WO2007145357A1 - データ作成装置、データ作成方法、基地局、移動局、同期検出方法、セクタ同定方法、情報検出方法、および移動通信システム - Google Patents

データ作成装置、データ作成方法、基地局、移動局、同期検出方法、セクタ同定方法、情報検出方法、および移動通信システム Download PDF

Info

Publication number
WO2007145357A1
WO2007145357A1 PCT/JP2007/062243 JP2007062243W WO2007145357A1 WO 2007145357 A1 WO2007145357 A1 WO 2007145357A1 JP 2007062243 W JP2007062243 W JP 2007062243W WO 2007145357 A1 WO2007145357 A1 WO 2007145357A1
Authority
WO
WIPO (PCT)
Prior art keywords
sector
code
sch
cell
signal
Prior art date
Application number
PCT/JP2007/062243
Other languages
English (en)
French (fr)
Inventor
Shoichi Shitara
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to BRPI0722367-6A priority Critical patent/BRPI0722367B1/pt
Priority to BRPI0712971-8A priority patent/BRPI0712971B1/pt
Priority to JP2008521286A priority patent/JP5247441B2/ja
Priority to EA200970024A priority patent/EA013068B1/ru
Priority to BRPI0722368-4A priority patent/BRPI0722368B1/pt
Priority to EP07767141A priority patent/EP2037610A4/en
Priority to US12/303,696 priority patent/US20100157940A1/en
Publication of WO2007145357A1 publication Critical patent/WO2007145357A1/ja
Priority to US12/490,843 priority patent/US9059827B2/en
Priority to US12/490,855 priority patent/US20090257427A1/en
Priority to US14/714,027 priority patent/US9735910B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0073Acquisition of primary synchronisation channel, e.g. detection of cell-ID within cell-ID group
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0079Acquisition of downlink reference signals, e.g. detection of cell-ID
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2675Pilot or known symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0076Acquisition of secondary synchronisation channel, e.g. detection of cell-ID group
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • Data creation device data creation method, base station, mobile station, synchronization detection method, sector identification method, information detection method, and mobile communication system
  • the present invention relates to E-UTRA (Evolved-UTRA) standard mobile communication employing a multi-carrier communication method, and more particularly, to a synchronization channel (SCH: Synchronization Ch ⁇ ) included in a downlink (downlink transmission) signal.
  • the present invention relates to a data creation device, a data creation method, a base station, a mobile station, a synchronization detection method, a sector identification method, an information detection method, and a mobile communication system.
  • a mobile station needs to identify a cell and a sector to which the mobile station intends to connect in order to establish initial synchronization or perform handover. In other words, it is necessary to detect the communication target base station and the base station antenna.
  • a so-called three-step cell search method is used to perform high-speed cell search.
  • the “cell search” is a concept including “sector search”.
  • Three-stage cell search in 3rd generation mobile communication is generally performed using a synchronization channel (SCH:
  • Patent Document 1 describes a technique for frequency-multiplexing a second synchronization code (S—SCH signal) for identifying a scramble code group on a plurality of subcarriers in a three-stage cell search in a multicarrier communication system employing OFDM. Is disclosed.
  • S—SCH signal second synchronization code
  • Patent Document 2 discloses a technique for multiplexing a cell identification code on a common pilot channel (CPICH) in a three-stage cell search in a multicarrier communication system employing OFDM.
  • CPICH common pilot channel
  • Non-Patent Document 1 proposes standardization of a one-cell iterative communication method employing OFDM.
  • a standardization plan has been proposed in which one cell is divided into three sectors, and base stations arranged in each sector communicate with multiple mobile stations in the cell simultaneously.
  • the common pilot channel (CPICH) is multiplied by a cell-specific spreading code and a sector-specific spreading code. Therefore, the mobile station can identify cells (and sectors) by performing despreading and correlation detection using each spreading code replica.
  • Non-Patent Document 2 a technique for identifying cells (and sectors) by a three-stage cell search similar to the third generation technique, in addition to the multicarrier communication system employing OFDM.
  • this technique like the technique disclosed in Non-Patent Document 1, one cell is divided into three sectors, and the same synchronization channel code (SCH code) is used between the sectors.
  • SCH code synchronization channel code
  • time synchronization is established between the sectors, and the transmission of the SCH for each sector is performed simultaneously.
  • identification of cells and sectors that is, selection of cells and sectors that give the maximum received power is performed by correlation detection using a replica of a spread code using a pilot channel in the third step.
  • E-UTRA the next-generation communication standard
  • 3G cell search using 3G using SCH and CPICH the common pilot channel
  • despreading and correlation detection processing in the third step are performed.
  • the sector with the maximum received power is detected.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-179522
  • Patent Document 2 JP 2005-198232 A
  • Non-Patent Document 1 3GPP "TR 25.814,” Physical Layer Aspects for Evolved UTRA (Release 7) v.0.3.1 "2005/10/18
  • Non-Patent Document 2 3GPP "Rl-060042,” SCH Structure and Cell Search Method in E-U TRA Downlink "2006/1/19
  • E-UTRA the next-generation communication standard
  • 3G three-step cell search sector identification is performed by despreading and correlation detection processing using CPICH (Common Pilot Channel) in the third step.
  • CPICH Common Pilot Channel
  • the conventional technology cannot identify sectors and cells without going through three stages of processing. Therefore, in the three-step cell search, there is a limit to shortening the process required for cell and sector identification processing.
  • the third step in addition to despreading and correlation detection processing for cell identification using CPICH, it is necessary to perform similar processing for sector identification.
  • a memory having a capacity for storing the correlation calculation results of the respective replica signals is required.
  • a memory that stores the correlation calculation results for (number of cell IDs contained in cell ID group x number of sector IDs) is required. In short, the memory capacity increases.
  • Non-Patent Document 2 the same SCH data is transmitted simultaneously for each sector in the same cell. For this reason, a mobile station near the sector boundary may generate a frequency band in which the received power decreases due to mutual interference of signals of multiple sector forces or fading due to the propagation environment. In this case, the probability of cell and sector identification may be reduced.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to reduce the time required for cell search processing including sector identification and to perform correlation detection using a no-lot channel. This is to reduce the capacity of the memory for storing the output results. Another object is to improve the interference resistance or fading resistance of cell search processing including sector identification, and to implement cell search including sector identification more easily and accurately without increasing the burden on the transmitting / receiving device.
  • the data creation device of the present invention is a data creation device that creates data of a synchronization channel transmitted by a base station having jurisdiction over a cell including a plurality of sectors, and is a sector identification for identifying the sector. Using the sector specific code corresponding to the number, the data of the synchronization channel for each sector is created.
  • sector identification can be performed using a synchronization channel that does not use a pilot channel by multiplying a sector specific code by a sector common code.
  • the sector specific codes are orthogonal to each other.
  • the sector specific code is common between adjacent cells.
  • the data creation device of the present invention is characterized in that the data of the pilot channel for each sector is created using an orthogonal code corresponding to the sector identification number.
  • the time required for the cell search process including sector identification is shortened, the capacity of the memory for storing the correlation detection result using the pilot channel is reduced, and the cell including the sector identification is further reduced.
  • the data creation method of the present invention is a data creation method for creating synchronization channel data transmitted by a base station having jurisdiction over a cell including a plurality of sectors, wherein the sector is identified. It is characterized in that the data of the synchronization channel for each sector is created by using the sector specific code corresponding to the sector identification number.
  • sector identification can be performed using a synchronization channel without using a pilot channel by multiplying a sector specific code by a sector common code.
  • the data creation method of the present invention is characterized in that pilot channel data for each sector is created using an orthogonal code corresponding to the sector identification number.
  • the base station of the present invention is a base station that manages a cell including a plurality of sectors, and uses a sector specific code corresponding to a sector identification number for identifying the sector.
  • sector identification can be performed using a synchronization channel that does not use a pilot channel by multiplying a sector specific code by a sector common code.
  • the base station of the present invention is a base station that manages a cell including a plurality of sectors, and uses a sector specific code corresponding to a sector identification number for identifying the sector, A synchronization channel data creation unit for creating synchronization channel data for each sector; A transmission unit that transmits the data of the synchronization channel corresponding to the data to each sector.
  • sector identification can be performed using a synchronization channel without using a pilot channel by multiplying a sector common code by a sector specific code.
  • the synchronization channel data creation unit creates pilot channel data for each sector using an orthogonal code corresponding to the sector identification number, and transmits the transmission data.
  • the unit transmits pilot channel data corresponding to the sector to each sector.
  • the mobile station of the present invention is a mobile station that communicates with a base station that manages a cell including a plurality of sectors, and that corresponds to a sector identification number for identifying the sector. It is characterized in that a signal including a synchronization channel using a unique code is received from the base station.
  • sector identification can be performed using a synchronization channel that does not use a pilot channel by multiplying a sector specific code by a sector common code.
  • the mobile station of the present invention is characterized in that sector identification is performed based on the synchronization channel.
  • the mobile station of the present invention is characterized in that synchronization detection is performed based on the synchronization channel.
  • the sector specific codes are orthogonal to each other.
  • the sector specific code is common between adjacent cells.
  • the mobile station of the present invention is characterized in that synchronization detection is performed by taking a correlation using the signal and the sector specific code.
  • the cell search can be completed. Therefore, the search process can be shortened compared to the conventional three-stage cell search.
  • the mobile station of the present invention includes a synchronization channel signal processing unit, and the synchronization channel signal processing unit obtains a correlation between the signal and a replica corresponding to the sector specific code. The synchronization detection is performed.
  • the mobile station of the present invention is characterized in that sector identification is performed by taking a correlation using the signal and the sector specific code.
  • the synchronization channel signal processing unit performs the sector identification by taking a correlation between the signal and a replica corresponding to the sector specific code.
  • the mobile station of the present invention is characterized in that a plurality of replicas corresponding to the plurality of sectors are stored in advance.
  • the synchronization channel signal processing unit is characterized in that each of the plurality of replicas and the signal are correlated in parallel.
  • the synchronization channel signal processing unit has a correlation value It is characterized in that the sector identification is performed by specifying the sector specific code that becomes the maximum.
  • the synchronization channel signal processing unit performs the sector identification by converting the signal into a frequency domain and taking a correlation with the sector specific code. It is characterized by
  • the mobile station of the present invention is further characterized by further comprising a sector specific code storage unit for storing a plurality of sector specific codes corresponding to the plurality of sectors.
  • the synchronization channel signal processing unit takes a correlation between each of the plurality of sector specific codes and the signal converted into the frequency domain in parallel. It is characterized by
  • the synchronization channel signal processing unit uses the pilot channel orthogonal code corresponding to the sector identified by the synchronization channel, and uses the pilot channel orthogonal code. It is characterized by detecting information contained in
  • the synchronization detection method of the present invention uses a sector specific code corresponding to a sector identification number for identifying the sector, which is transmitted by a base station having jurisdiction over a cell including a plurality of sectors.
  • a mobile station receives a signal containing a synchronization channel created in The synchronization detection method used is characterized in that synchronization detection is performed by taking a correlation using the signal and the sector specific code.
  • a sector unique code corresponding to a sector identification number for identifying the sector which is transmitted from a base station having jurisdiction over a cell including a plurality of sectors.
  • the sector identification method of the present invention is characterized in that synchronization detection is performed by taking a correlation using the signal and the sector specific code.
  • the information detection method of the present invention uses a sector specific code corresponding to a sector identification number for identifying the sector, which is transmitted by a base station having jurisdiction over a cell including a plurality of sectors.
  • Information detecting method for detecting information contained in the pilot channel in a mobile station that receives a signal including a synchronization channel created in the above and a pilot channel created using an orthogonal code corresponding to the sector identification number The information included in the pilot channel is detected using an orthogonal code of the pilot channel corresponding to the sector identified by the synchronization channel.
  • the mobile station of the present invention identifies a receiving unit that receives a signal from a base station that manages a cell including a plurality of sectors, and a sector that is a signal transmission source based on the received signal.
  • a sector identification number that identifies a sector with a good reception characteristic based on the sector identification by the sector identification unit. It is characterized by receiving synchronization channel data for each sector using a sector specific code corresponding to.
  • the mobile communication system of the present invention controls a cell including a plurality of sectors, and a synchronization channel for each sector using a sector specific code corresponding to a sector identification number for identifying the sector
  • the base station transmits the data to each sector, and the mobile station receives the data from the base station.
  • sector identification can be performed using a synchronization channel that does not use a pilot channel by multiplying a sector-specific code by a sector common code.
  • the mobile communication system of the present invention is characterized in that the communication system between the base station and the mobile station is a multi-carrier communication system.
  • the mobile communication system of the present invention is characterized in that OFDM is applied to the multicarrier communication scheme.
  • the sector is obtained only by despreading and correlation detection using the SCH without using the pilot channel. Can be identified. Accordingly, despreading using the pilot channel and correlation detection processing are not required for sector identification, and the capacity of the memory used for correlation calculation using the pilot channel can be reduced.
  • the cell ID can be directly identified only by SCH.
  • the cell search processing power including sector identification requires only two-stage processing using the SCH (two-stage cell search), and the search time can be shortened compared to the conventional three-stage cell search. .
  • the timing of the SCH on the time axis by the autocorrelation method using the periodicity of the SCH or by the cross correlation method using the time waveform of the replica code of the sector specific code can be completed by detection (first step) and identification of the sector ID and cell ID based on information on the frequency axis (second step). Is possible. Therefore, the search process can be shortened compared to the conventional three-step cell search.
  • correlation detection using the pilot channel is only necessary when demodulating the data channel, and is not necessary for cell search, reducing the hardware burden for correlation calculation using the pilot channel ( Memory capacity reduction).
  • the cell ID cannot be directly identified with the SCH alone, and it may be limited to the detection of the cell ID group information.
  • the cell ID can be identified by performing despreading and correlation detection using the pilot channel.
  • the multicarrier transmission / reception apparatus of the present invention enables high-speed and large-capacity transmission in the downlink.
  • the time required for the cell search process including sector identification is shortened, and the capacity of the memory for storing the correlation detection result using the nolot channel is reduced.
  • the present invention includes various nominations (specific examples, modified examples, and application examples), and these variations are practical applications of communication systems based on E-UTRA (Evolved-UTRA). To contribute.
  • a cross-correlation method focusing on a special time waveform can be adopted.
  • the effect of simplifying the configuration of the correlator can be obtained.
  • the sector-specific codes transmitted from the base station are known in the mobile station, the most recent sector detection is detected using the cross-correlation based on the time waveform before FFT, not by despreading. You can also also also, if the number of sectors has increased In this case, a “sector group unique code” may be employed as the “sector unique code”.
  • OFDM is used as a digital modulation scheme.
  • standardization has been advanced in consideration of the ability of a base station to control one cell as, for example, three communication control areas (sectors) and simultaneous communication with multiple mobile stations in the cell. Yes.
  • a radio communication frame hereinafter referred to as “frame”
  • resource block this division unit is referred to as “resource block”.
  • the communication speed is improved by allocating each resource block to a mobile station with a good communication environment.
  • each sector controlled by one base station a frame is transmitted at the same timing. That is, the frame transmission is synchronized. The same frequency band is used. For this reason, in the vicinity of the cell boundary and the sector boundary, the V signal used in the adjacent cell or the adjacent sector interferes with a desired received signal, resulting in a decrease in communication speed (throughput).
  • sector-specific codes in the following example, sector-specific codes
  • pilot subcarriers that are subcarriers for channel estimation allocated to the same subcarriers between sectors. Means three code sequences). Then, by despreading M pilot subcarriers determined by the code sequence (M is an integer of 2 or more), it is possible to remove interference from adjacent sector signals and perform more accurate channel estimation. System design is done so that it can be done.
  • a pilot channel and a data channel are multiplied by a cell-specific spreading code to make random interference signals due to signals used in adjacent cells.
  • the slot channel is multiplied by a sector-specific orthogonal code and a cell-specific spreading code.
  • FIG. 22 shows a downlink frame of the multicarrier communication system used in the present invention. It is a figure which shows a structure.
  • This frame structure is the same as the general frame structure used in the OFDMA communication system. That is, in this frame configuration, a certain time interval (frame interval) is divided into a plurality of pieces, and the frequency domain is also divided into a certain bandwidth composed of a plurality of subcarriers. These divided areas are referred to as resource blocks in this specification.
  • a unit obtained by dividing a frame in the time domain is called a subframe, and a unit divided in the frequency domain is called a subchannel.
  • each block is scheduled to a mobile station with a good propagation path environment.
  • each mobile station When starting communication, each mobile station selects a base station with good reception characteristics from among a plurality of base stations, connects to the base station, and then starts wireless communication. Good reception characteristics mean that the received power of the received signal is high.
  • This operation at the start of wireless communication is generally called cell search.
  • Cell search includes selection of base stations with good communication characteristics, acquisition of cell-specific information including information such as base station ID, frame synchronization, and symbol synchronization.
  • Symbol synchronization means FFT window synchronization or window synchronization.
  • FIG. 23 is a diagram showing an example of a cell and sector configuration.
  • base stations (BS1 to BS3) are installed at the center of one cell (CL1 to CL3).
  • Each cell (CL1 to CL3) is divided into three sectors (SC1 to SC3).
  • the base stations (BS1 to BS3) shown in FIG. 23 perform downlink wireless communication with the same transmission power
  • the mobile station UE1 connects to BS1 with the least propagation loss and performs communication. In this way, multiple base stations are detected and It is necessary to perform cell search to select and connect the base station with the best communication quality.
  • Non-Patent Document 1 described above since the cell-specific code is multiplied by the data channel, it is necessary to obtain information on the cell-specific code at the time of cell search.
  • SCH time correlation detection is used to detect symbol synchronization, frequency offset, and 1ZN frame timing.
  • the detection of 1ZN frame timing is detection performed when N SCHs are multiplexed in the time direction. Details will be described later.
  • FIG. 24 is a diagram illustrating an example of an arrangement position of a synchronization channel (SCH) in a frame.
  • the SCH is arranged in the last symbol of the fifth subframe (SF5) and the tenth subframe (SF10).
  • synchronization is performed with a period of 1Z2 in the frame interval by detecting the temporal positions of the two SCHs in the frame.
  • a characteristic waveform is formed in the time axis region. In the first step, this waveform characteristic is used to achieve time synchronization.
  • data constituting the SCH is demodulated by correlation detection in the frequency domain, and cell-specific information (eg, cell ID or cell ID group, cell configuration, number of base station antennas, broadcast information notification bandwidth) Etc.).
  • cell-specific information eg, cell ID or cell ID group, cell configuration, number of base station antennas, broadcast information notification bandwidth
  • the cell ID is identified based on the correlation between the cell channel and the replica signal of the channel generated by the mobile station and the base channel-specific spreading code.
  • Fig. 25 is a diagram illustrating a configuration example of the SCH.
  • the vertical axis represents the frequency axis
  • the horizontal axis represents the time axis.
  • each small square is a subcarrier that constitutes a SCH, and constitutes a channel of one symbol length.
  • the SCH is composed of a plurality of subcarrier carriers, and even-numbered subcarriers and center frequency subcarriers (DC subcarriers) from the low frequency side are null subcarriers, and the center frequency subcarriers.
  • SCH signals are assigned to odd-numbered subcarriers excluding the carrier.
  • Null subcarrier is a zero-power subcarrier to which no signal is assigned
  • the SCH subcarrier to which data is allocated is referred to as “SCH subcarrier”.
  • the symbol to which the SCH is assigned has a waveform in which the same signal having a symbol length of 1 Z2 is repeated twice in the time domain.
  • One or more symbols with such a channel configuration are placed at predetermined positions in the frame, and time synchronization is performed by detecting the repetitive waveform at the receiver.
  • FIG. 26 is a block diagram showing a configuration of a receiver for detecting a SCH repetitive waveform and performing time synchronization.
  • the receiver includes a delay unit 91 that delays the received signal 90, a complex conjugate calculation unit 92, a multiplication unit 93, an averaging unit 94, and a peak detection unit 95.
  • the synchronization timing signal 96 is output from the peak detector 95.
  • This receiver multiplies the received signal by the complex conjugate of the signal received earlier and delayed by 1Z2 effective symbols.
  • the synchronization timing is detected by utilizing the fact that the correlation value is high.
  • N 2 in Fig. 24
  • this multiplied signal is transmitted between 1ZN frame intervals.
  • FIG. 27 is a diagram showing an example of the SCH assigned to the subcarriers on the frequency axis.
  • FIG. 27 shows a scheme for acquiring SCH information by calculating a phase difference P between adjacent SCH subcarriers.
  • the information based on the phase difference P between these SCH subcarriers indicates the cell ID group, the information indicating the number of the SCHs in the frame, the cell configuration, and the number of base station antennas (second step). .
  • a pilot symbol replica signal corresponding to each cell ID included in the cell ID group detected as described above is created.
  • the cell ID can be detected by correlating with the pilot symbols arranged in the subframe.
  • FIG. 28 shows the configuration of resource blocks in the OFDM communication scheme studied in 3GPP. It is a figure which shows an example of composition.
  • FIG. 28 shows a typical resource block when a SCH is included.
  • a pilot channel and a data channel are arranged in addition to the SCH.
  • the pilot symbols are multiplied by a cell-specific spreading code for random interference and an orthogonal code for orthogonalizing pilot symbols between sectors in the same cell.
  • the pilot channel arranged in the first symbol of the frame is used.
  • a transmission signal having a different sector force in the same cell can be received. Accuracy deteriorates.
  • the conventional cell search method when the cell ID is detected by the replica signal, it is necessary to detect the cell ID and determine which sector force within the same cell has the strong signal strength. For this reason, it is necessary to detect the correlation with the replica signals (number of cell IDs x number of sector IDs) included in the cell ID group. That is, in the first step and the second step, it was difficult to determine the reception power of the transmission signal of each sector using SCHs transmitted simultaneously from sectors in the same cell. For this reason, the amount of processing required for correlation detection in a three-stage cell search increases in proportion to the number of sectors included in the cell.
  • the cell ID group includes (cell ID number X It is necessary to prepare as many storage units as the number of sector IDs). Furthermore, since the same SCH data is simultaneously transmitted from each sector of the same cell, the mobile station near the sector boundary may be continuous in the frequency domain due to fading depending on the situation of the propagation path of the signal having multiple sector forces. As a result, subcarriers with very small amplitudes are created, which may reduce the cell ID identification probability. Therefore, in the present invention, the synchronization channel (SCH) is provided with a sector and cell identification function. This realizes a cell search that does not rely on correlation detection using a pilot channel, and overcomes the above disadvantages. Embodiments of the present invention will be described below with reference to the drawings.
  • FIG. 1 is a flowchart showing an example of a main procedure of multicarrier transmission processing according to the present invention.
  • the base station of the multicarrier mobile communication system adopting the OFDM communication scheme generates a synchronization channel (SCH) included in the downlink by multiplying three types of codes. That is, “sector-specific code common in the same cell”, “sector-specific code (orthogonal code different for each sector in the same cell)” and “cell-specific code (for each cell for transmitting cell-specific information) Multiply (different sign) ”(step Sl).
  • the sector common code may be a common code among a plurality of cells.
  • the SCH and pilot channel are allocated to the subcarriers of the resource block by allocation (mapping) in the time / frequency plane (step S2). Then, spreading code multiplication and IFFT processing are performed (steps S3 and S4). Next, GI (Guard Interval: CP: also called Cyclic Prefix) insertion and DZ A conversion processing are performed (steps S5 and S6). Finally, frequency conversion is performed, and multicarriers are transmitted from the directional antennas of each sector (step S7).
  • GI Guard Interval: CP: also called Cyclic Prefix
  • FIG. 2 is a flowchart showing an example of a main procedure of multicarrier reception processing according to the present invention.
  • the mobile station receives the multi-carrier signal of base station power and performs frequency conversion and AZD conversion (step S10).
  • Mobile stations include mobile phone terminals, PDA terminals, and portable personal computers.
  • step S2 corresponds to the first step (stage a) of the cell search.
  • step S12 serial Z parallel conversion
  • FFT fast Fourier transform processing
  • the sector identification process and the cell identification process are performed simultaneously (second search of the cell search).
  • Step b) the sector-specific code that gives the maximum received power is detected by despreading using the sector-specific code to identify the optimum sector (base station antenna to communicate with)
  • step S14 demodulation of the cell-specific code (correlation detection with the cell-specific code if necessary) is performed to obtain cell-specific information (cell ID, etc.) (step S15).
  • step S15 the cell ID cannot be directly identified in step S15, and only the cell ID group is identified.
  • the cell ID is identified by correlation detection using the pilot channel (step S16). In this case, this is the third step cell search (stage c).
  • Fig. 3 is a diagram showing a concept that is the basis of generation of orthogonal codes.
  • the complex phase plane is the IQ plane, with the I axis corresponding to the real axis and the Q axis corresponding to the imaginary axis.
  • three vectors Pl, P2, and P3 having an amplitude of “1” and an angle of 120 degrees with each other are set. If vector addition is performed for these three vectors, the imaginary axis components of vectors P2 and P3 are canceled.
  • FIG. 4 is a diagram for explaining an arrangement of code elements constituting three orthogonal codes (code 1, code 2, code 3) and a principle when only code 2 is demodulated.
  • the horizontal axis is the time axis
  • the vertical axis is the frequency axis.
  • (sign 1) (P1, PI, PI)
  • (sign 2) (PI, P2, P3)
  • (sign 3) (PI, P3, P2) .
  • Each code is constructed using one of the three vectors in Fig. 3 as a code element.
  • Code 2 and code 3 use the same code elements, but have different arrangements on the force frequency axis.
  • the number of sectors is not limited to “3”.
  • the number of sectors may be 4 or more.
  • an orthogonal code corresponding to the number of sectors can be easily generated.
  • the number of orthogonal vectors in Fig. 3 is increased, and these vectors are placed on the frequency axis using the method in Fig. 4.
  • more codes can be generated. That is, as the number of code elements in a set arranged on the frequency axis increases, it becomes possible to generate more orthogonal codes. Therefore, even when the number of sectors increases, it is possible to flexibly cope with it.
  • This cell specific information includes a cell, a broadcast channel bandwidth, an antenna arrangement, a GI length, and the like.
  • FIG. 5 is a diagram for explaining a method of superimposing cell specific information on the SCH.
  • the horizontal axis is the time axis
  • the vertical axis is the frequency axis.
  • the code A is assigned to the subcarrier that is the phase reference.
  • a subcarrier to which a code (CI, C2, C3 ′′) indicating a phase difference from the subcarrier is assigned is arranged adjacent to the subcarrier serving as the phase reference.
  • the cell specific code for transmitting the cell specific information is formed by the code “A” and the code (CI, C2, C3 “′) indicating the phase difference.
  • the cell specific information is transmitted as information indicating the relative phase difference between a pair of subcarriers rather than the absolute phase of the subcarriers.
  • ⁇ 1, ⁇ 2, ⁇ 3,... Enclosed by dotted lines indicate a pair of subcarriers.
  • the sector specific information and the cell specific information are simultaneously transmitted using the SCH.
  • the characteristics of the code format will be described. As shown in Fig. 4, if each of the three sectors is distinguished, it is sufficient if there are codes of three chip periods orthogonal to each other. However, when trying to transmit cell-specific information at the same time, the simple code shown in Fig. 4 cannot be used. In particular, when the relative phase difference information between subcarriers as shown in FIG. 5 is used, it is difficult to transmit the cell specific information with the code having the configuration shown in FIG.
  • both sector specific information and cell specific information are transmitted by subcarrier phase modulation, but one information should not adversely affect the other information.
  • the receiving side must be able to demodulate both information simultaneously in order to speed up the cell search. Therefore, as shown in Fig. 4, two sets of three orthogonal chips (three code elements) are used. These are arranged in combination on the frequency axis, and the 6 chips (6 code elements) are set as a set (that is, the 6 chips are used as a structural unit) to form a code.
  • FIGS. 6 (a) to 6 (d) are diagrams for explaining code formats for transmitting the sector specific information and the cell specific information superimposed on the SCH.
  • Fig. 6 (a) two sets of 3 chips (3 code elements) that are orthogonal to each other shown in Fig. 4 are used, and they are arranged in combination on the frequency axis.
  • an example of the arrangement of each chip in the case where a code is formed with the 6 chips (6 code elements) as one set is shown.
  • the six chips are used as one structural unit.
  • “relative phase difference information” is “phase difference information between subcarriers multiplied by cell-specific codes having the same value”.
  • the odd number is a subcarrier that serves as a phase reference.
  • the “cell specific code” is further allocated.
  • the assignment (multiplication) of the “cell specific code” may be performed in preference to the assignment (multiplication) of the “sector specific code”. The result is the same for either multiplication. That is, as a result, the sector common code (s), the cell specific code, and the sector specific code are 3 in SCH.
  • the configuration of the sector specific code is not limited to the configuration shown in Fig. 6 (b).
  • it may be arranged such that (PI, P2, P3) of sector 3 chips are simply overlapped in two stages on the frequency axis.
  • two subkeys to which sector specific codes of the same value (PI, P1) are assigned are assigned.
  • the carrier is paired and P1 on the high frequency side is multiplied by C1 indicating the phase difference, and this C1 is used as cell specific information.
  • the synchronization channel is multiplied by the sector specific code orthogonal to each sector. That is, the SCH that is non-orthogonal with respect to the sector is orthogonalized.
  • Sector identification is made possible by measuring received power using SCH, and high-quality sector identification is made possible by good frequency characteristics even at sector boundaries.
  • cell IDs can be identified by multiplying the SCH by the cell specific code and transmitting it simultaneously.
  • a new two-stage cell search method can be realized in place of the conventional three-stage cell search method using both SCH and CPICH.
  • the cell search processing process including sector identification can be shortened.
  • orthogonal codes having multiple chips as a unit are used in pairs. That is, one of the codes having the same value is further multiplied by a code indicating a relative phase difference, and the cell specific information is transmitted by the relative phase difference. This makes the code simple and compact, and enables transmission of identification information for both the sector and the cell.
  • a cell search method including the SCH data structure and sector identification will be described by taking as an example the case where the SCH is arranged at the rear end of a subframe.
  • the cellular system is a mobile communication system that also includes a plurality of cell forces.
  • the cellular system used in this embodiment uses the same frequency band for each cell, and uses OFDMA communication as a communication method.
  • This is a one-cell repetitive communication system using this method.
  • a cell is divided into three communication areas (sectors), and one base station installed in the center of the cell is connected to mobile stations located in a plurality of sectors. Communicate. Power that uses the same frequency band in each sector
  • the pilot channel is multiplied by the sector-specific orthogonal code, and despreading is used, so that it is near the sector boundary. Oh !, but it is possible to perform accurate channel estimation.
  • the downlink communication scheme is the same OFDM communication scheme as described above.
  • the configuration of the communication frame and resource block has the same format as that shown in FIGS. 22 and 28, respectively.
  • a configuration is adopted in which the SCH is arranged at the rear end of a time period in which frames are equally divided into Ss (Ss is a divisor of the number of subframes Sf (natural number)).
  • Ss is a divisor of the number of subframes Sf (natural number)).
  • Sf is 10
  • Ss is 2.
  • a method (CDM: Code Division Multiplex) method of multiplexing on the same subcarrier of the same symbol between sectors is used.
  • the pilot channel between sectors such as the method of multiplexing on different subcarriers with the same symbol (FDM: Frequency Division Multiplex) or the method of multiplexing on the same subcarrier with different symbols (TDM: Time Division Multiplex), etc. It can be applied to a method in which they are orthogonal to each other.
  • a signal obtained by multiplying a code sequence corresponding to the orthogonal code multiplied by the pilot channel is CDM transmitted as an SCH transmitted by each sector power.
  • SCH physical channel
  • FIG. 7 is a diagram showing a subcarrier index (subcarrier number) on the frequency axis. As shown in the figure, the subcarrier number on the low frequency side (bottom end) is 1, and the subcarrier number at the center frequency is “n + 1”. In the following description, this subcarrier index is used as appropriate.
  • FIGs. 8 (a) to 8 (c) each show the SCH data transmitted simultaneously from three sectors in the same cell. It is a figure for demonstrating a data structure.
  • FIG. 8 (a) is a diagram showing allocation of sector common codes on the frequency axis
  • FIG. 8 (b) is a diagram showing a configuration of three sector specific codes
  • Fig. 8 (c) is a diagram showing the concept underlying the generation of the sector specific code, showing the vector on the complex phase plane.
  • a frame of a signal to be transmitted includes a plurality of symbol powers.
  • FIG. 8 illustrates the SCH data of a plurality of symbols.
  • the vertical axis is the frequency axis and the horizontal axis is the time axis.
  • each subcarrier has an even-numbered subcarrier (subcarrier index 2, 4, 6,..., 2n) and a center frequency subcarrier as a null subcarrier. It is said. Then, odd-numbered subcarriers (subcarrier indexes 1, 3, 5,..., 2 n + 1) excluding the center frequency subcarrier are used as subcarriers for data allocation.
  • the signal shown in Fig. 8 (a) indicates a sector common code. S for each SCH subcarrier
  • Amplitude, j is the imaginary unit, and ⁇ is the phase. However, in this specification, the amplitude ⁇ is assumed to be 1. Since the sector common code s is common to all sectors in each cell,
  • Figure 8 (b) shows the case where sector-specific codes are used in three sectors.
  • the code is a code unique to each sector in the same cell, and codes 1 to 3 correspond to the three sectors in the present embodiment.
  • the mobile station and base station shall know in advance about the correspondence between these codes and sector IDs in the same cell! /.
  • the code sequence multiplied by the SCH subcarrier is an odd SCH subcarrier (subcarrier index 1, 5, 9,...) Power even on the low frequency side.
  • Even SCH subcarrier (subcarrier index 3, 7)
  • the phase difference to each sector is 0 °, 0 °, and 0 °
  • Even SCH subcarrier power The phase difference to odd SCH subcarriers is 0 ° and 120 ° for each sector. 240 °.
  • Each code is a code having an amplitude of 1.
  • the number n of SCH subcarriers is an integral multiple of 6. Looking at one repeating part (6 chips) of these three code sequences, any code If each code sequence is multiplied by the complex conjugate of the sequence and 3 chips are added every other chip, the sum is 0 when the code sequence other than the selected arbitrary code sequence is multiplied. Also, when multiplying an arbitrary code sequence, the sum is 3.
  • code 2 the complex conjugate of code 2 is (e ⁇ ' ⁇ ⁇ input expO'O ⁇ input exp (-j2 ⁇ / 3), exp j2 ⁇ / 3), exp (-j4 ⁇ / 3), exp (-j4 ⁇ / 3)).
  • the codes obtained by multiplying codes 1 to 3 by the complex conjugate of code 2 are (exp (jO ⁇ ), exp (jO ⁇ ), exp (-j2 ⁇ / 3), exp (-j2 ⁇ / 3), respectively.
  • FIG. 9 is a diagram showing a configuration of a code sequence for transmitting cell specific information on the frequency axis. Since the code sequence shown in FIG. 9 is a code sequence for transmitting cell-specific information, a different code sequence is used for each cell. However, the same code sequence is used between sectors in the same cell.
  • the cell-specific information includes cell ID or information on unique spreading codes used in the cell, information on the number of base station antennas and system bandwidth, and the like.
  • the cell specific information includes information required when the mobile station first connects to the base station.
  • the code shown in Fig. 9 has a shortage of information for notification. Is .
  • the cell-specific spreading code cannot be completely identified from the information from the SCH, the final cell-specific spreading code is identified by the notlot channel multiplied by the spreading code.
  • the code sequence in Fig. 9 is composed of a set of 6 chips from the low frequency side. Six chips assign the same code to odd-numbered SCH subcarriers (subcarrier indexes 1, 5, and 9). Also, even-numbered SCH subcarriers (subcarrier indexes 3, 7, 11) are assigned codes obtained by multiplying odd-numbered codes by cell-specific codes. The code assigned to the odd-numbered subcarrier need not be the same as the code used in the other 6 chips. Each chip forming the code sequence has an amplitude of 1. In addition, when the number of SCH subcarriers is n, a code length of nZ2 code length is required to form the even-numbered SCH subcarriers.
  • code length depends on the number of SCH subcarriers, if the number of SCH subcarriers is sufficiently long, generally many code sequences with better correlation characteristics can be generated. For this reason, as described above, it is possible to configure a code sequence including information indicating a direct cell ID rather than a code sequence indicating a cell ID group.
  • the three types of code sequences shown above are code sequences constituting the SCH, and these code sequences are multiplied to transmit the SCH from the transmitter of each sector. Next, the configuration of the base station will be described.
  • FIG. 10 is a block diagram showing a configuration example of a physical layer and a MAC (Media Access Control) sublayer in a base station (multicarrier transmission apparatus) of a mobile communication system.
  • the base station performs mapping between the logical channel and the physical channel, scheduling processing, and control of the physical layer unit, and outputs data input from the upper layer card to the physical layer unit.
  • MAC unit 10 for outputting data input from the unit to the upper layer, conversion of transmission data input from the MAC unit 10 to a radio transmission signal, and conversion of radio reception signal received by the antenna unit to transmission data
  • physical layer units 20a to 20c that perform the control based on the MAC unit force control information.
  • the MAC unit 10 includes a transmission circuit control unit 16 that controls a transmission circuit unit based on allocation information of each resource block of a frame notified from an upper layer, and a physical channel such as a data channel and a pilot channel of each resource block.
  • the transmission data output unit 14 inputs the data to the transmission circuit unit in accordance with the scheduled timing, and the SCH data generation unit 12 generates or stores the cell specific information to be allocated to the SCH.
  • the SCH is a channel for the mobile station to acquire cell-specific information in time synchronization with a frame and a symbol transmitted from the base station. Therefore, when the SCH data is not variable, it is not always necessary to generate data from the MAC unit 10 for each transmission.
  • the data is stored in the physical layer unit (20a to 20c) corresponding to the inside of the MAC unit 10 or the sector, It can be transmitted periodically by assigning to the symbol according to the SCH transmission timing.
  • SCH data is generated by the SCH data generation unit 12 in the MAC unit 10, but this function can be implemented in the physical layer units (20a to 20c) of each sector. .
  • SCH data is input from the MAC unit 10 to the physical layer units (20a to 20c) together with data of other data channels.
  • the SCH data and data channel data are input to the physical layer units (20a to 20c) together with the allocation control information of each resource block notified from the transmission circuit control unit 16 of the MAC unit 10, and each resource is allocated according to the resource block allocation information. Is assigned data.
  • the physical layer unit (20a to 20c) performs modulation and multiplication of the sector specific code on the data channel, pilot channel, and SCH input from the MAC unit 10, and multiplexes them in the resource block
  • the transmitting circuit unit (24a to 24c) to be input to the analog circuit unit (26a to 26c) and the receiving circuit unit (22a to 26c) to demodulate the output of the analog circuit unit (26a to 26c) and input to the MAC unit 10 22c) and the transmission signal input from the transmission circuit unit (24a to 24c) are converted into radio frequencies, and the reception signal received from the antenna unit (28a to 28c) is processed by the reception circuit unit (22a to 22c).
  • FIG. 11 is a block diagram showing a specific configuration of the transmission circuit unit shown in FIG.
  • the transmission circuit section 24 (reference numerals 24a to 24c in FIG. 10) performs coding and modulation of the data channel and pilot channel input from the MAC section 10 and modulates the SCH data described above. Then, the sector specific code is multiplied, and the data channel, the pilot channel, and the allocating unit are multiplexed on the resource block based on the control signal from the MAC unit and transmitted.
  • SCH data in FIG. 11 indicates code data obtained by multiplying a sector common code (see FIG. 8 (a)) by a cell specific code (see FIG. 9).
  • the code data multiplied by the sector specific code is transmitted in the physical layer part of each sector.
  • the transmission circuit unit 24 (24a to 24c) shown in FIG. 11 performs signal processing of transmission data for each resource block on the data channel input from the MAC unit 10 (50a to 50c). ) And a SCH data processing unit 60 that performs modulation of the SCH data input from the MAC unit 10 and multiplication of a sector specific code. Similarly, the output signal from the pilot channel data processing unit 70 and the signal processing unit 50 (50a to 50c) that modulates the pilot channel data input from the MAC unit 10 and multiplies the sector-specific orthogonal code. And an allocation unit 81 that allocates an output signal from the SCH data processing unit 60 and an output signal from the pilot channel data processing unit 70 to each subcarrier of the resource block.
  • a spread code multiplication unit 82 that performs multiplication of the spread code using the spread code generated by the spread code generation unit 83, and converts the frequency domain data signal sequence that has undergone the spread processing into a time waveform IFFT (Inverse Fast Fourier Transform) unit 84, PZS conversion unit 85 that converts the output of IFFT unit 84 in parallel and serial, GI insertion unit 86 that inserts GI into the output of PZS conversion unit 85, and GI insertion And a DZA conversion unit 87 for converting the output signal of the unit 86 from a digital signal to an analog signal.
  • Both the allocating unit 81 and the spreading code multiplying unit 82 perform processing based on control information of 10 MAC units.
  • the allocation unit 81 allocates each physical channel to a desired subcarrier.
  • the spreading code multiplication unit 82 multiplies the physical channel excluding the SCH by the spreading code.
  • the signal processing unit 50 (50a to 50c) performs error correction coding for performing error correction coding of transmission data.
  • An encoding unit 51 an SZP conversion unit 52 that parallel-serial converts the output of the error correction code key unit, a modulation unit 53 that performs modulation processing such as BPSK, QPSK, and 16QAM on the output of the S / P conversion unit, Consists of.
  • the SCH data processing unit 60 includes a SCH modulation unit 61 that performs modulation processing on the SCH data input from the MAC unit 10, and a multiplication unit 62 that multiplies the output of the SCH modulation unit by a sector specific code. And a sector specific code generation unit 63 that generates (or stores) a sector specific code.
  • the pilot channel processing unit 70 is a pilot data modulation unit 71 that performs modulation processing on pilot data input from the MAC unit 10, and a multiplication that multiplies the output of the pilot data modulation unit 71 by a sector specific code.
  • a code generation unit 73 that generates (or stores) a sector specific code.
  • the output of the signal processing unit 50 (50a to 50c) is assigned to an appropriate subcarrier based on control information notified from the transmission circuit control unit (reference numeral 16 in FIG. 10) of the MAC unit 10. After being assigned to an appropriate subcarrier in part 81, it is output to IFFT part 84
  • the output of the DZA conversion unit 87 is sent from the antenna unit 28 (directional antennas 28a to 28c in Fig. 10) through an analog circuit unit (reference numerals 26a to 26c in Fig. 10) that performs frequency conversion to a radio frequency. It is transmitted as a radio signal in the atmosphere.
  • the SCH data is multiplied by the sector-specific code and the same SCH data is multiplied by the antenna corresponding to each sector. Send at the same time. This enables SCH reception with high-quality frequency characteristics. At the same time, an optimal cell can be selected at the time of SCH reception, and a sector with good reception can be selected.
  • FIG. 12 is a block diagram showing a configuration of a multicarrier receiver according to the present invention.
  • This multi-carrier receiver corresponds to a mobile phone terminal, a PDA terminal, a portable personal computer, and the like.
  • the multicarrier receiver includes an antenna unit 100, an analog receiving circuit unit 101, an AZD conversion unit 102, a timing detection unit 103, a GI removal unit 104, and an SZP (serial Z parallel) conversion.
  • the SCH signal processing unit 200 includes a despreading unit 210 for sector identification, a sector power determination unit 220, and an SCH data demodulation unit 230 that demodulates cell specific information.
  • This multicarrier receiver (hereinafter sometimes simply referred to as “receiver") basically performs a cell search including sector identification according to the flowchart shown in FIG. First, the receiver detects the SCH timing from the received signal in order to correct temporal synchronization with the signal transmitted from the base station and frequency deviation. That is, the radio signal transmitted from the base station is received by the antenna unit 100, and the received radio signal is converted from the radio frequency band to the baseband frequency band by the analog reception circuit unit 101. Then, an AZD (analog Z digital) conversion unit 102 converts the analog signal converted into the baseband frequency band into a digital signal.
  • AZD analog Z digital
  • timing detection section 103 performs SCH detection processing from the received data converted into digital data by AZD conversion section 102 in order to perform symbol synchronization.
  • the circuit configuration of the timing detection unit 103 will be described.
  • FIG. 13 is a block diagram showing a configuration example of the timing detection unit 103.
  • the timing detection unit 103 has functions of timing detection and frequency error detection.
  • the timing detection unit 103 includes a delay unit 301, a complex conjugate calculation unit 302, a multiplier 303, an averaging unit 304, a peak detection unit 305, and an arc tangent as a frequency error detection unit. Calculation And an output circuit 307.
  • the timing detection unit 103 repeats the same waveform of the 1Z2 effective symbol by multiplying the received signal by the complex conjugate of the signal obtained by delaying the received signal by 1Z2 effective symbol.
  • This is a circuit in which a peak is detected. That is, a peak is detected when the timing of SCH data using odd-numbered subcarriers (subcarrier indexes 1, 3, 5,..., 2n + 1) from the low frequency side described above is reached. Force that multiple peaks are detected by signals of multiple cell forces Generally, the absolute value of the correlation value or the peak of the real part is the highest, the timing is the closest, and the cell power is also determined as the timing of the SCH that was transmitted. The connection operation with the base station is started.
  • synchronization can be achieved at a time interval that is half the frame, which is the interval at which SCHs are arranged.
  • symbol synchronization is performed by synchronizing with the SCH symbol.
  • synchronization in the subframe period can be performed at the same time.
  • the GI unit added in front of the effective symbol by the GI removal unit 104 in accordance with the symbol period described above is also used for each symbol power. remove.
  • the symbol from which the GI has been removed is also converted into a parallel signal by the SZP (serial Z parallel) conversion unit 105, and subjected to FFT processing by the FFT unit 106.
  • the data of the SCH symbol part is input to the SCH signal processing part 200 for processing the SCH data from the FFT part 106 force.
  • a data channel including control information for the pilot channel and the mobile station is input from the FFT unit 106 to the spreading code multiplication unit 107.
  • the processing in the SCH signal processing unit 200 is performed with priority.
  • the data power of the SCH symbol FFT unit 106 inputs simultaneously to each of the three multiplication units 212 corresponding to the number of sectors in this embodiment and the SCH data demodulation unit 230.
  • Multiplier 212 performs multiplication of the sector specific code (FIG. 8 (b)) generated or stored by sector specific code generation section 211 based on control information from the MAC section (not shown).
  • the complex common of the sector specific codes input from the sector specific code generator 211 is obtained.
  • the odd numbered SCH subcarrier (subcarrier index 1, 5, 9, ...-) of the SCH symbol input from the FFT unit 106 is multiplied by the sector specific code when transmitting the base station power.
  • the complex conjugate code is multiplied so as to correspond to the subcarrier.
  • the data obtained by multiplying the complex conjugate is input to the adder 214 and in-phase addition is performed. In other words, 3 subcarrier data obtained by multiplying the complex conjugate of 6 subcarriers, which is the repetition period of the sector specific code, is added. This process is shown in Process 1 and Process 2 in FIG.
  • FIG. 14 is a diagram showing specific contents of the despreading process for sector identification.
  • px is the sector specific code shown in Fig. 8 (b)
  • X represents the index of the sector.
  • F represents the propagation path and is assumed to be constant within the 9 subcarrier band, which is the subcarrier interval to which despreading is applied.
  • the data subjected to the despreading process is multiplied by 1Z3, and the squared data is input to sector power determination section 220.
  • the squared average data of each sector force serves as an index for determining the received power in the sector power determining unit 220.
  • Sector power determination unit 220 compares data indicating the addition results input from addition unit 214 corresponding to each of the three sectors. Then, the sector having the highest received power, that is, the sector to be connected in the best reception environment is determined. The sector detection result is notified to the MAC unit by a control signal.
  • SCH symbol data (data obtained by multiplying the cell common information by the sector common code) input from FFT section 106 to SCH data demodulation section 230 is demodulated by the demodulation method shown in FIG. Is done.
  • FIG. 15 is a diagram for explaining demodulation processing of cell specific information.
  • the processing of FIG. 15 is performed by multiplying the high frequency side subcarrier by the complex conjugate of the cell-specific code assigned to the low frequency side subcarrier of the pair of subcarriers. This is a process of demodulating the phase difference information (that is, cell specific information).
  • SCH data demodulator 230 in Fig. 12 performs complex sharing of odd-numbered SCH subcarrier data (subcarrier indexes 1, 5, 9, ...) from the low frequency side of the SCH symbol and its high frequency. Even-numbered SCH subcarriers (subcarrier index 3, 7, 11, ⁇ ⁇ ⁇ ⁇ ) Multiply the data.
  • the ideal value of the multiplication result is composed of a propagation path f between each sector and the mobile station and a cell specific code c. Since c is a complex number with an amplitude of 1, it is easier to derive the phase.
  • X in fxy indicates a sector ID (corresponding to a sector identification number, also referred to as a sector index), and y is an index in the frequency direction in the propagation path of two subcarriers to be multiplied. The propagation path between the two subcarriers to be multiplied is assumed to be the same.
  • the code sequence power of the cell-specific information A replica of the candidate code (Cn) that may be used for notification of the cell-specific information at the base station is used as the SCH data demodulator. Create with 230.
  • the cell specific information can also be determined and acquired by actually cross-correlating the result calculated by the above method. Actually, it is desirable to perform the determination by the cross-correlation process in this way.
  • two SCH symbols are set in a frame, and synchronization is achieved at a period of 1Z2 of the frame at the time of symbol synchronization by delayed correlation.
  • information indicating one of the SCHs in the frame is included in the information indicated by the cell specific code c described above. Or you can assign information to symbols that have a fixed time position from the SCH!
  • the spread code information since the spread code information has a very large number of codes depending on the code lengths constituting the spread code information, the amount of information for notifying cell specific information may be insufficient. In other words, depending on the number of subcarriers used for SCH, there is not enough information to notify cell-specific information, so cells are divided into several groups rather than information indicating cell-specific spreading codes. In some cases, information indicating a specific group is notified. In that case, it is necessary to perform the following detection for all possible spreading codes of the cells divided into groups.
  • a pilot channel is used for cell spreading code detection, and a replica signal is created by multiplying a pilot channel and a code (cell-specific code and orthogonal code) multiplied by the pilot channel.
  • the cross-correlation between the created replica signal and the actual received signal is detected with respect to the spread code candidates for all the cells in the cell group described above. All phases When the function detection is completed, the spreading code candidate showing the highest correlation value is determined as the spreading code used in the nearest base station. This is a common method.
  • the cross-correlation detection process can be shortened by using only the orthogonal codes of the sectors determined by the sector determination described above.
  • the code sequence of the cell-specific code c is more preferably a code having excellent cross-correlation characteristics with codes indicating information of other cells. Specifically, Walsh-Hadamard code sequences or Generalized Chirp Like (GCL) code sequences are desirable.
  • the SCH data demodulated as described above is sent to the MAC section.
  • the MAC unit can receive data according to this information and connect to the base station.
  • the following configuration is required to receive a data channel transmitted from a base station. It is also possible to use other receiving circuits.
  • the data channel and pilot channel that have been subjected to the FFT processing by the FFT unit 106 are spread by a cell-specific spreading code included in the cell-specific information. For this reason, the spread code multiplier 107 multiplies the complex conjugate of the spread code unique to the cell.
  • the cell-specific spreading code is output from spreading code generator 111. In spreading code generation section 111, a spreading code of a desired cell having a plurality of spreading codes is selected by a control signal from an upper layer.
  • the orthogonal code unique to the sector is simultaneously selected by the spread code generation unit 111 and input to the spread code multiplication unit 107.
  • the input orthogonal code is multiplied to the pilot channel by the spreading code multiplier 107.
  • the data multiplied by the code is subcarrier-compensated by the subcarrier compensation unit 108 using the noro channel as a reference signal and input to the demodulation unit 109.
  • Demodulation section 109 demodulates the data channel, and error correction decoding section 110 performs error correction / decoding.
  • a SCH is inserted for each frame (FIG. 24), and accordingly, a null subcarrier is set every other subcarrier (FIG. 25).
  • the subcarrier (DC subcarrier at the center of the band) Subcarriers excluding the rear are SCH subcarriers. Also, as shown in FIG. 19 for the arrangement of SCH symbols in a frame, the same SCH symbol is arranged in two consecutive symbols at a specific temporal position in the frame.
  • FIG. 19 is a diagram showing a frame configuration in the third embodiment.
  • the number of SCH subcarriers is doubled compared to the second embodiment described above, so that the code length that can be used for cell-specific information becomes longer. Therefore, it is possible to transmit / receive SCH signals having a larger amount of information.
  • FIG. 16 is a diagram showing subcarriers to which SCHs are assigned.
  • the S CH is configured as shown in FIG. 16 on the frequency axis. That is, FIG. 16 illustrates the SCH data of a plurality of symbols constituting a signal frame transmitted from the base station, with the vertical axis representing the frequency axis and the horizontal axis representing the time axis.
  • each subcarrier is used as a subcarrier that allocates SCH data to subcarriers other than the central subcarrier (DC subcarrier).
  • FIGS. 17 (a) and 17 (b) are diagrams illustrating the SCH data structure in the third embodiment.
  • FIG. 17 (a) is a diagram showing an arrangement on the frequency axis of sector common codes multiplied by SCH
  • FIG. 17 (b) is a diagram showing three sector specific codes.
  • FIG. 17 (a) shows a sector common code.
  • Each SCH subcarrier (subcarrier index 1, 2, 3, ...) is assigned s.
  • s is an 8 * 6 0 0))
  • the SCH is multiplied by using s known to the mobile station.
  • FIG. 17 (b) shows an example in which the sector specific code is used in three sectors according to the third embodiment.
  • the code is a code unique to each sector in the same cell, and codes 1 to 3 correspond to 3 sectors in the second embodiment. It is assumed that the mobile station and base station know in advance the correspondence between these codes and the sector IDs in the same cell.
  • the code sequence multiplied by the SCH subcarrier is odd from the low frequency side.
  • the number of SCH subcarriers (subcarrier index 1, 3, 5,...) Force The phase difference to the even-numbered SCH subcarrier (subcarrier index 2, 4, 6,...) Is 0 in each sector.
  • the phase difference from the even-numbered SCH subcarrier to the odd-numbered SCH subcarrier is 0 °, 120 °, and 240 ° in each sector. Since these code sequences are 6-chip repetitions (1 period with 6 chips), the number of SCH subcarriers 2n is an integer multiple of 6.
  • each code sequence is multiplied by a complex conjugate of an arbitrary code sequence, and 3 chips are added every other chip.
  • the sum is 0, and when an arbitrary code sequence is multiplied, the sum is 3.
  • FIG. 18 is a diagram showing an arrangement of cell specific codes in the third embodiment. Since the code sequence shown in FIG. 18 is a code sequence for transmitting cell-specific information, Different code sequences are used, but the same code sequence is used between sectors in the same cell. Cell-specific information includes information on unique spreading codes used in a cell, information on the number of base station antennas and system bandwidth, etc. Information required when a mobile station first connects to a base station Is included.
  • the spreading code information can have a very large number of codes depending on the code length, the information shown in FIG. 18 may be insufficient in information amount. In such a case, it is also possible to group several cells and create a code sequence with the same information in cells belonging to the group. In this case, since the cell-specific spreading code cannot be completely identified from the information from the SCH, the final cell-specific spreading code is identified by the pilot channel multiplied by the spreading code.
  • the code sequence shown in Fig. 18 is configured as a set of 6 chips from the low frequency side. Of the 6 chips, the same code is assigned to the odd-numbered SCH subcarriers, and the code obtained by multiplying the odd-numbered code by the cell-specific code is assigned to the even-numbered SCH subcarriers. The code assigned to the odd-numbered subcarrier does not have to be the same as the code used in the other 6 chips. Each chip forming the code sequence has an amplitude of 1. In addition, when the number of SCH subcarriers is 2n, the code length of the code sequence of n is necessary for forming even-numbered subcarriers.
  • code length depends on the number of SCH subcarriers
  • the number of SCH subcarriers is sufficiently long, generally many code sequences with better correlation characteristics can be generated. Therefore, as described above, it is also possible to configure a code sequence including information indicating a direct cell ID rather than a code sequence indicating a cell ID group.
  • the same code is assigned to two consecutive symbols for multiplying the subcarriers constituting the SCH.
  • the above three types of code sequences are the code sequences constituting the SCH in the third embodiment, and these code sequences are multiplied to transmit the transmitter power SCH of each sector.
  • FIG. 19 is a diagram showing the arrangement of SCHs in a frame section.
  • the receiver configuration and reception method in this embodiment are basically the same as those in the previous embodiment.
  • the timing detection unit 103 (FIG. 13) in the second embodiment detects the position of the SCH symbol by delaying the received signal by 1Z2 effective symbol period and multiplying it by the signal. The received symbol is delayed by one symbol and multiplied by the signal to detect the SCH symbol.
  • the mobile station receives the radio signal transmitted from the base station by the antenna unit 100.
  • the analog receiving circuit unit 101 converts the received radio signal from the radio frequency band to the baseband frequency band.
  • the AZD (Analog Z Digital) conversion unit 102 converts the signal converted to the baseband frequency band into a digital signal from the analog signal.
  • timing detection section 103 performs SCH detection processing for performing symbol synchronization based on the received data converted into digital data by AZD conversion section 102. Then, the peak is detected when the waveform of the same symbol is repeated by multiplying the received signal by the complex conjugate of the signal delayed by one symbol from the received signal. In other words, a peak is detected when the timing of receiving the same two SCH symbols as described above is reached. Multiple peaks are detected by signals of multiple cell powers.In general, the peak of the correlation value is the highest, the timing is the closest, and the cell power is also determined as the timing of the transmitted SCH. Start the connection operation.
  • the frame synchronization can be performed by detecting the correlation peak of the SCH signal by the method described above.
  • symbol synchronization is performed by synchronizing with the SCH symbol.
  • the GI removal unit 104 removes the GI part added before the effective symbol from each symbol in accordance with the symbol period described above.
  • the symbol from which GI has been removed is converted from a serial signal to a parallel signal by the S / P (serial Z parallel) converter 105.
  • the FFT unit 106 performs FFT processing.
  • the data power of the SCH symbol part from the FFT part 106 force is input to the SCH signal processing part 200 for processing the SCH data. Further, a data channel including control information for the pilot channel and the mobile station is input from the FFT unit 106 to the spreading code multiplication unit 107. Since the cell specific information and the sector specific information are not acquired when the mobile station makes the initial connection to the base station, the processing in the SCH signal processing unit 200 is performed with priority.
  • SCH symbol data is input from the FFT unit 106 to each of the three multiplication units 212 and the SCH data demodulation unit 230 corresponding to the number of sectors in the present embodiment.
  • the multiplication unit 212 receives the sector specific code generated or stored by the sector specific code generation unit 211 based on control information from the MAC unit (not shown).
  • Each multiplier 212 calculates the complex conjugate of the sector specific code input from the sector specific code generation unit 211, and each odd-numbered subcarrier (subcarrier index) of the SCH signal input from the FFT unit 106. 1, 3, 5,...-) Are multiplied by a complex conjugate code so as to correspond to the subcarrier multiplied by the sector specific code at the time of transmission from the base station. This is shown in Process 1 in Figure 20.
  • FIG. 20 is a diagram showing a specific example of the contents of the correlation calculation process using the sector specific code.
  • the complex conjugate multiplied data is input to the despreading unit 210 and subjected to despreading processing.
  • the despreading process is performed by adding 3 subcarrier data multiplied by the complex conjugate of 6 subcarriers, which is the sector specific code repetition period (see process 2 in Fig. 20).
  • 1Z3 is applied to the data subjected to the despreading process, and the root mean square data is calculated and input to the sector power determination unit 220.
  • the root mean square data from each sector serves as an index for determining received power in the sector power determining unit 220.
  • px is the sector specific code shown in FIG. 17 (b)
  • X represents the sector index.
  • F represents the propagation path, and is constant within the 5 subcarrier band, which is the subcarrier spacing to which despreading is applied.
  • the sector power determination unit 220 obtains the above values from the respective despreading units 210 corresponding to the three sectors and compares them, thereby making a connection with the sector with the highest reception power, that is, with the best reception environment. Determine the sector. This decision is sent to the MAC unit as a control signal. Be notified.
  • FIG. 21 is a diagram illustrating a cell specific code demodulation method according to the third embodiment.
  • the SCH data demodulator 230 the low frequency side power of the SCH symbol, the odd number of SCH subcarriers (subcarrier indexes 1, 3, 5,...), The complex conjugate of the data, and the even number of SCHs on the high frequency side. Multiply data of subcarrier (subcarrier index 2, 4, 6, ).
  • the ideal value of the multiplication result is composed of the propagation path f between each sector and the mobile station and the cell specific code c, and c is a complex number with an amplitude of 1, and thus the phase is It is easily obtained by deriving.
  • X in fxy indicates the sector ID
  • y is an index in the frequency direction of the propagation paths of the two subcarriers to be multiplied.
  • the propagation path between the two subcarriers to be multiplied is assumed to be the same.
  • the SCH data demodulating unit When demodulating the cell specific information, the SCH data demodulating unit creates a replica of a candidate that can be used for notification of the cell specific information at the base station from the code sequence of the cell specific information shown below.
  • the cell specific information can also be determined and acquired by actually taking the cross-correlation with the result calculated by the above method.
  • the same SCH symbol is transmitted continuously for two symbols! Therefore, by performing the above-mentioned demodulation continuously in two symbol intervals, demodulation with higher reliability is possible. Can be performed.
  • the SCH data demodulated as described above is sent to the MAC section.
  • the MAC unit can receive data according to this information and connect to the base station.
  • the SCH is arranged in the last two symbols of one frame period.
  • the SCH can be transmitted using subcarriers in all frequency bands, it can be used to transmit cell specific information (relative phase difference information) when different information is transmitted for each symbol.
  • the code length can be increased, and more cell specific information can be transmitted.
  • symbol synchronization, frequency offset, and 1 / N frame timing are used in the first step of the above-described three-stage cell search using SCH time correlation detection.
  • the SCH timing detection in the first step of the above-described three-stage cell search is performed by cross-correlation processing between the received signal and the replica signal created by the mobile station. In order to make this possible, it is necessary to devise the data structure of SCH.
  • the first-step SCH position detection method shown in the present embodiment can be realized by using the frame configuration and the SCH arrangement shown in the second or third embodiment as they are.
  • the second step or the third step can be performed in the same manner as the above-described embodiment.
  • the SCH timing detection method in the first step in the present embodiment is a detection method to which a detection method called a cross-correlation detection (or replica detection) method is applied.
  • a detection method called a cross-correlation detection (or replica detection) method is applied.
  • the detection peak can be detected sharply as compared with the autocorrelation detection method using the continuous SCH waveform shown in the second and third embodiments. That is, this embodiment can use a different method for the first step of the three-step cell search as compared with the second and third embodiments described above. Therefore, it is possible to detect SCH timing with higher accuracy.
  • the OFDM communication scheme is used as the downlink communication scheme similar to the second embodiment.
  • the configuration of communication frames and resource blocks is shown in Fig. 22 and Fig. 2.
  • the format is the same as shown in 8.
  • SCH synchronization physical channel
  • FIGS. 29 (a) to 29 (c) are diagrams for explaining the data structure of SCHs simultaneously transmitted from three sectors in the same cell, as in the second embodiment.
  • Fig. 29 (a) is a diagram showing the allocation of sector common codes on the frequency axis
  • Fig. 29 (b) is a diagram showing the configuration of three sector specific codes
  • Fig. 29 (c) is a diagram It is a figure which shows the concept used as the basis of the production
  • the basic configuration is the same as in the second embodiment, but some configuration codes are different so that the cross-correlation detection method can be applied to the first step of the three-stage cell search.
  • the signal shown in (a) of Fig. 29 indicates the sector common code constituting the SCH.
  • Each SCH subcarrier is assigned s force and s every 6 chips.
  • s is A * exp (j co
  • A is an amplitude (in the present invention, this is described as 1)
  • j is an imaginary unit
  • is a phase.
  • this sector common code is a code common to all cells.
  • the sector common code is also a cell common code.
  • Another feature is that, among the cell-specific codes, the code element serving as a phase reference is common to all cells. This enables correlation detection using a replica of the sector specific code.
  • the SCH is configured by multiplying three types of codes (sector common code, sector specific code, and cell specific code).
  • the sector common code is common among cells, and the code element that is the phase reference of the cell unique code is also common to the cells, the subcarrier multiplied by the code element that is the phase reference is used.
  • the codes multiplied are (sector common code common to all cells), (sector specific code), and (cell specific code common to all cells), and substantially (code common to all cells). Is multiplied by (sector specific code). In other words, for subcarriers multiplied by the code element that is the phase reference, the power multiplied by the three types of codes is common to all cells.
  • the receiver prepares a time waveform of the replica code of the sector specific code corresponding to each sector, and multiplies the received signal before the FFT by the time waveform of the replica code to correlate the peak.
  • the SCH timing in the received signal can be detected with high accuracy. Therefore, subsequent sector identification and cell identification can be performed more efficiently.
  • the SCH is periodically arranged in one frame period, so the autocorrelation method (i.e., the received signal is determined in advance). It is also possible to detect the position by a method of detecting the correlation between the signal delayed by the period and the original received signal.
  • FIG. 29 (b) shows an example of a sector specific code (here, the number of sectors is “3”).
  • the same reference numerals as those shown in the second embodiment are used.
  • FIG. 30 is a diagram showing a configuration on the frequency axis of a code sequence for transmitting cell specific information.
  • cell-specific information is transmitted using the code sequence shown in FIG. 30.
  • the code sequence different between the cells and the cell are common. It consists of a code sequence. Specifically, c (k
  • ik is a natural number from 1 to nZ6, where n is the number of SCH subcarriers) is a “common code between cells” and c (1 is 1
  • a natural number up to 1 force nZ2) is a “cell-specific code”.
  • the code sequence of Fig. 30 is composed of a set of 6 chips in order of the low frequency side force.
  • 6 chips assign “common code among cells” to odd-numbered SCH subcarriers (subcarrier indexes 1, 5, and 9). For even-numbered SCH subcarriers (subcarrier index 3, 7, 11), a code obtained by multiplying an odd-numbered code by a cell-specific code (that is, a code having phase difference information with respect to a phase reference code) Assign.
  • the codes assigned to the odd-numbered subcarriers are the same in the 6 chips, but need not be the same as the codes used in the other 6 chips.
  • the three types of code sequences shown above are code sequences constituting the SCH, and these code sequences are multiplied to form the SCH. Then, a multicarrier signal including the SCH is transmitted from the transmitter of each sector. [0236] Since the SCH transmission method and transmitter configuration in the present embodiment are the same as those in the second embodiment described above, description thereof will be omitted. The difference is the code generated by the sector specific code generation unit 63 in the SCH data processing unit 60 (see FIGS. 29 and 30).
  • the receiver configuration and reception method in the present embodiment are basically the same as those in the previous embodiment except for the first step.
  • the timing detection unit 103 (FIG. 13) in the second embodiment described above detects the position of the SCH symbol by delaying the received signal by 1Z2 effective symbol period and multiplying it by the signal.
  • the SCH symbol is detected by calculating the cross-correlation value between the received signal and the replica signal of the SCH symbol generated or stored in the mobile station.
  • the cell search procedure will be described below.
  • the mobile station receives the radio signal transmitted from the base station by the antenna unit 100.
  • the analog receiving circuit unit 101 converts the received radio signal from the radio frequency band to the baseband frequency band.
  • the A / D (analog Z digital) conversion unit 102 converts an analog signal into a digital signal for the signal converted into the baseband frequency band.
  • the timing detection unit 103 performs SCH detection processing for symbol synchronization.
  • FIG. 31 is a block diagram showing a configuration (including a correlator) of the symbol synchronization circuit in the present embodiment.
  • the symbol synchronization circuit of FIG. 31 has an m-stage shift register 400, an adder 4 02, and a multiplier 404.
  • the received signal is input to the m-stage shift register 400.
  • the signal output from the shift register 400 is multiplied by a complex conjugate of a replica signal (r: m is a natural number) created in the mobile station or stored in advance in the mobile station.
  • the replica signal is a value obtained by multiplying the above-mentioned three codes constituting the SCH subcarrier.
  • Force Derived force Data on odd-numbered SCH subcarriers (subcarrier indexes 1, 5, 9,...) Since the received signal is data in the time axis direction, the signal in the time axis direction is similarly calculated for the replica signal from the data using the above-described SCH subcarrier.
  • odd-numbered data of SCH subcarriers is used.
  • the odd-numbered subcarriers of the SCH subcarriers include the sector common code s (see FIG. 29 (a)) common to all cells, and the cells common to all cells as shown in FIG.
  • a code indicating a part of the unique information (a code serving as a phase reference) is multiplied. That is,
  • the force at which a plurality of peaks are detected by signals of a plurality of cell forces is the closest.
  • Luka Judge as the timing of the transmitted SCH and start the connection operation with the base station.
  • the subcarriers multiplied by the phase reference code element are symmetrically arranged on the low frequency side and the high frequency side with respect to the center frequency. Since the subcarrier multiplied by the code element serving as the phase reference is an SCH subcarrier used for detecting the SCH timing by the cross correlation method, in the following description, “SCH subcarrier for cross correlation detection” is used. There is a case. In the fourth embodiment, since the low frequency side is assigned as a reference, it is not necessary to satisfy the conditions of this embodiment in which the arrangement is symmetrical with respect to the center frequency.
  • SCH subcarriers for cross-correlation detection are arranged at targets at predetermined intervals with reference to the center frequency.
  • the time waveform of the combined signal of these subcarriers can be obtained by using, for example, the second, sixth, and tenth subcarriers from the center in one symbol period (period in which the SCH is allocated). (1Z4) For each symbol, "B”, “-B", “B”, “-B” (B is an arbitrary signal amplitude: reference waveform), the amplitude is the same, and the polarity is inverted. The waveform is repeated, and a time waveform having a characteristic periodicity is formed.
  • the replica time waveform prepared for cross-correlation detection on the receiver side is also "B,, ⁇ " -B, ⁇ "B, ⁇ "-B “or” for each (1/4) symbol.
  • a time waveform that changes as “D”, “D”, “D”, “D” is sufficient, that is, it is only necessary to detect a characteristic signal waveform in (1Z4) symbols.
  • the configuration of the vessel can be simplified.
  • the codes multiplied by the subcarriers (cross-correlation detection subcarriers) multiplied by the phase reference code elements are (sector common code common to all cells), (sector specific code), and (all cells specific code).
  • the common cell unique code) is the same as in the fourth embodiment.
  • the sector common code (reference code) common to all cells and all the subcarriers serving as phase references in the total subcarriers Both cell unique codes common to all cells are set to “1”.
  • the cell-specific code (C, C... In FIG. 30) is a new code every 6 subcarriers.
  • the first 6 subcarriers are C, and the next 6 subcarriers are C.
  • any cell-specific code multiplied by the subcarrier serving as the phase reference in the middle is “1”. Therefore, the subcarrier is multiplied by "1 (sector common code common to all cells)" X “l (cell specific code common to all cells)” X “sector specific code (PI, P2, P3 Any force: See Fig. 29 (b))
  • each of the subcarriers that are the phase reference is multiplied by!, Which is the power of the sector specific code (PI, P2, P3.
  • the cross-correlation method using the replica time waveform described in (1) above without performing despreading using orthogonal codes (PI, P2, P3) after FFT It is possible to identify the most recent sector before FFT processing. That is, before FFT processing, the cross-correlation peak is detected using the replica time waveform of the sector specific code (the time waveform formed by either code 1, code 2, or code 3 in Fig. 34), By specifying the code that gives the maximum peak (either code 1, code 2 or code 3 in Fig. 34), it is possible to identify the nearest sector. In particular, when performing SCH timing synchronization by the replica correlation method in the first step of cell search, sector identification is performed by comparing correlation values calculated during timing synchronization between different sector specific codes.
  • the mobile station In order to apply the cross-correlation method using the replica time waveform, the mobile station is required to know various sector specific codes transmitted from the base station. Whether the sector identification method is based on the ability to detect correlation by despreading using orthogonal codes or the method of detecting cross-correlation by replica time waveform is appropriately determined in consideration of the required detection accuracy and circuit constraints. Can be determined.
  • the concept of “sector group” may be introduced by grouping a plurality of sectors, and the sector group may be specified by a sector specific code. That is, the above-mentioned “sector specific code” may be a code indicating a sector group in which several sectors are not necessarily required to be a code for directly identifying a sector. This applies in common to all the embodiments described above. Each of these points will be specifically described below.
  • the SCH timing detection in the first step of the three-step cell search is performed by using the mutual correlation between the received signal and the replica signal created by the mobile station. Performed by Seki processing.
  • a characteristic time waveform is obtained by placing subcarriers to be subjected to cross-correlation processing using replica signals at specific positions.
  • the first-step SCH position detection method shown in the present embodiment can be realized by using the frame configuration and the SCH arrangement shown in the fourth embodiment as they are.
  • the second step or the third step can be performed in the same manner as in the previous embodiment.
  • the SCH showing a periodic waveform (repetitive waveform) within one symbol necessary for the self-correlation detection method is realized as in the fourth embodiment.
  • the autocorrelation detection method can generally be realized with a simpler circuit configuration than the cross-correlation detection method, but it is known that the correlation value peak is detected more slowly than the cross-correlation detection method.
  • the cross-correlation detection method is known to be capable of more accurate time synchronization because the peak of the correlation value can be detected sharply, while the circuit configuration and processing are complicated.
  • coarse time synchronization is performed using the self-correlation detection method during time synchronization, and accurate time synchronization is detected in a certain amount of time. It is done by the method.
  • a similar technique can be used in this embodiment.
  • the autocorrelation detection method uses a time domain repetitive waveform in the SCH symbol determined by the frequency domain position of the subcarrier used for the SCH, it will be described in detail in the second or third embodiment. There is no change in the method. Therefore, a cross-correlation detection method using a replica signal, which is a feature of this embodiment, will be described below.
  • This cross-correlation detection method uses a characteristic signal waveform formed by the arrangement of subcarriers.
  • the OFDM communication scheme is used as the downlink communication scheme similar to the second embodiment.
  • the configuration of the communication frame and the resource block is assumed to be the same format as that shown in FIG. 22 and FIG. First, a specific configuration of the synchronization physical channel (SCH), which is a feature of the present embodiment, will be described.
  • SCH synchronization physical channel
  • FIG. 32 is a diagram showing 76 subcarriers used in this embodiment for each function.
  • the center DC subcarrier and the center force are also odd-numbered subkeys.
  • Carriers are null subcarriers, and other subcarriers are used as SCH subcarriers.
  • the SCH subcarriers with odd-numbered central powers are used for cross-correlation detection, that is, the sub-carrier used as a phase reference when detecting cell-specific information (SCH subcarrier for cross-correlation detection) Use as Further, even-numbered SCH subcarriers from the center are used as subcarriers multiplied by cell specific information (in the following description, they may be referred to as cell specific information detection subcarriers).
  • the odd-numbered SCH subcarriers from the center are the 2, 6, 10, 14... Subcarriers from the center as a whole. However, the center is 0th.
  • the even-numbered SCH subcarrier with the central force is the fourth, eighth, twelve'th subcarrier from the center as a whole.
  • the cross-correlation detection SCH subcarriers are symmetrically arranged on the low-frequency side and the high-frequency side with respect to the center frequency.
  • the cross-correlation detection subcarriers are arranged at intervals of three subcarriers, such as the second, sixth, tenth, etc., when the center frequency is 0th. It differs from the fourth embodiment in that it is based on the center frequency.
  • the number of SCH subcarriers for detecting cross-correlation differs between the high frequency side and the low frequency side with the center frequency as a reference. That is, ten (1) to (10) are arranged on the high frequency side, while nine (11) to (19) are arranged on the low frequency side.
  • the cross correlation detection SCH subcarrier (phase reference subcarrier) and the cell-specific information detection SCH subcarrier are used in pairs as in the fourth embodiment.
  • a pair of subcarriers is used as a unit, in the case of Fig. 32, one cross-correlation detection subcarrier (phase reference subcarrier: subcarrier (10) in Fig. 32) is left on the high frequency side This subcarrier (10) is assigned a dummy code (in this embodiment, “1”).
  • FIGS. 34 (a) to 34 (c) are diagrams for explaining the data structure of SCHs simultaneously transmitted from three sectors in the same cell, as in the fourth embodiment.
  • FIG. 34 (a) is a diagram showing the allocation of sector common codes on the frequency axis
  • FIG. 34 (b) is a diagram showing the configuration of three sector specific codes.
  • FIG. 34 (c) is a diagram showing a concept that is the basis for generating a sector specific code, and shows a vector on the complex phase plane.
  • the basic configuration is the same as that of the fourth embodiment, but as described above, the positional relationship on the frequency axis between the subcarrier used for cross-correlation detection and the subcarrier multiplied by the cell specific information is different. Is different. As shown in FIG. 32, the SCH subcarrier uses a higher frequency, a lower frequency, and a lower frequency than the central DC subcarrier, and uses even-numbered subcarriers on the side.
  • FIG. 35 (a) to (d) show the arrangement of multiple SCHs in the SCH symbol period by devising the arrangement of SCH subcarriers for cross-correlation detection on the frequency axis and the number of SCH symbols on the time axis.
  • FIG. 5 is a diagram for explaining that a waveform in a time domain formed by combining subcarriers is a repetition of a reference waveform (or a waveform obtained by inverting the reference waveform) within one symbol period.
  • the SCH subcarriers are periodically arranged on the frequency axis at frequency intervals of every other subcarrier (for example, FIG. 25). (See) o
  • SCH subcarriers in one symbol period periodically arranged in this way are combined, as shown in Fig. 35 (a), one effective symbol period (period in which GI is inserted from one symbol period)
  • the time waveform (waveform in the time domain before FFT) in which the reference waveform (A) is repeated in (1Z2) symbol units is obtained during the period excluding. Therefore, as described in the previous embodiment, a correlation peak is obtained by delaying the time waveform by (1Z2) effective symbols and correlating with the original time waveform. Therefore, it is possible to detect the SCH position (the first step of cell search by the autocorrelation method).
  • SCH is allocated continuously to the last two symbols of one frame period.
  • the same time waveform (referred to as C) is repeated in two adjacent effective symbol periods. Therefore, if the time waveform is delayed by one symbol and correlated with the original time waveform, a correlation peak is obtained. Therefore, it is possible to detect the SCH position (the first step of cell search by the autocorrelation method).
  • the cross-correlation detection SCHs are further arranged symmetrically on the low frequency side and the high frequency side with the center frequency as a reference. That is, as described above, the subcarriers are used as the second, sixth, tenth, fourteenth, etc. from the central DC subcarrier as described above (every third after the second starts). As a result, the signal is repeated in the 1Z2 section of the effective symbol, and the time waveform with the polarity of the amplitude inverted is repeated in the (1Z2) section, that is, the entire (1Z4) section. A time waveform is formed. Specifically, as shown in FIG.
  • a time waveform in which B, —B, B, and —B are repeated is formed.
  • This phenomenon occurs in the OFDM communication system due to the objectivity in the time direction regarding the frequency relationship of subcarriers orthogonal to each other.
  • the SCH position can be specified by detecting the characteristic periodicity in units of (1Z4) effective symbols.
  • the signal shown in (a) of Fig. 34 indicates the sector common code constituting the SCH.
  • each SCH subcarrier has s from every 6 chips.
  • Amplitude (however, this is described as 1 in this embodiment); j is an imaginary unit, and ⁇ is a phase. All SCH subcarriers are multiplied by S and are the phase reference subcarriers.
  • the power calculation for sector identification need not necessarily be performed in units of six subcarriers.
  • code 2 in Fig. 34 (b) select each SCH subcarrier power on the frequency axis for each code of "Pl", “ ⁇ 2", and " ⁇ 3", and calculate the power Processing can be performed.
  • the subcarriers used for the power calculation process must be considered to have the same propagation path, the accuracy of the subcarriers that are separated on the frequency axis is reduced. It is desirable to use a carrier.
  • the sector common code is a code common to all cells.
  • the code element which is a phase reference among the cell specific codes is also common to all cells.
  • the SCH is configured by multiplying three types of codes (sector common code, sector specific code, and cell specific code).
  • the sector common code is common among cells
  • the code element which is a phase reference among the cell specific codes is common to the cells.
  • the multiplied codes are (sector common code common to all cells), (sector specific code), and (common to all cells).
  • the power multiplied by the three types of codes is common to all cells. Therefore, the only difference is the sector specific code. This means that correlation detection using a sector specific code re- plicator can be easily performed.
  • the receiving device side prepares a time waveform of the replica code of the sector specific code corresponding to each sector, and multiplies the time waveform of the replica code by the received signal (the signal before the FFT). By detecting the correlation peak, the SCH timing in the received signal can be detected with high accuracy. Therefore, subsequent sector identification and cell identification can be performed more efficiently.
  • the subcarrier position used for cross-correlation detection at a specific position, the same signal waveform in the 1Z2 effective symbol length section as shown in Fig. 35 (b). Is repeated.
  • a signal waveform whose sign is inverted in the 1Z4 effective symbol length section is formed. This makes it possible to adopt a simpler correlator configuration using this characteristic.
  • This autocorrelation method is a method of detecting the correlation between a signal obtained by delaying a received signal by a predetermined period and the original received signal.
  • FIG. 34 (b) shows an example of a sector specific code (here, the number of sectors is “3”).
  • the same reference numerals as those shown in the fourth embodiment are used.
  • FIG. 36 is a diagram showing a configuration on the frequency axis of a code sequence for transmitting cell specific information.
  • cell specific information is transmitted using the code sequence shown in FIG. Cl (l is a natural number from 1 to 18) shown in Fig. 36 is a “cell-specific code” and notifies the mobile station of cell-specific information.
  • cl is a code sequence with an amplitude of 1.
  • the code sequence of the fourth embodiment shown in FIG. 30 is configured with six chips as a set in order from the low frequency side.
  • the code sequence cik in Fig. 30 has a special form with all "1". This eliminates the restriction that the group of six subcarriers adjacent on the frequency axis must be selected when calculating the sector power as described above, improving the degree of freedom of sector identification processing.
  • the three types of code sequences shown above are code sequences constituting the SCH, and these code sequences are multiplied to form the SCH. Then, a multicarrier signal including the SCH is transmitted from the transmitter of each sector.
  • the SCH transmission method and transmitter configuration in the present embodiment are the same as those in the second embodiment described above, and thus the description thereof is omitted.
  • the difference is a code generated by the sector specific code generation unit 63 in the SCH data processing unit 60 (see FIGS. 35 and 36).
  • the receiver configuration and the reception method in the present embodiment are the same as those in the fourth embodiment described above, and thus the description thereof is omitted.
  • replicas using orthogonal codes PI, P2, P3 are not performed after FFT, as in the first step of cell search. It is also possible to identify the nearest sector before FFT processing using the cross-correlation method based on time waveforms.
  • the cross-correlation peak is detected using the replica time waveform of the sector specific code (the time waveform formed by any one of code 1, code 2 and code 3 in FIG. 34).
  • the code that gives the maximum peak one of code 1, code 2, or code 3 in Fig. 34
  • sector identification can be performed using the result as it is. That is, SCH time synchronization is performed based on the position of the correlation value in the time direction by cross-correlation detection, and it can be determined from which sector the received power is high.
  • the sector identification method uses a correlation detection method based on orthogonal code despreading or a cross-correlation detection method based on a replica time waveform considers the required detection accuracy and circuit constraints. And can be determined as appropriate.
  • the number of sectors is too large, a set of more subcarriers is required to secure orthogonal codes, and there may be a case where the number of subcarriers is insufficient.
  • a plurality of sectors may be grouped together to introduce the concept of “sector group”, and the sector group may be specified by a sector specific code. That is, the above-mentioned “sector specific code” may be a code indicating a sector group in which several sectors are not necessarily required to be a code for directly identifying a sector. This applies in common to all the embodiments described above.
  • sector identification is multiplied only by sector-specific code, so that sector identification is performed only by despreading using SCH and correlation detection without using a pilot channel. Can be performed. Therefore, despreading using the pilot channel and correlation detection processing are not required for sector identification, and the capacity of the memory used for correlation calculation using the pilot channel can be reduced.
  • the SCH itself is multiplied by the sector specific code !, interference between sectors can be eliminated even if the sector boundary is reached.
  • the anti-fading property can be improved by randomizing effect.
  • the number of sector specific codes (orthogonal codes) assigned to each sector can be increased easily as the number of sectors increases, and the sector configuration can be flexibly supported.
  • the cell ID can also be directly identified only by the SCH.
  • cell search processing power including sector identification requires only two-stage processing using SCH (two-stage cell search), which can shorten the search process compared to the conventional three-stage cell search. it can.
  • the sector specific information and the cell specific information are mutually interchanged. Can be prevented from being adversely affected, and a decrease in information transmission accuracy can be suppressed.
  • each information can be demodulated independently (that is, by parallel processing), thereby further reducing the cell search processing time including the sector search.
  • a code of 2 m chips is formed by combining two orthogonal codes with m chips, m chips are used for sector identification, and the remaining m chips are used for identification of cell specific information.
  • Cell specific information is transmitted as phase difference information between subcarriers multiplied by sector specific code elements of the same value (more preferably adjacent to each other on the frequency axis). Cell specific information can be transmitted efficiently, and both can be separated and extracted efficiently on the receiving side.
  • the timing of the SCH on the time axis by the autocorrelation method using the periodicity of the SCH or by the cross correlation method using the time waveform of the replica code of the sector specific code The cell search can be completed by detection (first step), frame timing identification based on information on the frequency axis, sector ID and cell ID identification (second step). Therefore, the search process can be shortened compared to the conventional three-stage cell search.
  • despreading and correlation detection using a pilot channel are only necessary when demodulating a data channel, and are not necessary for cell search. Can be achieved (reduction of memory capacity, etc.).
  • the sector-specific code is superimposed on the SCH, it is possible to obtain the effect of being strong against inter-sector interference and fading with respect to sector identification.
  • the number of subcarriers is not enough, the cell ID cannot be directly identified by the SCH alone, and the power that may remain in the detection of the cell ID group information. In this case, the processing of the third step As a result, the cell ID can be identified by performing despreading and correlation detection using the pilot channel.
  • the multicarrier transmission / reception apparatus of the present invention enables high-speed and large-capacity transmission in the downlink.
  • the present invention includes various nominations (specific examples, modifications, and application examples), and these variations are practical applications of communication systems based on E-UTRA (Evolved-UTRA).
  • E-UTRA Evolved-UTRA
  • SCH timing detection process in addition to the autocorrelation method, a cross-correlation method focusing on a special time waveform can be adopted. In this case, there is an effect that the configuration of the correlator can be simplified.
  • six subcarriers must be paired during despreading using sector specific codes. Restrictions can be made unnecessary.
  • the present invention can also be configured as a data structure of a synchronization channel (SCH). That is, according to the data structure of the present invention, one cell is divided into a plurality of sectors, the base station power over the cell, and a downlink signal is transmitted to the mobile station in the cell by multicarrier communication.
  • SCH synchronization channel
  • the downlink signal includes a synchronization channel (SCH), and the synchronization channel (SCH) can be used for cell search including sector identification.
  • SCH synchronization channel
  • SCH synchronization channel
  • SCH synchronization channel
  • the sector common code is multiplied by the sector specific code so that the sector can be identified only by despreading and correlation detection using the synchronization channel (SCH) without using the pilot channel. That is, conventionally, the SCH that has been commonly used among sectors in one cell (that is, non-orthogonal with respect to the sector) is changed to a unique orthogonal channel for each sector in the present invention. It enables sector identification directly using SCH.
  • the sector-specific code includes a set of m code elements (m is a natural number of 2 or more), and the set of code elements. Are assigned to subcarriers on the frequency axis repeatedly, and each sector The sector specific codes corresponding to are orthogonal to each other.
  • code element means “code as a superordinate concept” and an individual code (“code as a subordinate concept”) that is a component of the code string. For the sake of distinction, it is used for convenience. For example, it corresponds to a “chip” which is a unit of despreading. Further, by assigning the code element to the subcarrier on the frequency axis, for example, the phase of the subcarrier changes, and thus the sector specific information can be transmitted.
  • the data structure of the synchronization channel (SCH) of the present invention includes, in addition to the sector common code and the sector specific code described above, a cell specific code ("code indicating cell specific information", or Is multiplied by a “cell-specific cell ID (or!, A code that includes a cell ID group that is common to several cells)” (may be “ ⁇ ⁇ ”)! Speak.
  • the cell ID can be directly identified by the SCH alone in addition to the sector identification by the SCH.
  • the cell search processing power including sector identification only requires two-step processing using SCH (two-step cell search), and the search process can be shortened compared to the conventional three-step cell search. Can do.
  • the cell-specific code is a code indicating cell-specific information acquired by the mobile station at the time of cell search. It is clear that the cell-specific code indicates cell-specific information (cell ID, etc.).
  • the sector common code is assigned to a subcarrier on the frequency axis, and the sector specific signal is assigned to the sector common code.
  • Each code element constituting the cell-specific code indicates relative phase difference information between a pair of subcarriers to which the sector common code is assigned. Yes. Therefore, in a subcarrier to which the sector common code on the frequency axis is assigned, one of a pair of subcarriers is multiplied by the code element serving as a phase reference, and the other subcarrier has a relative position. The sign element indicating the phase difference is multiplied.
  • Cell-specific information (cell ID, antenna configuration, BCH (broadcast channel) bandwidth, GI (Guard interval: guard interval, CP: also referred to as cyclic prefix) length, etc.) is placed on the frequency axis.
  • the point of transmission based on information on the relative phase difference between the two subcarriers is clearly identified.
  • cell specific coding power is adopted that indicates the relative phase of subcarriers that make a pair rather than indicating the absolute phase of each subcarrier.
  • information can be notified to the mobile station by using, for example, GCL code or Walsh-Hadamard code and corresponding to cell specific information. If the number of subcarriers is sufficient, all information necessary for cell identification can be transmitted by the SCH.
  • the data structure of the synchronization channel (SCH) of the present invention is such that each of the code elements serving as the phase reference constituting the sector common code and the cell specific code is a code common to all cells. .
  • signal processing in the first step of cell search can be performed by the cross-correlation method using a replica of the sector specific code.
  • the data structure of the SCH has been devised. Since the SCH is periodically arranged in one frame period, the “cross-correlation method” using a force replica code that can detect the position by the “auto-correlation method” using the periodicity is more effective. A sharp detection peak is realized, and it is possible to detect the SCH timing with higher accuracy.
  • the SCH is configured by multiplying three types of codes (sector common code, sector specific code, and cell specific code).
  • the sector common code is made common to all cells, and the code element serving as a phase reference among the cell specific codes is made common to all cells.
  • the codes multiplied by the subcarrier multiplied by the code element that becomes the phase reference are (sector common code common to all cells), (sector specific code), and (cell specific code common to all cells).
  • (sector-specific code) is multiplied by (common code for all cells). That is, regarding the subcarrier multiplied by the code element serving as the phase reference, although two types of codes are multiplied, two of the codes are common to all cells. Therefore, the only difference is the sector specific code. This means that correlation detection using a replica of the sector specific code is possible.
  • the receiving device side Then, a time waveform of the replica code of the sector specific code corresponding to each sector is prepared, and the reception signal (the signal before FFT) is multiplied by the time waveform of the replica code to detect the correlation peak.
  • the position of the SCH in the signal can be detected with high accuracy. Therefore, subsequent sector identification and cell identification can be performed more efficiently.
  • the SCH structure described above the SCH is periodically arranged in one frame period, so the autocorrelation method (i.e., the received signal is predetermined). It is also possible to detect the position by a method of detecting the correlation between the signal delayed by the period and the original received signal.
  • the sector specific code is a set of 2m (m is a natural number of 2 or more) code elements, and the set of code elements is The 2m code elements are configured by repeatedly assigning to subcarriers on the frequency axis, and the 2m code elements are m code elements orthogonal to each sector according to claim 2 or claim 3. Two sets are prepared, each group is assigned to a subcarrier so as to be adjacent on the frequency axis, and among the 2m code elements which are constituent units of the sector specific code A code constituting the cell-specific code, indicating that each of the half m code elements has a phase difference relative to each of the other m code elements having the same value as the code element. The elements are multiplied and beat.
  • the SCH is used only for sector identification, as described above, it is only necessary to repeatedly arrange orthogonal codes having m code elements as structural units on the frequency axis. If it is also transmitted, the conditions become more severe. That is, in order to superimpose and transmit both sector-specific information and cell-specific information on the SCH, it is a condition that the sector-specific information and the cell-specific information do not adversely affect each other. Being able to restore independently (that is, by parallel processing) is also important for reducing processing time. In order to satisfy these conditions, here we prepare two sets of m code elements, which are the constituent units of orthogonal codes for sector identification, and superimpose them in two stages on the frequency axis.
  • Each code element is set as a new structural unit, which is repeatedly arranged on the frequency axis.
  • m code elements are used to identify the sector.
  • the remaining m code elements are used to multiply the cell specific code.
  • Cell specific code is As described above, in order to indicate the relative phase difference between a pair of subcarriers, each of the remaining m code elements includes each of the other m code elements having the same value (that is, a sector specific code).
  • Each of the sign elements of the signal is multiplied by a sign indicating the phase difference. For example, orthogonal codes for sector identification with (ml, m 2, m3) code element strength are overlapped in two stages on the frequency axis, and this is repeated as a unit from the low frequency side to the high frequency side.
  • the code Ml (ml, m2, m3, “ml”, “m2”, “m3”... Is attached to distinguish code elements with the same value.
  • “Ml” is multiplied by the sign “cl” indicating the phase difference for ml having the same value on the low frequency side
  • “m 2” and “m3” are also multiplied by m2 and m3 on the low frequency side, respectively.
  • (ml, m2, m3 ) Is orthogonal between sectors, it is possible to distinguish and extract sector-specific codes by complex conjugate multiplication and correlation detection.
  • ml 'cl ml (phase carrier subcarrier) Multiply by the complex conjugate of (multiplied code) to make the ml invisible, and “cl” with cell-specific information can be extracted, and c2 and c3 can be extracted as well, like this Basically, the cell specific code (Cn) can be demodulated by detecting the phase difference of the other subcarrier with respect to the phase reference subcarrier (however, in order to improve the demodulation accuracy, It is desirable to cross-correlate with the candidate cell specific code Cn).
  • Sector identification by despreading and correlation detection using codes (ml, m2, m3) and demodulation processing of cell specific information Cn (cl, c2, c3 ''') by complex conjugate multiplication are independent of each other.
  • code ml, m2, m3
  • demodulation processing of cell specific information Cn cl, c2, c3 '''
  • Cn cell specific information
  • two subcarriers multiplied by the same value “ml” are paired, and one of them is a phase reference subcarrier. Since the cell-specific code Cn is assigned to the other subcarrier and a relative phase difference from the phase reference subcarrier can be given to the other subcarrier, it is not subject to interference due to sector-specific codes. Only cell-specific information can be transmitted as relative phase difference information between subcarriers, so that cell-specific information can be efficiently transmitted.
  • the sector-specific code includes 2m (m is a natural number of 2 or more) code elements as a set, and the set of code elements as a frequency.
  • the 2m code elements are arranged orthogonally for each sector of the present invention, and two sets of m code elements are prepared for each code carrier.
  • the code elements of each set are configured by alternately assigning the code elements of each set to subcarriers so that the code elements having the same value are adjacent to each other on the frequency axis, and are constituent units of the sector specific code Of the 2m code elements, one of the code elements having the same value assigned to adjacent subcarriers on the frequency axis indicates a relative phase difference with respect to the code element serving as the other phase reference.
  • Cell specific No. is multiplied code elements constituting the a, Ru.
  • sector identification is performed using odd-numbered code elements (ml, m2, m3), and even-numbered (ml 'cl, m2-c2, m3' c3)
  • Cell specific codes cl, c2, c3 "') can be demodulated by multiplying each complex conjugate of ml, m2, and m3 multiplied by subcarriers.
  • the code elements of the same value are arranged next to each other in the sector specific code element sequence before the cell specific code Cn is multiplied (that is, "ml, ml”, “m2, m2”, “m3, m3” are arranged in pairs on the frequency axis) Since codes with the same value are arranged on adjacent frequency axes, the subcarriers to which the codes are assigned That is, the transfer function of the propagation path can be regarded as equivalent (that is, the sub-capacitor on the frequency axis). If the transfer function of the propagation path of each subcarrier differs due to the separation of the rear position, the phase will turn due to this effect. This is due to the relative phase difference between the two subcarriers. Error.
  • the demodulation accuracy of the specific information may decrease).
  • cell-specific information that is, two subcarriers
  • Phase difference can be transmitted with higher accuracy.
  • the data structure of the synchronization channel (SCH) of the present invention is that Sf (Sf is a natural number) subframes are arranged in the time axis direction over one frame period, and a plurality of subchannels are arranged in frequency. Arranged over the entire band in the axial direction, this constitutes a frame in multicarrier communication, and the synchronization channel (SCH) has the same frame period as Ss (Ss is a divisor of Sf). It is arranged in the last one symbol of each divided time period, and its synchronization channel (SCH) is periodically arranged at predetermined subcarrier intervals on the frequency.
  • the time waveform formed by combining the subcarriers used for sector identification becomes a time waveform having a periodicity in which a predetermined waveform is repeated within one symbol period, and the periodicity of this time waveform is used.
  • the SCH position can be detected by the autocorrelation method.
  • the SCH is assigned to the last (one) symbol of the time period obtained by equally dividing one frame period by a predetermined number, and among the subcarriers to which the SCH is assigned, the sector-specific
  • the subcarriers used for this purpose are arranged with periodicity at predetermined intervals on the frequency axis. According to this arrangement, due to the frequency relationship of orthogonal subcarriers in the OFDM communication system, that is, due to the symmetry in the time direction, the time waveform formed by combining these subcarriers is within one symbol period.
  • a time waveform having a periodicity in which the predetermined waveform is repeated (for example, if the predetermined waveform is A, a time waveform in which A is repeated every 1Z2 symbols) is obtained.
  • the SCH position can be detected by the autocorrelation method or the cross-correlation method.
  • the data structure of the synchronization channel (SCH) of the present invention is that a plurality of subframes are arranged in the time axis direction over one frame period, and the plurality of subchannels are all bands in the frequency axis direction.
  • a frame in multicarrier communication is formed, and the synchronization channel (SCH) has the same synchronization channel for two predetermined symbols in the one frame period. Therefore, the sub-carrier used for sector identification
  • the time waveform formed by combining the two is a time waveform having a periodicity in which the same waveform is repeated for each symbol period in two symbol periods. By using the periodicity of this time waveform, autocorrelation is obtained.
  • SCH position can be detected by the method.
  • SCH is assigned to 2 symbols, and among the subcarriers to which SCH is assigned, subcarriers used for sector identification are arranged with periodicity at predetermined intervals on the frequency axis. .
  • the SCH since the SCH is allocated over two symbols, the same time waveform appears as a result (for example, if the waveform of one symbol period is C, in two symbol periods) The time waveform is such that C repeats every symbol period).
  • the SCH position can be detected by the autocorrelation method.
  • the SCH can be transmitted using subcarriers in the entire frequency band, when transmitting different information to each symbol, it can be used for transmission of cell specific information (relative phase difference information).
  • the code length can be increased, and more cell specific information can be transmitted.
  • the cell search method of the present invention receives a multicarrier signal from a multicarrier transmission apparatus and uses the synchronization channel (SCH) of the present invention including cell and sector identification information included in the received signal.
  • a sector specific code that gives the maximum received power is detected by despreading processing using the sector specific code of the synchronization channel (SCH) to identify the sector, and in parallel, the synchronization channel (SCH) ) To which the phase reference subcarrier and the code element of the cell specific code corresponding to this subcarrier are multiplied.
  • the cell-specific code is demodulated by detecting the phase difference between the sub-carrier and the detected sub-carrier, and if necessary, correlation detection processing with the cell-specific code to be detected is performed. This is executed by the second step of detecting the cell specific code.
  • the detection of SCH timing on the time axis (first step) by the autocorrelation method using the periodicity of SCH or the cross-correlation method using replicas of sector-specific codes and the frequency axis The cell search is completed by identifying the frame timing based on the information, identifying the sector ID and the cell ID (second step). Therefore, the search process can be shortened compared to the conventional three-stage cell search. Also, in this case, despreading and correlation detection using a pilot channel are only necessary when demodulating the data channel, and are not necessary for cell search, so hardware for correlation calculation using the pilot channel is not necessary. Reducing the burden (reducing memory capacity, etc.) can be achieved.
  • the sector-specific code is superimposed on the SCH, it is possible to obtain an effect that the sector identification is strong against inter-sector interference and fading.
  • the cell ID cannot be directly identified with the SCH alone, and there are cases where the detection of the cell ID duplex information may remain.
  • despreading and correlation detection using a nolot channel are performed to identify a cell ID.
  • the multicarrier transmission apparatus of the present invention includes an assigning unit that allocates a synchronization channel (SCH) having the structure of the present invention on a frequency axis in a frame period, and the synchronization channel (SCH) is a frequency axis.
  • Transmitting means provided with a directional antenna provided for each of a plurality of sectors, for transmitting the multicarrier signal allocated above.
  • the multicarrier receiving apparatus of the present invention receives the multicarrier signal transmitted from the multicarrier transmitting apparatus of the present invention, and a synchronization channel multiplied by a sector specific code included in the received signal (
  • Timing detection means for detecting the position and the synchronization channel (SCH) arranged on the frequency axis is multiplied
  • Sector identification means for detecting a sector specific code that gives the maximum received power by despreading processing using the sector specific code.
  • the multicarrier receiving apparatus of the present invention receives a multicarrier signal transmitted from the multicarrier transmitting apparatus, and a synchronization channel in which a code common to cells included in the received signal is adopted ( (SCH) is a multi-carrier receiver that identifies a sector by multiplying a subcarrier to which the code element serving as the phase reference among the code elements constituting the cell-specific code is assigned.
  • Timing detection means for detecting a synchronous channel (SCH) position in a received signal by a cross-correlation method using a time waveform of a replica code of the sector specific code, and the synchronization signal disposed on the frequency axis.
  • Sector identification means for detecting a sector specific code that gives the maximum received power by despreading processing using the sector specific code of the channel (SCH).
  • the correlation is obtained by multiplying the received signal by the time waveform of the replica code of the sector specific code. (Cross-correlation method) is adopted. This makes it possible to detect the SCH timing with high accuracy.
  • the multicarrier receiving apparatus of the present invention serves as the phase reference in the subcarrier to which the synchronization channel (SCH) is allocated, in parallel with the sector specific code detection processing by the sector identification means.
  • the cell specific code is demodulated by detecting the phase difference between the subcarrier and the subcarrier multiplied by the code element of the cell specific code corresponding to this subcarrier, and if necessary
  • the apparatus further includes cell identification means for performing correlation detection processing with a cell specific code to be detected, thereby detecting a cell specific code and detecting cell ID or cell ID group information.
  • a multi-carrier signal can be received, and a cell search including sector identification by SCH can be performed. If the number of subcarriers is sufficient, the sector ID and cell ID can be identified only by the SCH.
  • the multicarrier receiver of the present invention is specified by the cell identification means.
  • the information processing apparatus further includes a means for detecting the cell ID by performing despreading and correlation detection processing using a pilot channel to complete the cell identification processing.
  • the data structure of the synchronization channel (SCH) of the present invention has a subcarrier multiplied by the code element serving as the phase reference constituting the cell-specific code (that is, a subcarrier used for sector identification).
  • the carrier is symmetrically arranged on the low frequency side and the high frequency side with respect to the center frequency, and is arranged with a predetermined number of subcarrier intervals, whereby the subcarriers used for sector identification are combined.
  • the time waveform formed is a time waveform with a periodicity in which the reference waveform or the inverted waveform of the reference waveform is repeated in units of 1ZM (M is a natural number of 2 or more) symbols within one symbol period.
  • M is a natural number of 2 or more
  • a characteristic time waveform can be obtained in 1ZN (N is a natural number of 4 or more) symbols.
  • N is a natural number of 4 or more
  • the configuration of the correlator (sometimes called a matched filter) can be simplified.
  • the subcarriers used for sector identification are symmetrical on the low frequency side and the high frequency side with respect to the center frequency, and When the center frequency is 0th, the 2nd, 6th, 10th, 14th, etc., and so on, are arranged at positions separated by 3 subcarriers.
  • the time waveform formed by combining subcarriers used for sector identification is a 1Z4 symbol unit, and the reference waveform and the inverted waveform of the reference waveform are alternately repeated within one symbol period. It becomes a time waveform with periodicity.
  • the reference waveform is B
  • the reference waveform and the inverted waveform of the reference waveform are alternately repeated in 1Z4 symbol units, such as B, 1B, B, 1B, within one symbol period.
  • a time waveform with periodicity can be obtained.
  • the subcarriers used for sector identification are symmetrical on the low frequency side and the high frequency side with respect to the center frequency, and When the center frequency is 0th, the 4th, 8th, 12th, 16th, etc., and so on, are arranged at positions separated by 3 subcarriers.
  • the time waveform formed by combining the subcarriers used for sector identification is a time waveform having a periodicity in which the same reference waveform is repeated in 1Z4 symbol units within one symbol period.
  • a time waveform having a periodicity in which the same reference waveform is repeated such as D, D, D, and D, is obtained in 1Z4 symbol units within one symbol period.
  • the configuration of the correlator can be simplified.
  • the data structure of the synchronization channel (SCH) of the present invention is that each of the code elements serving as the phase reference constituting the sector common code and the cell specific code is a code common to all cells.
  • the code element of the sector common code is common to subcarriers to which a synchronization channel (SCH) on the frequency axis is allocated, and the code element serving as the phase reference constituting the cell specific code is also as follows.
  • the sector common code common to all cells and the sector specific code common to all cells are:
  • the code elements multiplied by the subcarriers used as the phase reference are shared between the subcarriers on the frequency axis (that is, all are the same), and the most simplified code configuration is adopted. Is.
  • the sector specific code can be specified by selecting any one of the total subcarriers. Therefore, the condition that the subcarrier power for obtaining the code element to be despread is limited to a set of adjacent subcarriers is not necessary.
  • the cell search method of the present invention includes a first step of detecting a position of a synchronization channel (SCH) in a received signal by an autocorrelation method or a cross-correlation method, and the code element of the sector-specific code
  • a first step of detecting a position of a synchronization channel (SCH) in a received signal by an autocorrelation method or a cross-correlation method and the code element of the sector-specific code
  • the correlation value by the cross-correlation method is used.
  • the sector having the highest correlation value is identified as the nearest sector, and in parallel, the subcarrier serving as the phase reference in the subcarrier to which the synchronization channel (SCH) is assigned.
  • the cell-specific code by demodulating the cell-specific code by detecting the phase difference between the subcarrier multiplied by the code element of the cell-specific code corresponding to the subcarrier. If necessary, performs correlation detection processing with the cell specific code to be detected, this includes a second step of detecting a Yotsute cell specific code, the.
  • sector identification can also be performed by cross-correlation of the time waveform before FFT, rather than by correlation value peak determination by despreading after FFT processing. .
  • FFT processing it is possible to identify the nearest sector by detecting the cross-correlation peak using the replica time waveform of the sector-specific code and identifying the code that gives the maximum peak.
  • the various sector specific codes transmitted from the base station are known in the mobile station. Whether the sector identification method uses the method of detecting correlation by despreading with orthogonal codes or the method of detecting cross-correlation by replica time waveform considers the required detection accuracy and circuit constraints. Can be determined as appropriate.
  • FIG. 1 is a flowchart showing an example of main procedures of multicarrier transmission processing according to the present invention.
  • FIG. 2 is a flowchart showing an example of a main procedure of multicarrier reception processing according to the present invention.
  • FIG. 4 is a diagram for explaining an arrangement of code elements constituting three orthogonal codes (code 1, code 2, code 3) and a principle when only code 2 is demodulated.
  • V5 This is a diagram for explaining a method of superimposing cell specific information (sector ID, broadcast channel bandwidth, antenna arrangement, GI length, etc.) on the SCH.
  • FIG. 6 (a) to (d) are diagrams for explaining code formats for transmitting sector-specific information and cell-specific information superimposed on the SCH.
  • FIG. 7 is a diagram showing a subcarrier index (subcarrier number) on the frequency axis.
  • FIG. 8 (a) is a diagram showing allocation of sector common codes on the frequency axis. (b) is a diagram showing a configuration of three sector specific codes. (C) is a diagram showing a concept as a basis for generating a sector specific code.
  • FIG. 9 is a diagram showing a configuration of a code sequence for transmitting cell specific information on the frequency axis.
  • FIG. 10 is a block diagram showing a configuration example of a physical layer and a MAC (Media Access Control) sublayer in a base station (multicarrier transmission apparatus) of a mobile communication system.
  • MAC Media Access Control
  • FIG. 11 is a block diagram showing a specific configuration of the transmission circuit unit shown in FIG.
  • FIG. 12 is a block diagram showing an example of a configuration of a multicarrier receiver according to the present invention.
  • FIG. 13 is a block diagram illustrating a configuration example of a circuit having functions of timing detection and frequency error detection.
  • FIG. 14 is a diagram showing specific contents of despreading processing for sector identification.
  • FIG. 15 is a diagram for explaining demodulation processing of cell specific information.
  • FIG. 16 is a diagram showing SCH allocated subcarriers (that is, the configuration of the SCH on the frequency axis) arranged on the frequency axis.
  • FIG. 17 (a) shows the frequency of the sector common code multiplied by the SCH in the third embodiment. It is a figure which shows the arrangement
  • FIG. 18 is a diagram showing an arrangement of cell specific codes in the third embodiment.
  • FIG. 19 is a diagram showing a frame configuration in the third embodiment.
  • FIG. 20 is a diagram showing a specific example of contents of correlation calculation processing using a sector specific code.
  • ⁇ 21] A diagram showing a cell-specific code demodulation method according to the third embodiment.
  • FIG. 22 is a diagram showing a downlink frame configuration of a multicarrier communication system used in the present invention.
  • FIG. 23 is a diagram showing an example of the configuration of cells and sectors.
  • FIG. 24 is a diagram illustrating an example of an arrangement position of a synchronization channel (SCH) in a frame.
  • SCH synchronization channel
  • FIG. 25 is a diagram illustrating a configuration example of a SCH.
  • FIG. 26 It is a block diagram showing a configuration of a receiver for detecting a SCH repetitive waveform and performing time synchronization.
  • FIG. 27 is a diagram showing an example of a synchronization channel (SCH) allocated to subcarriers on the frequency axis.
  • SCH synchronization channel
  • FIG. 28 is a diagram showing an example of the configuration of resource blocks in the OFDM communication scheme being studied in 3GPP.
  • FIG. 29 (a) is a diagram showing allocation of sector common codes on the frequency axis, (b) is a diagram showing the configuration of three sector specific codes, and (c) is a sector specific code. It is a figure which shows the concept used as the foundation of the production
  • FIG. 30 is a diagram showing a configuration on the frequency axis of a code sequence for transmitting cell-specific information.
  • FIG. 31 is a block diagram showing a configuration of a receiver for detecting the time position of the SCH from the replica signal and performing time synchronization.
  • FIG. 32 is a diagram showing 76 subcarriers used in the fifth embodiment for each function.
  • FIG. 34 (a) is a diagram showing allocation of sector common codes on the frequency axis in the fifth embodiment, and (b) is a diagram of three sector specific codes in the fifth embodiment. (C) is a diagram showing a concept that is a basis for generating a sector specific code in the fifth embodiment, and shows a vector on a complex phase plane.
  • FIG. 35] (a) to (d) show a plurality of S in the SCH symbol period in the fifth embodiment.
  • FIG. 5 is a diagram for explaining that a reference waveform (or a waveform obtained by inverting the reference waveform) is repeated within one symbol period of the waveform force in the time domain formed by combining CH subcarriers.
  • FIG. 36 is a diagram showing a configuration on a frequency axis of a code sequence for transmitting cell specific information in the fifth embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

【課題】送受信装置の負担を増加させることなく、セクタ同定を含むセルサーチのプロセスを短縮する。 【解決手段】マルチキャリア移動体通信システムのダウンリンクに含まれる同期チャネル(SCH)に、セクタ固有符号とセル固有符号を乗算して(ステップS1)、周波数軸上のサブキャリアに割り当て(ステップS2)、拡散処理、IFFT処理を実施し(ステップS3、S4)、さらに、GIの挿入、D/A変換処理を経て(ステップS5、S6)、各セクタの指向性アンテナからマルチキャリアを送信する(ステップS7)。受信側では、自己相関法または相互相関法によってSCH位置を特定し、FFTを実施した後、セクタ固有符号の検出によるセクタの同定と、セル固有符号の復調によるセル固有情報の取得とを並行して実施する。

Description

明 細 書
データ作成装置、データ作成方法、基地局、移動局、同期検出方法、セ クタ同定方法、情報検出方法、および移動通信システム
技術分野
[0001] 本発明は、マルチキャリア通信方式を採用した E— UTRA (Evolved- UTRA)規格の 移動体通信に関し、特に、ダウンリンク(下り伝送)信号に含まれる同期チャネル (SC H : Synchronization Ch謹 el)のデータを作成するデータ作成装置、データ作成方法 、基地局、移動局、同期検出方法、セクタ同定方法、情報検出方法、および移動通 信システムに関する。
背景技術
[0002] 近年、 W— CDMA方式をはじめとする第 3世代移動体通信(3G)が世界的に普及 している。現在、さらに、ダウンリンクにおいて 100Mb/s〜lGb/sの通信速度を実現 する第 4世代移動体通信 (4G)が検討されている。しかし、 3G力 4Gへの完全な移 行は容易ではない。このため、 3Gの周波数帯を使いつつ、 4Gの新技術を導入して 通信の高速化を行なう E—UTRA(Evolved- UTRA)が注目されている。 3GPP (3rd G eneration Partnership Project)においても、活発な提案がなされている。
[0003] 移動体通信システムでは、移動局は、初期同期確立、またはハンドオーバーのた めに、自機が接続しょうとするセルおよびセクタを同定する必要がある。つまり、通信 対象の基地局および基地局のアンテナを検出する必要がある。第 3世代移動体通信 では、高速なセルサーチを行なうために、いわゆる 3段階セルサーチ方法が採用され ている。なお、「セルサーチ」は、「セクタサーチ」も含む概念である。
[0004] 第 3世代移動体通信における 3段階セルサーチは、一般に、同期チャネル (SCH :
Synchronization Channel)と共通パイロットチヤネノレ(CPICH : Common Pilot Channel )とを使用する。まず、 SCHの受信タイミングを検出し (第 1ステップ)、次に、 SCHコ ードの相関検出によってフレームタイミングとスクランブルコードグループの同定を実 施する(第 2ステップ)。そして、 CPICHを用いた相関検出によって、スクランブルコー ドを同定する (第 3ステップ)。 [0005] 次世代移動体通信規格である E— UTRAでは、変調方式として OFDM (Orthogon al Frequency Division Multiplexing:直交周波数分割多重)が用いられるが、セルサ ーチに関しては、上記の 3段階セルサーチの考え方を踏襲した技術が提案されてい る (例えば、特許文献 1、特許文献 2、非特許文献 1ならびに非特許文献 2参照)。
[0006] 特許文献 1では、 OFDMを採用したマルチキャリア通信方式における 3段階セルサ ーチで、スクランブルコードグループ同定用の第 2同期コード (S— SCH信号)を複数 のサブキャリアに周波数多重する技術が開示されている。
[0007] 特許文献 2では、 OFDMを採用したマルチキャリア通信方式における 3段階セルサ ーチで、共通パイロットチャネル (CPICH)にセル識別用コードを多重する技術が開 示されている。
[0008] また、非特許文献 1では、 OFDMを採用した 1セル繰り返し通信方式の規格化が 提案されている。さらに、 1つのセルを 3つのセクタに分割し、セクタ毎に配置された 基地局が、セル内の複数の移動局と同時に通信を行なうことを考慮した標準化案が 提案されている。この技術では、共通パイロットチャネル(CPICH)に、セル固有の拡 散符号と、セクタ固有の拡散符号とが二重に乗算されている。従って、移動局は、各 拡散符号レプリカによる逆拡散と相関検出を行なうことによって、セル (およびセクタ) の同定が可能である。
[0009] また、非特許文献 2では、 OFDMを採用したマルチキャリア通信方式にぉ 、て、第 3世代の技術に類似する 3段階セルサーチによって、セル (およびセクタ)の同定を行 なう技術が開示されている。この技術は、非特許文献 1に開示されている技術と同様 に、一つのセルが 3つのセクタに分割され、各セクタ間で同一の同期チャネルコード( SCHコード)を使用する。また、 SCHコードの送信に関して、各セクタ間で時間的な 同期が取られており、セクタ毎の SCHの送信は同時に行なわれる。そして、セルおよ びセクタの同定、すなわち、最大の受信電力を与えるセルおよびセクタの選択は、第 3ステップにおけるパイロットチャネルを使用した拡散符号のレプリカによる相関検出 によって行なわれる。
[0010] このように、次世代の通信規格である E— UTRAにおいても、 SCHと CPICHを利 用した、 3Gの 3段階セルサーチを踏襲した技術を採用しょうとする提案がなされてい る。特に、セクタ同定に関しては、非特許文献 1および非特許文献 2に開示されてい るように、共通パイロットチャネルにセクタ固有の拡散符号を乗算し、第 3ステップにお ける逆拡散と相関検出処理によって、受信電力が最大となるセクタを検出している。 特許文献 1 :特開 2003— 179522号公報
特許文献 2 :特開 2005— 198232号公報
非特許文献 1 : 3GPP "TR 25.814 , "Physical Layer Aspects for Evolved UTRA (Rele ase 7) v.0.3.1"2005/10/18
非特許文献 2 : 3GPP "Rl-060042 , "SCH Structure and Cell Search Method in E- U TRA Downlink"2006/1/19
発明の開示
発明が解決しょうとする課題
[0011] 上記のとおり、次世代の通信規格である E— UTRAにおいても、 SCHと CPICHを 利用し、 3Gの 3段階セルサーチを踏襲した技術を採用しょうとする提案がなされてい る。この場合、セクタ同定は、第 3ステップにおける CPICH (共通パイロットチャネル) を用いた逆拡散と相関検出処理によって行なわれる。つまり、従来の技術では、 3段 階の処理を経ないとセクタとセルの同定ができない。従って、 3段階セルサーチでは 、セルおよびセクタの同定処理に要するプロセスの短縮には限界がある。
[0012] また、第 3ステップでは、 CPICHを用いたセル同定のための逆拡散と相関検出処 理に加えて、さらに、セクタ同定のための同様の処理を実施する必要がある。すなわ ち、 3段階セルサーチにおける最終段階では、レプリカ符号を用いた逆拡散によって 、セル IDの検出を行なうと共に、同一セル内のどのセクタからの信号強度が強いのか を判定する必要がある。このため、結果的に、(セル IDグループに含まれるセル ID数 ) X (セクタ ID数)分のレプリカ信号を用いた相関検出を行なう必要がある。このため、 第 3ステップにおける相関検出に要する時間は、一つのセルに含まれるセクタ数に比 例して長くなる。
[0013] また、各レプリカ信号に対応する相関値を比較するためには、各レプリカ信号による 相関演算結果を蓄積するだけの容量をもつメモリが必要である。つまり、(セル IDグ ループに含まれるセル ID数 Xセクタ ID数)分の相関演算結果を蓄積するメモリが必 要となり、メモリ容量の増大を招く。
[0014] また、上記の非特許文献 2に開示されているように、同一セル内の各セクタに関して は、同一の SCHデータが同時に送信される。このため、セクタ境界付近の移動局で は、複数のセクタ力 の信号の相互干渉、または伝搬環境に起因するフ ージング によって、受信電力が低下する周波数帯が生じる可能性がある。この場合には、セル およびセクタの同定確率が低下することもあり得る。
[0015] 本発明は、このような事情に鑑みてなされたものであり、本発明の目的は、セクタ同 定を含むセルサーチ処理に要する時間を短縮し、ノ ィロットチャネルを用いた相関検 出結果を記憶するメモリの容量を削減することである。また、セクタ同定を含むセルサ ーチ処理の耐干渉性または耐フェージング特性を向上させ、送受信装置の負担を 増加させることなぐより簡易かつ高精度にセクタ同定を含むセルサーチを実現する ことである。
課題を解決するための手段
[0016] (1)上記の目的を達成するために、本発明は、以下のような手段を講じた。すなわ ち、本発明のデータ作成装置は、複数のセクタを含むセルを管轄する基地局により 送信される同期チャネルのデータを作成するデータ作成装置であって、前記セクタを 識別するためのセクタ識別番号に対応するセクタ固有符号を用いて、セクタ毎の同 期チャネルのデータを作成することを特徴として 、る。
[0017] この構成により、セクタ共通符号にセクタ固有符号を乗算することでパイロットチヤネ ルを用いることなぐ同期チャネルを用いてセクタ同定を行なうことが可能となる。
[0018] (2)また、本発明のデータ作成装置において、前記セクタ固有符号は、相互に直交 関係にあることを特徴として 、る。
[0019] この構成により、高精度のセクタ同定または同期検出を行なうことが可能となる。
[0020] (3)また、本発明のデータ作成装置において、前記セクタ固有符号は、隣接セル間 で共通であることを特徴として 、る。
[0021] この構成により、効率の良いセクタ同定または同期検出を行なうことが可能となる。
[0022] (4)また、本発明のデータ作成装置は、前記セクタ識別番号に対応する直交符号 を用いて、セクタ毎のパイロットチャネルのデータを作成することを特徴として 、る。 [0023] この構成により、セクタ同定を含むセルサーチプロセスに要する時間を短縮すると 共に、パイロットチャネルを用いた相関検出結果を記憶するメモリの容量を削減し、さ らには、セクタ同定を含むセルサーチ処理の耐干渉性あるいは耐フェージング特性 を向上させ、送受信装置の負担を増加させることなぐより高速かつ高精度のセクタ 同定を含むセルサーチを実現することができる。
[0024] (5)また、本発明のデータ作成方法は、複数のセクタを含むセルを管轄する基地局 により送信される同期チャネルのデータを作成するデータ作成方法であって、前記セ クタを識別するためのセクタ識別番号に対応するセクタ固有符号を用いて、セクタ毎 の同期チャネルのデータを作成することを特徴として 、る。
[0025] この構成により、セクタ共通符号にセクタ固有符号を乗算することでパイロットチヤネ ルを用いることなぐ同期チャネルを用いてセクタ同定を行なうことが可能となる。
[0026] (6)また、本発明のデータ作成方法は、前記セクタ識別番号に対応する直交符号 を用いて、セクタ毎のパイロットチャネルのデータを作成することを特徴として 、る。
[0027] この構成により、セクタ同定を含むセルサーチプロセスに要する時間を短縮すると 共に、パイロットチャネルを用いた相関検出結果を記憶するメモリの容量を削減し、さ らには、セクタ同定を含むセルサーチ処理の耐干渉性あるいは耐フェージング特性 を向上させ、送受信装置の負担を増加させることなぐより高速かつ高精度のセクタ 同定を含むセルサーチを実現することができる。
[0028] (7)また、本発明の基地局は、複数のセクタを含むセルを管轄する基地局であって 、前記セクタを識別するためのセクタ識別番号に対応するセクタ固有符号を用いたセ クタ毎の同期チャネルのデータを記憶する記憶部と、前記セクタに対応する前記同 期チャネルのデータを、各セクタに対して送信する送信部と、を備えることを特徴とし ている。
[0029] この構成により、セクタ共通符号にセクタ固有符号を乗算することでパイロットチヤネ ルを用いることなぐ同期チャネルを用いてセクタ同定を行なうことが可能となる。
[0030] (8)また、本発明の基地局は、複数のセクタを含むセルを管轄する基地局であって 、前記セクタを識別するためのセクタ識別番号に対応するセクタ固有符号を用いて、 セクタ毎の同期チャネルのデータを作成する同期チャネルデータ作成部と、前記セク タに対応する前記同期チャネルのデータを、各セクタに対して送信する送信部と、を 備えることを特徴としている。
[0031] この構成により、セクタ共通符号にセクタ固有符号を乗算することでパイロットチヤネ ルを用いることなぐ同期チャネルを用いてセクタ同定を行なうことが可能となる。
[0032] (9)また、本発明の基地局において、前記同期チャネルデータ作成部は、前記セク タ識別番号に対応する直交符号を用いて、セクタ毎のパイロットチャネルのデータを 作成し、前記送信部は、前記セクタに対応するパイロットチャネルのデータを、各セク タに対して送信することを特徴として 、る。
[0033] この構成により、セクタ同定を含むセルサーチプロセスに要する時間を短縮すると 共に、パイロットチャネルを用いた相関検出結果を記憶するメモリの容量を削減し、さ らには、セクタ同定を含むセルサーチ処理の耐干渉性あるいは耐フェージング特性 を向上させ、送受信装置の負担を増加させることなぐより高速かつ高精度のセクタ 同定を含むセルサーチを実現することができる。
[0034] (10)また、本発明の移動局は、複数のセクタを含むセルを管轄する基地局と通信 を行なう移動局であって、前記セクタを識別するためのセクタ識別番号に対応するセ クタ固有符号を用いた同期チャネルを含む信号を、前記基地局から受信することを 特徴としている。
[0035] この構成により、セクタ共通符号にセクタ固有符号を乗算することでパイロットチヤネ ルを用いることなぐ同期チャネルを用いてセクタ同定を行なうことが可能となる。
[0036] (11)また、本発明の移動局は、前記同期チャネルに基づいて、セクタ同定を行なう ことを特徴としている。
[0037] この構成により、高精度のセクタ同定を行なうことが可能となる。
[0038] (12)また、本発明の移動局は、前記同期チャネルに基づいて、同期検出を行なう ことを特徴としている。
[0039] この構成により、高精度の同期検出を行なうことが可能となる。
[0040] (13)また、本発明の移動局において、前記セクタ固有符号は、相互に直交関係に あることを特徴としている。
[0041] この構成により、高精度のセクタ同定または同期検出を行なうことが可能となる。 [0042] (14)また、本発明の移動局において、前記セクタ固有符号は、隣接セル間で共通 であることを特徴として 、る。
[0043] この構成により、効率の良いセクタ同定または同期検出を行なうことが可能となる。
[0044] (15)また、本発明の移動局は、前記信号と前記セクタ固有符号とを用いて相関を とることにより同期検出を行なうことを特徴としている。
[0045] この構成により、 SCHの周期性を利用した自己相関法またはセクタ固有符号のレ プリカ符号の時間波形を利用した相互相関法による時間軸上の SCHのタイミング検 出(第 1ステップ)と、周波数軸上の情報に基づくセクタ IDならびにセル IDの同定 (第
2ステップ)と、によって、セルサーチを完了することも可能である。従って、従来の 3 段階セルサーチに比べて、サーチプロセスを短縮することができる。
[0046] (16)また、本発明の移動局は、同期チャネル信号処理部を備え、前記同期チヤネ ル信号処理部は、前記信号と前記セクタ固有符号に対応するレプリカとの相関をとる ことにより前記同期検出を行なうことを特徴としている。
[0047] この構成により、セクタ固有符号のレプリカを用いた相関検出が可能となる。
[0048] (17)また、本発明の移動局は、前記信号と前記セクタ固有符号とを用いて相関を とることによりセクタ同定を行なうことを特徴としている。
[0049] この構成により、高精度のセクタ同定を行なうことが可能となる。
[0050] (18)また、本発明の移動局において、前記同期チャネル信号処理部は、前記信 号と前記セクタ固有符号に対応するレプリカとの相関をとることにより前記セクタ同定 を行なうことを特徴として 、る。
[0051] この構成により、セクタ固有符号のレプリカを用いた相関検出が可能となる。
[0052] (19)また、本発明の移動局は、前記複数のセクタに対応する複数のレプリカを予 め記憶することを特徴として 、る。
[0053] この構成により、セクタ固有符号のレプリカを用いた相関検出が可能となる。
[0054] (20)また、本発明の移動局において、前記同期チャネル信号処理部は、前記複 数のレプリカのそれぞれと前記信号との相関を並列でとることを特徴としている。
[0055] この構成により、相関検出を効率的に行なうことが可能となる。
[0056] (21)また、本発明の移動局において、前記同期チャネル信号処理部は、相関値が 最大となる前記セクタ固有符号を特定することにより前記セクタ同定を行なうことを特 徴としている。
[0057] この構成により、高精度のセクタ同定を行なうことが可能となる。
[0058] (22)また、本発明の移動局において、前記同期チャネル信号処理部は、前記信 号を周波数領域に変換し、前記セクタ固有符号との相関をとることにより前記セクタ 同定を行なうことを特徴として 、る。
[0059] この構成により、高精度のセクタ同定を行なうことが可能となる。
[0060] (23)また、本発明の移動局は、前記複数のセクタに対応する複数のセクタ固有符 号を記憶するセクタ固有符号記憶部をさらに備えることを特徴としている。
[0061] この構成により、セクタ同定または同期検出を効率良ぐ迅速に行なうことができると 共に、セクタ数の増加に合わせてセクタ固有符号の数を増やすことが容易となる。
[0062] (24)また、本発明の移動局において、前記同期チャネル信号処理部は、前記複 数のセクタ固有符号のそれぞれと前記信号を周波数領域に変換したものとの相関を 並列でとることを特徴として 、る。
[0063] この構成により、高精度のセクタ同定または相関検出を効率的に行なうことが可能と なる。
[0064] (25)また、本発明の移動局において、前記同期チャネル信号処理部は、前記同 期チャネルによりセクタ同定されたセクタに対応する前記パイロットチャネルの直交符 号を用いて、前記パイロットチャネルに含まれる情報を検出することを特徴としている
[0065] この構成により、セクタ同定を含むセルサーチプロセスに要する時間を短縮すると 共に、パイロットチャネルを用いた相関検出結果を記憶するメモリの容量を削減し、さ らには、セクタ同定を含むセルサーチ処理の耐干渉性あるいは耐フェージング特性 を向上させ、送受信装置の負担を増加させることなぐより高速かつ高精度のセクタ 同定を含むセルサーチを実現することができる。
[0066] (26)また、本発明の同期検出方法は、複数のセクタを含むセルを管轄する基地局 力 送信される、前記セクタを識別するためのセクタ識別番号に対応するセクタ固有 符号を用いて作成された同期チャネルを含む信号を、移動局において受信する際に 使用される同期検出方法であって、前記信号と前記セクタ固有符号とを用いて相関 をとることにより同期検出を行なうことを特徴としている。
[0067] この構成により、 SCHの周期性を利用した自己相関法またはセクタ固有符号のレ プリカ符号の時間波形を利用した相互相関法による時間軸上の SCHのタイミング検 出(第 1ステップ)と、周波数軸上の情報に基づくセクタ IDならびにセル IDの同定 (第 2ステップ)と、によって、セルサーチを完了することも可能である。従って、従来の 3 段階セルサーチに比べて、サーチプロセスを短縮することができる。
[0068] (27)また、本発明のセクタ同定方法は、複数のセクタを含むセルを管轄する基地 局から送信される、前記セクタを識別するためのセクタ識別番号に対応するセクタ固 有符号を用いて作成された同期チャネルを含む信号を、移動局において受信する 際に使用されるセクタ同定方法であって、前記信号と前記セクタ固有符号とを用いて 相関をとることによりセクタ同定を行なうことを特徴としている。
[0069] この構成により、高精度のセクタ同定を行なうことが可能となる。
[0070] (28)また、本発明のセクタ同定方法は、前記信号と前記セクタ固有符号とを用いて 相関をとることにより同期検出を行なうことを特徴としている。
[0071] この構成により、 SCHの周期性を利用した自己相関法またはセクタ固有符号のレ プリカ符号の時間波形を利用した相互相関法による時間軸上の SCHのタイミング検 出(第 1ステップ)と、周波数軸上の情報に基づくセクタ IDならびにセル IDの同定 (第 2ステップ)と、によって、セルサーチを完了することも可能である。従って、従来の 3 段階セルサーチに比べて、サーチプロセスを短縮することができる。
[0072] (29)また、本発明の情報検出方法は、複数のセクタを含むセルを管轄する基地局 力 送信される、前記セクタを識別するためのセクタ識別番号に対応するセクタ固有 符号を用いて作成された同期チャネルと、前記セクタ識別番号に対応する直交符号 を用いて作成されたパイロットチャネルとを含む信号を受信する移動局において、前 記パイロットチャネルに含まれる情報を検出する情報検出方法であって、前記同期チ ャネルによりセクタ同定されたセクタに対応する前記パイロットチャネルの直交符号を 用いて、前記パイロットチャネルに含まれる情報を検出することを特徴としている。
[0073] この構成により、セクタ同定を含むセルサーチプロセスに要する時間を短縮すると 共に、パイロットチャネルを用いた相関検出結果を記憶するメモリの容量を削減し、さ らには、セクタ同定を含むセルサーチ処理の耐干渉性あるいは耐フェージング特性 を向上させ、送受信装置の負担を増加させることなぐより高速かつ高精度のセクタ 同定を含むセルサーチを実現することができる。
[0074] (30)また、本発明の移動局は、複数のセクタを含むセルを管轄する基地局から信 号を受信する受信部と、前記受信した信号により信号の送信元であるセクタを同定す るセクタ同定部と、を備え、前記セクタ同定部によるセクタの同定に基づいて、受信特 性が良好なセクタを特定してハンドオーバーを行ない、前記受信部は、セクタを識別 するセクタ識別番号に対応するセクタ固有符号を用いたセクタ毎の同期チャネルの データを受信することを特徴として ヽる。
[0075] この構成により、高速かつ高精度のハンドオーバーを行なうことが可能となる。
[0076] (31)また、本発明の移動通信システムは、複数のセクタを含むセルを管轄し、前記 セクタを識別するためのセクタ識別番号に対応するセクタ固有符号を用いたセクタ毎 の同期チャネルのデータを各セクタに送信する基地局と、前記基地局から前記デー タを受信する移動局と、から構成される。
[0077] この構成により、セクタ共通符号にセクタ固有符号を乗算することでパイロットチヤネ ルを用いることなぐ同期チャネルを用いてセクタ同定を行なうことが可能となる。
[0078] (32)また、本発明の移動通信システムは、前記基地局と移動局との間の通信方式 力 マルチキャリア通信方式であることを特徴として 、る。
[0079] この構成により、ダウンリンクにおいて、高速、大容量の伝送が可能となる。また、 E
UTRAに準拠した通信方式の実用化に貢献することができる。
[0080] (33)また、本発明の移動通信システムは、前記マルチキャリア通信方式は、 OFD Mを適用することを特徴として 、る。
[0081] この構成により、ダウンリンクにおいて、高速、大容量の伝送が可能となる。また、 E
UTRAに準拠した通信方式の実用化に貢献することができる。
発明の効果
[0082] 本発明によれば、セクタ共通符号にセクタ固有符号が乗算されることによって、パイ ロットチャネルを用いることなぐ SCHを用いた逆拡散と相関検出のみによってセクタ の同定を行なうことができる。従って、セクタ同定に関して、パイロットチャネルを用い た逆拡散と相関検出処理が不要となり、パイロットチャネルを用 、た相関演算に用 ヽ られるメモリの容量を削減することができる。
[0083] また、 SCH自体にセクタ固有符号が乗算されて!、ることから、セクタ境界にぉ ヽても セクタ間の干渉を排除でき、また、符号乗算によるランダム化効果による耐フェージン グ特性の向上効果も得ることができる。セクタ毎に割り当てられるセクタ固有符号 (直 交符号)は、セクタ数の増大に合わせて、その数を増やすことが容易であり、セクタ構 成に柔軟に対応することができる。
[0084] また、 SCHの(セル固有符号を乗算する)サブキャリア数が十分であるのならば、 S CHのみによって、セル IDもダイレクトに同定することが可能となる。この場合、セクタ 同定を含むセルサーチ処理力 SCHのみを用いた 2段階の処理で済むことになり(2 段階セルサーチ)、従来の 3段階セルサーチに比べて、サーチ時間を短縮することが できる。
[0085] また、 SCHに、乗算されるセル固有符号およびセクタ固有符号の構成や内容、周 波数軸上における配置を工夫することによって、セクタ固有情報とセル固有情報が相 互に悪影響を与えないようにすることができ、また、情報伝送精度の低下を抑制する こともできる。また、各々の情報を独立に(つまり、並行処理によって)復調できる。こ れによって、セクタサーチを含むセルサーチの処理時間を短縮することができる。
[0086] すなわち、 mチップで直交する符号を 2個組み合わせて 2mチップの符号を形成し 、 mチップをセクタ同定用に使用し、残りの mチップをセル固有情報の同定用に利用 し、しかも、セル固有情報は、同じ値のセクタ固有符号要素が乗算されているサブキ ャリア同士 (周波数軸上で隣接して配置されるのがより望ましい)の位相差情報として 伝送することによって、セクタ固有情報とセル固有情報を効率的に伝送することがで き、かつ、受信側で、両者を効率よく分離して取り出すことができる。
[0087] また、本発明のセルサーチ方法では、 SCHの周期性を利用した自己相関法による 、あるいは、セクタ固有符号のレプリカ符号の時間波形を利用した相互相関法による 時間軸上の SCHのタイミング検出(第 1ステップ)と、周波数軸上の情報に基づくセク タ IDならびにセル IDの同定 (第 2ステップ)と、によって、セルサーチを完了することも 可能である。従って、従来の 3段階セルサーチに比べて、サーチプロセスを短縮する ことができる。また、パイロットチャネルを用いた相関検出は、データチャネルの復調 時に必要となるだけであり、セルサーチでは不要であるため、パイロットチャネルによ る相関演算のためのハードウ アの負担を軽減すること (メモリ容量の削減等)を達成 することができる。また、 SCHにはセクタ固有符号が重畳されていることから、セクタ 同定に関して、セクタ間の干渉やフェージングに強いという効果も得ることができる。 ただし、サブキャリア数が十分ではない場合には、 SCHだけでは、セル IDの直接の 同定ができず、セル IDグループ情報の検出にとどまる場合がある力 この場合には、 第 3ステップの処理として、パイロットチャネルを用いた逆拡散と相関検出を実施する ことによって、セル IDを同定することができる。
[0088] また、本発明のマルチキャリア送受信装置によって、ダウンリンクにおいて高速、大 容量な伝送が可能となる。
[0089] このように、本発明によれば、セクタ同定を含むセルサーチプロセスに要する時間 を短縮すると共に、ノ ィロットチャネルを用いた相関検出結果を記憶するメモリの容 量を削減し、さらには、セクタ同定を含むセルサーチ処理の耐干渉性あるいは耐フエ 一ジング特性を向上させ、送受信装置の負担を増カロさせることなぐより高速かつ高 精度のセクタ同定を含むセルサーチを実現することができる。
[0090] また、本発明は、種々のノリエーシヨン (具体例、変形例、応用例)を含んでおり、こ れらのバリエーションは、 E— UTRA(Evolved-UTRA)に準拠した通信方式の実用化 に貢献する。
[0091] 例えば、セルサーチの第 1ステップの処理(SCHタイミングの検出処理)では、自己 相関法の他、特殊な時間波形に着目した相互相関法を採用することができ、この場 合には、相関器の構成を簡略ィ匕できるという効果が得られる。また、周波数軸上の位 相基準となるサブキャリアの符号を全部、例えば" 1"に統一することによって、セクタ 固有符号を用いた逆拡散時に、 6本のサブキャリアを一組としなければならない、とい う制限を不要とすることができる。また、移動局にて、基地局から送信される各種のセ クタ固有符号が既知であるときは、直近のセクタ検出を、逆拡散によらず、 FFT前の 時間波形による相互相関を用いて検出することもできる。また、セクタ数が増大したと きは、「セクタ固有符号」として、「セクタグループ固有符号」を採用することもできる。 発明を実施するための最良の形態
[0092] まず、本発明で使用されるマルチキャリア通信の基本技術および基礎的な概念に ついて説明する。
[0093] (マルチキャリア通信の基本事項)
以下の説明では、デジタル変調方式として OFDMを使用する。 OFDM通信システ ムでは、 1つのセルを、例えば、 3つの通信制御領域 (セクタ)として制御する基地局 力、セル内の複数の移動局と同時に通信を行なうことを考慮して標準化が進められ ている。 OFDM通信システムでは、以下に説明する無線通信フレーム(以下、「フレ ーム」と呼ぶ)を複数の移動局で使用できるように小さく分割し (以下、この分割単位 を「リソースブロック」と呼ぶ)、それぞれのリソースブロックを通信環境が良好な移動 局に割り当てることによって通信速度の向上を図っている。
[0094] また、 1つの基地局で制御する各セクタでは、同じタイミングでフレームが送信され る。すなわち、フレーム送信が同期している。また、同一周波数帯域を使用する。この ため、セル境界およびセクタ境界付近では、隣接セルまたは隣接セクタで使用されて V、る信号と、所望の受信信号とが干渉を起こし通信速度 (スループット)の低下を招く こととなる。上記の非特許文献 1の方式では、セクタ間で同一のサブキャリアに割り当 てられた伝搬路推定用のサブキャリアであるパイロットサブキャリアに対し、セクタ固 有符号 (以下の例では、セクタ固有の 3つの符号系列を意味する)を乗算する。そし て、符号系列によって決定される M (Mは 2以上の整数)本のパイロットサブキャリアを 逆拡散することにより、隣接セクタの信号による干渉を除去し、より正確な伝搬路推定 を行なうことができるように、システム設計がなされて 、る。
[0095] 一方、隣接セルとの干渉に関しては、セル固有の拡散符号をパイロットチャネルお よびデータチャネルに乗算することにより、隣接セルで使用している信号による干渉 信号をランダムにする設計がなされている。すなわち、ノ ィロットチャネルにはセクタ 固有の直交符号とセル固有の拡散符号が二重に乗算されていることになる。
[0096] (フレームの説明)
図 22は、本発明で使用されるマルチキャリア通信システムのダウンリンクのフレーム 構成を示す図である。このフレーム構成は、 OFDMA通信方式で用いられる一般的 なフレーム構成と同様である。すなわち、このフレーム構成は、一定時間区間(フレー ム区間)が複数に分割され、かつ、周波数領域も複数のサブキャリアから構成される 一定の帯域幅に分割されている。これらの分割された 1つの領域を、本明細書にお いてはリソースブロックと呼んでいる。一般的に、時間領域のフレームを分割した単位 をサブフレームと呼び、周波数領域での分割された単位をサブチャネルと呼ぶことも ある。図 22では、周波数軸方向には F1から F6までの 6つのサブチャネルと、時間軸 方向には SF1から SF10の 10個のサブフレームで構成されている。ただし、ブロック 分割数およびブロックサイズはこれに限定されるものではない。また、各移動局は、こ れらのブロックを共用する。特に、通信特性 (スループット)の向上を図るために、各ブ ロックは、伝搬路環境の良い移動局にスケジューリングされる。また、小さいデータ量 の通信を行なっている複数の移動局がある場合には、 1つのリソースブロックをさらに 分割し共用することも可能である。
[0097] (セルサーチ)
各移動局は、通信を開始する際に、複数の基地局の中から受信特性の良好な基 地局を選択し、基地局と接続した後、無線通信を開始する。受信特性が良好であると は、受信信号の受信電力が高いことを意味する。このような無線通信の開始時の動 作を一般的にセルサーチと呼ぶ。セルサーチには、通信特性の良好な基地局の選 択、基地局 IDなどの情報を含むセル固有情報の取得、フレーム同期ならびにシンポ ル同期などが含まれる。なお、シンボル同期は、 FFT窓同期または窓同期のことを意 味する。
[0098] 図 23は、セルおよびセクタの構成の一例を示す図である。図示されるように、一つ のセル(CL1〜CL3)の中心に基地局(BS1〜BS3)が設置される。また、各セル(C L1〜CL3)は、各々、 3つのセクタ(SC1〜SC3)に分割されている。各セルには複 数の移動局 (UE1等)が存在しており、各移動局は、受信品質の最も優れる基地局 を選択し、無線通信を行なう。例えば、図 23に示した基地局(BS1〜BS3)が同一の 送信電力で下り方向無線通信を行なっているとすると、移動局 UE1は最も伝搬損の 少ない BS1と接続し、通信を行なう。このように、複数の基地局を検出し、その中から 最も通信品質が良好な基地局を選択し、接続するためにセルサーチを行なう必要が ある。また、前述した非特許文献 1では、セル固有の符号をデータチャネルに乗算す るため、セルサーチ時にセル固有の符号の情報を入手する必要がある。
[0099] (3段階セルサーチ)
上記のとおり、 3段階セルサーチ法と呼ばれる 3ステップに分けたセルサーチ方法 が提案されている。第 1ステップでは、 SCHの時間相関検出を使用して、シンボル同 期、周波数オフセット、 1ZNフレームタイミングの検出を行なう。この 1ZNフレームタ イミングの検出とは、 N個の SCHが時間方向に多重されている場合に行なう検出で ある。詳細は後述する。
[0100] 図 24は、フレームにおける同期チャネル(SCH)の配置位置の一例を示す図であ る。図示されるように、 SCHは、第 5サブフレーム(SF5)と第 10サブフレーム(SF10 )の最後のシンボルに配置されている。前述のように、第 1ステップでは、フレーム内 の 2つの SCHの時間的位置を検出することによってフレーム区間の 1Z2の周期で 同期を行なう。 SCHを、後述する特定のサブキャリアを使用して構成することによって 、時間軸領域において特徴的な波形を形成させる。第 1ステップでは、この波形特性 を使用して時間同期を取る。
[0101] 第 2ステップでは、周波数領域における相関検出により、 SCHを構成するデータを 復調し、セル固有情報 (例えば、セル IDもしくはセル IDグループ、セル構成、基地局 アンテナ数、報知情報通知帯域幅など)を取得する。
[0102] 第 3ステップでは、セル IDと対応する基地局固有の拡散符号が乗算されたノイロッ トチャネルと移動局の生成したノ ィロットチャネルのレプリカ信号との相関により、セル IDを同定する。
[0103] 図 25は、 SCHの構成例を示す図である。図 25において、縦軸は周波数軸を示し ており、横軸は時間軸を示している。図中、小さな四角一つ一つが SCHを構成する サブキャリアであり、 1シンボル長のチャネルを構成している。このように、 SCHは、複 数のサブキャリアカゝら構成されており、低周波数側から偶数番目のサブキャリアと中 心周波数のサブキャリア(DCサブキャリア)をヌルサブキャリアとし、中心周波数サブ キャリアを除く奇数番目のサブキャリアに SCH用の信号が割り当てられている。なお 、ヌルサブキャリアとは、信号が割り当てられない電力ゼロのサブキャリアのことである
[0104] 以下、データの割り当てられた SCHのサブキャリアを「SCHサブキャリア」と呼ぶ。こ のように構成することによって、 SCHが割り当てられたシンボルは、時間領域では 1 Z2のシンボル長を持つ同一の信号が 2回繰り返された波形となる。このようなチヤネ ル構成のシンボルをフレームの所定の位置に 1つ以上配置し、その繰り返し波形を 受信機で検出することにより時間同期を行なう。
[0105] 図 26は、 SCHの繰り返し波形を検出し、時間同期を行なうための受信機の構成を 示すブロック図である。図示されるように、受信機は、受信信号 90を遅延させる遅延 部 91と、複素共役算出部 92と、乗算部 93と、平均部 94と、ピーク検出部 95と、を有 している。同期タイミング信号 96は、ピーク検出部 95から出力される。
[0106] この受信機では、受信した信号と、それ以前に受信して 1Z2有効シンボル遅延さ せた信号の複素共役とを乗算する。その結果、前述した構成の SCHタイミングと一 致する場合には、相関値が高くなることを利用して同期タイミングの検出を行なう。図 24に示したように、 SCHがフレームを N分割した位置に同一時間間隔で配置されて いるシステムの場合(図 24では N = 2)には、この乗算された信号を 1ZNフレーム区 間で平均化し、ピーク位置を検出することにより、 1ZNフレームで精度良く同期およ びシンボル同期を行なうことができる。ただし、フレーム内の SCH数 Nとそれぞれの 位置は移動局に既知である。
[0107] 図 27は、周波数軸上のサブキャリアに割り当てられた SCHの一例を示す図である 。図 27では、隣接する SCHサブキャリアの位相差 Pを算出することにより、 SCHの情 報を取得する方式が示されている。これらの SCHサブキャリア間の位相差 Pによる情 報が、セル IDグループ、フレーム内の複数の SCHの何番目かを示す情報、セル構 成、基地局アンテナ数を示している(第 2ステップ)。以上のようにして検出したセル I Dグループに含まれる各セル IDに対応するパイロットシンボルレプリカ信号を作成す る。そして、サブフレームに配置されたパイロットシンボルと相関を取ることにより、セ ル IDを検出することができる。
[0108] 図 28は、 3GPPで検討されている OFDM通信方式におけるリソースブロックの構 成の一例を示す図である。図 28には、 SCHが含まれる場合の代表的なリソースブロ ックが示されている。図中、 SCHの他に、パイロットチャネルおよびデータチャネル( 制御情報チャネルなどを含む)が配置されている。パイロットシンボルには干渉をラン ダムにするためのセル固有の拡散符号と、同一セル内のセクタ間でパイロットシンポ ルを直交させるための直交符号が乗算されて 、る。各セクタにおけるチャネル推定に は、フレームの先頭シンボルに配置されているパイロットチャネルを使用する。しかし 、セクタ境界付近において、同一セルの異なるセクタ力 の送信信号を受信すること が可能な位置にぉ 、ては、同一シンボルにある隣接セクタ力もの送信信号が干渉信 号として働くため、チャネル推定精度が悪化する。そこで、そのような環境においては 、ノ ィロットシンボルに乗算され、セクタ間で直交関係となっている直交符号の特性を 利用する。すなわち、パイロットチャネルのサブキャリアに所望のセクタで使用する直 交符号の複素共役を乗算し、逆拡散を施すことにより、隣接セクタ力ゝらの干渉信号を 消す伝搬路推定方法が適用される。
[0109] 従来のセルサーチ方法では、レプリカ信号によるセル IDの検出を行なう際に、セル IDの検出を行なうと共に同一セル内のどのセクタ力 の信号強度が強いのかを判定 する必要がある。このため、セル IDグループに含まれる(セル ID数 Xセクタ ID数)の レプリカ信号との相関検出を行なう必要がある。すなわち、前記第 1ステップおよび第 2ステップでは、同一セル内のセクタから同時送信される SCHを使用して各々のセク タカもの送信信号の受信電力を判定することができな力つた。そのため、 3段階セル サーチにおける相関検出に要する処理量は、セルに含まれるセクタ数に比例して増 大する。
[0110] また、各レプリカ信号に対応する相関値を比較するために、複数のレプリカ信号に 対応する結果を記憶する記憶部を設ける場合には、セル IDグループに含まれる(セ ル ID数 Xセクタ ID数)の個数の記憶部を用意する必要がある。さらには、同一セル の各セクタからは同一 SCHデータが同時に送信されるので、セクタ境界付近の移動 局では、複数のセクタ力もの信号の伝搬路の状況によっては、フェージングにより周 波数領域で連続して振幅が非常に小さくなるサブキャリアができてしまい、セル ID同 定確率を低下させる可能性がある。 [0111] そこで、本発明では、同期チャネル(SCH)にセクタおよびセルの同定機能をもた せることとした。これにより、パイロットチャネルによる相関検出に頼らないセルサーチ を実現し、上記の不都合を克服する。以下、本発明の実施形態について、図面を参 照して説明する。
[0112] (第 1の実施形態)
第 1の実施形態では、本発明に係るセルサーチ方法について説明する。図 1は、本 発明に係るマルチキャリア送信処理の主要な手順の一例を示すフローチャートであ る。図示されるように、 OFDM通信方式を採用したマルチキャリア移動体通信システ ムの基地局は、ダウンリンクに含まれる同期チャネル(SCH)を、 3種類のコードを乗 算して生成する。すなわち、「同一セル内で共通のセクタ共通符号」に、「セクタ固有 符号(同一セル内のセクタ毎に異なる直交符号)」と、「セル固有符号 (セル固有情報 を伝送するためのセル毎に異なる符号)」を乗算する (ステップ Sl)。なお、セクタ共 通符号は、複数のセル間で共通の符号とする場合もある。
[0113] 次に、時間 ·周波数平面における割り当て (マッピング)によって、 SCHとパイロット チャネルを、リソースブロックのサブキャリアに割り当てる (ステップ S2)。そして、拡散 符号の乗算ならびに IFFT処理を実施する(ステップ S3、 S4)。次に、 GI (Guard Inte rval:ガードインターバル、 CP : Cyclic Prefixともいう)の挿入、 DZ A変換処理を実施 する (ステップ S5、 S6)。最後に、周波数変換を行ない、各セクタの指向性アンテナ からマルチキャリアを送信する (ステップ S7)。
[0114] 図 2は、本発明に係るマルチキャリア受信処理の主要な手順の一例を示すフローチ ヤートである。移動局は、基地局力 のマルチキャリア信号を受信して、周波数変換 ならびに AZD変換を実施する (ステップ S10)。なお、移動局には、携帯電話端末、 PDA端末、携帯可能なパーソナルコンピュータが含まれる。
[0115] 次に、周期的に配置された SCHの繰り返し波形に着目した自己相関法によって、 SCH位置を検出し、 SCHシンボル同期を確立する(ステップ S2)。このステップ S2が 、セルサーチの第 1ステップ (段階 a)に該当する。次に、 GIの除去 (ステップ S 12)、 直列 Z並列変換ならびに FFT (高速フーリエ変換処理)を行なう (ステップ S 13)。
[0116] 以下、セクタ同定処理とセル同定処理とが同時に実施される(セルサーチの第 2ス テツプ (段階 b) )。すなわち、セクタ固有符号を用いた逆拡散によって、最大の受信 電力を与えるセクタ固有符号を検出して、最適セクタ (通信すべき基地局のアンテナ )を同定する (ステップ S 14)。また、これと並行して、セル固有符号の復調 (必要に応 じて、さらに、セル固有符号との相関検出)を実施し、セル固有情報 (セル ID等)を取 得する (ステップ S 15)。
[0117] サブキャリア数が十分な場合には、この 2段階のセルサーチによってセルおよびセ クタの同定が完了する。しかし、サブキャリア数が不足する場合は、ステップ S 15では 、セル IDを直接に同定できず、セル IDグループの同定にとどまる。この場合には、パ ィロットチャネルを利用した相関検出によるセル IDの同定を実施する(ステップ S 16) 。この場合、これが第 3ステップのセルサーチ (段階 c)となる。
[0118] 次に、セクタ固有符号 (セクタ毎に直交した符号)の生成について説明する。ここで は、セクタ数を" 3"とし、互いに直交する 3つの符号を生成する場合について説明す る。
[0119] 図 3は、直交符号の生成の基礎となる概念を示す図である。図示されるように、複素 位相平面上に 3本のベクトルが設定されている。複素位相平面は、 IQ平面であり、 I 軸は実数軸に相当し、 Q軸は虚数軸に相当する。この複素位相平面上には、振幅" 1"で、互いに 120度の角度をなす 3本のベクトル Pl、 P2、 P3が設定されている。こ れら 3本のベクトルについてベクトル加算をすると、ベクトル P2、 P3の虚数軸成分は 打ち消される。また、べ外ル P2、 P3の実数軸成分同士が加算された結果(=— 1)と ベクトル Pl (= + 1)とが打ち消されるため、ベクトル加算の結果は" 0"となる。このよう な関係にある 3本のベクトルを用いて 3つの直交符号を生成する。
[0120] 図 4は、 3つの直交符号 (符号 1,符号 2,符号 3)を構成する符号要素の配列と、符 号 2のみを復調する場合の原理を説明するための図である。図中、横軸は時間軸で あり、縦軸は周波数軸である。図 4に示されるように、(符号 1) = (P1, PI, PI)とし、 (符号 2) = (PI, P2, P3)とし、 (符号 3) = (PI, P3, P2)とする。各符号は、図 3の 3 本のベクトルのいずれかを符号要素として用いて構成される。符号 2と符号 3は、使用 される符号要素は同じである力 周波数軸上における配列が異なる。
[0121] ここで、例えば、符号 2だけを復調する場合を想定する。この場合、符号 2の符号要 素 Pl、 P2、 P3の各々に、各々の複素共役を乗算する。これにより位相が回転して虚 数軸成分はなくなる。そして、各乗算結果を加算すると、実数軸成分( = 1)が 3つ加 算されるため、相関検出結果は" 3"となる。同じ複素共役を、符号 1および符号 2に 同様に乗算して加算する。その結果、いずれの符号についても、各符号要素の位相 が回転するが、結局、 Pl、 P2、 P3のベクトルは消えずに残ることとなる。このため、そ れらを加算すると、加算結果は" 0"となる(図 3参照)。このようにして、符号 2だけを取 り出すことができる。符号 1のみを取り出す場合、または符号 3だけを取り出す場合も 同様である。このように、図 4の符号 1〜符号 3は、 3つの符号要素(3チップ)を一組と して直交して 、ることになる。
[0122] なお、本発明においては、セクタ数は" 3"に限定されるわけではない。セクタ数が 4 以上となる場合もある。この場合にも、上記の考え方を利用すれば、セクタの数に対 応した直交符号を容易に生成することができる。すなわち、図 3における直交するべ タトルの数を増やし、それらのベクトルを図 4の手法を用いて、周波数軸上に配置す る。これにより、より多くの符号を生成することができる。つまり、周波数軸に配置され る一組の符号要素の数が多くなれば、それだけ多くの直交符号を生成することが可 能となる。従って、セクタ数が増カロした場合にも柔軟に対応することができる。
[0123] 次に、セル固有情報を、 SCHにどのように重畳するかについて説明する。このセル 固有情報には、セル 、報知チャネル帯域幅、アンテナ配置、 GI長等が含まれる。
[0124] 図 5は、セル固有情報を SCHに重畳する方法を説明するための図である。図 5に おいて、横軸は時間軸であり、縦軸は周波数軸である。図 5では、位相基準となるサ ブキャリアには、符号 Aが割り当てられている。そして、その位相基準となるサブキヤリ ァに隣接して、そのサブキャリアとの位相差を示す符号 (CI, C2, C3 " ')が割り当 てられたサブキャリアが配置されている。位相基準となる符号" A"と、その位相差を示 す符号 (CI, C2, C3 " ')とによって、セル固有情報を伝送するためのセル固有符 号が形成される。つまり、セル固有情報は、サブキャリアの絶対位相ではなぐ一対の サブキャリアの相対的な位相差を示す情報として伝送されることになる。図 5中、点線 で囲んで示される Κ1、 Κ2、 Κ3 · · ·が、一対のサブキャリアを示している。
[0125] 次に、 SCHを用いてセクタ固有情報およびセル固有情報を同時に伝送するための 符号形式の特徴について説明する。図 4に示したように、 3セクタの各々を区別する のであれば、互いに直交する 3チップ周期の符号があれば十分である。しかし、セル 固有情報も同時に伝送しょうとすると、図 4に示す単純な構成の符号では対応できな い。特に、図 5に示したようなサブキャリア間の相対的な位相差情報を用いる場合、 図 4に示す構成の符号でセル固有情報を伝送することは困難である。
[0126] すなわち、セクタ固有情報およびセル固有情報は、共に、サブキャリアの位相変調 によって伝送されるが、一方の情報が他方の情報に悪影響を与えることがあってはな らない。それと共に、受信側では、セルサーチを高速化するために、両情報に関して 、同時に復調することができなければならない。そこで、図 4に示すように、直交する 3 チップ(3符号要素)の組を 2組用いる。それらを周波数軸上で組み合わせて配置し、 その 6チップ (6符号要素)を一組として(つまり、その 6チップを構成単位として)符号 を形成する。
[0127] 図 6 (a)〜(d)は各々、セクタ固有情報およびセル固有情報を、 SCHに重畳して送 信するための符号形式を説明するための図である。図 6 (a)では、図 4に示される直 交する 3チップ(3符号要素)の組を 2組用い、それらを周波数軸上で組み合わせて 配置している。そして、その 6チップ (6符号要素)を一組として符号を形成する場合の 各チップの配置の一例を示している。ここでは、その 6チップを一つの構成単位として いる。
[0128] 図 6 (a)は、 3チップ( = P1, P2, P3)と、他の 3チップ( = P1, P2, P3)とを、同じ値 の符号要素同士が周波数軸上で隣接するように、交互に入り組ませて配置する様子 を示している。これによつて、図 6 (b)に示すような 6チップの符号( = P1, PI, P2, P 2, P3, P3)が生成される。この 6チップの符号のうちの 3チップは、セクタ固有符号と して使用され、残りの 3チップは、セル固有情報を乗算するために使用される。
[0129] すなわち、図 6 (c)に示すように、奇数番目の 3チップ( = P1, P2, P3)は、図 4で示 した手法による相関検出(セクタ同定)に使用される。一方、偶数番目の 3チップ(=P 1, P2, P3)は、セル固有情報としての相対的な位相差情報を示す符号 (C1〜C3) が乗算される。図 5で示したように、「相対的な位相差情報」とは、「同じ値のセル固有 符号が乗算されているサブキャリア間の位相差情報」である。図 6 (c)では、奇数番目 の 3チップ( = P1, P2, P3)の各々が配置されているサブキャリア力 位相基準となる サブキャリアである。
[0130] 例えば、(PI, P1)という同じ値のセクタ固有符号が割り付けられている 2つのサブキ ャリアをペアとし、高周波数側の P1に対して位相差を示す C1を乗算し、この C1を、 セル固有情報を伝えるための符号とするものである。同様に、 (P2, P2)という同じ値 のセクタ固有符号が割り付けられている 2つのサブキャリアをペアとし、高周波数側の P2に対して位相差を示す C2を乗算し、この C2を、セル固有情報を伝えるための符 号とする。なお、図 6 (c)において、位相差情報を示す符号 Cl、 C2、 C3は、点線の 丸で囲っている。 Cn=(CO, CI, C2' ")が、セル固有符号となる。
[0131] 上記の説明では、便宜上、「セクタ固有符号」がサブキャリアに割り当てられた後に 、「セル固有符号」がさらに割り当てる、という順番で説明している。しかし、実際は、「 セル固有符号」の割り当て (乗算)が、「「セクタ固有符号」の割り当て (乗算)に優先し て行なわれる場合もあり得る。どちらの乗算が先でも、その結果は同じである。つまり 、結果的に、セクタ共通符号 (s )と、セル固有符号と、セクタ固有符号とが、 SCHに 3
0
重に乗算されるのである。このため、セル固有符号の乗算、セクタ固有符号の乗算の どちらが早いかについては、本質的な問題ではない。なお、上述の「セクタ共通符号
(s;)」は、同一セル内の複数のセクタに共通の符号であり、本明細書では、単に「セク
0
タ共通符号」 t 、う場合がある。
[0132] 図 6 (c)のような符号構成の場合、同じ値のセクタ固有符号が割り当てられたサブキ ャリア同士が周波数軸上で隣接して配置されているため、双方のサブキャリアは、等 価な伝搬路を経由して受信側に到達する確率が高い。このため、伝搬路の伝達関数 の差による位相回転を無視できるという利点がある。従って、受信側は、セル固有符 号に起因した隣接するサブキャリアの位相差のみを精度よく検出することができる。こ れにより、セル固有情報の復調が可能である。
[0133] ただし、セクタ固有符号の構成は、図 6 (b)のような構成に限定されるものではない 。例えば、図 6 (d)のように、セクタ 3チップの(PI, P2, P3)同士を、単純に周波数軸 上に 2段に重ね合わせるような配置であってもよい。セル固有情報の伝送に関しては 、例えば、(PI, P1)という同じ値のセクタ固有符号が割り付けられている 2つのサブキ ャリアをペアとし、高周波数側の P1に対して位相差を示す C1を乗算し、この C1をセ ル固有情報とする点は、図 6 (c)の場合と同様である。
[0134] このように、本発明では、同期チャネル(SCH)に、セクタ毎に直交するセクタ固有 符号を乗算する。すなわち、セクタに関して非直交であった SCHを直交化する。そし て、 SCHを用いた受信電力測定によってセクタ同定を可能とし、セクタ境界において も良好な周波数特性によって高品質なセクタ同定が可能とした。さらに、セル固有符 号も SCHに乗算して同時に送信することによって、セル IDの同定も可能とする。
[0135] 従って、 SCHと CPICHを併用した従来の 3段階セルサーチ方法に代わり、新たな 2段階セルサーチ方法を実現することができる。これにより、セクタ同定を含むセルサ ーチの処理プロセスを短縮することができる。また、セクタの同定とセルの同定を両立 させるためには、 SCHに乗算する符号構成に工夫が必要である力 本発明では、複 数チップを単位とする直交符号を対にして用いた。すなわち、同じ値をもつ符号の一 方に、さらに、相対的位相差を示す符号を乗算し、その相対的位相差によってセル 固有情報を伝送する。これにより、符号が、シンプルかつコンパクトになると共に、セク タおよびセル双方の同定用情報の伝送を行なうことが可能となる。
[0136] その結果、マルチキャリア送受信装置において特別な負担が発生することがなくな る。また、マルチキャリア受信装置では、セクタ IDの同定と、セル固有情報の復調とを 、同時に実施することができ、効率的なセルサーチを実施することができる。
[0137] (第 2の実施形態)
本実施形態では、 SCHをサブフレームの後端に配置する場合を例にとって、 SCH のデータ構造およびセクタ同定を含むセルサーチ方法について説明する。
[0138] セルラーシステムとは、複数のセル力も構成される移動体通信システムであるが、 本実施形態で使用されるセルラーシステムは、各セルが同一の周波数帯を使用し、 通信方式に OFDMA通信方式を用いた 1セル繰り返し通信システムである。この通 信システムは、図 23に示したように、セルを 3つの通信領域 (セクタ)に分割し、セル の中心部に設置された 1つの基地局により複数のセクタに位置する移動局と無線通 信を行なう。各セクタでは同一の周波数帯が使用される力 パイロットチャネルにセク タ固有の直交符号を乗算しておき、逆拡散を用いることによって、セクタ境界付近に お!、ても正確な伝搬路推定を行なうことができる。
[0139] 下り方向の通信方式は、前述と同様の OFDM通信方式である。通信フレームおよ びリソースブロックの構成は、各々、図 22および図 28に示されるものと同じ形式であ る。また、フレームを Ss等分した(Ssはサブフレーム数 Sf (自然数)の約数)時間期間 の後端に、 SCHが配置される構成を採る。これによつて、時間軸上で、 SCHは、周 期的に配置されることになる。図 24に示した実施形態においては、 Sfは 10、 Ssは 2 である。
[0140] ノ ィロットチャネルに関しても、本実施形態では、セクタ間で同一シンボルの同一サ ブキャリアに多重する方式(CDM : Code Division Multiplex)方式を使用する。 ただし、同一シンボルで異なるサブキャリアに多重する方式(FDM : Frequency Di vision Multiplex)方式、または異なるシンボルで同一のサブキャリアに多重する 方式(TDM :Time Division Multiplex)方式など、セクタ間のパイロットチャネル が互いに直交関係となって 、る方式に適用することができる。
[0141] 本実施形態では、パイロットチャネルに乗算される直交符号に対応する符号系列を 乗算した信号を、各セクタ力 送信される SCHとして CDM送信する。これにより、移 動局は、基地局からの信号の受信電力を判定する際に、符号の拡散効果によって、 セクタ境界においても良好な周波数特性を実現することができる。それと共に、セクタ 毎の受信電力を判定することが可能になる。なお、このノ ィロットチャネルに乗算され る直交符号に対応する符号系列は、必ずしもパイロットチャネルに乗算されている符 号系列と同一でなくても良い。
[0142] まず、本実施形態における移動体通信方式において、移動局が基地局力 送信さ れる送信信号に対して、時間および周波数の同期を行なうための物理チャネル (以 下、「SCH」と呼ぶ)に関し、その具体的な構成について説明する。
[0143] 図 7は、周波数軸上におけるサブキャリアインデックス (サブキャリア番号)を示す図 である。図示されるように、低周波数側(最下端)のサブキャリアの番号が 1であり、中 心周波数におけるサブキャリアの番号が" n+1"である。以下の説明では、このサブキ ャリアインデックスを適宜使用する。
[0144] 図 8 (a)〜(c)は各々、同一セル内の 3つのセクタから同時に送信される SCHのデ ータ構造を説明するための図である。図 8 (a)は、周波数軸上におけるセクタ共通符 号の割り当てを示す図であり、図 8 (b)は、 3つのセクタ固有符号の構成を示す図であ る。そして、図 8 (c)は、セクタ固有符号の生成の基礎となる概念を示す図であり、複 素位相平面上におけるベクトルを示す。
[0145] 基地局力 送信される信号のフレームは、複数のシンボル力 構成される。図 8は、 この複数のシンボルの SCHデータに着目して図示したものである。図 8では、縦軸を 周波数軸、横軸を時間軸として示している。各サブキャリアは、図 4に示した場合と同 様に、低周波数側から偶数番目のサブキャリア(サブキャリアインデックス 2、 4、 6、 · · ·、 2n)と中心周波数サブキャリアをヌルサブキャリアとしている。そして、中心周波数 サブキャリアを除く奇数番目のサブキャリア(サブキャリアインデックス 1、 3、 5、 · · ·、 2 n+ 1)を、データ割り当て用のサブキャリアとして使用する。
[0146] 図 8 (a)に示した信号は、セクタ共通符号を示している。各 SCHサブキャリアには s
0 が割り当てられている。 Sは、八* 6 0) )で表される任意の値でぁる。ここで、 Aは
0
振幅、 jは虚数単位、 ωは位相を示す。ただし、本明細書では、振幅 Αを 1として説明 する。セクタ共通符号 sは、各セル内のすべてのセクタで共通であるため、セル間の
0
信号をランダムにするために使用することが可能である。
[0147] 次に、セクタ固有符号について説明する。図 8 (b)は、セクタ固有符号を 3セクタで 使用する場合について示したものである。符号は、同一セル内の各セクタで固有の 符号であり、符号 1〜3が本実施形態である 3セクタに対応する。移動局および基地 局は、これらの符号と同一セル内のセクタ IDの対応に関して予め知って!/、るものとす る。セクタ固有符号として、 SCHサブキャリアに乗算される符号系列は、低周波数側 力も奇数 SCHサブキャリア(サブキャリアインデックス 1、 5、 9、 · · ·)力 偶数 SCHサ ブキャリア(サブキャリアインデックス 3、 7、 11、 · · への位相差は、各セクタで 0° 、 0° 、0° となっている。偶数 SCHサブキャリア力 奇数 SCHサブキャリアへの位相 差は、各セクタで 0° 、 120° 、240° となっている。
[0148] それぞれの符号は、振幅が 1の符号である。また、これらの符号系列は 6チップ繰り 返し(6チップで 1周期)になっているため、 SCHサブキャリアの数 nは、 6の整数倍に なっている。これらの 3つ符号系列の 1繰り返し部分 (6チップ)を見ると、任意の符号 系列の複素共役を各符号系列に乗算し、 1チップおきに 3チップずつを加算すると、 選択した任意の符号系列以外の符号系列に乗算した場合にはその和が 0になる。ま た、任意の符号系列に乗算した場合にはその和が 3になる。
[0149] 例えば、符号 1の(exp(j0 π )、 expO'O π )、 expO'O π )、 expO'O π )、 expO'O π )、 expO'O π )) と符号 2の(exp(jO π ), expO'O π ), exp0'2 π /3)、 exp0'2 π /3)、 exp0'4 π /3)、 exp(j4 π /3) )と符号 3の(exp(jO π ), expO'O π ), exp0'4 π /3)、 exp0'4 π /3)、 exp0'2 π /3)、 exp(j2 π I 3))の場合を考える。任意の符号として符号 2を選択すると、符号 2の複素共役は、 (e χρΟ'Ο π入 expO'O π入 exp(-j2 π /3)、 exp j2 π /3)、 exp(-j4 π /3)、 exp(-j4 π /3))になる 。符号 1から符号 3のそれぞれに符号 2の複素共役を乗算した符号はそれぞれ、(exp (jO π )、 exp(jO π )、 exp(-j2 π /3)、 exp(-j2 π /3)、 exp、一 j4 π /3)、 exp(-j4 π /3))、 (expO'O π )、 expO'O π )、 expO'O π )、 expO'O π )、 expyO π )、 exp(jO π )、 (exp(jO π入 exp(jO π )、 e χρθ'2 π /3)、 exp0'2 π /3)、 exp(-j2 π /3)、 exp(-j2 π /3))となる。さらに、それぞれのチッ プの奇数番目と偶数番目をベクトル加算すると、それぞれ (0, 0)、 (3, 3)、 (0, 0)と なり、任意の符号として選択した符号 2以外の符号の和が 0になるという特徴を持つ 符号系列になっている。このことは、同一セル内の各セクタ力も各セクタに対応する 直交符号 (図 8 (b) )が乗算された同一データの SCHが同時送信された場合、 SCH を受信した移動局は、 SCHを所定の 3チップ毎に逆拡散することによって任意のセク タカ の信号と隣接セクタ力 の干渉信号とを分離することができることを意味する。
[0150] 次に、セル固有情報を伝送するための符号系列について説明する。図 9は、周波 数軸上において、セル固有情報を伝送するための符号系列の構成を示す図である。 図 9に示す符号系列は、セル固有情報を伝送するための符号系列であるため、各々 のセル間で異なる符号系列を使用する。しかし、同一セル内のセクタ間では同一の 符号系列を使用する。セル固有情報とは、セル IDもしくはセルで使用する固有の拡 散符号の情報と基地局のアンテナ数およびシステム帯域幅の情報などである。セル 固有情報には、移動局が基地局と最初に接続するときに必要とされる情報が含まれ ている。
[0151] し力しながら、拡散符号情報は、それを構成する符号長によっては非常に多くの符 号数となるため、図 9に示した符号では、通知のための情報量が不足する場合がある 。このような場合、いくつかのセル (拡散符号)をグループ化し、そのグループに属す るセルでは同一の情報によって符号系列を作成することも可能である。この場合、 S CHからの情報ではセル固有の拡散符号が完全に同定できないため、拡散符号が 乗算されたノ ィロットチャネルによって最終的なセル固有拡散符号を同定することに なる。
[0152] 図 9の符号系列は、低周波数側より 6チップを一組として構成されている。 6チップ は奇数番目の SCHサブキャリア(サブキャリアインデックス 1、 5、 9)に同一の符号を 割り当てる。また、偶数番目の SCHサブキャリア(サブキャリアインデックス 3、 7、 11) には、奇数番目に割り当てた符号にセル固有符号を乗算した符号を割り当てる。奇 数番目のサブキャリアに割り当てた符号は 6チップ内で同一である力 他の 6チップ で使用する符号と同一である必要はない。符号系列を形成する各チップは、それぞ れの振幅が 1である。また、符号長は SCHサブキャリア数を nとした場合には nZ2の 符号長の符号系列が、前記偶数番目の SCHサブキャリアを形成するために必要とな る。符号長は SCHサブキャリア数に依存するため、 SCHサブキャリア数が十分長い 場合には、一般的に相関特性のより良い符号系列を数多く生成できる。このため、前 述したようにセル IDグループを示す符号系列ではなぐ直接セル IDを示す情報を含 む符号系列で構成することも可能になる。
[0153] 以上に示した 3種類の符号系列が SCHを構成する符号系列であり、これらの符号 系列を乗算し各セクタの送信機カゝら SCHが送信される。次に、基地局の構成につい て説明する。
[0154] 図 10は、移動体通信システムの基地局(マルチキャリア送信装置)における、物理 レイヤおよび MAC (Media Access Control)サブレイヤの構成例を示すブロック 図である。図示されるように、基地局は、論理チャネルと物理チャネルのマッピング、 スケジューリング処理、物理層部の制御を行ない、上位層カゝら入力されたデータを物 理層部へ出力する一方、物理層部から入力されたデータを上位層へ出力する MAC 部 10と、この MAC部 10より入力された伝送データの無線送信信号への変換および 、アンテナ部で受信した無線受信信号の伝送データへの変換を MAC部力 の制御 情報に基づき行なう物理層部 20a〜20cと、を備える。 [0155] MAC部 10は、上位層より通知されるフレームの各リソースブロックの割り当て情報 に基づき送信回路部を制御する送信回路制御部 16と、各リソースブロックのデータ チャネル、パイロットチャネルなどの物理チャネルのデータをスケジューリングされたタ イミングに合わせ送信回路部に入力する送信データ出力部 14と、 SCHに割り当てる ためのセル固有情報を生成または記憶する SCHデータ生成部 12と、を備える。
[0156] 本実施形態において SCHは、移動局が基地局から送信されるフレームおよびシン ボルに時間的に同期し、セル固有情報を取得するためのチャネルである。ゆえに SC Hデータが可変でない場合には MAC部 10から必ずしも送信毎にデータを生成する 必要はなぐ MAC部 10の内部またはセクタに対応した各物理層部(20a〜20c)で 記憶しておき、 SCH送信タイミングに合わせそのシンボルに割り当てることにより定期 的に送信することができる。本実施形態では、 MAC部 10内の SCHデータ生成部 1 2により SCHデータの生成を行なうが、この機能を各セクタの物理層部(20a〜20c) に持たせて実施することも可能である。
[0157] SCHデータは、他のデータチャネルのデータと共に MAC部 10から物理層部(20a 〜20c)に入力される。 SCHデータおよびデータチャネルのデータは MAC部 10の 送信回路制御部 16から通知される各リソースブロックの割り当て制御情報と共に物 理層部(20a〜20c)に入力され、リソースブロックの割り当て情報に従い各リソースに データが割り当てられる。
[0158] 物理層部(20a〜20c)は、 MAC部 10より入力されたデータチャネル、パイロットチ ャネルおよび SCHに対して変調およびセクタ固有符号の乗算を行な 、、リソースブロ ックに多重した後、アナログ回路部(26a〜26c)に入力する送信回路部(24a〜24c )と、アナログ回路部(26a〜26c)力もの出力を復調し MAC部 10に入力する受信回 路部(22a〜22c)と、送信回路部(24a〜24c)から入力される送信信号を無線周波 数に変換し、アンテナ部(28a〜28c)より受信された受信信号を受信回路部(22a〜 22c)で処理できる周波数帯に変換するアナログ回路部(26a〜26c)と、アナログ回 路部(26a〜26c)より入力された送信信号を無線空間に送信し、無線空間中の信号 を受信するアンテナ部 28 (各セクタに対応した指向性アンテナ 28a〜28cを具備する )と、を備える。 [0159] 次に、送信回路部(24a〜24c)の具体的な内部構成について説明する。図 11は、 図 10に示される送信回路部の具体的な構成を示すブロック図である。送信回路部 2 4 (図 10の参照符号 24a〜24c)は、 MAC部 10より入力されたデータチャネルおよ びパイロットチャネルの符号ィ匕および変調を行なうと共に、前述した SCHデータを変 調した後、セクタ固有符号を乗算し、データチャネル、パイロットチャネルと割り当て 部にて MAC部からの制御信号に基づいて、リソースブロックに多重し送信を行なう。
[0160] 図 11における「SCHデータ」とは、セクタ共通符号(図 8 (a)参照)にセル固有符号 ( 図 9参照)を乗算した符号データを指す。そして、それらの符号データに各セクタの 物理層部にて、セクタ固有符号(図 8 (b)参照)を乗算したものが送信される。
[0161] 図 11に示す送信回路部 24 (24a〜24c)は、 MAC部 10より入力されたデータチヤ ネルに対し、リソースブロック毎に送信データの信号処理を行なう信号処理部 50 (50 a〜50c)と、同じく MAC部 10より入力された SCHデータの変調およびセクタ固有符 号の乗算を行なう SCHデータ処理部 60とを備えている。また、同じく MAC部 10より 入力されたノ ィロットチャネルデータの変調およびセクタ固有の直交符号の乗算を行 なうパイロットチャネルデータ処理部 70と、信号処理部 50 (50a〜50c)からの出力信 号と SCHデータ処理部 60からの出力信号とパイロットチャネルデータ処理部 70から の出力信号を、リソースブロックの各サブキャリアに割り当てる割り当て部 81とを備え ている。
[0162] また、拡散符号生成部 83にて生成される拡散符号を用いて拡散符号の乗算を行 なう拡散符号乗算部 82と、拡散処理を経た周波数領域のデータ信号列を時間波形 に変換する IFFT (Inverse Fast Fourier Transform)部 84と、 IFFT部 84の出 力を並列直列変換する PZS変換部 85と、 PZS変換部 85の出力に対して GIを挿入 する GI挿入部 86と、 GI挿入部 86の出力信号をデジタル信号からアナログ信号に変 換する DZA変換部 87と、を備えている。割り当て部 81および拡散符号乗算部 82は 、共に MAC部 10力もの制御情報に基づいて処理を行なう。割り当て部 81は、各物 理チャネルを所望のサブキャリアに割り当てる。拡散符号乗算部 82は、 SCHを除く 物理チャネルに拡散符号を乗算する。
[0163] 信号処理部 50 (50a〜50c)は、送信データの誤り訂正符号化を行なう誤り訂正符 号化部 51と、誤り訂正符号ィ匕部出力を並列直列変換する SZP変換部 52と、 S/P 変換部の出力に対し、 BPSK、 QPSK、 16QAMなどの変調処理を行なう変調部 53 と、により構成される。
[0164] また、 SCHデータ処理部 60は、 MAC部 10より入力される SCHデータに対し変調 処理を行なう SCH変調部 61と、 SCH変調部の出力にセクタ固有符号を乗算する乗 算部 62と、セクタ固有符号を生成 (または記憶)するセクタ固有符号生成部 63と、に より構成される。
[0165] また、パイロットチャネル処理部 70は、 MAC部 10より入力されるパイロットデータに 対し変調処理を行なうパイロットデータ変調部 71と、パイロットデータ変調部 71の出 力にセクタ固有符号を乗算する乗算部 72と、セクタ固有符号を生成 (または記憶)す る符号生成部 73により構成される。
[0166] 信号処理部 50 (50a〜50c)の出力は、 MAC部 10の送信回路制御部(図 10の参 照符号 16)より通知される制御情報に基づき適切なサブキャリアに割り当てる割り当 て部 81において、適切なサブキャリアに割り当てられた後、 IFFT部 84に出力される
[0167] ただし、図 8 (b)に示した符号 1をセクタ固有符号として使用する場合には、すべて の符号が 1であるため、乗算部(62、 72)および符号生成部(63、 73)を省略すること が可能である。また、前述したように SCHデータを固定値とする場合には必ずしも S CH送信毎に MAC部 10より SCHデータを出力する必要はない。このため、 SCHデ ータ処理部 60に代えて、 SCHデータ記憶部などを設け、 SCHデータを記憶してお いてもよい。これにより、 SCHを送信する毎にその SCH記憶部から SCHデータを読 み出して、割り当て部 81にてデータチャネルおよびパイロットチャネルと多重すること も可能である。
[0168] DZA変換部 87の出力は、無線周波数への周波数変換を行なうアナログ回路部( 図 10の参照符号 26a〜26c)を経て、アンテナ部 28 (図 10の指向性アンテナ 28a〜 28c)から大気中に、無線信号として送信される。
[0169] 以上のように、複数のセクタを制御する基地局の送信機では、 SCHデータにセクタ 固有符号を、同一の SCHデータに乗算し、それぞれのセクタに対応するアンテナか ら同時に送信する。これにより、高品質な周波数特性を持った SCH受信が可能にな る。それと共に、 SCH受信時に最適なセルが選択可能となり、受信が良好なセクタの 選択も可能となる。
[0170] 次に、マルチキャリア受信機の構成について説明する。図 12は、本発明に係るマ ルチキャリア受信機の構成を示すブロック図である。このマルチキャリア受信機は、携 帯電話端末、 PDA端末、携帯可能なパーソナルコンピュータなどに該当する。図示 されるように、マルチキャリア受信機は、アンテナ部 100と、アナログ受信回路部 101 と、 AZD変換部 102と、タイミング検出部 103と、 GI除去部 104と、 SZP (直列 Z並 列)変換部 105と、 FFT部 106と、拡散符号乗算部 107と、サブキャリア補償部 108と 、復調部 109と、誤り訂正復号化部 110と、拡散符号生成部 111と、 SCH信号処理 部 200と、を備える。 SCH信号処理部 200は、セクタ同定のための逆拡散部 210と、 セクタ電力判定部 220と、セル固有情報を復調する SCHデータ復調部 230と、を備 える。
[0171] このマルチキャリア受信機 (以下、単に「受信機」という場合がある)は、基本的には 、図 2に示すフローチャートに従って、セクタ同定を含むセルサーチを実施する。まず 、受信機は、基地局から送信される信号との時間的同期および周波数のずれを補正 するため受信信号カゝら SCHタイミングを検出する。すなわち、基地局から送信された 無線信号をアンテナ部 100にて受信し、受信した無線信号を無線周波数帯からベー スバンド周波数帯にアナログ受信回路部 101で変換する。そして、 AZD (アナログ Zデジタル)変換部 102が、ベースバンド周波数帯に変換されたアナログ信号を、デ ジタル信号に変換する。
[0172] 次に、タイミング検出部 103は、シンボル同期を行なうために、 AZD変換部 102で デジタルデータに変換された受信データから SCHの検出処理を行なう。ここで、タイ ミング検出部 103の回路構成について説明する。
[0173] 図 13は、タイミング検出部 103の構成例を示すブロック図である。タイミング検出部 103は、タイミング検出および周波数誤差検出の機能を有する。図 13に示すように、 このタイミング検出部 103は、遅延部 301と、複素共役算出部 302と、乗算器 303と、 平均部 304と、ピーク検出部 305と、周波数誤差検出部としてのアークタンジュント算 出回路 307と、を備える。
[0174] この構成から明らかなように、タイミング検出部 103は、受信した信号を 1Z2有効シ ンボル遅延した信号の複素共役と受信データを乗算することにより、 1Z2有効シンポ ルの同一波形が繰り返されたときにピークが検出される回路となっている。すなわち、 前述した低周波数側カゝら奇数番目のサブキャリア (サブキャリアインデックス 1、 3、 5、 · · ·、 2n+ l)を使用した SCHデータのタイミングになった場合にピークが検出される 。複数のセル力 の信号により複数のピークが検出される力 一般的には最も相関値 の絶対値または実数部のピークが高 、タイミングを最も近 、セル力も送信された SC Hのタイミングとして判定し、基地局との接続動作を開始する。
[0175] 図 24で示したフレーム構成の場合、 SCHが配置されている間隔であるフレームの 半分の時間間隔で同期を取ることができる。同時に SCHシンボルと同期を取ることに よってシンボル同期を行なう。また、 SCHシンボルのサブフレーム内の位置を固定し ておくことによりサブフレーム周期での同期も同時に行なうことができる。
[0176] 図 12において、タイミング検出部 103でシンボル周期での同期を終えた後、前述し たシンボル周期に合わせて、 GI除去部 104で有効シンボルの前に付けられた GI部 を各シンボル力も取り除く。 GIを除去されたシンボルは、 SZP (直列 Z並列)変換部 105で直列信号力も並列信号に変換され、 FFT部 106にて FFT処理を施される。
[0177] SCHシンボル部のデータは、 FFT部 106力ら、 SCHデータを処理する SCH信号 処理部 200へ入力される。また、パイロットチャネルおよび移動局への制御情報を含 むデータチャネルは、 FFT部 106から、拡散符号乗算部 107へ入力される。移動局 が基地局への最初の接続を行なう際には、セル固有情報およびセクタ固有情報を取 得していないため、 SCH信号処理部 200での処理が優先して行なわれる。 SCH信 号処理部 200では、 SCHシンボルのデータ力 FFT部 106から、本実施形態のセク タ数に対応する 3つの乗算部 212と、 SCHデータ復調部 230とのそれぞれに同時に 入力される。
[0178] 乗算部 212では、 MAC部(図示せず)からの制御情報により、セクタ固有符号生成 部 211で生成または記憶されたセクタ固有符号(図 8 (b) )の乗算が実施される。各乗 算部 212では、セクタ固有符号生成部 211より入力されたセクタ固有符号の複素共 役を算出し、 FFT部 106から入力された SCHシンボルの奇数番目の SCHサブキヤ リア (サブキャリアインデックス 1、 5、 9、 · · - )に対して、基地局力 送信時にセクタ固 有符号を乗算したサブキャリアと対応するように複素共役の符号を乗算する。さら〖こ、 複素共役の乗算されたデータは、加算部 214に入力され、同相加算が実施される。 すなわち、セクタ固有符号の繰り返し周期である 6サブキャリアの中の複素共役を乗 算した 3サブキャリアのデータが加算される。この処理の様子が、図 14の処理 1、処 理 2に示される。
[0179] 図 14は、セクタ同定のための逆拡散処理の具体的な内容を示す図である。図 14に おいて、 pxは、図 8 (b)に示したセクタ固有符号であり、 Xは、セクタのインデックスを 表している。また、 fは、伝搬路を示しており、逆拡散を施すサブキャリア間隔である 9 サブキャリアの帯域内で一定として 、る。
[0180] さらに、図 12において、逆拡散処理が施されたデータを 1Z3倍し、自乗平均した データがセクタ電力判定部 220に入力される。各セクタ力 の自乗平均したデータは 、セクタ電力判定部 220における受信電力判定の指標となる。
[0181] セクタ電力判定部 220は、 3つのセクタにそれぞれ対応する加算部 214から入力さ れる加算結果を示すデータを比較する。そして、最も受信電力が高いセクタ、すなわ ち最も受信環境が良好で接続を行なうセクタを決定する。セクタ検出結果は、 MAC 部に制御信号によって通知される。
[0182] 一方、図 12において、 FFT部 106から SCHデータ復調部 230に入力された SCH シンボルデータ (セクタ共通符号にセル固有情報が乗算されたデータ)は、図 15に 示した復調方法により復調される。
[0183] 図 15は、セル固有情報の復調処理を説明するための図である。図 15の処理は、一 対のサブキャリアのうち、低周波数側のサブキャリアに割り当てられているセル固有 符号の複素共役を、高周波数側のサブキャリアに乗算し、これによつて、相対的な位 相差情報 (つまり、セル固有情報)を復調する処理である。
[0184] 図 12における SCHデータ復調部 230では、 SCHシンボルの低周波数側から奇数 番目の SCHサブキャリア(サブキャリアインデックス 1、 5、 9、 · · ·)のデータの複素共 役とその高周波数側の偶数番目の SCHサブキャリア (サブキャリアインデックス 3、 7、 11、 · · ·)のデータを乗算する。
[0185] 図 15に示すように、乗算結果の理想値は、各セクタと移動局間の伝搬路 fとセル固 有符号 cで構成される。 cは、振幅が 1の複素数であることから位相を導出すること〖こ より容易に求められる。ここで、 fxyの Xは、セクタ ID (セクタ識別番号に該当し、セクタ インデックスともいう)を示し、 yは乗算される 2つのサブキャリアの伝搬路における周 波数方向のインデックスとする。また、乗算される 2つのサブキャリア間での伝搬路は 同一と仮定している。
[0186] セル固有情報を復調する際には、セル固有情報の符号系列力 基地局でセル固 有情報の通知に使用する可能性のある候補の符号 (Cn)のレプリカを、 SCHデータ 復調部 230で作成する。そして、実際に前述の方法で算出された結果と相互相関を 取ることによつてもセル固有情報を判定.取得することができる。実際は、このように相 互相関処理による判定を行なうのが望ましい。
[0187] 本実施形態においては、 SCHシンボルがフレーム内に 2箇所設定されており、遅 延相関によるシンボル同期時にはフレームの 1Z2の周期で同期を取れた状態となる 。フレーム周期で同期を行なうには、前述のセル固有符号 cにより示される情報にフ レーム内の SCHのどちらかを示す情報を含めておく。または、 SCHからの時間的な 位置が一定となるシンボルに情報を割り当ててお!ヽても良!、。
[0188] また、前述したように、拡散符号情報は、それを構成する符号長によっては非常に 多くの符号数となるため、セル固有情報を通知するための情報量が不足する場合が ある。すなわち、 SCHに使用するサブキャリアの本数によっては、セル固有情報を通 知するために十分な情報量がな 、ため、セル固有の拡散符号を示す情報ではなく、 セルをいくつかのグループに分けたグループを示す情報が通知される場合も考えら れる。その場合には、グループに分けられたセルのすべての考えられる拡散符号に 対して、以下の検出を行なう必要がある。
[0189] すなわち、セルの拡散符号検出にパイロットチャネルを使用し、パイロットチャネルと それに乗算された符号 (セル固有符号と直交符号)を乗算したレプリカ信号を作成す る。この作成したレプリカ信号と実際の受信信号の相互相関を、前述したセルグルー プ内のすべてのセルに対する拡散符号候補に関して相関検出を行なう。すべての相 関検出が終了し、最も高い相関値を示した拡散符号候補を最も近い基地局で使用し ている拡散符号として判定する。これが一般的な方法である。ただし、本実施形態で は前述のセクタ判定で決定したセクタの直交符号のみを使用することにより相互相関 検出処理を短縮できる。
[0190] セル固有符号 cの符号系列には、他のセルの情報を示す符号との相互相関特性に 優れた符号であることがより望まし 、。具体的には Walsh-Hadamard符号系列また は Generalized Chirp Like (GCL)符号系列などが望ましい。
[0191] 以上のようにして復調された SCHデータは、 MAC部へ送られる。 MAC部では、こ の情報に従って受信を行ない、基地局との接続を行なうことができる。一般的には基 地局から送信されるデータチャネルの受信には以下のような構成が必要である。なお 、これ以外の受信回路を使用することも可能である。
[0192] 図 12において、 FFT部 106により FFT処理を施されたデータチャネルおよびパイ ロットチャネルは、セル固有情報に含まれるセル固有の拡散符号により拡散されてい る。このため、拡散符号乗算部 107でセル固有の拡散符号の複素共役が乗算される 。セル固有の拡散符号は、拡散符号生成部 111から出力される。拡散符号生成部 1 11では、複数の拡散符号力 所望のセルの拡散符号が上位階層からの制御信号に よって選択される。
[0193] また、セクタ固有の直交符号も同時に拡散符号生成部 111により選択され、拡散符 号乗算部 107に入力される。入力された直交符号は、拡散符号乗算部 107にてパイ ロットチャネルに乗算される。符号が乗算されたデータは、サブキャリア補償部 108に てノィロットチャネルを基準信号として、サブキャリア補償が施され復調部 109に入力 される。復調部 109では、データチャネルの復調が行なわれ、さらに、誤り訂正復号 化部 110にて、誤り訂正'復号ィ匕が行なわれる。
[0194] (第 3の実施形態)
次に、本発明の第 3の実施形態について説明する。前掲の第 2の実施形態におい ては、フレーム毎に SCHが挿入され(図 24)、これに伴い 1サブキャリアおきにヌルサ ブキャリアが設定されて 、た (図 25)。
[0195] 本実施形態では、図 16に示すように、帯域の中心にあるサブキャリア (DCサブキヤ リア)を除くサブキャリアを SCHサブキャリアとする。また、フレーム内の SCHシンボル の配置を図 19に示したように、フレーム内の特定の時間的位置に 2シンボル連続し て同一の SCHシンボルを配置する。図 19は、第 3の実施形態におけるフレーム構成 を示す図である。
[0196] つまり、本実施形態においては、前掲の第 2の実施形態と比較して、 SCHサブキヤ リアの数が 2倍であるため、セル固有情報に使用できる符号長が長くなる。従って、よ り情報量の多い SCH信号を送受信することができることになる。
[0197] 図 16は、 SCHが割り当てられたサブキャリアを示す図である。本実施形態では、 S CHは、周波数軸上において図 16に示すように構成されている。すなわち、図 16は、 基地局から送信される信号のフレームを構成する複数のシンボルの SCHデータに 注目して図示したものであり、縦軸を周波数軸、横軸を時間軸として示している。各 サブキャリアは、図 16に示したように、中心サブキャリア(DCサブキャリア)を除くサブ キャリアに SCHデータを割り当てるサブキャリアとして使用している。
[0198] 以下、 SCHを構成するサブキャリア(SCHサブキャリア)数を 2nとして以降の説明 を行なう。図 17 (a)、(b)は、第 3の実施形態における SCHのデータ構造を示す図で ある。図 17 (a)は、 SCHに乗算されるセクタ共通符号の周波数軸上における配置を 示す図であり、図 17 (b)は、 3つのセクタ固有符号を示す図である。
[0199] 図 17 (a)は、セクタ共通符号を示している。各 SCHサブキャリア(サブキャリアイン デッタス 1、 2、 3、 · · ·)には sが割り当てられている。 sは八* 6 0 0) )で表される任
0 0
意の値である。ここで、 Aは振幅、 jは虚数単位、 ωは位相を示す。セクタ共通符号 s
0 は、各セル内のすべてのセクタ(本実施形態では 3つのセクタ)で共通である。前述の 第 2の実施形態と同様に、移動局に既知の sを使用することにより SCHに乗算され
0
たセル固有符号の復号に利用することが可能である。
[0200] 図 17 (b)は、セクタ固有符号を、第 3の実施形態である 3セクタで使用する場合の 例に関して示したものである。符号は同一セル内の各セクタで固有の符号であり、符 号 1から 3が、第 2の実施形態である 3セクタに対応する。移動局および基地局は、こ れらの符号と同一セル内のセクタ IDの対応に関して予め知っているものとする。セク タ固有符号として、 SCHサブキャリアに乗算される符号系列は、低周波数側から奇 数番目の SCHサブキャリア(サブキャリアインデックス 1、 3、 5、 · · ·)力 偶数番目の SCHサブキャリア(サブキャリアインデックス 2、 4、 6、 · · への位相差が各セクタで 0 。 、 0° 、0° となっており、偶数番目の SCHサブキャリアから奇数番目の SCHサブ キャリアへの位相差が各セクタで 0° 、 120° 、 240° となっている。それぞれの符号 は振幅が 1の符号である。また、これらの符号系列は 6チップ繰り返し (6チップで 1周 期)になっているため、 SCHサブキャリアの数 2nは 6の整数倍になっている。
[0201] これらのセクタ固有符号の 1繰り返し部分 (6チップ)を見ると、任意の符号系列の複 素共役を各符号系列に乗算し、 1チップおきに 3チップずつを加算すると選択した任 意の符号系列以外の符号系列に乗算した場合にはその和が 0になり、任意の符号 系列に乗算した場合にはその和が 3になる。
[0202] 例えば、符号 1の(exp(jO π )、 expO'O π )、 expO'O π )、 expO'O π )、 expO'O π )、 expO'O π )) と符号 2の(exp(jO π ), expO'O π ), exp0'2 π /3)、 exp0'2 π /3)、 exp0'4 π /3)、 exp(j4 π /3) )と符号 3の(exp(jO π ), expO'O π ), exp0'4 π /3)、 exp0'4 π /3)、 exp0'2 π /3)、 exp(j2 π I 3))の場合を考えると、任意の符号として符号 2を選択すると、符号 2の複素共役は (e χρΟ'Ο π ), expO'O π ), exp(-j2 π /3)、 exp(-j2 π /3)、 exp(-j4 π /3)、 exp(-j4 π /3))になり 、符号 1から符号 3のそれぞれに符号 2の複素共役を乗算した符号はそれぞれ (exp(j 0 π )ゝ expO'O π )、 exp(-j2 π /3)、 exp(-j2 π /3)、 exp(-j4 π /3)、 exp(-j4 π /3) )、 (expO'O π )、 expO'O π )、 expO'O π )、 expO'O π )、 expO'O π )、 exp(jO π ))、 (expO'O π )、 expO'O π )、 e χρθ'2 π /3)、 exp0'2 π /3)、 exp(-j2 π /3)、 exp(-j2 π /3))となる。
[0203] さらに、それぞれのチップの奇数番目と偶数番目をベクトル加算すると、それぞれ( 0, 0)、 (3, 3)、 (0, 0)となり、任意の符号として選択した符号 2以外の符号の和が 0 になるという特徴を持つ符号系列になっている。このことは、同一セル内の各セクタか ら各セクタに対応する直交符号(図 17 (b) )が乗算された同一データの SCHが同時 送信された場合、 SCHを受信した移動局は、 SCHを所定の 3チップ毎に逆拡散する ことによって、任意のセクタ力 の信号と隣接セクタ力 の干渉信号を分離することが できることを意味する。
[0204] 図 18は、第 3の実施形態におけるセル固有符号の配置を示す図である。図 18に示 す符号系列は、セル固有情報を伝送するための符号系列であるため、各々のセルで 異なる符号系列を使用するが、同一セル内のセクタ間では同一の符号系列を使用 する。セル固有情報とは、セルで使用する固有の拡散符号の情報と基地局のアンテ ナ数およびシステム帯域幅の情報などであり、移動局が基地局と最初に接続するとき に必要とされる情報が含まれて 、る。
[0205] し力しながら、拡散符号情報は、その符号長によっては非常に多くの符号数がとれ るため、図 18に示した符号では情報量が不足する場合がある。このような場合、いく つかのセルをグループとし、そのグループに属するセルでは同一の情報によって符 号系列を作成することも可能である。この場合、 SCHからの情報ではセル固有の拡 散符号が完全に同定できないため、拡散符号が乗算されたパイロットチャネルによつ て最終的なセル固有拡散符号を同定することになる。
[0206] 図 18に示す符号系列は、低周波数側より 6チップを一組として構成されている。 6 チップのうち、奇数番目の SCHサブキャリアには同一の符号を割り当て、偶数番目 の SCHサブキャリアには奇数番目に割り当てた符号にセル固有符号を乗算した符 号を割り当てる。奇数番目のサブキャリアに割り当てた符号は、 6チップ内で同一であ る力 他の 6チップで使用する符号と同一である必要はない。符号系列を形成する各 チップは、それぞれの振幅が 1である。また、符号長は、 SCHサブキャリア数を 2nとし た場合には、 nの符号長の符号系列が、偶数番目のサブキャリアを形成するために 必要となる。
[0207] 符号長は、 SCHサブキャリア数に依存するため、 SCHサブキャリア数が十分長い 場合には、一般的に相関特性のより良い符号系列を数多く生成できる。このため、前 述したように、セル IDグループを示す符号系列ではなぐ直接セル IDを示す情報を 含む符号系列で構成することも可能になる。
[0208] 上記の SCHを構成するサブキャリアに乗算する符号は、連続する 2シンボルで同 一の符号を割り当てる。上記の 3種類の符号系列が、第 3の実施形態における SCH を構成する符号系列であり、これらの符号系列を乗算し各セクタの送信機力 SCH が送信される。
[0209] 本実施形態における SCHの送信方法および送信機の構成は、前掲の第 2の実施 形態と同様であるため説明を省略する。第 2の実施形態と異なる点は、 SCHデータ 処理部 60におけるセクタ固有符号生成部 63で生成される符号(図 17、図 18参照)と 、 MAC部 10より入力される SCHデータである。また、本実施形態では、同一の SC Hシンボルを 2シンボル連続して送信する(図 19参照)。図 19は、フレーム区間にお ける SCHの配置を示す図である。本実施形態における受信機構成および受信方法 は、前掲の実施形態と基本的には同様である。ただし、第 2の実施形態におけるタイ ミング検出部 103 (図 13)では、受信した信号を 1Z2有効シンボル区間遅延させ信 号と乗算することによって SCHシンボルの位置を検出した力 本実施形態では、受 信したシンボルを 1シンボル遅延して信号と乗算することにより SCHのシンボルを検 出する。
[0210] 以下、セルサーチの手順に関して説明する。移動局は、第 2の実施形態と同様に、 基地局から送信された無線信号をアンテナ部 100で受信する。アナログ受信回路部 101は、受信した無線信号について、無線周波数帯からベースバンド周波数帯に変 換する。 AZD (アナログ Zデジタル)変換部 102は、ベースバンド周波数帯に変換さ れた信号につ!ヽて、アナログ信号カゝらデジタル信号に変換する。
[0211] 次に、タイミング検出部 103は、 AZD変換部 102でデジタルデータに変換された 受信データに基づいて、シンボル同期を行なうための SCH検出処理を行なう。そし て、受信した信号を 1シンボル遅延した信号の複素共役と受信データを乗算すること により、同一シンボルの波形が繰り返されたときにピークが検出される。すなわち、前 述した 2シンボルの同一 SCHシンボルが受信されたタイミングになった場合にピーク が検出される。複数のセル力 の信号により複数のピークが検出されるが、一般的に は最も相関値のピークが高 、タイミングを最も近 、セル力も送信された SCHのタイミ ングとして判定し、基地局との接続動作を開始する。
[0212] 本実施形態では、 2シンボルの SCHがフレームの最後尾に配置されていることから 、前述の方法で SCH信号の相関ピークを検出することにより、フレーム同期を行なう ことができる。同時に SCHシンボルと同期を取ることによってシンボル同期を行なう。 そして、シンボル周期での同期を終えた後、前述したシンボル周期に合わせて GI除 去部 104にて有効シンボルの前に付けられた GI部を各シンボルから取り除く。 GIを 除去されたシンボルは、 S/P (直列 Z並列)変換部 105で直列信号から並列信号に 変換され FFT部 106にて FFT処理を施される。
[0213] FFT部 106力ら、 SCHシンボル部のデータ力 SCHデータを処理する SCH信号 処理部 200へ入力される。また、 FFT部 106から、パイロットチャネルおよび移動局 への制御情報を含むデータチャネルが、拡散符号乗算部 107へ入力される。そして 、移動局が基地局への最初の接続を行なう際にはセル固有情報およびセクタ固有情 報を取得していないため、 SCH信号処理部 200での処理が優先して行なわれる。 S CH信号処理部 200では、 FFT部 106から本実施形態のセクタ数に対応する 3つの 乗算部 212と、 SCHデータ復調部 230とのそれぞれに、 SCHシンボルのデータが入 力される。乗算部 212には、 MAC部(図示せず)からの制御情報により、セクタ固有 符号生成部 211で生成または記憶されたセクタ固有符号が入力される。
[0214] 各乗算部 212では、セクタ固有符号生成部 211より入力されたセクタ固有符号の複 素共役を算出し、 FFT部 106から入力された SCH信号の各奇数番目のサブキャリア (サブキャリアインデックス 1、 3、 5、 · · -)に対し、基地局から送信時にセクタ固有符号 を乗算したサブキャリアと対応するように複素共役の符号を乗算する。これにつ!/、て は、図 20の処理 1で示す。図 20は、セクタ固有符号を用いた相関演算処理の具体 的な内容例を示す図である。複素共役の乗算されたデータは、逆拡散部 210に入力 され、逆拡散処理を施される。逆拡散処理はセクタ固有符号の繰り返し周期である 6 サブキャリアの中の複素共役を乗算した 3サブキャリアのデータを加算することにより 行なわれる(図 20処理 2参照)。
[0215] さらに、逆拡散処理を施されたデータを 1Z3し、自乗平均したデータを算出しセク タ電力判定部 220に入力する。各セクタからの自乗平均したデータは、セクタ電力判 定部 220での受信電力判定の指標となる。図 20において、 pxは図 17 (b)に示した セクタ固有符号であり、 Xはセクタのインデックスを表している。また、 fは伝搬路を示し ており、逆拡散を施すサブキャリア間隔である 5サブキャリアの帯域内で一定としてい る。
[0216] セクタ電力判定部 220では、 3つのセクタに対応するそれぞれの逆拡散部 210から 前記値を入手し比較することにより、最も受信電力が高いセクタ、すなわち最も受信 環境が良好で接続を行なうセクタを決定する。この決定は、 MAC部へ制御信号とし て通知される。
[0217] 一方、 FFT部 106から SCHデータ復調部 230に入力された SCHシンボルデータ は、図 21に示した復調方法により復調される。図 21は、第 3の実施形態におけるセ ル固有符号の復調方法を示す図である。 SCHデータ復調部 230では、 SCHシンポ ルの低周波数側力 奇数番目の SCHサブキャリア(サブキャリアインデックス 1、 3、 5 、…;)のデータの複素共役と、その高周波数側の偶数番目の SCHサブキャリア (サ ブキャリアインデックス 2、 4、 6、 · · のデータを乗算する。
[0218] 図 21に示したように、乗算結果の理想値は、各セクタと移動局間の伝搬路 fとセル 固有符号 cで構成され、 cは振幅が 1の複素数であることから位相を導出することによ り容易に求められる。ここで、 fxyの Xはセクタ IDを示し、 yは乗算される 2つのサブキ ャリアの伝搬路の周波数方向のインデックスとする。また、乗算される 2つのサブキヤリ ァ間での伝搬路は同一と仮定している。
[0219] セル固有情報を復調する際には、下記に示すセル固有情報の符号系列から基地 局でセル固有情報の通知に使用する可能性のある候補のレプリカを SCHデータ復 調部で作成し、実際に前述の方法で算出された結果と相互相関を取ることによつても セル固有情報を判定'取得することができる。さらに、第 3の実施形態においては、同 一の SCHシンボルが 2シンボル連続で送信されて!、るため、前記した復調を 2シンポ ル区間において連続して行なうことによって、より信頼性の高い復調を行なうことがで きる。
[0220] 以上のようにして復調された SCHデータは、 MAC部へ送られる。 MAC部では、こ の情報に従い受信を行ない、基地局との接続を行なうことができる。この第 3の実施 形態では、 1フレーム期間の最後の 2シンボルに SCHが配置される。これにより、時 間軸上において SCHが周期性をもって配置されると共に、同一の SCHシンボルを 2 シンボル連続して送信される場合には、情報量が増加するため、受信側にて、より信 頼性の高い復調を行なうことができる。また、全周波数帯のサブキャリアを利用して S CHを送信することができるため、シンボル毎に異なる情報を送信する場合には、セ ル固有情報湘対的位相差情報)の伝送に使用できる符号長を長くすることができ、 より多くのセル固有情報を送信することが可能となる。 [0221] (第 4の実施形態)
次に、本発明の第 4の実施形態について説明する。本実施形態では、セルサーチ の第 1ステップにおける SCHのタイミング検出を、セクタ固有符号のレプリカの時間波 形を利用した相互相関法によって行なう例について説明する。
[0222] 前掲の第 2および第 3の実施形態においては、前述した 3段階セルサーチの第 1ス テツプにて SCHの時間相関検出を使用して、シンボル同期、周波数オフセット、 1/ Nフレームタイミングの検出を行なっていた。本実施形態では、前述の 3段階セルサ 一チの第 1ステップにおける SCHのタイミング検出を、受信信号と、移動局にて作成 したレプリカ信号との相互相関処理により行なう。このことを可能とするためには、 SC Hのデータ構造に工夫を施す必要がある。
[0223] 本実施形態で示す第 1ステップの SCH位置検出方法は、第 2もしくは第 3の実施形 態で示したフレーム構成および SCHの配置をそのまま利用して実現することができ る。第 2ステップまたは第 3ステップも、前掲の実施形態と同様に実施可能である。
[0224] なお、本実施形態のような SCHのデータ構造が採用される場合でも、 SCHが 1フレ ーム期間に周期的に配置されている点は、前掲の実施形態と同様である。従って、 第 2および第 3の実施形態と同様の自己相関法を利用した SCH位置検出 (すなわち 、繰り返し波形を利用した自己相関によるシンボル同期の確立)を実施することも可 能である。ただし、相互相関を用いた SCH位置の検出では、より鋭い相関ピークが 得られるため、より高精度の SCH位置の検出が可能である。
[0225] 本実施形態における第 1ステップの SCHタイミングの検出方法は、相互相関検出( またはレプリカ検出)方法と呼ばれる検出方法を適用した検出方法である。上述のと おり、第 2および第 3の実施形態で示した連続する SCH波形を利用した自己相関検 出方法と比較して、その検出ピークを鋭く検出することができる。すなわち、本実施形 態は、前掲の第 2および第 3の実施形態と比較して、 3段階セルサーチの第 1ステツ プに異なる方法を用いることができる。従って、より高精度な SCHタイミングの検出が 可能である。
[0226] 本実施形態では、第 2の実施形態と同様の下り方向の通信方式に、 OFDM通信 方式を用いる。また、通信フレームおよびリソースブロックの構成は、図 22および図 2 8に示されるものと同じ形式であるとする。まず、本実施形態における特徴である同期 用物理チャネル (SCH)に関し、その具体的な構成について説明する。
[0227] 図 29 (a)〜(c)は、第 2の実施形態と同様に、各々、同一セル内の 3つのセクタから 同時に送信される SCHのデータ構造を説明するための図である。図 29 (a)は、周波 数軸上におけるセクタ共通符号の割り当てを示す図であり、図 29 (b)は、 3つのセク タ固有符号の構成を示す図であり、図 29 (c)は、セクタ固有符号の生成の基礎となる 概念を示す図であり、複素位相平面上におけるベクトルを示す。基本的構成は、第 2 の実施形態と同様であるが、 3段セルサーチの第 1ステップに相互相関検出方法を 適用できるようにするため、一部の構成符号が異なる。
[0228] 図 29の(a)に示した信号は、 SCHを構成するセクタ共通符号を示して 、る。各 SC Hサブキャリアには 6チップ毎に s 力も s が割り当てられている。 sは A* exp (j co
01 On/6 0
)で表される任意の値である。ここで、 Aは振幅 (ただし本発明ではこれを 1として説明 する)、 jは虚数単位、 ωは位相を示す。
[0229] 本実施形態の特徴の一つは、第 2および第 3の実施形態と異なり、このセクタ共通 符号が全セルで共通の符号であることである。つまり、セクタ共通符号は、セル共通 符号でもある、ということである。また、もう一つの特徴は、セル固有符号のうちの、位 相基準となる符号要素についても全セルで共通とすることである。このことによって、 セクタ固有符号のレプリカを用いた相関検出が可能となる。
[0230] すなわち、 SCHは、 3種類の符号 (セクタ共通符号、セクタ固有符号、セル固有符 号)が乗算されて構成される。ここで、セクタ共通符号をセル間でも共通とし、また、セ ル固有符号のうちの、位相基準となる符号要素もセル共通とすると、その位相基準と なる符号要素が乗算されたサブキャリアに関しては、乗算されている符号は、(全セ ル共通のセクタ共通符号)と、(セクタ固有符号)と、(全セル共通のセル固有符号)と なり、実質的に、(全セル共通の符号)に (セクタ固有符号)が乗算されていることにな る。つまり、その位相基準となる符号要素が乗算されたサブキャリアに関しては、 3種 類の符号が乗算されている力 その内の 2つの符号は全セルで共通である。従って、 異なるのは、セクタ固有符号だけということになる。このことは、セクタ固有符号のレブ リカを用いた相関検出が可能であることを意味する。 [0231] 従って、受信機側で、各セクタに対応したセクタ固有符号のレプリカ符号の時間波 形を用意しておき、 FFT前の受信信号にそのレプリカ符号の時間波形を乗算して相 関ピークを検出することによって、受信信号における SCHのタイミングを高精度に検 出することができる。従って、その後のセクタ同定やセル同定をより効率的に行なうこ とが可能となる。ただし、このような特殊な SCHの構造が採用されている場合でも、 1 フレーム期間中に SCHが周期的に配置されていることには変わりがないため、自己 相関法 (すなわち、受信信号を所定期間だけ遅延させた信号と、元の受信信号との 相関を検出する方法)による位置検出を行なうことも可能である。
[0232] 以下、図面を参照して、具体的に説明する。まず、セクタ固有符号に関し説明する 。図 29 (b)は、セクタ固有符号の例(ここでは、セクタ数は" 3"とする)を示している。こ こでは、第 2の実施形態で示した符号と同様の符号が用いられる。
[0233] 次に、セル固有情報を伝送するための符号系列について説明する。図 30は、セル 固有情報を伝送するための符号系列の周波数軸上における構成を示す図である。 本実施形態では、図 30に示した符号系列により、セル固有情報の伝送を行なうが、 第 2および第 3の実施形態とは異なり、各々のセル間で異なる符号系列とセル間で共 通の符号系列により構成される。具体的には、図 30に示した c (k
ik は 1から nZ6まで の自然数、 nは SCHサブキャリア数である)が「セル間で共通な符号」であり、 c (1は 1
1 力 nZ2までの自然数)は「セル固有の符号」である。
[0234] 図 30の符号系列は、低周波数側力も順に、 6チップを一組として構成されて 、る。
6チップは奇数番目の SCHサブキャリア(サブキャリアインデックス 1、 5、 9)に「セル 間で共通の符号」を割り当てる。偶数番目の SCHサブキャリア (サブキャリアインデッ タス 3、 7、 11)には、奇数番目に割り当てた符号にセル固有符号を乗算した符号 (つ まり、位相基準の符号に対する位相差情報をもつ符号)を割り当てる。奇数番目のサ ブキャリアに割り当てた符号は、 6チップ内で同一であるが、他の 6チップで使用する 符号と同一である必要はない。
[0235] 以上に示した 3種類の符号系列が SCHを構成する符号系列であり、これらの符号 系列が乗算されて SCHが構成される。そして、各セクタの送信機からは、 SCHを含 むマルチキャリア信号が送信される。 [0236] 本実施形態における SCHの送信方法および送信機の構成は、前掲の第 2の実施 形態と同様であるため説明を省略する。異なる点は SCHデータ処理部 60における セクタ固有符号生成部 63で生成される符号(図 29、図 30参照)である。
[0237] 本実施形態における受信機構成および受信方法は、第 1ステップを除き、前掲の 実施形態と基本的に同様である。前掲の第 2の実施形態におけるタイミング検出部 1 03 (図 13)では、受信した信号を 1Z2有効シンボル区間遅延させ信号と乗算するこ とによって SCHシンボルの位置を検出した。本実施形態では、受信した信号と移動 局で生成もしくは記憶した SCHシンボルのレプリカ信号との相互相関値を算出する ことにより SCHのシンボルを検出する。以下、セルサーチの手順に関して説明する。
[0238] 移動局は、第 2の実施形態と同様に、基地局から送信された無線信号をアンテナ 部 100にて受信する。アナログ受信回路部 101は、受信した無線信号について、無 線周波数帯からベースバンド周波数帯に変換する。 A/D (アナログ Zデジタル)変 換部 102は、ベースバンド周波数帯に変換された信号について、アナログ信号から デジタル信号に変換する。次に、タイミング検出部 103は、 AZD変換部 102でデジ タルデータに変換された受信データに基づ 、て、シンボル同期を行なうための SCH 検出処理を行なう。
[0239] 図 31は、本実施形態におけるシンボル同期回路の構成 (相関器を含む)を示すブ ロック図である。図 31のシンボル同期回路は、 m段のシフトレジスタ 400と、加算器 4 02と、乗算器 404と、を有している。図 31のシンボル同期回路では、受信信号は、 m 段のシフトレジスタ 400に入力される。このシフトレジスタ 400から出力された信号は、 移動局で作成されるか、または移動局内に予め記憶されたレプリカ信号 (r : mは自 然数)の複素共役と乗算される。
[0240] レプリカ信号は、前述の SCHサブキャリアを構成する 3つの符号を掛け合わせた値 力 導出される力 SCHサブキャリアの奇数番目(サブキャリアインデックス 1、 5、 9 · · に関してのデータが用いられる。受信信号は、時間軸方向のデータであるため、レ プリカ信号も同様に前述の SCHサブキャリアを使用するデータより時間軸方向の信 号を算出しておく。
[0241] このようなレプリカ信号の作成には、 SCHサブキャリアの奇数番目のデータを使用 する。上述のとおり、 SCHサブキャリアの奇数番目のサブキャリアには、全セルで共 通のセクタ共通符号 s (図 29 (a)参照)と、図 30に示すように、全セルで共通のセル
0
固有情報の一部を示す符号 (位相基準となる符号)とが乗算されている。すなわち、
SCHサブキャリアの奇数番目のサブキャリアでは、図 29 (b)に示したセクタ固有符号 のみが、セル間で異なることなる。従って、本実施形態においては、セクタ固有符号 の数と同様の 3つのレプリカ信号を作成し、受信信号と相互相関値をモニタすること によって、 SCH時間位置の検出を行なうことができる。
[0242] なお、第 2および第 3の実施形態と同様に、複数のセル力 の信号により複数のピ ークが検出される力 一般的には最も相関値のピークが高いタイミングを最も近いセ ルカ 送信された SCHのタイミングとして判定し、基地局との接続動作を開始する。
[0243] 以上のように、本実施形態におけるセルサーチの第 1ステップでは、受信信号とレ プリカ信号の相互相関値を利用してシンボル同期が実現される。本実施形態におけ るセルサーチ方法の第 2ステップと第 3ステップは、前掲の第 2の実施形態と同様で あるため説明を省略する。
[0244] (第 5の実施形態)
次に、本発明の第 5の実施形態について説明する。本実施形態では、下記 1.〜5 .の各点について説明する。
[0245] [1.セルサーチの第 1ステップの具体化]
ここでは、セルサーチの第 1ステップにおける SCHのタイミング検出をセクタ固有符 号のレプリカの時間波形を利用した相互相関法によって行なう技術の具体的なバリ エーシヨンを示す。これは、第 4の実施形態の変形例である。すなわち、前掲の実施 形態では、総サブキャリア数 (DCサブキャリアを除く)は、 6の倍数を基本としていた 力 本実施形態では、サブキャリアを 75本 (DCサブキャリアを除く)と具体的に規定 する。位相基準となる符号要素が乗算されたサブキャリアに関しては、実質的に、(全 セル共通の符号)に(セクタ固有符号)が乗算されていることになる点、そして、このサ ブキャリアを利用して、相互相関法によって SCHのタイミングを検出する点は、第 4の 実施形態と同様である。ただし、本実施形態では、セル固有情報の検出に寄与しな いサブキャリア (ダミー符号が乗算されたサブキャリア)が含まれる。相互相関による方 法のみならず、自己相関法を利用してもよい点は、第 4の実施形態と同様である。
[0246] [2.位相基準となるサブキャリアの対称配置による特徴的な時間波形の形成]
位相基準となる符号要素が乗算されているサブキャリアは、中心周波数を基準とし て、低周波数側および高周波数側に対称に配置される。この位相基準となる符号要 素が乗算されているサブキャリアは、相互相関法による SCHタイミングの検出に使用 される SCHサブキャリアであるため、以下の説明では、「相互相関検出用 SCHサブ キャリア」という場合がある。第 4の実施形態では、低周波数側を基準として割り当て た実施形態であったため、中心周波数を基準として対称の配置とする本実施形態の 条件を満たす必要はな力つた。
[0247] 相互相関検出用 SCHサブキャリアを、所定間隔で、中心周波数を基準として対象 に配置する。それらのサブキャリアが合わさった信号の時間波形は、 1シンボル期間( SCHが配置されている期間)において、例えば、中心から 2番目、 6番目、 10番目 · · •のサブキャリアを使用することで(1Z4)シンボル毎に、 "B"、 "― B"、 "B"、 "― B" ( Bは、任意の信号振幅:基準波形)というように、振幅が同じで、その極性が反転され た波形が繰り返され、特徴ある周期性をもった時間波形が形成される。また、中心か ら 4番目、 8番目、 12番目 · · ·のサブキャリアを使用することで 1Z4シンボル毎に" D" 、 "D"、 "D"、 "D" (Dは任意の信号振幅:基準波形)というような時間波形が形成され る。従って、受信機側で相互相関検出のために用意するレプリカ時間波形も、 (1/4 )シンボル毎に、 "B,,ゝ "― B,,ゝ "B,,ゝ "— B"もしくは" D"、 "D"、 "D"、 "D"と変化する ような時間波形でよい。つまり、(1Z4)シンボル単位の特徴的な信号波形を検出で きればよいことになる。従って、相関器の構成を簡略ィ匕することができる。
[0248] [3.セルサーチの第 2ステップのセクタ同定]
ここでは、セクタ固有符号を用いた逆拡散を実施して、最大の相関値を示すセクタ を検出する動作の自由度の向上を図る。位相基準となる符号要素が乗算されたサブ キャリア (相互相関検出用サブキャリア)に乗算されている符号は、(全セル共通のセ クタ共通符号)と、(セクタ固有符号)と、(全セル共通のセル固有符号)である点は、 第 4の実施形態と同様である。ただし、本実施形態では、総サブキャリア中の、位相 基準となるサブキャリアの全部について、全セル共通のセクタ共通符号 (基準符号)と 、全セル共通のセル固有符号とを、共に、 "1"とする。第 4の実施形態では、セル固 有符号(図 30の C 、C · · · ·。 )は、 6サブキャリア毎に新たな符号となっている。
il i2 in/6
つまり、最初の 6サブキャリアは C 、次の 6サブキャリアについては C となっている。こ
il i2
の場合には、セクタ同定のための逆拡散を行なうときは、 6本のサブキャリア毎に逆拡 散を順次、行なっていく必要がある。この点、セクタ同定の自由度が制限されることに なる。しかし、上述のように、 C , C · · · 'c )をすべて" 1"とすると、総サブキャリア
il i2 in/6
中の位相基準となるサブキャリアに乗算されているセル固有符号はどれも" 1"となる。 従って、そのサブキャリアに乗算されているのは、 "1 (全セル共通のセクタ共通符号) " X "l (全セル共通のセル固有符号)" X "セクタ固有符号(PI, P2, P3のいずれ力 : 図 29 (b)参照) "となる。結局、位相基準となるサブキャリアの各々に乗算されて!、る のは、セクタ固有符号(PI, P2, P3のいずれ力 ということになる。これにより、 6サブ キャリアを一組として逆拡散をする必要はなくなり、総サブキャリア中の、いずれかの サブキャリアを選択することによってセクタ共通符号 (PI, P2, P3)を特定し、これを 用いて逆拡散を実施すればよいことになる。従って、セクタ同定に際して、 6サブキヤ リア毎に逆拡散を実施するという制限がなくなる。その結果、セクタ同定処理の自由 度が向上する。
[4.セクタ同定を、 FFT処理後の逆拡散による相関値ピーク判定ではなぐ FFT前 の時間波形の相互相関によって行なうことの考察]
上述の(3)の符号構成を採用するとき、 FFT後に直交符号 (PI, P2, P3)を用い た逆拡散を行なわなくても、上述の(1)で述べたレプリカ時間波形による相互相関法 を利用して、 FFT処理前に、直近のセクタを同定することが可能である。つまり、 FFT 処理前に、セクタ固有符号のレプリカ時間波形 (図 34の符号 1、符号 2、符号 3のいず れかによつて形成される時間波形)を用いて相互相関ピークを検出し、最大のピーク を与える符号(図 34の符号 1、符号 2、符号 3のいずれか)を特定することによって、 最も近くにあるセクタを同定することが可能である。特に、セルサーチの第 1ステップ で、レプリカ相関方法により SCHのタイミング同期を行なう場合には、タイミング同期 の際に算出される相関値を異なるセクタ固有符号間で比較することによりセクタ同定 を行なうことができるため、その後改めてセクタ同定の動作を行なう必要がない。なお 、このレプリカ時間波形を用いた相互相関法を適用するためには、移動局において、 基地局から送信される各種のセクタ固有符号が既知であることが条件となる。セクタ 同定方法として、直交符号による逆拡散による相関検出する手法を用いる力 または レプリカ時間波形による相互相関を検出する手法によるかは、要求される検出精度 や回路上の制約等を考慮して、適宜、決定することができる。
[0250] [5.セクタ固有符号は、セクタを直接に識別するための符号のみならず、セクタダル ープ固有符号も含むことの明確化]
セクタ数が多くなりすぎると、直交符号を確保するために、より多くのサブキャリア数 の組が必要になり、サブキャリア数が足りなくなる場合が想定される。この場合には、 複数のセクタをグループ化して「セクタグループ」の概念を導入し、そのセクタグルー プをセクタ固有符号で特定するようにしてもよい。つまり、上述の「セクタ固有符号」は 、必ずしも、セクタを直接に識別するための符号である必要はなぐいくつかのセクタ をまとめたセクタグループを示す符号であってもよい。このことは、前掲の全実施形態 に共通に適用される。これらの点の各々について、以下、具体的に説明する。
[0251] 前掲の第 1から第 4の実施形態では、総サブキャリア数を 2n+ 1 (中心 DCサブキヤ リアを含む)として説明を行なったが、本実施形態ではより具体的に総サブキャリア数 が 76本(中心 DCサブキャリアを含む)の場合について説明を行なう。本実施形態で は DCサブキャリアを除いて 75本のサブキャリアを使用するため、 DCサブキャリアを 中心として帯域内の低周波数側と高周波数側でサブキャリア数が異なる。ただし、本 実施形態でも、 SCHを構成するサブキャリアの位相差によりセル固有情報を通知す るため、本質的に使用しているサブキャリアは DCサブキャリアを含め 2n+ l (本実施 形態では n= 37)である。
[0252] 本実施形態では、第 4の実施形態と同様に、 3段階セルサーチの第 1ステップにお ける SCHのタイミング検出を、受信信号と、移動局にて作成したレプリカ信号との相 互相関処理により行なう。また、レプリカ信号を使用した相互相関処理を行なう対象と なるサブキャリアを特定の位置に配置することで、特徴的な時間波形にする。以上を 実現するためには、 SCHのデータ構造およびサブキャリア配置に工夫を施す必要が ある。 [0253] 本実施形態で示す第 1ステップの SCH位置検出方法は、第 4の実施形態で示した フレーム構成および SCHの配置をそのまま利用して実現することができる。第 2ステ ップまたは第 3ステップも、前掲の実施形態と同様に実施可能である。
[0254] 本実施形態で示す SCHのデータ構造によれば、第 4の実施形態と同様に自己相 関検出方法に必要な 1シンボル内で周期的な波形 (繰り返し波形)を示す SCHを実 現する。それと同時に、レプリカ信号を用いた相互相関検出方法を用いた検出方法 も適用することが可能な SCHを実現することが可能である。自己相関検出方法は、 一般的に相互相関検出方法より簡易な回路構成で実現することが可能であるが、一 方で相関値のピークが相互相関検出方法よりゆるやかに検出されることが知られて いる。相互相関検出方法は、相関値のピークが鋭く検出できることからより正確な時 間同期が可能になる力 一方で回路構成とその処理が複雑になることが知られてい る。このようなこと力 、一部の無線 LANの通信方式では、時間同期の際に自己相 関検出方法で粗い時間同期を行ない、ある程度限定された時間区間で、正確な時 間同期を相互相関検出方法により行なわれている。本実施形態においても、同様の 手法が使用可能である。
[0255] 本実施形態における第 1ステップの SCHタイミング検出方法は、前述のように 2つ の検出方法を適用することが可能である。自己相関検出方法は、 SCHに使用するサ ブキャリアの周波数領域の位置で決定される SCHシンボルでの時間領域の繰り返し 波形を利用した方法であるため、第 2または第 3の実施形態で詳細に示した方法とな んら変わるものではない。従って、以下、本実施形態の特徴であるレプリカ信号を使 用した相互相関検出方法について説明する。この相互相関検出方法では、サブキヤ リアの配置によって形成される特徴的な信号波形を利用する。
[0256] 本実施形態では、第 2の実施形態と同様の下り方向の通信方式に、 OFDM通信 方式を用いる。また、通信フレームおよびリソースブロックの構成は、図 22および図 2 8に示されるものと同じ形式であるとする。まず、本実施形態における特徴である同期 用物理チャネル (SCH)に関し、その具体的な構成について説明する。
[0257] 図 32は、本実施形態で使用する 76本のサブキャリアをその機能毎に示した図であ る。図に示したように、中心の DCサブキャリアおよび中心力も奇数番目にあるサブキ ャリアはヌルサブキャリアとし、それ以外のサブキャリアを SCHサブキャリアとして使用 する。 SCHサブキャリアのうち、中心力も奇数番目の SCHサブキャリアを、相互相関 検出に使用するサブキャリア、すなわちセル固有情報を検出する際の位相基準とな るサブキャリア (相互相関検出用 SCHサブキャリア)として使用する。また、中心から 偶数番目の SCHサブキャリアを、セル固有情報が乗算されたサブキャリア(以下の説 明では、セル固有情報検出用サブキャリアという場合がある)として使用する。
[0258] ここで、中心から奇数番目の SCHサブキャリアとは、全体では中心より 2、 6、 10、 1 4· · ·番目のサブキャリアである。ただし中心は 0番目とする。また、中心力も偶数番目 の SCHサブキャリアとは、全体では中心より 4、 8、 12· · '番目のサブキャリアである。
[0259] 上述のとおり、相互相関検出用 SCHサブキャリアは、中心周波数を基準として、低 周波数側ならびに高周波数側に対称に配置される。また、その相互相関検出用サブ キャリアは、中心周波数を 0番目とした場合、 2番目、 6番目、 10番目 · · ·と 、うように、 3本のサブキャリア間隔で配置されている。中心周波数を基準とする点で第 4の実施 形態と異なる。図 32においては、中心周波数を基準として高周波数側と低周波数側 とでは、配置されている相互相関検出用 SCHサブキャリアの数が異なる。すなわち、 高周波数側は、(1)〜(10)の 10本が配置され、一方、低周波数側では、(11)〜(1 9)の 9本が配置されている。ただし、相互相関検出用 SCHサブキャリア (位相基準と なるサブキャリア)とセル固有情報検出用 SCHサブキャリアがペア(一対)で使用され る点は、第 4の実施形態と同じである。一対のサブキャリアを単位とすると、図 32の場 合、高周波数側で 1本の相互相関検出用サブキャリア (位相基準となるサブキャリア: 図 32中のサブキャリア(10) )が余ることになる力 このサブキャリア(10)にはダミー符 号 (本実施形態では" 1"とする)を割り当てる。
[0260] 図 33は、セル固有情報が乗算されたサブキャリア (セル固有情報検出用 SCHサブ キャリア)とその位相基準となるサブキャリア (相互相関検出用 SCHサブキャリア)とな るペアをなすサブキャリアとの関係を示す図である。本実施形態における 76本のサ ブキャリアの場合では、 SCHサブキャリアとして 37本のサブキャリアを使用することが できる。従って、符号長 18の情報 Pl (x) (ただし、 x= l〜18)を前述の位相基準とな るサブキャリア (相互相関検出用サブキャリア)とセル固有情報検出用サブキャリアの 相対値として設定することが可能である。ただし、ペアとして情報を割り当てるため本 実施形態では、 1本のサブキャリアは符号割り当てに使用しない。つまり、図 33の符 号 S19は、ダミー符号 (本実施形態では、 "1")となる。
[0261] 図 34 (a)〜(c)は第 4の実施形態と同様に、各々、同一セル内の 3つのセクタから 同時に送信される SCHのデータ構造を説明するための図である。図 34 (a)は、周波 数軸上におけるセクタ共通符号の割り当てを示す図であり、図 34 (b)は、 3つのセク タ固有符号の構成を示す図である。そして、図 34 (c)は、セクタ固有符号の生成の基 礎となる概念を示す図であり、複素位相平面上におけるベクトルを示す。
[0262] 基本的構成は第 4の実施形態と同様であるが、前述したように相互相関検出に使 用するサブキャリアとセル固有情報を乗算するサブキャリアとの周波数軸上の位置関 係が異なっている。図 32に示したように SCHサブキャリアは中心の DCサブキャリア よりそれぞれ周波数の高 、側および低!、側に偶数番目のサブキャリアを使用して!/ヽ る。
[0263] 図 35 (a)〜(d)は、周波数軸上における相互相関検出用 SCHサブキャリアの配置 および時間軸上における SCHシンボル数を工夫することによって、 SCHシンボル期 間における、複数の SCHサブキャリアが合わさって形成される時間領域における波 形が、 1シンボル期間内で、基準波形 (あるいは、その基準波形を反転した波形)の 繰り返しになることを説明するための図である。
[0264] 本実施形態 (前掲の実施形態も含む)では、周波数軸上にお!、て、 SCHサブキヤリ ァを 1サブキャリアおきの周波数間隔で、周期的に配置している(例えば、図 25参照 ) oこのように周期的に配置された 1シンボル期間における SCHサブキャリアが合成さ れると、図 35 (a)のように、 1有効シンボル期間(1シンボル期間から GIが挿入されて いる期間を除いた期間)において、基準波形 (Aとする)が、(1Z2)シンボル単位で 繰り返される時間波形 (FFT前の時間領域における波形)が得られる。従って、前掲 の実施形態で説明したように、(1Z2)有効シンボル分だけ時間波形を遅延させて、 元の時間波形との相関をとると相関ピークが得られる。従って、 SCH位置の検出(自 己相関法によるセルサーチの第 1ステップの処理)が可能である。
[0265] なお、図 19に示すように、 1フレーム期間の最後の 2シンボルに連続して SCHを配 置した場合には、図 35 (c)に示すように、隣接する 2つの有効シンボル期間において 、同一の時間波形 (Cとする)が繰り返されることになる。従って、 1シンボル分だけ時 間波形を遅延させて、元の時間波形との相関をとると相関ピークが得られる。従って 、 SCH位置の検出(自己相関法によるセルサーチの第 1ステップの処理)が可能で ある。
[0266] 一方、第 5の実施形態では、さらに、相互相関検出用 SCHを、中心周波数を基準 として、低周波数側、高周波数側に対称に配置する。すなわち、サブキャリアを前述 のように中心の DCサブキャリアから 2、 6、 10、 14· · ·番目(2番目を開始として以降 は 3本置き)と使用する。これにより、有効シンボルの 1Z2区間で信号が繰り返される 構成で、さらにその(1Z2)区間、つまり全体の(1Z4)の区間を単位として、振幅の 極性が反転した時間波形が繰り返されるという特徴的な時間波形が形成される。具 体的には、図 35 (b)のように、 B、— B、 B、—Bが繰り返される時間波形が形成される 。この現象は、 OFDM通信方式において、互いに直交するサブキャリアの周波数関 係について、時間方向の対象性に起因して生じる。この場合には、(1Z4)有効シン ボル単位で、特徴的な周期性を検出することによって、 SCH位置を特定することが できる。この特徴を利用して相互相関検出に使用する相関器をより簡易な回路で作 成することが可能となる。つまり、簡易な構成の相関器によって、高精度の SCHタイミ ング検出が可能となる。
[0267] また、相互相関検出用 SCHのサブキャリアを DCサブキャリア力 4、 8、 12、 16 · · · 番目(4番目を開始として以降は 3本置き)と使用することにより有効シンボルの 1Z4 区間で信号が繰り返されるという特徴的な時間波形を形成することも可能である。具 体的には、図 35 (d)のように、 D、 D、 D、 Dが繰り返される時間波形を形成する。
[0268] 次に、全セル共通のセル固有符号を、すべて" 1"とした最も簡略化されたサブキヤ リア構成について、具体的に説明する。このサブキャリア構成は、実用化に有利な構 成であるといえる。
[0269] 図 34の(a)に示した信号は、 SCHを構成するセクタ共通符号を示して 、る。第 4の 実施形態では、図 29 (a)に示すように、各 SCHサブキャリアには 6チップ毎に s から
01 s が割り当てられていた。本実施形態では、すべての SCHサブキャリアには Sが 割り当てられる。ここで sは、 A * exp (j co )で表される任意の値である。ここで、 Aは
0
振幅 (ただし本実施形態ではこれを 1として説明する)、; jは虚数単位、 ωは位相を示 す。すべての SCHサブキャリアに Sが乗算され、かつ、位相基準となるサブキャリア
0
の符号が一律に" 1"となるようにする(後述)。これにより、セクタ同定のための電力計 算を、必ずしも、 6本のサブキャリアの組を単位として行なう必要がなくなる。つまり、 図 34 (b)の符号 2を例にとると、 "Pl"、 "Ρ2"、 "Ρ3"の各符号を、周波数軸上のいず れかの SCHサブキャリア力も選択し、電力算出処理を行なうことが可能になる。ただ し、電力算出処理に使用するサブキャリアは、伝搬路が同一であるとみなせることが 条件であるため、周波数軸上で離れたサブキャリアを選択するとその精度は低下す るため、隣接したサブキャリアを使用することが望ましい。
[0270] 本実施形態は、第 4の実施形態と同様に、セクタ共通符号は全セルで共通の符号 である。また、セル固有符号のうちの位相基準となる符号要素も全セルで共通とする
[0271] SCHは、 3種類の符号 (セクタ共通符号、セクタ固有符号、セル固有符号)が乗算 されて構成される。ここで、セクタ共通符号をセル間でも共通とし、また、セル固有符 号のうちの、位相基準となる符号要素もセル共通とする。その結果、その位相基準と なる符号要素が乗算されたサブキャリアに関しては、乗算されている符号は、(全セ ル共通のセクタ共通符号)と、(セクタ固有符号)と、(全セル共通のセル固有符号)と なり、実質的に、(全セル共通の符号)に (セクタ固有符号)が乗算されていることにな る。つまり、その位相基準となる符号要素が乗算されたサブキャリアに関しては、 3種 類の符号が乗算されている力 その内の 2つの符号は全セルで共通である。従って、 異なるのは、セクタ固有符号だけということになる。このことは、セクタ固有符号のレブ リカを用いた相関検出を容易に行なうことができることを意味する。
[0272] 従って、受信装置側で、各セクタに対応したセクタ固有符号のレプリカ符号の時間 波形を用意しておき、受信信号 (FFT前の信号)にそのレプリカ符号の時間波形を乗 算して相関ピークを検出することによって、受信信号における SCHのタイミングを高 精度に検出することができる。従って、その後のセクタ同定やセル同定をより効率的 に行なうことが可能となる。 [0273] さらに、本実施形態では、相互相関検出に利用するサブキャリア位置を特定の位 置に配置することによって、図 35 (b)に示したような 1Z2有効シンボル長区間で同一 の信号波形が繰り返される。また、 1Z4有効シンボル長区間で符号が反転する信号 波形が形成される。これにより、この特性を利用したより簡易な相関器の構成を取るこ とも可能である。
[0274] ただし、このような特殊な SCHの構造が採用されている場合でも、 SCHシンボル区 間で繰り返し信号波形が形成されることには変わらないため、自己相関法による位置 検出を行なうことも可能である。この自己相関法は、受信信号を所定期間だけ遅延さ せた信号と、元の受信信号との相関を検出する方法である。
[0275] 以下、図面を参照して具体的に説明する。まず、セクタ固有符号に関し説明する。
図 34 (b)は、セクタ固有符号の例(ここでは、セクタ数は" 3"とする)を示している。ここ では、第 4の実施形態で示した符号と同様の符号が用いられる。
[0276] 次に、セル固有情報を伝送するための符号系列について説明する。図 36は、セル 固有情報を伝送するための符号系列の周波数軸上における構成を示す図である。 本実施形態では、図 36に示した符号系列によりセル固有情報の伝送を行なう。図 36 に示した cl(lは 1から 18までの自然数)は「セル固有の符号」であり、セル固有情報を 移動局に通知する。 clは振幅が 1の符号系列である。
[0277] 図 30に示された第 4の実施形態の符号系列は、低周波数側から順に、 6チップを 一組として構成されている力 図 36に示された本実施形態の符号系列は、図 30の 符号系列 cikをすベて" 1"とした特殊な形態となっている。これにより前述したセクタ 電力の算出時に、周波数軸上で隣接する 6本のサブキャリアの組を必ず選択する、と いう制限がなくなり、セクタ同定処理の自由度が向上する。
[0278] 以上に示した 3種類の符号系列が SCHを構成する符号系列であり、これらの符号 系列が乗算されて SCHが構成される。そして、各セクタの送信機からは、 SCHを含 むマルチキャリア信号が送信される。
[0279] 本実施形態における SCHの送信方法および送信機の構成は、前掲の第 2の実施 形態と同様であるため説明を省略する。異なる点は、 SCHデータ処理部 60における セクタ固有符号生成部 63で生成される符号(図 35、図 36参照)である。 [0280] また、本実施形態における受信機構成および受信方法は、前掲の第 4の実施形態 と同様であるため説明を省略する。また、図 36のような符号構成を採用するとき、 FF T後に直交符号 (PI, P2, P3)を用いた逆拡散を行なわなくても、セルサーチの第 1 ステップの処理と同様に、レプリカ時間波形による相互相関法を利用して、 FFT処理 前に、直近のセクタを同定することも可能である。
[0281] つまり、 FFT処理前に、セクタ固有符号のレプリカ時間波形 (図 34の符号 1、符号 2 、符号 3のいずれか〖こよって形成される時間波形)を用いて相互相関ピークを検出し 、最大のピークを与える符号(図 34の符号 1、符号 2、符号 3のいずれか)を特定する ことによって、最も近くにあるセクタを同定することが可能である。
[0282] 特に、セルサーチの第 1ステップで相互相関方法により SCH時間同期を行なった 場合には、その結果をそのまま用いてセクタ同定を行なうことが可能である。すなわち 、相互相関検出による相関値の時間方向の位置により SCH時間同期を行ない、そ の振幅によりどのセクタからの受信電力が高いのかを判定することができる。
[0283] セクタ同定方法として、直交符号による逆拡散による相関検出する手法を用いるか 、レプリカ時間波形による相互相関を検出する手法によるかは、要求される検出精度 や回路上の制約等を考慮して、適宜、決定することができる。
[0284] また、セクタ数が多くなりすぎると、直交符号を確保するために、より多くのサブキヤ リア数の組が必要になり、サブキャリア数が足りなくなる場合が想定される。この場合 には、複数のセクタをグループィ匕して「セクタグループ」の概念を導入し、そのセクタ グループをセクタ固有符号で特定するようにしてもよい。つまり、上述の「セクタ固有 符号」は、必ずしも、セクタを直接に識別するための符号である必要はなぐいくつか のセクタをまとめたセクタグループを示す符号であってもよい。このことは、前掲の全 実施形態に共通に適用される。
[0285] 以上説明したように、本発明によれば、セクタ共通符号にセクタ固有符号が乗算さ れることによって、パイロットチャネルを用いることなぐ SCHを用いた逆拡散と相関検 出のみによってセクタの同定を行なうことができる。従って、セクタ同定に関して、パイ ロットチャネルを用いた逆拡散と相関検出処理が不要となり、ノ ィロットチャネルを用 いた相関演算に用いられるメモリの容量を削減することができる。 [0286] また、 SCH自体にセクタ固有符号が乗算されて!、ることから、セクタ境界にぉ ヽても セクタ間の干渉を排除できる。また、ランダム化効果による耐フエージング特性の向 上効果も得ることができる。セクタ毎に割り当てられるセクタ固有符号 (直交符号)は、 セクタ数の増大に合わせて、その数を増やすことが容易であり、セクタ構成に柔軟に 対応することができる。
[0287] また、 SCHに、セル固有符号も乗算することによって、十分な数のサブキャリアを確 保できるのならば、 SCHのみによって、セル IDもダイレクトに同定することが可能とな る。この場合、セクタ同定を含むセルサーチ処理力 SCHのみを用いた 2段階の処 理ですむことになり(2段階セルサーチ)、従来の 3段階セルサーチに比べて、サーチ プロセスを短縮することができる。
[0288] また、 SCHに、乗算されるセル固有符号およびセクタ固有符号の構成や内容、周 波数軸上における配置を、本発明のようにすることによって、セクタ固有情報とセル固 有情報が相互に悪影響を与えないようにすることができ、また、情報伝送精度の低下 を抑制することもできる。また、各々の情報を独立に(つまり、並行処理によって)復調 でき、これによつて、セクタサーチを含むセルサーチの処理時間をさらに短縮すること ができる。
[0289] すなわち、 mチップで直交する符号を 2個組み合わせて 2mチップの符号を形成し 、 mチップをセクタ同定用に使用し、残りの mチップをセル固有情報の同定用に利用 する。セル固有情報は、同じ値のセクタ固有符号要素が乗算されているサブキャリア 同士 (周波数軸上で隣接して配置されるのがより望ましい)の位相差情報として伝送 することによって、セクタ固有情報とセル固有情報を効率的に伝送することができ、か つ、受信側で、両者を効率よく分離して取り出すことができる。
[0290] また、本発明のセルサーチ方法では、 SCHの周期性を利用した自己相関法による 、あるいは、セクタ固有符号のレプリカ符号の時間波形を利用した相互相関法による 時間軸上の SCHのタイミング検出(第 1ステップ)と、周波数軸上の情報に基づくフレ ームタイミングの同定、セクタ IDならびにセル IDの同定(第 2ステップ)と、によって、 セルサーチを完了することも可能である。従って、従来の 3段階セルサーチに比べて 、サーチプロセスを短縮することができる。 [0291] また、パイロットチャネルを用いた逆拡散と相関検出は、データチャネルの復調時に 必要となるだけであり、セルサーチでは不要であるため、パイロットチャネルによる相 関演算のためのハードウ アの負担を軽減すること (メモリ容量の削減等)を達成する ことができる。また、 SCHにはセクタ固有符号が重畳されていることから、セクタ同定 に関して、セクタ間の干渉やフェージングに強いという効果も得ることができる。ただし 、サブキャリア数が十分ではない場合には、 SCHだけでは、セル IDの直接の同定が できず、セル IDグループ情報の検出にとどまる場合がある力 この場合には、第 3ス テツプの処理として、パイロットチャネルを用いた逆拡散と相関検出を実施することに よって、セル IDを同定することができる。
[0292] また、本発明のマルチキャリア送受信装置によって、ダウンリンクにおいて高速、大 容量な伝送が可能となる。
[0293] このように、本発明によれば、セクタ同定を含むセルサーチ処理に要するプロセス を短縮すると共に、ノ ィロットチャネルを用いた相関検出結果を記憶するメモリの容 量を削減することができる。さらに、セクタ同定を含むセルサーチ処理の耐干渉性あ るいは耐フェージング特性を向上させ、送受信装置の負担を増加させることなぐより 高速かつ高精度の、セクタ同定を含むセルサーチを実現することができる。
[0294] また、本発明は、種々のノリエーシヨン (具体例、変形例、応用例)を含んでおり、こ れらのバリエーションは、 E— UTRA(Evolved-UTRA)に準拠した通信方式の実用 化に貢献する。例えば、セルサーチの第 1ステップの処理 (SCHタイミングの検出処 理)では、自己相関法の他、特殊な時間波形に着目した相互相関法を採用すること ができる。この場合には、相関器の構成を簡略ィ匕できるという効果が得られる。また、 周波数軸上の位相基準となるサブキャリアの符号を全部、例えば" 1"に統一すること によって、セクタ固有符号を用いた逆拡散時に、 6本のサブキャリアを一組としなけれ ばならないという制限を不要とすることができる。また、移動局にて、基地局から送信 される各種のセクタ固有符号が既知であるときは、直近のセクタ検出を、逆拡散によ らず、 FFT前の時間波形による相互相関を用いて検出することもできる。また、セクタ 数が増大したときは、「セクタ固有符号」として、「セクタグループ固有符号」を採用す ることちでさる。 [0295] また、本発明は、同期チャネル (SCH)のデータ構造として構成することもできる。 すなわち、本発明のデータ構造は、一つのセルが複数のセクタに分割され、前記セ ルを管轄する基地局力 そのセル内の移動局に対してマルチキャリア通信によって ダウンリンク信号が送信され、そのダウンリンク信号には、同期チャネル (SCH)が含 まれ、かつ、その同期チャネル(SCH)はセクタ同定を含むセルサーチに利用され得 る、マルチキャリア通信方式を採用した移動体通信システムにおける、前記同期チヤ ネル(SCH)のデータ構造であって、同一セル内の複数のセクタに共通のセクタ共通 符号に、同一セル内のセクタ毎に異なるセクタ固有符号が乗算され、これによつて、 同期チャネル (SCH)を用いた、セクタ同定を含むセルサーチを実施可能とする。
[0296] マルチキャリア移動体通信方式のダウンリンクに含まれる同期チャネル(SCH :以 下、単に" SCH"ということがある)のデータ構造として、セクタ固有情報を含んだ新規 な構造を採用するものである。つまり、セクタ共通符号にセクタ固有符号を乗算して おき、パイロットチャネルを用いることなぐ同期チャネル (SCH)を用いた逆拡散と相 関検出のみによってセクタの同定を行なえるようにする。すなわち、従来、一つのセ ル内のセクタ間において共通に使用されていた(つまり、セクタに関して、非直交であ る) SCHを、本発明では、セクタ毎に固有の直交チャネルに変化させて、 SCHを用 いてダイレクトにセクタ同定を可能とするものである。従って、セクタ同定に関して、パ ィロットチャネルを用いた逆拡散と相関検出処理が不要となり、パイロットチャネルを 用いた相関演算に用いられるメモリの容量を削減することができる。また、 SCH自体 にセクタ固有符号が乗算されて 、ることから、セクタ境界にぉ 、てもセクタ間の干渉を 排除でき、また、ランダム化効果による耐フエージング特性の向上効果も得ることがで きる。また、 SCHに重畳する情報を増やすことができれば、 SCHのみによってセル I D自体をダイレクトに同定することも視野に入れることができ、この場合には、セクタ同 定を含むセルサーチ処理を、 SCHのみを用いた 2段階の処理(2段階セルサーチ) によって実現できることになる。
[0297] また、本発明の同期チャネル (SCH)のデータ構造は、前記セクタ固有符号は、 m 個 (mは 2以上の自然数)の符号要素を一組とすると共に、その一組の符号要素を周 波数軸上のサブキャリアに繰り返し割り当てることによって構成され、かつ、各セクタ に対応する前記セクタ固有符号の各々は、相互に直交関係にある。
[0298] セクタ固有符号が、 m個の符号要素を一組とする単位で、周波数軸上のサブキヤリ ァに繰り返し割り当てられていて、かつ、その m個の符号要素はセクタ毎に直交して いる点を明らかとしたものである。なお、「符号要素」という用語は、「符号列」という意 味の、「上位概念としての符号」と、その符号列の構成要素である個々の符号(「下位 概念としての符号」)とを区別するために便宜上、用いており、例えば、逆拡散の単位 である「チップ」に対応するものである。また、符号要素が周波数軸上のサブキャリア に割り当てられることによって、例えば、サブキャリアの位相が変化し、これによつてセ クタ固有情報を伝送することができる。ここで、例えば、 m= 3とするとき、セクタ 1に対 応する符号 Mlが、符号要素 (ml, m2, m3)を単位として、周波数軸上において、 Ml = (ml, m2, m3, ml, m2, m3, · · ·)というように、 3個の符号要素周期で、低 周波数側から高周波数側に向かって繰り返し割り当てられている。セクタ 2の符号 M 2も同様に、 M2= (m4, m5, m6, m4, m5, m6, · · ·)というように、 3個の符号要素 周期で、低周波数側力も高周波数側に向力つて繰り返し割り当てられている。そして 、符号 Ml、 M2の構成単位である、(ml, m2, m3)と、(m4, m5, m6)とは、相互 に直交している。
[0299] 例えば、 ml、 m2、 m3の各々の複素共役を、符号 Mlおよび M2に乗算(逆拡散) してその結果を加算した場合、符号 Mlについては高い相関値を示すものの、符号 M2については相関値が" 0"になり、両符号を区別して取り出すことができるということ である。直交符号を作成するための基礎的な考え方の一例を以下に示す。複素位相 平面 (IQ平面であり、 I軸が実数軸に相当し、 Q軸が虚数軸に相当する)上において 、例えば、 120度の角度をなして配置された、振幅" 1"の 3本のベクトル(PI, P2, P 3)を設定する。この 3本のベクトルは、ベクトル加算を行なうど' 0"になるという関係に あるため、これを利用すれば、容易に、(m= 3の場合の)直交符号を作成することが できる。例えば、符号 M1 = (P1, PI, PI)と、符号 M2= (P1, P2, P3)と、符号 M3 = (PI, P3, P2)とは、相互に直交する。例えば、符号 M2の符号要素(PI, P2, P3 )の各々の複素共役を、符号 Ml、 M2、 M3の各々に乗算して各符号要素同士をカロ 算した場合、符号 M2の相関値は" 3"となるが、符号 Ml、 M3の場合は、結局、各符 号要素同士の相対的な関係として、ベクトル Pl、 P2、 P3の関係がそのまま維持され るだけである。従って、加算すれば" 0"になる。以上の例では、直交関係にある 3本 のベクトルを利用している力 ベクトル数を増やせば(例えば、 90度の角度をなす 4本 のベクトルを使用すれば)、符号要素の数をさらに増やすことができ、これによつて、 直交関係にある符号の数 (上記の例では、生成可能な符号は Ml、 M2、 M3の 3個 であるため、符号数は" 3"である)を、より多くすることができる。従って、一つのセル に含まれるセクタ数が増大したとしても、上記の考え方を利用すれば、そのセクタ数 に見合うだけの直交符号を容易に作成することができる。
[0300] また、本発明の同期チャネル (SCH)のデータ構造は、前記セクタ共通符号と、前 記セクタ固有符号に加えて、さらに、セル固有符号(「セル固有情報を示す符号」、ま たは「セル固有のセル ID (もしくは!、くつかのセルで共通であるセル IDグループを示 す情報)を含む符号」 ヽぅ場合もある)が乗算されて!ヽる。
[0301] SCHに、セル固有符号も乗算しておくことによって、所望の条件が満たされるなら ば、 SCHによるセクタ同定に加えて、 SCHのみによってセル IDもダイレクトに同定す ることも可能となる。この場合には、セクタ同定を含むセルサーチ処理力 SCHのみ を用いた 2段階の処理ですむことになり(2段階セルサーチ)、従来の 3段階セルサー チに比べて、サーチプロセスを短縮することができる。
[0302] また、本発明の同期チャネル (SCH)のデータ構造は、前記セル固有符号は、セル サーチ時に移動局が取得するセル固有情報を示す符号である。セル固有符号が、 セル固有情報 (セル ID等)を示すことを明ら力としたものである。
[0303] また、本発明の同期チャネル (SCH)のデータ構造は、前記セクタ共通符号は、周 波数軸上のサブキャリアに割り当てられており、前記セクタ固有信号は、前記セクタ 共通符号が割り当てられたサブキャリアに割り当てられており、前記セル固有符号を 構成する符号要素の各々は、前記セクタ共通符号が割り当てられたサブキャリアのう ちの一対のサブキャリア間の相対的な位相差情報を示している。従って、周波数軸 上の前記セクタ共通符号が割り当てられたサブキャリアにおいては、一対のサブキヤ リアの一方には位相基準となる前記符号要素が乗算されており、他方のサブキャリア には相対的な位相差を示す前記符号要素が乗算されている。 [0304] セル固有情報(セル ID、アンテナ配置、 BCH (報知チャネル)帯域幅、 GI (Guard I nterval :ガードインターバル、 CP : Cyclic Prefixともいう)長等)は、周波数軸上に配置 される、 2本のサブキャリア同士の相対的な位相差の情報によって伝送される点を明 らカとしたものである。すなわち、セル固有符号力 各サブキャリアの絶対的な位相を 示すのではなぐ対をなすサブキャリアの相対的な位相を示す方式を採用するもので あり、これによつて、セル固有符号の生成が容易化され、例えば、 GCL符号や Wals h-Hadamard符号等を利用し、セル固有情報と対応させることにより移動局に情報 を通知することができる。サブキャリア数が十分であれば、セル同定に必要なすべて の情報を、 SCHにより伝送することができる。
[0305] また、本発明の同期チャネル (SCH)のデータ構造は、前記セクタ共通符号ならび に前記セル固有符号を構成する前記位相基準となる符号要素の各々は、全セルに 共通の符号とする。
[0306] このように、セルサーチの第 1ステップにおける信号処理 (受信信号における SCH の位置を検出するための信号処理)を、セクタ固有符号のレプリカを用いた相互相関 法によって実施可能とするために、 SCHのデータ構造に工夫が施されている。 SCH は、 1フレーム期間において周期的に配置されているため、その周期性を利用した「 自己相関法」によって位置検出が可能である力 レプリカ符号を用いた「相互相関法 」を用いると、より鋭い検出ピークが実現され、より高精度の SCHのタイミングの検出 が可能となる。 SCHは、 3種類の符号 (セクタ共通符号、セクタ固有符号、セル固有 符号)が乗算されて構成される。ここで、セクタ共通符号を全セルで共通とし、また、 セル固有符号のうちの、位相基準となる符号要素も全セルで共通とする。すると、そ の位相基準となる符号要素が乗算されたサブキャリアに乗算されている符号は、(全 セル共通のセクタ共通符号)と、(セクタ固有符号)と、(全セル共通のセル固有符号) となり、実質的に、(全セルで共通の符号)に (セクタ固有符号)が乗算されていること になる。つまり、その位相基準となる符号要素が乗算されたサブキャリアに関しては、 3種類の符号が乗算されては 、るものの、その内の 2つの符号は全セルで共通であ る。従って、異なるのは、セクタ固有符号だけということになる。このことは、セクタ固有 符号のレプリカを用いた相関検出が可能であることを意味する。従って、受信装置側 で、各セクタに対応したセクタ固有符号のレプリカ符号の時間波形を用意しておき、 受信信号 (FFT前の信号)にそのレプリカ符号の時間波形を乗算して相関ピークを 検出することによって、受信信号における SCHの位置を高精度に検出することがで きる。従って、その後のセクタ同定やセル同定をより効率的に行なうことが可能となる 。ただし、上述のような SCHの構造が採用されている場合でも、 1フレーム期間中に S CHが周期的に配置されていることには変わりがないため、自己相関法 (すなわち、 受信信号を所定期間だけ遅延させた信号と、元の受信信号との相関を検出する方 法)による位置検出を行なうことも可能である。
[0307] また、本発明の同期チャネル (SCH)のデータ構造は、前記セクタ固有符号は、 2m 個(mは 2以上の自然数)の符号要素を一組とし、この一組の符号要素を、周波数軸 上のサブキャリアに、繰り返し割り当てることによって構成されると共に、前記 2m個の 符号要素は、請求項 2または請求項 3に記載される、セクタ毎に直交している m個の 符号要素の組を 2組用意し、各組を周波数軸上で隣接するように、サブキャリアに割 り当てることによって構成され、かつ、前記セクタ固有符号の構成単位である前記 2m 個の符号要素のうちの、半分の m個の符号要素の各々には、その符号要素と同じ値 をもつ、他の半分の m個の符号要素の各々に対する相対的な位相差を示す、前記 セル固有符号を構成する符号要素が乗算されて ヽる。
[0308] SCHをセクタ同定にのみ使用するのであれば、上記のとおり、 m個の符号要素を 構成単位とする直交符号を周波数軸上に繰り返し配置するだけでよいが、さらに、セ ル固有情報も伝送するとなると、より条件が厳しくなる。すなわち、 SCHに、セクタ固 有情報とセル固有情報の双方を重畳して伝送するためには、セクタ固有情報とセル 固有情報が相互に悪影響を与えないことが条件となり、また、各々の情報を独立に( つまり、並行処理によって)復元できるようにすることも、処理時間の短縮のためには 重要である。これらの条件を満たすために、ここでは、セクタ同定のための直交符号 の構成単位である、 m個の符号要素の組を 2組用意し、それらを周波数軸上で 2段に 重ねあわせ、 2m個の符号要素を新たな構成単位とし、これを周波数軸上で繰り返し て配置するようにする。 m個の符号要素はセクタを同定するために使用される。残り の m個の符号要素は、セル固有符号を乗算するために使用される。セル固有符号は 、上記のとおり、一対のサブキャリアの相対的な位相差を示すため、残りの m個の符 号要素の各々には、同じ値をもつ他の m個の符号要素の各々(つまりセクタ固有符 号の符号要素の各々)に対する、位相差を示す符号が乗算される。例えば、(ml, m 2, m3)の符号要素力 なるセクタ同定用の直交符号を、周波数軸上で 2段に重ね 合わせ、これを単位として低周波数側から高周波数側に繰り返し配置して符号を形 成する場合を考える。例えば、符号 Ml = (ml, m2, m3, 「ml」, 「m2」, 「m3」 · · · とする。「」は、同じ値の符号要素同士を区別するために付している。そして、「ml」 には、低周波数側の同じ値をもつ mlに対する位相差を示す符号 "cl"を乗算し、「m 2」、 「m3」にも、各々、低周波数側の m2、 m3に対する位相差を示す符号" c2"、 "c 3"を乗算する。
これによつて、セクタおよびセル同定用符号 Mlは、 Ml = (ml, m2, m3, ml -cl , m2-c2, m3 'c3 " ')となる。上記のとおり、 (ml, m2, m3)は、セクタ間で直交す るため、複素共役の乗算と相関検出によってセクタ固有符号を区別して取り出すこと ができる。また、例えば、 "ml 'cl"については、 ml (位相基準となるサブキャリアに 乗算されている符号)の複素共役を乗算すれば、 mlは見えなくなって、セル固有情 報をもつ" cl"を取り出すことができ、 c2、 c3も同様に取り出すことができる、このよう に、基本的には、位相基準のサブキャリアに対する他方のサブキャリアの位相差を検 出することによって、セル固有符号 (Cn)を復調することができる(ただし、復調精度 の向上のためには、候補となるセル固有符号 Cnとの相互相関をとるのが望ましい)。 セクタ固有符号 (ml, m2, m3)を用いた逆拡散と相関検出によるセクタ同定と、複 素共役の乗算によるセル固有情報 Cn (cl, c2, c3 ' ' ')の復調処理とは、各々独立 に(並列に)実施することができる。また、セル固有情報の伝送に関しては、例えば、 同じ値" ml"が乗算されている 2本のサブキャリアをペアとし、そして、一方を位相基 準のサブキャリアとし、他方のサブキャリアに、セル固有符号 Cnを割り当てて、その位 相基準のサブキャリアとの間の相対的な位相差を与えることができるため、セクタ固 有符号による干渉を受けることなぐセル固有情報のみを、サブキャリア間の相対的 位相差情報として伝送することが可能である。従って、セル固有情報を効率的に伝 送することができる。 [0310] また、本発明の同期チャネル (SCH)のデータ構造は、前記セクタ固有符号は、 2m 個(mは 2以上の自然数)の符号要素を一組とし、その一組の符号要素を周波数軸 上のサブキャリアに、繰り返し割り当てることによって構成されると共に、前記 2m個の 符号要素は、本発明のセクタ毎に直交して 、る m個の符号要素の組を 2組用意し、 各符号における同じ値の符号要素同士が周波数軸上で隣接して配置されるように、 前記各組の符号要素をサブキャリアに交互に割り当てることによって構成され、かつ 、前記セクタ固有符号の構成単位である前記 2m個の符号要素のうちの、周波数軸 上の隣接するサブキャリアに割り当てられた前記同じ値の符号要素の一方には、他 方の位相基準となる符号要素に対する相対的な位相差を示す、前記セル固有符号 を構成する符号要素が乗算されて 、る。
[0311] 上記の例では、 m個の符号要素の組 (セクタ同定用の直交符号:例えば、(ml, m 2, m3) )を二組用意し、それらを周波数軸上で単に重ねて配置していた力 本発明 では、各組の同じ符号要素同士が、周波数軸上で隣接するように、入り組ませた形 態で配置する。例えば、符号 Ml = (ml, ml, m2, m2, m3, m3)とする。そして、 同じ値の符号要素の一方に、相対的な位相差を示すセル固有符号を乗算する。従 つて、セクタおよびセル同定用符号は Ml = (ml, ml -cl, m2, m2-c2, m3, m3 - c3)となる。そして、奇数番目の符号要素 (ml, m2, m3)を用いてセクタ同定を行な い、偶数番目の(ml 'cl, m2-c2, m3 'c3)の各々については、隣接する位相基準 のサブキャリアに乗算されている ml、 m2、 m3の各々の複素共役を乗算することによ つて、セル固有符号 (cl, c2, c3 " ')を復調することができる。本発明の優れている 点は、セル固有符号 Cnが乗算される前の、セクタ固有符号要素列において、同じ値 の符号要素同士が隣り合わせで配置されていること(つまり、 "ml、 ml"、 "m2、 m2" 、 "m3、 m3"というように周波数軸上でペアで配置されていること)である。値が同じ 符号同士が近接した周波数軸上に配置されているため、その符号が割り当てられた サブキャリアの伝搬路の伝達関数も等価とみなすことができることである(つまり、周 波数軸上でサブキャリアの位置が離れることによって、各サブキャリアの伝搬路の伝 達関数が異なってしまうと、この影響で位相が回ってしまい、このことが、 2つのサブキ ャリア間の相対位相差によりセル固有情報を伝送する場合の誤差となってしまい、セ ル固有情報の復調精度が低下する場合がある)。本発明では、 2つのサブキャリアが 周波数軸上で隣接して配置されているため、各サブキャリアの伝搬条件が同じと推 定できる確率が高いため、セル固有情報(つまり、 2つのサブキャリアの位相差)を、よ り高精度に伝送することが可能である。
[0312] また、本発明の同期チャネル (SCH)のデータ構造は、 Sf (Sfは自然数)個のサブ フレームを時間軸方向に 1フレーム期間に渡って配置し、かつ、複数のサブチャネル を周波数軸方向の全帯域に渡って配置し、これによつてマルチキャリア通信における フレームが構成され、前記同期チャネル (SCH)は、前記 1フレーム期間を Ss (Ssは S fの約数)個に等分した時間期間の各々の最後の 1シンボルに配置され、かつ、その 同期チャネル (SCH)は、周波数上において、所定本のサブキャリア間隔で周期的 に配置される。従って、セクタ同定のために使用されるサブキャリアが合わさって形成 される時間波形は、 1シンボル期間内において所定波形が繰り返される周期性をもつ た時間波形となり、この時間波形の周期性を利用することによって、自己相関法によ る SCH位置の検出が可能である。
[0313] 1つのフレーム期間を所定数で等分して得られる時間期間の最後の(1つの)シンポ ルに SCHが割り当てられ、その SCHが割当てられたサブキャリアのうちの、セクタ同 定のために使用されるサブキャリアは、周波数軸上で、所定間隔で周期性をもって配 置される。この配置によれば、 OFDM通信方式における直交するサブキャリアの周 波数関係、すなわち時間方向の対称性に起因して、それらのサブキャリアが合わさつ て形成される時間波形が、 1シンボル期間内に所定波形が繰り返される周期性をもつ た時間波形 (例えば、所定波形を Aとすれば、 1Z2シンボル毎に Aが繰り返されるよ うな時間波形)が得られる。時間波形の周期性を利用することによって、自己相関法 あるいは相互相関法による SCH位置の検出が可能である。
[0314] また、本発明の同期チャネル (SCH)のデータ構造は、複数のサブフレームを時間 軸方向に 1フレーム期間に渡って配置し、かつ、複数のサブチャネルを周波数軸方 向の全帯域に渡って配置し、これによつてマルチキャリア通信におけるフレームが構 成され、前記同期チャネル(SCH)は、前記 1フレーム期間の所定の 2シンボルに同 一の同期チャネルが配置される。従って、セクタ同定のために使用されるサブキヤリ ァが合わさって形成される時間波形は、 2シンボル期間においては、 1シンボル期間 毎に同じ波形が繰り返される周期性をもった時間波形となり、この時間波形の周期性 を利用することによって、自己相関法による SCH位置の検出が可能である。
[0315] 2シンボルに SCHが割り当てられ、 SCHが割当てられたサブキャリアのうちの、セク タ同定のために使用されるサブキャリアは、周波数軸上で所定間隔で周期性をもつ て配置される。本発明の場合、 2シンボルにわたって SCHが割り当てられているため 、結果的に、シンボル毎に同一の時間波形が現れることになる(例えば、 1シンボル 期間の波形を Cとすれば、 2シンボル期間において、 1シンボル期間毎に Cが繰り返 されるような時間波形となる)。このような、 1シンボル期間毎の時間波形の周期性を 利用することによって、自己相関法による SCH位置の検出が可能である。また、全周 波数帯のサブキャリアを利用して SCHを送信することができるため、各シンボルに異 なる情報を送信する場合には、セル固有情報 (相対的位相差情報)の伝送に使用で きる符号長を長くすることができ、より多くのセル固有情報を送信することが可能とな る。
[0316] また、本発明のセルサーチ方法は、マルチキャリア送信装置からのマルチキャリア 信号を受信し、その受信信号に含まれる、セルおよびセクタ同定情報を含む本発明 の同期チャネル(SCH)を利用して、セクタならびにセルを同定するセルサーチ方法 であって、自己相関法あるいは相互相関法によって、受信信号における同期チヤネ ル (SCH)位置を検出する第 1ステップと、周波数軸上に配置されている、前記同期 チャネル (SCH)のセクタ固有符号による逆拡散処理によって、最大の受信電力を与 えるセクタ固有符号を検出してセクタを同定すると共に、これと並行して、前記同期チ ャネル (SCH)が割り当てられているサブキャリアにおける、前記位相基準となるサブ キャリアと、このサブキャリアに対応する、セル固有符号の符号要素が乗算されている サブキャリアとの間の位相差を検出することによって前記セル固有符号を復調し、さ らに必要に応じて、検出したいセル固有符号との相関検出処理を行ない、これによつ てセル固有符号を検出する第 2ステップとにより実行される。
[0317] 上記のとおり、マルチキャリア通信のダウンリンクの SCHに、セクタおよびセルを同 定するための情報を重畳することによって、所定条件が満たされれば (つまり、サブキ ャリア数を充分にとれ、一対のサブキャリア間の相対位相差によって、必要なセル固 有情報をすベて伝送することができれば)、パイロットチャネルを使用せずに、 SCH のみを用いて、セクタ同定を含むセルサーチを完了させることができる。すなわち、 S CHの周期性を利用した自己相関法による、あるいは、セクタ固有符号のレプリカを 利用した相互相関法による、時間軸上の SCHタイミングの検出(第 1ステップ)と、周 波数軸上の情報に基づくフレームタイミングの同定、セクタ IDならびにセル IDの同定 (第 2ステップ)と、によって、セルサーチが完了する。従って、従来の 3段階セルサー チに比べて、サーチプロセスを短縮することができる。また、この場合、ノ ィロットチヤ ネルを用いた逆拡散と相関検出は、データチャネルの復調時に必要となるだけであ り、セルサーチでは不要であるため、パイロットチャネルによる相関演算のためのハー ドウエアの負担を軽減すること (メモリ容量の削減等)を達成することができる。また、 S CHにはセクタ固有符号が重畳されていることから、セクタ同定に関して、セクタ間の 干渉やフェージングに強いという効果も得ることができる。ただし、サブキャリア数が十 分ではない場合には、 SCHだけでは、セル IDの直接の同定ができず、セル IDダル ープ情報の検出にとどまる場合があるため、この場合には、第 3ステップの処理として 、 ノ ィロットチャネルを用いた逆拡散と相関検出を実施して、セル IDを同定する。
[0318] また、本発明のマルチキャリア送信装置は、本発明の構造をもつ同期チャネル (SC H)を、フレーム期間において、周波数軸上に割り当てる割り当て手段と、前記同期 チャネル (SCH)が周波数軸上に割り当てられたマルチキャリア信号を送信する、複 数のセクタ毎に設けられた指向性アンテナを備える送信手段と、を有する。
[0319] これによつて、セクタ固有情報とセル固有情報が周波数軸上に割り当てられたマル チキャリア信号を、セクタ毎のアンテナ力も送信することが可能となる。
[0320] また、本発明のマルチキャリア受信装置は、本発明のマルチキャリア送信装置から 送信される前記マルチキャリア信号を受信し、その受信信号に含まれる、セクタ固有 符号が乗算された同期チャネル (SCH)を利用してセクタを同定するマルチキャリア 受信装置であって、前記同期チャネル (SCH)が時間軸上で周期的に配置されてい ることを利用して、受信信号における同期チャネル (SCH)位置を検出するタイミング 検出手段と、周波数軸上に配置されている、前記同期チャネル (SCH)に乗算された セクタ固有符号による逆拡散処理によって、最大の受信電力を与えるセクタ固有符 号を検出するセクタ同定手段と、を有する。
[0321] これによつて、マルチキャリア信号を受信して、 SCHによるセクタの同定処理 (セク タサーチ)を実施することができる。
[0322] また、本発明のマルチキャリア受信装置は、マルチキャリア送信装置から送信され るマルチキャリア信号を受信し、その受信信号に含まれる、セル間で共通の符号が 採用されている同期チャネル (SCH)を利用してセクタを同定するマルチキャリア受 信装置であって、前記セル固有符号を構成する符号要素のうちの前記位相基準とな る前記符号要素が割り当てられたサブキャリアに乗算されている、前記セクタ固有符 号のレプリカ符号の時間波形を利用した相互相関法によって、受信信号における同 期チャネル (SCH)位置を検出するタイミング検出手段と、周波数軸上に配置されて いる、前記同期チャネル (SCH)のセクタ固有符号による逆拡散処理によって、最大 の受信電力を与えるセクタ固有符号を検出するセクタ同定手段と、を有する。
[0323] 本発明のマルチキャリア受信装置では、受信信号に含まれる SCHの位置を検出す る第 1ステップにおいて、セクタ固有符号のレプリカ符号の時間波形を、受信信号に 乗算して相関を求める方法 (相互相関方法)を採用する。これによつて、 SCHのタイミ ングを高精度に検出することができる。
[0324] また、本発明のマルチキャリア受信装置は、前記セクタ同定手段によるセクタ固有 符号の検出処理と並行して、前記同期チャネル (SCH)が割り当てられているサブキ ャリアにおける、前記位相基準となるサブキャリアと、このサブキャリアに対応する、セ ル固有符号の符号要素が乗算されているサブキャリアとの間の位相差を検出するこ とによって前記セル固有符号を復調し、さらに必要に応じて、検出したいセル固有符 号との相関検出処理を行ない、これによつてセル固有符号を検出し、セル IDまたは セル IDグループ情報を検出するセル同定手段を、さらに有する。
[0325] これによつて、マルチキャリア信号を受信して、 SCHによる、セクタ同定を含むセル サーチを実施することができる。サブキャリア数が十分であれば、 SCHのみによって 、セクタ IDとセル IDの同定が可能である。
[0326] また、本発明のマルチキャリア受信装置は、前記セル同定手段によって特定される 情報が、セル IDグループ情報である場合に、パイロットチャネルを利用した逆拡散と 相関検出処理を実施してセル IDを検出する、セル同定処理を完結させるための手 段を、さらに有する。
[0327] これによつて、サブキャリア数が十分ではなぐ SCHによって、セル IDグレープのみ が同定される場合には、続いて、ノ ィロットチャネルの逆拡散と相関検出によって、セ ル IDを同定し、セルサーチを完結させることができる。
[0328] また、本発明の同期チャネル (SCH)のデータ構造は、前記セル固有符号を構成 する前記位相基準となる符号要素が乗算されるサブキャリア (すなわち、セクタ同定 のために使用されるサブキャリア)は、中心周波数を基準として低周波数側ならびに 高周波数側に対称に、かつ、所定本のサブキャリア間隔で配置され、これによつて、 前記セクタ同定のために使用されるサブキャリアが合わさって形成される時間波形は 、 1シンボル期間内において、 1ZM (Mは 2以上の自然数)シンボル単位で、基準波 形、またはその基準波形の反転波形とが、繰り返される周期性をもった時間波形とな り、この時間波形の周期性を利用することによって、自己相関法による同期チャネル ( SCH)位置の検出が可能である。
[0329] さらに、セクタ同定のために使用するサブキャリアの、周波数軸上における配置を 工夫することによって、 1ZN (Nは 4以上の自然数)シンボル単位で、特徴的な時間 波形を得ることができ、この時間波形の特徴的な周期性を利用することによって、より 効率的に、精度が高い相関判定が可能となる。 1ZN単位の周期性に着目した簡易 な相関検出ですむため、相関器 (マッチドフィルタという場合もある)の構成を簡素化 することができる。
[0330] また、本発明の同期チャネル (SCH)のデータ構造は、前記セクタ同定のために使 用されるサブキャリアは、中心周波数を基準として低周波数側ならびに高周波数側 に対称に、かつ、中心周波数を 0番目とした場合に、 2番目、 6番目、 10番目、 14番 目 · · · ·、以下同様に、 3本のサブキャリアを隔てた位置に配置され、これによつて、前 記セクタ同定のために使用されるサブキャリアが合わさって形成される時間波形は、 1シンボル期間内において、 1Z4シンボル単位で、基準波形と、その基準波形の反 転波形とが、交互に繰り返される周期性をもった時間波形となる。 [0331] 基準波形を Bとすると、 1シンボル期間内において、 1Z4シンボル単位で、 B、 一 B 、 B、 一 Bというふうに、基準波形と、その基準波形の反転波形とが、交互に繰り返さ れる周期性をもった時間波形が得られる。この場合、 1Z4シンボル単位で繰り返され る、時間波形の特殊な周期性を検出できればよいため、相関器の構成を簡素化する ことができる。
[0332] また、本発明の同期チャネル (SCH)のデータ構造は、前記セクタ同定のために使 用されるサブキャリアは、中心周波数を基準として低周波数側ならびに高周波数側 に対称に、かつ、中心周波数を 0番目とした場合に、 4番目、 8番目、 12番目、 16番 目 · · · ·、以下同様に、 3本のサブキャリアを隔てた位置に配置され、これによつて、前 記セクタ同定のために使用されるサブキャリアが合わさって形成される時間波形は、 1シンボル期間内において、 1Z4シンボル単位で、同一の基準波形が繰り返される 周期性をもった時間波形となる。
[0333] 基準波形を Dとすると、 1シンボル期間内において、 1Z4シンボル単位で、 D、 D、 D、 Dというふうに、同一の基準波形が繰り返される周期性をもった時間波形が得られ る。この場合も、相関器の構成を簡素化することができる。
[0334] また、本発明の同期チャネル (SCH)のデータ構造は、前記セクタ共通符号ならび に前記セル固有符号を構成する前記位相基準となる符号要素の各々は、全セルに 共通の符号であり、また、前記セクタ共通符号の符号要素は、周波数軸上の同期チ ャネル(SCH)が割当てられるサブキャリアに関して共通であり、かつ、前記セル固有 符号を構成する前記位相基準となる符号要素も、周波数軸上の位相基準となるサブ キャリアに関して共通であり、これによつて、前記セクタ固有符号による逆拡散処理に よって最大の受信電力を与えるセクタ固有符号を検出してセクタを同定する際に、逆 拡散の対象となる符号要素を得るためのサブキャリアが、隣接する一組のサブキヤリ ァに限定されるという条件を不要とする。
[0335] セルサーチの第 1ステップの処理(SCH位置の検出処理)を相互相関によって行な う場合に、全セルに共通のセクタ共通符号と、全セルに共通のセクタ固有符号のうち の、位相基準となるサブキャリアに乗算される符号要素とを、周波数軸上のサブキヤリ ァ間で共通化して (つまり、すべて同一として)、最も簡素化された符号構成を採用す るものである。これによつて、セクタ固有符号を、総サブキャリアのうちのいずれかのサ ブキャリアを選択して特定することができる。従って、逆拡散の対象となる符号要素を 得るためのサブキャリア力 隣接する一組のサブキャリアに限定されるという条件が不 要となる。
[0336] また、本発明のセルサーチ方法は、自己相関法あるいは相互相関法によって、受 信信号における同期チャネル (SCH)の位置を検出する第 1ステップと、前記セクタ固 有符号の符号要素が割当てられている、位相基準となるサブキャリアが合わさって形 成される時間波形が、その割当てられている符号要素に応じた特徴的な波形となる ことを利用して、相互相関法による相関値を検出し、最も高い相関値を示すセクタを 直近のセクタとして同定すると共に、これと並行して、前記同期チャネル (SCH)が割 り当てられているサブキャリアにおける、前記位相基準となるサブキャリアと、このサブ キャリアに対応する、セル固有符号の符号要素が乗算されているサブキャリアとの間 の位相差を検出することによって前記セル固有符号を復調し、さらに必要に応じて、 検出したいセル固有符号との相関検出処理を行ない、これによつてセル固有符号を 検出する第 2ステップと、を含む。
[0337] セルサーチ方法において、セクタ同定を、 FFT処理後の逆拡散による相関値ピー ク判定ではなぐ FFT前の時間波形の相互相関によっても行なうことも可能である点 を明らかとしたものである。すなわち、 FFT処理前に、セクタ固有符号のレプリカ時間 波形を用いて相互相関ピークを検出し、最大のピークを与える符号を特定することに よって、最も近くにあるセクタを同定することが可能である。このレプリカ時間波形を用 いた相互相関法を適用するためには、移動局において、基地局から送信される各種 のセクタ固有符号が既知であることが条件となる。なお、セクタ同定方法として、直交 符号による逆拡散による相関検出する手法を用いる力、レプリカ時間波形による相互 相関を検出する手法によるかは、要求される検出精度や回路上の制約等を考慮して 、適宜、決定することができる。
図面の簡単な説明
[0338] [図 1]本発明に係るマルチキャリア送信処理の主要な手順の一例を示すフローチヤ ートである。 [図 2]本発明に係るマルチキャリア受信処理の主要な手順の一例を示すフローチヤ ートである。
圆 3]直交符号の生成の基礎となる概念を示す図である。
[図 4]3つの直交符号 (符号 1,符号 2,符号 3)を構成する符号要素の配列と、符号 2 のみを復調する場合の原理を説明するための図である。
圆 5]セル固有情報 (セクタ ID、報知チャネル帯域幅、アンテナ配置、 GI長等)を、 S CHに重畳する方法を説明するための図である。
[図 6] (a)〜(d)は各々、セクタ固有情報およびセル固有情報を、 SCHに重畳して送 信するための符号形式を説明するための図である。
[図 7]周波数軸上におけるサブキャリアインデックス (サブキャリア番号)を示す図であ る。
[図 8] (a)は、周波数軸上におけるセクタ共通符号の割り当てを示す図である。 (b)は 、 3つのセクタ固有符号の構成を示す図である。(c)は、セクタ固有符号の生成の基 礎となる概念を示す図である。
[図 9]周波数軸上において、セル固有情報を伝送するための符号系列の構成を示す 図である。
[図 10]移動体通信システムの基地局(マルチキャリア送信装置)における、物理レイ ャおよび MAC (Media Access Control)サブレイヤの構成例を示すブロック図で ある。
[図 11]図 10に示される送信回路部の具体的な構成を示すブロック図である。
[図 12]本発明に係るマルチキャリア受信機の構成の一例を示すブロック図である。 圆 13]タイミング検出と周波数誤差検出の機能を有する回路の構成例を示すブロック 図である。
[図 14]セクタ同定のための逆拡散処理の具体的な内容を示す図である。
圆 15]セル固有情報の復調処理を説明するための図である。
圆 16]周波数軸上に配置された、 SCHが割り当てられたサブキャリア (すなわち、周 波数軸上における SCHの構成)を示す図である。
[図 17] (a)は、第 3の実施形態において、 SCHに乗算されるセクタ共通符号の周波 数軸上における配置を示す図であり、(b)は、第 3の実施形態において、 3つのセクタ 固有符号を示す図である。
圆 18]第 3の実施形態におけるセル固有符号の配置を示す図である。
圆 19]第 3の実施形態におけるフレーム構成を示す図である。
[図 20]セクタ固有符号を用いた相関演算処理の具体的な内容例を示す図である。 圆 21]第 3の実施形態におけるセル固有符号の復調方法を示す図である。
[図 22]本発明で使用される、マルチキャリア通信システムのダウンリンクのフレーム構 成を示す図である。
[図 23]セルおよびセクタの構成の一例を示す図である。
[図 24]フレームにおける同期チャネル(SCH)の配置位置の一例を示す図である。
[図 25]SCHの構成例を示す図である。
圆 26]SCHの繰り返し波形を検出し、時間同期を行なうための受信機の構成を示す ブロック図である。
[図 27]周波数軸上のサブキャリアに割り当てられた同期チャネル (SCH)の一例を示 す図である。
[図 28]3GPPで検討されている OFDM通信方式におけるリソースブロックの構成の 一例を示す図である。
[図 29] (a)は、周波数軸上におけるセクタ共通符号の割り当てを示す図であり、 (b)は 、 3つのセクタ固有符号の構成を示す図であり、(c)は、セクタ固有符号の生成の基 礎となる概念を示す図であり、複素位相平面上におけるベクトルを示す。
[図 30]セル固有情報を伝送するための符号系列の、周波数軸上における構成を示 す図である。
圆 31]レプリカ信号により SCHの時間位置を検出し、時間同期を行なうための受信 機の構成を示すブロック図である。
圆 32]第 5の実施形態で使用する 76本のサブキャリアをその機能毎に示した図であ る。
圆 33]第 5の実施形態におけるセル固有情報が乗算されたサブキャリア (セル固有情 報検出用 SCHサブキャリア)とその位相基準となるサブキャリア (相互相関検出用 SC Hサブキャリア)となるペアをなすサブキャリアとの関係を示す図である。
[図 34] (a)は、第 5の実施形態において、周波数軸上におけるセクタ共通符号の割り 当てを示す図であり、(b)は、第 5の実施形態において、 3つのセクタ固有符号の構 成を示す図であり、(c)は、第 5の実施形態において、セクタ固有符号の生成の基礎 となる概念を示す図であり、複素位相平面上におけるベクトルを示す。
[図 35] (a)〜(d)は、第 5の実施形態において、 SCHシンボル期間における複数の S
CHサブキャリアが合わさって形成される時間領域における波形力 1シンボル期間 内で、基準波形 (あるいは、その基準波形を反転した波形)の繰り返しになることを説 明するための図である。
[図 36]第 5の実施形態におけるセル固有情報を伝送するための符号系列の周波数 軸上における構成を示す図である。
符号の説明
10 MAC部
12 SCHデータ生成部
14 送信データ出力部
16 送信回路制御部
20 (20a〜20b) 物理層咅
22 (22a〜22c) 受信回路部
24 (24a〜24c) 送信回路部
26 (26a〜26c) アナログ回路部
28 (28a〜28c) アンテナ部
210 セクタ固有符号同定のための逆拡散部
220 セクタ電力判定部
230 SCHデータ (セル固有情報を含む)復調部
400 シフトレジスタ
402 加算器
404 乗算器
CL1~CL3 セル SC1〜SC3 セクタ

Claims

請求の範囲
[1] 複数のセクタを含むセルを管轄する基地局により送信される同期チャネルのデータ を作成するデータ作成装置であって、
前記セクタを識別するためのセクタ識別番号に対応するセクタ固有符号を用いて、 セクタ毎の同期チャネルのデータを作成することを特徴とするデータ作成装置。
[2] 前記セクタ固有符号は、相互に直交関係にあることを特徴とする請求項 1記載のデ ータ作成装置。
[3] 前記セクタ固有符号は、隣接セル間で共通であることを特徴とする請求項 2記載の データ作成装置。
[4] 前記セクタ識別番号に対応する直交符号を用いて、セクタ毎のパイロットチャネル のデータを作成することを特徴とする請求項 3記載のデータ作成装置。
[5] 複数のセクタを含むセルを管轄する基地局により送信される同期チャネルのデータ を作成するデータ作成方法であって、
前記セクタを識別するためのセクタ識別番号に対応するセクタ固有符号を用いて、 セクタ毎の同期チャネルのデータを作成することを特徴とするデータ作成方法。
[6] 前記セクタ識別番号に対応する直交符号を用いて、セクタ毎のパイロットチャネル のデータを作成することを特徴とする請求項 5記載のデータ作成方法。
[7] 複数のセクタを含むセルを管轄する基地局であって、
前記セクタを識別するためのセクタ識別番号に対応するセクタ固有符号を用いたセ クタ毎の同期チャネルのデータを記憶する記憶部と、
前記セクタに対応する前記同期チャネルのデータを、各セクタに対して送信する送 信部と、を備えることを特徴とする基地局。
[8] 複数のセクタを含むセルを管轄する基地局であって、
前記セクタを識別するためのセクタ識別番号に対応するセクタ固有符号を用いて、 セクタ毎の同期チャネルのデータを作成する同期チャネルデータ作成部と、 前記セクタに対応する前記同期チャネルのデータを、各セクタに対して送信する送 信部と、を備えることを特徴とする基地局。
[9] 前記同期チャネルデータ作成部は、前記セクタ識別番号に対応する直交符号を用 V、て、セクタ毎のパイロットチャネルのデータを作成し、
前記送信部は、前記セクタに対応するパイロットチャネルのデータを、各セクタに対 して送信することを特徴とする請求項 8記載の基地局。
[10] 複数のセクタを含むセルを管轄する基地局と通信を行なう移動局であって、
前記セクタを識別するためのセクタ識別番号に対応するセクタ固有符号を用いた同 期チャネルを含む信号を、前記基地局力 受信することを特徴とする移動局。
[11] 前記同期チャネルに基づいて、セクタ同定を行なうことを特徴とする請求項 10記載 の移動局。
[12] 前記同期チャネルに基づいて、同期検出を行なうことを特徴とする請求項 11記載 の移動局。
[13] 前記セクタ固有符号は、相互に直交関係にあることを特徴とする請求項 12記載の 移動局。
[14] 前記セクタ固有符号は、隣接セル間で共通であることを特徴とする請求項 13記載 の移動局。
[15] 前記信号と前記セクタ固有符号とを用いて相関をとることにより同期検出を行なうこ とを特徴とする請求項 14記載の移動局。
[16] 同期チャネル信号処理部を備え、前記同期チャネル信号処理部は、前記信号と前 記セクタ固有符号に対応するレプリカとの相関をとることにより前記同期検出を行なう ことを特徴とする請求項 15記載の移動局。
[17] 前記信号と前記セクタ固有符号とを用いて相関をとることによりセクタ同定を行なう ことを特徴とする請求項 16記載の移動局。
[18] 前記同期チャネル信号処理部は、前記信号と前記セクタ固有符号に対応するレブ リカとの相関をとることにより前記セクタ同定を行なうことを特徴とする請求項 17記載 の移動局。
[19] 前記複数のセクタに対応する複数のレプリカを予め記憶することを特徴とする請求 項 18記載の移動局。
[20] 前記同期チャネル信号処理部は、前記複数のレプリカのそれぞれと前記信号との 相関を並列でとることを特徴とする請求項 19記載の移動局。
[21] 前記同期チャネル信号処理部は、相関値が最大となる前記セクタ固有符号を特定 することにより前記セクタ同定を行なうことを特徴とする請求項 20記載の移動局。
[22] 前記同期チャネル信号処理部は、前記信号を周波数領域に変換し、前記セクタ固 有符号との相関をとることにより前記セクタ同定を行なうことを特徴とする請求項 17記 載の移動局。
[23] 前記複数のセクタに対応する複数のセクタ固有符号を記憶するセクタ固有符号記 憶部をさらに備えることを特徴とする請求項 22記載の移動局。
[24] 前記同期チャネル信号処理部は、前記複数のセクタ固有符号のそれぞれと前記信 号を周波数領域に変換したものとの相関を並列でとることを特徴とする請求項 23記 載の移動局。
[25] 前記同期チャネル信号処理部は、前記同期チャネルによりセクタ同定されたセクタ に対応する前記ノ ィロットチャネルの直交符号を用いて、前記パイロットチャネルに 含まれる情報を検出することを特徴とする請求項 24記載の移動局。
[26] 複数のセクタを含むセルを管轄する基地局から送信される、前記セクタを識別する ためのセクタ識別番号に対応するセクタ固有符号を用いて作成された同期チャネル を含む信号を、移動局において受信する際に使用される同期検出方法であって、 前記信号と前記セクタ固有符号とを用いて相関をとることにより同期検出を行なうこ とを特徴とする同期検出方法。
[27] 複数のセクタを含むセルを管轄する基地局から送信される、前記セクタを識別する ためのセクタ識別番号に対応するセクタ固有符号を用いて作成された同期チャネル を含む信号を、移動局において受信する際に使用されるセクタ同定方法であって、 前記信号と前記セクタ固有符号とを用いて相関をとることによりセクタ同定を行なう ことを特徴とするセクタ同定方法。
[28] 前記信号と前記セクタ固有符号とを用いて相関をとることにより同期検出を行なうこ とを特徴とする請求項 27記載のセクタ同定方法。
[29] 複数のセクタを含むセルを管轄する基地局から送信される、前記セクタを識別する ためのセクタ識別番号に対応するセクタ固有符号を用いて作成された同期チャネル と、前記セクタ識別番号に対応する直交符号を用いて作成されたパイロットチャネル とを含む信号を受信する移動局にぉ 、て、前記パイロットチャネルに含まれる情報を 検出する情報検出方法であって、
前記同期チャネルによりセクタ同定されたセクタに対応する前記ノ ィロットチャネル の直交符号を用いて、前記ノ ィロットチャネルに含まれる情報を検出することを特徴 とする情報検出方法。
[30] 複数のセクタを含むセルを管轄する基地局から信号を受信する受信部と、
前記受信した信号により信号の送信元であるセクタを同定するセクタ同定部と、を 備え、
前記セクタ同定部によるセクタの同定に基づいて、受信特性が良好なセクタを特定 してハンドオーバーを行な ヽ、
前記受信部は、セクタを識別するセクタ識別番号に対応するセクタ固有符号を用い たセクタ毎の同期チャネルのデータを受信することを特徴とする移動局。
[31] 複数のセクタを含むセルを管轄し、前記セクタを識別するためのセクタ識別番号に 対応するセクタ固有符号を用いたセクタ毎の同期チャネルのデータを各セクタに送 信する基地局と、
前記基地局から前記データを受信する移動局と、から構成される移動通信システム
[32] 前記基地局と移動局との間の通信方式が、マルチキャリア通信方式であることを特 徴とする請求項 31記載の移動通信システム。
[33] 前記マルチキャリア通信方式は、 OFDMを適用することを特徴とする請求項 32記 載の移動通信システム。
PCT/JP2007/062243 2006-06-16 2007-06-18 データ作成装置、データ作成方法、基地局、移動局、同期検出方法、セクタ同定方法、情報検出方法、および移動通信システム WO2007145357A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
BRPI0722367-6A BRPI0722367B1 (pt) 2006-06-16 2007-06-18 Método usado em uma estação de base
BRPI0712971-8A BRPI0712971B1 (pt) 2006-06-16 2007-06-18 Estação de base
JP2008521286A JP5247441B2 (ja) 2006-06-16 2007-06-18 データ構造
EA200970024A EA013068B1 (ru) 2006-06-16 2007-06-18 Структура данных канала синхронизации в системе мобильной связи, использующей схему связи с множеством несущих, и базовая станция, управляющая сотой, содержащей множество секторов
BRPI0722368-4A BRPI0722368B1 (pt) 2006-06-16 2007-06-18 Estação móvel
EP07767141A EP2037610A4 (en) 2006-06-16 2007-06-18 DATA CREATION DEVICE, DATA CREATION METHOD, BASE STATION, MOBILE STATION, SYNCHRONIZATION DETECTION METHOD, SECTOR IDENTIFICATION METHOD, INFORMATION DETECTION METHOD, AND MOBILE COMMUNICATION SYSTEM
US12/303,696 US20100157940A1 (en) 2006-06-16 2007-06-18 Data generation apparatus, data generation method, base station, mobile station, synchronication detection method, sector identification method, information detection method and mobile communication system
US12/490,843 US9059827B2 (en) 2006-06-16 2009-06-24 Data generation apparatus, data generation method, base station, mobile station, synchronization detection method, sector identification method, information detection method and mobile communication system
US12/490,855 US20090257427A1 (en) 2006-06-16 2009-06-24 Data generation apparatus, data generation method, base station, mobile station, synchronization detection method, sector identification method, information detection method and mobile communication system
US14/714,027 US9735910B2 (en) 2006-06-16 2015-05-15 Data generation apparatus, data generation method, base station, mobile station, synchronization detection method, sector identification method, information detection method and mobile communication system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006168168 2006-06-16
JP2006-168168 2006-06-16
JP2006-212658 2006-08-03
JP2006212658 2006-08-03

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US12/303,696 A-371-Of-International US20100157940A1 (en) 2006-06-16 2007-06-18 Data generation apparatus, data generation method, base station, mobile station, synchronication detection method, sector identification method, information detection method and mobile communication system
US12/490,855 Division US20090257427A1 (en) 2006-06-16 2009-06-24 Data generation apparatus, data generation method, base station, mobile station, synchronization detection method, sector identification method, information detection method and mobile communication system
US12/490,843 Division US9059827B2 (en) 2006-06-16 2009-06-24 Data generation apparatus, data generation method, base station, mobile station, synchronization detection method, sector identification method, information detection method and mobile communication system

Publications (1)

Publication Number Publication Date
WO2007145357A1 true WO2007145357A1 (ja) 2007-12-21

Family

ID=38831864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/062243 WO2007145357A1 (ja) 2006-06-16 2007-06-18 データ作成装置、データ作成方法、基地局、移動局、同期検出方法、セクタ同定方法、情報検出方法、および移動通信システム

Country Status (7)

Country Link
US (4) US20100157940A1 (ja)
EP (4) EP2037610A4 (ja)
JP (4) JP5247441B2 (ja)
CN (1) CN103997477B (ja)
BR (3) BRPI0712971B1 (ja)
EA (3) EA017731B1 (ja)
WO (1) WO2007145357A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009060668A1 (ja) * 2007-11-06 2009-05-14 Sharp Kabushiki Kaisha 基地局装置、移動局装置、通信システムおよびセルサーチ方法
JP2010525656A (ja) * 2007-05-17 2010-07-22 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて同期信号を伝送する方法
JP2011082800A (ja) * 2009-10-07 2011-04-21 Sumitomo Electric Ind Ltd 基地局装置、基地局装置用の信号処理装置、phy処理装置、及びmac処理装置
US8130863B2 (en) 2006-12-19 2012-03-06 Lg Electronics Inc. Sequence generating method for efficient detection and method for transmitting and receiving signals using the same
US8155106B2 (en) 2007-07-06 2012-04-10 Lg Electronics Inc. Method of performing cell search in wireless communucation system
JPWO2011118242A1 (ja) * 2010-03-23 2013-07-04 住友電気工業株式会社 基地局装置、端末装置、受信側基地局装置、及び、無線通信方法
JP5319303B2 (ja) * 2007-01-15 2013-10-16 株式会社エヌ・ティ・ティ・ドコモ 基地局装置、移動局、同期信号送信方法および同期信号受信方法
JP2016524856A (ja) * 2013-05-22 2016-08-18 エルジー エレクトロニクス インコーポレイティド 全二重無線方式を支援する無線接続システムにおいて適用される全二重無線領域の構造、これを割り当てる方法及び装置

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100157940A1 (en) * 2006-06-16 2010-06-24 Shoichi Shitara Data generation apparatus, data generation method, base station, mobile station, synchronication detection method, sector identification method, information detection method and mobile communication system
JP4740065B2 (ja) * 2006-08-22 2011-08-03 株式会社エヌ・ティ・ティ・ドコモ 基地局、移動局及びパイロットチャネル生成方法
JP2008172541A (ja) * 2007-01-11 2008-07-24 Matsushita Electric Ind Co Ltd 基地局装置、通信端末装置、通信システム及び通信方法
JP4936027B2 (ja) * 2007-04-05 2012-05-23 日本電気株式会社 時間リファレンス識別方法
US7940723B2 (en) * 2007-10-29 2011-05-10 Intel Corporation Dynamic/static transport channel to physical channel mapping in broadband wireless access systems
US8848621B2 (en) * 2008-06-11 2014-09-30 Qualcomm Incorporated Apparatus and method for cell-based highly detectable pilot multiplexing
US8891350B2 (en) * 2008-07-07 2014-11-18 Mediatek Inc. Method and apparatus of data transmission over guard sub-carriers in multi-carrier OFDM systems
US8693460B2 (en) * 2008-09-05 2014-04-08 Unwired Planet, Llc Technique for synchronizing a terminal device with a wireless network
JP5362474B2 (ja) 2009-07-30 2013-12-11 サトーホールディングス株式会社 印字用紙の供給軸装置、その供給方法および印字用紙用プリンター
US8982685B2 (en) * 2009-10-09 2015-03-17 Qualcomm Incorporated Time orthogonalization of reference signals
US8824590B2 (en) * 2010-02-11 2014-09-02 Electronics And Telecommunications Research Institute Layered transmission apparatus and method, reception apparatus and reception method
US20110194645A1 (en) * 2010-02-11 2011-08-11 Electronics And Telecommunications Research Institute Layered transmission apparatus and method, reception apparatus, and reception method
US8687740B2 (en) * 2010-02-11 2014-04-01 Electronics And Telecommunications Research Institute Receiver and reception method for layered modulation
US20110195658A1 (en) * 2010-02-11 2011-08-11 Electronics And Telecommunications Research Institute Layered retransmission apparatus and method, reception apparatus and reception method
KR20120086781A (ko) * 2011-01-27 2012-08-06 삼성전자주식회사 무선통신 시스템에서 단말의 위치 보고 방법 및 장치
JP5720346B2 (ja) 2011-03-18 2015-05-20 富士通株式会社 無線制御装置および無線制御方法
US20150085766A1 (en) * 2011-10-10 2015-03-26 Lg Electronics Inc. Method for multiplexing control information at base station in wireless communication system and apparatus for the same
WO2013073557A1 (ja) * 2011-11-15 2013-05-23 シャープ株式会社 通信システム、通信方法、基地局装置及び移動局装置
US9647863B2 (en) 2012-02-27 2017-05-09 Intel Corporation Techniques to manage dwell times for pilot rotation
US9178675B2 (en) * 2012-02-27 2015-11-03 Intel Corporation Channel estimation and tracking
JP5591270B2 (ja) 2012-03-22 2014-09-17 株式会社Nttドコモ 通信の可否を判定する判定装置及び判定方法
KR102105355B1 (ko) * 2012-08-22 2020-04-28 삼성전자주식회사 대역 확산 기반 시스템을 위한 트레이닝 시퀀스와 채널 추정방법
KR101460491B1 (ko) * 2013-04-03 2014-11-11 주식회사 이노와이어리스 멀티-셀 환경에서 lte 셀 검출 장치
CN104168241B (zh) * 2013-05-16 2017-10-17 华为技术有限公司 多输入输出正交频分复用通信系统及信号补偿方法
US9385778B2 (en) 2014-01-31 2016-07-05 Qualcomm Incorporated Low-power circuit and implementation for despreading on a configurable processor datapath
US9553699B2 (en) * 2014-08-28 2017-01-24 Newracom, Inc. Frame transmitting method and frame receiving method
KR101586716B1 (ko) * 2015-01-05 2016-01-19 아주대학교산학협력단 슬롯 기반 채널을 이용한 통신 방법 및 그 장치
CN106341362B (zh) * 2015-07-09 2021-04-02 北京三星通信技术研究有限公司 导频发送方法、导频接收方法及其装置
WO2017135020A1 (ja) * 2016-02-03 2017-08-10 京セラ株式会社 基地局及び無線端末
CA3017092C (en) * 2016-03-11 2024-05-28 Panasonic Intellectual Property Corporation Of America Wireless communication apparatus and wireless communication method
WO2018225190A1 (ja) * 2017-06-07 2018-12-13 株式会社Nttドコモ ユーザ端末及びセルサーチ方法
EP3647806B1 (en) * 2017-06-29 2023-07-12 LG Electronics Inc. Method and device for performing location measurement on basis of pdoa
JP2020535672A (ja) * 2017-08-10 2020-12-03 中▲興▼通▲訊▼股▲ふぇん▼有限公司Zte Corporation チャネル構造情報を示し、それを決定するためのシステムおよび方法
CN110690940A (zh) * 2018-07-04 2020-01-14 北京三星通信技术研究有限公司 下行接收方法、用于pdcch检测的方法、ue和计算机可读介质
US10999744B1 (en) * 2020-04-21 2021-05-04 Ralph R. Richey RF certification system and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10190616A (ja) * 1996-12-20 1998-07-21 Oki Electric Ind Co Ltd ハンドオーバ制御装置
JPH11122141A (ja) * 1997-10-14 1999-04-30 Kokusai Electric Co Ltd 初期同期捕捉方法及び初期同期捕捉回路
JP2003179522A (ja) 2001-12-07 2003-06-27 Matsushita Electric Ind Co Ltd マルチキャリア送受信装置、マルチキャリア無線通信方法、およびマルチキャリア無線通信用プログラム
JP2005198232A (ja) 2003-12-29 2005-07-21 Ind Technol Res Inst 直交波周波数分割多重セルラー通信システムのセルサーチ方法

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL100213A (en) * 1990-12-07 1995-03-30 Qualcomm Inc Mikrata Kedma phone system and its antenna distribution system
US5978679A (en) * 1996-02-23 1999-11-02 Qualcomm Inc. Coexisting GSM and CDMA wireless telecommunications networks
JPH103447A (ja) * 1996-06-18 1998-01-06 Matsushita Electric Ind Co Ltd バスブリッジ装置
EP0845877A3 (en) * 1996-11-28 2002-03-27 Oki Electric Industry Co., Ltd. Mobile communication system for accomplishing handover with phase difference of frame sync signals corrected
EP1499039B1 (en) * 1997-04-17 2009-01-28 NTT DoCoMo, Inc. Transmission apparatus for a mobile communication system
US6574211B2 (en) * 1997-11-03 2003-06-03 Qualcomm Incorporated Method and apparatus for high rate packet data transmission
KR100249045B1 (ko) * 1997-12-29 2000-03-15 김영환 기지국의 탐색창크기 조절방법
US6504830B1 (en) * 1998-06-15 2003-01-07 Telefonaktiebolaget Lm Ericsson Publ Method, apparatus, and system for fast base synchronization and sector identification
US6320855B1 (en) * 1999-09-09 2001-11-20 Qualcom Incorporated Method and system for initiating idle handoff in a wireless communications system
JP2002165275A (ja) * 2000-11-29 2002-06-07 Nec Corp 基地局間非同期システム及びそれに用いるセル配置手法
RU2174923C1 (ru) * 2001-02-13 2001-10-20 Общество с ограниченной ответственностью "Геолинк-Электроникс" Система мониторинга, информационного обслуживания и охраны подвижных и неподвижных объектов от несанкционированного воздействия
ATE444658T1 (de) * 2002-01-23 2009-10-15 Huawei Tech Co Ltd Verfahren zur bereitstellung eines echtzeit- rundsendedienstes im mobilkommunikationsnetzwerk
US7280467B2 (en) * 2003-01-07 2007-10-09 Qualcomm Incorporated Pilot transmission schemes for wireless multi-carrier communication systems
JP2005019823A (ja) 2003-06-27 2005-01-20 Kyocera Corp 半導体基板の製造方法
US20050118946A1 (en) * 2003-11-05 2005-06-02 Erik Colban In-band signaling within broadcast stream and support for mixed flows
WO2005074305A1 (en) * 2004-01-29 2005-08-11 Neocific, Inc. Methods and apparatus for multi-carrier, multi-cell wireless communication networks
KR100739511B1 (ko) 2004-06-25 2007-07-13 삼성전자주식회사 직교 주파수 분할 다중 방식을 사용하는 통신 시스템에서파일럿 신호 송수신 장치 및 방법
US8004959B2 (en) * 2004-07-06 2011-08-23 Telefonaktiebolaget Lm Ericsson (Publ) Different orthogonal code sets with members in common
US7840217B2 (en) * 2004-07-23 2010-11-23 Cisco Technology, Inc. Methods and apparatus for achieving route optimization and location privacy in an IPV6 network
US7680093B2 (en) * 2004-08-27 2010-03-16 Telefonaktiebolaget Lm Ericsson (Publ) Sector selection for F-SCH
CN100358269C (zh) * 2004-12-10 2007-12-26 华为技术有限公司 六小区基站同步信道配置方法及六小区基站系统
JP4463780B2 (ja) * 2005-06-14 2010-05-19 株式会社エヌ・ティ・ティ・ドコモ 送信装置および送信方法
TW201308928A (zh) * 2005-12-21 2013-02-16 Interdigital Tech Corp 基魚ofdma演進utra下鏈同步頻道
US7983143B2 (en) * 2006-02-08 2011-07-19 Motorola Mobility, Inc. Method and apparatus for initial acquisition and cell search for an OFDMA system
US20100157940A1 (en) * 2006-06-16 2010-06-24 Shoichi Shitara Data generation apparatus, data generation method, base station, mobile station, synchronication detection method, sector identification method, information detection method and mobile communication system
US8228887B2 (en) * 2006-09-29 2012-07-24 Apple Inc. Cell identifier encoding and decoding methods and apparatus
US8320360B2 (en) * 2006-11-06 2012-11-27 Motorola Mobility Llc Method and apparatus for fast cell search
CN101198087A (zh) * 2006-12-08 2008-06-11 昂达博思公司 实现在移动通信系统中减少扇区间导频干扰的系统和方法
US8848621B2 (en) * 2008-06-11 2014-09-30 Qualcomm Incorporated Apparatus and method for cell-based highly detectable pilot multiplexing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10190616A (ja) * 1996-12-20 1998-07-21 Oki Electric Ind Co Ltd ハンドオーバ制御装置
JPH11122141A (ja) * 1997-10-14 1999-04-30 Kokusai Electric Co Ltd 初期同期捕捉方法及び初期同期捕捉回路
JP2003179522A (ja) 2001-12-07 2003-06-27 Matsushita Electric Ind Co Ltd マルチキャリア送受信装置、マルチキャリア無線通信方法、およびマルチキャリア無線通信用プログラム
JP2005198232A (ja) 2003-12-29 2005-07-21 Ind Technol Res Inst 直交波周波数分割多重セルラー通信システムのセルサーチ方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
KISHIYAMA Y.: "Evolved UTRA Kudari Link OFDM Musen Access ni Okeru Sector Koyu Chokko Keiretsu o Mochiiru Pilot Channel.", IEICE COMMUNICATIONS SOCIETY CONFERENCE KOEN RONBUNSHU 1, 7 September 2005 (2005-09-07), pages 445, XP003006924 *
NTT DOCOMO, NEC, SHARP.: "SCH Structure and Cell Search Method in E-UTRA Downlink", 3GPP TSG-RAN WG1 LTE AD HOC MEETING, R1-060042, 25 January 2006 (2006-01-25), pages 1 - 9, XP003021240 *
NTT DOCOMO, NEC, SHARP: "Intra-Node B Macro Diversity Using Simultaneous Transmission with Soft-combining in Evolved UTRA Downlink", 3GPP TSG RAN WG1 #42 ON LTE, R1-050700, 2 September 2005 (2005-09-02), pages 1 - 12, XP008101279 *
NTT DOCOMO: "Neighbouring Cell Search Method for Connected and Idle Mode in E-UTRA Downlink", 3GPP TSG RAN WG1 MEETING #45, R1-061188, 12 May 2006 (2006-05-12), pages 1 - 8, XP008102091 *
See also references of EP2037610A4

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8948294B2 (en) 2006-12-19 2015-02-03 Lg Electronics Inc. Communication of synchronization signals between base station and terminal
US10727969B2 (en) 2006-12-19 2020-07-28 Wild Guard Ltd. Method and apparatus for transmitting or detecting a primary synchronization signal
US8989327B2 (en) 2006-12-19 2015-03-24 Lg Electronics Inc. Method and apparatus for transmitting or detecting a primary synchronization signal
US8130863B2 (en) 2006-12-19 2012-03-06 Lg Electronics Inc. Sequence generating method for efficient detection and method for transmitting and receiving signals using the same
US10341037B2 (en) 2006-12-19 2019-07-02 Wild Guard Ltd. Method and apparatus for transmitting or detecting a primary synchronization signal
US8295389B2 (en) 2006-12-19 2012-10-23 Lg Electronics Inc. Sequence generating method for efficient detection and method for transmitting and receiving signals using the same
US10057003B2 (en) 2006-12-19 2018-08-21 Lg Electronics Inc. Method and apparatus for transmitting or detecting a primary synchronization signal
US9584244B2 (en) 2006-12-19 2017-02-28 Lg Electronics Inc. Method and apparatus for transmitting or detecting a primary synchronization signal
US8520768B2 (en) 2006-12-19 2013-08-27 Lg Electronics Inc. Sequence generating method for efficient detection and method for transmitting and receiving signals using the same
US11018794B2 (en) 2006-12-19 2021-05-25 Wild Guard Ltd. Method and apparatus for transmitting or detecting a primary synchronization signal
JP5319303B2 (ja) * 2007-01-15 2013-10-16 株式会社エヌ・ティ・ティ・ドコモ 基地局装置、移動局、同期信号送信方法および同期信号受信方法
JP2010525656A (ja) * 2007-05-17 2010-07-22 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて同期信号を伝送する方法
US9113401B2 (en) 2007-07-06 2015-08-18 Lg Electronics Inc. Method of performing cell search in wireless communication system
US10638441B2 (en) 2007-07-06 2020-04-28 Lg Electronics Inc. Method of performing cell search in wireless communication system
US8493964B2 (en) 2007-07-06 2013-07-23 Lg Electronics Inc. Method of performing cell search in wireless communication system
US9736805B2 (en) 2007-07-06 2017-08-15 Lg Electronics Inc. Method of performing cell search in wireless communication system
US10219236B2 (en) 2007-07-06 2019-02-26 Lg Electronics Inc. Method of performing cell search in wireless communication system
US8155106B2 (en) 2007-07-06 2012-04-10 Lg Electronics Inc. Method of performing cell search in wireless communucation system
WO2009060668A1 (ja) * 2007-11-06 2009-05-14 Sharp Kabushiki Kaisha 基地局装置、移動局装置、通信システムおよびセルサーチ方法
JP2011082800A (ja) * 2009-10-07 2011-04-21 Sumitomo Electric Ind Ltd 基地局装置、基地局装置用の信号処理装置、phy処理装置、及びmac処理装置
JPWO2011118242A1 (ja) * 2010-03-23 2013-07-04 住友電気工業株式会社 基地局装置、端末装置、受信側基地局装置、及び、無線通信方法
JP2016524856A (ja) * 2013-05-22 2016-08-18 エルジー エレクトロニクス インコーポレイティド 全二重無線方式を支援する無線接続システムにおいて適用される全二重無線領域の構造、これを割り当てる方法及び装置

Also Published As

Publication number Publication date
EP2037610A4 (en) 2011-03-23
EP2063543A2 (en) 2009-05-27
JP4425986B2 (ja) 2010-03-03
US20090257427A1 (en) 2009-10-15
EP2063543A3 (en) 2011-03-30
JP4425985B2 (ja) 2010-03-03
EP2624488A1 (en) 2013-08-07
EA017731B1 (ru) 2013-02-28
EP2063542A2 (en) 2009-05-27
EP2063542B1 (en) 2013-06-12
CN103997477A (zh) 2014-08-20
BRPI0722367A2 (pt) 2015-05-19
US9735910B2 (en) 2017-08-15
EP2624488B1 (en) 2017-09-27
BRPI0712971B1 (pt) 2020-01-07
JP2013192237A (ja) 2013-09-26
BRPI0712971A2 (pt) 2011-05-10
CN103997477B (zh) 2019-02-19
EP2037610A1 (en) 2009-03-18
US20100157940A1 (en) 2010-06-24
EA200900705A1 (ru) 2009-10-30
EA200970024A1 (ru) 2009-06-30
JP2009182989A (ja) 2009-08-13
JP5535366B2 (ja) 2014-07-02
US20090257411A1 (en) 2009-10-15
JPWO2007145357A1 (ja) 2009-11-12
JP2009177855A (ja) 2009-08-06
EA013068B1 (ru) 2010-02-26
EA200900704A1 (ru) 2009-10-30
EA018838B1 (ru) 2013-11-29
US20150249518A1 (en) 2015-09-03
BRPI0722367B1 (pt) 2020-01-07
BRPI0722368B1 (pt) 2020-01-07
US9059827B2 (en) 2015-06-16
JP5247441B2 (ja) 2013-07-24
EP2624488B8 (en) 2017-11-01
EP2063543B1 (en) 2014-08-06
EP2063542A3 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
JP5535366B2 (ja) 基地局、基地局における方法、移動局、移動局における方法
US9232486B2 (en) Method and apparatus for transmitting synchronization signals in an OFDM based cellular communications system
US8149686B2 (en) Base station apparatus, mobile station apparatus and synchronization channel transmission method
KR101020502B1 (ko) 기지국장치 및 이동국장치 및 동기채널 송신방법
JPWO2008078357A1 (ja) 無線通信方法及び基地局並びにユーザ端末
JP5048613B2 (ja) ユーザ装置及びセルサーチ方法
WO2007040218A1 (ja) 送信機、ofdm通信システム及び送信方法
US20110206032A1 (en) Base station apparatus, mobile station apparatus, communication system, and communication method
CN101473682A (zh) 数据生成装置和方法、基站、移动台、同步检测方法、扇区识别方法、信息检测方法和移动通信系统
JP2008283528A (ja) 移動通信システム、無線制御装置および通信端末装置
JP2009005060A (ja) 移動通信システム、無線制御装置および通信端末装置
JP5397427B2 (ja) 無線通信方法及び無線通信システム並びにユーザ端末
JP5161191B2 (ja) ユーザ装置及び受信方法
WO2010016276A1 (ja) 基地局装置、移動局装置、無線通信システムおよびパラメータ取得方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780022460.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07767141

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008521286

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12303696

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007767141

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 251/CHENP/2009

Country of ref document: IN

Ref document number: 200970024

Country of ref document: EA

ENP Entry into the national phase

Ref document number: PI0712971

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20081216