WO2007134726A2 - Verfahren zur herstellung von chlor aus chlorwasserstoff und sauerstoff - Google Patents

Verfahren zur herstellung von chlor aus chlorwasserstoff und sauerstoff Download PDF

Info

Publication number
WO2007134726A2
WO2007134726A2 PCT/EP2007/004147 EP2007004147W WO2007134726A2 WO 2007134726 A2 WO2007134726 A2 WO 2007134726A2 EP 2007004147 W EP2007004147 W EP 2007004147W WO 2007134726 A2 WO2007134726 A2 WO 2007134726A2
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen chloride
hydrochloric acid
chlorine
oxygen
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP2007/004147
Other languages
German (de)
English (en)
French (fr)
Other versions
WO2007134726A3 (de
Inventor
Rainer Weber
Jürgen KINTRUP
Andreas Bulan
Friedhelm Kämper
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covestro Deutschland AG
Original Assignee
Bayer MaterialScience AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer MaterialScience AG filed Critical Bayer MaterialScience AG
Priority to ES07725069T priority Critical patent/ES2744378T3/es
Priority to EP07725069.4A priority patent/EP2024280B1/de
Priority to JP2009510326A priority patent/JP5122558B2/ja
Priority to KR1020087030685A priority patent/KR101378191B1/ko
Publication of WO2007134726A2 publication Critical patent/WO2007134726A2/de
Publication of WO2007134726A3 publication Critical patent/WO2007134726A3/de
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/03Preparation from chlorides
    • C01B7/04Preparation of chlorine from hydrogen chloride
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/20Improvements relating to chlorine production

Definitions

  • a low temperature plasma e.g. generated by electrical discharge
  • reaction cooled so far that the reaction water and hydrogen chloride condense out in the form of concentrated hydrochloric acid.
  • the resulting hydrochloric acid is separated and the remaining gaseous reaction mixture is freed from residual water by washing with sulfuric acid or other methods such as drying with zeolites.
  • the liberated from residual water chlorine-containing reaction gas mixture is then compressed, with oxygen and other gas components remain in the gas phase and can be separated from the liquefied chlorine.
  • Such processes for the production of pure chlorine from gas mixtures are described, for example, in the published specifications DE 195 35 716 A1 and DE 102 35 476 A1.
  • the now purified chlorine is then fed to use, for example in the production of isocyanates.
  • the resulting aqueous solution of hydrogen chloride (hydrochloric acid) is separated from the gas mixture, characterized in that d) the separated hydrochloric acid is at least partially supplied to an electrochemical oxidation in which at least a portion of the aqueous hydrochloric acid is oxidized to chlorine,
  • the process is preferably carried out continuously, since an equally possible batch or semibatch operation is somewhat more technically complicated than the continuous process.
  • the hydrogen chloride obtained in the reaction of phosgene with an organic amine generally contains organic minor components which can interfere with both the thermal catalyzed or non-thermal activated HCl oxidation and the electrochemical oxidation of an aqueous hydrogen chloride solution according to step (c).
  • organic constituents include, for example, the solvents used in the preparation of isocyanates, such as chlorobenzene, o-dichlorobenzene or p-dichlorobenzene. If a gas diffusion electrode is used as the cathode during the electrolysis, the catalyst of the gas diffusion electrode can also be deactivated by the organic impurities.
  • the phosgene may be washed out of the gas stream in one or more stages with a cold solvent or solvent-phosgene mixture.
  • Suitable solvents for this purpose for example, the solvents used in the phosgenation chlorobenzene and o-dichlorobenzene are.
  • the temperature of the solvent or of the solvent-phosgene mixture for this purpose is in the range from -15 to -46 ° C.
  • the separated from the gaseous product stream phosgene can be fed back to the phosgenation.
  • the hydrogen chloride obtained after separation of the phosgene and a portion of the solvent residue may contain, in addition to the inert gases such as nitrogen and carbon monoxide, 0.1 to 1% by weight of solvent and 0.1 to 2% by weight of phosgene.
  • a distillation of the chlorine hydrogen can be provided for the optionally provided purification of the hydrogen chloride from the phosgenation. This takes place after condensation of the gaseous hydrogen chloride from the phosgenation.
  • the purified hydrogen chloride is removed as the top product of the distillation, wherein the distillation under known to those skilled, for such a distillation customary conditions of pressure, temperature u.a. he follows.
  • the hydrogen chloride separated off and optionally purified according to the above-described process can then be supplied to the HCl oxidation with oxygen.
  • This HCl oxidation is carried out as described preferably by the Deacon process.
  • a further preferred embodiment of a device suitable for the method consists in using a structured catalyst bed in which the catalyst activity increases in the flow direction.
  • Such structuring of the catalyst bed can be done by different impregnation of the catalyst support with active material or by different dilution of the catalyst with an inert material.
  • an inert material for example, rings, cylinders or balls of titanium dioxide, zirconium dioxide or mixtures thereof, alumina, steatite, ceramic, glass, graphite or stainless steel can be used.
  • the inert material should preferably have similar external dimensions.
  • Ruthenium compounds or copper compounds on support materials are particularly suitable as heterogeneous catalysts, preference being given to optionally doped ruthenium catalysts.
  • suitable carrier materials are silicon dioxide, graphite, rutile or anatase titanium dioxide, zirconium dioxide, aluminum oxide or mixtures thereof, preferably titanium dioxide, zirconium dioxide, aluminum oxide or mixtures thereof, particularly preferably ⁇ - or ⁇ -aluminum oxide or mixtures thereof.
  • the copper or ruthenium-supported catalysts can be obtained, for example, by impregnating the support material with aqueous solutions of CuCl 2 or R ⁇ 1Cl 3 and optionally a promoter for doping, preferably in the form of their chlorides.
  • the shaping of the catalyst can take place after or preferably before the impregnation of the support material.
  • the catalysts are suitable as promoters alkali metals such as lithium, sodium, potassium, rubidium and cesium, preferably lithium, sodium and potassium, more preferably potassium, alkaline earth metals such as magnesium, calcium, strontium and barium, preferably magnesium and calcium, particularly preferably magnesium, Rare earth metals such as scandium, yttrium, lanthanum, cerium, praseodymium and neodymium, preferably scandium, yttrium, lanthanum and cerium, more preferably lanthanum and cerium, or mixtures thereof.
  • alkali metals such as lithium, sodium, potassium, rubidium and cesium, preferably lithium, sodium and potassium, more preferably potassium, alkaline earth metals such as magnesium, calcium, strontium and barium, preferably magnesium and calcium, particularly preferably magnesium, Rare earth metals such as scandium, yttrium, lanthanum, cerium, praseodymium and neodymium, preferably scandium, yt
  • the conversion of hydrogen chloride in a single pass may preferably be limited to 15 to 90%, preferably 40 to 85%, particularly preferably 50 to 70%. After conversion, unreacted hydrogen chloride can be partly or completely recycled to the catalytic hydrogen chloride oxidation.
  • the separation step usually comprises several stages, namely the separation and optionally recycling of unreacted hydrogen chloride from the product gas stream of the catalytic hydrogen chloride oxidation, the drying of the obtained, substantially chlorine and oxygen-containing stream and the separation of chlorine from the dried stream.
  • Fig. 1 an example of the use of the method as a supplement and part of an isocyanate production is shown.
  • isocyanate e.g., toluene diisocyanate, TDI
  • Oxidation process 5 reacted with oxygen, here in a Deacon process by means of catalyst.
  • reaction mixture 19 from stage 5 is cooled (step 6).
  • the resulting gas mixture 20 consisting at least of chlorine, oxygen and minor constituents such as nitrogen, carbon dioxide, etc. and is treated with conc. Sulfuric acid 21 (96%) dried (step 7).
  • the electrolysis stage is an ODC electrolysis in which oxygen is used as a reactant on the cathode side.
  • the chlorine gas obtained from the purification stage 8 can be used again directly in the phosgene synthesis 1.
  • the oxygen-containing stream 23 obtained in this step is used in step 5 (HCl oxidation) and step 9 (electrolysis cell).
  • the concentration of hydrochloric acid 27 fed to the electrolytic cell 9 is 14 to 15% by weight of HCl, and the hydrochloric acid 28 leaving the electrolysis 9 is 11 to 13% by weight of HCl.
  • the hydrochloric acid stream 28 is mixed with concentrated hydrochloric acid 26 from the separation stage 6 and fed back to the cell 9.
  • the oxygen consumed at step 5 and step 9 is replaced by oxygen from an external source 24.
  • the oxygen 25 not consumed in the cathode compartment of the electrolysis cell is circulated and mixed with fresh oxygen from an external source 24.
  • the also in the cathode compartment accumulating about 2 wt.% Hydrochloric acid 29 is fed to the hydrochloric acid separation 6 where it serves as an absorbent for excess gaseous hydrogen chloride.
  • the combined gas stream 30, 20 is cooled in one or more stages by means of a refrigeration unit, e.g. a tube heat exchanger, cooled and dried. Drying 7 can be carried out, for example, with the aid of a suitable drying agent in an absorption column equipped with mass transfer elements.
  • a suitable desiccant may be used, e.g. in DE 10 235 476 A, in addition to molecular sieves or hygroscopic adsorbents, e.g. Be sulfuric acid.
  • the drying can be done in one or more stages.
  • the drying is preferably carried out in two stages by bringing the chlorine to be dried in a first stage with a sulfuric acid of lower concentration, preferably 70 to 80%, particularly preferably 75 to 80%, in contact.
  • the residual moisture is removed from the chlorine by means of a more highly concentrated sulfuric acid of preferably 88 to 96%, more preferably 92-96%.
  • the chlorine (22) which has been dried in this way and has a residual moisture content of preferably not more than 100 ppm, more preferably not more than 20 ppm, can be passed through a droplet separator in order to remove any sulfuric acid droplets still contained therein.
  • a stream of 35.9 t / h of purified hydrogen chloride from an isocyanate plant is split into two streams.
  • 29.5 t / h are subjected to HCl oxidation and 6.4 t / h to HCl absorption.
  • 29.5 t / h of HCl are fed with 12.9 t / h of oxygen (content greater than 99%) of a catalytic HCl oxidation.
  • the oxidation takes place at 333 0 C and 3.4 bar.
  • the HCl conversion in the reactor is 85%.
  • the gas mixture leaving the reactor is cooled to 100 0 C, the condensed HCl with the water of reaction in an HCl absorption.
  • the cooled process gas stream (4.4 t / h HCl, 7.4 t / h oxygen, 24.4 t / h chlorine, 6.18 t / h water) is mixed with 6.4 t / h of purified hydrogen chloride in the HCl Absorption passed. In this HCl absorption unit, a 30 wt.
  • the electrolysis is operated at a current density of 5 kA / m 2 at 55 ° C and a voltage of 1.39 V.
  • the anode and cathode material used is a palladium-stabilized titanium.
  • Anode and cathode half-shell are separated by an ion exchange membrane from DUPONT, type Nafion 324.
  • the cathode used is an oxygen-consuming cathode from ETEK, which contains a rhodium sulphide-supported catalyst. Oxygen is supplied to the cathode half-element at 100% excess, ie, 9.17 t / h.
  • a purified HCl gas stream of 35.9 t / h is fed to the HCl oxidation with 100% oxygen excess, ie, 15.7 t / h of oxygen.
  • the conversion is 85%, leaving the reactor 5.4 t / h of HCl, 9.0 t / h of oxygen, 7.5 t / h of water and 29.7 t / h of chlorine.
  • This process gas 19 is fed to an HCl absorption, which is operated with a first partial flow of 177.8 t / h from NaCl-depleted NaCl-containing solution (18.3% by weight NaCl) originating from NaCl electrolysis.
  • the water and the hydrogen chloride of the process gas 19 is absorbed.
  • the current leaving the absorption is composed as follows: 152.8 t / h of water, 32.5 t / h of NaCl, 5.4 t / h of hydrogen chloride.
  • this stream is combined with the second substream of the NaCl-containing solution of 118.2 t / h, mixed with 26.4 t / h of solid NaCl and returned to the NaCl electrolysis.
  • the NaCl electrolysis consists of 1475 bipolar electrolysis elements per 2.71m 2 membrane area. NaCl electrolysis is operated with titanium anode shells bearing a noble metal oxide coated titanium anode.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Catalysts (AREA)
PCT/EP2007/004147 2006-05-18 2007-05-10 Verfahren zur herstellung von chlor aus chlorwasserstoff und sauerstoff Ceased WO2007134726A2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES07725069T ES2744378T3 (es) 2006-05-18 2007-05-10 Procedimiento para la producción de cloro a partir de cloruro de hidrógeno y oxígeno
EP07725069.4A EP2024280B1 (de) 2006-05-18 2007-05-10 Verfahren zur herstellung von chlor aus chlorwasserstoff und sauerstoff
JP2009510326A JP5122558B2 (ja) 2006-05-18 2007-05-10 塩化水素および酸素からの塩素製造方法
KR1020087030685A KR101378191B1 (ko) 2006-05-18 2007-05-10 염화수소 및 산소로부터의 염소 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006023261A DE102006023261A1 (de) 2006-05-18 2006-05-18 Verfahren zur Herstellung von Chlor aus Chlorwasserstoff und Sauerstoff
DE102006023261.5 2006-05-18

Publications (2)

Publication Number Publication Date
WO2007134726A2 true WO2007134726A2 (de) 2007-11-29
WO2007134726A3 WO2007134726A3 (de) 2008-07-31

Family

ID=38607936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/004147 Ceased WO2007134726A2 (de) 2006-05-18 2007-05-10 Verfahren zur herstellung von chlor aus chlorwasserstoff und sauerstoff

Country Status (12)

Country Link
US (1) US9447510B2 (enExample)
EP (1) EP2024280B1 (enExample)
JP (1) JP5122558B2 (enExample)
KR (1) KR101378191B1 (enExample)
CN (2) CN101448732A (enExample)
DE (1) DE102006023261A1 (enExample)
ES (1) ES2744378T3 (enExample)
HU (1) HUE045385T2 (enExample)
PT (1) PT2024280T (enExample)
RU (1) RU2008149766A (enExample)
TW (1) TW200806579A (enExample)
WO (1) WO2007134726A2 (enExample)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008050977A1 (de) 2008-10-09 2010-04-15 Bayer Technology Services Gmbh Integriertes Verfahren zur Herstellung von Chlor
DE102008050976A1 (de) 2008-10-09 2010-04-15 Bayer Technology Services Gmbh Verfahren zur Herstellung von Chlor aus Prozessgasen
DE102008060259A1 (de) 2008-12-03 2010-06-10 Bayer Technology Services Gmbh Katalysator für Oxidationsreaktionen in Gegenwart von Chlorwasserstoff und/oder Chlor und Verfahren zu dessen Herstellung, sowie dessen Verwendung
WO2011067193A1 (de) 2009-12-02 2011-06-09 Bayer Technology Services Gmbh Kern- schale katalysator bestehend aus einer porösen silikathülle und darin befindlichen, räumlich orientierten nanopartikeln einer rutheniumverbindung
WO2019091653A1 (de) * 2017-11-09 2019-05-16 Siemens Aktiengesellschaft Herstellung und abtrennung von phosgen durch kombinierte co2 und chlorid-elektrolyse

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008038032A1 (de) * 2008-08-16 2010-02-18 Bayer Materialscience Ag Katalytische Oxidation von Chlorwasserstoff mit Sauerstoff im nichtthermischen Plasma
DE102009004031A1 (de) * 2009-01-08 2010-07-15 Bayer Technology Services Gmbh Strukturierte Gasdiffusionselektrode für Elektrolysezellen
US8877365B2 (en) * 2009-05-28 2014-11-04 Deeya Energy, Inc. Redox flow cell rebalancing
US20110079074A1 (en) * 2009-05-28 2011-04-07 Saroj Kumar Sahu Hydrogen chlorine level detector
US8551299B2 (en) * 2009-05-29 2013-10-08 Deeya Energy, Inc. Methods of producing hydrochloric acid from hydrogen gas and chlorine gas
DE102009023539B4 (de) * 2009-05-30 2012-07-19 Bayer Materialscience Aktiengesellschaft Verfahren und Vorrichtung zur Elektrolyse einer wässerigen Lösung von Chlorwasserstoff oder Alkalichlorid in einer Elektrolysezelle
SG174715A1 (en) * 2010-03-30 2011-10-28 Bayer Materialscience Ag Process for preparing diaryl carbonates and polycarbonates
CN103717289A (zh) 2011-04-11 2014-04-09 Ada-Es股份有限公司 用于气体组分捕集的流化床方法和系统
US9200375B2 (en) * 2011-05-19 2015-12-01 Calera Corporation Systems and methods for preparation and separation of products
IN2015DN02082A (enExample) 2012-09-20 2015-08-14 Ada Es Inc
TWI633206B (zh) 2013-07-31 2018-08-21 卡利拉股份有限公司 使用金屬氧化物之電化學氫氧化物系統及方法
JP2016132800A (ja) * 2015-01-20 2016-07-25 千代田化工建設株式会社 有機物生成方法および有機物生成システム
EP3368502B1 (en) 2015-10-28 2020-09-02 Calera Corporation Electrochemical, halogenation, and oxyhalogenation systems and methods
CN109071219A (zh) * 2016-05-12 2018-12-21 科思创德国股份有限公司 使用氧气的氯化氢光催化氧化
US10619254B2 (en) 2016-10-28 2020-04-14 Calera Corporation Electrochemical, chlorination, and oxychlorination systems and methods to form propylene oxide or ethylene oxide
WO2019060345A1 (en) 2017-09-19 2019-03-28 Calera Corporation SYSTEMS AND METHODS USING LANTHANIDE HALIDE
CN108097232B (zh) * 2017-12-18 2020-10-02 万华化学集团股份有限公司 一种用于氯化氢氧化制氯气的催化剂及其制备方法和应用
US10590054B2 (en) 2018-05-30 2020-03-17 Calera Corporation Methods and systems to form propylene chlorohydrin from dichloropropane using Lewis acid
CN109453764A (zh) * 2018-11-16 2019-03-12 西安元创化工科技股份有限公司 用于氯化氢氧化制氯气的二氧化钌催化剂及其制备方法
EP3938313A1 (en) * 2019-03-13 2022-01-19 Eastman Chemical Company Processes useful in the manufacture of cyclododecasulfur
KR20220005048A (ko) * 2019-04-25 2022-01-12 바스프 에스이 포스겐의 제조 방법
US12404172B2 (en) 2019-11-13 2025-09-02 Tokuyama Corporation Hydrogen chloride dehydration method
WO2021095329A1 (ja) * 2019-11-13 2021-05-20 株式会社トクヤマ 塩化水素の脱湿方法
CN113388849B (zh) * 2021-06-18 2024-02-13 蓝星(北京)化工机械有限公司 离子膜法盐酸电解方法

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1004207A (en) * 1962-09-08 1965-09-15 Asahi Chemical Ind Electrolysis of aqueous hydrochloric acid
NL6404460A (enExample) 1964-04-23 1965-10-25
DD88309A1 (de) 1971-05-12 1972-03-05 Verfahren zur Herstellung von Chlor
BE790369A (fr) 1971-10-21 1973-04-20 Diamond Shamrock Corp Procede et appareil pour la preparation d'hydroxydes de metaux alcalins de haute purete dans une cuve electrolytique.
US3773634A (en) 1972-03-09 1973-11-20 Diamond Shamrock Corp Control of an olyte-catholyte concentrations in membrane cells
DE3041897A1 (de) 1980-11-06 1982-06-09 Bayer Ag, 5090 Leverkusen Salzsaeure-elektrolysezelle zur herstellung von chlor und wasserstoff
JPS5973405A (ja) * 1982-10-20 1984-04-25 Mitsui Toatsu Chem Inc 塩素の製造方法
DE3321159A1 (de) 1983-06-11 1984-12-13 Bayer Ag, 5090 Leverkusen Gewebtes diaphragma fuer waessrige elektrolyte
DE3327274A1 (de) 1983-07-28 1985-02-07 Bayer Ag, 5090 Leverkusen Verfahren zur herstellung von phosgen unter gleichzeitiger erzeugung von dampf
DE3578454D1 (de) 1984-02-01 1990-08-02 Baxter Int Klinisches analysesystem und verfahren.
CA1260229A (en) 1986-06-30 1989-09-26 Mitsui Chemicals, Inc. Production process of chlorine
SU1801943A1 (ru) * 1991-03-19 1993-03-15 Волгоградский Политехнический Институт Способ получения хлора из хлористого водорода 2
DE4217019A1 (de) 1992-05-22 1993-11-25 Bayer Ag Verfahren zur Herstellung von aromatischen Diisocyanaten
DE4417744C1 (de) 1994-05-20 1995-11-23 Bayer Ag Verfahren zur Herstellung stabiler Graphitkathoden für die Salzsäureelektrolyse und deren Verwendung
US5707919A (en) 1994-11-14 1998-01-13 Mitsui Toatsu Chemicals, Inc. Catalyst for preparing chlorine from hydrogen chloride
WO1996016028A1 (de) 1994-11-17 1996-05-30 Bayer Aktiengesellschaft Verfahren zur herstellung von isocyanaten
DE19533660A1 (de) 1995-09-12 1997-03-13 Basf Ag Verfahren zur Herstellung von Chlor
DE19535716A1 (de) 1995-09-26 1997-03-27 Bayer Ag Verfahren zur Aufarbeitung der Reaktionsgase bei der Oxidation von HCI zu Chlor
US6852667B2 (en) 1998-02-16 2005-02-08 Sumitomo Chemical Company Limited Process for producing chlorine
US5958197A (en) 1998-01-26 1999-09-28 De Nora S.P.A. Catalysts for gas diffusion electrodes
US6149782A (en) * 1999-05-27 2000-11-21 De Nora S.P.A Rhodium electrocatalyst and method of preparation
US6402930B1 (en) 1999-05-27 2002-06-11 De Nora Elettrodi S.P.A. Process for the electrolysis of technical-grade hydrochloric acid contaminated with organic substances using oxygen-consuming cathodes
DE10138215A1 (de) 2001-08-03 2003-02-20 Bayer Ag Verfahren zur elektrochemischen Herstellung von Chlor aus wässrigen Lösungen von Chlorwasserstoff
DE10138214A1 (de) 2001-08-03 2003-02-20 Bayer Ag Elektrolysezelle und Verfahren zur elektrochemischen Herstellung von Chlor
DE10148600A1 (de) 2001-10-02 2003-04-10 Bayer Ag Einbau einer Gasdiffusionselektrode in einen Elektrolyseur
DE10152275A1 (de) 2001-10-23 2003-04-30 Bayer Ag Verfahren zur Elektrolyse von wässrigen Lösungen aus Chlorwasserstoff
DE10200072A1 (de) 2002-01-03 2003-07-31 Bayer Ag Elektroden für die Elektrolyse in sauren Medien
DE10203689A1 (de) 2002-01-31 2003-08-07 Bayer Ag Kathodischer Stromverteiler für Elektrolysezellen
KR100936420B1 (ko) 2002-02-27 2010-01-12 바스프 에스이 포스겐을 제조하기 위한 반응기 및 방법
US6719957B2 (en) 2002-04-17 2004-04-13 Bayer Corporation Process for purification of anhydrous hydrogen chloride gas
DE10234806A1 (de) 2002-07-31 2004-02-19 Bayer Ag Elektrochemische Zelle
DE10235476A1 (de) * 2002-08-02 2004-02-12 Basf Ag Integriertes Verfahren zur Herstellung von Isocyanaten
DE10250131A1 (de) 2002-10-28 2004-05-06 Basf Ag Verfahren zur Herstellung von Chlor aus Salzsäure
US7195784B2 (en) * 2002-11-14 2007-03-27 Board Of Trustees Of Michigan State University Cyclooxygenase-2 inhibitory withanolide compositions and method
DE10335184A1 (de) 2003-07-30 2005-03-03 Bayer Materialscience Ag Elektrochemische Zelle
DE10347703A1 (de) 2003-10-14 2005-05-12 Bayer Materialscience Ag Konstruktionseinheit für bipolare Elektrolyseure
RU2253607C1 (ru) * 2004-02-19 2005-06-10 ООО "КСМ-Инжиниринг" Способ получения хлора из газообразного хлористого водорода
EP1609887A1 (en) 2004-06-22 2005-12-28 CHLORINE ENGINEERS CORP., Ltd. Ion exchange membrane electrolytic process

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008050977A1 (de) 2008-10-09 2010-04-15 Bayer Technology Services Gmbh Integriertes Verfahren zur Herstellung von Chlor
DE102008050976A1 (de) 2008-10-09 2010-04-15 Bayer Technology Services Gmbh Verfahren zur Herstellung von Chlor aus Prozessgasen
DE102008060259A1 (de) 2008-12-03 2010-06-10 Bayer Technology Services Gmbh Katalysator für Oxidationsreaktionen in Gegenwart von Chlorwasserstoff und/oder Chlor und Verfahren zu dessen Herstellung, sowie dessen Verwendung
WO2011067193A1 (de) 2009-12-02 2011-06-09 Bayer Technology Services Gmbh Kern- schale katalysator bestehend aus einer porösen silikathülle und darin befindlichen, räumlich orientierten nanopartikeln einer rutheniumverbindung
DE102009056700A1 (de) 2009-12-02 2011-06-16 Bayer Technology Services Gmbh Katalysator bestehend aus Silikathüllen und darin befindlichen, räumlich orientierten Nanopartikeln einer Rutheniumverbindung
WO2019091653A1 (de) * 2017-11-09 2019-05-16 Siemens Aktiengesellschaft Herstellung und abtrennung von phosgen durch kombinierte co2 und chlorid-elektrolyse

Also Published As

Publication number Publication date
TW200806579A (en) 2008-02-01
DE102006023261A1 (de) 2007-11-22
EP2024280A2 (de) 2009-02-18
JP2009537430A (ja) 2009-10-29
PT2024280T (pt) 2019-09-19
KR101378191B1 (ko) 2014-03-27
US20080029404A1 (en) 2008-02-07
JP5122558B2 (ja) 2013-01-16
EP2024280B1 (de) 2019-06-26
CN101448732A (zh) 2009-06-03
CN104192801A (zh) 2014-12-10
US9447510B2 (en) 2016-09-20
WO2007134726A3 (de) 2008-07-31
KR20090016586A (ko) 2009-02-16
CN104192801B (zh) 2018-12-14
HUE045385T2 (hu) 2019-12-30
ES2744378T3 (es) 2020-02-24
RU2008149766A (ru) 2010-06-27

Similar Documents

Publication Publication Date Title
EP2024280B1 (de) Verfahren zur herstellung von chlor aus chlorwasserstoff und sauerstoff
EP1743882B1 (de) Verfahren zur Herstellung von Isocyanaten
EP0866890B1 (de) Verfahren zur direkten elektrochemischen gasphasen-phosgensynthese
KR20050072110A (ko) 개재된 할로겐화수소산 전기분해
KR20090094198A (ko) 메틸렌디페닐 디이소시아네이트의 제조 방법
EP3427320A1 (en) System and method for the co-production of oxalic acid and acetic acid
WO2007137685A1 (de) Verfahren zur chlorwasserstoff-oxidation mit sauerstoff
EP2027065A2 (de) Verfahren zur herstellung von chlor aus chlorwasserstoff und sauerstoff
WO2007134861A1 (de) Verfahren zur herstellung von chlor aus chlorwasserstoff und sauerstoff
DE102006022761A1 (de) Verfahren zur Herstellung von Isocyanaten
WO2007134720A1 (de) Verfahren zur herstellung von chlor aus chlorwasserstoff und sauerstoff
HK1132981A (en) Method for producing chlorine from hydrogen chloride and oxygen
HK1103068A (en) Process for producing isocyanates
EP2334426A1 (de) Integriertes verfahren zur herstellung von chlor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780018069.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07725069

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2007725069

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 9432/DELNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2009510326

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087030685

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2008149766

Country of ref document: RU