WO2007134726A2 - Verfahren zur herstellung von chlor aus chlorwasserstoff und sauerstoff - Google Patents
Verfahren zur herstellung von chlor aus chlorwasserstoff und sauerstoff Download PDFInfo
- Publication number
- WO2007134726A2 WO2007134726A2 PCT/EP2007/004147 EP2007004147W WO2007134726A2 WO 2007134726 A2 WO2007134726 A2 WO 2007134726A2 EP 2007004147 W EP2007004147 W EP 2007004147W WO 2007134726 A2 WO2007134726 A2 WO 2007134726A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hydrogen chloride
- hydrochloric acid
- chlorine
- oxygen
- electrolysis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/24—Halogens or compounds thereof
- C25B1/26—Chlorine; Compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B7/00—Halogens; Halogen acids
- C01B7/01—Chlorine; Hydrogen chloride
- C01B7/03—Preparation from chlorides
- C01B7/04—Preparation of chlorine from hydrogen chloride
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/20—Improvements relating to chlorine production
Definitions
- a low temperature plasma e.g. generated by electrical discharge
- reaction cooled so far that the reaction water and hydrogen chloride condense out in the form of concentrated hydrochloric acid.
- the resulting hydrochloric acid is separated and the remaining gaseous reaction mixture is freed from residual water by washing with sulfuric acid or other methods such as drying with zeolites.
- the liberated from residual water chlorine-containing reaction gas mixture is then compressed, with oxygen and other gas components remain in the gas phase and can be separated from the liquefied chlorine.
- Such processes for the production of pure chlorine from gas mixtures are described, for example, in the published specifications DE 195 35 716 A1 and DE 102 35 476 A1.
- the now purified chlorine is then fed to use, for example in the production of isocyanates.
- the resulting aqueous solution of hydrogen chloride (hydrochloric acid) is separated from the gas mixture, characterized in that d) the separated hydrochloric acid is at least partially supplied to an electrochemical oxidation in which at least a portion of the aqueous hydrochloric acid is oxidized to chlorine,
- the process is preferably carried out continuously, since an equally possible batch or semibatch operation is somewhat more technically complicated than the continuous process.
- the hydrogen chloride obtained in the reaction of phosgene with an organic amine generally contains organic minor components which can interfere with both the thermal catalyzed or non-thermal activated HCl oxidation and the electrochemical oxidation of an aqueous hydrogen chloride solution according to step (c).
- organic constituents include, for example, the solvents used in the preparation of isocyanates, such as chlorobenzene, o-dichlorobenzene or p-dichlorobenzene. If a gas diffusion electrode is used as the cathode during the electrolysis, the catalyst of the gas diffusion electrode can also be deactivated by the organic impurities.
- the phosgene may be washed out of the gas stream in one or more stages with a cold solvent or solvent-phosgene mixture.
- Suitable solvents for this purpose for example, the solvents used in the phosgenation chlorobenzene and o-dichlorobenzene are.
- the temperature of the solvent or of the solvent-phosgene mixture for this purpose is in the range from -15 to -46 ° C.
- the separated from the gaseous product stream phosgene can be fed back to the phosgenation.
- the hydrogen chloride obtained after separation of the phosgene and a portion of the solvent residue may contain, in addition to the inert gases such as nitrogen and carbon monoxide, 0.1 to 1% by weight of solvent and 0.1 to 2% by weight of phosgene.
- a distillation of the chlorine hydrogen can be provided for the optionally provided purification of the hydrogen chloride from the phosgenation. This takes place after condensation of the gaseous hydrogen chloride from the phosgenation.
- the purified hydrogen chloride is removed as the top product of the distillation, wherein the distillation under known to those skilled, for such a distillation customary conditions of pressure, temperature u.a. he follows.
- the hydrogen chloride separated off and optionally purified according to the above-described process can then be supplied to the HCl oxidation with oxygen.
- This HCl oxidation is carried out as described preferably by the Deacon process.
- a further preferred embodiment of a device suitable for the method consists in using a structured catalyst bed in which the catalyst activity increases in the flow direction.
- Such structuring of the catalyst bed can be done by different impregnation of the catalyst support with active material or by different dilution of the catalyst with an inert material.
- an inert material for example, rings, cylinders or balls of titanium dioxide, zirconium dioxide or mixtures thereof, alumina, steatite, ceramic, glass, graphite or stainless steel can be used.
- the inert material should preferably have similar external dimensions.
- Ruthenium compounds or copper compounds on support materials are particularly suitable as heterogeneous catalysts, preference being given to optionally doped ruthenium catalysts.
- suitable carrier materials are silicon dioxide, graphite, rutile or anatase titanium dioxide, zirconium dioxide, aluminum oxide or mixtures thereof, preferably titanium dioxide, zirconium dioxide, aluminum oxide or mixtures thereof, particularly preferably ⁇ - or ⁇ -aluminum oxide or mixtures thereof.
- the copper or ruthenium-supported catalysts can be obtained, for example, by impregnating the support material with aqueous solutions of CuCl 2 or R ⁇ 1Cl 3 and optionally a promoter for doping, preferably in the form of their chlorides.
- the shaping of the catalyst can take place after or preferably before the impregnation of the support material.
- the catalysts are suitable as promoters alkali metals such as lithium, sodium, potassium, rubidium and cesium, preferably lithium, sodium and potassium, more preferably potassium, alkaline earth metals such as magnesium, calcium, strontium and barium, preferably magnesium and calcium, particularly preferably magnesium, Rare earth metals such as scandium, yttrium, lanthanum, cerium, praseodymium and neodymium, preferably scandium, yttrium, lanthanum and cerium, more preferably lanthanum and cerium, or mixtures thereof.
- alkali metals such as lithium, sodium, potassium, rubidium and cesium, preferably lithium, sodium and potassium, more preferably potassium, alkaline earth metals such as magnesium, calcium, strontium and barium, preferably magnesium and calcium, particularly preferably magnesium, Rare earth metals such as scandium, yttrium, lanthanum, cerium, praseodymium and neodymium, preferably scandium, yt
- the conversion of hydrogen chloride in a single pass may preferably be limited to 15 to 90%, preferably 40 to 85%, particularly preferably 50 to 70%. After conversion, unreacted hydrogen chloride can be partly or completely recycled to the catalytic hydrogen chloride oxidation.
- the separation step usually comprises several stages, namely the separation and optionally recycling of unreacted hydrogen chloride from the product gas stream of the catalytic hydrogen chloride oxidation, the drying of the obtained, substantially chlorine and oxygen-containing stream and the separation of chlorine from the dried stream.
- Fig. 1 an example of the use of the method as a supplement and part of an isocyanate production is shown.
- isocyanate e.g., toluene diisocyanate, TDI
- Oxidation process 5 reacted with oxygen, here in a Deacon process by means of catalyst.
- reaction mixture 19 from stage 5 is cooled (step 6).
- the resulting gas mixture 20 consisting at least of chlorine, oxygen and minor constituents such as nitrogen, carbon dioxide, etc. and is treated with conc. Sulfuric acid 21 (96%) dried (step 7).
- the electrolysis stage is an ODC electrolysis in which oxygen is used as a reactant on the cathode side.
- the chlorine gas obtained from the purification stage 8 can be used again directly in the phosgene synthesis 1.
- the oxygen-containing stream 23 obtained in this step is used in step 5 (HCl oxidation) and step 9 (electrolysis cell).
- the concentration of hydrochloric acid 27 fed to the electrolytic cell 9 is 14 to 15% by weight of HCl, and the hydrochloric acid 28 leaving the electrolysis 9 is 11 to 13% by weight of HCl.
- the hydrochloric acid stream 28 is mixed with concentrated hydrochloric acid 26 from the separation stage 6 and fed back to the cell 9.
- the oxygen consumed at step 5 and step 9 is replaced by oxygen from an external source 24.
- the oxygen 25 not consumed in the cathode compartment of the electrolysis cell is circulated and mixed with fresh oxygen from an external source 24.
- the also in the cathode compartment accumulating about 2 wt.% Hydrochloric acid 29 is fed to the hydrochloric acid separation 6 where it serves as an absorbent for excess gaseous hydrogen chloride.
- the combined gas stream 30, 20 is cooled in one or more stages by means of a refrigeration unit, e.g. a tube heat exchanger, cooled and dried. Drying 7 can be carried out, for example, with the aid of a suitable drying agent in an absorption column equipped with mass transfer elements.
- a suitable desiccant may be used, e.g. in DE 10 235 476 A, in addition to molecular sieves or hygroscopic adsorbents, e.g. Be sulfuric acid.
- the drying can be done in one or more stages.
- the drying is preferably carried out in two stages by bringing the chlorine to be dried in a first stage with a sulfuric acid of lower concentration, preferably 70 to 80%, particularly preferably 75 to 80%, in contact.
- the residual moisture is removed from the chlorine by means of a more highly concentrated sulfuric acid of preferably 88 to 96%, more preferably 92-96%.
- the chlorine (22) which has been dried in this way and has a residual moisture content of preferably not more than 100 ppm, more preferably not more than 20 ppm, can be passed through a droplet separator in order to remove any sulfuric acid droplets still contained therein.
- a stream of 35.9 t / h of purified hydrogen chloride from an isocyanate plant is split into two streams.
- 29.5 t / h are subjected to HCl oxidation and 6.4 t / h to HCl absorption.
- 29.5 t / h of HCl are fed with 12.9 t / h of oxygen (content greater than 99%) of a catalytic HCl oxidation.
- the oxidation takes place at 333 0 C and 3.4 bar.
- the HCl conversion in the reactor is 85%.
- the gas mixture leaving the reactor is cooled to 100 0 C, the condensed HCl with the water of reaction in an HCl absorption.
- the cooled process gas stream (4.4 t / h HCl, 7.4 t / h oxygen, 24.4 t / h chlorine, 6.18 t / h water) is mixed with 6.4 t / h of purified hydrogen chloride in the HCl Absorption passed. In this HCl absorption unit, a 30 wt.
- the electrolysis is operated at a current density of 5 kA / m 2 at 55 ° C and a voltage of 1.39 V.
- the anode and cathode material used is a palladium-stabilized titanium.
- Anode and cathode half-shell are separated by an ion exchange membrane from DUPONT, type Nafion 324.
- the cathode used is an oxygen-consuming cathode from ETEK, which contains a rhodium sulphide-supported catalyst. Oxygen is supplied to the cathode half-element at 100% excess, ie, 9.17 t / h.
- a purified HCl gas stream of 35.9 t / h is fed to the HCl oxidation with 100% oxygen excess, ie, 15.7 t / h of oxygen.
- the conversion is 85%, leaving the reactor 5.4 t / h of HCl, 9.0 t / h of oxygen, 7.5 t / h of water and 29.7 t / h of chlorine.
- This process gas 19 is fed to an HCl absorption, which is operated with a first partial flow of 177.8 t / h from NaCl-depleted NaCl-containing solution (18.3% by weight NaCl) originating from NaCl electrolysis.
- the water and the hydrogen chloride of the process gas 19 is absorbed.
- the current leaving the absorption is composed as follows: 152.8 t / h of water, 32.5 t / h of NaCl, 5.4 t / h of hydrogen chloride.
- this stream is combined with the second substream of the NaCl-containing solution of 118.2 t / h, mixed with 26.4 t / h of solid NaCl and returned to the NaCl electrolysis.
- the NaCl electrolysis consists of 1475 bipolar electrolysis elements per 2.71m 2 membrane area. NaCl electrolysis is operated with titanium anode shells bearing a noble metal oxide coated titanium anode.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Catalysts (AREA)
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| ES07725069T ES2744378T3 (es) | 2006-05-18 | 2007-05-10 | Procedimiento para la producción de cloro a partir de cloruro de hidrógeno y oxígeno |
| EP07725069.4A EP2024280B1 (de) | 2006-05-18 | 2007-05-10 | Verfahren zur herstellung von chlor aus chlorwasserstoff und sauerstoff |
| JP2009510326A JP5122558B2 (ja) | 2006-05-18 | 2007-05-10 | 塩化水素および酸素からの塩素製造方法 |
| KR1020087030685A KR101378191B1 (ko) | 2006-05-18 | 2007-05-10 | 염화수소 및 산소로부터의 염소 제조 방법 |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE102006023261A DE102006023261A1 (de) | 2006-05-18 | 2006-05-18 | Verfahren zur Herstellung von Chlor aus Chlorwasserstoff und Sauerstoff |
| DE102006023261.5 | 2006-05-18 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2007134726A2 true WO2007134726A2 (de) | 2007-11-29 |
| WO2007134726A3 WO2007134726A3 (de) | 2008-07-31 |
Family
ID=38607936
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/EP2007/004147 Ceased WO2007134726A2 (de) | 2006-05-18 | 2007-05-10 | Verfahren zur herstellung von chlor aus chlorwasserstoff und sauerstoff |
Country Status (12)
| Country | Link |
|---|---|
| US (1) | US9447510B2 (enExample) |
| EP (1) | EP2024280B1 (enExample) |
| JP (1) | JP5122558B2 (enExample) |
| KR (1) | KR101378191B1 (enExample) |
| CN (2) | CN101448732A (enExample) |
| DE (1) | DE102006023261A1 (enExample) |
| ES (1) | ES2744378T3 (enExample) |
| HU (1) | HUE045385T2 (enExample) |
| PT (1) | PT2024280T (enExample) |
| RU (1) | RU2008149766A (enExample) |
| TW (1) | TW200806579A (enExample) |
| WO (1) | WO2007134726A2 (enExample) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102008050977A1 (de) | 2008-10-09 | 2010-04-15 | Bayer Technology Services Gmbh | Integriertes Verfahren zur Herstellung von Chlor |
| DE102008050976A1 (de) | 2008-10-09 | 2010-04-15 | Bayer Technology Services Gmbh | Verfahren zur Herstellung von Chlor aus Prozessgasen |
| DE102008060259A1 (de) | 2008-12-03 | 2010-06-10 | Bayer Technology Services Gmbh | Katalysator für Oxidationsreaktionen in Gegenwart von Chlorwasserstoff und/oder Chlor und Verfahren zu dessen Herstellung, sowie dessen Verwendung |
| WO2011067193A1 (de) | 2009-12-02 | 2011-06-09 | Bayer Technology Services Gmbh | Kern- schale katalysator bestehend aus einer porösen silikathülle und darin befindlichen, räumlich orientierten nanopartikeln einer rutheniumverbindung |
| WO2019091653A1 (de) * | 2017-11-09 | 2019-05-16 | Siemens Aktiengesellschaft | Herstellung und abtrennung von phosgen durch kombinierte co2 und chlorid-elektrolyse |
Families Citing this family (24)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102008038032A1 (de) * | 2008-08-16 | 2010-02-18 | Bayer Materialscience Ag | Katalytische Oxidation von Chlorwasserstoff mit Sauerstoff im nichtthermischen Plasma |
| DE102009004031A1 (de) * | 2009-01-08 | 2010-07-15 | Bayer Technology Services Gmbh | Strukturierte Gasdiffusionselektrode für Elektrolysezellen |
| US8877365B2 (en) * | 2009-05-28 | 2014-11-04 | Deeya Energy, Inc. | Redox flow cell rebalancing |
| US20110079074A1 (en) * | 2009-05-28 | 2011-04-07 | Saroj Kumar Sahu | Hydrogen chlorine level detector |
| US8551299B2 (en) * | 2009-05-29 | 2013-10-08 | Deeya Energy, Inc. | Methods of producing hydrochloric acid from hydrogen gas and chlorine gas |
| DE102009023539B4 (de) * | 2009-05-30 | 2012-07-19 | Bayer Materialscience Aktiengesellschaft | Verfahren und Vorrichtung zur Elektrolyse einer wässerigen Lösung von Chlorwasserstoff oder Alkalichlorid in einer Elektrolysezelle |
| SG174715A1 (en) * | 2010-03-30 | 2011-10-28 | Bayer Materialscience Ag | Process for preparing diaryl carbonates and polycarbonates |
| CN103717289A (zh) | 2011-04-11 | 2014-04-09 | Ada-Es股份有限公司 | 用于气体组分捕集的流化床方法和系统 |
| US9200375B2 (en) * | 2011-05-19 | 2015-12-01 | Calera Corporation | Systems and methods for preparation and separation of products |
| IN2015DN02082A (enExample) | 2012-09-20 | 2015-08-14 | Ada Es Inc | |
| TWI633206B (zh) | 2013-07-31 | 2018-08-21 | 卡利拉股份有限公司 | 使用金屬氧化物之電化學氫氧化物系統及方法 |
| JP2016132800A (ja) * | 2015-01-20 | 2016-07-25 | 千代田化工建設株式会社 | 有機物生成方法および有機物生成システム |
| EP3368502B1 (en) | 2015-10-28 | 2020-09-02 | Calera Corporation | Electrochemical, halogenation, and oxyhalogenation systems and methods |
| CN109071219A (zh) * | 2016-05-12 | 2018-12-21 | 科思创德国股份有限公司 | 使用氧气的氯化氢光催化氧化 |
| US10619254B2 (en) | 2016-10-28 | 2020-04-14 | Calera Corporation | Electrochemical, chlorination, and oxychlorination systems and methods to form propylene oxide or ethylene oxide |
| WO2019060345A1 (en) | 2017-09-19 | 2019-03-28 | Calera Corporation | SYSTEMS AND METHODS USING LANTHANIDE HALIDE |
| CN108097232B (zh) * | 2017-12-18 | 2020-10-02 | 万华化学集团股份有限公司 | 一种用于氯化氢氧化制氯气的催化剂及其制备方法和应用 |
| US10590054B2 (en) | 2018-05-30 | 2020-03-17 | Calera Corporation | Methods and systems to form propylene chlorohydrin from dichloropropane using Lewis acid |
| CN109453764A (zh) * | 2018-11-16 | 2019-03-12 | 西安元创化工科技股份有限公司 | 用于氯化氢氧化制氯气的二氧化钌催化剂及其制备方法 |
| EP3938313A1 (en) * | 2019-03-13 | 2022-01-19 | Eastman Chemical Company | Processes useful in the manufacture of cyclododecasulfur |
| KR20220005048A (ko) * | 2019-04-25 | 2022-01-12 | 바스프 에스이 | 포스겐의 제조 방법 |
| US12404172B2 (en) | 2019-11-13 | 2025-09-02 | Tokuyama Corporation | Hydrogen chloride dehydration method |
| WO2021095329A1 (ja) * | 2019-11-13 | 2021-05-20 | 株式会社トクヤマ | 塩化水素の脱湿方法 |
| CN113388849B (zh) * | 2021-06-18 | 2024-02-13 | 蓝星(北京)化工机械有限公司 | 离子膜法盐酸电解方法 |
Family Cites Families (38)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB1004207A (en) * | 1962-09-08 | 1965-09-15 | Asahi Chemical Ind | Electrolysis of aqueous hydrochloric acid |
| NL6404460A (enExample) | 1964-04-23 | 1965-10-25 | ||
| DD88309A1 (de) | 1971-05-12 | 1972-03-05 | Verfahren zur Herstellung von Chlor | |
| BE790369A (fr) | 1971-10-21 | 1973-04-20 | Diamond Shamrock Corp | Procede et appareil pour la preparation d'hydroxydes de metaux alcalins de haute purete dans une cuve electrolytique. |
| US3773634A (en) | 1972-03-09 | 1973-11-20 | Diamond Shamrock Corp | Control of an olyte-catholyte concentrations in membrane cells |
| DE3041897A1 (de) | 1980-11-06 | 1982-06-09 | Bayer Ag, 5090 Leverkusen | Salzsaeure-elektrolysezelle zur herstellung von chlor und wasserstoff |
| JPS5973405A (ja) * | 1982-10-20 | 1984-04-25 | Mitsui Toatsu Chem Inc | 塩素の製造方法 |
| DE3321159A1 (de) | 1983-06-11 | 1984-12-13 | Bayer Ag, 5090 Leverkusen | Gewebtes diaphragma fuer waessrige elektrolyte |
| DE3327274A1 (de) | 1983-07-28 | 1985-02-07 | Bayer Ag, 5090 Leverkusen | Verfahren zur herstellung von phosgen unter gleichzeitiger erzeugung von dampf |
| DE3578454D1 (de) | 1984-02-01 | 1990-08-02 | Baxter Int | Klinisches analysesystem und verfahren. |
| CA1260229A (en) | 1986-06-30 | 1989-09-26 | Mitsui Chemicals, Inc. | Production process of chlorine |
| SU1801943A1 (ru) * | 1991-03-19 | 1993-03-15 | Волгоградский Политехнический Институт | Способ получения хлора из хлористого водорода 2 |
| DE4217019A1 (de) | 1992-05-22 | 1993-11-25 | Bayer Ag | Verfahren zur Herstellung von aromatischen Diisocyanaten |
| DE4417744C1 (de) | 1994-05-20 | 1995-11-23 | Bayer Ag | Verfahren zur Herstellung stabiler Graphitkathoden für die Salzsäureelektrolyse und deren Verwendung |
| US5707919A (en) | 1994-11-14 | 1998-01-13 | Mitsui Toatsu Chemicals, Inc. | Catalyst for preparing chlorine from hydrogen chloride |
| WO1996016028A1 (de) | 1994-11-17 | 1996-05-30 | Bayer Aktiengesellschaft | Verfahren zur herstellung von isocyanaten |
| DE19533660A1 (de) | 1995-09-12 | 1997-03-13 | Basf Ag | Verfahren zur Herstellung von Chlor |
| DE19535716A1 (de) | 1995-09-26 | 1997-03-27 | Bayer Ag | Verfahren zur Aufarbeitung der Reaktionsgase bei der Oxidation von HCI zu Chlor |
| US6852667B2 (en) | 1998-02-16 | 2005-02-08 | Sumitomo Chemical Company Limited | Process for producing chlorine |
| US5958197A (en) | 1998-01-26 | 1999-09-28 | De Nora S.P.A. | Catalysts for gas diffusion electrodes |
| US6149782A (en) * | 1999-05-27 | 2000-11-21 | De Nora S.P.A | Rhodium electrocatalyst and method of preparation |
| US6402930B1 (en) | 1999-05-27 | 2002-06-11 | De Nora Elettrodi S.P.A. | Process for the electrolysis of technical-grade hydrochloric acid contaminated with organic substances using oxygen-consuming cathodes |
| DE10138215A1 (de) | 2001-08-03 | 2003-02-20 | Bayer Ag | Verfahren zur elektrochemischen Herstellung von Chlor aus wässrigen Lösungen von Chlorwasserstoff |
| DE10138214A1 (de) | 2001-08-03 | 2003-02-20 | Bayer Ag | Elektrolysezelle und Verfahren zur elektrochemischen Herstellung von Chlor |
| DE10148600A1 (de) | 2001-10-02 | 2003-04-10 | Bayer Ag | Einbau einer Gasdiffusionselektrode in einen Elektrolyseur |
| DE10152275A1 (de) | 2001-10-23 | 2003-04-30 | Bayer Ag | Verfahren zur Elektrolyse von wässrigen Lösungen aus Chlorwasserstoff |
| DE10200072A1 (de) | 2002-01-03 | 2003-07-31 | Bayer Ag | Elektroden für die Elektrolyse in sauren Medien |
| DE10203689A1 (de) | 2002-01-31 | 2003-08-07 | Bayer Ag | Kathodischer Stromverteiler für Elektrolysezellen |
| KR100936420B1 (ko) | 2002-02-27 | 2010-01-12 | 바스프 에스이 | 포스겐을 제조하기 위한 반응기 및 방법 |
| US6719957B2 (en) | 2002-04-17 | 2004-04-13 | Bayer Corporation | Process for purification of anhydrous hydrogen chloride gas |
| DE10234806A1 (de) | 2002-07-31 | 2004-02-19 | Bayer Ag | Elektrochemische Zelle |
| DE10235476A1 (de) * | 2002-08-02 | 2004-02-12 | Basf Ag | Integriertes Verfahren zur Herstellung von Isocyanaten |
| DE10250131A1 (de) | 2002-10-28 | 2004-05-06 | Basf Ag | Verfahren zur Herstellung von Chlor aus Salzsäure |
| US7195784B2 (en) * | 2002-11-14 | 2007-03-27 | Board Of Trustees Of Michigan State University | Cyclooxygenase-2 inhibitory withanolide compositions and method |
| DE10335184A1 (de) | 2003-07-30 | 2005-03-03 | Bayer Materialscience Ag | Elektrochemische Zelle |
| DE10347703A1 (de) | 2003-10-14 | 2005-05-12 | Bayer Materialscience Ag | Konstruktionseinheit für bipolare Elektrolyseure |
| RU2253607C1 (ru) * | 2004-02-19 | 2005-06-10 | ООО "КСМ-Инжиниринг" | Способ получения хлора из газообразного хлористого водорода |
| EP1609887A1 (en) | 2004-06-22 | 2005-12-28 | CHLORINE ENGINEERS CORP., Ltd. | Ion exchange membrane electrolytic process |
-
2006
- 2006-05-18 DE DE102006023261A patent/DE102006023261A1/de not_active Withdrawn
-
2007
- 2007-05-10 JP JP2009510326A patent/JP5122558B2/ja not_active Expired - Fee Related
- 2007-05-10 CN CNA2007800180695A patent/CN101448732A/zh active Pending
- 2007-05-10 EP EP07725069.4A patent/EP2024280B1/de active Active
- 2007-05-10 HU HUE07725069A patent/HUE045385T2/hu unknown
- 2007-05-10 KR KR1020087030685A patent/KR101378191B1/ko not_active Expired - Fee Related
- 2007-05-10 WO PCT/EP2007/004147 patent/WO2007134726A2/de not_active Ceased
- 2007-05-10 ES ES07725069T patent/ES2744378T3/es active Active
- 2007-05-10 PT PT07725069T patent/PT2024280T/pt unknown
- 2007-05-10 CN CN201410385791.4A patent/CN104192801B/zh active Active
- 2007-05-10 RU RU2008149766/15A patent/RU2008149766A/ru not_active Application Discontinuation
- 2007-05-17 TW TW096117503A patent/TW200806579A/zh unknown
- 2007-05-17 US US11/749,808 patent/US9447510B2/en not_active Expired - Fee Related
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102008050977A1 (de) | 2008-10-09 | 2010-04-15 | Bayer Technology Services Gmbh | Integriertes Verfahren zur Herstellung von Chlor |
| DE102008050976A1 (de) | 2008-10-09 | 2010-04-15 | Bayer Technology Services Gmbh | Verfahren zur Herstellung von Chlor aus Prozessgasen |
| DE102008060259A1 (de) | 2008-12-03 | 2010-06-10 | Bayer Technology Services Gmbh | Katalysator für Oxidationsreaktionen in Gegenwart von Chlorwasserstoff und/oder Chlor und Verfahren zu dessen Herstellung, sowie dessen Verwendung |
| WO2011067193A1 (de) | 2009-12-02 | 2011-06-09 | Bayer Technology Services Gmbh | Kern- schale katalysator bestehend aus einer porösen silikathülle und darin befindlichen, räumlich orientierten nanopartikeln einer rutheniumverbindung |
| DE102009056700A1 (de) | 2009-12-02 | 2011-06-16 | Bayer Technology Services Gmbh | Katalysator bestehend aus Silikathüllen und darin befindlichen, räumlich orientierten Nanopartikeln einer Rutheniumverbindung |
| WO2019091653A1 (de) * | 2017-11-09 | 2019-05-16 | Siemens Aktiengesellschaft | Herstellung und abtrennung von phosgen durch kombinierte co2 und chlorid-elektrolyse |
Also Published As
| Publication number | Publication date |
|---|---|
| TW200806579A (en) | 2008-02-01 |
| DE102006023261A1 (de) | 2007-11-22 |
| EP2024280A2 (de) | 2009-02-18 |
| JP2009537430A (ja) | 2009-10-29 |
| PT2024280T (pt) | 2019-09-19 |
| KR101378191B1 (ko) | 2014-03-27 |
| US20080029404A1 (en) | 2008-02-07 |
| JP5122558B2 (ja) | 2013-01-16 |
| EP2024280B1 (de) | 2019-06-26 |
| CN101448732A (zh) | 2009-06-03 |
| CN104192801A (zh) | 2014-12-10 |
| US9447510B2 (en) | 2016-09-20 |
| WO2007134726A3 (de) | 2008-07-31 |
| KR20090016586A (ko) | 2009-02-16 |
| CN104192801B (zh) | 2018-12-14 |
| HUE045385T2 (hu) | 2019-12-30 |
| ES2744378T3 (es) | 2020-02-24 |
| RU2008149766A (ru) | 2010-06-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2024280B1 (de) | Verfahren zur herstellung von chlor aus chlorwasserstoff und sauerstoff | |
| EP1743882B1 (de) | Verfahren zur Herstellung von Isocyanaten | |
| EP0866890B1 (de) | Verfahren zur direkten elektrochemischen gasphasen-phosgensynthese | |
| KR20050072110A (ko) | 개재된 할로겐화수소산 전기분해 | |
| KR20090094198A (ko) | 메틸렌디페닐 디이소시아네이트의 제조 방법 | |
| EP3427320A1 (en) | System and method for the co-production of oxalic acid and acetic acid | |
| WO2007137685A1 (de) | Verfahren zur chlorwasserstoff-oxidation mit sauerstoff | |
| EP2027065A2 (de) | Verfahren zur herstellung von chlor aus chlorwasserstoff und sauerstoff | |
| WO2007134861A1 (de) | Verfahren zur herstellung von chlor aus chlorwasserstoff und sauerstoff | |
| DE102006022761A1 (de) | Verfahren zur Herstellung von Isocyanaten | |
| WO2007134720A1 (de) | Verfahren zur herstellung von chlor aus chlorwasserstoff und sauerstoff | |
| HK1132981A (en) | Method for producing chlorine from hydrogen chloride and oxygen | |
| HK1103068A (en) | Process for producing isocyanates | |
| EP2334426A1 (de) | Integriertes verfahren zur herstellung von chlor |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 200780018069.5 Country of ref document: CN |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07725069 Country of ref document: EP Kind code of ref document: A2 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2007725069 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 9432/DELNP/2008 Country of ref document: IN |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2009510326 Country of ref document: JP |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 1020087030685 Country of ref document: KR |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2008149766 Country of ref document: RU |