の pHの調整方法としては特に限定 されず、例えば、陽イオン交換体との処理を行う方法、 pHを調整するための酸性化 合物を添加しながら pHメーターにて逐次 pHを測定する方法、緩衝剤をカ卩える方法 等を挙げることができる。
上記酸性化合物としては特に限定されず、例えば、硝酸、過塩素酸、硫酸等の酸を 挙げ'ること力 Sできる。
[0027] 上記方法のなかでも、陽イオン交換体との処理を行う方法が特に好ましい。これによ つて pHを調整した場合は、余分な陽イオンが除去されるため、得られた含フッ素ポリ マー水性分散液における不純物の量を低減する効率を高めることができる点でも好 ましいものである。
[0028] 上記陽イオン交換体による処理は、アルカリ金属イオン、重金属イオン、重合開始剤 由来のフッ素非含有有機酸等の陽イオン性の不純物を除去することができる点で好 ましレ、。上記アルカリ金属を低減することにより、焼成などの処理後着色が少ない水 性分散液を得ることができるため好ましレ、。上記アルカリ金属としては特に限定され ず、ナトリウム、カリウム等を挙げることができる。
[0029] 上記重金属としては鉄、クロム、ニッケル等を挙げることができる。水性分散液中の重 金属濃度が低減されることにより、例えば電池用途で用いた場合、電極がさびにくい という利点がある。上記フッ素非含有有機酸としては、蟻酸、酢酸、酪酸、シユウ酸、 コハク酸等が例示される。これらのフッ素非含有有機酸は、電池のバインダーに用い られた場合に、電極金属の腐食の原因となるため、低減することが望ましい。
[0030] 上記陽イオン交換体としては、陽イオン交換樹脂を挙げることができる。上記陽ィォ ン交換樹脂としては特に限定されず、例えば、官能基として so—基を有する強酸
3
性陽イオン交換樹脂、官能基として—coo—基を有する弱酸性陽イオン交換樹脂等
、公知のものが挙げられるが、なかでも、除去効率の観点から、強酸性陽イオン交換 樹脂が好ましぐ H+型の強酸性陽イオン交換樹脂がより好ましい。
上記陽イオン交換樹脂は、 Na型樹脂を 1M HC1水溶液で H+型に処理し、純水で 充分に洗浄したものを用いることが好ましい。
[0031] 上記陽イオン交換樹脂としては、例えば、アンバーライト IRA120B Na (商品名、 R ohm and Haas社製)、 IRA120BN Na (商品名、 Rohm and Haas社製)、ァ ンバージェット IRA1006F H (商品名、 Rohm and Haas社製)等の市販品を使 用すること力 Sできる。
[0032] 陽イオン交換体との処理を行う方法としては、陽イオン交換樹脂と陰イオン交換樹脂 とからなる混床を使用する方法が挙げられる。上記陽イオン交換樹脂は、上述の陰ィ オン交換樹脂で述べたようにカラムに充填して使用してもよぐ粗含フッ素ポリマー水 性分散液に直接添加'攪拌して使用してもよレ、。上記「陽イオン交換樹脂と陰イオン 交換樹脂とからなる混床」としては特に限定されず、両者が同一のカラムに充填され ている場合、両者がそれぞれ異なるカラムに充填されている場合、両者が粗含フッ素 ポリマー水性分散液に分散している場合等を含むものである。すなわち、形態は特 に限定されず接触処理において粗含フッ素ポリマー水性分散液が陰イオン交換樹 脂及び陽イオン交換樹脂に接触する状態であればよい。
[0033] 上記混床における陰イオン交換樹脂に対する陽イオン交換樹脂の体積比 (以下、混 床比と記す)は、 pHを保つことができる範囲であれば特に限定はされなレ、が、 0.:!〜 10であることが好ましぐ 0. 2〜5がより好ましい。陽イオン交換樹脂の割合が高くなり 、必要量以上の陽イオン交換樹脂を用いるとコストが過剰に力かりすぎる。また、陰ィ オン交換樹脂の割合が高くなると pHがアルカリ性に偏り、有機酸の除去効率が下が る。
[0034] イオン交換樹脂は、純水に均一になるように分散させた上で用いるが、上記混床比 はその際の体積を基準にした値である。また一度水性分散液処理に用いたイオン交 換樹脂は体積が変わってくるが、混床比は新品のイオン交換樹脂もしくは充分に洗 浄した使用済みイオン交換樹脂の体積から求めた値とする。
[0035] 本発明の製造方法は、接触処理時にフッ素非含有ノニオン界面活性剤を粗含フッ素 ポリマー水性分散液に添加することが好ましい。上記フッ素非含有ノニオン界面活性 剤を有することにより、含フッ素ポリマーの分散性を安定化させることができるため好 ましい。
[0036] 上記フッ素非含有ノニオン界面活性剤としては、フッ素を含有しないノニオンの化合 物からなるものであれば特に限定されず、公知のものを使用できる。上記ノニオン界 面活性剤としては、例えば、ポリオキシエチレンアルキルフエニルエーテル、ポリオキ シエチレンアルキルエーテル、ポリオキシエチレンアルキレンアルキルエーテル等の エーテル型ノニオン界面活性剤;エチレンオキサイド/プロピレンオキサイドブロック 共重合体等のポリオキシエチレン誘導体;ソルビタン脂肪酸エステル、ポリオキシェ チレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、 グリセリン脂肪酸エステル、ポリオキシエチレン脂肪酸エステル等のエステル型ノニォ ン界面活性剤;ポリオキシエチレンアルキルァミン、アルキルアル力ノールアミド等の アミン系ノ二オン界面活性剤;等が挙げられる。
[0037] 上記フッ素非含有ノニオン界面活性剤を構成する化合物において、その疎水基は、 アルキルフエノール基、直鎖アルキル基及び分岐アルキル基の何れであってもよレヽ 力 アルキルフヱノール基を構造中に有しない化合物等、ベンゼン環を有さないもの であることが好ましい。
[0038] 上記フッ素非含有ノニオン界面活性剤としては、なかでも、ポリオキシエチレンアルキ ルエーテル型ノニオン界面活性剤が好ましレ、。上記ポリオキシエチレンアルキルエー テル型ノニオン界面活性剤としては、炭素数 10〜20のアルキル基を有するポリオキ シエチレンアルキルエーテル構造力 なるものが好ましぐ炭素数 10〜: 15のアルキ ル基を有するポリオキシエチレンアルキルエーテル構造からなるものがより好ましレ、。 上記ポリオキシエチレンアルキルエーテル構造におけるアルキル基は、分岐構造を 有していることが好ましい。
[0039] 上記ポリオキシエチレンアルキルエーテル型ノニオン界面活性剤の市販品としては、 例えば、 Genapol X080 (製品名、クラリアントネ土製)、タージトール 9— S— 15 (製品 名、クラリアント社製)、ノィゲン TDS— 80 (製品名、第一工業製薬社製)、レオコール TD90 (製品名、ライオン社製)等が挙げられる。
[0040] 上記フッ素非含有ノニオン界面活性剤を添加して、上記イオン交換樹脂による処理 を行う際、上記フッ素非含有ノニオン界面活性剤の添加量は、上記含フッ素ポリマー (固形分) 100質量%に対して 1〜40質量%であることが好ましぐ:!〜 30質量%で あることがより好ましぐ:!〜 20質量%であることが更に好ましい。
[0041] 本発明の含フッ素ポリマー水性分散液の製造方法は、上記接触処理の後、必要に 応じて濃縮することが好ましい。上記濃縮は、相分離濃縮法、限外濾過法、電気濃 縮法等、従来公知の方法にて行うことができる。濃縮を行う際は、含フッ素ポリマー水 性分散液にフッ素非含有ノニオン界面活性剤を添加することが好ましレ、。上記フッ素 非含有ノニオン界面活性剤としては特に限定されず、上述のものを挙げることができ る。更に、必要に応じて、フッ素非含有ァニオン乳化剤、電解質等を添加してもよい。
[0042] 本発明の含フッ素ポリマー水性分散液の製造方法により得られる含フッ素ポリマー水 性分散液も本発明の一つである。本発明の含フッ素ポリマー水性分散液は、含フッ 素界面活性剤が低減されたものであり、優れた特性を有するものである。
[0043] 上記含フッ素ポリマー水性分散液は、含フッ素界面活性剤の含有量が上記分散液 中の含フッ素ポリマーに対して 1 OOOppm以下であることが好ましレ、。含フッ素界面活 性剤を上記範囲とすることで、優れた特性を損なうことなぐ良好な含フッ素ポリマー 水性分散液を得ることができる。上記含有量は、 500PPm以下であることがより好まし レ、。上記含有量の上限は、順に、 100ppm、 50ppm、 30ppmであることがより好まし レ、。
本発明の好ましい態様においては、上記含フッ素界面活性剤は、含フッ素ァニオン 界面活性剤であり、上記含フッ素ァニオン界面活性剤の含有量は、含フッ素ポリマー に対して lOOppm以下であることが好ましい。
[0044] 本明細書にぉレ、て、含フッ素界面活性剤の含有量は、含フッ素ポリマー水性分散液 と等量のメタノールを添加して凝析し、ソックスレー抽出を行った後、高速液体クロマ トグラフィー〔HPLC〕を行うことにより測定するものである。
[0045] 本発明の含フッ素ポリマー水性分散液は、含フッ素ポリマーの含有量が 25〜75質 量%であることが好ましい。 25質量%未満であると、移送時のコスト面で不利である 場合がある。 75質量%を超えると、凝集しやすいという問題が生じるおそれがある。 好ましくは 30〜70質量%、より好ましくは 50〜65質量%である。
[0046] 本明細書において、上記含フッ素ポリマーの含有量(P)は、試料約 lg (X)を直径 5c mのァノレミカップにとり、 100oC、 1時間で乾燥し、更に 300°C、 1時間乾燥したカロ熱 残分 (Z)に基づき、式: P = Z/X X 100 (%)にて決定するものである。
[0047] 本発明の含フッ素ポリマー水性分散液において、フッ素非含有ノニオン界面活性剤 の含有量は、上記分散液中の含フッ素ポリマー 100質量%に対して 2〜: 15質量%で あることが好ましい。 2質量%未満であると、安定性が悪くなる可能性がある。 15質量 %を超えると、コスト面で劣る。好ましくは 3〜: 13質量%、より好ましくは 4〜: 10質量% である。
[0048] 本明細書にぉレ、て、上記フッ素非含有ノニオン界面活性剤の含有量 (N)は、試料約 lg (Xg)を直径 5cmのアルミカップにとり、 100°Cにて 1時間で加熱した加熱残分(Y g)、更に、得られた加熱残分 (Yg)を 300°Cにて 1時間加熱した加熱残分 (Zg)より、 式: N= [ (Y-Z) /Z] X 100 (%)力 算出するものである。
[0049] 本発明の含フッ素ポリマー水性分散液は、陰イオン交換樹脂と陽イオン交換樹脂と 力 なる混床を用いて得られるものであると、上述したようにアルカリ金属、フッ素非 含有有機酸、重金属等を低減した含フッ素ポリマー水性分散液である点で好ましレ、 ものである。
[0050] 上記アルカリ金属の含有量は、 lppm以下であることが好ましぐ 0. 5ppm以下であ ることがより好ましい。
上記フッ素非含有有機酸の含有量は、 lOOppm以下であることが好ましぐ 50ppm 以下であることがより好ましい。
上記重金属の含有量は、 lppm以下であることが好ましぐ 0. 5ppm以下であること 力 り好ましい。
[0051] 本明細書において、上記重金属の含有量は、国際特許出願公開 W094Z28394 に記載されたフレームレス原子吸光分光光度計を用いる測定方法により測定するこ とができる。この方法は、定量すべき金属の種類に応じて所定量のサンプルを約 400 〜1200°Cの灰化温度および少なくとも約 100秒の灰化時間を含む灰化条件の下で 灰化した後、フレームレス原子吸光分光光度計により吸光度を測定することからなる 。ここで、フレームレス原子吸光分光光度計とは、電気的に試料を加熱し、含まれて いる金属を原子化し、原子化された金属の吸光度から金属量を定量する測定方法を 用いる分光光度計を意味する。具体的には、例えばいわゆる偏光ゼーマン原子吸光 高度計を使用して測定できる。
[0052] 本発明の含フッ素ポリマー水性分散液は、そのまま又は各種添加剤を加えて、コー ティング、キャストフィルム、含浸体等に加工することができる。
上記含フッ素ポリマー水性分散液の用途としては、例えば、オーブン内張り、製氷ト レー等の調理器具、電線、パイプ、船底、高周波プリント基板、搬送用ベルト、アイ口 ン底板における被覆材;繊維基材、織布'不織布等が挙げられる。上記繊維基材とし ては特に限定されず、例えば、ガラス繊維、カーボン繊維、ァラミド繊維 (ケプラー(登 録商標)繊維等)を被含浸体とする含浸物;等に加工することができる。上記フッ素樹 脂水性分散液の加工は、従来公知の方法にて行うことができる。 発明の効果
[0053] 本発明の含フッ素ポリマー水性分散液の製造方法により、効率的に含フッ素界面活 性剤を低減することができる。
発明を実施するための最良の形態
[0054] 以下本発明について実施例を掲げて更に詳しく説明するが、本発明はこれらの実施 例のみに限定されるものではなレ、。また実施例中、「部」、「%」は特に断りのない限り
「質量部」、「質量%」を意味する。
[0055] 各実施例、比較例における測定は、以下の方法により行った。
(1)含フッ素ポリマーの含有量 (P)
試料約 lg (X)を直径 5cmのアルミカップにとり、 100°C、 1時間で乾燥し、更に 300 °C、 1時間乾燥した加熱残分 (Z)に基づき、式: P = Z/X X 100 (%)にて決定した。
[0056] (2)含フッ素界面活性剤の含有量
得られた水性分散液に等量のメタノールを添加し、ソックスレー抽出を行った後、高 速液体クロマトグラフィー〔HPLC〕を以下の条件にて行うことにより求めた。なお、含 フッ素界面活性剤の含有量算出にあたり、既知の濃度の含フッ素界面活性剤濃度 につレ、て下記溶出液及び条件にて HPLC測定して得られた検量線を用いた。 (測定条件)
カラム: ODS— 120Τ (4. 6 φ X 250mm,トーソー社製)
展開液:ァセトニトリル /0. 6%過塩素酸水溶液 = 1/1 (vol/vol%)
サンプル量: 20 /i L
流速: 1. Oml/分
検出波長: UV210nm
カラム温度: 40°C
[0057] (3)水性分散液中のフッ素非含有ノニオン界面活性剤の含有量 (N)
試料約 lg (Xg)を直径 5cmのアルミカップにとり、 100°Cにて 1時間で加熱した加熱 残分 (Yg)、更に、得られた加熱残分 (Yg)を 300°Cにて 1時間加熱した加熱残分 (Z g)より、式: N= [ (Y— Z) /Z] X 100 (%)から算出した。
[0058] (4)重金属の含有量 試料を約 400〜1200°Cの灰化温度および少なくとも約 100秒の灰化時間を含む灰 化条件の下で灰化した後、フレームレス原子吸光分光光度計を用いて重金属の含 有量を測定した。
[0059] (5)ナトリウム濃度
試料を必要に応じて濃縮した後、キヤピラリー電気泳動 3DCE (Y〇KOGAWA H EWLETT PACKARD社製)により下記の条件により測定した。
キヤビラリ一力ラム; Fused Silica 径 長さ 56cm
バッファー;陽イオン分析用緩衝液
検出; 310nm (リファレンス; 215nm)
[0060] 調製例 1 含フッ素ポリマー水性分散液の調製
ポリテトラフルォロエチレン〔PTFE〕水性分散液(一次平均粒子径 240nm、含フッ素 ポリマー含有量 33%)に、ノニオン性界面活性剤(ノィゲン TDS— 80、第一工業製 薬社製)を該含フッ素ポリマーに対し 5%、及び、 PFOAを該含フッ素ポリマーの 200 Oppmに相当する量加え、更に水をカ卩えて含フッ素ポリマーの含有量が 30%となるよ うに調整した。得られた含フッ素ポリマー水性分散液の 25°Cでの pHは、 3. 5であつ た。
[0061] 実施例 1
陰イオン交換樹脂アンバージェット IRA4002OH (商品名、ローム'アンド'ハース社 製)を 20ml、陽イオン交換樹脂アンバーライト IRA120B H (商品名、ローム'アンド •ハース社製)を 5ml (混床比 0. 25)、ポリエチレン製のカップに入れ、イオン交換水 に分散させた状態で均一に混合するよう撹拌し、混床とした。
調製例 1で得られた水性分散液 500mlを 1Lのビーカーにとり、上記で得られた混床 を 19ml (内、アンバージェット IRA4002OHは 15ml)加え、凝集しない程度の強さ でスターラーを用いて 10時間撹拌した。その後、メッシュを用いてイオン交換樹脂と 水性分散液を分離した。得られた水性分散液中の PFOA濃度は該含フッ素ポリマー の 810ppm、 25。Cでの ρΗは 8. 0であった。
[0062] 実施例 2
陰イオン交換樹脂アンバージェット IRA4002OHを 20ml、陽イオン交換樹脂アンバ 一ライト IRA120B Hを 28ml (混床比 1. 4)、ポリエチレン製のカップに入れ、イオン 交換水に分散させた状態で均一に混合するよう撹拌し、混床とした。
調製例 1で得られた水性分散液 500mlを 1Lのビーカーにとり、上記で得られた混床 を 36ml (内、アンバージェット IRA4002OHは 12ml)加え、凝集しない程度の強さ でスターラーを用いて 10時間撹拌した。その後、メッシュを用いてイオン交換樹脂と 水性分散液を分離した。得られた水性分散液中の PFOA濃度は該含フッ素ポリマー の 800ppm、 25。Cでの ρΗは 3. 7であった。
[0063] 実施例 3
陰イオン交換樹脂アンバージェット IRA4002OHを 15ml、陽イオン交換樹脂アンバ 一ライト IRA120B Hを 60ml (混床比 4)、ポリエチレン製のカップに入れ、イオン交 換水に分散させた状態で均一に混合するよう撹拌し、混床とした。
調製例 1で得られた水性分散液 500mlを 1Lのビーカーにとり、上記で得られた混床 を 75ml (内、アンバージェット IRA4002OHは 15ml)加え、凝集しない程度の強さ でスターラーを用いて 10時間撹拌した。その後、メッシュを用いてイオン交換樹脂と 水性分散液を分離した。得られた水性分散液中の PFOA濃度は該含フッ素ポリマー の 790ppm、 25。Cでの ρΗは 3. 7であった。
[0064] 比較例 1
調製例 1で得られた水性分散液 500mlを 1Lのビーカーにとり、陰イオン交換樹脂ァ ンバージェット IRA4002OHを 12mlカ卩え、実施例 1と同様の操作を行なった。得ら れた水性分散液中の PFOA濃度は該含フッ素ポリマーの 1400ppm、 25°Cでの pH は 11 · 0であった。
[0065] 調製例 2
ポリテトラフルォロエチレン〔PTFE〕水性分散液(一次平均粒子径 270nm、含フッ素 ポリマー含有量 34%)に、ノニオン性界面活性剤(ノィゲン TDS— 80、第一工業製 薬社製)を該含フッ素ポリマーに対し 5%、及び、 PFOAを該含フッ素ポリマーの 250 Oppmに相当する量カ卩え、更に水をカ卩えて含フッ素ポリマーの含有量が 30%となるよ うに調整した。得られた含フッ素ポリマー水性分散液の 25°Cでの pHは、 3. 5であつ た。 [0066] 実施例 4
陰イオン交換樹脂アンバージェット IRA4002OHを 500ml、陽イオン交換樹脂アン バーライト IRA120B Hを 710ml (混床比 1. 42)、ポリエチレン製のカップに入れ、 イオン交換水に分散させた状態で均一に混合するよう撹拌し、混床とした。カラム (直 径 2cm)に上記混床を 544ml充填し、ノィゲン TDS— 80 (第一工業製薬社製)の 2 %水溶液を [SV] = 1で 544ml通液した。このカラムに、調製例 2で得た PTFE水性 分散液を [SV] = 1で通液した。得られた水性分散液は、 25°Cでの pHが 3. 6、 PFO A濃度は検出限界未満、含フッ素ポリマー含有量は 30%であった。得られた水性分 散液中の鉄濃度、ナトリウム濃度は共に検出限界未満であった。
[0067] 比較例 2
陰イオン交換樹脂アンバージェット IRA4002OHを 225ml、カラム(直径 2cm)に充 填し、ノィゲン TDS— 80 (第一工業製薬社製)の 2。/0水溶液を [SV] = 1で 225ml通 液した。このカラムに、調製例 2で得た PTFE水性分散液を [SV] = 2で通液した。 10 Oml通液した時点で徐々に PFOA濃度が上がり始め、該含フッ素ポリマーの 150pp mとなった。この時点での水性分散液は、 25°Cでの pHが 10. 8、含フッ素ポリマー含 有量は 30%であった。得られた水性分散液中の鉄濃度は 35ppb、ナトリウム濃度は 15ppmでめった。
産業上の利用可能性
[0068] 本発明により得られる含フッ素ポリマー水性分散液は、調理器具、配管のライニング 、ガラスクロス含浸膜等の用途に好適に用いることができる。

Claims

請求の範囲
[I] 陰イオン交換体と粗含フッ素ポリマー水性分散液とを接触させる接触処理からなり、 前記接触処理は、前記粗含フッ素ポリマー水性分散液を pH2〜9に調整しながら行 うことを特徴とする含フッ素ポリマー水性分散液の製造方法。
[2] 接触処理において、粗含フッ素ポリマー水性分散液にフッ素非含有ノニオン界面活 性剤を添加する請求項 1記載の含フッ素ポリマー水性分散液の製造方法。
[3] 陰イオン交換体は、陰イオン交換樹脂である請求項 1又は 2記載の含フッ素ポリマー 水性分散液の製造方法。
[4] pH2〜9への調整は、粗含フッ素ポリマー水性分散液を陽イオン交換樹脂と接触さ せることによって行うものである請求項 3記載の含フッ素ポリマー水性分散液の製造 方法。
[5] 接触処理は、陰イオン交換樹脂と陽イオン交換樹脂との混床によって粗含フッ素ポリ マー水性分散液を処理するものである請求項 4記載の含フッ素ポリマー水性分散液 の製造方法。
[6] 混床は、陰イオン交換樹脂に対する陽イオン交換樹脂の体積比が 0. 1〜: 10である 請求項 5記載の含フッ素ポリマー水性分散液の製造方法。
[7] 請求項 1、 2、 3、 4、 5又は 6記載の含フッ素ポリマー水性分散液の製造方法により得 られることを特徴とする含フッ素ポリマー水性分散液。
[8] 含フッ素ポリマーの含有量は、 25〜75質量%であり、
含フッ素界面活性剤の含有量は、含フッ素ポリマーに対して lOOOppm以下であり、 フッ素非含有ノニオン界面活性剤の含有量は、含フッ素ポリマー 100質量%に対し て 2〜: 15質量%である請求項 7記載の含フッ素ポリマー水性分散液。
[9] アルカリ金属の含有量は、 lppm以下である請求項 7又は 8記載の含フッ素ポリマー 水性分散液。
[10] フッ素非含有有機酸の含有量は、 lOOppm以下である請求項 7、 8又は 9記載の含フ ッ素ポリマー水性分散液。
[II] 重金属の含有量は、 lppm以下である請求項 7、 8、 9又は 10記載の含フッ素ポリマ 一水性分散液。 含フッ素界面活性剤は、含フッ素ァニオン界面活性剤であり、 前記含フッ素ァニオン界面活性剤の含有量は、含フッ素ポリマーに対して lOOppm 以下である 8、 9, 10又は 11記載の含フッ素ポリマー水性分散液。
PCT/JP2007/063570 2006-07-07 2007-07-06 Procédé de fabrication d'une dispersion aqueuse de polymère contenant du fluor et dispersion aqueuse de polymère contenant du fluor WO2008004660A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008523751A JP5417847B2 (ja) 2006-07-07 2007-07-06 含フッ素ポリマー水性分散液の製造方法及び含フッ素ポリマー水性分散液
US12/307,304 US20090312443A1 (en) 2006-07-07 2007-07-06 Method for producing aqueous fluorine-containing polymer dispersion and aqueous fluorine-containing polymer dispersion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006187712 2006-07-07
JP2006-187712 2006-07-07

Publications (1)

Publication Number Publication Date
WO2008004660A1 true WO2008004660A1 (fr) 2008-01-10

Family

ID=38894626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/063570 WO2008004660A1 (fr) 2006-07-07 2007-07-06 Procédé de fabrication d'une dispersion aqueuse de polymère contenant du fluor et dispersion aqueuse de polymère contenant du fluor

Country Status (3)

Country Link
US (1) US20090312443A1 (ja)
JP (1) JP5417847B2 (ja)
WO (1) WO2008004660A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010070741A (ja) * 2008-03-21 2010-04-02 Daikin Ind Ltd 含フッ素ポリマー水性分散液
WO2013176185A1 (ja) * 2012-05-23 2013-11-28 ダイキン工業株式会社 含フッ素ポリマー水性分散体の製造方法及び精製含フッ素ポリマー水性分散体
JP2013245237A (ja) * 2012-05-23 2013-12-09 Daikin Industries Ltd 含フッ素ポリマー水性分散体の製造方法及び精製含フッ素ポリマー水性分散体
CN113929940A (zh) * 2021-10-26 2022-01-14 海宁杰特玻纤布业有限公司 一种耐折叠ptfe复合膜材料及其制备方法
WO2023210819A1 (ja) * 2022-04-28 2023-11-02 ダイキン工業株式会社 フルオロポリマーの製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113728015A (zh) * 2019-04-26 2021-11-30 大金工业株式会社 氟聚合物水性分散液的制造方法和氟聚合物水性分散液

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002532583A (ja) * 1998-12-11 2002-10-02 ダイネオン・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンディトゲゼルシャフト フルオロポリマーの水性分散液
JP2005200650A (ja) * 2004-01-14 2005-07-28 Solvay Solexis Spa フルオロポリマー分散液の製造方法
JP2006515375A (ja) * 2002-05-22 2006-05-25 スリーエム イノベイティブ プロパティズ カンパニー 水性フルオロポリマー分散系中のフッ素化界面活性剤の量を減少させる方法
JP2006188704A (ja) * 2004-12-30 2006-07-20 Solvay Solexis Spa フルオロポリマー分散液の製造方法
JP2007051255A (ja) * 2005-08-19 2007-03-01 Asahi Glass Co Ltd 精製ポリテトラフルオロエチレン水性分散液の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6720360B1 (en) * 2000-02-01 2004-04-13 3M Innovative Properties Company Ultra-clean fluoropolymers
EP1845116A1 (en) * 2006-04-11 2007-10-17 Solvay Solexis S.p.A. Fluoropolymer dispersion purification

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002532583A (ja) * 1998-12-11 2002-10-02 ダイネオン・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンディトゲゼルシャフト フルオロポリマーの水性分散液
JP2006515375A (ja) * 2002-05-22 2006-05-25 スリーエム イノベイティブ プロパティズ カンパニー 水性フルオロポリマー分散系中のフッ素化界面活性剤の量を減少させる方法
JP2005200650A (ja) * 2004-01-14 2005-07-28 Solvay Solexis Spa フルオロポリマー分散液の製造方法
JP2006188704A (ja) * 2004-12-30 2006-07-20 Solvay Solexis Spa フルオロポリマー分散液の製造方法
JP2007051255A (ja) * 2005-08-19 2007-03-01 Asahi Glass Co Ltd 精製ポリテトラフルオロエチレン水性分散液の製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010070741A (ja) * 2008-03-21 2010-04-02 Daikin Ind Ltd 含フッ素ポリマー水性分散液
WO2013176185A1 (ja) * 2012-05-23 2013-11-28 ダイキン工業株式会社 含フッ素ポリマー水性分散体の製造方法及び精製含フッ素ポリマー水性分散体
JP2013245237A (ja) * 2012-05-23 2013-12-09 Daikin Industries Ltd 含フッ素ポリマー水性分散体の製造方法及び精製含フッ素ポリマー水性分散体
JP2014001376A (ja) * 2012-05-23 2014-01-09 Daikin Ind Ltd 含フッ素ポリマー水性分散体の製造方法及び精製含フッ素ポリマー水性分散体
US9644055B2 (en) 2012-05-23 2017-05-09 Daikin Industries, Ltd. Method for producing aqueous fluorine-containing polymer dispersing element, and purified aqueous fluorine-containing polymer dispersing element
CN113929940A (zh) * 2021-10-26 2022-01-14 海宁杰特玻纤布业有限公司 一种耐折叠ptfe复合膜材料及其制备方法
CN113929940B (zh) * 2021-10-26 2023-08-29 嘉兴杰特新材料股份有限公司 一种耐折叠ptfe复合膜材料及其制备方法
WO2023210819A1 (ja) * 2022-04-28 2023-11-02 ダイキン工業株式会社 フルオロポリマーの製造方法

Also Published As

Publication number Publication date
US20090312443A1 (en) 2009-12-17
JP5417847B2 (ja) 2014-02-19
JPWO2008004660A1 (ja) 2009-12-10

Similar Documents

Publication Publication Date Title
JP5027671B2 (ja) フルオロポリマー水性分散液からフッ素系界面活性剤を除去する方法におけるカラム漏出のモニタリング
JP5163125B2 (ja) 塩基性陰イオン交換樹脂の再生方法
JP2006522836A (ja) 溶融加工可能なフルオロポリマーを含み、フッ素化界面活性剤の量を減少させた水性フルオロポリマー分散体
US8329836B2 (en) Viscosity control for reduced fluorosurfactant aqueous fluoropolymer dispersions by the addition of cationic surfactants
JP5417847B2 (ja) 含フッ素ポリマー水性分散液の製造方法及び含フッ素ポリマー水性分散液
EP2182013B1 (en) Aqueous fluoropolymer dispersion and process for producing the same
KR20020007283A (ko) 플루오로중합체 수분산액
JP2003531232A (ja) フルオロポリマー水性分散液の製造方法
US20060183842A1 (en) Fluoropolymer dispersions with reduced fluorosurfactant content and high shear stability
JP5332788B2 (ja) 含フッ素ポリマー水性分散液
JP2008530314A (ja) 制御されたpHを有する、低フッ素系界面活性剤含有フルオロポリマー水性分散液を生成する方法
EP2021384A2 (en) Process for reducing fluorosurfactant content of fluoropolymer dispersions using anionic surfactant-treated anion exchange resin
WO2012133655A1 (ja) フルオロポリマー水性分散液
WO2006109854A1 (ja) フルオロポリマー水性分散液の製造方法
JP5034943B2 (ja) 含フッ素ポリマー水性分散液及びその製造方法
US9644055B2 (en) Method for producing aqueous fluorine-containing polymer dispersing element, and purified aqueous fluorine-containing polymer dispersing element
JP4977970B2 (ja) ノニオン性界面活性剤水性組成物の製造方法
WO2008001846A1 (fr) Dispersion aqueuse de résine fluorée et son procédé de production
JP4784603B2 (ja) フルオロポリマー水性分散液の製造方法
WO2015053235A1 (ja) 含フッ素乳化剤の回収方法
JP2008013669A (ja) フルオロポリマー水性分散液の製造方法
JP2007314691A (ja) 含フッ素ポリマー水性分散液の製造方法
WO2006064856A1 (ja) フルオロポリマー水性分散液の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07768302

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008523751

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12307304

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07768302

Country of ref document: EP

Kind code of ref document: A1