WO2013073557A1 - 通信システム、通信方法、基地局装置及び移動局装置 - Google Patents

通信システム、通信方法、基地局装置及び移動局装置 Download PDF

Info

Publication number
WO2013073557A1
WO2013073557A1 PCT/JP2012/079475 JP2012079475W WO2013073557A1 WO 2013073557 A1 WO2013073557 A1 WO 2013073557A1 JP 2012079475 W JP2012079475 W JP 2012079475W WO 2013073557 A1 WO2013073557 A1 WO 2013073557A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
station apparatus
transmission
weight coefficient
mobile station
Prior art date
Application number
PCT/JP2012/079475
Other languages
English (en)
French (fr)
Inventor
貴司 吉本
藤 晋平
良太 山田
梢 横枕
加藤 勝也
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011249707A external-priority patent/JP2013106249A/ja
Priority claimed from JP2011249706A external-priority patent/JP5844620B2/ja
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US14/357,636 priority Critical patent/US9331763B2/en
Publication of WO2013073557A1 publication Critical patent/WO2013073557A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0862Weighted combining receiver computing weights based on information from the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Definitions

  • the present invention relates to a communication system, a communication method, a base station apparatus, and a mobile station apparatus.
  • a base constituting a cell (communication service area) for providing a wireless communication service to a plurality of mobile station devices (terminals; UE (User's Equipment)) in a city and its surrounding area
  • a station apparatus eNB; eNodeB
  • a cellular configuration in which a plurality of base station devices are arranged is formed, and the communication area is expanded.
  • the same frequency is repeatedly used in the cell of the base station apparatus in order to improve the frequency utilization efficiency.
  • improvement in frequency utilization efficiency is limited.
  • Inter-cell interference coordination using an indicator OI (Overload Indicator), an indicator HII (High Interference Indicator), or the like as a method of suppressing and reducing inter-cell interference in an uplink having a cellular configuration. It is used (Non-patent Document 1).
  • the indicator OI is a control signal for notifying another base station apparatus when a certain base station apparatus has a high interference level from a mobile station apparatus connected to the other base station apparatus.
  • the indicator HII is a control signal that is located at the cell edge of the base station device and receives a signal from a mobile station device that transmits with high transmission power, and notifies other base station devices to that effect. .
  • FIG. 32 shows an outline of a conventional wireless communication system A1000 in the uplink to which the inter-cell interference adjustment ICIC is applied.
  • Base station apparatus A1000-1 and base station apparatus A1000-2 each include cell A1000-2a with cell A1000-1a, and cell A1000-1a of base station apparatus A1000-1 and cell of base station apparatus A1000-2
  • Each base station apparatus is arranged with one-cell frequency repetition so that A1000-2a partially overlaps.
  • a plurality of mobile station apparatuses exist in each cell, and each mobile station apparatus is controlled so as to be wirelessly connected to a base station apparatus that can receive a signal with an optimum received electric field strength.
  • Base station apparatus A1000-1 is connected to mobile station apparatus A2000-1 (r11).
  • the base station device A1000-1 receives interference (r21) from the mobile station device A2000-2 connected to the base station device A1000-2 (r22).
  • the base station apparatus A1000-1 receiving the interference (r21) notifies the indicator OI to the base station apparatus A1000-2 via the backhaul line A10 (for example, an optical fiber, an X2 interface, etc.).
  • the base station device A1000-2 suppresses and reduces inter-cell interference by causing the mobile station device A2000-2 to stop transmission.
  • the base station apparatus A1000-2 notifies the base station apparatus A1000-1 of the indicator HII via the backhaul line A10 before the mobile station apparatus A2000-2 transmits the signal (r22). Receiving the indicator HII, the base station apparatus A1000-1 suppresses and reduces interference by performing scheduling so that the signal (r11) from the mobile station apparatus A2000-1 does not receive interference.
  • Non-Patent Document 2 As a method of improving the throughput, a part or all of the range of the macro cell formed by the main base station apparatus (macro base station), and a low power base station (pico cell base station, femto cell base having a maximum transmission power smaller than that of the macro base station) It has been proposed to arrange a plurality of base station apparatuses so as to overlap the range of cells of a station etc. (heterogeneous network, Non-Patent Document 2).
  • FIG. 33 shows an outline of a radio communication system 1000 in the downlink in which a plurality of base station apparatuses having different cell radii are arranged.
  • Cell 1000-1a macro cell
  • main base station apparatus 1000-1 macro base station apparatus
  • cell 1000-2a of base station apparatus 1000-2 which is a low power base station having a maximum transmission power smaller than that of the macro base station apparatus
  • Each base station apparatus is arranged with one-cell frequency repetition so that (picocell) and cell 1000-3a (picocell) of base station apparatus 1000-3 overlap.
  • a plurality of mobile station apparatuses exist in the cell, and each mobile station apparatus is controlled to be wirelessly connected to a base station apparatus that can receive a signal with the maximum received electric field strength.
  • mobile station apparatus 2000-1 is wirelessly connected (r11) to base station apparatus 1000-1
  • mobile station apparatus 2000-2 is wirelessly connected (r22) to base station apparatus 1000-2
  • the device 2000-3 performs a wireless connection (r33) with the base station device 1000-3.
  • heterogeneous network By constructing such a heterogeneous network (heterogeneous network), it is possible to improve the total frequency utilization efficiency seen from the network side in the area covered by the macro cell.
  • Patent Document 3 As a method for suppressing and reducing inter-cell interference in the downlink of a heterogeneous network, a method of performing communication by transmitting a signal to a mobile station device in cooperation between a plurality of base station devices is disclosed (non-contained) Patent Document 3).
  • FIG. 34 shows a transmission frame format in the downlink of the heterogeneous network.
  • one frame is composed of ten types of subframes including a normal subframe (Normal Subframe) and a resource mapping limited subframe (also referred to as a limited subframe).
  • subframe index # 1 subframe index # 3, subframe index # 4, subframe index # 5, and subframe index # 9 are normal subframes, subframe index # 0, and subframe.
  • Index # 2, subframe index # 6, subframe index # 7, and subframe index # 8 are resource mapping limited subframes.
  • Resource mapping limited subframes include ABS (Almost Blank Subframe), MBSFN (Multicast / Broadcast over Single Frequency Network), and the like.
  • the normal subframe refers to a subframe in which the base station apparatus can perform resource mapping of information data, control data, and a reference signal.
  • a downlink signal in LTE a downlink common channel (PDSCH; Physical Downlink Shared Channel, a channel that mainly transmits information data), a downlink control channel (PDCCH; Physical Downlink Control Channel, horizontal stripes in the figure) , Synchronization signal (PSS; Primary Synchronization Signal, SSS; Secondary Synchronization Signal), broadcast channel (PBCH; Physical Broadcast Channel), cell-specific reference signal (CRS; Cell-Recce, etc.).
  • the resource mapping restriction subframe is a subframe in which the base station apparatus restricts resource mapping to only a predetermined signal.
  • CRS and / or predetermined control signals SSS, PSS, PBCH (lattice portion in the figure), etc.
  • SSS, PSS, PBCH laminate portion in the figure
  • PBCH PBCH
  • subframe index # 2 in the upper part of FIG. 34
  • MBSFN subframe only CRS is arranged (subframe index # 2, subframe index # 6, subframe index # 7, and subframe index # 8 in the upper part of FIG. 34).
  • signals other than the above-described signals for example, PDSCH are not allocated (shaded portion in the figure).
  • the lower part of FIG. 34 shows a downlink transmission frame format when a signal is transmitted to the mobile station apparatus to which the base station apparatus 1000-2 and the base station apparatus 1000-3 are connected.
  • one frame is composed of 10 normal subframes.
  • information data (PDSCH) transmitted from base station apparatus 1000-1 to mobile station apparatus 2000-1 includes subframe index # 0, subframe index # 2, subframe index # 6, Arranged in subframes other than subframe index # 7 and subframe index # 8.
  • Information data transmitted from base station apparatus 1000-2 to mobile station apparatus 2000-2 includes subframe index # 0, subframe index # 4, subframe index # 5, subframe index # 6, and subframe index in the lower part of FIG. Arranged at frame index # 8.
  • Information data transmitted from the base station apparatus 1000-3 to the mobile station apparatus 2000-3 includes subframe index # 0, subframe index # 4, subframe index # 5, subframe index # 6, and subframe index in the lower part of FIG. Arranged at frame index # 8.
  • base station apparatus 1000-2 and base station apparatus 1000-3 cause inter-cell interference from base station apparatus 1000-1 in a subframe synchronized with a subframe in which base station apparatus 1000-1 does not place information data.
  • Inter-cell interference from base station apparatus 1001-1 can be reduced because information data of receiving mobile station apparatus 2000-2 and mobile station apparatus 200-4 are allocated.
  • Non-Patent Document 2 when the base station apparatus 1000-1 is transmitting a signal, the mobile station apparatus 2000-2 connected to the pico cell 1000-2a and the mobile station connected to the pico cell 1000-3a As shown in FIG. 33, the apparatus 2000-3 has a problem that the transmission efficiency is reduced by receiving interference (inter-cell interference, inter-cell interference) (r12) and (r13) from the macro cell 1000-1a. is there.
  • interference inter-cell interference, inter-cell interference
  • Non-Patent Document 3 when inter-cell interference occurs between pico cells, the SINR of the mobile station apparatuses 2000-2 and 2000-3 decreases. .
  • the interference (r32) from the base station apparatus 1000-3 to the mobile station apparatus 2000-2 and the interference (r23) from the base station apparatus 1000-2 to the mobile station apparatus 2000-3 cause the SINR to decrease. Become. For this reason, there is a problem that even if a heterogeneous network is constructed, the frequency utilization efficiency cannot be sufficiently improved.
  • the indicator OI or the indicator HII extends over a plurality of base station apparatuses that cause interference.
  • inter-cell interference is controlled by this, the opportunity for each base station apparatus to transmit to a mobile station apparatus connected to the own station is extremely limited, and there is a problem if frequency utilization efficiency and throughput cannot be sufficiently improved.
  • the present invention has been made in view of the above circumstances, and a communication system, a communication method, a base station apparatus, and a mobile station that can improve frequency efficiency even when inter-cell interference occurs between cells of a plurality of base station apparatuses.
  • the object is to provide an apparatus.
  • each configuration of a communication system, a communication method, a base station apparatus, and a mobile station apparatus according to the present invention is as follows.
  • the communication system of the present invention includes a plurality of base station apparatuses and a mobile station apparatus connected to at least one of the plurality of base station apparatuses, and the plurality of base station apparatuses can connect each base station apparatus.
  • the communication system is arranged such that the entire range or a part of the range overlaps each other, and the base station device instructs the mobile station device to receive a weighting coefficient to be multiplied by the received signal received by the mobile station device. Information on the weighting factor to be notified is notified.
  • the plurality of base station apparatuses of the communication system include a plurality of base station apparatuses including a master base station apparatus and a slave base station apparatus, and the master base station apparatus includes propagation path information of the entire system.
  • a plurality of base station apparatuses that generate a precoding unit that multiplies the transmission data by the transmission weight coefficient, and weight coefficient information that indicates the reception weight coefficient.
  • a weighting factor information generation unit, and information data obtained by multiplying the transmission data by the transmission weighting factor and the weighting factor information are transmitted to the mobile station device to which each of the plurality of base station devices is connected.
  • the mobile station apparatus includes: a control signal detection unit that detects a reception weight coefficient from the weight coefficient information; and an interference suppression that multiplies the reception weight coefficient by the reception signal to obtain the information data. It is characterized by providing a part.
  • the weighting factor information is a control signal including a reception weighting factor for multiplying a reception signal received by each mobile station device connected by the base station device. It is what.
  • the weighting factor information is a control signal including a codebook index corresponding to the transmission weighting factor of the plurality of base station devices and the reception weighting factor of the mobile station device.
  • the weighting factor information is a reference signal multiplied by the reception weighting factor.
  • the reference signal of the communication system of the present invention is a part of a reference signal unique to the mobile station device.
  • the reference signal is a part of a reference signal unique to the cell of the base station apparatus.
  • the reference signal is a reference signal specific to the mobile station apparatus or a reference signal specific to a cell of the base station apparatus.
  • the master base station device includes an upper layer that notifies the slave base station device of information related to the transmission weighting factor and information related to the reception weighting factor, and the slave base station device further includes: A weighting factor information generating unit that generates weighting factor information including information on the receiving weighting factor notified from the higher layer is provided.
  • the communication method of the present invention includes a plurality of base station devices and a mobile station device connected to at least one of the plurality of base station devices, and the plurality of base station devices are connected to each base station device.
  • a step of notifying reception weight coefficient information indicating the reception weight coefficient is performed.
  • the base station apparatus of the present invention includes a plurality of base station apparatuses including a main base station apparatus and a slave base station apparatus, and a mobile station apparatus connected to at least one of the plurality of base station apparatuses.
  • the base station apparatus in a communication system in which the plurality of base station apparatuses are arranged such that all or part of the connectable range of each base station apparatus overlaps each other, and the main base station apparatus A transmission weight coefficient that is multiplied by transmission data transmitted by the plurality of base station apparatuses using propagation path information, and a reception signal received by the mobile station apparatus to which each of the plurality of base station apparatuses is connected.
  • the mobile station to which each of the plurality of base station devices connects a weighting factor information generating unit that generates weighting factor information, information data obtained by multiplying the transmission data by the transmission weighting factor, and the reception weighting factor information A transmission unit for transmitting to the apparatus is provided.
  • the mobile station apparatus of the present invention includes a plurality of base station apparatuses including a main base station apparatus and a slave base station apparatus, and a mobile station apparatus connected to at least one of the plurality of base station apparatuses.
  • the base station apparatus is a mobile station apparatus in a communication system arranged such that all or part of the connectable range of each base station apparatus overlaps each other, wherein the mobile station apparatus is the main base station
  • a reception unit that receives a reception signal obtained by multiplying a transmission weighting factor calculated by the apparatus using propagation path information of the entire system and reception weighting factor information, and a control signal detection unit that detects a reception weighting factor from the reception weighting factor information
  • an interference suppression unit that obtains the information data by multiplying the reception signal by the reception weight coefficient.
  • the communication system of the present invention includes a plurality of base station devices including a main base station device and a slave base station device, and a mobile station device connected to at least one of the plurality of base station devices, A communication system that performs communication using a propagation path between the plurality of base station devices and the mobile station device, wherein the main base station device is connected to each of the plurality of base station devices.
  • a weight coefficient control unit that calculates a transmission weight coefficient multiplied by transmission data transmitted by a mobile station apparatus and a reception weight coefficient multiplied by the transmission data received by the plurality of base station apparatuses;
  • the base station apparatus receives a transmission signal obtained by multiplying the transmission data by the transmission weight coefficient, and a transmission unit that transmits information on the transmission weight coefficient to the mobile station apparatus.
  • an interference suppression unit that multiplies the transmission data by the transmission weighting factor to multiply the transmission signal by the reception weighting factor, and the mobile station apparatus multiplies the transmission data by the transmission weighting factor. It comprises a transmission part which transmits a transmission signal to the said base station apparatus to which each is connected.
  • the plurality of base station devices of the communication system of the present invention includes a control signal generation unit that generates a control signal having an area for storing information on the transmission weight coefficient, and the transmission unit of each base station device includes: The control signal is transmitted to the mobile station apparatus to which each is connected.
  • the master base station apparatus of the communication system of the present invention includes an upper layer that notifies the slave base station apparatus of the transmission weight coefficient and the reception weight coefficient.
  • the transmission weight coefficient information of the communication system of the present invention is a transmission weight coefficient for multiplying the transmission signal transmitted by the mobile station apparatus. Further, the transmission weight coefficient information is a codebook index corresponding to a transmission weight coefficient to be multiplied with respect to the transmission signal transmitted by the mobile station apparatus.
  • the mobile station apparatus of the communication system of the present invention includes a control signal detection unit that detects the transmission weight coefficient from the codebook index.
  • the plurality of base station devices of the communication system of the present invention further includes a reference signal generation unit that generates a reference signal multiplied by the transmission weighting factor, and the transmission units of the base station devices are respectively The reference signal is transmitted to the mobile station apparatus to which is connected.
  • the reference signal in the communication system of the present invention is a part of a reference signal unique to the mobile station apparatus.
  • the reference signal in the communication system of the present invention is a part of a reference signal specific to a cell that is a connectable range of the base station apparatus.
  • the reference signal in the communication system of the present invention is a reference signal specific to the mobile station apparatus or a reference signal specific to the cell of the base station apparatus.
  • the communication method of the present invention comprises a plurality of base station devices including a main base station device and a slave base station device, and a mobile station device connected to at least one of the plurality of base station devices, A communication method in a communication system that performs communication using a propagation path between the plurality of base station apparatuses and the mobile station apparatus, wherein each of the plurality of base station apparatuses is connected in the main base station apparatus.
  • a transmission step of transmitting the transmission signal multiplied by a transmission weighting factor to the base station apparatus to which the transmission signal is connected is performed.
  • the communication method includes a control signal generation step in which the plurality of base station apparatuses generate a control signal having an area for storing information on the transmission weight coefficient, and the transmission unit of each base station apparatus includes: And a transmission step of transmitting the control signal to the mobile station apparatus to which each is connected.
  • the communication method of the present invention is characterized in that the master base station apparatus performs a notification step of notifying the slave base station apparatus of the transmission weight coefficient and the reception weight coefficient.
  • the base station apparatus of the present invention includes a plurality of base station apparatuses including a main base station apparatus and a slave base station apparatus, and a mobile station apparatus connected to at least one of the plurality of base station apparatuses.
  • a base station apparatus in a communication system that performs communication using a propagation path between the plurality of base station apparatuses and the mobile station apparatus, wherein the base station apparatus is connected to each of the plurality of base station apparatuses.
  • a weighting factor control unit that calculates a transmission weighting factor to be multiplied by transmission data transmitted by the mobile station device and a reception weighting factor to be multiplied to the transmission data received by the plurality of base station devices;
  • a transmission unit that transmits information related to the transmission weight coefficient to the mobile station device; and a reception unit that receives a transmission signal obtained by multiplying the transmission data by the transmission weight factor by the mobile station device to which each is connected,
  • An interference suppression unit that multiplies the transmission signal by the transmission weighting factor and the reception weighting factor to multiply the transmission signal, a control signal generation unit that generates a control signal having an area for storing information on the transmission weighting factor, An upper layer that notifies the transmission weight coefficient and the reception weight coefficient.
  • the mobile station apparatus of the present invention includes a plurality of base station apparatuses including a main base station apparatus and a slave base station apparatus, and a mobile station apparatus connected to at least one of the plurality of base station apparatuses.
  • a mobile station apparatus in a communication system that performs communication using propagation paths between the plurality of base station apparatuses and the mobile station apparatus, wherein the mobile station apparatus includes the main base station apparatus and the propagation path.
  • a precoding that generates a transmission signal obtained by multiplying the transmission data transmitted by the mobile station apparatus by the transmission weight coefficient.
  • a transmission unit that transmits the transmission signal multiplied by the transmission weight coefficient to the base station apparatus to which the transmission signal is connected.
  • the plurality of base station devices use the same frequency.
  • a plurality of base station apparatuses and mobile station apparatuses can cooperate to suppress inter-cell interference. For this reason, the said communication system can show
  • the base station apparatus 100-j and the mobile station apparatus 200-k transmit data using an OFDM (Orthogonal Frequency Division Multiplexing) scheme.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA single carrier-frequency division multiple access
  • DFT-s-OFDM discrete Fourier transform-spread
  • a single-carrier transmission scheme such as -OFDM (Discrete Fourier Transform Spread OFDM) or a multi-carrier transmission scheme such as MC-CDMA (Multiple Carrier-Code Division Multiple Access) may be used.
  • SC-FDMA single carrier-frequency division multiple access
  • DFT-s-OFDM discrete Fourier transform-spread
  • a single-carrier transmission scheme such as -OFDM (Discrete Fourier Transform Spread OFDM) or a multi-carrier transmission scheme such as MC-CDMA (Multiple Carrier-Code Division Multiple Access) may be used.
  • MC-CDMA Multiple Carrier-Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • E Long Term Evolution
  • E Long Term Evolution-A
  • E LTE-A
  • E LTE-A
  • E LTE-A
  • FIG. 1 is a schematic diagram showing a configuration of a communication system 1 according to the first embodiment of the present invention.
  • the plurality of base station apparatuses 100-j in the communication system 1 are configured to suppress inter-cell interference in cooperation with each other.
  • the mobile station device 200-k in the communication system 1 includes a mobile station device connected to a cooperating base station device and a mobile station device to be cooperated.
  • Each base station apparatus 100-j is arranged in such a configuration that its own cell overlaps with the cells of other base station apparatuses in whole or in part.
  • the base station apparatuses 100-j are connected by backhaul lines 10-1 and 10-2 (for example, X2 interface) using optical fibers, Internet lines, radio lines, or the like.
  • the communication system 1 uses so-called one-cell frequency repetition that uses the same frequency in all cells.
  • the propagation path H kj between the base station apparatus and the mobile station apparatus to be coordinated is called a propagation path of the entire system.
  • the mobile station device 200-1 transmission signal from the base station apparatus 100-1 which receives through the channel H 11 is the desired signal, received through the channel H 12 and the channel H 13 base Transmission signals from the station apparatus 100-2 and the base station apparatus 100-3 become inter-cell interference (undesired signal).
  • each base station apparatus 100-j can suppress inter-cell interference that can be given to each other by the base station apparatus 100-j and the mobile station apparatus 200-k in cooperation with the transmission signal transmitted by itself.
  • the transmission weight coefficient V j is multiplied.
  • Each mobile station apparatus 200-k multiplies the received signal by a reception weight coefficient U k that can suppress inter-cell interference that the base station apparatus 100-j and the mobile station apparatus 200-k can cooperate with each other. To do.
  • the base station apparatus 100-1 is assumed to be a main base station apparatus (master base station apparatus) that calculates a transmission weight coefficient and a reception weight coefficient
  • Reference numeral 100-3 denotes a slave base station apparatus (slave base station apparatus) that operates cooperatively according to an instruction from the master base station apparatus.
  • the master base station apparatus includes an upper layer 101, an encoding unit 102, a modulation unit 103, a precoding unit 104, a weight coefficient control unit 105, and a reference signal generation unit 106. , Control signal generation section 107, resource mapping section 108, IDFT section 109, GI insertion section 110, transmission section 111, transmission antenna section 112, reception antenna section 121, reception section 122, and control signal detection section 123. .
  • a part or all of the base station apparatus 100-1 is formed into a chip to form an integrated circuit, it has a chip control circuit (not shown) for controlling each functional block.
  • the base station device 100-1 receives a signal including a control signal such as propagation path information transmitted by the mobile station device 200-1 via the uplink via the reception antenna unit 121, and the reception unit 122 receives the control signal Is converted to a frequency band that allows digital signal processing such as signal detection processing (radio frequency conversion), and filtering processing to remove spurious is performed, and the filtered signal is converted from an analog signal to a digital signal (Analog to (Digital conversion).
  • a control signal such as propagation path information transmitted by the mobile station device 200-1 via the uplink via the reception antenna unit 121
  • the reception unit 122 receives the control signal Is converted to a frequency band that allows digital signal processing such as signal detection processing (radio frequency conversion), and filtering processing to remove spurious is performed, and the filtered signal is converted from an analog signal to a digital signal (Analog to (Digital conversion).
  • the control signal detection unit 123 performs demodulation processing, decoding processing, and the like on the control signal output from the reception unit 122.
  • the control signal is detected from an uplink control channel (PUCCH: Physical Uplink Control Channel) or an uplink common channel (PUSCH: Physical Uplink Shared Channel).
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • the upper layer 101 includes propagation path information (propagation path information H 11 between the base station apparatus 100-1 and the mobile station apparatus 200-1, the base station apparatus 100-2, included in the control signal input from the control signal detection unit 123. And propagation path information H 12 between mobile station apparatus 200-1 and propagation path information H 13 between base station apparatus 100-3 and mobile station apparatus 200-1).
  • the upper layer is a layer of functions higher than the physical layer (physical layer) among the layers of communication functions defined in the OSI reference model, for example, a data link layer, a network layer, and the like.
  • the upper layer 101 acquires propagation path information from the slave base station apparatuses (base station apparatus 100-2 and base station apparatus 100-3) through the backhaul lines 10-1 and 10-2. Specifically, the upper layer 101, (information on the propagation path H 21) channel information between the base station device 100-1 and the mobile station device 200-2, the mobile station apparatus and base station apparatus 100-2 200-2 Channel information (information regarding the propagation path H 22 ) between the base station apparatus 100-3 and the mobile station apparatus 200-2 (information regarding the propagation path H 23 ) is acquired through the backhaul line 10-1.
  • the master base station apparatus estimates propagation path fluctuations with all base station apparatuses (master base station apparatus and slave base station apparatus) that each mobile station apparatus 200-k performs cooperative control. Get road information.
  • the upper layer 101 inputs the propagation path information to the weighting coefficient control unit 105.
  • the upper layer 101 may be configured to input the number of base station apparatuses and the number of mobile station apparatuses to cooperate to the weight coefficient control unit 105.
  • the upper layer 101 notifies the transmission base coefficient and the reception weight coefficient calculated by the weight coefficient control unit 105 described later to the slave base station apparatus via the backhaul lines 10-1 and 10-2.
  • the upper layer 101 of the base station apparatus 100-1 includes a transmission weight coefficient V 2 that the base station apparatus 100-2 multiplies the transmission signal, and a reception weight coefficient U 2 that the mobile station apparatus 200-2 multiplies the reception signal.
  • the upper layer 101 of the base station apparatus 100-1 includes a transmission weight coefficient V 3 that the base station apparatus 100-3 multiplies the transmission signal, and a reception weight coefficient U 3 that the mobile station apparatus 200-3 multiplies the reception signal.
  • the upper layer 101 also acquires feedback information such as MCS information and the number of spatial multiplexing included in the control signal. Upper layer 101 outputs information data to encoding section 102 and outputs control data to control signal generation section 107 based on the feedback information. The upper layer 101 also notifies other parameters necessary for each part of the base station device 100-1 to perform its function.
  • the encoding unit 102 performs error correction encoding on the information data input from the upper layer 101.
  • the information data is, for example, an audio signal accompanying a call, a still image or moving image signal representing a captured image, a character message, or the like.
  • the encoding method used when the encoding unit 102 performs error correction encoding is, for example, turbo encoding, convolutional encoding, low density parity check encoding (low density parity check encoding); LDPC).
  • the encoding unit 102 performs rate matching processing on the encoded bit sequence in order to match the coding rate of the error correction encoded data sequence with the encoding rate corresponding to the data transmission rate. May be. Further, the encoding unit 102 may have a function of rearranging and interleaving the error correction encoded data series.
  • the modulation unit 103 modulates the signal input from the encoding unit 102 to generate a modulation symbol.
  • the modulation process performed by the modulation unit 103 includes, for example, BPSK (binary phase shift keying; two-phase phase modulation), QPSK (quadture phase shift keying; four-phase phase modulation), M-QAM (M-quad quadrature orthogonal value).
  • Amplitude modulation, eg M 16, 64, 256, 1024, 4096).
  • Modulation section 103 may have a function of rearranging generated modulation symbols and interleaving them.
  • the weight coefficient control unit 105 uses the propagation path information (propagation path estimated value) acquired from the upper layer 101 to multiply the signal transmitted by the master base station apparatus and the slave base station apparatus, and the transmission weight coefficient V j and each base.
  • a reception weight coefficient U k by which the mobile station apparatus connected to the station apparatus multiplies the reception signal is calculated. That is, the weight coefficient control unit 105 calculates a transmission weight coefficient and a reception weight coefficient using the propagation path information of the entire system.
  • the weighting factor control section 105 is such that the direction (vector) of the equivalent propagation path of interference signals arriving from a plurality of base station devices serving as interference sources is orthogonal to the reception weighting factor by which each mobile station device multiplies the received signal.
  • the transmission weight coefficient is calculated as follows (Equation 1).
  • H kj is a propagation path matrix between the base station apparatus 100-j and the mobile station apparatus 200-k that is the target of cooperative control
  • V j is a vector of transmission weight coefficients of the base station apparatus 100-j
  • U k is a vector of reception weight coefficients of the mobile station apparatus 200-k
  • d k is the number of streams.
  • H is a complex conjugate transpose.
  • the weight coefficient control unit 105 notifies the upper layer 101 of the transmission weight coefficient V j of the slave base station apparatus and the reception weight coefficient U k of the mobile station apparatus connected to the slave base station apparatus. Further, the weight coefficient control unit 105 outputs a transmission weight coefficient V 1 to be multiplied to the transmission signal of the master base station apparatus (own station) to the precoding unit 104. Also, the weight coefficient control unit 105 outputs the reception weight coefficient U 1 of the mobile station apparatus connected to the master base station apparatus (own station) to the control signal generation unit 107.
  • Precoding section 104 multiplies the modulation symbol output from modulation section 103 by transmission weight coefficient V 1 .
  • the reference signal generation unit 106 generates a reference signal (pilot signal) and outputs the generated reference signal to the resource mapping unit 108.
  • the reference signal is a signal used to estimate the propagation characteristics from the transmitting antenna unit 112 of the base station device to the receiving antenna units 201-1 and 201-2 of each mobile station device.
  • the estimated propagation characteristics are used for propagation path information for calculating transmission weight coefficients and reception weight coefficients, or propagation path compensation in the mobile station apparatus.
  • the code sequence constituting the reference signal is preferably an orthogonal sequence, for example, a Hadamard code or a CAZAC (Constant Amplitude Zero Auto-Correlation) sequence.
  • the control signal generation unit 107 generates a control signal including the control data output from the upper layer 101 and the reception weight coefficient U 1 (the reception weight coefficient of the mobile station apparatus connected to the own station) output from the weight coefficient control unit 105.
  • a control signal generation unit that generates a control signal including a weight coefficient may be referred to as a weight coefficient information generation unit, and a control signal including the weight coefficient generated by the control signal generation unit may be referred to as weight coefficient information.
  • the control signal may be subjected to error correction coding and modulation processing.
  • FIG. 3 is a conceptual diagram illustrating an example of a format of a control signal output from the control signal generation unit 107.
  • the control signal has an area (cell information area) for storing the reception weight coefficient information of the mobile station apparatus connected to the own station.
  • the reception weighting factors U 1 to the mobile station device 200-1 multiplies the reception signal and reception weight coefficient information, area for storing the information is provided.
  • the resource mapping unit 108 maps a modulation symbol, a reference signal, and a control signal to a resource element based on scheduling information notified from the higher layer 101 (hereinafter referred to as resource mapping). This is the minimum unit for arranging a signal consisting of a carrier and one OFDM symbol.
  • the IDFT unit 109 performs inverse discrete Fourier transform (inverse discrete Fourier transform; IDFT) on the frequency domain signal input from the resource mapping unit 108 to convert it into a time domain signal.
  • IDFT inverse discrete Fourier transform
  • the IDFT unit 109 may use another processing method (for example, inverse fast Fourier transform [IFFT, inverse fast Fourier transform]) instead of the IDFT as long as the frequency domain signal can be converted into a time domain signal.
  • IFFT inverse fast Fourier transform
  • the GI insertion unit 110 adds an GI (Guard Interval; also referred to as a guard interval or guard interval) to the time domain signal (referred to as an effective symbol) input from the IDFT unit 109 to generate an OFDM symbol.
  • GI Guard Interval
  • the GI is a section added for the purpose of preventing the OFDM symbols of the preceding and succeeding times from interfering with each other. For example, the GI insertion unit 110 prepends a copy of a part of the latter half of the valid symbol as a GI to the valid symbol. Therefore, an effective symbol preceded by GI is an OFDM symbol.
  • the transmission unit 111 performs D / A (digital-to-analog) conversion on the OFDM symbol input from the GI insertion unit 110 to generate an analog signal.
  • the transmission unit 111 generates a band limited signal by performing band limitation on the generated analog signal by filtering processing.
  • the transmission unit 111 up-converts the generated band limited signal to a radio frequency band and outputs the signal to the transmission antenna unit 112.
  • FIG. 4 is a flowchart illustrating an example of processing in which the weighting control unit 105 calculates the transmission weight coefficient V j and the reception weight coefficient U k .
  • the complex conjugate transposition matrix of the propagation path matrix from the base station apparatus to the mobile station apparatus becomes a propagation path matrix from the mobile station apparatus to the base station apparatus (reciprocity of propagation paths).
  • the process of obtaining the weighting coefficient that minimizes the influence of interference is repeated while switching the roles of transmission and reception.
  • the weighting factor control unit 105 sets an arbitrary transmission weighting factor V j (S100).
  • the weighting factor control unit 105 calculates the total sum Q k, i of interference received by the mobile station apparatus 200-k based on Equation 2 (S101).
  • Q is a covariance matrix of the received interference signal.
  • P is transmission power
  • K is the number of mobile station apparatuses that are targets of cooperative control.
  • H represents complex conjugate transposition.
  • the weighting coefficient control section 105 calculates a i (S102).
  • the reception weight coefficient U k is calculated when the mobile station device 200-k receives the transmission signal of the base station device 100-j.
  • the roles of transmission and reception of the base station device 100-j and the mobile station device 200-k are switched (S103). That is, when the base station apparatus 100-j receives a transmission signal obtained by multiplying the coefficient U k, i by the mobile station apparatus 200-k , the reception weight coefficient U k ⁇ of the base station apparatus 100-j is calculated. .
  • the reception weight coefficient U k ⁇ corresponds to the transmission weight coefficient V k of the base station apparatus 100-j.
  • V k ⁇ U k
  • P ⁇ transmission powers.
  • the total sum Q j of the interference, and singular value decomposition of the i ⁇ , the sum of the interference Q j, receives the weight coefficient U k for suppressing i ⁇ , calculates the i ⁇ (S105). Again, the roles of transmission and reception of the base station device 100-j and the mobile station device 200-k are switched (S106). In other words, substituting V k, i U k, i ⁇ a.
  • the counter for counting the number of times of processing is incremented by 1 (S107), and the processing from step S101 to step S106 is repeated until the predetermined number of times I is reached (S108, N). If the predetermined number of times I has been reached (S108, Y), the process is terminated.
  • the reception weight coefficients (U k , U k ⁇ ) that repeatedly reduce the interference power are repeatedly updated while switching the roles of transmission and reception of the base station apparatus 100-j and the mobile station apparatus 200-k.
  • a reception weighting coefficient that enables the base station apparatus 100-j and the mobile station apparatus 200-k to suppress the influence of interference is obtained.
  • reception weighting factors U k j and reception weighting factors U k ⁇ a made a transmission weight factor V j of the base station apparatus 100-j, a reception weighting coefficient U k by the receiving weighting factors U k of the mobile station apparatus 200-k, a plurality Base station apparatus 100-j can suppress the influence of interference.
  • This calculation method is an example, and the present invention is not limited to this. Other calculation methods may be used.
  • FIG. 5 is a schematic diagram illustrating the configuration of the slave base station devices (base station device 100-2 and base station device 100-3) according to the first embodiment.
  • the base station device 100-3 has the same configuration.
  • Base station apparatus 100-2 includes higher layer 151, encoding section 102, modulation section 103, precoding section 154, reference signal generation section 106, control signal generation section 157, resource mapping section 108, IDFT section 109, and GI insertion section. 110, a transmission unit 111, a transmission antenna unit 112, a reception antenna unit 121, a reception unit 122, and a control signal detection unit 123.
  • an integrated circuit is provided with a chip control circuit (not shown) that controls each functional block.
  • the operations of the upper layer 151, the precoding unit 154, and the control signal generation unit 157 in the base station device 100-2 are different. Hereinafter, mainly different parts will be described.
  • Upper layer 151 includes propagation path information (propagation path information H 21 between base station apparatus 100-1 and mobile station apparatus 200-2, base station apparatus 100-2, included in the control signal input from control signal detection section 123. And propagation path information H 22 between mobile station apparatus 200-2 and propagation path information H 23 between base station apparatus 100-3 and mobile station apparatus 200-2).
  • the upper layer 151 notifies the master base station apparatus that calculates the reception weight coefficient via the backhaul line 10-1 to the propagation path information.
  • the upper layer 151 also transmits a transmission weight coefficient V 2 for multiplying the transmission signal of the own station and a reception weight coefficient U 2 of the mobile station apparatus 200-2 connected to the own station via the backhaul line 10-1. Is acquired from the master base station apparatus.
  • the upper layer 151 inputs the transmission weight coefficient V 2 to the precoding unit 154. Further, the upper layer 151 inputs the reception weight coefficient U 2 to the control signal generation unit 157.
  • Precoding section 154 multiplies the transmission weight factor V 2 to a modulation symbol modulation unit 103 is output.
  • the control signal generation unit 157 generates a control signal including the control data output from the higher layer 151 and the reception weight coefficient U 2 (the reception weight coefficient of the mobile station apparatus 200-2 connected to the own station). Similarly, the format shown in FIG. 3 is applied to the format of the control signal. That has an area for storing the received weighting factor information U 2 of the mobile station device 200-2 are connected to the local station.
  • FIG. 6 is a schematic diagram illustrating a configuration of the mobile station apparatus 200-k according to the first embodiment.
  • the mobile station apparatus 200-k includes a plurality of reception antenna units 201-e, a plurality of reception units 202-e, a propagation path estimation unit 203, a plurality of GI removal units 204-e, a plurality of DFT units 205-e, and interference suppression.
  • the mobile station device 200-k is formed into a chip to form an integrated circuit, a chip control circuit (not shown) for controlling each functional block is provided.
  • the mobile station device 200-k receives the transmission signal of the base station device 100-j via the reception antenna unit 201-e.
  • mobile station apparatus 200-m (a set of m ⁇ k) is connected to base station apparatus 100-m
  • transmission signals other than base station apparatus 100-m cause inter-cell interference.
  • the receiving unit 202-e down-converts the radio frequency signal input from the receiving antenna unit 201-e into a frequency band where digital signal processing is possible, and further performs filtering processing on the down-converted signal to perform unnecessary components (spurious; Remove Spurous).
  • the receiving unit 202-e converts the filtered signal from an analog signal to a digital signal (A / D; Analog-to-Digital), and the converted digital signal is a propagation path estimation unit 203 and a GI removal unit. 204-e and the control signal detection unit 210.
  • the GI removal unit 204-e removes the guard interval GI from the signal output from the reception unit 202-e in order to avoid distortion due to the delayed wave, and outputs the removed signal to the DFT unit 205-e.
  • the DFT unit 205-e performs a discrete Fourier transform (DFT: Discrete Fourier Transform) that converts the signal from which the guard interval GI input from the GI removal unit 204-e has been removed, from a time domain signal to a frequency domain signal, and performs interference. Output to the suppression unit 206.
  • DFT discrete Fourier transform
  • FFT Fast Fourier Transform
  • the propagation path estimation unit 203 performs propagation path estimation using the reference signal included in the signal output from the reception unit 202-e. Then, the propagation path estimation unit 203 notifies the propagation path estimation value to the propagation path compensation unit 207, the control signal generation unit 221, and the upper layer 211.
  • the propagation path estimated value is, for example, a transfer function, an impulse response, or the like.
  • the control signal detection unit 210 detects a control signal included in the signal output from the reception unit 202-e. Then, when the control signal detection unit 210 extracts the reception weight coefficient information (see FIG. 3) included in the control signal, the control signal detection unit 210 inputs the information to the interference suppression unit 206. In addition, when the control signal detection unit 210 extracts the information about the MCS and the number of layers applied to the information data included in the control signal, the control signal detection unit 210 notifies the demodulation unit 208 and the decoding unit 209 of the information.
  • the interference suppression unit 206 multiplies the frequency domain signal input from the DFT unit 205-e by the reception weight coefficient input from the control signal detection unit 210.
  • the propagation path compensation unit 207 is based on the propagation path estimation value input from the propagation path estimation unit 203, such as ZF (Zero Forcing) equalization, MMSE (Minimum Mean Square Error) equalization, etc. Using a method, a weighting factor for correcting propagation path distortion due to fading is calculated. The propagation path compensation unit 207 performs propagation path compensation by multiplying the signal input from the interference suppression unit 206 by this weight coefficient.
  • ZF Zero Forcing
  • MMSE Minimum Mean Square Error
  • Demodulation section 208 performs demodulation processing on the signal (data modulation symbol) after propagation path compensation input from propagation path compensation section 207.
  • the demodulation process may be either a hard decision (calculation of a coded bit sequence) or a soft decision (calculation of a coded bit LLR).
  • the decoding unit 209 performs error correction decoding processing on the encoded bit sequence (or encoded bit LLR) after demodulation output from the demodulation unit 208, calculates information data transmitted to itself, 211 is output.
  • This error correction decoding processing method is a method corresponding to error correction coding such as turbo coding and convolution coding performed by the connected base station apparatus 100-m. Either a hard decision or a soft decision can be applied to the error correction decoding process.
  • the decoding unit 209 When the base station apparatus 100-j transmits interleaved data modulation symbols, the decoding unit 209 performs deinterleaving corresponding to the interleaved input encoded bit sequence before performing error correction decoding processing. Process. Then, the decoding unit 209 performs error correction decoding processing on the signal that has been subjected to deinterleaving processing.
  • the control signal generation unit 221 generates a control signal including propagation path information between the own station and the base station device 100-j.
  • the control signal of the mobile station device 200-1 includes a propagation path H 11 between the mobile station device 200-1 and the base station device 100-1 that cooperates, Contains propagation path information of propagation path H 12 between base station apparatus 100-2 cooperating with 200-1 and propagation path H 13 between base station apparatus 100-3 cooperating with mobile station apparatus 200-1. It is.
  • control signal generation unit 221 generates a control signal for transmitting feedback information (including CQI, RI, and PMI) to the base station apparatus.
  • the feedback information is determined by the upper layer 211 based on the channel estimation value calculated by the channel estimation unit 203.
  • control signal generation unit 221 generates control signals by performing error correction coding and modulation mapping on control data indicating feedback information.
  • the signal including the control signal output from the control signal generation unit 221 is up-converted by the transmission unit 222 before the frequency band that can be transmitted in the downlink, and is connected via the transmission antenna unit 223 to the base station apparatus 100- sent to j.
  • the processing in the interference suppression unit 206 of the mobile station apparatus 200-k will be specifically described.
  • the signal input from DFT section 205-1 and DFT section 205-2 to interference suppression section 206 can be expressed as follows using vector R k as equation 4.
  • R k and e are signals input from the DFT unit 205- e of the mobile station apparatus k
  • -K is a propagation path (transfer function) when received via the receiving antenna unit 201-e
  • V j is a transmission weight coefficient multiplied by the transmission signal of the base station apparatus 100-j (the value of each base station apparatus S j is a data modulation symbol of base station apparatus 100-j.
  • + (indicated by a circle plus in Equations 4 and 5) is an addition for each element.
  • the interference suppression unit 206 multiplies the above R k by the reception weight coefficient U k as Y k , it can be expressed as Equation 5.
  • U k and e are reception weighting factors by which a signal input from the DFT unit 205- e of the mobile station apparatus 200-k is multiplied.
  • the master base station apparatus (base station apparatus 100-1) of the communication system 1 calculates the transmission weight coefficient V j and the reception weight coefficient U k
  • FIG. 3 is a sequence diagram showing an example of operation notified to 3) and the mobile station apparatus 200-k.
  • the master base station apparatus makes a channel information notification request to the slave base station apparatus that cooperatively transmits data (S201).
  • Each slave base station apparatus that has received the notification request in step S201 makes a propagation path information notification request to each of the connected mobile station apparatuses 200-2 and 200-3 (S202).
  • the mobile station apparatus 200-1 connected to the master base station apparatus receives a channel information notification request directly from the master base station apparatus.
  • all mobile station apparatuses 200-k Upon receipt of the propagation path information notification request (S202), all mobile station apparatuses 200-k estimate the propagation path with each of the cooperating base station apparatuses (S203).
  • the mobile station device 200-k estimates the propagation path H k1 , the propagation paths H k2 and H k3 .
  • the propagation path estimation is performed using, for example, a reference signal transmitted from each base station apparatus 200-j.
  • the mobile station apparatus 200-k notifies the base station apparatus 100-j, which is the request source of the propagation path information notification, of the propagation path estimation result (propagation path information) (S204).
  • the slave base station apparatuses (base station apparatuses 100-2 and 100-3) that have received the notification of propagation path information (S204) notify the master base station apparatus (base station apparatus 100-1) of the propagation path information. (S205).
  • the base station device 100-1 requests the base station device 100-2 to notify the channel information of the connected mobile station device 200-2. Then, base station apparatus 100-2 requests propagation path information notification to mobile station apparatus 200-2. Similarly, the base station apparatus 100-3 requests for propagation path information notification.
  • the mobile station apparatus 200-1 connected to the master base station apparatus notifies the master base station apparatus of the propagation path information directly.
  • the master base station apparatus obtains all propagation path information between all base station apparatuses and mobile station apparatuses that perform data transmission in a coordinated manner.
  • the master base station apparatus calculates a transmission weight coefficient V j and a reception weight coefficient U k using the propagation path information obtained in step S205 (S206).
  • the master base station apparatus notifies the calculated transmission weight coefficient V j to the slave base station apparatus 100-j using the backhaul line (S207).
  • the master base station apparatus notifies the reception weight coefficient U k of each mobile station apparatus via the base station apparatus to which each mobile station apparatus is connected (S207, S208). For example, the mobile station device 200-2 that are connected to the slave base station device 100-2 via the slave base station device 100-2, to obtain the receive weighting factors U 2 from the master base station device 100-1 become.
  • the master base station apparatus the reception weighting factors U 1 of the mobile station device 200-1 that are connected to the local station to directly notify the mobile station apparatus (S209).
  • the master base station device and the slave base station device multiply the information data to be transmitted to the mobile station devices connected to each by the transmission weight coefficient V j (S210, S211), and transmit (S212, S213).
  • the master base station device In the first embodiment, in the communication system 1 in which the cells of the plurality of base station devices 100-j are arranged so that all or some of them overlap, the master base station device Each base station is configured such that the direction of the equivalent propagation path of the interference signal received by the mobile station device 200-k connected to the device 100-j is orthogonal to the reception weight coefficient multiplied by the received signal by the mobile station device 200-k. It calculates a reception weighting factor U k of the transmission weight factor V j and the mobile station apparatus 200-k of the station apparatus 100-j.
  • the base station apparatus 100-j notifies the reception weight coefficient U k to the mobile station apparatus 200-k connected to the own station, and the mobile station apparatus 200-k receives the reception weight coefficient for the received signal (including the interference signal). Multiply U k to perform reception processing.
  • the plurality of base station apparatuses communicate using the same frequency. Inter-cell interference can be effectively suppressed and good reception characteristics can be obtained.
  • the weighting factor control unit 105 of the base station apparatus 100-1 may be included in the upper layer 101. Further, the weighting coefficient control unit 105 may be included in a base station management unit that is located outside a plurality of cooperating base station devices 100-j and supervises these base station devices 100-j.
  • a code book is prepared, and the base station apparatus 100- A method in which j notifies reception weight coefficient U k to mobile station apparatus 200-k will be described.
  • the code book is a list of transmission weighting factors V j and reception weighting factors U k determined in advance in the communication system 1.
  • the base station apparatus 100-j in the communication system 1 of the second embodiment shares the codebook of the transmission weight coefficient V j of the base station apparatus and the reception weight coefficient U k of the mobile station apparatus, and the mobile station apparatus 200-k Are configured to share at least the codebook of the reception weight coefficient U k of the mobile station apparatus 200-k.
  • transmission weight coefficients V j, n are nth transmission weight coefficient candidates in the j-th base station apparatus (j and n are arbitrary positive integers).
  • reception weight coefficient U k, n is the nth reception weight coefficient candidate in the kth mobile station apparatus (k and n are arbitrary positive integers).
  • code book indexes # 0 to # 3 are transmission weight coefficients V j and reception weights for suppressing inter-cell interference in cooperation between two base station apparatuses and two mobile station apparatuses. This is a candidate for the coefficient U k .
  • Codebook indexes # 4 to # 7 are candidates for transmission weight coefficient V j and reception weight coefficient U k that suppress inter-cell interference in cooperation between three base station apparatuses and three mobile station apparatuses.
  • Codebook indexes # 8 to 11 are candidates for the transmission weight coefficient V j and the reception weight coefficient U k that suppress inter-cell interference in cooperation between the four base station apparatuses and the four mobile station apparatuses.
  • the master base station apparatus 100-1 holds the code book in the weight coefficient control unit 105.
  • the weight coefficient control unit 105 selects codebook candidates from the number of cooperating base station apparatuses and the number of mobile station apparatuses input from the upper layer 101.
  • codebook indexes # 4 to # 7 are selected as candidates.
  • the weighting factor control unit 105 uses the propagation path information H kj input from the upper layer 101 and the selected codebook index candidate, so that the receiving weighting factor U k that minimizes the influence of interference is obtained.
  • requires is performed.
  • the transmission path coefficient H kj and the transmission weight coefficient V j and the reception weight coefficient U k of the candidate codebook index are substituted into Formula 2 and Formula 3, and the interference sums Q k and i and the sum Q are substituted.
  • the sequence shown in FIG. 7 is applied to the sequence of operations for notifying the slave base station apparatus and mobile station apparatus of the codebook index selected by the master base station apparatus.
  • the master base station apparatus notifies the selected codebook index to the slave base station apparatus using the backhaul lines 10-1 and 10-2.
  • FIG. 9 is a conceptual diagram illustrating an example of a format of a control signal output from the control signal generation unit 107.
  • the control signal has a codebook index area for notifying information on the reception weight coefficient U k of the mobile station apparatus connected to the own station. 9, as an example, the reception weighting factors U 1 to the mobile station device 200-1 multiplies the reception signal and reception weight coefficient information indicates the case where is provided a 4-bit area for storing the information.
  • control signal generation unit 157 of the slave base station apparatus notifies the reception weight coefficient U k to the mobile station apparatus 200-k according to the format of the control signal shown in FIG.
  • the base station apparatus 100-j by sharing the code book between the base station apparatus 100-j and the mobile station apparatus 200-k, it is possible to reduce the number of repetitions when calculating the transmission weight coefficient V j and the reception weight coefficient U k. Therefore, it is possible to reduce the processing load on the base station device 100-j and the mobile station device 200-k.
  • the reception weight coefficient U k can be notified to the mobile station apparatus 200-k by notifying the codebook index, the overhead (storage area for notifying the weight coefficient of the control signal) can be reduced.
  • the base station device 100 is used by using a plurality of reference signals.
  • a mode in which ⁇ j uses a method of notifying mobile station apparatus 200-k of reception weight coefficient U k will be described.
  • the communication system 1a according to the third embodiment includes a base station device 300-1 that is a master base station device, base station devices 300-2 and 300-3 that are slave base station devices, and a plurality of Mobile station apparatuses 400-1 to 400-3 are provided.
  • the base station device 100-1 of FIG. 1 is replaced with the base station device 300-1, and the base station devices 100-2 and 100-3 of FIG. 2 and 300-3 can be realized by replacing the mobile station apparatus 200-1 through the mobile station apparatus 200-3 with the mobile station apparatus 400-1 through the mobile station apparatus 400-3.
  • FIG. 11 is a schematic diagram showing the configuration of the base station apparatus 300-1 according to the third embodiment.
  • the base station apparatus 300-1 includes an upper layer 101, an encoding unit 102, a modulation unit 103, a precoding unit 104, a weight coefficient control unit 305, a reference signal generation unit 306, a control signal generation unit 107, a resource mapping unit 108, an IDFT.
  • a chip control circuit (not shown) for controlling each functional block is provided.
  • the constituent elements having the same reference numbers as those in FIG. 2 have the same functions and operations, and thus description thereof is omitted.
  • the weight coefficient control unit 305 and the reference signal generation unit 306 are different. Hereinafter, these parts will be mainly described.
  • the weight coefficient control unit 305 is connected to the transmission weight coefficient V j to be multiplied by the signal transmitted by the base station apparatus and the slave base station apparatus and the base station apparatus using the propagation path information acquired from the upper layer 101.
  • the mobile station apparatus calculates a reception weight coefficient U k by which the reception signal is multiplied.
  • a method for calculating the transmission weight coefficient V j and the reception weight coefficient U k the same method as in the first embodiment can be applied.
  • the weight coefficient control unit 305 notifies the upper layer of the transmission weight coefficient V j of the slave base station apparatus and the reception weight coefficient U k of the mobile station apparatus connected to the slave base station apparatus. Further, the weighting factor controller 305, outputs the transmission weight factor V 1 to be multiplied by the transmission signal of the master base station (own station) in the precoding unit 104. Furthermore, the weight coefficient control unit 305 outputs the reception weight coefficient U 1 of the mobile station apparatus connected to the master base station apparatus (own station) to the reference signal generation unit 306.
  • the reference signal generation unit 306 uses the first reference signal used for estimating the propagation characteristics from the transmission antenna of the base station apparatus 300-j to each reception antenna of the mobile station apparatus 300-k, and the reception weight coefficient U 1 .
  • a second reference signal used for notifying the mobile station apparatus is generated.
  • the second reference signal is generated by multiplying the received weighting factor U 1 to a known code sequence previously determined by the communication system 1a.
  • a reference signal generation unit that generates a reference signal including a weight coefficient may be referred to as a weight coefficient information generation unit, and a reference signal including the weight coefficient generated by the reference signal generation unit may be referred to as weight coefficient information.
  • the first reference signal becomes S RS
  • the second reference signal the U 1 S RS.
  • the resource mapping unit 108 Based on the scheduling information notified from the higher layer 101, the resource mapping unit 108 transmits the modulation symbol, the first reference signal, the second reference signal, and the control signal output from the precoding unit 104 to the resource mapping unit 108. Map resources to resource elements.
  • FIG. 12 is a schematic diagram illustrating configurations of the base station device 300-2 and the base station device 300-3 according to the third embodiment.
  • the configuration of base station apparatus 300-2 will be described, but base station apparatus 300-3 has the same configuration.
  • the number of slave base station devices is not limited to two as long as it includes at least one base station device.
  • Base station apparatus 300-2 includes higher layer 152, encoding section 102, modulation section 103, precoding section 154, reference signal generation section 356, control signal generation section 157, resource mapping section 108, IDFT section 109, and GI insertion section. 110, a transmission unit 111, a transmission antenna unit 112, a reception antenna unit 121, a reception unit 122, and a control signal detection unit 123.
  • a chip control circuit (not shown) for controlling each functional block is provided.
  • the components having the same reference numbers as those in FIG. When compared with the base station apparatus 300-2 of the third embodiment and the base station apparatus 100-2 of the first embodiment, the upper layer 152 and the reference signal generation unit 356 are different. Hereinafter, these parts will be mainly described.
  • Upper layer 152 includes propagation path information (propagation path information H 21 between base station apparatus 300-1 and mobile station apparatus 400-2, base station apparatus 300-2, included in the control signal input from control signal detection section 123. And propagation path information H 22 between mobile station apparatus 400-2 and propagation path information H 23 between base station apparatus 300-3 and mobile station apparatus 400-2).
  • the upper layer 152 notifies the acquired propagation path information to the master base station apparatus that calculates the reception weight coefficient U k through the backhaul line 10-1 (or the backhaul line 10-2).
  • the upper layer 152 is connected to the transmission weight coefficient V 2 (or V 3 ) for multiplying the transmission signal of the own station and the own station through the backhaul line 10-1 (or the backhaul line 10-2).
  • the reception weight coefficient U 2 (or U 3 ) of the mobile station device 400-2 is acquired from the master base station device.
  • the upper layer 152 inputs the transmission weight coefficient V 2 (or V 3 ) to the precoding unit 154. Further, the upper layer 152 inputs the reception weight coefficient U 2 (or U 3 ) to the reference signal generation unit 356.
  • the reference signal generation unit 356 includes a first reference signal SRS1 used for estimating a propagation characteristic from the transmission antenna of the base station apparatus to the reception antenna of each mobile station apparatus, and a reception weight coefficient U 2 (or U 3 ). To the mobile station device 400-2, a second reference signal SRS2 is generated. Note that the reference signal generation method in the reference signal generation unit 306 of the base station device 300-1 is applied to the reference signal generation method in the reference signal generation unit 356 of the base station devices 300-2 and 300-3.
  • the resource mapping unit 108 Based on the scheduling information notified from the higher layer 152, the resource mapping unit 108 transmits the modulation symbol, the first reference signal, the second reference signal, and the control signal output from the precoding unit 154 to the resource mapping unit 108. Map resources to resource elements.
  • the format in the reference signal generation unit 106 of the base station apparatus 300-1 is applied as the resource mapping format.
  • FIG. 13 is a schematic diagram illustrating a configuration of a mobile station device 400-k according to the third embodiment.
  • the mobile station device 400-k includes a reception antenna unit 201-e, a reception unit 202-e, a propagation path estimation unit 203, a GI removal unit 204-e, a DFT unit 205-e, an interference suppression unit 206, and a propagation path compensation unit 207.
  • an integrated circuit is provided with a chip control circuit (not shown) that controls each functional block.
  • the control signal detection unit 410 is different. In the following, the description will be made centering on the portion.
  • the propagation path estimation unit 203 performs propagation path estimation using the first reference signal SRS1 included in the signal output from the reception unit 202-1. Then, the propagation path estimation value (for example, transfer function) is notified to the control signal detection section 410, the propagation path compensation section 207, the control signal generation section 221 and the upper layer 211.
  • the propagation path estimation value for example, transfer function
  • the channel estimation value of the subcarrier where the known signal S RS1 is not arranged is linear interpolation, FFT interpolation, etc. using the channel estimation value H k ⁇ of the subcarrier where the first reference signal HS RS1 is arranged. It can be calculated by the interpolation technique.
  • the control signal detection unit 410 detects a control signal included in the signal output from the reception unit 202-2. When the information on the MCS and the number of layers applied to the information data included in the control signal is extracted, the information is notified to the demodulation unit 208 and the decoding unit 209.
  • the calculated reception weight coefficient information U k ⁇ can be expressed by the following formula 6.
  • H k ⁇ is a propagation path estimated value.
  • the interference suppression unit 206 performs processing represented by Equation 5 using the calculated reception weight coefficient information U k ⁇ .
  • FIG. 14 is an example of resource mapping in the resource mapping unit 108 of the base station apparatus 300-1 according to the third embodiment.
  • the resource mapping in the resource mapping unit 108 shown in FIG. 14 is an example of the case where the base station apparatus 300-1 transmits using one transmission antenna unit.
  • the horizontal direction indicates time T
  • the vertical direction indicates frequency F.
  • an outline part RE1 is a resource element that maps a control signal and information data.
  • the hatched part RE2 and the filled part RE3 are resource elements for mapping the reference signal.
  • Resource elements to which the reference signal can be mapped are included in the entire system band. That is, it is a resource element that maps a cell-specific reference signal.
  • the first reference signal is arranged in the painting unit RE3. Also, the second reference signal is arranged in the shaded area RE2 among the resource elements for mapping the reference signal.
  • the information data and the control signal may be subjected to error correction coding and modulation processing (the same applies to FIGS. 15 to 17).
  • FIG. 15 is another example of resource mapping in the resource mapping unit 108 of the base station apparatus 300-1 according to the third embodiment.
  • a white portion RE1 is a resource element that maps a control signal and information data.
  • the range of the thick line is the range MA to which the modulation symbol of the mobile station apparatus that notifies the reception weight coefficient is assigned.
  • the hatched portion RE2 and the painted portion RE3 are resource elements for mapping the reference signal.
  • the resource element to which the reference signal can be mapped has a range in which the modulation symbol of the mobile station apparatus that notifies the reception weight coefficient U k is allocated. That is, it is a resource element that maps a user-specific reference signal.
  • the first reference signal is arranged in the painting unit RE3. Also, the second reference signal is arranged in the shaded area RE2 among the resource elements for mapping the reference signal.
  • the reception weight coefficient U k is notified to the mobile station apparatus.
  • FIG. 16 is another example of resource mapping in the resource mapping unit 108 of the base station apparatus 300-1 according to the third embodiment.
  • a white portion RE1 is a resource element that maps a control signal and information data.
  • the thick line area is an area MA to which the modulation symbol of the mobile station apparatus that notifies the reception weight coefficient is assigned.
  • the hatched part RE2 and the filled part RE3 are resource elements for mapping the reference signal.
  • the resource element that can map the reference signal indicated by the filling unit RE3 is a resource element that maps the cell-specific reference signal.
  • the resource element that can map the reference signal indicated by the hatched portion RE2 is a resource element that maps the user-specific reference signal.
  • the first reference signal is arranged in the painting unit RE3. Also, the second reference signal is arranged in the shaded area RE2 among the resource elements for mapping the reference signal.
  • the reception weight coefficient Uk is notified to the mobile station apparatus.
  • FIG. 17 is another example of resource mapping in the resource mapping unit 108 of the base station apparatus 300-1 according to the third embodiment.
  • a white portion RE1 is a resource element that maps a control signal and information data.
  • the bold line area is a resource block RB.
  • a resource block is a resource unit in which a plurality of resource elements are collected, and is a minimum resource unit to which a modulation symbol is allocated for each mobile station apparatus.
  • the resource block RB can be a resource composed of 12 subcarriers and 7 OFDM symbols.
  • the hatched part RE2 and the filled part RE3 are resource elements for mapping the reference signal.
  • the resource element that can map the reference signal indicated by the filling unit RE3 is a resource element that maps the cell-specific reference signal.
  • the resource element that can map the reference signal indicated by the hatched portion RE2 is a resource element that maps the user-specific reference signal.
  • the first reference signal is arranged in the painting unit RE3. Also, the second reference signal is arranged in the shaded area RE2 among the resource elements for mapping the reference signal.
  • the reference signal is either a reference signal unique to each mobile station device or a reference signal unique to a cell, and is included in a part of resource blocks in a region to which modulation symbols of the mobile station device are mapped.
  • the mobile station apparatus is notified of the reception weight coefficient.
  • the cells of the plurality of base station devices are arranged so as to overlap all or part of the cells, and are connected to the plurality of base station devices and the base station device.
  • Each mobile station apparatus cooperates to suppress inter-cell interference. Since the base station apparatus notifies the mobile station apparatus of a reception weight coefficient for suppressing inter-cell interference using the reference signal, the base station apparatus can prevent an increase in the control signal, and a plurality of base station apparatuses and It is possible to realize a communication system that can reduce the load of control signal processing in each mobile station apparatus.
  • the base station apparatus can notify the weighting factor using a mobile station apparatus or a cell-specific reference signal, and can construct a communication system capable of efficiently receiving and transmitting data corresponding to the communication environment.
  • the present invention is not limited to this, and the signal multiplied by the reception weight coefficient is a known signal. If it is.
  • a configuration may be adopted in which a control signal that is a known signal is multiplied by a reception weight coefficient, and the reception weight coefficient is notified to the mobile station apparatus.
  • the base station apparatus A100-k and the mobile station apparatus A200-j perform DFT-s-OFDM (discrete Fourier transform-spread-Orthogonal Division Division Multiplexing).
  • DFT-s-OFDM discrete Fourier transform-spread-Orthogonal Division Division Multiplexing
  • SC-FDMA single carrier-frequency division multiple access
  • OFDM orthogonal
  • Multi-carrier transmission schemes such as frequency division multiplexing (MC) and multiple carrier-code division multiple access (MC-CDMA) may be used.
  • WCDMA Wideband Code Division Multiple Access
  • 3GPP Third Generation Partnership Project
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • LTE-EL Long Term Evolution
  • WiMAX Worldwide Wide Interoperability Access
  • FIG. 18 is a schematic diagram showing a configuration of a communication system A1 according to the fourth embodiment of the present invention.
  • the plurality of base station apparatuses A100-k and the plurality of mobile station apparatuses A200-j in the communication system A1 are configured to suppress inter-cell interference in cooperation with each other.
  • the mobile station device A200-j in the communication system 1 includes a mobile station device connected to a cooperating base station device and a mobile station device that is a target of cooperation.
  • Each base station apparatus A100-k is arranged in such a configuration that its own cell overlaps with the other base station apparatus cells in whole or in part and uses the same frequency repeatedly in one cell. Has been.
  • the base station apparatuses A100-k are connected by backhaul lines A10-1 and A10-2 (for example, X2 interface) using optical fibers, Internet lines, radio lines, or the like.
  • the propagation path H kj between the base station apparatus and the mobile station apparatus to be coordinated is called a propagation path of the entire system.
  • the base station apparatus A 100-1 the transmission signal from the mobile station device A200-1 which receives through the channel H 11 is the desired signal, received through the channel H 12 and the channel H 13 moves Transmission signals from station apparatus A 200-2 and base station apparatus A 100-3 become inter-cell interference (undesired signal).
  • each mobile station apparatus A200-j can suppress inter-cell interference that the base station apparatus A100-k and the mobile station apparatus A200-j can cooperate with each other in the transmission signal transmitted by itself.
  • the transmission weight coefficient V j is multiplied.
  • each base station apparatus A100-k, the base station apparatus A100-k and the mobile station device A200-j is in concert, multiplies the reception signal received weighting factor U k that can suppress inter-cell interference that can have mutually To do.
  • 18 is different from the communication system 1 in FIG. 1 in that it is an uplink or a downlink.
  • the propagation path H kj , the transmission weight coefficient V j , and the reception weight coefficient U k in FIG. 18 can be applied to the base station apparatus or the mobile station apparatus depending on the difference.
  • the base station apparatus A100-1 is a main base station apparatus (master base station apparatus) that calculates a transmission weight coefficient and a reception weight coefficient
  • the base station apparatus A100-2 and the base station apparatus A100-3 is a slave base station apparatus (slave base station apparatus) that operates cooperatively according to an instruction from the master base station apparatus.
  • the master base station apparatus has a plurality of reception antenna units A101-L (L is an arbitrary positive integer, and represents the number of each part hereinafter), Receiving unit A102-L, propagation path estimation unit A103, GI removal unit A104-L, DFT unit A105-L, interference suppression unit A106, propagation path compensation unit A107, IDFT unit A108, demodulation unit A109, decoding unit A110, weighting factor A control unit A111, an upper layer A112, a control signal detection unit A113, a control signal generation unit A121, a reference signal generation unit A122, a transmission unit A123, and a transmission antenna unit A124 are configured.
  • FIG. 1 receives A102-L, propagation path estimation unit A103, GI removal unit A104-L, DFT unit A105-L, interference suppression unit A106, propagation path compensation unit A107, IDFT unit A108, demodulation unit A109, decoding unit A110, weighting factor A control unit A111, an upper layer A112, a control signal detection
  • the upper layer A112 acquires propagation path information from the slave base station devices (base station device A100-2 and base station device A100-3) through the backhaul lines A10-1 and A10-2. Further, the upper layer A112 outputs the propagation path information to the weighting coefficient control unit A111.
  • the upper layer is a layer of functions higher than the physical layer (Physical Layer) among the layers of communication functions defined in the OSI reference model, for example, a data link layer, a network layer, and the like.
  • the upper layer A112 is a channel state information between a mobile station device A200-j and the base station apparatus A100-2 (information about the channel H 2j), the base station apparatus A100-2 via backhaul lines A10-1 get. Further, the upper layer A112 is acquired, the channel information between the mobile station device A200-j and the base station apparatus A100-3 (information about the channel H 3j), the base station apparatus A100-3 via backhaul lines A10-2 To do.
  • the upper layer A 112 acquires the reception weight coefficient of the slave base station apparatus calculated by the weight coefficient control unit A 111 described later and the transmission weight coefficient of the mobile station apparatus connected to the slave base station apparatus.
  • the upper layer A 112 notifies each slave base station apparatus of the reception weight coefficient of the slave base station apparatus and the transmission weight coefficient of the mobile station apparatus connected to the slave base station apparatus via the backhaul line A10-1.
  • the upper layer A112 of the base station apparatus A100-1 includes a transmission weight factor V 2 to be multiplied by the transmission signal of the mobile station device A200-2, multiplies the received signal of the base station apparatus A100-2 and a reception weighting factor U 2, notifies the base station apparatus A100-2 via the backhaul A10-1.
  • the upper layer A112 of the base station apparatus A100-1 includes a transmission weight factor V 3 to be multiplied by the transmission signal of the mobile station device A200-3, reception weighting factors to be multiplied to the received signal of the base station apparatus A100-3 and U 3, notifies the base station apparatus A100-3 via the backhaul A10-2.
  • the upper layer A 112 outputs control data such as MCS (Modulation and Coding Scheme) and spatial multiplexing number of the transmission signal transmitted by the mobile station apparatus A 200-2 to the control signal generation unit A121.
  • the control data is set in consideration of the propagation path estimation value, the transmission weight coefficient, and the reception weight coefficient.
  • the upper layer A 112 also notifies other parameters necessary for each part of the base station apparatus A 100-1 to perform its function.
  • the control signal generation unit A121 generates a control signal including control data output from the upper layer A112 and a transmission weight coefficient by which the mobile station apparatus connected to the own station multiplies the transmission signal.
  • the control signal corresponds to, for example, a downlink control channel (PDCCH; Physical Uplink Control Channel) in LTE. Further, the transmission weighting factor can be notified by a downlink common channel (PDSCH) in LTE.
  • the control signal may be subjected to error correction coding and modulation processing.
  • FIG. 20 is a conceptual diagram illustrating an example of a format of a control signal output from the control signal generation unit A121.
  • the control signal has an area for storing transmission weight coefficient information of the mobile station apparatus connected to the own station. As shown in FIG. 20, the region for storing information about the transmission weight factor of the reception weighting factor V 1 to the mobile station apparatus A200-1 is multiplied to the transmission signal is provided.
  • the MCS area and the layer area are examples of control data included in addition to the information related to the transmission weight coefficient, and may include other control data.
  • the MCS area is an area for storing MCS information of a signal transmitted from the mobile station apparatus A 200-1 to the base station apparatus A 100-1.
  • the layer area is an area for storing information related to the spatial multiplexing number of signals transmitted from the mobile station apparatus A200-1 to the base station apparatus A100-1.
  • a control signal generation unit that generates a control signal including a weighting factor may be referred to as a weighting factor information generation unit, and a control signal including the weighting factor generated by the control signal generation unit may be referred to as weighting factor information.
  • the reference signal generator A122 generates a reference signal (pilot signal).
  • the reference signal is, for example, a signal used for estimating propagation characteristics from the transmission antenna unit A124 of the base station device A100-1 to each reception antenna unit of the mobile station device.
  • the code sequence constituting the reference signal is preferably an orthogonal sequence, for example, a Hadamard code or a CAZAC (Constant Amplitude Zero Auto-Correlation) sequence.
  • the transmission unit A123 up-converts the downlink signal including the control signal output from the control signal generation unit A121 and the reference signal to a transmittable frequency band, and connects to the base station connected via the transmission antenna unit A124. It is transmitted to the station apparatus A100-k.
  • the transmission unit A123 can apply a transmission method so that the mobile station device A200-j can receive in the downlink of the communication system A1. For example, in LTE, OFDM transmission is applicable.
  • the base station device A100-1 receives the transmission signal of the mobile station device A200-j via the reception antenna unit A101-L.
  • transmission signals other than mobile station apparatus A 200-1 cause inter-cell interference.
  • the configuration of the mobile station apparatus that generates the transmission signal will be described later.
  • the receiving unit A102-L downconverts the radio frequency signal input from the receiving antenna unit A101-L to a frequency band where digital signal processing is possible, and further performs filtering processing on the downconverted signal to perform unnecessary components (spurious; Remove Spurous).
  • the receiving unit A102-L converts the filtered signal from an analog signal to a digital signal (A / D; Analog-to-Digital), and the converted digital signal is a propagation path estimating unit A103 and a GI removing unit.
  • A104-L and the control signal detector A113 are examples of the signals input from the receiving antenna unit A101-L to a frequency band where digital signal processing is possible, and further performs filtering processing on the downconverted signal to perform unnecessary components (spurious; Remove Spurous).
  • the receiving unit A102-L converts the filtered signal from an analog signal to a digital signal (A / D; Analog-to-Digital), and the converted digital signal is a propagation path estimating unit A103 and a GI removing unit.
  • the GI removal unit A104-L removes the guard interval GI from the signal output from the reception unit A102-L in order to avoid distortion due to the delayed wave, and outputs the removed signal to the DFT unit A105-L.
  • the DFT unit A105-L performs discrete Fourier transform (DFT: Discrete Fourier Transform), which converts the signal from which the guard interval GI input from the GI removal unit A104-L is removed, from a time domain signal to a frequency domain signal, and performs interference. It outputs to the suppression part A106.
  • DFT discrete Fourier transform
  • FFT fast Fourier transform
  • the control signal detector A113 detects a control signal included in the signal output from the receiver A102-2.
  • the control signal for example, feedback information such as CQI (Channel Quality Control) in LTE corresponds.
  • CQI Channel Quality Control
  • the control signal detection unit 113 outputs the feedback information to the control signal generation unit A121 and the upper layer A112.
  • the control signal generation unit A121 and the upper layer A112 generate a downlink transmission signal (downlink information data, control signal) in consideration of feedback information such as the CQI.
  • the propagation path estimation unit A103 performs propagation path estimation using the reference signal included in the signal output from the reception unit A102-L. Then, the propagation path estimation unit A103 notifies the propagation path estimation value to the propagation path compensation unit A107, the weight coefficient control unit A111, and the upper layer A112.
  • the propagation path estimated value is, for example, a transfer function, an impulse response, or the like.
  • the weighting coefficient control unit A111 uses the propagation path information (propagation path estimation value) acquired from the higher layer A112 and the transmission path estimation unit A103, and multiplies the transmission weight coefficient V j by which the signal transmitted by the mobile station apparatus A200- j In addition, a reception weight coefficient U k to be multiplied with the reception signal of the master base station apparatus and the slave base station apparatus is calculated.
  • the master base station apparatus acquires propagation path estimated values between all base station apparatuses (master base station apparatus and slave base station apparatus) that perform cooperative control and all mobile station apparatuses that participate in the cooperative control.
  • the transmission weight coefficient V j of the mobile station apparatus and the reception weight coefficient U k of the base station apparatus are calculated using the propagation path estimation value.
  • the weighting factor control unit A111 is configured such that the direction (vector) of the equivalent propagation path of interference signals arriving from a plurality of mobile station devices serving as interference sources is orthogonal to the reception weighting factor by which the received signal is multiplied in each base station device
  • the transmission weighting coefficient is calculated (Equation 7).
  • H kj is a propagation path matrix between the mobile station apparatus A200-j and the base station apparatus 100-k that is the target of cooperative control
  • V j is a vector of transmission weight coefficients of the mobile station apparatus A200-j.
  • U k is a vector of reception weight coefficients of base station apparatus A 100-k
  • d k is the number of streams.
  • H is a complex conjugate transpose.
  • the weight coefficient control unit A111 notifies the upper layer A112 of the reception weight coefficient U k of the slave base station apparatus and the transmission weight coefficient V j of the mobile station apparatus connected to the slave base station apparatus. Further, the weighting factor controller A111 outputs the received weighting coefficients U 1 to be multiplied by the received signal of the master base station device (self station) the interference suppression unit A106. Further, the weighting factor controller A111 outputs the transmission weight factor V 1 of the mobile station devices connected to the master base station apparatus (own station) to the control signal generation unit A121. Note that the above-described weighting coefficient control unit A111 and the weighting coefficient control function may be included in the upper layer A112.
  • the interference suppression unit A106 multiplies the frequency domain signal input from the DFT unit A105-L by the reception weighting factor input from the weighting factor control unit A111.
  • the propagation path compensation unit A107 is configured to perform ZF (Zero Forcing) equalization, MMSE (Minimum Mean Square Error) equalization, etc. based on the propagation path estimation value input from the propagation path estimation unit A103. Using a method, a weighting factor for correcting propagation path distortion due to fading is calculated. The propagation path compensation unit A107 performs propagation path compensation by multiplying the signal input from the interference suppression unit A106 by this weight coefficient.
  • ZF Zero Forcing
  • MMSE Minimum Mean Square Error
  • the IDFT unit A108 performs an IDFT (Inverse Discrete Fourier Transform) process on the signal output from the propagation path compensation unit A107.
  • IDFT Inverse Discrete Fourier Transform
  • the demodulation unit A109 performs demodulation processing on the signal input from the IDFT unit A108.
  • the demodulation process may be either a hard decision (calculation of a coded bit sequence) or a soft decision (calculation of a coded bit LLR).
  • the decoding unit A110 performs error correction decoding processing on the encoded bit sequence (or encoded bit LLR) after demodulation output from the demodulation unit A109, calculates information data transmitted to itself, Output to A112.
  • This error correction decoding processing method is a method corresponding to error correction coding such as turbo coding and convolution coding performed by a connected base station apparatus.
  • the error correction decoding process can be applied to either hard decision or soft decision.
  • decoding section A110 deinterleaves the input coded bit sequence corresponding to the interleaving before performing error correction decoding processing. Process. Then, the decoding unit A110 performs error correction decoding processing on the signal that has been subjected to deinterleaving processing.
  • the weight coefficient control unit A111 can apply the process of calculating the transmission weight coefficient V j and the reception weight coefficient U k shown in FIG.
  • the complex conjugate transposition matrix of the propagation path matrix from the mobile station apparatus to the base station apparatus becomes the propagation path matrix of the mobile station apparatus from the base station apparatus (propagation path reciprocity).
  • the process of obtaining the weighting coefficient that minimizes the influence of interference is repeated while switching the roles of transmission and reception.
  • the weighting coefficient control unit A111 acquires the channel information, sets an arbitrary transmission weight factor V j (S100).
  • the weighting coefficient control unit A111 calculates the total sum Qk, i of interference received by the base station apparatus A100-k based on (Equation 8) (S101).
  • Q is a covariance matrix of the received interference signal.
  • P is the transmission power, and K is the number of base station apparatuses that cooperate and suppress inter-cell interference.
  • H represents complex conjugate transposition.
  • the weighting coefficient control unit A111 is the sum Q k of the calculated interference, i and singular value decomposition, the sum Q k of the interference, the receiving weight coefficients U k for suppressing i, calculates a i (S102).
  • the reception weight coefficient U k is calculated when the base station apparatus A100-k receives the transmission signal of the mobile station apparatus A200-j.
  • the roles of transmission and reception of the mobile station device A200-j and the base station device A100-k are switched (S103).
  • the base station apparatus A100-k receives a transmission signal obtained by multiplying the coefficients U k and i by the mobile station apparatus A 200-j
  • the reception weight coefficient U k ⁇ of the mobile station apparatus A 200-j is calculated.
  • the reception weight coefficient U k ⁇ corresponds to the transmission weight coefficient V k of the mobile station apparatus A 200-j.
  • a counter (not shown) for counting the number of times of processing is incremented by one (S107), and the processing from step S101 to step S106 is repeated until the predetermined number of times I is reached (S108, N). If the predetermined number of times I has been reached (S108, Y), the process is terminated.
  • the reception weight coefficients (U k , U k ⁇ ) that repeatedly reduce the interference power are repeatedly updated while switching the roles of transmission and reception of the base station device A 100-k and the mobile station device A 200-j.
  • a reception weighting coefficient that allows the base station apparatus A100-k and the mobile station apparatus A200-j to suppress the influence of interference is obtained.
  • the plurality of base station apparatuses A 100-k cooperate to suppress the influence of interference. Can do.
  • This calculation method is an example, and the present invention is not limited to this. Other calculation methods may be used.
  • FIG. 21 is a schematic diagram illustrating a configuration of slave base station apparatuses (base station apparatus A100-2 and base station apparatus A100-3) according to the fourth embodiment.
  • the base station apparatus A100-3 also has the same configuration.
  • the slave base station devices (base station devices A100-2 and A100-3) have a plurality of reception antenna units A101-L (L is an arbitrary positive integer and represents the number of each part. ), Receiving section A102-L, propagation path estimating section A103, GI removing section A104-L, DFT section A105-L, interference suppressing section A106, propagation path compensating section A107, IDFT section A108, demodulating section A109, decoding section A110, An upper layer A152, a control signal detection unit A113, a control signal generation unit A121, a reference signal generation unit A122, a transmission unit A123, and a transmission antenna unit A124 are configured.
  • Upper layer A152 obtains the channel estimation value H 2j between the mobile station device A200-j and the own station (the base station apparatus A100-2) from the channel estimation unit A103. Upper layer A 152 notifies channel estimation value H 2j to base station apparatus A 100-1 via backhaul line A10-1.
  • the upper layer A 152 uses the transmission weight coefficient V 2 of the transmission signal of the mobile station apparatus A 200-2 connected to the own station and the reception weight coefficient U 2 that multiplies the reception signal of the own station to the backhaul line A 10- 1 from the base station apparatus A 100-1.
  • the transmission weight coefficient V 2 and the reception weight coefficient U 2 are calculated by the weight coefficient control unit A 111 of the base station apparatus A 100-1.
  • the upper layer A 152 inputs the reception weight coefficient U 2 to the interference suppression unit A106.
  • Interference suppression unit A106 multiplies the received weighting factor U 2 to the signal of the input frequency domain from DFTA105-L.
  • upper layer A 152 inputs transmission weight coefficient V 2 that mobile station apparatus A 200-j connected to the own station multiplies the transmission signal to control signal generation section A 121.
  • Control signal generation unit A121 generates a control signal including the control data and the transmission weight factor V 2 higher layer A152 is output. Note that the format shown in FIG. 20 can be applied to the format of the control signal in the same manner as the master base station apparatus A 100-1.
  • the control data includes MCS information, spatial multiplexing number, and the like.
  • FIG. 22 is a schematic diagram showing the configuration of the mobile station apparatus A200-j according to the fourth embodiment.
  • the mobile station apparatus A200-j includes an upper layer A201, an encoding unit A202, a modulation unit A203, a DFT unit A204, a precoding unit A205, a reference signal generation unit A206, a control signal generation unit A207, a resource A mapping unit A208, an IDFT unit A209, a GI insertion unit A210, a transmission unit A211, a transmission antenna unit A212, a reception antenna unit A221, a reception unit A222, a control signal detection unit A223, and a propagation path estimation unit A224 are configured.
  • a part or all of the mobile station device A200-j is formed as a chip to form an integrated circuit, it has a chip control circuit (not shown) for controlling each functional block.
  • the transmission signal is a signal including a control signal such as a transmission weight coefficient.
  • the control signal is a signal including the transmission weight coefficient V j generated by the control signal generation unit A121 of the base station apparatus A100-k. Although details will be described later, the transmission weight coefficient V j is multiplied by the transmission signal of the mobile station apparatus A100-j.
  • the receiving unit A222 down-converts (radio frequency conversion) the signal output from the receiving antenna unit A221 to a frequency band capable of digital signal processing such as signal detection processing, and further performs filtering processing to remove spuriousness,
  • the filtered signal is converted from an analog signal to a digital signal (Analog to Digital conversion).
  • the propagation path estimation unit A224 performs propagation path estimation using the reference signal included in the signal output from the reception unit A222.
  • the propagation path estimation is for estimating a propagation path between the base station apparatus A100-k and the mobile station apparatus A200-j in the downlink.
  • Control signal detection unit A223 may, propagation channel compensation with respect to the control signal receiving unit A222 has output, performs demodulation processing and decoding processing, and the like, extracts the transmission weight factor V j.
  • the control signal detection unit A223 uses the result of propagation path estimation (a propagation path estimation value) by the propagation path estimation unit A224 for propagation path compensation, demodulation processing, and decoding processing.
  • control signal detection unit A223 extracts feedback information such as MCS information (Modulation and Coding Scheme) of the transmission signal of the mobile station device A100-j, the number of spatial multiplexing, and the like.
  • MCS information Modulation and Coding Scheme
  • the upper layer A 112 acquires the transmission weight coefficient V j included in the control signal.
  • the upper layer A 112 also obtains feedback information such as MCS information and the number of spatial multiplexing included in the control signal.
  • the upper layer A 112 outputs information data to be transmitted on the uplink to the encoding unit A 202 based on the feedback information.
  • the information data is, for example, an audio signal accompanying a call, a still image or moving image signal representing a captured image, a character message, or the like.
  • the upper layer A 112 outputs control data (including MCS information, spatial multiplexing number, etc.) to be transmitted on the uplink.
  • control data including MCS information, spatial multiplexing number, etc.
  • the upper layer A 201 also notifies other parameters necessary for each part of the mobile station apparatus A 200-j to perform its function.
  • the encoding unit A202 performs error correction encoding on the information data input from the upper layer A201.
  • the encoding method used when the encoding unit A202 performs error correction encoding is, for example, turbo encoding, convolutional encoding, low density parity check encoding (low density parity check encoding); LDPC).
  • the encoding unit A202 performs rate matching processing on the encoded bit sequence in order to match the coding rate of the error correction-encoded data sequence with the encoding rate corresponding to the data transmission rate. May be. Further, the encoding unit A202 may have a function of rearranging and interleaving the error correction encoded data series.
  • Modulator A203 modulates the signal input from encoder A202 to generate a modulation symbol.
  • the modulation processing performed by the modulation unit A203 includes, for example, BPSK (binary phase shift keying; two-phase phase modulation), QPSK (quadture phase shift keying; four-phase phase modulation), and M-QAM (M-quad quadrature quadrature value).
  • the modulation unit A203 may have a function of rearranging generated modulation symbols and rearranging them.
  • the DFT unit A204 performs DFT processing (discrete Fourier transform processing) on the modulation symbol output from the modulation unit A203.
  • the precoding unit A205 multiplies the output signal of the DFT unit A204 by a transmission weight coefficient. As shown in FIG. 22, the precoding unit A205 acquires the transmission weighting factor via the upper layer A201, but may be configured to acquire directly from the control signal detection unit A223.
  • the reference signal generation unit A206 generates a reference signal (pilot signal) and outputs the generated reference signal to the resource mapping unit A208.
  • the reference signal is a signal used in the base station apparatus A100-k to estimate the propagation characteristics from the transmitting antenna of the mobile station apparatus A200-j to each receiving antenna of the base station apparatus A100-k.
  • the estimated propagation characteristics are used for propagation path information for calculating transmission weight coefficients and reception weight coefficients, or for propagation path compensation in the base station apparatus A100-k.
  • the code sequence constituting the reference signal is preferably an orthogonal sequence such as a Hadamard code or a CAZAC (Constant Amplitude Zero Auto-Correlation) sequence.
  • the control signal generation unit A207 generates a control signal including downlink control data output from the upper layer A201. For example, this corresponds to CQI (Channel Quality Control) in LTE.
  • the control signal may be subjected to error correction coding and modulation processing.
  • the resource mapping unit A208 maps the modulation symbol, the reference signal, and the control signal to the resource element based on the scheduling information notified from the higher layer A201 (hereinafter referred to as resource mapping).
  • the resource element is a minimum unit for arranging a signal composed of one subcarrier and one OFDM symbol.
  • the IDFT unit A209 performs an inverse discrete Fourier transform (IDFT) on the frequency domain signal input from the resource mapping unit 208 to convert it into a time domain signal.
  • the IDFT unit A209 may use another processing method (for example, inverse fast Fourier transform [IFFT, inverse fast Fourier transform]) instead of the IDFT as long as the frequency domain signal can be converted into a time domain signal.
  • IFFT inverse fast Fourier transform
  • the GI insertion unit A210 adds a GI (Guard Interval; also referred to as a guard interval or guard interval) to the time domain signal (referred to as an effective symbol) input from the IDFT unit A209 to generate an SC-FDMA symbol.
  • the guard interval GI is intended to enable the receiving side (base station apparatus A100-k) to perform DFT processing (DFT section A105-l of the base station apparatus A100-k) while maintaining periodicity. This is the section to add.
  • the GI insertion unit A210 precedes the effective symbol with a copy (copy) of a part of the latter half of the effective symbol as the guard interval GI. Therefore, the effective symbol preceded by the guard interval GI is the SC-FDMA symbol.
  • the transmission unit A211 performs D / A (digital-to-analog) conversion on the SC-FDMA symbol input from the GI insertion unit A210 to generate an analog signal.
  • the transmission unit A211 generates a band limited signal by band-limiting the generated analog signal by filtering processing.
  • Transmitting section A211 upconverts the generated band limited signal to a radio frequency band and outputs it to transmitting antenna section A212.
  • the base station apparatus A100-k when a signal input from DFT section A105-1 and DFT section A105-2 the interference suppression unit A106 and the vector R k, expressed as (number 10).
  • R k and L are signals input from the DFT unit A105- L of the base station apparatus k
  • -K is a propagation path (transfer function) when received via the antenna unit A101-L
  • V j is a transmission weight coefficient (precoding of each mobile station apparatus) multiplied by the transmission signal of the mobile station apparatus A200-j
  • S j is a data modulation symbol of mobile station apparatus A200-j.
  • + (indicated by a circle plus in Equations 10 and 11) is an addition for each element.
  • the master base station apparatus (base station apparatus A100-1) of the communication system A1 calculates the transmission weight coefficient V j and the reception weight coefficient U k , and the slave base station apparatuses (base station apparatuses A100-2 and A100-).
  • FIG. 3 is a sequence diagram showing an example of an operation notified to 3) and mobile station apparatus A 200-j.
  • the mobile station device A200-j transmits a reference signal to the master base station device and the slave base station device (SS201, SS202).
  • the master base station apparatus and slave base station apparatus that have received the reference signal in steps SS201 and SS202 use the reference signal to estimate the propagation path between the own station and the mobile station apparatus A200-j (SS203, SS204). ).
  • the base station apparatus A100-k estimates the propagation path H k1 , the propagation path H k2, and the propagation path H k3 .
  • the slave base station apparatus notifies the master base station apparatus of the result of propagation path estimation (propagation path information) (SS205).
  • the master base station apparatus calculates a transmission weight coefficient and a reception weight coefficient using the propagation path information (SS206).
  • the master base station apparatus notifies the calculated transmission weight coefficient V j and reception weight coefficient U k to the slave base station apparatus via the backhaul line (SS207).
  • the slave base station apparatus notifies the transmission weight coefficient V j to each mobile station apparatus to which the own station is connected (SS207, SS208).
  • the mobile station device A 200-2 connected to the slave base station device 100-2 acquires the transmission weight coefficient V 2 from the master base station device A 100-1 via the slave base station device A 100-2. become.
  • the master base station apparatus directly transmits the transmission weight coefficient of the mobile station apparatus connected to the own station to the mobile station apparatus (SS209).
  • each mobile station apparatus multiplies its own information data to be transmitted by a transmission weight coefficient (S210), and transmits the multiplied information data (SS211 and SS212).
  • the master base station device in the communication system A1 in which the cells of the plurality of base station devices A100-k are arranged so that all or some of them overlap, the master base station device
  • the transmission weighting factor V j of each mobile station device A200-j is such that the direction of the equivalent propagation path of the interference signal received by the device A100-k is orthogonal to the reception weighting factor by which the base station device A100-k multiplies the received signal.
  • the reception weight coefficient U k of the base station apparatus A100- k is calculated.
  • base station apparatus A 100-k notifies transmission weight coefficient V j to mobile station apparatus A 200-j connected to the own station, and mobile station apparatus A 200-j multiplies the transmission signal by transmission weight coefficient V j. To perform transmission processing.
  • weight coefficient control unit A111 of the base station apparatus A100-1 may be included in the upper layer A112. Further, the weight coefficient control unit A111 may be included in a base station management unit that is located outside the cooperating base station apparatuses A100-k and controls these base station apparatuses A100-k.
  • a code book is prepared, and the base station apparatus A100- A method in which k notifies mobile station apparatus A 200-j of transmission weight coefficient U k will be described.
  • the code book is a list of transmission weighting factors V j and reception weighting factors U k determined in advance in the communication system A1.
  • the base station apparatus A100-k in the communication system A1 of the fifth embodiment shares the codebook of the transmission weight coefficient V j of the base station apparatus and the reception weight coefficient U k of the mobile station apparatus, and the mobile station apparatus A200-j Are configured to share at least the codebook of the reception weight coefficient U k of the mobile station apparatus A 200-j.
  • the code book shown in FIG. 8 can be applied as the code book of this embodiment.
  • the transmission weight coefficient V j, n in FIG. 8 is the nth transmission weight coefficient candidate in the j-th mobile station apparatus (j and n are arbitrary positive integers).
  • the reception weight coefficient U k, n is an nth reception weight coefficient candidate in the kth base station apparatus (k and n are arbitrary positive integers).
  • codebook indexes # 0 to # 3 in the codebook of FIG. 8 are transmission weight coefficients V that suppress inter-cell interference in cooperation between two base station apparatuses and two mobile station apparatuses. j and reception weight coefficient U k are candidates. Codebook indexes # 4 to # 7 are candidates for transmission weight coefficient V j and reception weight coefficient U k that suppress inter-cell interference in cooperation between three base station apparatuses and three mobile station apparatuses. . Codebook indexes # 8 to # 11 are candidates for transmission weight coefficient V j and reception weight coefficient U k for suppressing inter-cell interference in cooperation between four base station apparatuses and four mobile station apparatuses. .
  • the master base station apparatus A 100-1 holds the code book in the weight coefficient control unit A111.
  • the weight coefficient control unit A111 selects a codebook candidate from the number of cooperating base station devices and the number of mobile station devices input from the upper layer A112.
  • codebook indexes # 4 to # 7 are selected as candidates.
  • the weighting factor control unit A111 uses the propagation path information H kj input from the propagation path estimation unit A103 and the upper layer A112 and the selected codebook index # candidate to minimize the influence of interference. A process for obtaining such a weighting coefficient is performed.
  • the propagation path information H kj , the transmission weight coefficient V j and the reception weight coefficient U k of the candidate codebook index # are substituted into (Equation 8) and (Equation 9), and the total interference Q k, i and the sum Q j, i ⁇ selects a codebook index # to be minimized.
  • the sequence shown in FIG. 23 is applied to the operation sequence for notifying the slave base station device and the mobile station device of the codebook index # selected by the master base station device.
  • the format of the control signal output by the control signal generation unit A121 will be described.
  • a format of the control signal output by the control signal generation unit A121 according to the present embodiment for example, the format of FIG. 9 can be applied.
  • the control signal according to the present embodiment has a codebook index # area for notifying information on the transmission weight coefficient UV j of the mobile station apparatus connected to the own station.
  • FIG. 9 shows, as an example, a case where mobile station apparatus A 200-1 has a 4-bit codebook index corresponding to transmission weight coefficient V 1 to be multiplied with a transmission signal as an area for storing information on the transmission weight coefficient. Yes.
  • control signal generation unit A121 of the slave base station apparatus notifies the mobile station apparatus A200-j of the transmission weight coefficient V j in the same manner as the control signal format shown in FIG.
  • the base station apparatus A100-k and the mobile station apparatus A200-j by sharing the codebook between the base station apparatus A100-k and the mobile station apparatus A200-j, it is possible to reduce the number of repetitions when calculating the transmission weight coefficient V j and the reception weight coefficient U k. Therefore, it is possible to reduce the processing load on the base station device A100-k and the mobile station device A200-j. Further, since the transmission weight coefficient V j can be notified to the mobile station apparatus A 200-j by notifying the code book index #, the overhead (the storage area for notifying the weight coefficient) can be reduced.
  • the base station apparatus A300-k uses a plurality of reference signals to transmit the mobile station apparatus A400- A mode in which a method for notifying j of the transmission weighting factor V k will be described.
  • the communication system A1a in the sixth embodiment includes a base station device A300-1 that is a master base station device, base station devices A300-2 and A300-3 that are slave base station devices, and a plurality of Mobile station apparatuses A400-1 to A400-3 are provided.
  • the base station device A100-1 in FIG. 18 is replaced with the base station device A300-1, and the base station devices A100-2 and A100-3 in FIG. 2 and A300-3 can be realized by replacing the mobile station devices A200-1 to A200-3 with the mobile station devices A400-1 to A400-3.
  • FIG. 25 is a schematic diagram showing the configuration of the base station apparatus A300-1 according to the sixth embodiment.
  • the master base station apparatus receives a plurality of reception antenna units A101-L (hereinafter, L is an arbitrary positive integer and represents the number of each part), Unit A102-L, channel estimation unit A103, GI removal unit A104-L, DFT unit A105-L, interference suppression unit A106, channel compensation unit A107, IDFT unit A108, demodulation unit A109, decoding unit A110, weight coefficient control Unit A111, upper layer A112, control signal detection unit A113, control signal generation unit A121, reference signal generation unit A322, transmission unit A123, and transmission antenna unit A124.
  • L is an arbitrary positive integer and represents the number of each part
  • Unit A102-L receives a plurality of reception antenna units A101-L (hereinafter, L is an arbitrary positive integer and represents the number of each part), Unit A102-L, channel estimation unit A103, GI removal unit A104-L, DFT unit A105
  • the components having the same reference numbers as those in FIG. 19 have the same functions and operations, and thus the description thereof is omitted.
  • the reference signal generation unit A322 is different. Hereinafter, these parts will be mainly described.
  • Reference signal generator A322 includes a first reference signal used for estimating the propagation characteristic to each receive antenna of the mobile station device A400-k from the transmission antenna of the base station device A300-j, the transmission weight factor V 1
  • a second reference signal used for notifying the mobile station apparatus is generated.
  • the signal transmission weight factor V 1 was inputted into the reference signal generator A322 from the weighting factor controller A111.
  • Second reference signal is generated by multiplying a transmission weight factor V 1 to a known code sequence previously determined by the communication system 1a.
  • a reference signal generation unit that generates a reference signal including a weight coefficient may be referred to as a weight coefficient information generation unit, and a reference signal including the weight coefficient generated by the reference signal generation unit may be referred to as weight coefficient information.
  • the first reference signal becomes S RS
  • the second reference signal the V 1 S RS.
  • an orthogonal sequence such as a Hadamard code or a CAZAC (Constant Amplitude Zero Auto-Correlation) sequence can be applied.
  • the transmission unit A123 has a function of performing resource mapping of the first reference signal, the second reference signal, and the control signal to the resource element. Then, the transmission unit A123 upconverts a signal including the control signal output from the control signal generation unit A121, the first reference signal, and the second reference signal to a frequency band that can be transmitted in the downlink, and a transmission antenna unit It transmits to the connected base station apparatus via A124.
  • FIG. 26 is a schematic diagram illustrating configurations of the base station device A 300-2 and the base station device A 300-3 according to the sixth embodiment.
  • the configuration of the base station apparatus A300-2 will be described, but the base station apparatus A300-3 has the same configuration.
  • the number of slave base station devices is not limited to two as long as it includes at least one base station device.
  • the slave base station devices (base station devices A300-2 and A300-3) have a plurality of receiving antenna units A101-L (L is an arbitrary positive integer and represents the number of each part. ), Receiving section A102-L, propagation path estimating section A103, GI removing section A104-L, DFT section A105-L, interference suppressing section A106, propagation path compensating section A107, IDFT section A108, demodulating section A109, decoding section A110, An upper layer A152, a control signal detection unit A113, a control signal generation unit A121, a reference signal generation unit A352, a transmission unit A123, and a transmission antenna unit A124 are configured.
  • the reference signal generation unit A352 is different. Hereinafter, these parts will be mainly described.
  • Reference signal generator A352 includes a first reference signal used for estimating the propagation characteristic of to the reception antenna of each mobile station apparatus from the transmission antenna of the base station apparatus, mobile station apparatus and a transmission weight factor V 2 A400-2 And a second reference signal used for notifying.
  • the second reference signal is V 2 S RS.
  • Transmission weight factor V 2 through backhaul A10-1, which was acquired from the base station device 300-1, is input via the upper layer A152.
  • the transmission unit A123 has a function of performing resource mapping of the first reference signal, the second reference signal, and the control signal to the resource element.
  • the control signal is a signal including control data such as MCS information and spatial multiplexing information of the transmission signal of the mobile station device A 400-2 generated by the control signal generation unit 121.
  • control data such as MCS information and spatial multiplexing information of the transmission signal of the mobile station device A 400-2 generated by the control signal generation unit 121.
  • the same resource mapping format in the transmission unit A123 of the base station apparatus A300-1 can be applied as the resource mapping format.
  • the transmission unit A123 up-converts a signal including the control signal output from the control signal generation unit A121, the first reference signal, and the second reference signal to a frequency band that can be transmitted in the downlink, and a transmission antenna unit It transmits to the connected base station apparatus via A124.
  • FIG. 27 is a schematic diagram illustrating a configuration of a mobile station apparatus A400-j according to the sixth embodiment.
  • the mobile station apparatus A400-j includes an upper layer A201, an encoding unit A202, a modulation unit A203, a DFT unit A204, a precoding unit A205, a reference signal generation unit A206, a control signal generation unit A207, a resource A mapping unit A208, an IDFT unit A209, a GI insertion unit A210, a transmission unit A211, a transmission antenna unit A212, a reception antenna unit A221, a reception unit A222, a control signal detection unit A423, and a propagation path estimation unit A224 are configured.
  • a part or all of the mobile station device A400-j is formed into a chip to form an integrated circuit, it has a chip control circuit (not shown) that controls each functional block.
  • the components having the same reference numbers as those in FIG. 22 have the same functions and operations, and thus description thereof is omitted.
  • the control signal detector A423 is different. In the following, the description will be made centering on the portion.
  • Channel estimation unit A224 using the first reference signal S RS1 included in the signal receiving unit A222 is output, the propagation path estimation. And a propagation path estimated value (for example, transfer function) is notified to control signal detection part A423.
  • a propagation path estimated value for example, transfer function
  • the propagation path estimated value H ⁇ is calculated by dividing the propagation path between A400 and k by the known signal SRS1 .
  • the propagation path estimation value of the subcarriers where the known signal S RS1 is not arranged is an interpolation technique such as linear interpolation or FFT interpolation using the propagation path estimation value of the subcarrier where the first reference signal HS RS1 is arranged. Can be calculated.
  • the control signal detection unit A423 detects a control signal included in the signal output from the reception unit A222. When the information of the MCS and the number of layers applied to the information data included in the control signal is extracted, the higher layer A 201 is notified.
  • the calculated transmission weight coefficient information V k ⁇ can be expressed by the following (Equation 12).
  • H k ⁇ is a propagation path estimated value.
  • the precoding unit A205 multiplies the output signal of the DFT unit A204 by a transmission weight coefficient V k ⁇ .
  • the horizontal direction indicates time T, and the vertical direction indicates frequency F.
  • the white portion RE1 is a resource element that maps a control signal and downlink information data.
  • a thick frame range MA represents an area in which information data addressed to the mobile station apparatus to which the base station apparatus A 300-1 notifies the transmission weight coefficient V j is mapped.
  • the hatched part RE2 and the filled part RE3 are resource elements for mapping the reference signal.
  • Resource elements to which the reference signal can be mapped are included in the entire system band. That is, it is a resource element that maps a cell-specific reference signal.
  • the first reference signal is arranged in the painting unit RE3. Also, the second reference signal is arranged in the shaded area RE2 among the resource elements for mapping the reference signal.
  • the transmission weight coefficient V j is notified to the mobile station apparatus.
  • the information data and the control signal may be subjected to error correction coding and modulation processing (the same applies to FIGS. 29 to 31).
  • FIG. 29 is another example of resource mapping when transmission is performed by the transmission antenna unit A124 of the base station apparatus A300-1 according to the sixth embodiment.
  • an outline part RE1 is a resource element that maps a control signal and downlink information data.
  • a thick frame range MA represents an area in which information data addressed to the mobile station apparatus to which the base station apparatus A 300-1 notifies the transmission weight coefficient V j is mapped.
  • the hatched portion RE2 and the painted portion RE3 are resource elements for mapping the reference signal.
  • the resource element to which the reference signal can be mapped has a range in which downlink information data of the mobile station apparatus that notifies the transmission weighting factor V j is allocated. That is, it is a resource element that maps a user-specific reference signal.
  • the first reference signal is arranged in the painting unit RE3. Also, the second reference signal is arranged in the shaded area RE2 among the resource elements for mapping the reference signal.
  • the transmission weight coefficient V j is notified to the mobile station apparatus.
  • FIG. 30 is another example of resource mapping when transmission is performed by the transmission antenna unit A124 of the base station apparatus A300-1 according to the sixth embodiment.
  • a white area RE1 is a resource element that maps a control signal and downlink information data.
  • a thick line area MA is an area MA to which information data of a mobile station apparatus that notifies a transmission weight coefficient is assigned.
  • the hatched part RE2 and the painted part RE3 are resource elements for mapping the reference signal.
  • the resource element that can map the reference signal indicated by the filling unit RE3 is a resource element that maps the cell-specific reference signal.
  • the resource element that can map the reference signal indicated by the hatched portion RE2 is a resource element that maps the user-specific reference signal.
  • the first reference signal is arranged in the painting unit RE3.
  • the second reference signal is arranged in the shaded area RE2 among the resource elements for mapping the reference signal. It is also possible to arrange the second reference signal in the painted part RE3 and arrange the second reference signal in the shaded part RE2.
  • the transmission weight coefficient V j is notified to the mobile station apparatus.
  • FIG. 31 is another example of resource mapping when transmission is performed by the transmission antenna unit A124 of the base station apparatus A300-1 according to the sixth embodiment.
  • a white area RE1 is a resource element that maps a control signal and downlink information data.
  • a thick line region RB is a resource block.
  • a resource block is a resource unit in which a plurality of resource elements are collected, and is a minimum resource unit for assigning downlink information data to each mobile station apparatus.
  • the resource block RB can be a resource composed of 12 subcarriers and 7 OFDM symbols.
  • the hatched part RE2 and the filled part RE3 are resource elements for mapping the reference signal.
  • the resource element that can map the reference signal indicated by the filling unit RE3 is a resource element that maps the cell-specific reference signal.
  • the resource element that can map the reference signal indicated by the hatched portion RE2 is a resource element that maps the user-specific reference signal.
  • the first reference signal is arranged in the painting unit RE3. Also, the second reference signal is arranged in the shaded area RE2 among the resource elements for mapping the reference signal.
  • the reference signal is either a reference signal specific to each mobile station device or a reference signal specific to a cell, and is included in a part of resource blocks in a region to which the mobile station device information data is mapped.
  • the mobile station apparatus is notified of the transmission weight coefficient.
  • the cells of the plurality of base station devices are arranged so as to overlap all or part of the cells, and are connected to the plurality of base station devices and the base station device.
  • Each mobile station apparatus cooperates to suppress inter-cell interference.
  • the base station apparatus notifies the mobile station apparatus of a transmission weight coefficient for suppressing inter-cell interference using the reference signal, it is possible to prevent an increase in the control signal, and a plurality of base station apparatuses and It is possible to realize a communication system capable of reducing the control signal processing burden in each mobile station apparatus.
  • the base station apparatus can notify the weighting factor using a reference signal unique in the cell, and can construct a communication system that can efficiently transmit and receive data corresponding to the communication environment.
  • the present invention is not limited to this, and the signal multiplied by the transmission weight coefficient is a known signal. If it is.
  • a control signal that is a known signal may be multiplied by a transmission weight coefficient and the transmission weight coefficient may be notified to the mobile station apparatus.
  • the program that operates in the base station apparatus and mobile station apparatus is a program (a program that causes a computer to function) that controls the CPU and the like so as to realize the functions of the above-described embodiments according to the present invention.
  • Information handled by these devices is temporarily stored in the RAM at the time of processing, then stored in various ROMs and HDDs, read out by the CPU, and corrected and written as necessary.
  • a recording medium for storing the program a semiconductor medium (for example, ROM, nonvolatile memory card, etc.), an optical recording medium (for example, DVD, MO, MD, CD, BD, etc.), a magnetic recording medium (for example, magnetic tape, Any of a flexible disk etc. may be sufficient.
  • the processing is performed in cooperation with the operating system or other application programs.
  • the function of the invention may be realized.
  • the program when distributing to the market, can be stored in a portable recording medium for distribution, or transferred to a server computer connected via a network such as the Internet.
  • the storage device of the server computer is also included in the present invention.
  • Each functional block of the receiving apparatus may be individually formed as a chip, or a part or all of them may be integrated into a chip. When each functional block is integrated, an integrated circuit controller for controlling them is added.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • an integrated circuit based on the technology can also be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 複数の基地局装置のセル間においてセル間干渉が生じる場合でも、周波数効率を向上できる通信システム、通信方法、基地局装置及び移動局装置を提供する。 複数の基地局装置100-jの各セルが全部或いは一部を重複するように配置される通信システム1において、マスター基地局装置100-1は、各基地局装置100-jに接続している移動局装置200-kが受信する干渉信号の等価伝搬路の向きが移動局装置200-kが受信信号に乗算する受信重み係数に直交するように、各基地局装置100-jの送信重み係数V及び移動局装置200-kの受信重み係数Uを算出する。基地局装置100-jは、自局に接続する移動局装置200-kに受信重み係数Uを通知し、移動局装置200-kは、干渉信号を含む受信信号に受信重み係数Uを乗算して受信処理を行う。

Description

通信システム、通信方法、基地局装置及び移動局装置
 本発明は、通信システム、通信方法、基地局装置及び移動局装置に関する。
 携帯電話などの無線通信システムにおいて、都市及びその周辺地域には、複数の移動局装置(端末;UE(User Equipment))に無線通信サービスを提供するためのセル(通信サービスエリア)を構成する基地局装置(eNB;eNodeB)が配置されている。特に、無線通信システムでは、複数の基地局装置が配置されたセルラー構成を成し、通信エリアの拡張が図られている。
 セルラー構成において、周波数の利用効率向上を図るため、基地局装置のセルにおいて同一周波数を繰り返し使用している。しかし、セルラー構成において、同一周波数繰り返しによりセル間干渉が発生すると、周波数利用効率向上が制限される。
 セルラー構成の上りリンクにおいて、セル間干渉を抑圧及び軽減する方法として、インジケータOI(Overload Indicator)やインジケータHII(High Interference Indicator)等を利用したセル間干渉調整(ICIC;Inter-cell Interference Coodination)が用いられている(非特許文献1)。インジケータOIは、ある基地局装置が、他の基地局装置と接続している移動局装置からの干渉レベルが大きい場合、他の基地局装置にその旨を通知するための制御信号である。また、インジケータHIIは、基地局装置のセル端に位置し、高い送電電力で送信を行う移動局装置から信号を受ける基地局装置が、他の基地局装置にその旨を通知する制御信号である。
 図32は、セル間干渉調整ICICを適用する上りリンクにおける従来の無線通信システムA1000の概略を示している。基地局装置A1000-1及び基地局装置A1000-2は、それぞれセルA1000-1aとのセルA1000-2aを備え、基地局装置A1000-1のセルA1000-1aと、基地局装置A1000-2のセルA1000-2aとが一部重複するように、各基地局装置が1セル周波数繰返しで配置されている。各セル内には、複数の移動局装置が存在し、各移動局装置は、最適の受信電界強度で信号を受信できる基地局装置と無線接続するように制御されている。
 基地局装置A1000-1は、移動局装置A2000-1と接続(r11)している。また、基地局装置A1000-1は、基地局装置A1000-2と接続(r22)している移動局装置A2000-2から干渉(r21)を受けている。
 干渉(r21)を受けている基地局装置A1000-1は、バックホール回線A10(例えば、光ファイバ、X2インターフェイス等)を介して、基地局装置A1000-2にインジケータOIを通知する。インジケータOIを受け取った基地局装置A1000-2は、移動局装置A2000-2に送信を中止させることで、セル間干渉を抑圧及び軽減している。
 また、基地局装置A1000-2は、移動局装置A2000-2が信号(r22)を送信する前に、バックホール回線A10を介して、基地局装置A1000-1にインジケータHIIを通知する。インジケータHIIを受けた基地局装置A1000-1は、移動局装置A2000-1からの信号(r11)が干渉を受けないようにスケジューリングを行うことで干渉を抑圧及び軽減している。
 また、近年、急速な都市化に伴い高層ビルやマンション等が建設されることで、多くの受信不感地域又は弱電界地域が発生する。これらの地域では、たびたび移動局装置と基地局装置との接続が制限される。また、移動通信システムの高速化に伴い、移動局に対するスループットの向上が要求されている。同様に、セルエッジ(通信サービスエリアの端地域)に存在する移動局装置に対しても支障なく高速通信できることが求められている。
 スループットを向上する方法として、主基地局装置(マクロ基地局)が構成するマクロセルの範囲の一部又は全部と、マクロ基地局より最大送信電力が小さい小電力基地局(ピコセル基地局、フェムトセル基地局等)のセルの範囲とを重複するように、複数の基地局装置を配置することが提案されている(ヘテロジーニアス・ネットワーク、非特許文献2)。
 図33は、異なるセル半径の複数の基地局装置が配置された下りリンクにおける無線通信システム1000の概略を示している。主基地局装置1000-1(マクロ基地局装置)のセル1000-1a(マクロセル)と、マクロ基地局装置より最大送信電力が小さい小電力基地局である基地局装置1000-2のセル1000-2a(ピコセル)及び基地局装置1000-3のセル1000-3a(ピコセル)とが重複するように各基地局装置が1セル周波数繰返しで配置されている。セル内には、複数の移動局装置が存在し、各移動局装置は、最大の受信電界強度で信号を受信できる基地局装置と無線接続するように制御されている。図33では、移動局装置2000-1は、基地局装置1000-1と無線接続(r11)し、移動局装置2000-2は、基地局装置1000-2と無線接続(r22)し、移動局装置2000-3は、基地局装置1000-3と無線接続(r33)を行っている。
 このような異種ネットワーク(ヘテロジーニアス・ネットワーク)を構築することにより、マクロセルが網羅するエリア内におけるネットワーク側から見たトータルな周波数利用効率を向上させることが可能となる。
 また、ヘテロジーニアス・ネットワークの下りリンクにおいて、セル間干渉を抑制、軽減する方法として、複数の基地局装置間で協調して移動局装置に信号を送信する通信する方法が開示されている(非特許文献3)。
 図34は、ヘテロジーニアス・ネットワークの下りリンクにおける送信フレームフォーマットを示す。図34の上段は、1つのフレームが通常サブフレーム(Normal Subframe)及びリソースマッピング制限サブフレーム(制限サブフレームとも称す)を含む10個の複数種類のサブフレームから構成されている。図34の上段において、サブフレームインデックス#1、サブフレームインデックス#3、サブフレームインデックス#4、サブフレームインデックス#5及びサブフレームインデックス#9は通常サブフレームであり、サブフレームインデックス#0、サブフレームインデックス#2、サブフレームインデックス#6、サブフレームインデックス#7及びサブフレームインデックス#8はリソースマッピング制限サブフレームである。リソースマッピング制限サブフレームは、ABS(Almost Blank Subframe)、MBSFN(Multicast/Broadcast over Single Frequency Network)などが該当する。
 通常サブフレームとは、基地局装置が、情報データ、制御データ、参照信号をリソースマッピングすることができるサブフレームをいう。例えば、LTEにおける下りリンクの信号として、下りリンク共通チャネル(PDSCH;Physical Downlink Shared Channel、主に情報データを送信するチャネル)、下りリンク制御チャネル(PDCCH;Physical Downlink Control Channel、図中の横縞部)、同期信号(PSS;Primary Synchronization Signal、SSS;Secondary Synchronization Singal)、報知チャネル(PBCH;Physical Broadcast Channel)、セル固有参照信号(CRS;Cell-specific Reference Signal)などをリソースマッピングすることができる。
 リソースマッピング制限サブフレームは、基地局装置が所定の信号のみにリソースマッピングを制限されるサブフレームである。ABSは、CRS及び/又は所定の制御信号(SSS、PSS、PBCH(図中の格子部分)など)のみが配置される(図34の上段のサブフレームインデックス#0)。MBSFNサブフレームは、CRSのみが配置される(図34の上段のサブフレームインデックス#2、サブフレームインデックス#6、サブフレームインデックス#7及びサブフレームインデックス#8)。ABS及びMBSFNサブフレームは、上記の配置される信号以外(例えば、PDSCH)は配置されない(図中の網掛け部)。
 図34の下段は、基地局装置1000-2及び基地局装置1000-3が接続している移動局装置へ信号を送信する場合の下りリンク送信フレームフォーマットである。図34の下段は、1つのフレームが10個の通常サブフレームから構成される。図34において、基地局装置1000-1が移動局装置2000-1に送信する情報データ(PDSCH)は、図34の上段のサブフレームインデックス#0、サブフレームインデックス#2、サブフレームインデックス#6、サブフレームインデックス#7及びサブフレームインデックス#8以外のサブフレームに配置される。基地局装置1000-2が移動局装置2000-2に送信する情報データは、図34の下段のサブフレームインデックス#0、サブフレームインデックス#4、サブフレームインデックス#5、サブフレームインデックス#6及びサブフレームインデックス#8に配置される。基地局装置1000-3が移動局装置2000-3に送信する情報データは、図34の下段のサブフレームインデックス#0、サブフレームインデックス#4、サブフレームインデックス#5、サブフレームインデックス#6及びサブフレームインデックス#8に配置される。
 このように、基地局装置1000-2及び基地局装置1000-3は、基地局装置1000-1が情報データを配置しないサブフレームと同期したサブフレームに基地局装置1000-1からセル間干渉を受ける移動局装置2000-2及び移動局装置200-4の情報データを割り当てるため基地局装置1001-1からのセル間干渉を軽減することができる。
3rd Generation Partnership Project;Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access(E-UTRA) Physical Layer procedures(Release 8),3GPP TS36.213 v8.8.0(2009-09)URL: http://www.3gpp.org/ftp/Specs/2011-06/Rel-8/36_series/ 3rd Generation Partnership Project;Technical Specification Group Radio Access Network; Further Advancements for E-UTRA Physical Layer Aspects (Release 9),3GPP TR36.814 v9.0.0.(2010-03) URL: http://www.3gpp.org/ftp/Specs/html-info/36814.htm R1-105442,3GPP TSG RAN WG1 Meeting #62bis
 しかしながら、非特許文献2では、基地局装置1000-1が信号を送信している場合、ピコセル1000-2aに接続している移動局装置2000-2及びピコセル1000-3aに接続している移動局装置2000-3は、図33に示すように、マクロセル1000-1aからの干渉(セル間干渉、Inter-cell Interference)(r12)及び(r13)をそれぞれ受けることにより伝送効率が低下するという問題がある。
 また、非特許文献3に記載のセル間干渉を抑圧、軽減する方法では、ピコセル間にセル間干渉が生じた場合、該移動局装置2000-2及び2000-3のSINRが低下することになる。図33において、移動局装置2000-2に対する基地局装置1000-3からの干渉(r32)、移動局装置2000-3に対する基地局装置1000-2からの干渉(r23)が、SINR低下の原因となる。このため、ヘテロジーニアス・ネットワークを構築しても、周波数利用効率が充分に向上できないという問題がある。
 また、ヘテロジーニアス・ネットワークにおいて、マクロセルに同一の周波数を利用した多数のピコセルが配置され、複数のセル間で干渉が発生する場合、干渉となる複数の基地局装置に亘ってインジケータOI或いはインジケータHIIによりセル間干渉を制御すると、各基地局装置が自局に接続する移動局装置に送信させる機会が極めて制限されてしまい、周波数の利用効率、スループットが十分に向上できないと問題がある。
 本発明は、上述のごとき実情に鑑みてなされたもので、複数の基地局装置のセル間においてセル間干渉が生じる場合でも、周波数効率を向上できる通信システム、通信方法、基地局装置及び移動局装置を提供することを目的とするものである。
 上述した課題を解決するために本発明に係る通信システム、通信方法、基地局装置及び移動局装置の各構成は、次の通りである。
 本発明の通信システムは、複数の基地局装置と、前記複数の基地局装置のうちの少なくとも1つに接続する移動局装置とを備え、前記複数の基地局装置が各基地局装置の接続可能範囲の全域或いは一部が互いに重複するように配置される通信システムであって、前記基地局装置は、前記移動局装置に、該移動局装置が受信した受信信号に乗算する受信重み係数を指示する重み係数に関する情報を通知することを特徴とするものである。
 また、本発明の通信システムの前記複数の基地局装置は、前記複数の基地局装置は、主基地局装置と従基地局装置とを含み、前記主基地局装置は、システム全体の伝搬路情報を用いて前記複数の基地局装置が送信する送信データに対し乗算する送信重み係数と、前記複数の基地局装置のそれぞれが接続している前記移動局装置が受信する受信信号に対し乗算する受信重み係数とを算出する重み係数制御部を備え、前記複数の基地局装置は、前記送信データに前記送信重み係数を乗算するプレコーディング部と、前記受信重み係数を指示する重み係数情報を生成する重み係数情報生成部と、前記送信データに前記送信重み係数を乗算した情報データと前記重み係数情報とを前記複数の基地局装置のそれぞれが接続している前記移動局装置に送信する送信部を備え、前記移動局装置は、前記重み係数情報から受信重み係数を検出する制御信号検出部と、前記受信重み係数を前記受信信号に対し乗算し、前記情報データを取得する干渉抑圧部を備えることを特徴とするものである。
 また、本発明の通信システムにおいて、前記重み係数情報は、前記基地局装置によって接続される前記各移動局装置が受信する受信信号に対して乗算する受信重み係数を含む制御信号であることを特徴とするものである。また、前記重み係数情報は、前記複数の基地局装置の送信重み係数及び前記移動局装置の前記受信重み係数に対応したコードブックインデックスを含む制御信号であることを特徴とするものである。また、前記重み係数情報は前記受信重み係数が乗算された参照信号であることを特徴とするものである。
 また、本発明の通信システムの前記参照信号は、前記移動局装置に固有の参照信号の一部であることを特徴とする。前記参照信号は、前記基地局装置のセルに固有の参照信号の一部であることを特徴とするものである。前記参照信号は、前記移動局装置に固有の参照信号又は前記基地局装置のセルに固有の参照信号であることを特徴とするものである。
 また、本発明の通信システムにおいて、前記主基地局装置は、前記従基地局装置に前記送信重み係数に関する情報及び前記受信重み係数に関する情報を通知する上位レイヤを備え、さらに前記従基地局装置は、前記上位レイヤから通知された受信重み係数に関する情報を含む重み係数情報を生成する重み係数情報生成部を備えることを特徴とするものである。
また、本発明の通信方法は、複数の基地局装置と、前記複数の基地局装置のうちの少なくとも1つに接続する移動局装置とを備え、前記複数の基地局装置が各基地局装置の接続可能範囲の全域或いは一部が互いに重複するように配置される通信システムにおける通信方法であって、前記基地局装置は、前記移動局装置に、該移動局装置が受信した受信信号に乗算する受信重み係数を指示する受信重み係数情報を通知するステップを行うことを特徴とするものである。
 また、本発明の基地局装置は、主基地局装置と従基地局装置とを含む複数の基地局装置と、前記複数の基地局装置のうちの少なくとも1つに接続する移動局装置とを備え、前記複数の基地局装置が各基地局装置の接続可能範囲の全域或いは一部が互いに重複するように配置される通信システムにおける基地局装置であって、前記主基地局装置は、システム全体の伝搬路情報を用いて前記複数の基地局装置が送信する送信データに対し乗算する送信重み係数と、前記複数の基地局装置のそれぞれが接続している前記移動局装置が受信する受信信号に対し乗算する受信重み係数とを算出する重み係数制御部を備え、前記複数の基地局装置は、前記送信データに前記送信重み係数を乗算するプレコーディング部と、前記受信重み係数を指示する受信重み係数情報を生成する重み係数情報生成部と、前記送信データに前記送信重み係数を乗算した情報データと前記受信重み係数情報とを前記複数の基地局装置のそれぞれが接続している前記移動局装置に送信する送信部を備えることを特徴とするものである。
また、本発明の移動局装置は、主基地局装置と従基地局装置とを含む複数の基地局装置と、前記複数の基地局装置のうちの少なくとも1つに接続する移動局装置とを備え、前記複数の基地局装置が各基地局装置の接続可能範囲の全域或いは一部が互いに重複するように配置される通信システムにおける移動局装置であって、前記移動局装置は、前記主基地局装置がシステム全体の伝搬路情報を用いて算出した送信重み係数を乗算した受信信号と受信重み係数情報とを受信する受信部と、前記受信重み係数情報から受信重み係数を検出する制御信号検出部と、前記受信重み係数を前記受信信号に対し乗算し、前記情報データを取得する干渉抑圧部を備えることを特徴とするものである。
また、本発明の通信システムは、主基地局装置と従基地局装置とを含む複数の基地局装置と、前記複数の基地局装置のうちの少なくとも1つに接続する移動局装置とを備え、前記複数の基地局装置と前記移動局装置との間の伝搬路を用いて通信を行う通信システムであって、前記主基地局装置は、前記複数の基地局装置のそれぞれが接続している前記移動局装置が送信する送信データに乗算される送信重み係数と、前記複数の基地局装置が受信する前記送信データに対し乗算される受信重み係数とを算出する重み係数制御部を備え、前記複数の基地局装置は、前記送信重み係数に関する情報を前記移動局装置に送信する送信部と、それぞれが接続している前記移動局装置が前記送信データに前記送信重み係数を乗算した送信信号を受信する受信部と、前記送信データに前記送信重み係数を乗算した前記送信信号に前記受信重み係数を乗算する干渉抑圧部とを備え、前記移動局装置は、前記送信データに前記送信重み係数を乗算した前記送信信号を、それぞれが接続している前記基地局装置に送信する送信部を備えることを特徴とするものである。
 また、本発明の通信システムの複数の基地局装置は、前記送信重み係数に関する情報を格納する領域を有する制御信号を生成する制御信号生成部を備え、前記各基地局装置の前記送信部は、それぞれが接続している前記移動局装置に前記制御信号を送信することを特徴とするものである。
 また、本発明の通信システムの前記主基地局装置は、前記従基地局装置に前記送信重み係数及び受信重み係数を通知する上位レイヤを備えることを特徴とするものである。
 また、本発明の通信システムの前記送信重み係数情報は、前記移動局装置が送信する前記送信信号に対して乗算する送信重み係数であることを特徴とするものである。また、前記送信重み係数情報は、前記移動局装置が送信する前記送信信号に対して乗算する送信重み係数に対応したコードブックインデックスであることを特徴とするものである。
 また、本発明の通信システムの前記移動局装置は、前記コードブックインデックスから前記送信重み係数を検出する制御信号検出部を備えることを特徴とするものである。
 また、本発明の通信システムの前記複数の基地局装置は、さらに、前記送信重み係数が乗算された参照信号を生成する参照信号生成部を備え、前記各基地局装置の前記送信部は、それぞれが接続している前記移動局装置に前記参照信号を送信することを特徴とするものである。
 また、本発明の通信システムにおける前記参照信号は、前記移動局装置に固有の参照信号の一部であることを特徴とするものである。また、本発明の通信システムにおける前記参照信号は、前記基地局装置の接続可能範囲であるセルに固有の参照信号の一部であることを特徴とするものである。また、本発明の通信システムにおける前記参照信号は、前記移動局装置に固有の参照信号又は前記基地局装置の前記セルに固有の参照信号であることを特徴とするものである。
 また、本発明の通信方法は、主基地局装置と従基地局装置とを含む複数の基地局装置と、前記複数の基地局装置のうちの少なくとも1つに接続する移動局装置とを備え、前記複数の基地局装置と前記移動局装置との間の伝搬路を用いて通信を行う通信システムにおける通信方法であって、前記主基地局装置において、前記複数の基地局装置のそれぞれが接続している前記移動局装置が送信する送信データに乗算される送信重み係数と、前記複数の基地局装置が受信する前記送信データに対し乗算される受信重み係数とを算出する算出ステップと、前記複数の基地局装置において、前記送信重み係数に関する情報を前記移動局装置に送信する送信ステップと、それぞれが接続している前記移動局装置が前記送信データに前記送信重み係数を乗算した送信信号を受信する受信ステップと、前記送信データに前記送信重み係数を乗算した前記送信信号に前記受信重み係数を乗算する干渉抑圧ステップとを備え、前記移動局装置において、前記送信データに前記送信重み係数を乗算した前記送信信号を、それぞれが接続している前記基地局装置に送信する送信ステップを行うことを特徴とするものである。
 また、本発明の通信方法は、前記複数の基地局装置が、前記送信重み係数に関する情報を格納する領域を有する制御信号を生成する制御信号生成ステップと、前記各基地局装置の前記送信部が、それぞれが接続している前記移動局装置に前記制御信号を送信する送信ステップとを行うことを特徴とするものである。
 また、本発明の通信方法は、前記主基地局装置が、前記従基地局装置に前記送信重み係数及び受信重み係数を通知する通知ステップを行うことを特徴とするものである。
 また、本発明の基地局装置は、主基地局装置と従基地局装置とを含む複数の基地局装置と、前記複数の基地局装置のうちの少なくとも1つに接続する移動局装置とを備え、前記複数の基地局装置と前記移動局装置との間の伝搬路を用いて通信を行う通信システムにおける基地局装置であって、前記基地局装置は、前記複数の基地局装置のそれぞれが接続している前記移動局装置が送信する送信データに乗算される送信重み係数と、前記複数の基地局装置が受信する前記送信データに対し乗算される受信重み係数とを算出する重み係数制御部と、前記送信重み係数に関する情報を前記移動局装置に送信する送信部と、それぞれが接続している前記移動局装置が前記送信データに前記送信重み係数を乗算した送信信号を受信する受信部と、前記送信データに前記送信重み係数を乗算した前記送信信号に前記受信重み係数を乗算する干渉抑圧部と、前記送信重み係数に関する情報を格納する領域を有する制御信号を生成する制御信号生成部と、前記送信重み係数及び受信重み係数を通知する上位レイヤと、を備えることを特徴とするものである。
 また、本発明の移動局装置は、主基地局装置と従基地局装置とを含む複数の基地局装置と、前記複数の基地局装置のうちの少なくとも1つに接続する移動局装置とを備え、前記複数の基地局装置と前記移動局装置との間の伝搬路を用いて通信を行う通信システムにおける移動局装置であって、前記移動局装置は、前記主基地局装置が、前記伝搬路を用いて算出した送信重み係数と送信重み係数のうち、前記送信重み係数を受信する受信部と、前記移動局装置が送信する送信データに前記送信重み係数を乗算した送信信号を生成するプレコーディング部と、前記送信重み係数を乗算した前記送信信号を、それぞれが接続している前記基地局装置に送信する送信部とを備えることを特徴とするものである。
 本発明によれば、複数の基地局装置と、前記複数の基地局装置のうちの少なくとも1つに接続する移動局装置とを備える通信システムにおいて、複数の基地局装置が同一の周波数を用いて移動局装置と通信する際に、複数の基地局装置と移動局装置が協調してセル間干渉を抑圧できる。このため、当該通信システムは、セル間干渉を効果的に抑制し、良好な送受信を確立できるという優れた効果を奏し得る。
第1の実施形態に係る通信システムの構成を示す概略図である。 第1の実施形態に係る通信システムの主基地局装置の構成を示す概略図である。 第1の実施形態に係る通信システムの主基地局装置の制御信号生成部が出力するフォーマットの一例である。 第1の実施形態に係る通信システムの主基地局において送信重み係数及び受信重み係数を算出する処理を示すフローチャートである。 第1の実施形態に係る通信システムの従基地局装置の構成を示す概略図である。 第1の実施形態に係る通信システムの移動局装置の構成を示す概略図である。 第1の実施形態に係る通信システムの主基地局装置が送信重み係数及び受信重み係数を算出し、従基地局装置及び移動局装置に通知する処理を示すシーケンス図である。 第2の実施形態に係る通信システムにおけるコードブックの一例である。 第2の実施形態に係る通信システムの主基地局装置の制御信号生成部が出力するフォーマットの一例である。 第3の実施形態に係る通信システムの構成を示す概略図である。 第3の実施形態に係る通信システムの主基地局装置の構成を示す概略図である。 第3の実施形態に係る従基地局装置の構成を示す概略図である。 第3の実施形態に係る移動局装置の構成を示す概略図である。 第3の実施形態に係る基地局装置のリソースマッピング部におけるリソースマッピングの一例である。 第3の実施形態に係る基地局装置のリソースマッピング部におけるリソースマッピングの別の一例である。 第3の実施形態に係る基地局装置のリソースマッピング部におけるリソースマッピングの別の一例である。 第3の実施形態に係る基地局装置のリソースマッピング部におけるリソースマッピングの別の一例である。 第4の実施形態に係る通信システムの構成を示す概略図である。 第4の実施形態に係る通信システムの主基地局装置の構成を示す概略図である。 第4の実施形態に係る通信システムの主基地局装置の制御信号生成部が出力するフォーマットの一例である。 第4の実施形態に係る通信システムの従基地局装置の構成を示す概略図である。 第4の実施形態に係る通信システムの移動局装置の構成を示す概略図である。 第4の実施形態に係る通信システムの主基地局装置が送信重み係数及び受信重み係数を算出し、従基地局装置及び移動局装置に通知する処理を示すシーケンス図である。 第6の実施形態に係る通信システムの構成を示す概略図である。 第6の実施形態に係る通信システムの主基地局装置の構成を示す概略図である。 第6の実施形態に係る従基地局装置の構成を示す概略図である。 第6の実施形態に係る移動局装置の構成を示す概略図である。 第6の実施形態に係る基地局装置のリソースマッピング部におけるリソースマッピングの一例である。 第6の実施形態に係る基地局装置のリソースマッピング部におけるリソースマッピングの別の一例である。 第6の実施形態に係る基地局装置のリソースマッピング部におけるリソースマッピングの別の一例である。 第6の実施形態に係る基地局装置のリソースマッピング部におけるリソースマッピングの別の一例である。 従来の通信システムの構成を示す概略図である。 従来の通信システムの構成を示す概略図である。 従来のヘテロジーニアス・ネットワークの下りリンクにおける送信フレームフォーマットである。
<第1の実施形態>
 第1の実施形態に係る通信システム1では、基地局装置100-j及び移動局装置200-kが、OFDM(orthogonal frequency division multiplexing;直交周波数分割多重)方式を用いてデータの伝送を行う例について説明する。尚、本実施形態ではこれに限らず、その他の伝送方式、例えば、SC-FDMA(single carrier-frequency division multiple access;単一キャリア周波数分割多元アクセス)、DFT-s-OFDM(discrete Fourier transform-spread-OFDM;離散フーリエ変換拡散OFDM)等のシングルキャリア伝送方式や、MC-CDMA(multiple carrier-code division multiple access;多重キャリア符号分割多重アクセス)等のマルチキャリア伝送方式を用いてもよい。また、第1の実施形態に係る通信システム1の例として、3GPP(Third Generation Partnership Project)によるWCDMA(Wideband Code Division Multiple Access)、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)やIEEE(The Institute of Electrical and Electronics engineers)によるWiMAX(Worldwide Interoperability for Microwave Access)等のような無線通信システムを含むが、これらに限定されない。
 図1は、本発明の第1の実施形態に係る通信システム1の構成を示す概略図である。第1の実施形態に係る通信システム1は、複数の基地局装置100-j(jは任意の正整数であり、図1において、j=1~3とする)と、複数の移動局装置200-k(kは任意の正整数であり、図1において、k=1~3とする)を備えている。
 通信システム1における複数の基地局装置100-jは、互いに協調してセル間干渉を抑圧するように構成される。また、通信システム1における移動局装置200-kは、協調する基地局装置と接続する移動局装置かつ協調の対象となる移動局装置を含む。
 各基地局装置100-jは、自己のセルが他の基地局装置のセルと全域又は一部が重複するような構成で配置されている。基地局装置100-j間は、光ファイバやインターネット回線または無線回線等を用いたバックホール回線10-1、10-2(例えば、X2インターフェース)により接続されている。また、通信システム1は、全てのセルで同一の周波数を利用する、いわゆる1セル周波数繰り返しを用いている。
 基地局装置100-jと移動局装置200-k間は、各伝搬路Hkj(伝達関数)で表されている(k及びjは任意の正整数である。図1において、k=1~3及びj=1~3とする)。ここで、協調の対象となる基地局装置及び移動局装置間の前記伝搬路Hkjをシステム全体の伝搬路と呼ぶ。通信システム1において、移動局装置200-kは、k=jとなる基地局装置100-jと無線接続されている。すなわち、移動局装置200-kにおいて、k≠jとなる基地局装置100-jが送信する信号はセル間干渉となる。
 例えば、移動局装置200-1において、伝搬路H11を通って受信する基地局装置100-1からの送信信号が所望信号であり、伝搬路H12及び伝搬路H13を通って受信する基地局装置100-2及び基地局装置100-3からの送信信号がセル間干渉(非所望信号)となる。
 詳しくは後述するが、各基地局装置100-jは、自己が送信する送信信号に、基地局装置100-jと移動局装置200-kが協調して、互いに与え得るセル間干渉を抑圧できるような送信重み係数Vを乗算する。また、各移動局装置200-kは、基地局装置100-jと移動局装置200-kが協調して、互いに与え得るセル間干渉を抑圧できるような受信重み係数Uを受信信号に乗算する。
 以下、図1の通信システム1において、基地局装置100-1は、送信重み係数及び受信重み係数を算出する主基地局装置(マスター基地局装置)とし、基地局装置100-2及び基地局装置100-3は、マスター基地局装置の指示に従って協調動作する従基地局装置(スレーブ基地局装置)とする。
 次に、第1の実施形態に係るマスター基地局装置(基地局装置100-1)について説明する。
 マスター基地局装置(基地局装置100-1)は、図2に示すように、上位レイヤ101、符号化部102、変調部103、プレコーディング部104、重み係数制御部105、参照信号生成部106、制御信号生成部107、リソースマッピング部108、IDFT部109、GI挿入部110、送信部111、送信アンテナ部112、受信アンテナ部121、受信部122、制御信号検出部123を備えて構成される。尚、上記基地局装置100-1の一部或いは全部をチップ化して集積回路となる場合、各機能ブロックに対して制御を行なうチップ制御回路(図示せず)を有する。
 基地局装置100-1は、受信アンテナ部121を介して、移動局装置200-1が上りリンクで送信した伝搬路情報などの制御信号を含む信号を受信し、受信部122は、前記制御信号等を信号検出処理等のデジタル信号処理が可能な周波数帯へダウンコンバート(無線周波数変換)し、さらにスプリアスを除去するフィルタリング処理を行ない、フィルタリング処理した信号をアナログ信号からデジタル信号に変換(Analog to Disital変換)を行なう。
 制御信号検出部123は、受信部122が出力した制御信号に対して復調処理及び復号処理等を行なう。制御信号は、上りリンク制御チャネル(PUCCH;Physical Uplink Control Channel)や上りリンク共通チャネル(PUSCH;Physical Uplink Shared Channel)から検出される。
 上位レイヤ101は、制御信号検出部123から入力された制御信号に含まれる伝搬路情報(基地局装置100-1と移動局装置200-1間の伝搬路情報H11、基地局装置100-2と移動局装置200-1間の伝搬路情報H12、基地局装置100-3と移動局装置200-1間の伝搬路情報H13)を取得する。ここで、上位レイヤとは、OSI参照モデルで定義された通信機能の階層のうち、物理層(Physical Layer)よりも上位の機能の階層、例えば、データリンク層、ネットワーク層等である。
 また、上位レイヤ101は、バックホール回線10-1、10-2を通して、スレーブ基地局装置(基地局装置100-2及び基地局装置100-3)から伝搬路情報を取得する。具体的には、上位レイヤ101は、基地局装置100-1と移動局装置200-2間の伝搬路情報(伝搬路H21に関する情報)、基地局装置100-2と移動局装置200-2間の伝搬路情報(伝搬路H22に関する情報)、基地局装置100-3と移動局装置200-2間の伝搬路情報(伝搬路H23に関する情報)は、バックホール回線10-1を通じて取得し、基地局装置100-1と移動局装置200-3間の伝搬路情報(伝搬路H31に関する情報)、基地局装置100-2と移動局装置200-3間の伝搬路情報(伝搬路H32に関する情報)、基地局装置100-3と移動局装置200-3間の伝搬路情報(伝搬路H33に関する情報)はバックホール回線10-2を通じて取得する。
 すなわち、マスター基地局装置は、各移動局装置200-kが協調制御を行う全ての基地局装置(マスター基地局装置及びスレーブ基地局装置)との間の伝搬路変動を推定した結果である伝搬路情報を取得する。
 また、上位レイヤ101は、伝搬路情報を重み係数制御部105に入力する。ここで、上位レイヤ101は、協調する基地局装置数及び移動局装置数を重み係数制御部105に入力する構成としても良い。
 また、上位レイヤ101は、後述する重み係数制御部105で算出した送信重み係数及び受信重み係数を、バックホール回線10-1及び10-2を通して、スレーブ基地局装置に通知する。基地局装置100-1の上位レイヤ101は、基地局装置100-2が送信信号に乗算する送信重み係数Vと、移動局装置200-2が受信信号に対して乗算する受信重み係数Uとを、バックホール回線10-1を介して基地局装置100-2に通知する。基地局装置100-1の上位レイヤ101は、基地局装置100-3が送信信号に乗算する送信重み係数Vと、移動局装置200-3が受信信号に対して乗算する受信重み係数Uとを、バックホール回線10-2を介して基地局装置100-3に通知する。
また、上位レイヤ101は、制御信号に含まれるMCS情報、空間多重数などのフィードバック情報も取得する。上位レイヤ101は、フィードバック情報に基づき、符号化部102に情報データを出力し、制御信号生成部107に制御データを出力する。尚、上位レイヤ101は、基地局装置100-1を構成する各部位が、機能を発揮するために必要なその他のパラメータも通知する。
 符号化部102は、上位レイヤ101から入力された情報データに対して誤り訂正符号化を行う。情報データは、例えば、通話に伴う音声信号、撮影した画像を表す静止画像又は動画像信号、文字メッセージ等である。符号化部102が誤り訂正符号化を行う際に用いる符号化方式は、例えば、ターボ符号化(turbo coding)、畳み込み符号化(convolutional coding)、低密度パリティ検査符号化(low density parity check coding;LDPC)などである。
 尚、符号化部102は、誤り訂正符号化したデータ系列の符号化率(coding rate)をデータ伝送率に対応する符号化率に合わせるために、符号化ビット系列に対してレートマッチング処理を行ってもよい。また、符号化部102は、誤り訂正符号化したデータ系列を並び替えてインターリーブする機能を有してもよい。
 変調部103は、符号化部102から入力された信号を変調して変調シンボルを生成する。変調部103が行う変調処理は、例えば、BPSK(binary phase shift keying;2相位相変調)、QPSK(quadrature phase shift keying;4相位相変調)、M-QAM(M-quadrature amplitude modulation;M値直交振幅変調、例えば、M=16、64、256、1024、4096)などである。尚、変調部103は、生成した変調シンボルを並び替えてインターリーブする機能を有してもよい。
 重み係数制御部105は、上位レイヤ101から取得した伝搬路情報(伝搬路推定値)を用いて、マスター基地局装置及びスレーブ基地局装置が送信する信号に乗算する送信重み係数V並びに各基地局装置と接続している移動局装置が受信信号に乗算する受信重み係数Uを算出する。すなわち、重み係数制御部105は、システム全体の伝搬路情報を用いて、送信重み係数並びに受信重み係数を算出する。
 一例として、重み係数制御部105は、干渉源となる複数の基地局装置から到来する干渉信号の等価伝搬路の向き(ベクトル)が、各移動局装置において受信信号に乗算する受信重み係数に直交するように送信重み係数を算出する(数1)。
Figure JPOXMLDOC01-appb-M000001
 ここで、Hkjは、基地局装置100-jと、協調制御の対象である移動局装置200-kとの間の伝搬路行列、Vは基地局装置100-jの送信重み係数のベクトル、Uは移動局装置200-kの受信重み係数のベクトル、dはストリーム数である。は複素共役転置である。
 また、重み係数制御部105は、スレーブ基地局装置の送信重み係数V及びスレーブ基地局装置に接続している移動局装置の受信重み係数Uを上位レイヤ101に通知する。
また、重み係数制御部105は、マスター基地局装置(自局)の送信信号に乗算する送信重み係数Vをプレコーディング部104に出力する。また、重み係数制御部105はマスター基地局装置(自局)に接続している移動局装置の受信重み係数Uを制御信号生成部107に出力する。
 プレコーディング部104は、変調部103が出力する変調シンボルに送信重み係数Vを乗算する。
 参照信号生成部106は、参照信号(パイロット信号)を生成し、生成した参照信号をリソースマッピング部108に出力する。例えば、参照信号は、基地局装置の送信アンテナ部112から各移動局装置の受信アンテナ部201-1及び201-2までの伝搬特性を推定するために用いる信号である。推定した伝搬特性は、送信重み係数及び受信重み係数算出のための伝搬路情報、或いは移動局装置における伝搬路補償に用いられる。尚、参照信号を構成する符号系列は、直交系列、例えば、アダマール符号又はCAZAC(Constant Amplitude Zero Auto-Correlation)系列であることが好ましい。
 制御信号生成部107は、上位レイヤ101が出力する制御データ及び重み係数制御部105が出力する受信重み係数U(自局に接続する移動局装置の受信重み係数)を含む制御信号を生成する。ここで、重み係数を含む制御信号を生成する制御信号生成部を重み係数情報生成部と、前記制御信号生成部が生成した重み係数を含む制御信号を重み係数情報とよんでもよい。尚、該制御信号に誤り訂正符号化及び変調処理を施してもよい。
 図3は、制御信号生成部107が出力する制御信号のフォーマットの一例を示す概念図である。制御信号では、自局と接続している移動局装置の受信重み係数情報を格納する領域(セル情報領域)を有する。図3に示すように、移動局装置200-1が受信信号に乗算する受信重み係数Uを受信重み係数情報とし、該情報を格納する領域が設けられている。
 リソースマッピング部108は、上位レイヤ101から通知されるスケジューリング情報に基づいて、変調シンボル、参照信号及び制御信号をリソースエレメントにマッピングする(以降、リソースマッピングと呼ぶ。)リソースエレメントとは、1つのサブキャリアと1つのOFDMシンボルから成る信号を配置する最小単位をいう。
 IDFT部109は、リソースマッピング部108から入力された周波数領域信号に対して逆離散フーリエ変換(inverse discrete Fourier Transform;IDFT)して時間領域信号に変換する。IDFT部109は、周波数領域信号を時間領域信号に変換できれば、IDFTの代わりに、他の処理方法(例えば、逆高速フーリエ変換[IFFT、inverse fast Fourier transform])を用いてもよい。
 GI挿入部110は、IDFT部109から入力された時間領域信号(有効シンボルと呼ぶ)にGI(Guard Interval;ガードインターバル、ガード区間ともいう)を付加してOFDMシンボルを生成する。GIとは、前後の時間のOFDMシンボルが互いに干渉しないことを目的として付加する区間である。例えば、GI挿入部110は、有効シンボルの後半の一部の区間の複写(コピー)をGIとして、有効シンボルに前置する。従って、GIが前置された有効シンボルがOFDMシンボルとなる。
 送信部111は、GI挿入部110から入力されたOFDMシンボルを、D/A(digital-to-analog;デジタル・アナログ)変換して、アナログ信号を生成する。送信部111は、生成したアナログ信号に対してフィルタリング処理により帯域制限して帯域制限信号を生成する。送信部111は、生成した帯域制限信号を無線周波数帯域にアップコンバートし、送信アンテナ部112に出力する。
 次に、通信システム1において、送信重み係数V及び受信重み係数Uを算出する処理を説明する。図4は、重み付け制御部105が送信重み係数V及び受信重み係数Uを算出する処理の一例を示すフローチャートである。
 図4の算出方法では、基地局装置から移動局装置の伝搬路行列の複素共役転置行列が、移動局装置から基地局装置の伝搬路行列となるという性質(伝搬路の相反性)を利用して、送信と受信の役割を入れ替えながら干渉の影響ができるだけ小さくなるような重み係数を求める処理を繰返し行う。
 まず、重み係数制御部105は、伝搬路情報を取得すると、任意の送信重み係数Vを設定する(S100)。
 次に、重み係数制御部105は、移動局装置200-kが受信する干渉の総和Qk、iを数2に基づいて算出する(S101)。ここで、Qは受信する干渉信号の共分散行列である。また、Pは送信電力、Kは協調制御の対象となる移動局装置数である。また、は複素共役転置を表す。
Figure JPOXMLDOC01-appb-M000002
 次に、重み係数制御部105は、算出した干渉の総和Qk、iを特異値分解し、干渉の総和Qk、iを抑圧する受信重み係数Uk、iを算出する(S102)。尚、ステップS102及びステップS103では、基地局装置100-jの送信信号を移動局装置200-kが受信する場合について、受信重み係数Uが算出されていることになる。
 次に、基地局装置100-jと移動局装置200-kの送信と受信の役割の入れ替えを行う(S103)。すなわち、移動局装置200-kが前記係数Uk、iを乗算した送信信号を基地局装置100-jが受信する場合について、該基地局装置100-jの受信重み係数U を算出する。該受信重み係数U は、基地局装置100-jの送信重み係数Vに該当することになる。
  受信重み係数U の算出について、まず、基地局装置100-jが受信する干渉の総和Qj、i を数3に基づき算出する(S104)。ここで、Hjk =Hkj 、V =U、Pは送信電力である。
Figure JPOXMLDOC01-appb-M000003
 次に、干渉の総和Qj、i を特異値分解し、干渉の総和Qj、i を抑圧する受信重み係数Uk、i を算出する(S105)。再度、基地局装置100-jと移動局装置200-kの送信と受信の役割の入れ替えを行う(S106)。すなわち、Vk、i=Uk、i を代入する。
 処理の回数をカウントするカウンタを1つインクリメントし(S107)、所定の回数Iに到達するまで(S108、N)ステップS101乃至ステップS106の処理を繰返す。所定の回数Iに到達した場合(S108、Y)、処理を終了する。
 このように、基地局装置100-jと移動局装置200-kの送信と受信の役割を入れ替えながら、干渉電力が小さくなるような受信重み係数(U、U )を繰り返し更新していくことで、基地局装置100-j及び移動局装置200-kが干渉の影響を抑圧することができる受信重み係数が得られる。
 k=jとなる受信重み係数U を基地局装置100-jの送信重み係数Vとし、受信重み係数Uを移動局装置200-kの受信重み係数Uとすることで、複数の基地局装置100-jが協調して干渉の影響を抑圧することができる。尚、この算出方法は一例であり、これに限定されず、この他の算出方法を用いてもよい。
 次に、第1の実施形態におけるスレーブ基地局装置(基地局装置100-2及び基地局装置100-3)について説明する。図5は、第1の実施形態に係るスレーブ基地局装置(基地局装置100-2及び基地局装置100-3)の構成を表す概略図である。以下、基地局装置100-2の構成として説明するが、基地局装置100-3も同様の構成を有する。
  基地局装置100-2は、上位レイヤ151、符号化部102、変調部103、プレコーディング部154、参照信号生成部106、制御信号生成部157、リソースマッピング部108、IDFT部109、GI挿入部110、送信部111、送信アンテナ部112、受信アンテナ部121、受信部122及び制御信号検出部123を含んで構成される。尚、基地局装置100-2の一部あるいは全部をチップ化して集積回路となる場合、各機能ブロックに対して制御を行なうチップ制御回路(図示せず)を有する。
 基地局装置100-1と比較すると、基地局装置100-2における、上位レイヤ151、プレコーディング部154及び制御信号生成部157における動作が異なる。以下、主に異なる部分について説明する。
 上位レイヤ151は、制御信号検出部123から入力された制御信号に含まれる伝搬路情報(基地局装置100-1と移動局装置200-2間の伝搬路情報H21、基地局装置100-2と移動局装置200-2間の伝搬路情報H22、基地局装置100-3と移動局装置200-2間の伝搬路情報H23)を取得する。
 また、上位レイヤ151は、伝搬路情報をバックホール回線10-1を介して、受信重み係数の算出を行うマスター基地局装置に通知する。また、上位レイヤ151は、バックホール回線10-1を介して、自局の送信信号に乗算する送信重み係数V及び自局と接続している移動局装置200-2の受信重み係数Uをマスター基地局装置から取得する。
 また、上位レイヤ151は、前記送信重み係数Vをプレコーディング部154に入力する。更に、上位レイヤ151は、受信重み係数Uを制御信号生成部157に入力する。
 プレコーディング部154は、変調部103が出力する変調シンボルに送信重み係数Vを乗算する。
 制御信号生成部157は、上位レイヤ151が出力する制御データ及び受信重み係数U(自局に接続する移動局装置200-2の受信重み係数)を含む制御信号を生成する。同様に、制御信号のフォーマットは、図3に示すフォーマットが適用される。すなわち、自局と接続している移動局装置200-2の受信重み係数情報Uを格納する領域を有する。
 次に、第1の実施形態における移動局装置200-kについて説明する。図6は、第1の実施形態に係る移動局装置200―kの構成を示す概略図である。
 移動局装置200-kは、複数の受信アンテナ部201-e、複数の受信部202-e、伝搬路推定部203、複数のGI除去部204-e、複数のDFT部205-e、干渉抑圧部206、伝搬路補償部207、復調部208、復号部209、制御信号検出部210及び上位レイヤ211、制御信号生成部221、送信部222及び送信アンテナ部223を含んで構成される。尚、図6では、移動局装置200-kが2本(e=2)の受信アンテナを有する場合の例を示すが、これに限らず、何本のアンテナを備えてもよい。また、1本の送信アンテナとなっているが、これに限らず、複数の送信アンテナを備えてもよいし、送信アンテナと受信アンテナを共用する構成としてもよい。また、移動局装置200-kの一部あるいは全部をチップ化して集積回路となる場合、各機能ブロックに対して制御を行なうチップ制御回路(図示せず)を有する。
 移動局装置200-kは、受信アンテナ部201-eを介して、基地局装置100-jの送信信号を受信する。ここで、移動局装置200-m(m∈kの集合)が基地局装置100-mと接続している場合、基地局装置100-m以外の送信信号はセル間干渉となる。
 受信部202-eは、受信アンテナ部201-eから入力された無線周波数信号をデジタル信号処理が可能な周波数帯域にダウンコンバートし、ダウンコンバートした信号を更にフィルタリング処理を行って不要成分(スプリアス;Spurious)を除去する。また、受信部202-eは、フィルタリング処理を行った信号をアナログ信号からデジタル信号に(A/D;Analog-to-Digital)変換し、変換したデジタル信号を伝搬路推定部203、GI除去部204-e及び制御信号検出部210に出力する。
 GI除去部204-eは、遅延波による歪を回避するために受信部202-eから出力される信号からガードインターバルGIを除去し、除去された信号をDFT部205-eに出力する。
 DFT部205-eは、GI除去部204-eから入力されたガードインターバルGIが除去された信号を時間領域信号から周波数領域信号に変換する離散フーリエ変換(DFT:Discrete Fourier Transform)を行い、干渉抑圧部206に出力する。尚、DFT部205-eは、信号を時間領域から周波数領域に変換できれば、DFTに限らず、他の方法、例えば、高速フーリエ変換(FFT:Fast Fourier Transform)等を行ってもよい。
 伝搬路推定部203は、受信部202-eが出力した信号に含まれる参照信号を用いて、伝搬路推定を行う。そして、伝搬路推定部203は、伝搬路推定値を伝搬路補償部207、制御信号生成部221及び上位レイヤ211に通知する。尚、伝搬路推定値は、例えば、伝達関数、インパルス応答などである。
 制御信号検出部210は、受信部202-eが出力した信号に含まれる制御信号の検出を行う。そして、制御信号検出部210は、制御信号に含まれる受信重み係数情報(図3参照)を抽出すると、干渉抑圧部206に入力する。また、制御信号検出部210は、制御信号に含まれる情報データ等に施されているMCS、レイヤ数の情報を抽出すると、復調部208及び復号部209に通知する。
 干渉抑圧部206は、DFT部205-eから入力された周波数領域の信号に制御信号検出部210から入力された受信重み係数を乗算する。
 伝搬路補償部207は、伝搬路推定部203から入力された伝搬路推定値に基づき、ZF(Zero Forcing;ゼロフォーシング)等化、MMSE(Minimum Mean Square Error;最小平均二乗誤差)等化等の方式を用いて、フェージングによる伝搬路歪を補正する重み係数を算出する。伝搬路補償部207は、この重み係数を干渉抑圧部206から入力された信号に乗算して伝搬路補償を行う。
 復調部208は、伝搬路補償部207から入力された伝搬路補償後の信号(データ変調シンボル)に対して復調処理を行う。該復調処理は、硬判定(符号化ビット系列の算出)、軟判定(符号化ビットLLRの算出)のどちらでもよい。
 復号部209は、復調部208が出力する復調後の符号化ビット系列(又は、符号化ビットLLR)に対して誤り訂正復号処理を行い、自己宛に送信された情報データを算出し、上位レイヤ211に出力する。この誤り訂正復号処理の方式は、接続している基地局装置100-mが行ったターボ符号化、畳み込み符号化等の誤り訂正符号化に対応する方式である。誤り訂正復号処理は、硬判定又は軟判定のどちらも適用できる。
 尚、基地局装置100-jが、インターリーブしたデータ変調シンボルを送信する場合には、復号部209は、誤り訂正復号処理を行う前に、入力された符号化ビット系列をインターリーブに対応するデインターリーブ処理を行う。そして、復号部209は、デインターリーブ処理が行われた信号に対して誤り訂正復号処理を行う。
  制御信号生成部221は、自局と基地局装置100-jとの間の伝搬路情報を含む制御信号を生成する。例えば、図1の通信システム1において、移動局装置200-1の前記制御信号には、移動局装置200-1と協調する基地局装置100-1との間の伝搬路H11、移動局装置200-1と協調する基地局装置100-2との間の伝搬路H12、移動局装置200-1と協調する基地局装置100-3との間の伝搬路H13の伝搬路情報が含まれる。
 また、制御信号生成部221は、フィードバック情報(CQI、RI、PMIが含まれる)を基地局装置に送信するための制御信号を生成する。フィードバック情報は、上位レイヤ211が、伝搬路推定部203で算出した伝搬路推定値に基づいて決定する。
 また、制御信号生成部221は、フィードバック情報を示す制御データを誤り訂正符号化及び変調マッピングし、制御信号を生成する。制御信号生成部221が出力する制御信号を含む信号は、送信部222で、下りリンクにおいて送信可能な周波数帯まえアップコンバートされ、送信アンテナ部223を介して、接続している基地局装置100-jに送信される。
 次に、移動局装置200-kの干渉抑圧部206における処理について、具体的に説明する。以下は、移動局のアンテナが2本(e=2)の場合の例である。
 移動局装置200-kにおいて、DFT部205-1及びDFT部205-2から干渉抑圧部206に入力される信号をベクトルRをとして、数4を用いて以下のように表わすことができる。
Figure JPOXMLDOC01-appb-M000004
 ここで、Rk、eは移動局装置kのDFT部205-eから入力される信号、Hkj、eは基地局装置100-j(j=1~3)の送信信号を移動局装置200-kが受信アンテナ部201-eを介して受信した場合の伝搬路(伝達関数)、Vは基地局装置100-jの送信信号に乗算されている送信重み係数(各基地局装置のプレコーディング部104で乗算)、Sは基地局装置100-jのデータ変調シンボルである。また、+(数4及び数5では丸プラスで表す)は要素毎の加算である。
 また、干渉抑圧部206が上記のRに受信重み係数Uを乗算した信号をYとすると、数5と表せる。ここで、Uk、eは、移動局装置200-kのDFT部205-eから入力される信号に乗算する受信重み係数である。
Figure JPOXMLDOC01-appb-M000005
 次に、通信システム1における送信重み係数V及び受信重み係数Uの通知手順について説明する。
 図7は、通信システム1のマスター基地局装置(基地局装置100-1)が送信重み係数V及び受信重み係数Uを算出し、スレーブ基地局装置(基地局装置100-2及び100-3)及び移動局装置200-kに通知する動作例を示すシーケンス図である。
 最初に、マスター基地局装置は、協調してデータ伝送するスレーブ基地局装置に対して、伝搬路情報通知依頼をする(S201)。
 ステップS201の通知依頼を受けた各スレーブ基地局装置は、それぞれ接続している移動局装置200-2及び200-3に対して、伝搬路情報通知依頼をする(S202)。
 一方、マスター基地局装置に接続している移動局装置200-1は、マスター基地局装置から直接、伝搬路情報通知依頼を受ける。
  全ての移動局装置200-kは、伝搬路情報通知依頼(S202)を受けると、協調する基地局装置各々との伝搬路を推定する(S203)。
 通信システム1において、移動局装置200-kは、伝搬路Hk1、伝搬路Hk2及びHk3を推定する。伝搬路推定は、例えば、各基地局装置200-jが送信する参照信号を用いて行う。
 次に、移動局装置200-kは、伝搬路推定の結果(伝搬路情報)を伝搬路情報通知の依頼元である基地局装置100-jに通知する(S204)。
 次に、伝搬路情報の通知(S204)を受けたスレーブ基地局装置(基地局装置100-2及び100-3)は、伝搬路情報をマスター基地局装置(基地局装置100-1)に通知する(S205)。
 具体的には、通信システム1において、基地局装置100-1は、基地局装置100-2に対して、接続している移動局装置200-2の伝搬路情報の通知を依頼する。そして、基地局装置100-2は、移動局装置200-2に対して伝搬路情報通知の依頼を行う。基地局装置100-3も同様に、伝搬路情報通知の依頼を行う。
 一方、マスター基地局装置に接続している移動局装置200-1は、マスター基地局装置に直接、伝搬路情報を通知する。
 これにより、マスター基地局装置は、協調してデータ伝送を行う全基地局装置と移動局装置間の全ての伝搬路情報を得ることになる。
 次に、マスター基地局装置は、ステップS205で得た伝搬路情報を用いて、送信重み係数V及び受信重み係数Uを算出する(S206)。
 そして、マスター基地局装置は、バックホール回線を用いて、算出した送信重み係数Vをスレーブ基地局装置100-jに通知する(S207)。
 また、マスター基地局装置は、各移動局装置が接続している基地局装置を経由して各移動局装置の受信重み係数Uを通知する(S207、S208)。例えば、スレーブ基地局装置100-2に接続している移動局装置200-2は、スレーブ基地局装置100-2を介して、マスター基地局装置100-1から受信重み係数Uを取得することになる。
 また、マスター基地局装置は、自局に接続している移動局装置200-1の受信重み係数Uを当該移動局装置に直接通知する(S209)。
  そして、マスター基地局装置及びスレーブ基地局装置は、各々に接続している移動局装置に送信する情報データに送信重み係数Vを乗算し(S210、S211)、送信する(S212、S213)。
 以上のように、第1の実施形態では、複数の基地局装置100-jの各セルが全部或いは一部を重複するように配置される通信システム1において、マスター基地局装置は、各基地局装置100-jに接続している移動局装置200-kが受信する干渉信号の等価伝搬路の向きが移動局装置200-kが受信信号に乗算する受信重み係数に直交するように、各基地局装置100-jの送信重み係数V及び移動局装置200-kの受信重み係数Uを算出する。
 そして、基地局装置100-jは、自局に接続する移動局装置200-kに受信重み係数Uを通知し、移動局装置200-kは受信信号(干渉信号を含む)に受信重み係数Uを乗算して受信処理を行う。
 これにより、異なるセル範囲を有する複数の基地局装置におけるセルが、全部或いは一部を重複するように配置される通信システムにおいて、複数の基地局装置が同一周波数を用いて通信することに起因するセル間干渉を効果的に抑圧し、良好な受信特性を得ることができる。
 尚、基地局装置100-1の重み係数制御部105は、上位レイヤ101に含んでも良い。また、重み係数制御部105は、協調する複数の基地局装置100-jの外部に位置し、これらの基地局装置100-jを統括する基地局管理部に含んでもよい。
<第2の実施形態>
 第2の実施形態では、第1の実施形態で説明した複数の基地局装置100-jが協調してセル間干渉を抑圧する通信システム1において、コードブックを用意して、基地局装置100-jが移動局装置200-kに受信重み係数Uを通知する方法について説明する。コードブックとは、通信システム1において、予め決められた送信重み係数V及び受信重み係数Uの一覧表である。
 第2の実施形態の通信システム1における基地局装置100-jは、基地局装置の送信重み係数V及び移動局装置の受信重み係数Uのコードブックを共有し、移動局装置200-kは、少なくとも移動局装置200-kの受信重み係数Uのコードブックを共有するように構成されている。
 コードブックの一例を図8に示す。図8において、送信重み係数Vj、nは、第jの基地局装置におけるn番目の送信重み係数候補である(j及びnは任意の正整数)。また、受信重み係数Uk、nは、第kの移動局装置におけるn番目の受信重み係数候補である(k及びnは任意の正整数)。
 図8のコードブックにおいて、コードブックインデックス#0~3は、2個の基地局装置と2個の移動局装置との間で協調してセル間干渉を抑圧する送信重み係数V及び受信重み係数Uの候補である。コードブックインデックス#4~7は、3個の基地局装置と3個の移動局装置との間で協調してセル間干渉を抑圧する送信重み係数V及び受信重み係数Uの候補である。コードブックインデックス#8~11は4個の基地局装置と4個の移動局装置との間で協調してセル間干渉を抑圧する送信重み係数V及び受信重み係数Uの候補である。
 次に、コードブックを用いて送信重み係数V及び受信重み係数Uの選択について説明する
  例えば、マスター基地局装置100-1は、コードブックを重み係数制御部105に保持する。まず、重み係数制御部105は、上位レイヤ101から入力される、協調する基地局装置数及び移動局装置数から、コードブックの候補を選択する。
 図1に示す通信システム1の場合は、3個の基地局装置100-jと3個の移動局装置200-kで協調するから、コードブックインデックス#4~7が候補として選択される。
 次に、重み係数制御部105は、上位レイヤ101から入力される伝搬路情報Hkjと、選択したコードブックインデックスの候補とを用いて、干渉の影響ができるだけ小さくなるような受信重み係数Uを求める処理を行う。
 例えば、前記伝搬路情報Hkjと候補となったコードブックインデックの送信重み係数V及び受信重み係数Uを、数2及び、数3に代入し、干渉の総和Qk、i及び総和Qj、i が最小となるコードブックを選択する。
 次に、コードブックを用いて、送信重み係数V及び受信重み係数Uの通知方法について説明する。
 マスター基地局装置が選択したコードブックインデックスをスレーブ基地局装置及び移動局装置に通知する動作のシーケンスは、図7に示すシーケンスを適用する。
 この場合、図7の「“送信重み係数及び受信重み係数通知”(S207)」及び「“受信重み係数通知”(S208及びS209)」を「コードブックインデックス通知」に置き換えることにより実現する。
 そして、マスター基地局装置は、前記選択したコードブックインデックを、バックホール回線10-1、10-2を用いて、スレーブ基地局装置に通知する。
 次に、制御信号生成部107が出力する制御信号のフォーマットを説明する。図9は、制御信号生成部107が出力する制御信号のフォーマットの一例を示す概念図である。
 制御信号は、自局と接続している移動局装置の受信重み係数Uの情報を通知するためのコードブックインデックスの領域を有する。図9は、一例として、移動局装置200-1が受信信号に乗算する受信重み係数Uを受信重み係数情報とし、該情報を格納する領域を4ビット設けている場合を示している。
 また、スレーブ基地局装置の制御信号生成部157は、図9に示す制御信号のフォーマットにより、移動局装置200-kに受信重み係数Uを通知する。
 上述したように、基地局装置100-j及び移動局装置200-kでコードブックを共有することにより、送信重み係数V及び受信重み係数Uを算出する際の繰り返し数を減らすことができるため、基地局装置100-j及び移動局装置200-kにおいて演算処理の負担を軽減できる。また、コードブックインデックを通知することにより移動局装置200-kに受信重み係数Uを通知できるので、オーバヘッド(制御信号の重み係数通知のための格納領域)を軽減することができる。
<第3の実施形態>
 第3の実施形態では、第1の実施形態で説明した複数の基地局装置100-jが協調してセル間干渉を抑圧する通信システム1において、複数の参照信号を用いて、基地局装置100-jが移動局装置200-kに受信重み係数Uを通知する方法を用いる形態について説明する。
 第3の実施形態における通信システム1aは、図10に示すように、マスター基地局装置である基地局装置300-1、スレーブ基地局装置である基地局装置300-2及び300-3及び複数の移動局装置400-1乃至移動局装置400-3を備えている。尚、第3の実施形態における通信システム1aは、図1の基地局装置100-1を基地局装置300-1に、図1の基地局装置100-2及び100-3を基地局装置300-2及び300-3に、移動局装置200-1乃至移動局装置200-3を移動局装置400-1乃至移動局装置400-3に置き換えることにより実現できる。
 図11は、第3の実施形態に係る基地局装置300-1の構成を表す概略図である。基地局装置300-1は、上位レイヤ101、符号化部102、変調部103、プレコーディング部104、重み係数制御部305、参照信号生成部306、制御信号生成部107、リソースマッピング部108、IDFT部109、GI挿入部110、送信部111、送信アンテナ部112、受信アンテナ部121、受信部122、制御信号検出部123を含んで構成される。尚、基地局装置300-1の一部あるいは全部をチップ化して集積回路となる場合、各機能ブロックに対して制御を行なうチップ制御回路(図示せず)を有する。
 基地局装置300-1において、図2と共通する参照番号の構成要素は、その機能や動作が同じであるため、説明を省略する。第3の実施形態の基地局装置300-1と第1の実施形態の基地局装置100-1と比較した場合、重み係数制御部305及び参照信号生成部306が異なる。以下、これら部位を中心に説明する。
 重み係数制御部305は、上位レイヤ101から取得した伝搬路情報を用いて、基地局装置及びスレーブ基地局装置が送信する信号に乗算する送信重み係数V並びに前記基地局装置と接続している移動局装置が受信信号に乗算する受信重み係数Uを算出する。送信重み係数V並び受信重み係数Uの算出方法は、第1の実施形態と同様の方法が適用できる。
 また、重み係数制御部305は、スレーブ基地局装置の送信重み係数V及びスレーブ基地局装置に接続している移動局装置の受信重み係数Uを上位レイヤに通知する。また、重み係数制御部305は、マスター基地局装置(自局)の送信信号に乗算する送信重み係数Vをプレコーディング部104に出力する。さらに、重み係数制御部305は、マスター基地局装置(自局)に接続している移動局装置の受信重み係数Uを参照信号生成部306に出力する。
 参照信号生成部306は、基地局装置300-jの送信アンテナから移動局装置300-kの各受信アンテナまでの伝搬特性を推定するために用いる第1の参照信号と、受信重み係数Uを移動局装置に通知するために用いる第2の参照信号とを生成する。第2の参照信号は、通信システム1aで予め決められた既知の符号系列に受信重み係数Uを乗算することで生成される。ここで、重み係数を含む参照信号を生成する参照信号生成部を重み係数情報生成部と、前記参照信号生成部が生成した重み係数を含む参照信号を重み係数情報とよんでもよい。
 例えば、通信システム1aで予め決められた既知の符号系列をSRSとすると、第1の参照信号は、SRSとなり、第2の参照信号は、URSとなる。
 リソースマッピング部108は、上位レイヤ101から通知されるスケジューリング情報に基づいて、プレコーディング部104から出力される変調シンボル、第1の参照信号、第2の参照信号及び制御信号をリソースマッピング部108のリソースエレメントにリソースマッピングする。
 次に、第3の実施形態に係る基地局装置300-2及び基地局装置300-3(スレーブ基地局装置)の説明をする。
 図12は、第3の実施形態に係る基地局装置300-2及び基地局装置300-3の構成を表す概略図である。以下基地局装置300-2の構成として説明するが、基地局装置300-3も同様の構成を有する。また、スレーブ基地局装置の数は2つに限定されず、少なくとも1つの基地局装置を含むものであれば良い。
  基地局装置300-2は、上位レイヤ152、符号化部102、変調部103、プレコーディング部154、参照信号生成部356、制御信号生成部157、リソースマッピング部108、IDFT部109、GI挿入部110、送信部111、送信アンテナ部112、受信アンテナ部121、受信部122、制御信号検出部123を含んで構成される。尚、基地局装置300-2の一部あるいは全部をチップ化して集積回路となる場合、各機能ブロックに対して制御を行なうチップ制御回路(図示せず)を有する。
 基地局装置300-2において、図5と共通する参照番号の構成要素は、その機能や動作が同じであるため、説明を省略する。第3の実施形態の基地局装置300-2と第1の実施形態の基地局装置100-2と比較した場合、上位レイヤ152及び参照信号生成部356が異なる。以下、これらの部位を中心に説明する。
 上位レイヤ152は、制御信号検出部123から入力された制御信号に含まれる伝搬路情報(基地局装置300-1と移動局装置400-2間の伝搬路情報H21、基地局装置300-2と移動局装置400-2間の伝搬路情報H22、基地局装置300-3と移動局装置400-2間の伝搬路情報H23)を取得する。
 また、上位レイヤ152は、バックホール回線10-1(又はバックホール回線10-2)を通じて、受信重み係数Uの算出を行うマスター基地局装置に取得した伝搬路情報を通知する。
 また、上位レイヤ152は、バックホール回線10-1(又はバックホール回線10-2)を通じて、自局の送信信号に乗算する送信重み係数V(又はV)及び自局と接続している移動局装置400-2の受信重み係数U(又はU)をマスター基地局装置から取得する。
 更に、上位レイヤ152は、送信重み係数V(又はV)をプレコーディング部154に入力する。また、上位レイヤ152は、受信重み係数U(又はU)を参照信号生成部356に入力する。
  参照信号生成部356は、基地局装置の送信アンテナから各移動局装置の受信アンテナまでの伝搬特性を推定するために用いる第1の参照信号SRS1と、受信重み係数U(又はU)を移動局装置400-2に通知するために用いる第2の参照信号SRS2とを生成する。尚、基地局装置300-2、300-3の参照信号生成部356における参照信号の生成方法は、基地局装置300-1の参照信号生成部306における参照信号の生成方法を適用する。
 リソースマッピング部108は、上位レイヤ152から通知されるスケジューリング情報に基づいて、プレコーディング部154から出力される変調シンボル、第1の参照信号、第2の参照信号及び制御信号をリソースマッピング部108のリソースエレメントにリソースマッピングする。リソースマッピングのフォーマットは、基地局装置300-1の参照信号生成部106におけるフォーマットを適用する。
 次に、第3の実施形態に係る移動局装置400―kの構成について説明する。
 図13は、第3の実施形態に係る移動局装置400―kの構成を示す概略図である。移動局装置400-kは、受信アンテナ部201-e、受信部202-e、伝搬路推定部203、GI除去部204-e、DFT部205-e、干渉抑圧部206、伝搬路補償部207、復調部208、復号部209、制御信号検出部410及び上位レイヤ211、制御信号生成部221、送信部222及び送信アンテナ部223を含んで構成される。図13は、アンテナ2本(e=1、2)の例である。尚、移動局装置400-kの一部あるいは全部をチップ化して集積回路となる場合、各機能ブロックに対して制御を行なうチップ制御回路(図示せず)を有する。
 移動局装置400-kにおいて、図6と共通する参照番号の構成要素は、その機能や動作が同じであるため、説明を省略する。第3の実施形態の移動局装置400-kと第1の実施形態の移動局装置200-kと比較した場合、制御信号検出部410が異なる。以下、該部位を中心に説明する。
 伝搬路推定部203は、受信部202-1が出力した信号に含まれる第1の参照信号SRS1を用いて、伝搬路推定を行う。そして、伝搬路推定値(例えば、伝達関数)を制御信号検出部410、伝搬路補償部207、制御信号生成部221及び上位レイヤ211に通知する。
 伝搬路推定部203は、受信部202-eが出力した第1の参照信号HSRS1(Hは基地局装置300-j(ただしj=k)と移動局装置400-k間の伝搬路)を既知信号SRS1で除算することにより伝搬路推定値H^を算出する。
 また、既知信号SRS1を配置していないサブキャリアの伝搬路推定値は、第1の参照信号HSRS1を配置したサブキャリアの伝搬路推定値H^を用いて、線形補間、FFT補完などの補間技術により算出することができる。
 制御信号検出部410は、受信部202-2が出力した信号に含まれる制御信号の検出を行う。制御信号に含まれる情報データなどに施されているMCS、レイヤ数の情報を抽出すると、復調部208及び復号部209に通知する。
 また、制御信号検出部410は、受信部202-2が出力した信号に含まれる第2の参照信号SRS2(=URS1)を用いて受信重み係数情報U^を算出する。そして、受信重み係数情報U^を干渉抑圧部206に入力する。算出した受信重み係数情報U^は、以下の数6で表すことができる。ここで、H^は伝搬路推定値である。
Figure JPOXMLDOC01-appb-M000006
 干渉抑圧部206は、算出した受信重み係数情報U^を用いて、数5で表す処理を行う。
 次に、第3の実施形態に係る基地局装置300-1のリソースマッピング部108におけるリソースマッピングを説明する。図14は、第3の実施形態に係る基地局装置300-1のリソースマッピング部108におけるリソースマッピングの一例である。
 図14に示すリソースマッピング部108におけるリソースマッピングは、基地局装置300-1が1個の送信アンテナ部により送信する場合の一例である。図14において、横方向は時間Tを示し、縦方向は周波数Fを示す。図14において、白抜き部RE1は、制御信号及び情報データをマッピングするリソースエレメントである。
 また、斜線部RE2及び塗潰し部RE3は参照信号をマッピングするリソースエレメントである。参照信号をマッピングできるリソースエレメントは、システム帯域全体に有する。すなわち、セル固有の参照信号をマッピングするリソースエレメントである。
 そして、前記参照信号をマッピングするリソースエレメントのうち、塗潰し部RE3に第1の参照信号を配置する。また、参照信号をマッピングするリソースエレメントのうち、斜線部RE2に第2の参照信号を配置する。
 このように、セル固有の参照信号の一部に受信重み係数Uを乗算することで、受信重み係数Uを移動局装置に通知する。尚、情報データ及び制御信号に、誤り訂正符号化及び変調処理を施しても良い(以下図15乃至図17も同様)。
 図15は、第3の実施形態に係る基地局装置300-1のリソースマッピング部108におけるリソースマッピングの別の一例である。
 図15において、横方向は時間Tを、縦方向は周波数Fを示す。図15において、白抜き部RE1は、制御信号及び情報データをマッピングするリソースエレメントである。太線の範囲は、受信重み係数を通知する移動局装置の変調シンボルが割り当てられる範囲MAである。
 また、斜線部RE2及び塗潰し部RE3は参照信号をマッピングするリソースエレメントである。参照信号をマッピングできるリソースエレメントは、受信重み係数Uを通知する移動局装置の変調シンボルが割り当てられる範囲に有する。すなわち、ユーザ固有の参照信号をマッピングするリソースエレメントである。
 そして、参照信号をマッピングするリソースエレメントのうち、塗潰し部RE3に第1の参照信号を配置する。また、参照信号をマッピングするリソースエレメントのうち、斜線部RE2に第2の参照信号を配置する。
 このように、ユーザ固有の参照信号の一部に受信重み係数Uを乗算することで、該受信重み係数を移動局装置に通知する。
 図16は、第3の実施形態に係る基地局装置300-1のリソースマッピング部108におけるリソースマッピングの別の一例である。
 図16において、横方向は時間Tを、縦方向は周波数Fを示す。図16において、白抜き部RE1は、制御信号及び情報データをマッピングするリソースエレメントである。太線の領域は、受信重み係数を通知する移動局装置の変調シンボルが割り当てられる領域MAである。
 また、斜線部RE2及び塗潰し部RE3は、参照信号をマッピングするリソースエレメントである。塗潰し部RE3で示した参照信号をマッピングできるリソースエレメントは、セル固有の参照信号をマッピングするリソースエレメントである。斜線部RE2で示した参照信号をマッピングできるリソースエレメントは、ユーザ固有の参照信号をマッピングするリソースエレメントである。
 そして、参照信号をマッピングするリソースエレメントのうち、塗潰し部RE3に第1の参照信号を配置する。また、参照信号をマッピングするリソースエレメントのうち、斜線部RE2に第2の参照信号を配置する。
 このように、ユーザ固有の参照信号或いはセル固有の参照信号のいずれかに受信重み係数Ukを乗算することで、該受信重み係数を移動局装置に通知する。
 図17は、第3の実施形態に係る基地局装置300-1のリソースマッピング部108におけるリソースマッピングの別の一例である。
 図17において、横方向は時間Tを、縦方向は周波数Fを示す。図17において、白抜き部RE1は、制御信号及び情報データをマッピングするリソースエレメントである。太線の領域は、リソースブロックRBである。リソースブロックとは、複数のリソースエレメントを纏めたリソースの単位であり、移動局装置毎に変調シンボルを割り当てるリソースの最小単位である。図17では、リソースブロックRBは、12個のサブキャリアと7個のOFDMシンボルから成るリソースとすることができる。
 また、斜線部RE2及び塗潰し部RE3は参照信号をマッピングするリソースエレメントである。塗潰し部RE3で示した参照信号をマッピングできるリソースエレメントは、セル固有の参照信号をマッピングするリソースエレメントである。斜線部RE2で示した参照信号をマッピングできるリソースエレメントは、ユーザ固有の参照信号をマッピングするリソースエレメントである。
 そして、参照信号をマッピングするリソースエレメントのうち、塗潰し部RE3に第1の参照信号を配置する。また、参照信号をマッピングするリソースエレメントのうち、斜線部RE2に第2の参照信号を配置する。
 このように、各移動局装置に固有の参照信号或いはセル固有の参照信号のいずれかの参照信号であって、移動局装置の変調シンボルをマッピングする領域の一部のリソースブロックに有する参照信号に受信重み係数を乗算することで、該受信重み係数を移動局装置に通知する。
 以上のように、第3の実施形態に係る通信システムにおいて、複数の基地局装置のセルが全部或いは一部を重複するように配置され、複数の基地局装置と、該基地局装置に接続する各移動局装置が協調してセル間干渉を抑圧する。そして、基地局装置は、参照信号を用いてセル間干渉を抑圧するための受信重み係数を移動局装置に通知するため、制御信号を増加することを防ぐことができ、複数の基地局装置及び各移動局装置における制御信号の処理の負担を軽減できる通信システムを実現することができる。また、基地局装置は、移動局装置やセルの固有の参照信号を利用して重み係数を通知することができ、通信環境などに対応して効率良くデータを受送信できる通信システムを構築できる。
 尚、本実施態様では、参照信号に受信重み係数を乗算して、該受信重み係数を移動局装置に通知する方法について説明したが、これに限らず、受信重み係数を乗算する信号は既知信号であればよい。例えば、既知信号である制御信号に受信重み係数を乗算して、該受信重み係数を移動局装置に通知する構成としても良い。
<第4の実施形態>
 第4の実施形態に係る通信システムA1では、基地局装置A100-k及び移動局装置A200-jが、DFT-s-OFDM(discrete Fourier transform-spread-Orthogonal Frequency Division Multiplexing;離散フーリエ変換拡散直交周波数分割多重)方式を用いてデータの伝送を行う例について説明する。尚、本実施形態ではこれに限らず、その他の伝送方式、例えば、SC-FDMA(single carrier-frequency division multiple access;単一キャリア周波数分割多元アクセス)、等のシングルキャリア伝送方式や、OFDM(直交周波数分割多重)、MC-CDMA(multiple carrier-code division multiple access;多重キャリア符号分割多重アクセス)等のマルチキャリア伝送方式を用いてもよい。また、第4の実施形態に係る通信システム1の例として、3GPP(Third Generation Partnership Project)によるWCDMA(Wideband Code Division Multiple Access)、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)やIEEE(The Institute of Electrical and Electronics engineers)によるWiMAX(Worldwide Interoperability for Microwave Access)等のような無線通信システムを含むが、これらに限定されない。
 図18は、本発明の第4の実施形態に係る通信システムA1の構成を示す概略図である。第4の実施形態に係る通信システムA1は、複数の基地局装置A100-k(kは任意の正整数で、図18において、k=1~3とする)と、複数の移動局装置A200-j(jは任意の正整数で、図18において、j=1~3)を備えている。
 通信システムA1における複数の基地局装置A100-k及び複数の移動局装置A200-jは、互いに協調してセル間干渉を抑圧するように構成される。また、通信システム1における移動局装置A200-jは、協調する基地局装置と接続する移動局装置かつ協調の対象となる移動局装置を含む。
 各基地局装置A100-kは、自己のセルが他の基地局装置のセルと全域又は一部が重複し、1つのセルにおいて同一周波数を用いて該周波数を繰返して利用するような構成で配置されている。各基地局装置A100-k間は、光ファイバやインターネット回線または無線回線等を用いたバックホール回線A10-1、A10-2(例えば、X2インターフェース)により接続されている。
 基地局装置A100-kと移動局装置A200-j間は、上りリンクの伝搬路Hkj(伝達関数)で表されている(k及びjは任意の正整数。図18において、k=1~3及びj=1~3とする)。ここで、協調の対象となる基地局装置及び移動局装置間の前記伝搬路Hkjをシステム全体の伝搬路と呼ぶ。通信システムA1において、移動局装置200-jは、k=jとなる基地局装置A100-kと無線接続されている。すなわち、移動局装置A200-jにおいて、k≠jとなる基地局装置A100-kが送信する信号はセル間干渉となる。
 例えば、基地局装置A100-1において、伝搬路H11を通って受信する移動局装置A200-1からの送信信号が所望信号であり、伝搬路H12及び伝搬路H13を通って受信する移動局装置A200-2及び基地局装置A100-3からの送信信号がセル間干渉(非所望信号)となる。
 詳しくは後述するが、各移動局装置A200-jは、自己が送信する送信信号に、基地局装置A100-kと移動局装置A200-jが協調して、互いに与え得るセル間干渉を抑圧できるような送信重み係数Vを乗算する。また、各基地局装置A100-kは、基地局装置A100-kと移動局装置A200-jが協調して、互いに与え得るセル間干渉を抑圧できるような受信重み係数Uを受信信号に乗算する。なお、図18の通信システムA1は、図1の通信システム1と対比して、上りリンクか下りリンクかの点が相違する。図18の伝搬路Hkj、送信重み係数V、受信重み係数Uは、その相違点に応じて、基地局装置又は移動局装置に適用することができる。
 以下、図18の通信システムA1において、基地局装置A100-1は、送信重み係数及び受信重み係数を算出する主基地局装置(マスター基地局装置)とし、基地局装置A100-2及び基地局装置A100-3は、マスター基地局装置の指示に従って協調動作する従基地局装置(スレーブ基地局装置)とする。
 次に、第4の実施形態に係るマスター基地局装置(基地局装置A100-1)について説明する。
 マスター基地局装置(基地局装置A100-1)は、図19に示すように、複数の受信アンテナ部A101-L(Lは、任意の正整数であり、以下、各部位の数を表す)、受信部A102-L、伝搬路推定部A103、GI除去部A104-L、DFT部A105-L、干渉抑圧部A106、伝搬路補償部A107、IDFT部A108、復調部A109、復号部A110、重み係数制御部A111、上位レイヤA112、制御信号検出部A113、制御信号生成部A121、参照信号生成部A122、送信部A123及び送信アンテナ部A124を備えて構成される。尚、図19において、基地局装置A100-1は、2本(L=2)の受信アンテナ部を備える場合の一例を示すが、これに限定されず、何本のアンテナを備えてもよい。また、1本の送信アンテナ部となっているが、これに限らず、複数の送信アンテナ部を備えてもよいし、送信アンテナ部と受信アンテナ部とを共用する構成としてもよい。また、上記基地局装置A100-1の一部或いは全部をチップ化して集積回路となる場合、各機能ブロックに対して制御を行なうチップ制御回路(図示せず)を有する。
 上位レイヤA112は、バックホール回線A10-1、A10-2を通して、スレーブ基地局装置(基地局装置A100-2及び基地局装置A100-3)から伝搬路情報を取得する。また、上位レイヤA112は、該伝搬路情報を重み係数制御部A111に出力する。ここで、上位レイヤとは、OSI参照モデルで定義された通信機能の階層のうち、物理層(Physical Layer)よりも上位の機能の階層、例えば、データリンク層、ネットワーク層等である。
 また、上位レイヤA112は、移動局装置A200-jと基地局装置A100-2と間の伝搬路情報(伝搬路H2jに関する情報)を、バックホール回線A10-1を通じて基地局装置A100-2から取得する。また、上位レイヤA112は、移動局装置A200-jと基地局装置A100-3間の伝搬路情報(伝搬路H3jに関する情報)を、バックホール回線A10-2を通じて基地局装置A100-3から取得する。
 また、上位レイヤA112は、後述する重み係数制御部A111で算出したスレーブ基地局装置の受信重み係数及びスレーブ基地局装置に接続する移動局装置の送信重み係数を取得する。
 また、上位レイヤA112は、スレーブ基地局装置の受信重み係数及びスレーブ基地局装置に接続する移動局装置の送信重み係数を、バックホール回線A10-1を介して各スレーブ基地局装置に通知する。
 具体的には、基地局装置A100-1の上位レイヤA112は、移動局装置A200-2の送信信号に乗算する送信重み係数Vと、基地局装置A100-2の受信信号に対して乗算する受信重み係数Uとを、バックホール回線A10-1を介して基地局装置A100-2に通知する。また、基地局装置A100-1の上位レイヤA112は、移動局装置A200-3の送信信号に乗算する送信重み係数Vと、基地局装置A100-3の受信信号に対して乗算する受信重み係数Uとを、バックホール回線A10-2を介して基地局装置A100-3に通知する。
 また、上位レイヤA112は、移動局装置A200-2が送信する送信信号のMCS(Modulation and Coding Scheme;変調及び符号化方式)、空間多重数等の制御データを制御信号生成部A121に出力する。該制御データは、伝搬路推定値、送信重み係数及び受信重み係数を考慮して設定される。尚、上位レイヤA112は、基地局装置A100-1を構成する各部位が、機能を発揮するために必要なその他のパラメータも通知する。
 制御信号生成部A121は、上位レイヤA112が出力する制御データ及び自局と接続している移動局装置が送信信号に乗算する送信重み係数を含む制御信号を生成する。制御信号は、例えば、LTEにおいて、下りリンク制御チャネル(PDCCH;Physical Uplink Control Channel)等が該当する。また、送信重み係数は、LTEにおける下りリンク共通チャネル(PDSCH;Physical Uplink Shared Channel)で通知することも可能である。尚、該制御信号に誤り訂正符号化及び変調処理を施してもよい。
 図20は、制御信号生成部A121が出力する制御信号のフォーマットの一例を示す概念図である。制御信号では、自局と接続している移動局装置の送信重み係数情報を格納する領域を有する。図20に示すように、移動局装置A200-1が送信信号に乗算する受信重み係数Vを送信重み係数に関する情報を格納する領域が設けられている。尚、MCS領域及びレイヤ領域は、送信重み係数に関する情報以外に含まれる制御データの例示であり、その他の制御データを含んでもよい。MCS領域とは、移動局装置A200-1が基地局装置A100-1に送信する信号のMCS情報を格納する領域である。レイヤ領域とは、移動局装置A200-1が基地局装置A100-1に送信する信号の空間多重数に関する情報を格納する領域である。なお、重み係数を含む制御信号を生成する制御信号生成部を重み係数情報生成部と、前記制御信号生成部が生成した重み係数を含む制御信号を重み係数情報とよんでもよい。
 参照信号生成部A122は、参照信号(パイロット信号)を生成する。参照信号は、例えば、基地局装置A100-1の送信アンテナ部A124から移動局装置の各受信アンテナ部までの伝搬特性を推定するために用いる信号である。尚、参照信号を構成する符号系列は、直交系列、例えば、アダマール符号又はCAZAC(Constant Amplitude Zero Auto-Correlation)系列であることが好ましい。
 送信部A123は、制御信号生成部A121が出力する制御信号と、参照信号とを含む下りリンクの信号を送信可能な周波数帯までアップコンバートし、送信アンテナ部A124を介して、接続している基地局装置A100-kに送信される。尚、送信部A123は、通信システムA1の下りリンクにおいて、移動局装置A200-jが受信可能は伝送方式を適用できる。例えば、LTEでは、OFDM伝送が適用可能である。
 基地局装置A100-1は、受信アンテナ部A101-Lを介して、移動局装置A200-jの送信信号を受信する。ここで、移動局装置A200-1以外の送信信号はセル間干渉となる。送信信号を生成する移動局装置の構成については後述する。
 受信部A102-Lは、受信アンテナ部A101-Lから入力された無線周波数信号をデジタル信号処理が可能な周波数帯域にダウンコンバートし、ダウンコンバートした信号を更にフィルタリング処理を行って不要成分(スプリアス;Spurious)を除去する。また、受信部A102―Lは、フィルタリング処理を行った信号をアナログ信号からデジタル信号に(A/D;Analog-to-Digital)変換し、変換したデジタル信号を伝搬路推定部A103、GI除去部A104-L及び制御信号検出部A113に出力する。
 GI除去部A104-Lは、遅延波による歪を回避するために受信部A102-Lから出力される信号からガードインターバルGIを除去し、除去された信号をDFT部A105-Lに出力する。
 DFT部A105-Lは、GI除去部A104-Lから入力されたガードインターバルGIが除去された信号を時間領域信号から周波数領域信号に変換する離散フーリエ変換(DFT:Discrete Fourier Transform)を行い、干渉抑圧部A106に出力する。尚、DFT部A105-Lは、信号を時間領域から周波数領域に変換できれば、DFTに限らず、他の方法、例えば、高速フーリエ変換(FFT:Fast Fourier Transform)等を行ってもよい。
 制御信号検出部A113は、受信部A102-2が出力した信号に含まれる制御信号の検出を行う。制御信号として、例えば、LTEにおけるCQI(Channel Quality Control)などのフィードバック情報が該当する。制御信号検出部113は、前記フィードバック情報を抽出すると、制御信号生成部A121と上位レイヤA112とに出力する。
 制御信号生成部A121、上位レイヤA112は、前記CQI等のフィードバック情報を考慮して、下りリンク送信信号(下りリンクの情報データ、制御信号)を生成する。
 伝搬路推定部A103は、受信部A102-Lが出力した信号に含まれる参照信号を用いて、伝搬路推定を行う。そして、伝搬路推定部A103は、伝搬路推定値を伝搬路補償部A107、重み係数制御部A111及び上位レイヤA112に通知する。尚、伝搬路推定値は、例えば、伝達関数、インパルス応答などである。
 重み係数制御部A111は、上位レイヤA112及び伝送路推定部A103から取得した伝搬路情報(伝搬路推定値)を用いて、移動局装置A200-jが送信する信号に乗算する送信重み係数V並びにマスター基地局装置及びスレーブ基地局装置の受信信号に乗算する受信重み係数Uを算出する。
 すなわち、マスター基地局装置は、協調制御を行う全ての基地局装置(マスター基地局装置及びスレーブ基地局装置)と協調制御に参加する全ての移動局装置との間の伝搬路推定値を取得し、該伝搬路推定値を用いて、移動局装置の送信重み係数Vと基地局装置の受信重み係数Uを算出する。
 一例として、重み係数制御部A111は、干渉源となる複数の移動局装置から到来する干渉信号の等価伝搬路の向き(ベクトル)が、各基地局装置において受信信号に乗算する受信重み係数に直交するように送信重み係数を算出する(数7)。
Figure JPOXMLDOC01-appb-M000007
 ここで、Hkjは、移動局装置A200-jと、協調制御の対象である基地局装置100-kとの間の伝搬路行列、Vは移動局装置A200-jの送信重み係数のベクトル、Uは基地局装置A100-kの受信重み係数のベクトル、dはストリーム数である。は複素共役転置である。
 また、重み係数制御部A111は、スレーブ基地局装置の受信重み係数U及びスレーブ基地局装置に接続している移動局装置の送信重み係数Vを上位レイヤA112に通知する。また、重み係数制御部A111は、マスター基地局装置(自局)の受信信号に乗算する受信重み係数Uを干渉抑圧部A106に出力する。また、重み係数制御部A111は、マスター基地局装置(自局)に接続している移動局装置の送信重み係数Vを制御信号生成部A121に出力する。尚、上述の重み係数制御部A111及び重み係数制御機能は、上位レイヤA112に含める構成としてもよい。
 干渉抑圧部A106は、DFT部A105-Lから入力された周波数領域の信号に、重み係数制御部A111から入力された受信重み係数を乗算する。
 伝搬路補償部A107は、伝搬路推定部A103から入力された伝搬路推定値に基づき、ZF(Zero Forcing;ゼロフォーシング)等化、MMSE(Minimum Mean Square Error;最小平均二乗誤差)等化等の方式を用いて、フェージングによる伝搬路歪を補正する重み係数を算出する。伝搬路補償部A107は、この重み係数を干渉抑圧部A106から入力された信号に乗算して伝搬路補償を行う。
 IDFT部A108は、伝搬路補償部A107が出力する信号にIDFT(逆離散フーリエ変換)処理を行う。
 復調部A109は、IDFT部A108から入力された信号に対して復調処理を行う。該復調処理は、硬判定(符号化ビット系列の算出)、軟判定(符号化ビットLLRの算出)のどちらでもよい。
 復号部A110は、復調部A109が出力する復調後の符号化ビット系列(又は、符号化ビットLLR)に対して誤り訂正復号処理を行い、自己宛に送信された情報データを算出し、上位レイヤA112に出力する。この誤り訂正復号処理の方式は、接続している基地局装置が行ったターボ符号化、畳み込み符号化等の誤り訂正符号化に対応する方式である。誤り訂正復号処理は、硬判定又は軟判定のどちらも適応できる。
 尚、移動局装置A200-jが、インターリーブしたデータ変調シンボルを送信する場合には、復号部A110は、誤り訂正復号処理を行う前に、入力された符号化ビット系列をインターリーブに対応するデインターリーブ処理を行う。そして、復号部A110は、デインターリーブ処理が行われた信号に対して誤り訂正復号処理を行う。
 次に、通信システムA1において、送信重み係数V及び受信重み係数Uを算出する処理を説明する。本実施形態に係る重み算出処理として、例えば、重み係数制御部A111は、図4に示す送信重み係数V及び受信重み係数Uを算出する処理を適用することができる。
 図4の算出方法では、移動局装置から基地局装置の伝搬路行列の複素共役転置行列が、基地局装置から移動局装置の伝搬路行列となるという性質(伝搬路の相反性)を利用して、送信と受信の役割を入れ替えながら干渉の影響ができるだけ小さくなるような重み係数を求める処理を繰返し行う。
 まず、重み係数制御部A111は、伝搬路情報を取得すると、任意の送信重み係数Vを設定する(S100)。
 次に、重み係数制御部A111は、基地局装置A100-kが受信する干渉の総和Qk、iを(数8)に基づいて算出する(S101)。ここで、Qは受信する干渉信号の共分散行列である。また、Pは送信電力、Kはセル間干渉を協調し抑圧する基地局装置数である。また、は複素共役転置を表す。
Figure JPOXMLDOC01-appb-M000008
 次に、重み係数制御部A111は、算出した干渉の総和Qk、iを特異値分解し、干渉の総和Qk、iを抑圧する受信重み係数Uk、iを算出する(S102)。尚、ステップS102及びステップS103では、移動局装置A200-jの送信信号を基地局装置A100-kが受信する場合について、受信重み係数Uが算出されていることになる。
 次に、移動局装置A200-jと基地局装置A100-kの送信と受信の役割の入れ替えを行う(S103)。すなわち、基地局装置A100-kが前記係数Uk、iを乗算した送信信号を移動局装置A200-jが受信する場合について、該移動局装置A200-jの受信重み係数U を算出する。該受信重み係数U は、移動局装置A200-jの送信重み係数Vに該当することになる。
 受信重み係数U の算出について、まず、移動局装置A200-jが受信する干渉の総和Qj、i を(数9)に基づき算出する(S104)。ここで、Hjk =Hkj 、V =U、Pは送信電力である。
Figure JPOXMLDOC01-appb-M000009
 次に、干渉の総和Qj、i を特異値分解し、干渉の総和Qj、i を抑圧する受信重み係数Uk、i を算出する(S105)。再度、移動局装置A200-jと基地局装置A100-kの送信と受信の役割の入れ替えを行う(S106)。すなわち、Vk、i=Uk、i を代入する。
 処理の回数をカウントするカウンタ(図示せず)を1つインクリメントし(S107)、所定の回数Iに到達するまで(S108、N)ステップS101乃至ステップS106の処理を繰返す。所定の回数Iに到達した場合(S108、Y)、処理を終了する。
 このように、基地局装置A100-kと移動局装置A200-jの送信と受信の役割を入れ替えながら、干渉電力が小さくなるような受信重み係数(U、U )を繰り返し更新していくことで、基地局装置A100-k及び移動局装置A200-jが干渉の影響を抑圧することができる受信重み係数が得られる。
 そして、k=jとなる受信重み係数U を移動局装置A200-jの送信重み係数Vとすることで、複数の基地局装置A100-kが協調して干渉の影響を抑圧することができる。尚、この算出方法は一例であり、これに限定されず、この他の算出方法を用いてもよい。
 次に、第4の実施形態におけるスレーブ基地局装置(基地局装置A100-2及び基地局装置A100-3)について説明する。図21は、第4の実施形態に係るスレーブ基地局装置(基地局装置A100-2及び基地局装置A100-3)の構成を表す概略図である。以下、基地局装置A100-2の構成として説明するが、基地局装置A100-3も同様の構成を有する。
 スレーブ基地局装置(基地局装置A100-2及びA100-3)は、図21に示すように、複数の受信アンテナ部A101-L(Lは、任意の正整数であり、各部位の数を表す)、受信部A102-L、伝搬路推定部A103、GI除去部A104-L、DFT部A105-L、干渉抑圧部A106、伝搬路補償部A107、IDFT部A108、復調部A109、復号部A110、上位レイヤA152、制御信号検出部A113、制御信号生成部A121、参照信号生成部A122、送信部A123及び送信アンテナ部A124を備えて構成される。尚、図21において、基地局装置A100-2は、2本(L=2)の受信アンテナ部を備える場合の一例を示すが、これに限定されず、何本のアンテナを備えてもよい。また、1本の送信アンテナ部となっているが、これに限らず、複数の送信アンテナ部を備えてもよいし、送信アンテナ部と受信アンテナ部とを共用する構成としてもよい。また、基地局装置A100-2の一部或いは全部をチップ化して集積回路となる場合、各機能ブロックに対して制御を行なうチップ制御回路(図示せず)を有する。
 基地局装置A100-1と比較すると、基地局装置A100-2における、上位レイヤA152における動作が異なる。以下、主に異なる部分について説明する。
 上位レイヤA152は、伝搬路推定部A103から移動局装置A200-jと自局(基地局装置A100-2)間の伝搬路推定値H2jを取得する。上位レイヤA152は、該伝搬路推定値H2jをバックホール回線A10-1を介して基地局装置A100-1に通知する。
 また、上位レイヤA152は、自局に接続している移動局装置A200-2の送信信号の送信重み係数V及び自局の受信信号に乗算する受信重み係数Uを、バックホール回線A10-1を介して基地局装置A100-1から取得する。該送信重み係数V及び受信重み係数Uは、基地局装置A100-1の重み係数制御部A111が算出したものである。
 また、上位レイヤA152は、受信重み係数Uを干渉抑圧部A106に入力する。干渉抑圧部A106は、受信重み係数UをDFTA105-Lから入力された周波数領域の信号に乗算する。
 また、上位レイヤA152は、自局と接続している移動局装置A200-jが送信信号に乗算する送信重み係数Vを制御信号生成部A121に入力する。
 制御信号生成部A121は、上位レイヤA152が出力する制御データ及び送信重み係数Vを含む制御信号を生成する。尚、制御信号のフォーマットは、マスター基地局装置A100-1と同様に、図20に示すフォーマットを適用できる。尚、該制御データは、MCS情報、空間多重数等を含んでいる。
 次に、第4の実施形態における移動局装置A200-jについて説明する。図22は、第4の実施形態に係る移動局装置A200-jの構成を示す概略図である。
 移動局装置A200-jは、図22に示すように、上位レイヤA201、符号化部A202、変調部A203、DFT部A204、プレコーディング部A205、参照信号生成部A206、制御信号生成部A207、リソースマッピング部A208、IDFT部A209、GI挿入部A210、送信部A211、送信アンテナ部A212、受信アンテナ部A221、受信部A222、制御信号検出部A223及び伝搬路推定部A224を備えて構成される。尚、移動局装置A200-jの一部或いは全部をチップ化して集積回路となる場合、各機能ブロックに対して制御を行なうチップ制御回路(図示せず)を有する。
 移動局装置A200-jの受信部A222は、受信アンテナ部A221を介して、j=kとなる基地局装置A100-kの下りリンクの送信信号を受信する。尚、該送信信号は、送信重み係数等の制御信号を含む信号である。また、該制御信号は、基地局装置A100-kの制御信号生成部A121が生成した送信重み係数Vを含む信号である。尚、詳細は後述するが、送信重み係数Vは、移動局装置A100-jの送信信号に乗算される。
 また、受信部A222は、前記受信アンテナ部A221が出力した信号を信号検出処理等のデジタル信号処理が可能な周波数帯へダウンコンバート(無線周波数変換)し、さらにスプリアスを除去するフィルタリング処理を行ない、フィルタリング処理した信号をアナログ信号からデジタル信号に変換(Analog to Disital変換)を行なう。
 伝搬路推定部A224は、受信部A222が出力した信号に含まれる参照信号を用いて、伝搬路推定を行う。伝搬路推定は、下りリンクにおける基地局装置A100-kと移動局装置A200-jとの間の伝搬路を推定するものである。
 制御信号検出部A223は、受信部A222が出力した制御信号に対して伝搬路補償、復調処理及び復号処理等を行い、送信重み係数Vを抽出する。尚、制御信号検出部A223は、伝搬路推定部A224による伝搬路推定の結果(伝搬路推定値)を伝搬路補償、復調処理及び復号処理に用いる。
 また、制御信号検出部A223は、移動局装置A100-jの送信信号のMCS情報(Modulation and Coding Scheme)、空間多重数等のフィードバック情報を抽出する。
 上位レイヤA112は、制御信号に含まれる送信重み係数Vを取得する。また、上位レイヤA112は、該制御信号に含まれるMCS情報、空間多重数等のフィードバック情報も取得する。
 また、上位レイヤA112は、該フィードバック情報に基づき、上りリンクで送信する情報データを符号化部A202に出力する。尚、情報データは、例えば、通話に伴う音声信号、撮影した画像を表す静止画像又は動画像信号、文字メッセージ等である。
 また、上位レイヤA112は、上りリンクで送信する制御データ(MCS情報、空間多重数等を含む)を出力する。尚、上位レイヤA201は、移動局装置A200-jを構成する各部位が、機能を発揮するために必要なその他のパラメータも通知する。
 符号化部A202は、上位レイヤA201から入力された情報データに対して誤り訂正符号化を行う。符号化部A202が誤り訂正符号化を行う際に用いる符号化方式は、例えば、ターボ符号化(turbo coding)、畳み込み符号化(convolutional coding)、低密度パリティ検査符号化(low density parity check coding;LDPC)などである。
 尚、符号化部A202は、誤り訂正符号化したデータ系列の符号化率(coding rate)をデータ伝送率に対応する符号化率に合わせるために、符号化ビット系列に対してレートマッチング処理を行ってもよい。また、符号化部A202は、誤り訂正符号化したデータ系列を並び替えてインターリーブする機能を有してもよい。
 変調部A203は、符号化部A202から入力された信号を変調して変調シンボルを生成する。変調部A203が行う変調処理は、例えば、BPSK(binary phase shift keying;2相位相変調)、QPSK(quadrature phase shift keying;4相位相変調)、M-QAM(M-quadrature amplitude modulation;M値直交振幅変調、例えば、M=16、64、256、1024、4096)等である。尚、変調部A203は、生成した変調シンボルを並び替えてインターリーブする機能を有してもよい。
 DFT部A204は、変調部A203から出力された変調シンボルをDFT処理(離散フーリエ変換処理)する。
 プレコーディング部A205は、DFT部A204の出力信号に送信重み係数を乗算する。図22に示すように、プレコーディング部A205は、上位レイヤA201を介して送信重み係数を取得しているが、制御信号検出部A223から直接取得する構成としてもよい。
 参照信号生成部A206は、参照信号(パイロット信号)を生成し、生成した参照信号をリソースマッピング部A208に出力する。参照信号は、基地局装置A100-kにおいて、移動局装置A200-jの送信アンテナから基地局装置A100-kの各受信アンテナまでの伝搬特性を推定するために用いる信号である。推定した伝搬特性は、送信重み係数及び受信重み係数算出のための伝搬路情報、或いは基地局装置A100-kにおける伝搬路補償に用いられる。
 参照信号を構成する符号系列は、直交系列、例えば、アダマール符号又はCAZAC(Constant Amplitude Zero Auto-Correlation)系列であることが好ましい。
 制御信号生成部A207は、上位レイヤA201が出力する下りリンクの制御データを含む制御信号を生成する。例えば、LTEにおけるCQI(Channel Quality Control)などが該当する。尚、該制御信号に対して誤り訂正符号化及び変調処理を施してもよい。
 リソースマッピング部A208は、上位レイヤA201から通知されるスケジューリング情報に基づいて、変調シンボル、参照信号及び制御信号をリソースエレメントにマッピングする(以降、リソースマッピングと称す)。尚、リソースエレメントとは、1つのサブキャリアと1つのOFDMシンボルとから成る信号を配置する最小単位をいう。
 IDFT部A209は、リソースマッピング部208から入力された周波数領域信号に対して逆離散フーリエ変換(inverse discrete Fourier Transform;IDFT)して時間領域信号に変換する。IDFT部A209は、周波数領域信号を時間領域信号に変換できれば、IDFTの代わりに、他の処理方法(例えば、逆高速フーリエ変換[IFFT、inverse fast Fourier transform])を用いる構成としてもよい。
 GI挿入部A210は、IDFT部A209から入力された時間領域信号(有効シンボルと呼ぶ)にGI(Guard Interval;ガードインターバル、ガード区間ともいう)を付加してSC-FDMAシンボルを生成する。尚、ガードインターバルGIとは、受信側(基地局装置A100-k)が周期性を維持してDFT処理(基地局装置A100-kのDFT部A105-l)ができるようにすることを目的として付加する区間である。例えば、GI挿入部A210は、有効シンボルの後半の一部の区間の複写(コピー)をガードインターバルGIとして、有効シンボルに前置する。従って、ガードインターバルGIが前置された有効シンボルがSC-FDMAシンボルとなる。
 送信部A211は、GI挿入部A210から入力されたSC-FDMAシンボルを、D/A(digital-to-analog;デジタル・アナログ)変換して、アナログ信号を生成する。送信部A211は、生成したアナログ信号に対してフィルタリング処理により帯域制限して帯域制限信号を生成する。送信部A211は、生成した帯域制限信号を無線周波数帯域にアップコンバートし、送信アンテナ部A212に出力する。
 次に、移動局装置A200-j(j=1~3)の送信信号を受信した基地局装置A100-kにおける干渉抑圧部A106の処理について、具体的に説明する。以下は、基地局装置のアンテナが2本(L=2)の場合の例である。
 基地局装置A100-kにおいて、DFT部A105-1及びDFT部A105-2から干渉抑圧部A106に入力される信号をベクトルRとすると、(数10)と表せる。
Figure JPOXMLDOC01-appb-M000010
 ここで、Rk、Lは基地局装置kのDFT部A105-Lから入力される信号、Hkj、Lは移動局装置A200-j(j=1~3)の送信信号を基地局装置A100-kがアンテナ部A101-Lを介して受信した場合の伝搬路(伝達関数)、Vは移動局装置A200-jの送信信号に乗算されている送信重み係数(各移動局装置のプレコーディング部A205で乗算)、Sは移動局装置A200-jのデータ変調シンボルである。また、+(数10及び、数11では丸プラスで表す)は要素毎の加算である。
 干渉抑圧部A106が前記Rに受信重み係数Uを乗算した信号をYとすると、(数11)と表せる。ここで、Uk、LはDFT部A105-Lから入力される信号に乗算する受信重み係数である。
Figure JPOXMLDOC01-appb-M000011
 次に、通信システムA1における送信重み係数V及び受信重み係数Uの通知手順について説明する。
 図23は、通信システムA1のマスター基地局装置(基地局装置A100-1)が送信重み係数V及び受信重み係数Uを算出し、スレーブ基地局装置(基地局装置A100-2及びA100-3)及び移動局装置A200-jに通知する動作例を示すシーケンス図である。
 最初に、移動局装置A200-jは、マスター基地局装置及びスレーブ基地局装置に参照信号を送信する(SS201、SS202)。
 ステップSS201及びSS202で参照信号を受信したマスター基地局装置及びスレーブ基地局装置は、該参照信号を用いて、自局と移動局装置A200-jとの間の伝搬路を推定する(SS203、SS204)。尚、通信システムA1において、基地局装置A100-kは、伝搬路Hk1、伝搬路Hk2及び伝搬路Hk3を推定する。
 更に、スレーブ基地局装置は、伝搬路推定の結果(伝搬路情報)をマスター基地局装置に通知する(SS205)。
 次に、マスター基地局装置は、伝搬路情報を用いて、送信重み係数及び受信重み係数を算出する(SS206)。
 更に、マスター基地局装置は、バックホール回線を介して、算出した送信重み係数V及び受信重み係数Uをスレーブ基地局装置に通知する(SS207)。
 また、スレーブ基地局装置は、自局が接続している各移動局装置に送信重み係数Vを通知する(SS207、SS208)。例えば、スレーブ基地局装置100-2に接続している移動局装置A200-2は、スレーブ基地局装置A100-2を介して、マスター基地局装置A100-1から送信重み係数Vを取得することになる。
 また、マスター基地局装置は、自局に接続している移動局装置の送信重み係数を該移動局装置に直接送信する(SS209)。
 続いて、各移動局装置は、送信する自己の情報データに送信重み係数を乗算し、(S210)、乗算した情報データを送信する(SS211、SS212)。
 以上のように、第4の実施形態では、複数の基地局装置A100-kの各セルが全部或いは一部を重複するように配置される通信システムA1において、マスター基地局装置は、各基地局装置A100-kが受信する干渉信号の等価伝搬路の向きが基地局装置A100-kが受信信号に乗算する受信重み係数に直交するように、各移動局装置A200-jの送信重み係数V及び基地局装置A100-kの受信重み係数Uを算出する。
 そして、基地局装置A100-kは、自局に接続する移動局装置A200-jに送信重み係数Vを通知し、移動局装置A200-jは、送信信号に送信重み係数Vを乗算して送信処理を行う。
 これにより、異なるセル範囲を有する複数の基地局装置におけるセルが、全部或いは一部を重複するように配置される通信システムにおいて、複数の基地局装置が同一周波数を用いて通信する際に起因するセル間干渉を効果的に抑圧し、良好な受信特性を得ることができる。
 尚、基地局装置A100-1の重み係数制御部A111は、上位レイヤA112に含んでも良い。また、重み係数制御部A111は、協調する複数の基地局装置A100-kの外部に位置し、これらの基地局装置A100-kを統括する基地局管理部に含んでもよい。
<第5の実施形態>
 第5の実施形態では、第4の実施形態で説明した複数の基地局装置A100-kが協調してセル間干渉を抑圧する通信システムA1において、コードブックを用意して、基地局装置A100-kが移動局装置A200-jに送信重み係数Uを通知する方法について説明する。コードブックとは、通信システムA1において、予め決められた送信重み係数V及び受信重み係数Uの一覧表である。
 第5の実施形態の通信システムA1における基地局装置A100-kは、基地局装置の送信重み係数V及び移動局装置の受信重み係数Uのコードブックを共有し、移動局装置A200-jは、少なくとも移動局装置A200-jの受信重み係数Uのコードブックを共有するように構成されている。
 本実施形態のコードブックとして、例えば、図8に示したコードブックが適用できる。本実施形態では、図8における送信重み係数Vj,nは、第jの移動局装置におけるn番目の送信重み係数候補となる(j及びnは任意の正整数)。また、受信重み係数Uk,nは、第kの基地局装置におけるn番目の受信重み係数候補となる(k及びnは任意の正整数)。
 本実施形態では、図8のコードブックにおけるコードブックインデックス#0~3は、2個の基地局装置と2個の移動局装置との間で協調してセル間干渉を抑圧する送信重み係数V及び受信重み係数Uの候補となる。コードブックインデックス#4~7は、3個の基地局装置と3個の移動局装置との間で協調してセル間干渉を抑圧する送信重み係数V及び受信重み係数Uの候補となる。コードブックインデックス#8~11は、4個の基地局装置と4個の移動局装置との間で協調してセル間干渉を抑圧する送信重み係数V及び受信重み係数Uの候補となる。
 次に、本実施形態において、コードブックを用いて送信重み係数V及び受信重み係数Uの選択について説明する。
 例えば、マスター基地局装置A100-1は、コードブックを重み係数制御部A111に保持する。まず、重み係数制御部A111は、上位レイヤA112から入力される、協調する基地局装置数及び移動局装置数から、コードブックの候補を選択する。
 図18に示す通信システムA1の場合は、3個の基地局装置A100-kと3個の移動局装置A200-jで協調するから、コードブックインデックス#4~7が候補として選択される。
 次に、重み係数制御部A111は、伝搬路推定部A103及び上位レイヤA112から入力される伝搬路情報Hkjと、選択したコードブックインデックス#の候補とを用いて、干渉の影響ができるだけ小さくなるような重み係数を求める処理を行う。
 例えば、前記伝搬路情報Hkjと候補となったコードブックインデック#の送信重み係数V及び受信重み係数Uを(数8)及び(数9)に代入し、干渉の総和Qk、i及び総和Qj、i が最小となるコードブックインデックス#を選択する。
 次に、本実施形態において、コードブックを用いて、送信重み係数V及び受信重み係数Uの通知方法について説明する。
 マスター基地局装置が選択したコードブックインデックス#をスレーブ基地局装置及び移動局装置に通知する動作のシーケンスは、図23に示すシーケンスを適用する。
 この場合、図23の「“送信重み係数及び受信重み係数通知”(SS207)」及び「“送信重み係数通知”(SS208及びSS209)」を「コードブックインデックス通知」に置き換えることにより実現する。
 次に、制御信号生成部A121が出力する制御信号のフォーマットを説明する。本実施形態に係る制御信号生成部A121が出力する制御信号のフォーマットとして、例えば、制図9のフォーマットが適用できる。
 本実施形態に係る制御信号は、自局と接続している移動局装置の送信重み係数UVの情報を通知するためのコードブックインデックス#の領域を有する。図9は、一例として、移動局装置A200-1が送信信号に乗算する送信重み係数Vに対応するコードブックインデックスを送信重み係数に関する情報を格納する領域として4ビット設けている場合を示している。
 また、スレーブ基地局装置の制御信号生成部A121は、同様に図9に示す制御信号のフォーマットにより、移動局装置A200-jに送信重み係数Vを通知する。
 上述したように、基地局装置A100-k及び移動局装置A200-jでコードブックを共有することにより、送信重み係数V及び受信重み係数Uを算出する際の繰り返し数を減らすことができるため、基地局装置A100-k及び移動局装置A200-jにおいて演算処理の負担を軽減できる。また、コードブックインデック#を通知することにより移動局装置A200-jに送信重み係数Vを通知できるので、オーバヘッド(の重み係数通知のための格納領域)を軽減することができる。
<第6の実施形態>
 第6の実施形態では、複数の基地局装置A300-kが協調してセル間干渉を抑圧する通信システムA1aにおいて、複数の参照信号を用いて、基地局装置A300-kが移動局装置A400-jに送信重み係数Vを通知する方法を用いる形態について説明する。
 第6の実施形態における通信システムA1aは、図24に示すように、マスター基地局装置である基地局装置A300-1、スレーブ基地局装置である基地局装置A300-2及びA300-3及び複数の移動局装置A400-1乃至移動局装置A400-3を備えている。尚、第6の実施形態における通信システム1aは、図18の基地局装置A100-1を基地局装置A300-1に、図18の基地局装置A100-2及びA100-3を基地局装置A300-2及びA300-3に、移動局装置A200-1乃至移動局装置A200-3を移動局装置A400-1乃至移動局装置A400-3に置き換えることにより実現できる。
 図25は、第6の実施形態に係る基地局装置A300-1の構成を表す概略図である。マスター基地局装置(基地局装置A300-1)は、図25に示すように、複数の受信アンテナ部A101-L(以下、Lは、任意の正整数で且つ各部位の数を表す)、受信部A102-L、伝搬路推定部A103、GI除去部A104-L、DFT部A105-L、干渉抑圧部A106、伝搬路補償部A107、IDFT部A108、復調部A109、復号部A110、重み係数制御部A111、上位レイヤA112、制御信号検出部A113、制御信号生成部A121、参照信号生成部A322、送信部A123及び送信アンテナ部A124を備えて構成される。尚、図25において、基地局装置A300-1は、2本(L=2)の受信アンテナ部を備える場合の一例を示すが、これに限定されず、何本のアンテナを備えてもよい。また、1本の送信アンテナ部となっているが、これに限らず、複数の送信アンテナ部を備えてもよいし、送信アンテナ部と受信アンテナ部とを共用する構成としてもよい。また、上記基地局装置A300-1の一部或いは全部をチップ化して集積回路となる場合、各機能ブロックに対して制御を行なうチップ制御回路(図示せず)を有する。
 基地局装置A300-1において、図19と共通する参照番号の構成要素は、その機能や動作が同じであるため、説明を省略する。第6の実施形態の基地局装置A300-1と第4の実施形態の基地局装置A100-1と比較した場合、参照信号生成部A322が異なる。以下、これら部位を中心に説明する。
 参照信号生成部A322は、基地局装置A300-jの送信アンテナから移動局装置A400-kの各受信アンテナまでの伝搬特性を推定するために用いる第1の参照信号と、送信重み係数Vを移動局装置に通知するために用いる第2の参照信号とを生成する。尚、該信送信重み係数Vは、重み係数制御部A111から参照信号生成部A322に入力される。第2の参照信号は、通信システム1aで予め決められた既知の符号系列に送信重み係数Vを乗算することで生成される。ここで、重み係数を含む参照信号を生成する参照信号生成部を重み係数情報生成部と、前記参照信号生成部が生成した重み係数を含む参照信号を重み係数情報とよんでもよい。
 例えば、通信システムA1aで予め決められた既知の符号系列をSRSとすると、第1の参照信号は、SRSとなり、第2の参照信号は、VRSとなる。尚、該符号系列は、直交系列、例えば、アダマール符号又はCAZAC(Constant Amplitude Zero Auto-Correlation)系列などが適用できる。
 送信部A123は、第1の参照信号、第2の参照信号及び制御信号をリソースエレメントにリソースマッピングする機能を有する。そして、送信部A123は、制御信号生成部A121が出力する制御信号と第1の参照信号及び第2の参照信号とを含む信号を下りリンクにおいて送信可能な周波数帯までアップコンバートし、送信アンテナ部A124を介して、接続している基地局装置に送信する。
 次に、第6の実施形態に係る基地局装置A300-2及び基地局装置A300-3(スレーブ基地局装置)の説明をする。
 図26は、第6の実施形態に係る基地局装置A300-2及び基地局装置A300-3の構成を表す概略図である。以下基地局装置A300-2の構成として説明するが、基地局装置A300-3も同様の構成を有する。また、スレーブ基地局装置の数は2つに限定されず、少なくとも1つの基地局装置を含むものであれば良い。
 スレーブ基地局装置(基地局装置A300-2及びA300-3)は、図26に示すように、複数の受信アンテナ部A101-L(Lは、任意の正整数であり、各部位の数を表す)、受信部A102-L、伝搬路推定部A103、GI除去部A104-L、DFT部A105-L、干渉抑圧部A106、伝搬路補償部A107、IDFT部A108、復調部A109、復号部A110、上位レイヤA152、制御信号検出部A113、制御信号生成部A121、参照信号生成部A352、送信部A123及び送信アンテナ部A124を備えて構成される。尚、図26において、基地局装置A300-2は、2本(L=2)の受信アンテナ部を備える場合の一例を示すが、これに限定されず、何本のアンテナを備えてもよい。また、1本の送信アンテナ部となっているが、これに限らず、複数の送信アンテナ部を備えてもよいし、送信アンテナ部と受信アンテナ部とを共用する構成としてもよい。また、基地局装置A300-2の一部或いは全部をチップ化して集積回路となる場合、各機能ブロックに対して制御を行なうチップ制御回路(図示せず)を有する。
 基地局装置A300-2において、図21と共通する参照番号の構成要素は、その機能や動作が同じであるため、説明を省略する。第6の実施形態の基地局装置A300-2と第4の実施形態の基地局装置A100-2と比較した場合、参照信号生成部A352が異なる。以下、これらの部位を中心に説明する。
 参照信号生成部A352は、基地局装置の送信アンテナから各移動局装置の受信アンテナまでの伝搬特性を推定するために用いる第1の参照信号と、送信重み係数Vを移動局装置A400-2に通知するために用いる第2の参照信号とを生成する。
 例えば、通信システム1aで予め決められた既知の符号系列をSRSとすると、第1の参照信号はSRS、第2の参照信号はVRSとなる。送信重み係数Vは、バックホール回線A10-1を通じて、基地局装置A300-1から取得したもので、上位レイヤA152を介して入力される。
 送信部A123は、第1の参照信号、第2の参照信号及び制御信号をリソースエレメントにリソースマッピングする機能を有する。制御信号は、制御信号生成部121が生成した移動局装置A400-2の送信信号のMCS情報、空間多重情報などの制御データを含む信号である。上述するが、リソースマッピングフォーマットは、基地局装置A300-1の送信部A123における同じリソースマッピングフォーマットが適用可能とする。
 また、送信部A123は、制御信号生成部A121が出力する制御信号と第1の参照信号及び第2の参照信号とを含む信号を下りリンクにおいて送信可能な周波数帯までアップコンバートし、送信アンテナ部A124を介して、接続している基地局装置に送信する。
 次に、第6の実施形態に係る移動局装置A400―jの構成について説明する。
 図27は、第6の実施形態に係る移動局装置A400―jの構成を示す概略図である。移動局装置A400-jは、図27に示すように、上位レイヤA201、符号化部A202、変調部A203、DFT部A204、プレコーディング部A205、参照信号生成部A206、制御信号生成部A207、リソースマッピング部A208、IDFT部A209、GI挿入部A210、送信部A211、送信アンテナ部A212、受信アンテナ部A221、受信部A222、制御信号検出部A423及び伝搬路推定部A224を備えて構成される。尚、移動局装置A400-jの一部或いは全部をチップ化して集積回路となる場合、各機能ブロックに対して制御を行なうチップ制御回路(図示せず)を有する。
 移動局装置A400-jにおいて、図22と共通する参照番号の構成要素は、その機能や動作が同じであるため、説明を省略する。第6の実施形態の移動局装置A400-jと第4の実施形態の移動局装置A200-jと比較した場合、制御信号検出部A423が異なる。以下、該部位を中心に説明する。
 伝搬路推定部A224は、受信部A222が出力した信号に含まれる第1の参照信号SRS1を用いて、伝搬路推定を行う。そして、伝搬路推定値(例えば、伝達関数)を制御信号検出部A423に通知する。
 より具体的に、伝搬路推定部A224は、受信部A222が出力した第1の参照信号HRS1(ここで、Hは基地局装置A300-j(ただしj=k)と移動局装置A400-k間の伝搬路)を既知信号SRS1で除算することにより伝搬路推定値H^を算出する。
 また、既知信号SRS1を配置していないサブキャリアの伝搬路推定値は、第1の参照信号HSRS1を配置したサブキャリアの伝搬路推定値を用いて、線形補間、FFT補完などの補間技術により算出することができる。
 制御信号検出部A423は、受信部A222が出力した信号に含まれる制御信号の検出を行う。制御信号に含まれる情報データなどに施されているMCS、レイヤ数の情報を抽出すると、上位レイヤA201に通知する。
 また、制御信号検出部A423は、受信部A222が出力した信号に含まれる第2の参照信号SRS2(=VRS1)を用いて送信重み係数V^を算出する。そして、送信重み係数V^を上位レイヤA201に入力する。算出した送信重み係数情報V^は、以下の(数12)で表すことができる。ここで、H^は伝搬路推定値である。
Figure JPOXMLDOC01-appb-M000012
 プレコーディング部A205は、DFT部A204の出力信号に送信重み係数V^を乗算する。
 次に、第6の実施形態に係る基地局装置A300-1の送信アンテナ部A124により送信する際のリソースマッピングを図28を参照して説明する。
 図28において、横方向は時間Tを示し、縦方向は周波数Fを示す。白抜き部RE1は、制御信号及び下りリンクの情報データをマッピングするリソースエレメントである。また、太枠の範囲MAは、基地局装置A300-1が送信重み係数Vを通知する移動局装置宛の情報データをマッピングする領域を表す。
 また、斜線部RE2及び塗潰し部RE3は参照信号をマッピングするリソースエレメントである。参照信号をマッピングできるリソースエレメントは、システム帯域全体に有する。すなわち、セル固有の参照信号をマッピングするリソースエレメントである。
 そして、参照信号をマッピングするリソースエレメントのうち、塗潰し部RE3に第1の参照信号を配置する。また、参照信号をマッピングするリソースエレメントのうち、斜線部RE2に第2の参照信号を配置する。
 このように、セル固有の参照信号の一部に送信重み係数Vを乗算することで、送信重み係数Vを移動局装置に通知する。尚、情報データ及び制御信号に、誤り訂正符号化及び変調処理を施しても良い(以下図29乃至図31も同様)。
 図29は、第6の実施形態に係る基地局装置A300-1の送信アンテナ部A124により送信する際のリソースマッピングの別の一例である。
 図29において、横方向は時間Tを、縦方向は周波数Fを示す。図29において、白抜き部RE1は、制御信号及び下りリンクの情報データをマッピングするリソースエレメントである。太枠の範囲MAは、基地局装置A300-1が送信重み係数Vを通知する移動局装置宛の情報データをマッピングする領域を表す。
 また、斜線部RE2及び塗潰し部RE3は参照信号をマッピングするリソースエレメントである。参照信号をマッピングできるリソースエレメントは、送信重み係数Vを通知する移動局装置の下りリンクの情報データが割り当てられる範囲に有する。すなわち、ユーザ固有の参照信号をマッピングするリソースエレメントである。
 そして、参照信号をマッピングするリソースエレメントのうち、塗潰し部RE3に第1の参照信号を配置する。また、参照信号をマッピングするリソースエレメントのうち、斜線部RE2に第2の参照信号を配置する。
 このように、ユーザ固有の参照信号の一部に送信重み係数Vを乗算することで、該送信重み係数Vを移動局装置に通知する。
 図30は、第6の実施形態に係る基地局装置A300-1の送信アンテナ部A124により送信する際のリソースマッピングの別の一例である。
 図30において、横方向は時間Tを、縦方向は周波数Fを示す。図30において、白抜き部RE1は、制御信号及び下りリンクの情報データをマッピングするリソースエレメントである。太線の領域MAは、送信重み係数を通知する移動局装置の情報データが割り当てられる領域MAである。
 また、斜線部RE2及び塗潰し部RE3は、参照信号をマッピングするリソースエレメントである。塗潰し部RE3で示した参照信号をマッピングできるリソースエレメントは、セル固有の参照信号をマッピングするリソースエレメントである。斜線部RE2で示した参照信号をマッピングできるリソースエレメントは、ユーザ固有の参照信号をマッピングするリソースエレメントである。
 そして、参照信号をマッピングするリソースエレメントのうち、塗潰し部RE3に第1の参照信号を配置する。また、参照信号をマッピングするリソースエレメントのうち、斜線部RE2に第2の参照信号を配置する。なお、塗潰し部RE3に第2の参照信号を配置し、斜線部RE2に第2の参照信号を配置することも可能である。
 このように、ユーザ固有の参照信号或いはセル固有の参照信号のいずれかに送信重み係数Vを乗算することで、該送信重み係数Vを移動局装置に通知する。
 図31は、第6の実施形態に係る基地局装置A300-1の送信アンテナ部A124により送信する際のリソースマッピングの別の一例である。
 図31において、横方向は時間Tを、縦方向は周波数Fを示す。図31において、白抜き部RE1は、制御信号及び下りリンクの情報データをマッピングするリソースエレメントである。太線の領域RBは、リソースブロックである。リソースブロックとは、複数のリソースエレメントを纏めたリソースの単位であり、移動局装置毎に下りリンクの情報データを割り当てるリソースの最小単位である。図31では、リソースブロックRBは、12個のサブキャリアと7個のOFDMシンボルから成るリソースとすることができる。
 また、斜線部RE2及び塗潰し部RE3は参照信号をマッピングするリソースエレメントである。塗潰し部RE3で示した参照信号をマッピングできるリソースエレメントは、セル固有の参照信号をマッピングするリソースエレメントである。斜線部RE2で示した参照信号をマッピングできるリソースエレメントは、ユーザ固有の参照信号をマッピングするリソースエレメントである。
 そして、参照信号をマッピングするリソースエレメントのうち、塗潰し部RE3に第1の参照信号を配置する。また、参照信号をマッピングするリソースエレメントのうち、斜線部RE2に第2の参照信号を配置する。
 このように、各移動局装置に固有の参照信号或いはセル固有の参照信号のいずれかの参照信号であって、移動局装置の情報データをマッピングする領域の一部のリソースブロックに有する参照信号に送信重み係数を乗算することで、該送信重み係数を移動局装置に通知する。
 以上のように、第6の実施形態に係る通信システムにおいて、複数の基地局装置のセルが全部或いは一部を重複するように配置され、複数の基地局装置と、該基地局装置に接続する各移動局装置が協調してセル間干渉を抑圧する。そして、基地局装置は、参照信号を用いてセル間干渉を抑圧するための送信重み係数を移動局装置に通知するため、制御信号を増加することを防ぐことができ、複数の基地局装置及び各移動局装置における制御信号の処理の負担を軽減できる通信システムを実現することができる。また、基地局装置は、セルで固有の参照信号を利用して重み係数を通知することでき、通信環境などに対応して効率良くデータを受送信できる通信システムを構築できる。
 尚、本実施態様では、参照信号に送信重み係数を乗算して、該送信重み係数を移動局装置に通知する方法について説明したが、これに限らず、送信重み係数を乗算する信号は既知信号であればよい。例えば、既知信号である制御信号に送信重み係数を乗算して、該送信重み係数を移動局装置に通知する構成としても良い。
 尚、本発明に係る基地局装置及び移動局装置で動作するプログラムは、本発明に関わる上記実施形態の機能を実現するように、CPU等を制御するプログラム(コンピュータを機能させるプログラム)である。そして、これら装置で取り扱われる情報は、その処理時に一時的にRAMに蓄積され、その後、各種ROMやHDDに格納され、必要に応じてCPUによって読み出し、修正・書き込みが行なわれる。プログラムを格納する記録媒体としては、半導体媒体(例えば、ROM、不揮発性メモリカード等)、光記録媒体(例えば、DVD、MO、MD、CD、BD等)、磁気記録媒体(例えば、磁気テープ、フレキシブルディスク等)等のいずれであってもよい。また、ロードしたプログラムを実行することにより、上述した実施形態の機能が実現されるだけでなく、そのプログラムの指示に基づき、オペレーティングシステムあるいは他のアプリケーションプログラム等と共同して処理することにより、本発明の機能が実現される場合もある。
 また市場に流通させる場合には、可搬型の記録媒体にプログラムを格納して流通させたり、インターネット等のネットワークを介して接続されたサーバコンピュータに転送したりすることができる。この場合、サーバコンピュータの記憶装置も本発明に含まれる。また、上述した実施形態における移動局装置および基地局装置の一部、または全部を典型的には集積回路であるLSIとして実現してもよい。受信装置の各機能ブロックは個別にチップ化してもよいし、一部、または全部を集積してチップ化してもよい。各機能ブロックを集積回路化した場合に、それらを制御する集積回路制御部が付加される。
 また、集積回路化の手法はLSIに限らず専用回路、または汎用プロセッサで実現しても良い。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。
 以上、この発明の実施形態を、図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も特許請求の範囲に含まれる。
 1 通信システム
 100-1 (マスター)基地局装置
 100-2、100-3 (スレーブ)基地局装置
 101、211 上位レイヤ
 102 符号部
 103 変調部
 104 プレコーディング部
 105 重み係数制御部
 106 参照信号生成部
 107、221 制御信号生成部
 108 リソースマッピング部
 109 IDFT部
 110 GI挿入部
 111、223 送信部
 112、221 送信アンテナ部
 121、201-1、201-2 受信アンテナ部
 122、202-1、202-2 受信部
 123 制御信号検出部
 200-1、200-2、200-3 移動局装置
 203 伝搬路推定部
 204-1、204-2 GI除去部
 205-1、205-2 DFT部
 206 干渉抑圧部
 207 伝搬路補償部
 208 復調部
 209 復号部
 210 制御信号検出部
 A1 通信システム
 A100-1 (マスター)基地局装置
 A100-2、A100-3 (スレーブ)基地局装置
 A102-L、A222 受信部
 A101-L、A221 受信アンテナ部
 A103 伝搬路推定部
 A104-L GI除去部
 A105-L DFT部
 A106 干渉抑圧部
 A107 伝搬路補償部
 A108 IDFT部
 A109 復調部
 A110 復号部
 A111 重み係数制御部
 A112、A152、A201 上位レイヤ
 A113 制御信号検出部
 A121、A207 制御信号生成部
 A122、A206 参照信号生成部
 A123、A211 送信部
 A124、A212 送信アンテナ部
 A202 符号化部
 A203 変調部
 A204 DFT部
 A205 プレコーディング部
 A208 リソースマッピング部
 A209 IDFT部
 A210 GI挿入部
 A223 制御信号検出部
 A224 伝搬路推定部

Claims (28)

  1. 複数の基地局装置と、前記複数の基地局装置のうちの少なくとも1つに接続する移動局装置とを備え、前記複数の基地局装置が各基地局装置の接続可能範囲の全域或いは一部が互いに重複するように配置される通信システムであって、
     前記基地局装置は、前記移動局装置に、該移動局装置が受信した受信信号に乗算する受信重み係数を指示する重み係数に関する情報を通知することを特徴とする通信システム。
  2. 前記複数の基地局装置は、主基地局装置と従基地局装置とを含み、
     前記主基地局装置は、
     システム全体の伝搬路情報を用いて前記複数の基地局装置が送信する送信データに対し乗算する送信重み係数と、前記複数の基地局装置のそれぞれが接続している前記移動局装置が受信する受信信号に対し乗算する受信重み係数とを算出する重み係数制御部を備え、
     前記複数の基地局装置は、
    前記送信データに前記送信重み係数を乗算するプレコーディング部と、前記受信重み係数を指示する重み係数情報を生成する重み係数情報生成部と、前記送信データに前記送信重み係数を乗算した情報データと前記重み係数情報とを前記複数の基地局装置のそれぞれが接続している前記移動局装置に送信する送信部を備え、
     前記移動局装置は、
    前記重み係数情報から受信重み係数を検出する制御信号検出部と、前記受信重み係数を前記受信信号に対し乗算し、前記情報データを取得する干渉抑圧部を備えることを特徴とする請求項1に記載の通信システム。
  3.  前記重み係数情報は、前記基地局装置によって接続される前記各移動局装置が受信する受信信号に対して乗算する受信重み係数を含む制御信号であることを特徴とする請求項2に記載の通信システム。
  4.  前記重み係数情報は、前記複数の基地局装置の送信重み係数及び前記移動局装置の前記受信重み係数に対応したコードブックインデックスを含む制御信号であることを特徴とする請求項2に記載の通信システム。
  5. 前記重み係数情報は前記受信重み係数が乗算された参照信号であることを特徴とする請求項2に記載の通信システム。
  6.  前記参照信号は、前記移動局装置に固有の参照信号の一部であることを特徴とする請求項5に記載の通信システム。
  7.  前記参照信号は、前記基地局装置のセルに固有の参照信号の一部であることを特徴とする請求項5に記載の通信システム。
  8.  前記参照信号は、前記移動局装置に固有の参照信号又は前記基地局装置のセルに固有の参照信号であることを特徴とする請求項5に記載の通信システム。
  9. 前記主基地局装置は、
    前記従基地局装置に前記送信重み係数に関する情報及び前記受信重み係数に関する情報を通知する上位レイヤを備えることを特徴とする請求項2に記載の通信システム。
  10. 前記従基地局装置は、
    前記上位レイヤから通知された受信重み係数に関する情報を含む重み係数情報を生成する重み係数情報生成部を備えることを特徴とする請求項9に記載の通信システム。
  11. 複数の基地局装置と、前記複数の基地局装置のうちの少なくとも1つに接続する移動局装置とを備え、前記複数の基地局装置が各基地局装置の接続可能範囲の全域或いは一部が互いに重複するように配置される通信システムにおける通信方法であって、
     前記基地局装置は、前記移動局装置に、該移動局装置が受信した受信信号に乗算する受信重み係数を指示する受信重み係数情報を通知するステップを行うことを特徴とする通信方法。
  12. 主基地局装置と従基地局装置とを含む複数の基地局装置と、前記複数の基地局装置のうちの少なくとも1つに接続する移動局装置とを備え、前記複数の基地局装置が各基地局装置の接続可能範囲の全域或いは一部が互いに重複するように配置される通信システムにおける基地局装置であって、
     前記主基地局装置は、
     システム全体の伝搬路情報を用いて前記複数の基地局装置が送信する送信データに対し乗算する送信重み係数と、前記複数の基地局装置のそれぞれが接続している前記移動局装置が受信する受信信号に対し乗算する受信重み係数とを算出する重み係数制御部を備え、
     前記複数の基地局装置は、
    前記送信データに前記送信重み係数を乗算するプレコーディング部と、前記受信重み係数を指示する受信重み係数情報を生成する重み係数情報生成部と、前記送信データに前記送信重み係数を乗算した情報データと前記受信重み係数情報とを前記複数の基地局装置のそれぞれが接続している前記移動局装置に送信する送信部を備えることを特徴とする基地局装置。
  13.  主基地局装置と従基地局装置とを含む複数の基地局装置と、前記複数の基地局装置のうちの少なくとも1つに接続する移動局装置とを備え、前記複数の基地局装置が各基地局装置の接続可能範囲の全域或いは一部が互いに重複するように配置される通信システムにおける移動局装置であって、
     前記移動局装置は、
    前記主基地局装置がシステム全体の伝搬路情報を用いて算出した送信重み係数を乗算した受信信号と受信重み係数情報とを受信する受信部と、
    前記受信重み係数情報から受信重み係数を検出する制御信号検出部と、前記受信重み係数を前記受信信号に対し乗算し、前記情報データを取得する干渉抑圧部を備えることを特徴とする移動局装置。
  14.  主基地局装置と従基地局装置とを含む複数の基地局装置と、前記複数の基地局装置のうちの少なくとも1つに接続する移動局装置とを備える通信システムであって、
     前記主基地局装置は、
     システム全体の伝搬路情報を用いて前記複数の基地局装置のそれぞれが接続している前記移動局装置が送信する送信データに乗算される送信重み係数と、前記複数の基地局装置が受信する前記送信データに対し乗算される受信重み係数とを算出する重み係数制御部を備え、
     前記複数の基地局装置は、
     前記送信重み係数に関する情報を前記移動局装置に送信する送信部と、
     それぞれが接続している前記移動局装置が前記送信データに前記送信重み係数を乗算した送信信号を受信する受信部と、
     前記送信データに前記送信重み係数を乗算した前記送信信号に前記受信重み係数を乗算する干渉抑圧部とを備え、
     前記移動局装置は、
     前記送信データに前記送信重み係数を乗算した前記送信信号を、それぞれが接続している前記基地局装置に送信する送信部を備えることを特徴とする通信システム。
  15.  前記複数の基地局装置は、前記送信重み係数に関する情報を格納する領域を有する制御信号を生成する制御信号生成部を備え、前記各基地局装置の前記送信部は、それぞれが接続している前記移動局装置に前記制御信号を送信することを特徴とする請求項14に記載の通信システム。
  16.  前記主基地局装置は、前記従基地局装置に前記送信重み係数及び受信重み係数を通知する上位レイヤを備えることを特徴とする請求項14又は15に記載の通信システム。
  17.  前記送信重み係数に関する情報は、前記移動局装置が送信する前記送信信号に対して乗算する送信重み係数であることを特徴とする請求項16に記載の通信システム。
  18.  前記送信重み係数に関する情報は、前記移動局装置が送信する前記送信信号に対して乗算する送信重み係数に対応したコードブックインデックスであることを特徴とする請求項16に記載の通信システム。
  19.  前記移動局装置は、前記コードブックインデックスから前記送信重み係数を検出する制御信号検出部を備えることを特徴とする請求項18に記載の通信システム。
  20.  前記複数の基地局装置は、さらに、前記送信重み係数が乗算された参照信号を生成する参照信号生成部を備え、前記各基地局装置の前記送信部は、それぞれが接続している前記移動局装置に前記参照信号を送信することを特徴とする請求項14に記載の通信システム。
  21.  前記参照信号は、前記移動局装置に固有の参照信号の一部であることを特徴とする請求項20に記載の通信システム。
  22.  前記参照信号は、前記基地局装置の接続可能範囲であるセルに固有の参照信号の一部であることを特徴とする請求項20に記載の通信システム。
  23.  前記参照信号は、前記移動局装置に固有の参照信号又は前記基地局装置の前記セルに固有の参照信号であることを特徴とする請求項20に記載の通信システム。
  24.  主基地局装置と従基地局装置とを含む複数の基地局装置と、前記複数の基地局装置のうちの少なくとも1つに接続する移動局装置とを備える通信システムにおける通信方法であって、
     前記主基地局装置において、
     システム全体の伝搬路情報を用いて前記複数の基地局装置のそれぞれが接続している前記移動局装置が送信する送信データに乗算される送信重み係数と、前記複数の基地局装置が受信する前記送信データに対し乗算される受信重み係数とを算出する算出ステップと、
     前記複数の基地局装置において、
     前記送信重み係数に関する情報を前記移動局装置に送信する送信ステップと、
     それぞれが接続している前記移動局装置が前記送信データに前記送信重み係数を乗算した送信信号を受信する受信ステップと、
     前記送信データに前記送信重み係数を乗算した前記送信信号に前記受信重み係数を乗算する干渉抑圧ステップとを備え、
     前記移動局装置において、
     前記送信データに前記送信重み係数を乗算した前記送信信号を、それぞれが接続している前記基地局装置に送信する送信ステップを行うことを特徴とする通信方法。
  25.  前記複数の基地局装置が、前記送信重み係数に関する情報を格納する領域を有する制御信号を生成する制御信号生成ステップと、前記各基地局装置の前記送信部が、それぞれが接続している前記移動局装置に前記制御信号を送信する送信ステップとを行うことを特徴とする請求項24に記載の通信方法。
  26.  前記主基地局装置が、前記従基地局装置に前記送信重み係数及び受信重み係数を通知する通知ステップを行うことを特徴とする請求項24又は25に記載の通信方法。
  27.  主基地局装置と従基地局装置とを含む複数の基地局装置と、前記複数の基地局装置のうちの少なくとも1つに接続する移動局装置とを備える通信システムにおける基地局装置であって、
     前記基地局装置は、
     システム全体の伝搬路情報を用いて前記複数の基地局装置のそれぞれが接続している前記移動局装置が送信する送信データに乗算される送信重み係数と、前記複数の基地局装置が受信する前記送信データに対し乗算される受信重み係数とを算出する重み係数制御部と、
     前記送信重み係数に関する情報を前記移動局装置に送信する送信部と、
     それぞれが接続している前記移動局装置が前記送信データに前記送信重み係数を乗算した送信信号を受信する受信部と、
     前記送信データに前記送信重み係数を乗算した前記送信信号に前記受信重み係数を乗算する干渉抑圧部と、
     前記送信重み係数に関する情報を格納する領域を有する制御信号を生成する制御信号生成部と、
     前記送信重み係数及び受信重み係数を通知する上位レイヤと、
    を備えることを特徴とする基地局装置。
  28.  主基地局装置と従基地局装置とを含む複数の基地局装置と、前記複数の基地局装置のうちの少なくとも1つに接続する移動局装置とを備える通信システムにおける移動局装置であって、
     前記移動局装置は、
     前記主基地局装置が、システム全体の伝搬路情報を用いて算出した送信重み係数と送信重み係数のうち、前記送信重み係数を受信する受信部と、
     前記移動局装置が送信する送信データに前記送信重み係数を乗算した送信信号を生成するプレコーディング部と、
     前記送信重み係数を乗算した前記送信信号を、それぞれが接続している前記基地局装置に送信する送信部と、
     を備えることを特徴とする移動局装置。
PCT/JP2012/079475 2011-11-15 2012-11-14 通信システム、通信方法、基地局装置及び移動局装置 WO2013073557A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/357,636 US9331763B2 (en) 2011-11-15 2012-11-14 Communication system, communication method, base station apparatus, and mobile station apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-249707 2011-11-15
JP2011-249706 2011-11-15
JP2011249707A JP2013106249A (ja) 2011-11-15 2011-11-15 通信システム、通信方法、基地局装置及び移動局装置
JP2011249706A JP5844620B2 (ja) 2011-11-15 2011-11-15 通信装置及び通信方法

Publications (1)

Publication Number Publication Date
WO2013073557A1 true WO2013073557A1 (ja) 2013-05-23

Family

ID=48429613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079475 WO2013073557A1 (ja) 2011-11-15 2012-11-14 通信システム、通信方法、基地局装置及び移動局装置

Country Status (2)

Country Link
US (1) US9331763B2 (ja)
WO (1) WO2013073557A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105519171A (zh) * 2013-09-06 2016-04-20 株式会社Ntt都科摩 无线基站、无线通信系统以及无线通信方法
EP3128692A4 (en) * 2014-04-25 2017-04-19 Huawei Technologies Co., Ltd. Method and device for signal transmitting and receiving
US10601476B2 (en) 2011-12-19 2020-03-24 Comcast Cable Communications, Llc Beam information exchange between base stations
US10917807B2 (en) 2011-09-23 2021-02-09 Comcast Cable Communications, Llc Multi-cell signals in OFDM wireless networks

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140077603A (ko) * 2012-12-14 2014-06-24 삼성전자주식회사 무선 통신 시스템에서 이동성을 관리하기 위한 장치 및 방법
JP2017513365A (ja) * 2014-03-18 2017-05-25 華為技術有限公司Huawei Technologies Co.,Ltd. Ue間の相互依存性較正のための方法、装置、及び通信システム
WO2016023227A1 (zh) * 2014-08-15 2016-02-18 富士通株式会社 资源配置方法、装置以及通信系统
CA3033288C (en) 2014-08-25 2021-05-04 ONE Media, LLC Dynamic configuration of a flexible orthogonal frequency division multiplexing phy transport data frame preamble
US9763162B2 (en) 2015-01-30 2017-09-12 Telefonaktiebolaget L M Ericsson (Publ) Cell detection in a cellular communications network
US9762343B2 (en) 2015-01-30 2017-09-12 Telefonaktiebolaget L M Ericsson (Publ) Interference rejection for improved cell detection
KR102500030B1 (ko) 2015-03-09 2023-02-16 원 미디어, 엘엘씨 시스템 발견 및 시그널링
US9509427B2 (en) 2015-04-22 2016-11-29 Telefonaktiebolaget L M Ericsson (Publ) Adaptive suppression of unknown interference
KR20180009776A (ko) * 2015-06-23 2018-01-29 후지쯔 가부시끼가이샤 무선 통신 제어 방법, 무선 통신 시스템, 수신 장치 및 송신 장치
GB201712840D0 (en) * 2017-08-10 2017-09-27 Univ Surrey Apparatus and method for detecting mutually interfering information streams

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010125635A1 (ja) * 2009-04-27 2010-11-04 株式会社日立製作所 無線通信システム、統合基地局および端末
WO2010124554A1 (zh) * 2009-04-30 2010-11-04 富士通株式会社 通信装置、基站和多点合作通信方法
JP2011166293A (ja) * 2010-02-05 2011-08-25 Sharp Corp 無線通信システム、送信装置、受信装置、送信制御方法、受信制御方法、送信制御プログラム、及び、受信制御プログラム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100438447B1 (ko) 2000-10-20 2004-07-03 삼성전자주식회사 이동통신시스템에서 버스트 파일롯 송신장치 및 방법
JP4242858B2 (ja) * 2004-07-26 2009-03-25 三星電子株式会社 アップリンクパケット伝送におけるソフトハンドオーバー端末のためのスケジューリング方法及び装置
EP2624488B8 (en) * 2006-06-16 2017-11-01 Sharp Kabushiki Kaisha Data generation apparatus, data generation method, base station, mobile station, synchronization detection method, sector identification method, information detection method and mobile communication system
US8238320B2 (en) * 2007-01-05 2012-08-07 Samsung Electronics Co., Ltd Method and apparatus for transmitting and receiving control information to randomize inter-cell interference in a mobile communication system
WO2008103317A2 (en) * 2007-02-16 2008-08-28 Interdigital Technology Corporation Precoded pilot transmission for multi-user and single user mimo communications
WO2011090420A1 (en) * 2010-01-20 2011-07-28 Telefonaktiebolaget L M Ericsson (Publ) Methods and devices for uplink transmit diversity
US8305987B2 (en) * 2010-02-12 2012-11-06 Research In Motion Limited Reference signal for a coordinated multi-point network implementation
JP5281604B2 (ja) 2010-03-09 2013-09-04 株式会社エヌ・ティ・ティ・ドコモ コードブック制御方法、基地局装置及び移動局装置
JP5315286B2 (ja) * 2010-04-05 2013-10-16 株式会社エヌ・ティ・ティ・ドコモ 無線基地局装置、無線中継局装置及びリソース割り当て方法
US9544108B2 (en) * 2011-02-11 2017-01-10 Qualcomm Incorporated Method and apparatus for enabling channel and interference estimations in macro/RRH system
US8861430B2 (en) * 2011-08-11 2014-10-14 Mediatek Inc. Methods of point association for cooperative multiple point transmission
US8811144B2 (en) * 2011-11-04 2014-08-19 Intel Corporation User equipment (UE)-specific assignment of demodulation reference signal (DMRS) sequences to support uplink (UL) coordinated multipoint (CoMP)

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010125635A1 (ja) * 2009-04-27 2010-11-04 株式会社日立製作所 無線通信システム、統合基地局および端末
WO2010124554A1 (zh) * 2009-04-30 2010-11-04 富士通株式会社 通信装置、基站和多点合作通信方法
JP2011166293A (ja) * 2010-02-05 2011-08-25 Sharp Corp 無線通信システム、送信装置、受信装置、送信制御方法、受信制御方法、送信制御プログラム、及び、受信制御プログラム

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUI TONG ET AL.: "Aspects in Realizing Coordinated Multi-point Transmission for 3GPP LTE-Advanced", IEICE TECHNICAL REPORT, vol. 109, no. 305, 19 November 2009 (2009-11-19), pages 151 - 154 *
NTT DOCOMO: "Views on eICIC Schemes for Rel-10", 3GPP R1-105442, 15 October 2010 (2010-10-15) *
RIICHI KUDO ET AL.: "Spatial Domain Resource Sharing for Overlapping Cells : Performance evaluation using measured channel in office environment", IEICE TECHNICAL REPORT, vol. 110, no. 75, 3 June 2010 (2010-06-03), pages 7 - 12 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10917807B2 (en) 2011-09-23 2021-02-09 Comcast Cable Communications, Llc Multi-cell signals in OFDM wireless networks
US11871262B2 (en) 2011-09-23 2024-01-09 Comcast Cable Communications, Llc Multi-cell signals in OFDM wireless networks
US11611897B2 (en) 2011-09-23 2023-03-21 Comcast Cable Communications, Llc Multi-cell signals in OFDM wireless networks
US11432180B2 (en) 2011-09-23 2022-08-30 Comcast Cable Communications, Llc Multi-cell signals in OFDM wireless networks
US10601476B2 (en) 2011-12-19 2020-03-24 Comcast Cable Communications, Llc Beam information exchange between base stations
US11375414B2 (en) 2011-12-19 2022-06-28 Comcast Cable Communications, Llc Beamforming in wireless communications
US10804987B2 (en) 2011-12-19 2020-10-13 Comcast Cable Communications, Llc Beamforming handover messaging in a wireless network
US11950145B2 (en) 2011-12-19 2024-04-02 Comcast Cable Communications, Llc Beamforming in wireless communications
US10966125B2 (en) 2011-12-19 2021-03-30 Comcast Cable Communications, Llc Beam information exchange between base stations
US10966124B2 (en) 2011-12-19 2021-03-30 Comcast Cable Communications, Llc Beamforming codeword exchange between base stations
US11082896B2 (en) 2011-12-19 2021-08-03 Comcast Cable Communications, Llc Beamforming signaling in a wireless network
US10715228B2 (en) 2011-12-19 2020-07-14 Comcast Cable Communications, Llc Beamforming signaling in a wireless network
US11647430B2 (en) 2011-12-19 2023-05-09 Comcast Cable Communications, Llc Signaling in a wireless network
US11510113B2 (en) 2011-12-19 2022-11-22 Comcast Cable Communications, Llc Beamforming handover messaging in a wireless network
US11516713B2 (en) 2011-12-19 2022-11-29 Comcast Cable Communications, Llc Beamforming handover messaging in a wireless network
CN105519171B (zh) * 2013-09-06 2019-05-10 株式会社Ntt都科摩 无线基站、无线通信系统以及无线通信方法
CN105519171A (zh) * 2013-09-06 2016-04-20 株式会社Ntt都科摩 无线基站、无线通信系统以及无线通信方法
US10419183B2 (en) 2014-04-25 2019-09-17 Huawei Technologies Co., Ltd. Method and apparatus for sending and receiving signal
EP3128692A4 (en) * 2014-04-25 2017-04-19 Huawei Technologies Co., Ltd. Method and device for signal transmitting and receiving

Also Published As

Publication number Publication date
US9331763B2 (en) 2016-05-03
US20140286298A1 (en) 2014-09-25

Similar Documents

Publication Publication Date Title
WO2013073557A1 (ja) 通信システム、通信方法、基地局装置及び移動局装置
KR101872554B1 (ko) 기지국 장치, 이동국 장치, 통신 시스템, 송신 방법, 수신 방법 및 통신 방법
JP6462891B2 (ja) 無線基地局、ユーザ端末及び無線通信方法
US10735060B2 (en) Transmission device and reception device
JP6529087B2 (ja) 基地局装置、端末装置および集積回路
CN102498742B (zh) 用于无线调度的空中负载指示符的系统和方法
JP5711277B2 (ja) 複数アンテナをサポートする無線通信システムにおいてチャネル状態情報参照信号の設定情報を提供する方法及び装置
JP5918680B2 (ja) 無線通信システム、基地局装置、ユーザ端末、及び無線通信方法
JP5781016B2 (ja) 無線基地局、無線通信システム及び無線通信方法
CN106465475B (zh) 基站装置、终端装置以及通信方法
JP5793131B2 (ja) 無線基地局、ユーザ端末、無線通信システム及び無線通信方法
TW201735574A (zh) 裝置及方法
WO2014021153A1 (ja) 通信システム、通信方法、基地局装置及び移動局装置
JP6093120B2 (ja) 移動局装置、基地局装置及び通信方法
WO2014045812A1 (ja) 基地局装置、端末装置、通信システム、通信方法および集積回路
JP6540969B2 (ja) 端末装置および集積回路
JP2013229661A (ja) 通信システム、通信方法、基地局装置及び移動局装置
JP5844620B2 (ja) 通信装置及び通信方法
WO2013154083A1 (ja) 通信システム、通信方法、基地局装置及び移動局装置
JP2013106249A (ja) 通信システム、通信方法、基地局装置及び移動局装置
JP2014057315A (ja) 基地局装置、移動局装置、通信方法および集積回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12849355

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14357636

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12849355

Country of ref document: EP

Kind code of ref document: A1