EP0866890B1 - Verfahren zur direkten elektrochemischen gasphasen-phosgensynthese - Google Patents

Verfahren zur direkten elektrochemischen gasphasen-phosgensynthese Download PDF

Info

Publication number
EP0866890B1
EP0866890B1 EP96938176A EP96938176A EP0866890B1 EP 0866890 B1 EP0866890 B1 EP 0866890B1 EP 96938176 A EP96938176 A EP 96938176A EP 96938176 A EP96938176 A EP 96938176A EP 0866890 B1 EP0866890 B1 EP 0866890B1
Authority
EP
European Patent Office
Prior art keywords
gas
phosgene
bar
cathode
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96938176A
Other languages
English (en)
French (fr)
Other versions
EP0866890A1 (de
Inventor
Fritz Gestermann
Jürgen DOBBERS
Hans-Nicolaus Rindfleisch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Publication of EP0866890A1 publication Critical patent/EP0866890A1/de
Application granted granted Critical
Publication of EP0866890B1 publication Critical patent/EP0866890B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • C25B9/77Assemblies comprising two or more cells of the filter-press type having diaphragms

Definitions

  • the invention relates to a process for the electrochemical conversion of hydrogen chloride to phosgene.
  • phosgene becomes catalytic generated from free chlorine.
  • the chlorine is either generated generically from one NaCl electrolysis provided, e.g. from isocyanate production originating HCl gas is processed in the form of hydrochloric acid or as Recycle chlorine recovered from the electrolysis of aqueous hydrochloric acid.
  • US 5 411 641 describes an electrochemical process for the production of chlorine described in which a dry direct oxidation in the electrochemical cell from HCl to chlorine and protons. The process runs even with cathode side aqueous electrolyte combined with hydrogen production operating voltages significantly cheaper than classic electrolysis aqueous Hydrochloric acid.
  • the invention is based on the object, starting from gaseous hydrogen chloride, according to claim 1, to produce phosgene directly by electrochemical means.
  • This object is achieved in that the anode with a proton-conducting membrane equipped electrochemical cell as Educts of dry HCl gas and dry CO gas are supplied and the at the anodic oxidation of HCl gas by chlorine radicals with the CO gas immediately react to phosgene while the protons formed simultaneously migrate through the membrane to the cathode and there when operated with aqueous HCl can be reduced to hydrogen or in the presence of oxygen to water.
  • the chlorine radicals are modeled on the anode with CO gas according to the reaction equations anodized to phosgene.
  • the process is preferably carried out in such a way that, in addition to the electrochemical anodic oxidation, an exothermic catalytic conversion of molecular chlorine with CO gas to phosgene takes place in the carbon-containing carrier material of the activated diffusion anode in accordance with the reaction equation CO + Cl 2 ⁇ COCl 2 .
  • the anodic overvoltage can be caused by the phosgene radicals that occur be lowered by 0.2 V to 0.6 V.
  • the method is advantageously carried out in such a way that to lower the Operating voltage of the electrochemical cell of oxygen at the cathode (3) is reduced and with the protons diffusing through the membrane to water reacted.
  • the method can also be carried out so that the cathode (3) operated in aqueous hydrochloric acid, with hydrogen as a by-product is produced.
  • the membrane is advantageously used to adjust its proton conductivity Supply of moist oxygen which leads to the cathode with the starting gas is additionally moistened.
  • the electrochemical reactions take place at the cathode and anode at a pressure of 2 bar to 6 bar.
  • a further development of the method according to the invention is that the Phosgene current drawn off on the anode side under the operating pressure in a recuperator cooled and liquefied and the liquefied phosgene on the secondary side in the recuperator is expanded and evaporated, the one required for liquefaction Generates cooling capacity and the primary liquefied phosgene from HCI and CO induct gas is exempted. These educt gas fractions can then be returned to the electrochemical cell.
  • the electrochemical cell is expediently used in a closed system, which also includes the recuperator at a pressure of 2 bar to 10 bar, preferably 2 bar to 6 bar, operated such that the Differential pressure between the closed system and the electrochemical Cell is approximately zero, so that the electrochemical cell even when operating below higher pressures can be operated virtually without pressure.
  • a catalytic oxygen reduction (catalyst, for example Pt, Ir, or Pd) of the supplied oxygen takes place at the cathode at the interface with the proton-conducting membrane located between the two electrodes.
  • the oxygen or the supplied oxygen-containing gas mixture (feed gas) is moistened with water, similar to a PEM fuel cell, to the saturation point.
  • the reaction follows the equation: (1) 1/2 O 2 + 2e - + 2H + ⁇ H 2 O (g)
  • the water balance of the proton-conducting membrane is pre-moistened of the feed gas taking into account the formation of water of reaction in accordance with Equation (1) controlled.
  • a single-layer proton-conducting membrane is used from fluoropolymers with protonated sulfonic acid groups in the ion transport channels as a solid electrolyte between cathode and anode.
  • the proton conductivity is, as described above, improved by moistening the cathode side.
  • the basic process is the direct oxidation of dry HCl gas to chlorine and protons, which are fed into the membrane serving as electrolyte, according to the following reaction
  • the oxidation takes place catalytically (Pt, Ir, Rh, or Pd catalyst) at the interface between the anode and the proton-conducting membrane.
  • the HCl direct oxidation delivers dry chlorine without the presence of other reactants, which immediately reacts further with the dry CO gas offered at the same time. Two reaction paths are possible, both of which are exothermic:
  • CO reacts with the anodically formed chlorine radical to form the COCl radical, which in turn reacts with another chlorine radical to form COCl 2 and diffuses out of the field of electrocatalytic analysis.
  • the reaction mechanism at the anode looks like this:
  • the hydrogen chloride oxidation is thus in both reaction steps by the CO influenced directly or indirectly.
  • the exothermic nature of the reaction steps becomes at least in part in a lowering of the activation energy of the electrochemical HCl direct oxidation implemented with the consequence of a decrease the cell voltage.
  • the chlorine radicals that have not reacted with CO or COCl radicals recombine to form Cl 2 .
  • the usual carrier material for electrochemically active catalysts integrated in the electrodes is carbon in the form of vulcanized carbon black or acetylene black, this microporous carrier layer being passed through by the product gases Cl 2 and COCl 2 coming from the electrolysis. This layer acts as an activated carbon surface, which, at the usual cell temperatures of approx. 80 ° C, is the non-electrochemical, but exothermic reaction (5) CO + Cl 2 ⁇ COCl 2 catalyzed.
  • a dry anodic product gas with the following composition is then obtained: COCl 2 + unreacted HCl gas + unreacted CO + possibly traces of Cl 2 .
  • the electrochemical cell 1 acc. 1 essentially consists of the gas diffusion anode 2, the gas diffusion cathode 3 and the one arranged between the electrodes, acting as an electrolyte proton-conducting membrane 4.
  • the anode 2 consists of a porous, catalytically activated activated carbon matrix 5, which is connected on the inside to the membrane 3 and on the outside with one from a conductive gas distributor 6, which is connected to a anodic current distributor 7 is contacted.
  • the analog cathode 3 consists of the catalytic activated carbon matrix 8, the conductive gas distributor 9 and the power distributor 10. Primarily come as catalytic material Platinum, iridium, rhodium and palladium in question.
  • Such gas diffusion anodes or cathodes are also commercially available (e.g. electrodes of the type ELAT from GDE Gasdiffusionselektroden GmbH. Frankfurt a. Main).
  • the anode 2 is in an anode gas space 11, the cathode 3 in a cathode gas space 12 arranged.
  • the two gas spaces 11 and 12 are except for the inlet and Drain pipe closed.
  • the anode gas space becomes via the feed connector 13 11 a dry educt gas mixture of HCI and CO and over the feed pipe 14 the gaseous educt gas mixture from the cathode gas space 12 Oxygen and saturated water vapor supplied.
  • the cathodic one Reduction of the resulting water vapor together with that caused by the educt gas supplied steam for sufficient moistening of the membrane 4 so that it cannot dry out.
  • unreacted oxygen can over the outlet stub 16 excess water vapor are derived.
  • phosgene (COCl 2 ) is generated according to the reaction mechanism described above, which is discharged via the product nozzle 15.
  • the electrochemical reactions at the anode and cathode are carried out at temperatures from 40 ° C to 80 ° C, at a cell voltage of 0.8 to 1.2 volts and at cell current densities of approx. 3 kA / m 2 .
  • the method can also be carried out with higher current densities.
  • the starting materials are fed in according to the above reaction equations in a stoichiometric ratio.
  • CO gas can also be supplied to the anode in a stoichiometric manner in order to suppress the formation of free chlorine.
  • FIG. 2 there is a large number of electrochemical cells 1 constructed analogously to FIG. 1 as a bipolar in series or parallel-connected cell stack 17 installed in a housing 18.
  • the enclosed pressure chamber 19 forms a gas-tight, pressure-tight, closed system, which is designed for pressures up to a maximum of 10 bar, the differential pressure from the actual process pressure being compensated for almost zero.
  • the dry educt gas mixture HCl + CO is fed to the anodes via the educt gas line 20 and the compressor 21.
  • the feed of O 2 + H 2 O on the cathode side as feed gas takes place through the feed gas line 22 and the compressor 23. With the aid of the compressors 21 and 23, the feed gas mixtures can be compressed to about 6 bar.
  • the product line 24 attached to the exit of the cell stack 17 is connected to a Phosgene recuperator 25 connected in which the phosgene generated in the cell stack 17 is liquefied by cooling condensation on the heat exchanger tube bundle 26.
  • the liquid phosgene flows through line 27 into a storage container 28.
  • the cooling capacity required for liquefaction is achieved by releasing liquid Phosgene generated from the reservoir 28 in the recuperator 25.
  • To this Purpose is the heat exchanger tube 26 via a riser 29 to the reservoir 28 connected.
  • the liquid flows directly in front of the recuperator 25 Phosgene through a relaxation throttle 31 in the riser 29. During relaxation evaporates the liquid phosgene.
  • the phosgene thus serves in this case as a refrigerant to supply the product gas consisting essentially of phosgene condense. Due to the condensation and re-evaporation, the product gas freed from unreacted HCI and CO feed gas fractions. That on this Gaseous phosgene purified in this manner is discharged through the removal line 32.
  • the relaxation takes place from the educt gas excess pressure prevailing in the cell stack 17 to about normal pressure or to that for the following ones Reactions necessary low form, so that from the electrolyser withdrawn line 32 no pressure-resistant fittings are required.
  • the enriched in the head part of the recuperator 25, consisting of HCl and CO Residual gases are recycled through the return line 33 to the anode input.
  • the cathode-side exit of the cell stack 17 is connected to an exhaust gas line 34 Removal of excess oxygen and water vapor connected.
  • the Pressure chamber 19 is supplied with an inert gas, e.g. nitrogen pressurized and maintained at about the same pressure as that with the Compressors 21 and 23 generated reactant gas pressure corresponds. Otherwise a pressure-proof design of the electrochemical cells would be required. With this encapsulation, an inerting of the reaction part is possible at the same time be monitored for starting material or product gas leakage with simple means can.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

Die Erfindung betrifft ein Verfahren zur elektrochemische Umsetzung von Chlorwasserstoff zu Phosgen. Nach den bisher üblichen Verfahren wird Phosgen katalytisch aus freiem Chlor erzeugt. Das Chlor wird entweder generisch aus einer NaCl-Elektrolyse bereitgestellt, wobei das z.B. aus der Isocyanat-Herstellung stammende HCl-Gas in Form von Salzsäure weiterverarbeitet wird oder als Recycle-Chlor aus der Elektrolyse wässriger Salzsäure zurückgewonnen.
In US 5 411 641 wird ein elektrochemisches Verfahren zur Herstellung von Chlor beschrieben, bei dem in der elektrochemischen Zelle eine trockene Direktoxidation von HCl zu Chlor und Protonen erfolgt. Der Prozess läuft selbst bei kathodenseitigem wässrigem Elektrolyt in Verbindung mit einer Wasserstoffproduktion bei deutlich günstigeren Betriebsspannungen ab, als die klassische Elektrolyse wässriger Salzsäure.
Der Erfindung liegt die Aufgabe zugrunde, ausgehend von gasförmigem Chlorwasserstoff, entsprechend Anspruch 1, auf elektrochemischem Weg direkt Phosgen zu erzeugen.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß der Anode einer mit einer protonen-leitenden Membran ausgestatteten elektrochemischen Zelle als Edukte trockenes HCl-Gas und trockenes CO-Gas zugeführt werden und die bei der anodischen Oxidation von HCl-Gas auftretenden Chlor-Radikale mit dem CO-Gas unmittelbar zu Phosgen reagieren, während die gleichzeitig gebildeten Protonen durch die Membran zur Kathode wandern und dort bei Betrieb mit wässriger HCl zu Wasserstoff oder in Gegenwart von Sauerstoff zu Wasser reduziert werden.
Dabei werden die Chlor-Radikale modellhaft an der Anode mit CO-Gas nach den Reaktionsgleichungen
Figure 00010001
Figure 00010002
anodisch zu Phosgen oxidiert.
Vorzugsweise wird das Verfahren in der Weise ausgeführt, daß im kohlenstoffhaltigen Trägermaterial der aktivierten Diffusionsanode zusätzlich zur elektrochemischen anodischen Oxidation eine exotherme katalytische Umsetzung von molekularem Chlor mit CO-Gas zu Phosgen entsprechend der Reaktionsgleichung CO + Cl2 ⇒ COCl2 erfolgt.
Durch die dabei auftretenden Phosgen-Radikale kann die anodische Überspannung um 0,2 V bis 0,6 V heruntergesetzt werden.
Vorteilhaft wird das Verfahren in der Weise durchgeführt, daß zur Absenkung der Betriebsspannung der elektrochemischen Zelle der Sauerstoff an der Kathode (3) reduziert wird und mit den durch die Membran diffundierenden Protonen zu Wasser abreagiert.
Alternativ kann das Verfahren aber auch so durchgeführt werden, daß die Kathode (3) in wässriger Salzsäure betrieben wird, wobei als Nebenprodukt Wasserstoff erzeugt wird.
Vorteilhaft wird die Membran zur Einstellung ihrer Protonenleitfähigkeit durch Zufuhr von feuchtem Sauerstoff, der mit dem Eduktgas an die Kathode herangeführt wird, zusätzlich befeuchtet.
Gemäß einer bevorzugten Ausführung erfolgen die elektrochemischen Umsetzungen an der Kathode und Anode bei einem Druck von 2 bar bis 6 bar.
Eine Weiterentwicklung des erfindungsgemäßen Verfahrens besteht darin, daß der anodenseitig abgezogene Phosgenstrom unter dem Betriebsdruck in einem Rekuperator gekühlt und verflüssigt und das verflüssigte Phosgen sekundärseitig im Rekuperator entspannt und verdampft wird, wobei die zur Verflüssigung benötigte Kälteleistung erzeugt und das primärseitig verflüssigte Phosgen gleichzeitig von HCI- und CO -Eduktgasanteilen befreit wird. Diese Eduktgasanteile können dann wieder in die elektrochemische Zelle zurückgeführt werden.
Zweckmäßig wird dabei die elektrochemische Zelle in einem geschlossenen System, in das auch der Rekuperator mit einbezogen wird, bei einem Druck von 2 bar bis 10 bar, vorzugsweise 2 bar bis 6 bar, derart betrieben, daß der Differenzdruck zwischen dem geschlossenen System und der elektrochemischen Zelle annähernd Null ist, so daß die elektrochemische Zelle auch bei Betrieb unter höheren Drücken quasi drucklos betrieben werden kann.
Gegenüber den herkömmlichen Phosgenherstellungsverfahren werden folgende Vorteile erzielt:
  • Der trockene Chlorwasserstoff kann unter Zugabe entsprechender CO-Mengen in der Gasphase elektrochemisch direkt zu Phosgen umgesetzt werden.
  • Bei entsprechender Einstellung der Zusammensetzung des Eduktgasgemischs kann der Anteil von freiem Chlor im Produktgas bis auf vernachlässigbar kleine Werte zurückgedrängt werden. Das Produktgas kann aber selbst für den Fall, daß noch geringe HCl- und CO-Anteile vorhanden sind, direkt für bestimmte chemische Prozesse, z.B. die Isocyanat- oder Polycarbonatherstellung genutzt werden, da diese Restgasanteile in diesem Fall passiv durch den Prozess mitlaufen und sich dann mit dem bei der Isocyanat- bzw. Polykarbonatbildung freiwerdenden HCl-Strom vereinigen, der als Eduktgas wieder der elektrochemischen Phosgenerzeugung zugeführt werden kann. Nicht abreagierte Phosgenreste stören hierbei die elektrochemische Reaktion nicht. Allenfalls wirken sie sich bei nennenswerten Konzentrationen als Diffusionsballast an der Gasdiffusionsanode aus.
  • Der apparative verfahrenstechnische Aufwand kann aufgrund der relativ einfach aufgebauten Elektrolyseapparatur im Vergleich zu den bei der klassischen Phosgenherstellung erforderlichen Vielzahl von aufeinanderfolgenden Verfahrensstufen beträchtlich reduziert werden (niedrigere Investitionskosten).
  • Die vielen Verfahrenschritte bei der konventionellen Phosgenherstellung, bei der bereits mit der dabei eingesetzten wässrigen Salsäureelektrolyse ein Energiebedarf von ca. 180 kWh/100 kg Chlor erforderlich ist, haben aufgrund der Vielzahl der erforderlichen Pumpen bzw. Kompressoren und aufgrund der benötigten Kühlmittel (Fremdkälte) einen weitaus größeren Energieverbrauch zur Folge. Das erfindungsgemäße Verfahren arbeitet in dieser Hinsicht mit erheblich günstigeren Betriebskosten.
  • Unter rein thermodynamischen Gesichtspunkten wäre bereits die elektrochemische Umsetzung von HCl-Gas mit Sauerstoff bei ca. 0,18 Volt exotherm. In der Praxis verschlechtert jedoch die Sauerstoffüberspannung von 300 - 400 mV und der elektrische Widerstand der Ionenaustauschermembran die Energiebilanz.
  • Die unmittelbare CO- bzw. COCI-Radikal-Teilnahme am elektrochemischen Prozess beeinflußt durch deren Exothermie die Elektrolysepotentiale positiv. Es läßt sich eine Absenkung von ca. 200 bis 600 mV erreichen.
Im Folgenden wird die Erfindung anhand von Zeichnungen und Ausführungsbeispielen näher erläutert. Es zeigen:
Fig.1
schematisch den Aufbau einer Elektrolysezelle für die direkte elektrochemische Phosgenerzeugung und
Fig. 2
den grundsätzlichen Aufbau einer Phosgen-Elektrolyseanlage in einem druckfesten System unter Verwendung eines Phosgen-Rekuperators
Zunächst sollen die allgemeinen Reaktionsmechanismen der an der Kathode und Anode ablaufenden elektrochemischen Prozesse modellhaft beschrieben werden.
1. Kathodenprozeß
An der Kathode erfolgt eine katalytische Sauerstoff-Reduktion (Katalysator z.B. Pt, Ir, oder Pd) des zugeführten Sauerstoffs an der Grenzfläche zu der zwischen den beiden Elektroden befindlichen protonenleitenden Membran. Der Sauerstoff bzw. das zugeführte sauerstoffhaltige Gasgemisch (Feed-Gas) wird ähnlich wie bei einer PEM-Brennstoffzelle bis an den Sättigungspunkt mit Wasser angefeuchtet. Die Reaktion erfolgt nach der Gleichung: (1)   1/2 O2 + 2e- + 2H+ ⇒ H2O(g)
Der Wasserhaushalt der protonenleitenden Membran wird über die Voranfeuchtung des Feed-Gases unter Berücksichtigung der Bildung von Reaktionswasser gemäß Gleichung (1) gesteuert.
2. Elektrolyt
Analog zur PEM-Brennstoffzelle dient eine einlagige protonenleitende Membran aus Fluor-Polymeren mit protonierten Sulfonsäuregruppen in den Ionentransportkanälen als Festelektrolyt zwischen Kathode und Anode. Die Protonenleitfähigkeit wird dabei, wie oben beschrieben, durch kathodenseitiges Anfeuchten verbessert.
3. Anodenprozeß
Als Basisprozeß dient die Direktoxidation von trockenem HCl-Gas zu Chlor und Protonen, die in die als Elektrolyt dienende Membran eingespeist werden, gemäß folgender Reaktion
Figure 00050001
Die Oxidation verläuft katalytisch (Katalysator Pt, Ir, Rh, oder Pd) an der Grenzfläche zwischen Anode und protonenleitender Membran. Die HCl-Direktoxidation liefert ohne Beisein weiterer Reaktionspartner trockenes Chlor, das mit dem gleichzeitig angebotenen, trockenen CO-Gas sofort weiterreagiert. Dabei sind zwei Reaktionswege möglich, die beide exotherm ablaufen:
3.1 Unmittelbarer Einfluß auf die HCl-Direktoxidation
CO reagiert mit dem anodisch entstehenden Chlor-Radikal zum COCl-Radikal, das wiederum mit einem weiteren Chlor-Radikal zum COCl2 abreagiert und aus dem Bereich der Elektrokatalyse abdiffundiert. Der Reaktionsmechanismus an der Anode sieht dann folgendermaßen aus:
Figure 00050002
Figure 00050003
Die Chlorwasserstoff-Oxidation wird damit bei beiden Reaktionsschritten vom CO direkt oder indirekt beeinflußt. Die Exothermie der Reaktionsschritte wird dabei zumindest zum Teil in eine Erniedrigung der Aktivierungsenergie der elektrochemischen HCl-Direktoxidation umgesetzt mit der Konsequenz einer Erniedrigung der Zellenspannung.
3.2 Indirekter Prozeß
Die Chlor-Radikale, die nicht mit CO bzw. COCl-Radikalen reagiert haben, rekombinieren zu Cl2. Das übliche Trägermaterial für elektrochemisch aktive, in die Elektroden integrierte Katalysatoren ist Kohlenstoff in Form von Vulcan- oder Acetylenruß, wobei diese mikroporöse Trägerschicht von den aus der Elektrolyse abgehenden Produktgasen Cl2 und COCl2 passiert wird. Hierbei wirkt diese Schicht als Aktivkohle-Oberfläche, die bei den üblichen Zelltemperaturen von ca. 80 °C die zwar nicht elektrochemische, wohl aber exotherme Reaktion (5)   CO + Cl2 ⇒ COCl2 katalysiert. Man erhält dann ein trockenes anodisches Produktgas mit folgender Zusammensetzung: COCl2 + nicht umgesetztes HCl-Gas + nicht umgesetztes CO + gegebenenfalls Spuren von Cl2.
Nachstehend wird eine elektrochemische Zelle zur Realisierung der oben beschriebenen Reaktionen beschrieben.
Die elektrochemische Zelle 1 gem. Fig.1 besteht im Wesentlichen aus der Gasdiffusionsanode 2, der Gasdiffusionskathode 3 und der zwischen den Elektroden angeordneten, als Elektrolyt wirkenden protonenleitenden Membran 4. Derartige Membranelektrolyte sind für elektrochemische Brennstoffzellen im Handel erhältlich. Die Anode 2 besteht aus einer porösen, katalytisch aktivierten Aktivkohlematrix 5, die an der Innenseite mit der Membran 3 verbunden ist und an der Außenseite mit einem aus einem leitfähigen Gasverteiler 6 in Verbindung steht, der mit einem anodischen Stromverteiler 7 kontaktiert ist. Die analog aufgebaute Kathode 3 besteht aus der katalytischen Aktivkohlematrix 8, dem leitfähigen Gasverteiler 9 und dem Stromverteiler 10. Als katalytisches Material kommen in erster Linie Platin, Iridium, Rhodium und Palladium in Frage. Derartige Gasdiffusionsanoden bzw. -kathoden sind ebenfalls im Handel erhältlich (z.B. Elektroden vom Typ ELAT der Firma GDE Gasdiffusionselektroden GmbH. Frankfurt a. Main).
Die Anode 2 ist in einem Anodengasraum 11, die Kathode 3 in einem Kathodengasraum 12 angeordnet. Die beiden Gasräume 11 und 12 sind bis auf die Zu- und Ableitungsstutzen geschlossen. Über den Zuführungsstutzen 13 wird dem Anodengasraum 11 ein trockenes Eduktgasgemisch aus HCI und CO und über den Zuführungsstutzen 14 dem Kathodengasraum 12 ein gasförmiges Eduktgasgemisch aus Sauerstoff und gesättigtem Wasserdampf zugeführt. Der bei der kathodischen Reduktion entstehende Wasserdampf sorgt zusammen mit dem durch das Eduktgas zugeführten Dampf für eine hinreichende Befeuchtung der Membran 4, so daß sie nicht austrocknen kann. Zusammen mit nicht umgesetztem Sauerstoff kann über den Austrittsstutzen 16 überschüssiger Wasserdampf abgeleitet werden.
An der Gasdiffusionsanode 2 wird nach dem oben beschriebenen Reaktionsmechanismus Phosgen (COCl2) erzeugt, das über den Produktstutzen 15 abgeführt wird. Die elektrochemischen Reaktionen an der Anode und Kathode werden bei Temperaturen von 40 °C bis 80 °C, bei einer Zellenspannung von 0,8 bis 1,2 Volt und bei Zellenstromdichten von ca. 3 kA/m2 durchgeführt. Das Verfahren kann aber auch mit höheren Stromdichten durchgeführt werden. Die Edukte werden nach den obigen Reaktionsgleichungen im stöchiometrischen Verhältnis zugeführt. CO-Gas kann aber der Anode auch überstöchiometrisch zugeführt werden, um die Bildung von freiem Chlor zurückzudrängen.
Bei dem in Fig. 2 dargestellten weiterentwickelten Elektrolyseur ist eine Vielzahl von analog zu Fig.1 aufgebauten elektrochemischen Zellen 1 als bipolar in Reihe oder parallel geschalteter Zellenstapel 17 in ein Gehäuse 18 eingebaut.
Der eingeschlossene Druckraum 19 bildet ein gasdichtes, druckfestes, abgeschlossenes System, das für Drücke bis maximal 10 bar ausgelegt ist, wobei der Differenzdruck zum eigentlichen Prozessdruck auf nahezu Null kompensiert wird. Das trockene Eduktgasgemisch HCl + CO wird den Anoden über die Eduktgasleitung 20 und den Kompressor 21 zugeführt. Die kathodenseitige Zuführung von O2 + H2O als Eduktgas erfolgt durch die Eduktgasleitung 22 und den Kompressor 23. Mit Hilfe der Kompressoren 21 und 23 können die Eduktgasgemische bis auf ca. 6 bar verdichtet werden.
Die am Ausgang des Zellenstapels 17 angebrachte Produktleitung 24 ist mit einem Phosgenrekuperator 25 verbunden, in dem das im Zellenstapel 17 erzeugte Phosgen durch Kühlkondensation am Wärmetauscher-Rohrbündel 26 verflüssigt wird. Das flüssige Phosgen fließt durch die Leitung 27 in einen Vorratsbehälter 28 ab. Die zur Verflüssigung benötigte Kälteleistung wird durch Entspannung von flüssigem Phosgen aus dem Vorratsbehälter 28 im Rekuperator 25 erzeugt. Zu diesem Zweck ist das Wärmetauscher-Rohr 26 über eine Steigleitung 29 mit dem Vorratsbehälter 28 verbunden. Unmittelbar vor dem Rekuperator 25 strömt das flüssige Phosgen durch eine Entspannungsdrossel 31 in der Steigleitung 29. Bei der Entspannung verdampft das flüssige Phosgen. Das Phosgen dient also in diesem Fall als Kältemittel, um das im Wesentlichen aus Phosgen bestehende Produktgas zu kondensieren. Durch die Kondensation und Wiederverdampfung wird das Produktgas von nicht abreagierten HCI- und CO-Eduktgasanteilen befreit. Das auf diese Weise gereinigte gasförmige Phosgen wird durch die Entnahmeleitung 32 abgeführt. Die Entspannung erfolgt von dem im Zellenstapel 17 herrschenden Eduktgasüberdruck auf etwa Normaldruck bzw. auf den für die nachfolgenden Reaktionen notwendigen niedrigen Vordruck, sodaß für die aus dem Elektrolyseur herausgeführte Entnahmeleitung 32 keine druckfesten Armaturen benötigt werden. Die im Kopfteil des Rekuperators 25 angereicherten, aus HCl und CO bestehenden Restgase werden durch die Rückleitung 33 zum Anodeneingang rezykliert. Der kathodenseitige Ausgang des Zellenstapels 17 ist mit einer Abgasleitung 34 zur Abführung von überschüssigem Sauerstoff und Wasserdampf verbunden. Der Druckraum 19 wird über den Druckstutzen 35 mit einem Inertgas, z.B. Stickstoff beaufschlagt und auf etwa dem gleichen Druck gehalten, der dem mit den Kompressoren 21 und 23 erzeugten Eduktgasvordruck entspricht. Anderenfalls wäre eine druckfeste Ausführung der elektrochemischen Zellen erforderlich. Mit dieser Kapselung ist gleichzeitig eine Inertisierung des Reaktionsteils möglich, die mit einfachen Mitteln auf Edukt- oder Produktgasleckagen überwacht werden kann.

Claims (7)

  1. Verfahren zur elektrochemischen Umsetzung von Chlorwasserstoff und Kohlenmonoxid zu Phosgen in Form eines trockenen anodischen Produktgases, dadurch gekennzeichnet, daß der Anode (2) einer mit einer Protonen leitenden Membran (4) ausgestatteten elektrochemischen Zelle (1) als Edukte trockenes HCI-Gas und trockenes CO-Gas zugeführt werden und die bei der anodischen Oxidation von HCI-Gas auftretenden Chlor-Radikale mit dem CO-Gas unmittelbar zu Phosgen reagieren, während die gleichzeitig gebildeten Protonen durch die Membran (4) zur Kathode (3) wandern und dort zu Wasserstoff oder in Gegenwart von Sauerstoff zu Wasser reduziert werden.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das CO-Gas überstöchiometrisch zugeführt wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Kathode (3) in wäßriger Salzsäure betrieben wird und als Nebenprodukt Wasserstoff erzeugt wird.
  4. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß die Membran (4) zur Einstellung ihrer elektrischen Leitfähigkeit durch Zufuhr von feuchtem Sauerstoff an die Kathode (3) zusätzlich befeuchtet wird.
  5. Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß die elektrochemischen Umsetzungen an der Kathode (3) und Anode (2) bei einem Druck von 2 bar bis 10 bar erfolgen.
  6. Verfahren nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß der anodenseitig abgezogene Phosgenstrom unter Druck in einem Rekuperator (25) gekühlt und verflüssigt wird und das verflüssigte Phosgen im Rekuperator (25) entspannt und verdampft wird, wobei die zur Verflüssigung benötigte Kälteleistung erzeugt wird und das Phosgen gleichzeitig von HCI- und CO-Eduktgasanteilen befreit wird.
  7. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß die elektrochemische Zelle in einem geschlossenen System (19), in das auch der Rekuperator (25) mit einbezogen wird, bei einem Druck von 2 bar bis 10 bar, vorzugsweise 2 bar bis 6 bar, betrieben wird, so daß gegenüber den reaktionsführenden Teilen nur ein geringer Differenzdruck bestehen bleibt.
EP96938176A 1995-11-23 1996-11-12 Verfahren zur direkten elektrochemischen gasphasen-phosgensynthese Expired - Lifetime EP0866890B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19543678A DE19543678A1 (de) 1995-11-23 1995-11-23 Verfahren zur direkten elektrochemischen Gasphasen-Phosgensynthese
DE19543678 1995-11-23
PCT/EP1996/004934 WO1997019205A1 (de) 1995-11-23 1996-11-12 Verfahren zur direkten elektrochemischen gasphasen-phosgensynthese

Publications (2)

Publication Number Publication Date
EP0866890A1 EP0866890A1 (de) 1998-09-30
EP0866890B1 true EP0866890B1 (de) 2000-02-09

Family

ID=7778221

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96938176A Expired - Lifetime EP0866890B1 (de) 1995-11-23 1996-11-12 Verfahren zur direkten elektrochemischen gasphasen-phosgensynthese

Country Status (13)

Country Link
US (1) US5961813A (de)
EP (1) EP0866890B1 (de)
JP (1) JP2000501143A (de)
KR (1) KR19990071564A (de)
CN (1) CN1060824C (de)
BR (1) BR9611499A (de)
CA (1) CA2237637A1 (de)
DE (2) DE19543678A1 (de)
ES (1) ES2144784T3 (de)
HK (1) HK1018081A1 (de)
MX (1) MX203057B (de)
TW (1) TW420726B (de)
WO (1) WO1997019205A1 (de)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997024473A1 (en) * 1995-12-28 1997-07-10 E.I. Du Pont De Nemours And Company Production of carbonyl halide
ES2215682T3 (es) * 1999-06-18 2004-10-16 Bayer Materialscience Ag Procedimiento para la degradacion de compuestos organicos en agua.
DE10149779A1 (de) 2001-10-09 2003-04-10 Bayer Ag Verfahren zur Rückführung von Prozessgas in elektrochemischen Prozessen
JP4879490B2 (ja) * 2002-10-04 2012-02-22 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア フッ素分離および発生装置
US7238266B2 (en) 2002-12-06 2007-07-03 Mks Instruments, Inc. Method and apparatus for fluorine generation and recirculation
CN102317244A (zh) 2009-01-29 2012-01-11 普林斯顿大学 二氧化碳转化至有机产物
US8500987B2 (en) 2010-03-19 2013-08-06 Liquid Light, Inc. Purification of carbon dioxide from a mixture of gases
US8721866B2 (en) 2010-03-19 2014-05-13 Liquid Light, Inc. Electrochemical production of synthesis gas from carbon dioxide
US8845877B2 (en) 2010-03-19 2014-09-30 Liquid Light, Inc. Heterocycle catalyzed electrochemical process
US8568581B2 (en) 2010-11-30 2013-10-29 Liquid Light, Inc. Heterocycle catalyzed carbonylation and hydroformylation with carbon dioxide
US8961774B2 (en) 2010-11-30 2015-02-24 Liquid Light, Inc. Electrochemical production of butanol from carbon dioxide and water
US9090976B2 (en) 2010-12-30 2015-07-28 The Trustees Of Princeton University Advanced aromatic amine heterocyclic catalysts for carbon dioxide reduction
US10024590B2 (en) 2011-12-21 2018-07-17 Xergy Inc. Electrochemical compressor refrigeration appartus with integral leak detection system
IN2014DN06093A (de) 2011-12-21 2015-08-14 Xergy Inc
US8845876B2 (en) 2012-07-26 2014-09-30 Liquid Light, Inc. Electrochemical co-production of products with carbon-based reactant feed to anode
US8641885B2 (en) 2012-07-26 2014-02-04 Liquid Light, Inc. Multiphase electrochemical reduction of CO2
US9175407B2 (en) 2012-07-26 2015-11-03 Liquid Light, Inc. Integrated process for producing carboxylic acids from carbon dioxide
US10329676B2 (en) 2012-07-26 2019-06-25 Avantium Knowledge Centre B.V. Method and system for electrochemical reduction of carbon dioxide employing a gas diffusion electrode
US9267212B2 (en) 2012-07-26 2016-02-23 Liquid Light, Inc. Method and system for production of oxalic acid and oxalic acid reduction products
US8858777B2 (en) 2012-07-26 2014-10-14 Liquid Light, Inc. Process and high surface area electrodes for the electrochemical reduction of carbon dioxide
US9873951B2 (en) 2012-09-14 2018-01-23 Avantium Knowledge Centre B.V. High pressure electrochemical cell and process for the electrochemical reduction of carbon dioxide
AU2013318506A1 (en) * 2012-09-19 2015-03-26 Liquid Light, Inc. Electrochemical co-production of chemicals utilizing a halide salt
DE102013009230A1 (de) * 2013-05-31 2014-12-04 Otto-von-Guericke-Universität Verfahren und Membranreaktor zur Herstellung von Chlor aus Chlorwasserstoffgas
US9663373B2 (en) 2013-07-26 2017-05-30 Sabic Global Technologies B.V. Method and apparatus for producing high purity phosgene
US11173456B2 (en) 2016-03-03 2021-11-16 Xergy Inc. Anion exchange polymers and anion exchange membranes incorporating same
US10386084B2 (en) 2016-03-30 2019-08-20 Xergy Ltd Heat pumps utilizing ionic liquid desiccant
EP3421426A1 (de) * 2017-06-29 2019-01-02 Covestro Deutschland AG Energieeffizientes verfahren zur bereitstellung von phosgen-dampf
DE102017219974A1 (de) * 2017-11-09 2019-05-09 Siemens Aktiengesellschaft Herstellung und Abtrennung von Phosgen durch kombinierte CO2 und Chlorid-Elektrolyse
CN109468658B (zh) * 2018-12-11 2020-10-30 浙江巨圣氟化学有限公司 一种碳酰氟的制备方法
US11454458B1 (en) 2019-04-12 2022-09-27 Xergy Inc. Tube-in-tube ionic liquid heat exchanger employing a selectively permeable tube
KR20220005048A (ko) * 2019-04-25 2022-01-12 바스프 에스이 포스겐의 제조 방법
EP3805429A1 (de) * 2019-10-08 2021-04-14 Covestro Deutschland AG Verfahren und elektrolysevorrichtung zur herstellung von chlor, kohlenmonoxid und gegebenenfalls wasserstoff

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS541281A (en) * 1977-06-04 1979-01-08 Oval Eng Co Ltd Method of synthesizing prganic or indrganic substances
US5411641A (en) * 1993-11-22 1995-05-02 E. I. Du Pont De Nemours And Company Electrochemical conversion of anhydrous hydrogen halide to halogen gas using a cation-transporting membrane

Also Published As

Publication number Publication date
DE59604440D1 (de) 2000-03-16
MX9803973A (es) 1998-09-30
US5961813A (en) 1999-10-05
CN1060824C (zh) 2001-01-17
MX203057B (es) 2001-07-13
ES2144784T3 (es) 2000-06-16
WO1997019205A1 (de) 1997-05-29
CN1202937A (zh) 1998-12-23
CA2237637A1 (en) 1997-05-29
DE19543678A1 (de) 1997-05-28
HK1018081A1 (en) 1999-12-10
JP2000501143A (ja) 2000-02-02
BR9611499A (pt) 1999-07-13
EP0866890A1 (de) 1998-09-30
TW420726B (en) 2001-02-01
KR19990071564A (ko) 1999-09-27

Similar Documents

Publication Publication Date Title
EP0866890B1 (de) Verfahren zur direkten elektrochemischen gasphasen-phosgensynthese
EP2024280B1 (de) Verfahren zur herstellung von chlor aus chlorwasserstoff und sauerstoff
US4311569A (en) Device for evolution of oxygen with ternary electrocatalysts containing valve metals
US4528083A (en) Device for evolution of oxygen with ternary electrocatalysts containing valve metals
EP1327011B1 (de) Verfahren zur elektrochemischen herstellung von wasserstoffperoxid
EP1743882A1 (de) Verfahren zur Herstellung von Isocyanaten
WO2003014419A2 (de) Elektrolysezelle, insbesondere zur elektrochemischen herstellung von chlor
EP1283281B1 (de) Verfahren zur elektrochemischen Herstellung von Chlor aus wässrigen Lösungen von Chlorwasserstoff
DE102018210303A1 (de) Elektrochemische Niedertemperatur Reverse-Watergas-Shift Reaktion
DE102019205316A1 (de) Energieeffiziente Wasserstoffherstellung
EP1664386B1 (de) Verfahren zur elektrolyse einer wässrigen lösung von chlorwasserstoff oder alkalichlorid
EP4041939A1 (de) Verfahren und elektrolysevorrichtung zur herstellung von chlor, kohlenmonoxid und gegebenenfalls wasserstoff
US20240044021A1 (en) A cascade co2 electroreduction system and related methods for enhanced production of ethylene
DE102020208604B4 (de) Energiewandlungssystem
WO2019091653A1 (de) Herstellung und abtrennung von phosgen durch kombinierte co2 und chlorid-elektrolyse
US6203692B1 (en) Electrochemical purification of chlorine
EP1106714B1 (de) Verfahren zur Herstellung von Halogenen durch Gasphasenelektrolyse
WO2024059990A1 (en) Methods and apparatus for indirect production of hydrogen peroxide using amyl-anthraquinone for hydrogen transport
EP4324786A1 (de) Verfahren und anlage zur bereitstellung von synthesegas und zur herstellung von methanol
EP4283017A1 (de) Verfahren und anlage zur durchführung eines stoffumwandelnden verfahrens unter verwendung einer hochtemperaturzelle
WO2017174563A1 (de) Bifunktionelle elektrode und elektrolysevorrichtung für die chlor-alkali-elektrolyse

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980623

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB IT NL

17Q First examination report despatched

Effective date: 19981106

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB IT NL

REF Corresponds to:

Ref document number: 59604440

Country of ref document: DE

Date of ref document: 20000316

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000324

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2144784

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20011017

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20011114

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20011116

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20011123

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20011130

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20011205

Year of fee payment: 6

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021130

BERE Be: lapsed

Owner name: *BAYER A.G.

Effective date: 20021130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030603

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030731

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20030601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20031213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051112