WO2007119708A1 - 磁気ランダムアクセスメモリ - Google Patents

磁気ランダムアクセスメモリ Download PDF

Info

Publication number
WO2007119708A1
WO2007119708A1 PCT/JP2007/057839 JP2007057839W WO2007119708A1 WO 2007119708 A1 WO2007119708 A1 WO 2007119708A1 JP 2007057839 W JP2007057839 W JP 2007057839W WO 2007119708 A1 WO2007119708 A1 WO 2007119708A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
wiring
magnetization
layer
random access
Prior art date
Application number
PCT/JP2007/057839
Other languages
English (en)
French (fr)
Inventor
Nobuyuki Ishiwata
Hideaki Numata
Norikazu Ohshima
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to US12/297,153 priority Critical patent/US8351249B2/en
Priority to JP2008510946A priority patent/JP5099368B2/ja
Publication of WO2007119708A1 publication Critical patent/WO2007119708A1/ja
Priority to US13/590,634 priority patent/US8547733B2/en
Priority to US13/606,737 priority patent/US8526222B2/en
Priority to US14/011,094 priority patent/US8923042B2/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1659Cell access
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices

Definitions

  • the present invention relates to an MRAM (Magnetic Random Access Memory), and more particularly to an MRAM that writes data by inverting a magnetic field using a spin-polarized current.
  • MRAM Magnetic Random Access Memory
  • spin Spin injection magnetization reversal method
  • spin spin injection magnetization reversal method
  • the required current increases as the size of the memory cell decreases.
  • the spin injection magnetization reversal method the required current decreases as the size of the memory cell decreases. Therefore, the spin transfer magnetization reversal method is considered to be a powerful method for realizing a large-capacity MRAM.
  • Magnetic recording is a technology that causes magnetic reversal by passing a spin-polarized current in the in-plane direction of the magnetic recording layer.
  • Such a technique is disclosed in, for example, Japanese Unexamined Patent Publication No. 2005-191032, Japanese Unexamined Patent Publication No. 2005-123617, and US Pat. No. 6,781,871.
  • the domain wall of the magnetic recording layer is moved, and torque is applied to the magnetization of the magnetic recording layer by the Z or spin-polarized current, thereby magnetically
  • the magnetic layer of the recording layer can be reversed.
  • the technology that allows spin-polarized current to flow in the in-plane direction of the magnetic recording layer eliminates the need for spin-polarized current to flow through the tunnel barrier layer. The problem of destruction can be effectively avoided.
  • an object of the present invention is to provide a technique for suppressing a temperature rise due to a write current flowing in the in-plane direction of a magnetic recording layer.
  • a magnetic random access memory includes a magnetization reversal region having reversible magnetization, a magnetic recording layer through which a write current flows in an in-plane direction, and fixed magnetization.
  • An endothermic structure Such a magnetic random access memory dissipates heat generated in the magnetic recording layer by the heat absorption structure, and can suppress a temperature rise due to a write current flowing in the in-plane direction.
  • the magnetic recording layer further includes a first magnetization fixed region connected to the first boundary of the magnetization switching region, and a second magnetization fixed region connected to the second boundary of the magnetization switching region. And.
  • the write current is passed from the first magnetization fixed region to the second magnetization fixed region, or the second magnetic field fixed region force and the first magnetic field fixed region.
  • the heat absorbing structure is directly bonded to the magnetic recording layer.
  • the magnetic random access memory further includes a first wiring electrically connected to the first magnetization fixed region, and a second wiring electrically connected to the second magnetization fixed region. It comprises.
  • the endothermic structure is provided between the first magnetization fixed region and the first wiring. It is preferred that
  • the magnetic random access memory further includes a via contact that connects the second magnetic pin fixed region and the second wiring
  • an opening is provided in the heat absorbing structure, It is preferable to be provided so as to penetrate the opening.
  • the magnetic random access memory is further provided between the second magnetic pin fixed region and the second wiring so as to face the magnetic recording layer, and receives heat generated in the magnetic recording layer. It is preferable to provide another endothermic structure having a function of releasing heat.
  • the endothermic structure is directly joined to the first magnet fixing region, and the other endothermic structure is joined directly to the second magnet fixing region.
  • the magnetic random access memory further includes a third wiring electrically connected to the magnetic pinned layer
  • the heat absorption structure is provided between the third wiring and the magnetic pinned layer. You can be done.
  • the endothermic structure is directly joined to the magnetic pinned layer.
  • the heat absorbing structure is preferably provided in the via contact layer immediately below the wiring layer in which the third wiring is provided.
  • the third wiring has a wiring main body portion extending in a first direction in which a read current flows, and a protruding portion protruding from the wiring main body portion in a second direction perpendicular to the first direction. It is preferable to function as an endothermic structure.
  • the first wiring that is electrically connected to the first magnetization fixed region and through which the write current flows is further provided with a wiring main body portion that extends in a first direction through which the write current flows, and a wiring It is preferable to function as a heat absorption structure by including a projecting portion projecting in a second direction perpendicular to the first direction from the main body portion.
  • the heat absorption structure is located in the same wiring layer as the first wiring electrically connected to the first magnetization fixed region and the second wiring electrically connected to the second magnetization fixed region. Also good.
  • the heat absorbing structure may be located in the same wiring layer as the third wiring electrically connected to the magnetic pinned layer.
  • a magnetic random access memory in another aspect of the present invention, includes a magnetization switching region having reversible magnetization, a first magnetization fixed region connected to a first boundary of the magnetization switching region, and a magnetization switching region With a second magnetization fixed region connected to the second boundary of the A magnetic recording layer through which a current flows, a fixed magnetization layer having fixed magnetization, a nonmagnetic layer provided between the magnetization reversal region and the magnetization fixed layer, and the first magnetization fixed region electrically And a first wiring connected.
  • the write current is passed from the first magnetization fixed region to the second magnetization fixed region, or from the second magnetization fixed region to the first magnetization fixed region.
  • the first wiring has a wiring main body portion extending in a first direction in which a write current flows, and a protrusion protruding from the wiring main body portion in a second direction perpendicular to the first direction and facing the magnetic recording layer. It has.
  • the first wiring having the protrusion functions as a heat absorbing structure that dissipates the heat generated in the magnetic recording layer, and is caused by the write current flowing in the in-plane direction. Temperature rise can be suppressed.
  • a magnetic random access memory includes a magnetic recording layer including a magnetization switching region having a reversible magnetic field, a write current flowing in an in-plane direction, and a fixed magnetization A non-magnetic layer provided between the magnetization switching region and the magnetization fixed layer, and a third wiring electrically connected to the magnetization fixed layer.
  • the third wiring includes a wiring main body portion extending in the first direction in which a read current flows, a protruding portion that protrudes from the wiring main body portion in the second direction perpendicular to the first direction and that faces the magnetic recording layer. It is equipped with.
  • the third wiring having the protrusion functions as a heat absorbing structure that dissipates the heat generated in the magnetic recording layer, and is caused by the write current flowing in the in-plane direction. Temperature rise can be suppressed.
  • FIG. 1A is a cross-sectional view showing a configuration of an MRAM according to an embodiment of the present invention.
  • FIG. 1B is a conceptual diagram illustrating the function of the MRAM in FIG. 1A.
  • FIG. 2 is a plan view showing a configuration of an MRAM according to one embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing a configuration of an MRAM according to another embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing a configuration of an MRAM according to still another embodiment of the present invention.
  • FIG. 5A is an oblique projection showing the structure of the MRAM in the first example.
  • FIG. 5B is a plan view showing the configuration of the MRAM according to the first embodiment.
  • FIG. 6A is an oblique projection showing the structure of the MRAM of the second embodiment.
  • FIG. 6B is a plan view showing the configuration of the MRAM according to the second embodiment.
  • FIG. 7A is an oblique projection showing the structure of the MRAM of the third embodiment.
  • FIG. 7B is a plan view showing the configuration of the MRAM according to the third embodiment.
  • FIG. 8A is an oblique projection showing the structure of the MRAM of the fourth embodiment.
  • FIG. 8B is an oblique projection showing another configuration of the MRAM according to the fourth embodiment.
  • FIG. 9A is an oblique projection showing the structure of the MRAM of the fifth embodiment.
  • FIG. 9B is an oblique projection showing another configuration of the MRAM according to the fifth embodiment.
  • FIG. 9C is an oblique projection showing still another configuration of the MRAM according to the fifth embodiment.
  • FIG. 10A is an oblique projection showing the structure of the MRAM of Example 6.
  • FIG. 10B is a plan view showing the configuration of the MRAM in Embodiment 6.
  • FIG. 11A is an oblique projection showing the structure of the MRAM of Example 7.
  • FIG. 11B is a plan view showing the configuration of the MRAM according to the seventh embodiment.
  • FIG. 12A is an oblique projection showing the structure of the MRAM of the eighth embodiment.
  • FIG. 12B is a plan view showing the configuration of the MRAM according to the eighth embodiment.
  • FIG. 13A is a perspective view showing the structure of the MRAM of Example 9.
  • FIG. 13B is a plan view showing the configuration of the MRAM according to the ninth embodiment.
  • FIG. 1A is a cross-sectional view showing a schematic configuration of an MRAM according to an embodiment of the present invention.
  • the memory cell 1 is formed in the insulating layer 10.
  • the memory cell 1 includes a magnetic recording layer 2, a tunnel barrier layer 3, and a magnetic pinned layer 4.
  • the magnetic recording layer 2 includes a magnetization switching region 5 and magnetic pinned regions 6 and 7.
  • the magnetization switching area 5 is an area for storing 1-bit data as the direction of the magnetic field.
  • the magnetization switching region 5 has a shape that is long in the X-axis direction.
  • the magnetic field of 5 is oriented parallel to the X-axis direction.
  • the magnetization switching region 5 is made of a magnetically soft ferromagnet, and the magnetization of the magnetization switching region 5 can be switched.
  • the state where the magnetic key direction of the magnetic field inversion region 5 is the + x direction is associated with the data “1”
  • the state where the magnetization direction of the magnetization switching region 5 is the X direction is Corresponds to data “0”.
  • the magnetic pinned regions 6 and 7 are regions used for injecting the spin-polarized current into the magnetization switching region 5 in the in-plane direction, and both are made of a ferromagnetic material.
  • the magnetic domain fixed region 6 is joined to the magnetic domain inversion region 5 at a boundary 8 located at one end of the magnetic domain inversion region 5, and the magnetization fixed region 7 is a boundary located at the other end of the magnetization inversion region 5. 9 is joined to the magnetization switching region 5.
  • the magnetic pole fixed regions 6 and 7 are adjacent to the magnetic pole inversion region 5 in the X-axis direction and have a long shape in the X-axis direction.
  • the magnetization directions of the magnetic pinned regions 6 and 7 are both fixed to the magnetic field inversion region 5 in the direction of the force.
  • the magnetic key of the magnetic key fixing region 6 is fixed toward the + x direction
  • the magnetic key of the magnetic key fixing region 7 is fixed toward the X direction.
  • the magnetization directions of the magnetic pinned regions 6 and 7 may be fixed toward the direction away from the magnetic pinned region 5.
  • the magnetic key of the magnetized fixed region 6 is fixed toward the X direction
  • the magnetic key of the magnetic key fixed region 7 is fixed toward the + x direction.
  • the tunnel barrier layer 3 is a thin, nonmagnetic insulating layer for allowing a tunnel current to flow between the magnetization fixed layer 4 and the magnetization switching region 5.
  • the tunnel barrier layer 3 is made of, for example, acid aluminum (AIO) or magnesium oxide (MgO).
  • the magnetic layer pinned layer 4 is a ferromagnetic layer in which the magnetic layer is fixed.
  • the magnetic pinned layer 4 is a magnetically hard ferromagnetic material, and is made of, for example, CoFe. As shown in FIG. 2, the magnetic pinned layer 4 has a shape that is long in the X-axis direction, and the magnetic pin of the magnetic pinned layer 4 is directed in the -X direction. .
  • the magnetization switching region 5, the tunnel barrier layer 3, and the magnetization fixed layer 4 of the magnetic recording layer 2 constitute a magnetic tunnel junction (MTJ) that exhibits the TMR effect, and the resistance of the magnetic tunnel junction is fixed by magnetization. It depends on the relative direction of magnetization between the layer 4 and the magnetization switching region 5.
  • MTJ magnetic tunnel junction
  • the magnetic tunnel junction TM R effect is used.
  • the resistance of the magnetic tunnel junction composed of the tunnel barrier layer 3 and the magnetization fixed layer 4 depends on the magnetization fixed layer 4, the magnetization switching region 5, and the relative direction of magnetization due to the TMR effect.
  • the magnetic tunnel junction exhibits a relatively high resistance
  • the magnetization fixed layer 4 and the magnetic switching region 5 When the magnetic fields of these are parallel, the magnetic tunnel junction exhibits a relatively low resistance.
  • Data stored in the magnetic recording layer 2 is identified by detecting a change in resistance of the magnetic tunnel junction.
  • the change in resistance of the magnetic tunnel junction is measured by applying a predetermined voltage to the magnetic tunnel junction and measuring the current flowing through the magnetic tunnel junction, or by flowing a predetermined current through the magnetic tunnel junction. Can be identified by measuring the voltage generated in
  • Data is written into the magnetic domain inversion region 5 by injecting a spin-polarized current from the magnetic domain fixed region 6 or the magnetic domain fixed region 7 into the magnetization inverted region 5.
  • a current flows through the magnetic recording layer 2 in the + x direction.
  • a spin-polarized current is injected from the magnetization fixed region 6 to the magnetization switching region 5 (the magnetization is fixed in the + x direction).
  • the domain wall of the magnetic domain inversion region 5 is pushed in the + x direction by the injected spin-polarized current, or a torque is applied to the magnetic domain and the magnetization of the magnetization inversion region 5 is directed in the + x direction.
  • data “1” is written to the magnetic recording layer.
  • the MRAM according to the embodiment of the present invention is further provided with heat absorbing structures 11 and 12.
  • the endothermic structure 11 is provided so as to face the lower surface of the magnetic recording layer 2, and the endothermic structure 12 is provided so as to face the upper surface of the magnetic recording layer 2.
  • These endothermic structures 11 and 12 are made of a material having high thermal conductivity, specifically, a metal such as copper, aluminum, or tungsten, and play a role of receiving and releasing heat generated by the magnetic recording layer 2. .
  • the resistance of the magnetic recording layer 2 made of a ferromagnetic material is inevitably large, so that when the spin-polarized current is passed during the write operation, the magnetic recording layer 2 generates heat. It becomes a problem.
  • endothermic structures 11, 12 are generated in the magnetic recording layer 2. It functions as a heat sink that dissipates the heat generated and effectively suppresses the temperature rise of the magnetic recording layer 2.
  • the MRAM in FIG. 1A it is possible to provide only one of the heat-absorbing structures 11 and 12 provided with the heat-absorbing structures 11 and 12 facing the upper and lower surfaces of the magnetic recording layer 2, respectively. It is.
  • the endothermic structure 11 can be directly bonded to the lower surface of the magnetic recording layer 2. It is preferable for the heat absorbing structure 11 to be directly joined to the magnetic recording layer 2 in order to improve the heat dissipation efficiency. Similarly, the endothermic structure 12 can be directly bonded to the magnetization fixed layer 4.
  • the geometrical arrangement of the magnetization switching region 5 and the magnetization fixed regions 6 and 7 in the magnetic recording layer 2 is such that the magnetization switching region 5 and the magnetization fixed regions 6 and 7 as shown in FIG.
  • the arrangement is not limited to a straight line.
  • the magnetization switching region 5 can be formed long in the X-axis direction, while the magnetic pinned regions 6, 7 can be formed long in the y-axis direction.
  • the magnetic keys in the magnetic key fixing regions 6 and 7 are both fixed in the + y direction.
  • the magnetization of the magnetic domain fixed regions 6 and 7 can both be fixed in the y-direction.
  • FIG. 5A is an oblique projection showing the configuration of the MRAM according to the first embodiment.
  • the memory cell 1 includes a magnetic recording layer 2, a tunnel barrier layer 3, and a magnetic pinned layer 4.
  • the magnetic pinned layer 4 is an upper portion through which a read current I flows through the via contact 19.
  • the upper wiring 21 is provided so as to extend in the y-axis direction.
  • the read current I flows in the y-axis direction.
  • the endothermic structure 11 includes the magnetic recording layer 2 of the memory cell 1 and the write current I
  • the endothermic structure 11 is connected to the lower wiring 15 via the via contact 14 and also connected to the magnetized fixed region 6 of the magnetic recording layer 2 via the via contact 13.
  • the lower wiring 18 is connected to the magnetic pinned region 7 of the magnetic recording layer 2 through the via contact 16.
  • the via contact 16 is provided on the endothermic structure 11. It is provided so as to penetrate the formed opening 11a, and is electrically separated from the endothermic structure 11.
  • the data stored in the magnetization switching region 5 of the magnetic recording layer 2 is discriminated.
  • a write current I is passed from the lower wiring 15 to the lower wiring 18 or the lower wiring 18 writes to the lower wiring 15 depending on the data to be written.
  • a spin-polarized current is injected from the magnetization fixed region 6 to the magnetization switching region 5, and the magnetization of the magnetization switching region 5 is directed in the + x direction. That is, data “1” is written to the magnetic recording layer. Conversely, when the write current I flows from the lower wiring 18 to the lower wiring 15, the magnetization fixed region 7
  • a spin-polarized current is injected into the force reversal region 5 and the magnetization of the magnetization reversal region 5 is directed in the ⁇ X direction. That is, data “0” is written to the magnetic recording layer.
  • the endothermic structure 11 is preferably arranged in a shape and arrangement so that the area facing the magnetic recording layer 2 is as large as possible.
  • FIG. 5B is a plan view showing a preferred shape and arrangement of the endothermic structure 11.
  • the endothermic structure 11 is preferably provided so as to face at least the entire magnetization reversal region 5 and the magnetic pinned region 6 of the magnetic recording layer 2. Such an arrangement increases the area facing the magnetic recording layer 2 and effectively improves the heat dissipation efficiency of the heat absorbing structure 11.
  • the endothermic structure 11 is made of the magnetic recording layer 2 except for the part facing the opening 11 a provided in the endothermic structure 11. It is preferable that it is provided so as to face the whole.
  • the endothermic structure 11 is provided so as to face the entire magnetic recording layer 2 except for the portion facing the opening 11a provided in the endothermic structure 11. The arrangement is shown.
  • FIG. 6A is an oblique projection illustrating the configuration of the MRAM according to the second embodiment.
  • two endothermic structures 11A and 11B are provided between the magnetic recording layer 2 and the lower wirings 15 and 18. Endotherm
  • the structure 11A is connected to the magnetic pinned region 6 of the magnetic recording layer 2 through the via contact 13, and is connected to the lower wiring 15 through the via contact 14.
  • the endothermic structure 11 B is connected to the magnetization fixed region 7 of the magnetic recording layer 2 through the via contact 16 and is connected to the lower wiring 18 through the via contact 17.
  • the read operation and the write operation are performed in the same manner as the MRAM according to the first embodiment.
  • the endothermic structures 11A and 11B are preferably arranged in a shape and arrangement so that the area facing the magnetic recording layer 2 is as large as possible.
  • FIG. 6B is a plan view showing a preferred structure and arrangement of the endothermic structures 11A and 1IB.
  • the endothermic structure 11A is preferably provided so as to face at least the entire magnetic field fixing area 6 of the magnetic recording layer 2, and the endothermic structure 11B includes at least the magnetic field fixing area of the magnetic recording layer 2. It is preferable to be provided so as to oppose the entirety of 7. Such an arrangement increases the area of the endothermic structures 11A, 1IB facing the magnetic recording layer 2 and effectively improves the heat dissipation efficiency.
  • the endothermic structures 11 A and 11 B are disposed so as to face at least a part of the magnetic field inversion region 5 of the magnetic recording layer 2. It is more preferable that the endothermic structures 11A and 1IB are arranged so as to face at least part of the lower surface of the magnetic pinned layer 4 (the surface bonded to the tunnel barrier layer 3). More preferably.
  • FIG. 6B shows an arrangement in which the endothermic structures 11A and 1 IB are opposed to a part of the lower surface of the force magnetization fixed layer 4 respectively. It is preferable that the endothermic structures 11A and 11B have a narrow interval, and most preferably, the endothermic structures 11A and 11B are separated by the same interval as the minimum pitch of the design rule of the MRAM. Is preferred.
  • FIG. 7A is an oblique projection illustrating the configuration of the MRAM according to the third embodiment.
  • the endothermic structure 12 is provided between the magnetic pinned layer 4 and the upper wiring 21 of the memory cell 1.
  • the endothermic structure 12 is connected to the magnetic pinned layer 4 via the via contact 19 and is connected to the upper wiring 21 via the via contact 20.
  • the read operation and the write operation are performed in the same manner as the MRAM according to the first embodiment.
  • the endothermic structure 12 has a shape and a shape so that an area facing the magnetic recording layer 2 is as large as possible. It is preferable to arrange by the arrangement.
  • FIG. 7B is a plan view showing a preferred structure and arrangement of the endothermic structure 12.
  • the endothermic structure 12 is preferably provided so as to face at least the entire portion of the magnetic recording layer 2 between the via contacts 13 and 16. Such an arrangement makes it possible to dissipate heat of the entire portion of the magnetic recording layer 2 that generates heat (that is, the portion where the spin-polarized current flows). In order to further improve the heat dissipation efficiency, it is more preferable to provide the heat absorption structure 12 force so as to face the entire magnetic recording layer 2. Such an arrangement increases the area facing the magnetic recording layer 2 and effectively improves the heat dissipation efficiency of the heat absorbing structure 12.
  • FIG. 8A is an oblique projection illustrating the configuration of the MRAM according to the fourth embodiment.
  • the endothermic structure 11 is directly bonded to the entire bottom surface of the magnetic recording layer 2.
  • the heat absorbing structure 11 is connected to the lower wiring 15 via the via contact 14 and further connected to the lower wiring 18 via the via contact 17.
  • the endothermic structure 11 is formed of a material having a higher resistivity than the magnetic recording layer 2. This is important for allowing a larger amount of write current to flow through the magnetic recording layer 2.
  • the write current is shunted to the endothermic structure 11, but the endothermic structure 11 flows to the endothermic structure 11 by being formed of a material having a higher resistivity than the magnetic recording layer 2.
  • the current can be reduced.
  • the fact that the endothermic structure 11 is directly bonded to the entire bottom surface of the magnetic recording layer 2 makes it easier to transfer heat from the magnetic recording layer 2 to the endothermic structure 11 and effectively improves the heat dissipation efficiency.
  • FIG. 8B is a perspective view showing another configuration of the MRAM according to the fourth exemplary embodiment.
  • two endothermic structures 11A and 11B are directly bonded to the lower surface of the magnetic recording layer 2.
  • the endothermic structure 11A is directly joined to the magnetic pinned region 6 of the magnetic recording layer 2 and connected to the lower wiring 15 via the via contact.
  • the endothermic structure 11 B is directly bonded to the magnetic pinned region 7 of the magnetic recording layer 2 and is connected to the lower wiring 18 via the via contact 17.
  • the fact that the two endothermic structures 11A, 1 IB are directly bonded to the lower surface of the magnetic recording layer 2 facilitates the transfer of heat from the magnetic recording layer 2 to the endothermic structures 11A, 11B.
  • the endothermic structures 11A and 11B are electrically separated, the current flowing through the endothermic structure 11 (without flowing through the magnetic recording layer 2) can be reduced.
  • the read operation and the write operation are performed in the same manner as the MRAM according to the first embodiment.
  • the endothermic structure 11A has a width in the X-axis direction (less than the lower wiring 15 through which the write current I flows)
  • the width in the direction perpendicular to the direction in which the lower wiring 15 extends is large.
  • Such a structure facilitates the transfer of heat from the magnetic recording layer 2 to the heat absorbing structures 11A and 1IB, and effectively improves the heat dissipation efficiency.
  • the write current I flows.
  • the width in the X-axis direction (that is, the width in the direction perpendicular to the direction in which the lower wiring 18 extends) is larger than the lower wiring 18 that is W2.
  • FIG. 9A is an oblique projection illustrating the configuration of the MRAM according to the fifth embodiment.
  • the endothermic structure 12 is directly bonded to the magnetic pinned layer 4.
  • the endothermic structure 12 is provided in a via contact layer located immediately below the wiring layer in which the upper wiring 21 is provided, and the endothermic structure 12 is directly joined to the upper wiring 21.
  • the endothermic structure 12 is mainly formed of copper (Cu) or tungsten (W).
  • the structure in which the endothermic structure 12 is provided in the via contact layer located immediately below the wiring layer in which the upper wiring 21 is provided does not require an additional step for forming the endothermic structure 12. Is preferred.
  • the read operation and write operation of the MRAM of the fifth embodiment having such a configuration are performed in the same manner as the MRAM of the first embodiment.
  • the endothermic structure 12 has a width in the X-axis direction (ie, lower than the lower wiring 15 through which the read current I flows).
  • the width in the direction perpendicular to the direction in which the lower wiring 15 extends is preferably large. Such a structure facilitates heat transfer from the magnetic recording layer 2 to the heat absorbing structure 12 and effectively improves heat dissipation efficiency.
  • the film thickness d of the endothermic structure 12 is preferably thicker than the film thickness d of the magnetic recording layer 2.
  • the endothermic structure 12 does not need to be perfectly aligned with the magnetic pinned layer 4.
  • the endothermic structure 12 is The magnetic pinned layer 4 can be provided so as to be joined to only a part of the magnetic pinned layer 4. Further, as shown in FIG. 9C, the endothermic structure 12 can be disposed so as to be bonded to the entire upper surface of the magnetic pinned layer 4 and to protrude from the magnetic pinned layer 4. It is.
  • FIG. 10A is an oblique projection illustrating the configuration of the MRAM according to the sixth embodiment.
  • the upper wiring 21 is formed in a shape that functions as a heat absorbing structure. That is, the upper wiring 21 is provided with a protruding portion 21a that protrudes in a direction (X-axis direction in Example 6) perpendicular to the extending direction (Y-axis direction in Example 6).
  • the protruding portion 21a is formed in a shape facing the upper surface of the magnetic recording layer 2.
  • the upper wiring 21 having such a shape effectively functions as a heat absorbing structure, and effectively dissipates heat generated in the magnetic recording layer 2.
  • the upper wiring 21 functions as an endothermic structure
  • a wiring layer for forming the endothermic structure is not required, and thus it is possible to configure the MRAM with a small number of wiring layers.
  • the read operation and write operation of the MRAM according to the sixth embodiment having such a configuration are performed in the same manner as the MRAM according to the first embodiment.
  • the upper wiring 21 is preferably arranged in a shape and arrangement so that the area facing the magnetic recording layer 2 is as large as possible.
  • FIG. 10B is a plan view showing a preferred shape of the upper wiring 21.
  • the wiring body portion 21b of the upper wiring 21 is in the y-axis direction (read current I flows
  • the protruding portion 21a is provided so as to protrude in the X-axis direction from the wiring body portion 21b.
  • the protruding portion 21a is preferably provided so that the upper wiring 21 has a shape that faces at least the entire portion of the magnetic recording layer 2 between the via contacts 13 and 16.
  • Such an arrangement enables heat dissipation of the entire portion of the magnetic recording layer 2 that generates heat (that is, the portion where the spin-polarized current flows).
  • it is more preferable that the upper wiring 21 is provided so as to face the entire magnetic recording layer 2. Such an arrangement increases the area facing the magnetic recording layer 2 and effectively improves the heat dissipation efficiency of the upper wiring 21.
  • FIG. 11A is an oblique projection diagram illustrating the configuration of the MRAM according to the seventh embodiment.
  • the lower wirings 15 and 18 are formed in a shape that functions as an endothermic structure. That is, The lower wiring 15 is provided with a projecting portion 15a projecting in a direction (X-axis direction in Example 7) perpendicular to the extending direction (Y-axis direction in Example 7), and the lower wiring 18 is perpendicular to the extending direction. A protruding portion 18a protruding in any direction is provided.
  • the protrusions 15a and 18a are formed in a shape facing the upper surface of the magnetic recording layer 2.
  • the lower wirings 15 and 18 having such a shape effectively function as a heat absorbing structure and effectively dissipate heat generated in the magnetic recording layer 2.
  • a wiring layer for forming the endothermic structure is not required. Therefore, it is possible to configure an MRAM with a small number of wiring layers.
  • the read operation and the write operation of the MRAM according to the seventh embodiment having such a configuration are performed in the same manner as the MRAM according to the first embodiment.
  • the lower wirings 15 and 18 are preferably arranged in a shape and arrangement so that the area facing the magnetic recording layer 2 is as large as possible.
  • FIG. 11B is a plan view showing the shape of a preferred lower wiring 15, 18.
  • the wiring body portion 15b of the lower wiring 15 has a y-axis direction (write current I
  • the protruding portion 15a is provided so as to protrude in the X-axis direction from the wiring body portion 21b.
  • the wiring main body portion 18b of the lower wiring 18 has a y-axis direction (write current I
  • the protruding portion 18a is provided so as to protrude in the X-axis direction from the wiring body portion 18b.
  • the protrusion 15a is preferably provided so that the lower wiring 15 faces at least the entire magnetic field fixing region 6 of the magnetic recording layer 2.
  • the protrusion 18a has at least the lower wiring 18 magnetically. It is preferable that the recording layer 2 is provided so as to face the entire magnetic field fixing region 7. Such an arrangement increases the area where the lower wirings 15 and 18 are opposed to the magnetic recording layer 2 and effectively improves the heat dissipation efficiency.
  • the protrusions 15a and 18a are preferably arranged so that the lower wirings 15 and 18 face at least a part of the magnetization switching region 5 of the magnetic recording layer 2. It is more preferable that the magnetic pinned layer 4 is disposed so as to face at least a part of the lower surface (the surface bonded to the tunnel barrier layer 3).
  • FIG. 11B shows an arrangement in which the lower wirings 15 and 18 are opposed to a part of the lower surface of the magneto-magnetic pinned layer 4.
  • the protrusions 15a and 18a preferably have a small interval, and most preferably, the protrusions 15a and 18a are provided on the MRAM. It is preferable that they are separated by the same interval as the minimum pitch of the design rule.
  • FIG. 12A is a perspective view illustrating the configuration of the MRAM according to the eighth embodiment.
  • the heat absorbing structure 11 facing the lower surface of the magnetic recording layer 2 is provided in the same wiring layer as the wiring layer in which the lower wirings 15 and 18 are formed.
  • the heat absorbing structure 11 is provided between the lower wirings 15 and 18 and is electrically insulated from the lower wirings 15 and 18.
  • the configuration in which the endothermic structure 11 is provided in the same wiring layer as the wiring layer in which the lower wirings 15 and 18 are formed is preferable because a process for forming the endothermic structure is not additionally required. .
  • the endothermic structure 11 is preferably arranged in a shape and arrangement so that the area facing the magnetic recording layer 2 is as large as possible. For this purpose, it is preferable that the endothermic structure 11 is provided so as to cross the magnetic recording layer 2 as shown in FIG. 12B.
  • the lower wiring 15 and the endothermic structure 11 are separated at the same pitch as the minimum pitch of the design rule of the MRAM. It is suitable. Similarly, the lower wiring 18 and the endothermic structure 11 are preferably separated at the same interval as the minimum pitch of the design rule of the MRAM.
  • FIG. 13A is a perspective view illustrating the configuration of the MRAM according to the eighth embodiment.
  • the heat absorbing structures 12A and 12B facing the upper surface of the magnetic recording layer 2 are provided in the same wiring layer as the wiring layer in which the upper wiring 21 is formed.
  • the heat absorbing structures 12A and 12B are electrically insulated from the upper wiring 21.
  • the configuration in which the heat absorbing structures 12A and 12B are provided in the same wiring layer as the wiring layer in which the upper wiring 21 is formed is preferable because it does not require additional steps for forming the heat absorbing structure. is there.
  • the endothermic structures 12A and 12B are arranged in such a shape and arrangement that the area facing the magnetic recording layer 2 is as large as possible.
  • the endothermic structures 12A and 12B have at least one of the magnetic inversion regions 5 of the magnetic recording layer 2.
  • the heat absorption structures 12A and 12B are joined to the upper surface of the magnetic pinned layer 4 (bonded to the tunnel barrier layer 3). It is further preferable to arrange the surface to face at least a part of the surface.
  • each of the heat absorbing structures 12A and 12B is opposed to a part of the upper surface of the force / magnetic pinned layer 4. It is preferable that the distance between the upper wiring 21 and the endothermic structure 12A is narrow, and most preferably, the upper wiring 21 and the endothermic structure 12A have the same interval as the minimum pitch of the design rule of the MRAM. It is preferred that they are separated. Similarly, it is preferable that the upper wiring 21 and the endothermic structure 12B are separated by the same interval as the minimum pitch of the design rule of the MRAM.
  • an MRAM including only one of the endothermic structure facing the upper surface of the magnetic recording layer 2 and the endothermic structure facing the lower surface is presented.
  • the heat dissipation efficiency is further improved.
  • the MRAM includes both the endothermic structure facing the upper surface of the magnetic recording layer 2 and the endothermic structure facing the lower surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

 本発明による磁気ランダムアクセスメモリは、反転可能な磁化を有する磁化反転領域を備え、面内方向に書き込み電流が流される磁気記録層と、固定された磁化を有する磁化固定層と、磁化反転領域と磁化固定層との間に設けられた非磁性層と、磁気記録層に対向するように設けられ、磁気記録層で発生した熱を受け取って放熱する機能を有する吸熱構造体とを具備する。このような磁気ランダムアクセスメモリは、吸熱構造体によって磁気記録層で発生した熱を放熱し、面内方向に流れる書き込み電流による温度上昇を抑制することができる。

Description

明 細 書
磁気ランダムアクセスメモリ
技術分野
[0001] 本発明は、 MRAM (磁気ランダムアクセスメモリ)に関しており、特に、スピン偏極電 流を用 ヽて磁ィ匕を反転させてデータを書き込む MRAMに関する。
背景技術
[0002] 近年提案されている有力な MRAMの書き込み方式の一つ力 スピン偏極電流を 書き込み電流として磁気記録層に注入することによって磁気記録層の磁化を反転さ せるスピン注入磁化反転方式(spin momentum transfer)である。電流磁界による磁 化反転では、メモリセルのサイズが小さくなると共に必要な電流が増大するのに対し 、スピン注入磁化反転方法では、メモリセルのサイズが小さくなると共に必要な電流 が減少する。従って、スピン注入磁化反転方法は、大容量の MRAMを実現する有 力な方法であると考えられて 、る。
[0003] しかしながら、スピン注入磁化反転方式を磁気トンネル接合素子(magnetic tunnel j unction device)に適用する場合には、トンネルバリア層の破壊の問題を克服する必 要がある。スピン注入磁ィ匕反転方式によって磁ィ匕を反転させようとすると、現状では、 数 mA以上のスピン偏極電流を磁気記録層に注入する必要がある。しかし、このよう な大きな電流を磁気トンネル接合に流すことは、トンネルバリア層の破壊を招く恐れ がある。
[0004] トンネルバリア層の破壊の問題を克服するためのアプローチの一つ力 磁気記録 層の面内方向にスピン偏極電流を流すことによって磁ィ匕反転を起こす技術である。こ のような技術は、例えば、特開 2005— 191032号公報、特開 2005— 123617号公 報、及び米国特許第 6, 781, 871号公報に開示されている。磁気記録層の面内方 向にスピン偏極電流を流すことにより、磁気記録層の磁壁を移動させ、及び Z又はス ピン偏極電流によって磁気記録層の磁化にトルクを作用させ、これにより磁気記録層 の磁ィ匕を反転させることができる。磁気記録層の面内方向にスピン偏極電流を流す 技術は、トンネルバリア層にスピン偏極電流を流すことを不要化し、トンネルバリア層 の破壊の問題を有効に回避することができる。
[0005] 発明者の検討によれば、磁気記録層の面内方向にスピン偏極電流を流す MRAM の一つの問題は、磁気記録層における発熱である。強磁性体は、一般に、電気抵抗 率が大きいので、磁気記録層の面内方向における抵抗は不可避的に大きい。その 一方で、磁気記録層の磁ィ匕を反転させるためには、ある程度大きいスピン偏極電流 を流さざるを得ない。したがって、データ書き込みのために磁気記録層の面内方向に スピン偏極電流を流すと、メモリセルの温度が上昇してしまう。メモリセルの温度上昇 は、 MRAMの動作の信頼性を低下させるため好ましくない。磁気記録層を面内方向 に流れる書き込み電流による温度上昇を抑制するための技術の提供が望まれる。 発明の開示
[0006] 従って、本発明の目的は、磁気記録層を面内方向に流れる書き込み電流による温 度上昇を抑制する技術を提供することにある。
[0007] 本発明の一の観点において、磁気ランダムアクセスメモリは、反転可能な磁化を有 する磁化反転領域を備え、面内方向に書き込み電流が流される磁気記録層と、固定 された磁化を有する磁化固定層と、磁化反転領域と磁化固定層との間に設けられた 非磁性層と、磁気記録層に対向するように設けられ、磁気記録層で発生した熱を受 け取って放熱する機能を有する吸熱構造体とを具備する。このような磁気ランダムァ クセスメモリは、吸熱構造体によって磁気記録層で発生した熱を放熱し、面内方向に 流れる書き込み電流による温度上昇を抑制することができる。
[0008] 一実施形態では、磁気記録層は、更に、磁化反転領域の第 1境界に接続された第 1磁化固定領域と、前記磁化反転領域の第 2境界に接続された第 2磁化固定領域と を備えている。この場合、書き込み電流は、前記第 1磁化固定領域から第 2磁化固定 領域に、又は第 2磁ィ匕固定領域力 第 1磁ィ匕固定領域に流される。
[0009] 放熱効率を向上させるためには、吸熱構造体は、前記磁気記録層に直接に接合さ れることが好ましい。
[0010] 一実施形態では、当該磁気ランダムアクセスメモリは、更に、第 1磁化固定領域に 電気的に接続された第 1配線と、第 2磁化固定領域に電気的に接続された第 2配線 とを具備する。この場合、吸熱構造体は、第 1磁化固定領域と第 1配線との間に設け られることが好ましい。
[0011] 当該磁気ランダムアクセスメモリが、更に、第 2磁ィ匕固定領域と第 2配線とを接続す るビアコンタクトを備える場合には、吸熱構造体に開口が設けられ、ビアコンタクトは、 前記開口を貫通するように設けられることが好ま 、。
[0012] 当該磁気ランダムアクセスメモリは、更に、第 2磁ィ匕固定領域と第 2配線との間に磁 気記録層に対向するように設けられ、前記磁気記録層で発生した熱を受け取って放 熱する機能を有する他の吸熱構造体を具備することが好ましい。
[0013] この場合、吸熱構造体は、第 1磁ィヒ固定領域に直接に接合され、他の吸熱構造体 は、第 2磁ィ匕固定領域に直接に接合されることが好ましい。
[0014] 当該磁気ランダムアクセスメモリが、更に、磁ィ匕固定層に電気的に接続されている 第 3配線を備える場合、吸熱構造体は、第 3配線と磁ィ匕固定層の間に設けられてもよ い。この場合、吸熱構造体は、磁ィ匕固定層に直接に接合されることが好ましい。この 場合、吸熱構造体は、第 3配線が設けられている配線層の直下のビアコンタクト層に 設けられることが好ましい。
[0015] 他の実施形態では、第 3配線が、読み出し電流が流される第 1方向に延伸する配 線本体部分と、配線本体部分から、第 1方向に垂直な第 2方向に突出する突出部と を備えることにより、吸熱構造体として機能することが好ましい。
[0016] 他の実施形態では、更に、第 1磁化固定領域に電気的に接続され、書き込み電流 が流される第 1配線は、書き込み電流が流される第 1方向に延伸する配線本体部分 と、配線本体部分から、第 1方向に垂直な第 2方向に突出する突出部とを備えること によって吸熱構造体として機能することが好まし 、。
[0017] 吸熱構造体は、第 1磁化固定領域に電気的に接続された第 1配線と、第 2磁化固 定領域に電気的に接続された第 2配線と同一の配線層に位置してもよい。
[0018] また、吸熱構造体は、磁ィ匕固定層に電気的に接続されている第 3配線と同一の配 線層に位置していてもよい。
[0019] 本発明の他の観点において、磁気ランダムアクセスメモリは、反転可能な磁化を有 する磁化反転領域と、磁化反転領域の第 1境界に接続された第 1磁化固定領域と、 磁化反転領域の第 2境界に接続された第 2磁化固定領域とを備え、面内方向に書き 込み電流が流される磁気記録層と、固定された磁化を有する磁化固定層と、磁化反 転領域と磁化固定層との間に設けられた非磁性層と、第 1磁化固定領域に電気的に 接続された第 1配線とを具備する。書き込み電流は、第 1磁化固定領域から第 2磁化 固定領域に、又は前記第 2磁化固定領域から前記第 1磁化固定領域に流される。第 1配線は、書き込み電流が流される第 1方向に延伸する配線本体部分と、配線本体 部分から、前記第 1方向に垂直な第 2方向に突出し、且つ、磁気記録層に対向する 突出部とを備えている。
[0020] このような構成の磁気ランダムアクセスメモリでは、突出部を備えた第 1配線が磁気 記録層で発生した熱を放熱する吸熱構造体として機能し、面内方向に流れる書き込 み電流による温度上昇を抑制することができる。
[0021] 本発明の更に他の観点において、磁気ランダムアクセスメモリは、反転可能な磁ィ匕 を有する磁化反転領域を備え、面内方向に書き込み電流が流される磁気記録層と、 固定された磁化を有する磁化固定層と、磁化反転領域と磁化固定層との間に設けら れた非磁性層と、磁化固定層に電気的に接続された第 3配線とを具備する。第 3配 線は、読み出し電流が流される第 1方向に延伸する配線本体部分と、配線本体部分 から、第 1方向に垂直な第 2方向に突出し、且つ、磁気記録層に対向する突出部とを 備えている。
[0022] このような構成の磁気ランダムアクセスメモリでは、突出部を備えた第 3配線が磁気 記録層で発生した熱を放熱する吸熱構造体として機能し、面内方向に流れる書き込 み電流による温度上昇を抑制することができる。
図面の簡単な説明
[0023] [図 1A]図 1Aは、本発明の一実施形態の MRAMの構成を示す断面図である。
[図 1B]図 1Bは、図 1 Aの MRAMの機能を説明する概念図である。
[図 2]図 2は、本発明の一実施形態の MRAMの構成を示す平面図である。
[図 3]図 3は、本発明の他の実施形態の MRAMの構成を示す断面図である。
[図 4]図 4は、本発明の更に他の実施形態の MRAMの構成を示す断面図である。
[図 5A]図 5Aは、実施例 1の MRAMの構成を示す斜投影図である。
[図 5B]図 5Bは、実施例 1の MRAMの構成を示す平面図である。 [図 6A]図 6Aは、実施例 2の MRAMの構成を示す斜投影図である。
[図 6B]図 6Bは、実施例 2の MRAMの構成を示す平面図である。
[図 7A]図 7Aは、実施例 3の MRAMの構成を示す斜投影図である。
[図 7B]図 7Bは、実施例 3の MRAMの構成を示す平面図である。
[図 8A]図 8Aは、実施例 4の MRAMの構成を示す斜投影図である。
[図 8B]図 8Bは、実施例 4の MRAMの他の構成を示す斜投影図である。
[図 9A]図 9Aは、実施例 5の MRAMの構成を示す斜投影図である。
[図 9B]図 9Bは、実施例 5の MRAMの他の構成を示す斜投影図である。
[図 9C]図 9Cは、実施例 5の MRAMの更に他の構成を示す斜投影図である。
[図 10A]図 10Aは、実施例 6の MRAMの構成を示す斜投影図である。
[図 10B]図 10Bは、実施例 6の MRAMの構成を示す平面図である。
[図 11A]図 11Aは、実施例 7の MRAMの構成を示す斜投影図である。
[図 11B]図 11Bは、実施例 7の MRAMの構成を示す平面図である。
[図 12A]図 12Aは、実施例 8の MRAMの構成を示す斜投影図である。
[図 12B]図 12Bは、実施例 8の MRAMの構成を示す平面図である。
[図 13A]図 13Aは、実施例 9の MRAMの構成を示す斜投影図である。
[図 13B]図 13Bは、実施例 9の MRAMの構成を示す平面図である。
発明を実施するための最良の形態
[0024] 以下、添付図面を参照しながら、本発明の様々な実施形態を説明する。図におい て、同一又は類似する構成要素は、同一又は対応する符号によって参照されている ことに留意されたい。
[0025] 図 1Aは、本発明の一実施形態に係る MRAMの概略的な構成を示す断面図であ る。本発明の一実施形態の MRAMでは、絶縁層 10にメモリセル 1が形成されている 。メモリセル 1は、磁気記録層 2と、トンネルバリア層 3と、磁ィ匕固定層 4とを備えている
[0026] 磁気記録層 2は、図 2に示されているように、磁化反転領域 5と、磁ィ匕固定領域 6、 7 とを備えている。磁化反転領域 5は、その磁ィ匕の方向として 1ビットのデータを記憶す る領域である。磁化反転領域 5は、 X軸方向に長い形状を有しており、磁化反転領域 5の磁ィ匕は、 X軸方向に平行に向けられている。磁化反転領域 5は、磁気的にソフトな 強磁性体で形成されており磁化反転領域 5の磁化は反転可能である。本実施形態 では、磁ィ匕反転領域 5の磁ィ匕の方向が +x方向である状態がデータ「1」に対応付け られ、磁化反転領域 5の磁化の方向が X方向である状態が、データ「0」に対応付け られている。
[0027] 磁ィ匕固定領域 6、 7は、スピン偏極電流を磁化反転領域 5に面内方向に注入するた めに使用される領域であり、いずれも強磁性体で構成されている。磁ィ匕固定領域 6は 、磁ィ匕反転領域 5の一端に位置する境界 8において磁ィ匕反転領域 5に接合され、磁 化固定領域 7は、磁化反転領域 5の他端に位置する境界 9において磁化反転領域 5 に接合されている。磁ィ匕固定領域 6、 7は、磁ィ匕反転領域 5に X軸方向において隣接 しており、 X軸方向に長い形状を有している。磁ィ匕固定領域 6、 7の磁化の方向は、い ずれも、磁ィ匕反転領域 5に向力 方向に向けて固定されている。具体的には、磁ィ匕固 定領域 6の磁ィ匕は、 +x方向に向けて固定されており、磁ィ匕固定領域 7の磁ィ匕は、 X方向に向けて固定されている。その代わりに、磁ィ匕固定領域 6、 7の磁化の方向は、 いずれも、磁ィ匕反転領域 5から離れる方向に向けて固定されてもよい。この場合、磁 化固定領域 6の磁ィ匕は、 X方向に向けて固定され、磁ィ匕固定領域 7の磁ィ匕は、 + x 方向に向けて固定される。
[0028] 図 1Aを再度に参照して、トンネルバリア層 3は、磁化固定層 4と磁化反転領域 5との 間でトンネル電流を流すための薄 、非磁性の絶縁層である。トンネルバリア層 3は、 例えば、酸ィ匕アルミニウム (AIO )、酸ィ匕マグネシウム(MgO)で形成される。
[0029] 磁ィ匕固定層 4は、磁ィ匕が固定されている強磁性層である。磁ィ匕固定層 4は、磁気的 にハードな強磁性体で、例えば、 CoFeで形成されている。図 2に示されているように 、磁ィ匕固定層 4は、 X軸方向に長い形状を有しており、磁ィ匕固定層 4の磁ィ匕は、 - X 方向に向けられている。磁気記録層 2の磁化反転領域 5、トンネルバリア層 3、及び磁 化固定層 4は、 TMR効果を発現する磁気トンネル接合 (MTJ)を構成しており、その 磁気トンネル接合の抵抗は、磁化固定層 4と磁化反転領域 5との磁化の相対方向に 依存している。
[0030] 磁ィ匕反転領域 5に記憶されているデータの読み出しには、磁気トンネル接合の TM R効果が利用される。トンネルバリア層 3、及び磁化固定層 4で構成される磁気トンネ ル接合の抵抗は、 TMR効果により、磁化固定層 4と磁化反転領域 5と磁化の相対方 向に依存して 、る。磁化固定層 4と磁化反転領域 5との磁化が反平行 (anti-parallel) である場合は、当該磁気トンネル接合は相対的に高い抵抗を示し、磁化固定層 4と 磁ィ匕反転領域 5との磁ィ匕が平行である場合は、当該磁気トンネル接合は相対的に低 い抵抗を示す。磁気トンネル接合の抵抗の変化を検出することにより、磁気記録層 2 に記憶されているデータが識別される。磁気トンネル接合の抵抗の変化は、磁気トン ネル接合に所定の電圧を印加して磁気トンネル接合に流れる電流を測定すること〖こ より、又は、磁気トンネル接合に所定の電流を流して磁気トンネル接合に発生する電 圧を測定することにより識別可能である。
[0031] 磁ィ匕反転領域 5へのデータの書き込みは、磁ィ匕固定領域 6又は磁ィ匕固定領域 7か ら磁化反転領域 5にスピン偏極電流を注入することによって行われる。データ「 1」を 書き込む場合、磁気記録層 2を +x方向に電流が流される。これにより、(磁化が +x 方向に固定されて 、る)磁化固定領域 6から磁化反転領域 5にスピン偏極電流が注 入される。注入されたスピン偏極電流によって磁ィ匕反転領域 5の磁壁が +x方向に押 され、又は、磁ィ匕にトルクが作用され、磁化反転領域 5の磁化が +x方向に向けられ る。これにより、データ「1」が磁気記録層に書き込まれる。一方、データ「0」を書き込 む場合、(磁化が X方向に固定されている)磁ィ匕固定領域 7から磁ィ匕反転領域 5に スピン偏極電流が注入される。これにより、磁化反転領域 5の磁化が X方向に向け られる。
[0032] 本発明の一実施形態の MRAMには、更に、吸熱構造体 11、 12が設けられている 。吸熱構造体 11は、磁気記録層 2の下面と対向するように設けられ、吸熱構造体 12 は、磁気記録層 2の上面に対向するように設けられている。この吸熱構造体 11、 12 は、熱伝導性が高い材料、具体的には、銅、アルミ、タングステンのような金属で形成 され、磁気記録層 2の発生した熱を受け取って放熱する役割を果たす。図 1Bに示さ れているように、強磁性体で形成されている磁気記録層 2は、その抵抗が不可避的 に大きいため、書き込み動作時にスピン偏極電流を流すと磁気記録層 2の発熱が問 題になる。図 1Bに示されているように、吸熱構造体 11、 12は、磁気記録層 2で発生 した熱を放熱するヒートシンクとして機能し、磁気記録層 2の温度上昇を有効に抑制 する。図 1Aの MRAMでは、磁気記録層 2の上面と下面にそれぞれに対向する吸熱 構造体 11、 12が設けられている力 吸熱構造体 11、 12のうちの一方のみが設けら れることも可會である。
[0033] 図 3に示されているように、吸熱構造体 11は、磁気記録層 2の下面に直接に接合さ れることも可能である。吸熱構造体 11が磁気記録層 2に直接に接合されていることは 、放熱効率を向上させるために好適である。同様に、吸熱構造体 12は、磁化固定層 4に直接に接合されて 、ることも可會である。
[0034] 磁気記録層 2における磁化反転領域 5と磁化固定領域 6、 7の幾何学的な配置は、 図 1に示されているような、磁化反転領域 5と磁化固定領域 6、 7がー直線上に並んで いる配置に限定されない。例えば、図 4に示されているように、磁化反転領域 5が X軸 方向に長く形成される一方で、磁ィ匕固定領域 6、 7が y軸方向に長く形成されることも 可能である。この場合、磁ィ匕固定領域 6、 7の磁ィ匕は、いずれも、 +y方向に固定され る。その代わりに、磁ィ匕固定領域 6、 7の磁化が、いずれも— y方向に固定されることも 可能である。
[0035] 以下では、本発明のより具体的な実施例を説明する。
[0036] (実施例 1)
図 5Aは、実施例 1の MRAMの構成を示す斜投影図である。図 1Aの MRAMと同 様に、メモリセル 1は、磁気記録層 2と、トンネルバリア層 3と、磁ィ匕固定層 4とを備えて いる。磁ィ匕固定層 4は、ビアコンタクト 19を介して読み出し電流 Iを流すための上部
R
配線 21に接続されている。上部配線 21は、 y軸方向に延伸するように設けられてい る。読み出し電流 Iは、 y軸方向に流れることになる。
R
[0037] 実施例 1では、吸熱構造体 11が、メモリセル 1の磁気記録層 2と、書き込み電流 I
W1
、 I を流すための下部配線 15、 18の間に設けられる。下部配線 15、 18は、いずれ
W2
も、 y軸方向に延伸するように設けられている。吸熱構造体 11は、ビアコンタクト 14を 介して下部配線 15に接続されるともに、ビアコンタクト 13を介して磁気記録層 2の磁 化固定領域 6に接続されている。下部配線 18は、ビアコンタクト 16を介して磁気記録 層 2の磁ィ匕固定領域 7に接続されている。ビアコンタクト 16は、吸熱構造体 11に設け られた開口 11aを貫通するように設けられており、吸熱構造体 11とは電気的に分離さ れている。
[0038] このような構成の MRAMでは、読み出し動作時には、上部配線 21と下部配線 15 との間(又は上部配線 21と下部配線 18との間に)電圧が印加され、読み出し電流 I
R
が上部配線 21からメモリセル 1を介して下部配線 15に流される。読み出し電流 I の
R
大きさから、磁気記録層 2の磁化反転領域 5に記憶されて ヽるデータが判別される。 一方、書き込み動作時には、書き込むべきデータに応じて、下部配線 15から下部配 線 18に書き込み電流 I が流され、又は、下部配線 18から下部配線 15に書き込み
W1
電流 I が流される。書き込み電流 I が下部配線 15から下部配線 18に流されると、
W2 W1
磁化固定領域 6から磁化反転領域 5にスピン偏極電流が注入され、磁化反転領域 5 の磁ィ匕が +x方向に向けられる。即ち、データ「1」が磁気記録層に書き込まれる。逆 に、書き込み電流 I が下部配線 18から下部配線 15に流されると、磁化固定領域 7
W2
力 磁ィ匕反転領域 5にスピン偏極電流が注入され、磁化反転領域 5の磁化が—X方 向に向けられる。即ち、データ「0」が磁気記録層に書き込まれる。
[0039] 吸熱構造体 11は、磁気記録層 2と対向する面積がなるべく大きくなるような形状及 び配置で配置されることが好ましい。図 5Bは、吸熱構造体 11の好適な形状及び配 置を示す平面図である。吸熱構造体 11は、少なくとも、磁気記録層 2の磁化反転領 域 5と磁ィ匕固定領域 6の全体に対向するように設けられることが好適である。このよう な配置は、磁気記録層 2と対向する面積を増大させ、吸熱構造体 11の放熱効率を 有効に向上させる。吸熱構造体 11が磁気記録層 2と対向する面積を一層に増大さ せるためには、吸熱構造体 11に設けられた開口 11aに対向する部分を除いて、吸熱 構造体 11が磁気記録層 2の全体に対向するように設けられることが好適である。図 5 Bには、吸熱構造体 11に設けられた開口 11aに対向する部分を除いて、吸熱構造体 11が磁気記録層 2の全体に対向するように設けられて 、る吸熱構造体 11の配置が 図示されている。
[0040] (実施例 2)
図 6Aは、実施例 2の MRAMの構成を示す斜投影図である。実施例 2では、 2つの 吸熱構造体 11A、 11Bが、磁気記録層 2と下部配線 15、 18の間に設けられる。吸熱 構造体 11Aは、ビアコンタクト 13を介して磁気記録層 2の磁ィ匕固定領域 6に接続され ると共に、ビアコンタクト 14を介して下部配線 15に接続されている。一方、吸熱構造 体 11 Bは、ビアコンタクト 16を介して磁気記録層 2の磁化固定領域 7に接続されると 共に、ビアコンタクト 17を介して下部配線 18に接続されている。このような構成の実 施例 2の MRAMでは、読み出し動作及び書き込み動作が、実施例 1の MRAMと同 様にして行われる。
[0041] 吸熱構造体 11A、 11Bは、磁気記録層 2と対向する面積がなるべく大きくなるような 形状及び配置で配置されることが好ましい。図 6Bは、吸熱構造体 11A、 1 IBの好適 な構造及び配置を示す平面図である。吸熱構造体 11Aは、少なくとも磁気記録層 2 の磁ィ匕固定領域 6の全体に対向するように設けられることが好適であり、吸熱構造体 11Bは、少なくとも磁気記録層 2の磁ィ匕固定領域 7の全体に対向するように設けられ ることが好適である。このような配置は、吸熱構造体 11 A、 1 IBが磁気記録層 2と対 向する面積を増大させ、放熱効率を有効に向上させる。
[0042] 磁気記録層 2と対向する面積を一層に増大させるためには、吸熱構造体 11A、 11 Bは、磁気記録層 2の磁ィ匕反転領域 5の少なくとも一部に対向するように配置されるこ とが一層に好適であり、吸熱構造体 11A、 1 IBが磁ィ匕固定層 4の下面(トンネルバリ ァ層 3に接合する面)の少なくとも一部に対向するように配置されることが更に好適で ある。図 6Bには、吸熱構造体 11A、 1 IBのそれぞれ力 磁化固定層 4の下面の一部 に対向する配置が図示されている。吸熱構造体 11A、 11Bは、その間隔が狭いこと が好適であり、最も好適には、吸熱構造体 11A、 11Bは、当該 MRAMのデザインル ールの最小ピッチと同一の間隔で分離されていることが好適である。
[0043] (実施例 3)
図 7Aは、実施例 3の MRAMの構成を示す斜投影図である。実施例 3では、吸熱 構造体 12が、メモリセル 1の磁ィ匕固定層 4と上部配線 21の間に設けられる。吸熱構 造体 12は、ビアコンタクト 19を介して磁ィ匕固定層 4に接続されると共に、ビアコンタク ト 20を介して上部配線 21に接続されている。このような構成の実施例 3の MRAMで は、読み出し動作及び書き込み動作が、実施例 1の MRAMと同様にして行われる。
[0044] 吸熱構造体 12は、磁気記録層 2と対向する面積がなるべく大きくなるような形状及 び配置で配置されることが好ましい。図 7Bは、吸熱構造体 12の好適な構造及び配 置を示す平面図である。吸熱構造体 12は、少なくとも磁気記録層 2のうちのビアコン タクト 13、 16の間の部分の全体に対向するように設けられることが好適である。このよ うな配置は、磁気記録層 2の発熱する部分 (即ち、スピン偏極電流が流れる部分)の 全体の放熱を可能にする。一層に放熱効率を向上させるためには、吸熱構造体 12 力 磁気記録層 2の全体に対向するように設けられることが一層に好適である。このよ うな配置は、磁気記録層 2と対向する面積を増大させ、吸熱構造体 12の放熱効率を 有効に向上させる。
[0045] (実施例 4)
図 8Aは、実施例 4の MRAMの構成を示す斜投影図である。実施例 4の MRAMで は、吸熱構造体 11が、磁気記録層 2の下面の全面に直接に接合される。吸熱構造 体 11は、ビアコンタクト 14を介して下部配線 15に接続され、更に、ビアコンタクト 17 を介して下部配線 18に接続される。吸熱構造体 11は、磁気記録層 2よりも高い抵抗 率を有する材料で形成される。これは、書き込み電流を磁気記録層 2により多く流す ために重要である。図 8Aの MRAMでは、吸熱構造体 11に書き込み電流が分流さ れるが、吸熱構造体 11は、磁気記録層 2よりも高い抵抗率を有する材料で形成され ることにより、吸熱構造体 11に流れる電流を小さくすることができる。一方で、吸熱構 造体 11が、磁気記録層 2の下面の全面に直接に接合されることは、磁気記録層 2か ら吸熱構造体 11に熱を伝わりやすくし、放熱効率を有効に向上させる。このような構 成の実施例 4の MRAMでは、読み出し動作及び書き込み動作が、実施例 1の MRA Mと同様にして行われる。
[0046] 図 8Bは、実施例 4の MRAMの他の構成を示す斜投影図である。実施例 4の MRA Mでは、 2つの吸熱構造体 11A、 11Bが、磁気記録層 2の下面に直接に接合される 。吸熱構造体 11Aは、磁気記録層 2の磁ィ匕固定領域 6に直接に接合されると共に、 ビアコンタクト 14を介して下部配線 15に接続される。一方、吸熱構造体 11Bは、磁気 記録層 2の磁ィ匕固定領域 7に直接に接合されると共に、ビアコンタクト 17を介して下 部配線 18に接続される。 2つの吸熱構造体 11A、 1 IBが、磁気記録層 2の下面に直 接に接合されることは、磁気記録層 2から吸熱構造体 11A、 11Bに熱を伝わりやすく し、放熱効率を有効に向上させる。その一方で、吸熱構造体 11A、 11Bが電気的に 分離されているため、(磁気記録層 2を流れずに)吸熱構造体 11に流れる電流を小さ くすることができる。このような構成の実施例 4の MRAMでは、読み出し動作及び書 き込み動作が、実施例 1の MRAMと同様にして行われる。
[0047] 吸熱構造体 11Aは、書き込み電流 I が流れる下部配線 15よりも、 X軸方向の幅(
W1
即ち、下部配線 15が延伸する方向と垂直方向の幅)が、大きいことが好適である。こ のような構造は、磁気記録層 2から吸熱構造体 11 A、 1 IBに熱を伝わりやすくし、放 熱効率を有効に向上させる。同様に、吸熱構造体 11Bは、書き込み電流 I が流れ
W2 る下部配線 18よりも、 X軸方向の幅 (即ち、下部配線 18が延伸する方向と垂直方向 の幅)が、大きいことが好適である。
[0048] (実施例 5)
図 9Aは、実施例 5の MRAMの構成を示す斜投影図である。実施例 5の MRAMで は、吸熱構造体 12が磁ィ匕固定層 4に直接に接合される。吸熱構造体 12は、上部配 線 21が設けられている配線層の直下に位置するビアコンタクト層に設けられており、 吸熱構造体 12は、上部配線 21に直接に接合されている。吸熱構造体 12は、主とし て、銅 (Cu)又はタングステン (W)で形成される。上部配線 21が設けられている配線 層の直下に位置するビアコンタクト層に吸熱構造体 12が設けられる構造は、吸熱構 造体 12を形成するための工程を追カ卩的に必要としないため好適である。このような 構成の実施例 5の MRAMの読み出し動作及び書き込み動作は、実施例 1の MRA Mと同様にして行われる。
[0049] 吸熱構造体 12は、読み出し電流 Iが流れる下部配線 15よりも、 X軸方向の幅 (即ち
R
、下部配線 15が延伸する方向と垂直方向の幅)が、大きいことが好適である。このよう な構造は、磁気記録層 2から吸熱構造体 12に熱を伝わりやすくし、放熱効率を有効 に向上させる。
[0050] また、吸熱構造体 12の膜厚 dは、磁気記録層 2の膜厚 dよりも厚いことが好適であ
2 1
る。このような構造は、放熱効率を有効に向上させる。
[0051] 図 9B、図 9Cに示されているように、吸熱構造体 12は、磁ィ匕固定層 4と完全に位置 整合されている(aligned)必要はない。図 9Bに示されているように、吸熱構造体 12は 、磁ィ匕固定層 4の一部分だけに接合するように設けられることが可能である。また、図 9Cに示されているように、吸熱構造体 12は、磁ィ匕固定層 4の上面の全体に接合され 、且つ、磁ィ匕固定層 4からはみ出すように配置されることが可能である。
[0052] (実施例 6)
図 10Aは、実施例 6の MRAMの構成を示す斜投影図である。実施例 6の MRAM では、上部配線 21が吸熱構造体として機能するような形状に形成される。即ち、上部 配線 21に、その延伸方向(実施例 6では y軸方向)と垂直な方向(実施例 6では X軸 方向)に突出する突出部 21aが設けられる。突出部 21aは、磁気記録層 2の上面に 対向するような形状に形成される。このような形状を有する上部配線 21は、吸熱構造 体として有効に機能し、磁気記録層 2で発生した熱を効果的に放熱する。上部配線 2 1を吸熱構造体として機能させる構造では、吸熱構造体を形成するための配線層を 必要としないため、少ない配線層で MRAMを構成することを可能にする。このような 構成の実施例 6の MRAMの読み出し動作及び書き込み動作は、実施例 1の MRA Mと同様にして行われる。
[0053] 上部配線 21は、磁気記録層 2と対向する面積がなるべく大きくなるような形状及び 配置で配置されることが好ましい。図 10Bは、好適な上部配線 21の形状を示す平面 図である。上部配線 21の配線本体部分 21bは、 y軸方向(読み出し電流 Iが流され
R
る方向)に延伸するように設けられており、突出部 21aは、配線本体部分 21bから X軸 方向に突出するように設けられている。突出部 21aは、上部配線 21が少なくとも磁気 記録層 2のうちのビアコンタクト 13、 16の間の部分の全体に対向するような形状を有 するように設けられることが好適である。このような配置は、磁気記録層 2の発熱する 部分 (即ち、スピン偏極電流が流れる部分)の全体の放熱を可能にする。一層に放熱 効率を向上させるためには、上部配線 21が、磁気記録層 2の全体に対向するように 設けられることが一層に好適である。このような配置は、磁気記録層 2と対向する面積 を増大させ、上部配線 21の放熱効率を有効に向上させる。
[0054] (実施例 7)
図 11Aは、実施例 7の MRAMの構成を示す斜投影図である。実施例 6の MRAM では、下部配線 15、 18が吸熱構造体として機能するような形状に形成される。即ち、 下部配線 15に、その延伸方向(実施例 7では y軸方向)と垂直な方向(実施例 7では X軸方向)に突出する突出部 15aが設けられ、下部配線 18に、その延伸方向と垂直 な方向に突出する突出部 18aが設けられる。突出部 15a、 18aは、磁気記録層 2の上 面に対向するような形状に形成される。このような形状を有する下部配線 15、 18は、 吸熱構造体として有効に機能し、磁気記録層 2で発生した熱を効果的に放熱する。 下部配線 15、 18を吸熱構造体として機能させる構造では、吸熱構造体を形成する ための配線層を必要としな 、ため、少な 、配線層で MRAMを構成することを可能に する。このような構成の実施例 7の MRAMの読み出し動作及び書き込み動作は、実 施例 1の MRAMと同様にして行われる。
[0055] 下部配線 15、 18は、磁気記録層 2と対向する面積がなるべく大きくなるような形状 及び配置で配置されることが好ましい。図 11Bは、好適な下部配線 15、 18の形状を 示す平面図である。下部配線 15の配線本体部分 15bは、 y軸方向(書き込み電流 I
W
が流される方向)に延伸するように設けられており、突出部 15aは、配線本体部分 21 bから X軸方向に突出するように設けられている。同様に、下部配線 18の配線本体部 分 18bは、 y軸方向(書き込み電流 I
W2が流される方向)に延伸するように設けられて おり、突出部 18aは、配線本体部分 18bから X軸方向に突出するように設けられてい る。
[0056] 突出部 15aは、下部配線 15が少なくとも磁気記録層 2の磁ィ匕固定領域 6の全体に 対向するように設けられることが好適であり、突出部 18aは、下部配線 18が少なくとも 磁気記録層 2の磁ィ匕固定領域 7の全体に対向するように設けられることが好適である 。このような配置は、下部配線 15、 18が磁気記録層 2と対向する面積を増大させ、放 熱効率を有効に向上させる。
[0057] 突出部 15a、 18aは、下部配線 15、 18が磁気記録層 2の磁化反転領域 5の少なく とも一部に対向するように配置されることが好適であり、下部配線 15、 18が磁ィ匕固定 層 4の下面(トンネルバリア層 3に接合する面)の少なくとも一部に対向するように配置 されることが更〖こ好適である。図 11Bには、下部配線 15、 18のそれぞれ力 磁ィ匕固 定層 4の下面の一部に対向する配置が図示されている。突出部 15a、 18aは、その 間隔が狭いことが好適であり、最も好適には、突出部 15a、 18aは、当該 MRAMの デザインルールの最小ピッチと同一の間隔で分離されていることが好適である。
[0058] (実施例 8)
図 12Aは、実施例 8の MRAMの構成を示す斜投影図である。実施例 8の MRAM では、磁気記録層 2の下面に対向する吸熱構造体 11が、下部配線 15、 18が形成さ れる配線層と同一の配線層に設けられる。吸熱構造体 11は、下部配線 15、 18の間 に設けられており、下部配線 15、 18から電気的に絶縁されている。吸熱構造体 11が 、下部配線 15、 18が形成される配線層と同一の配線層に設けられる構成は、吸熱 構造体を形成するための工程を追カ卩的に必要としないため好適である。
[0059] 吸熱構造体 11は、磁気記録層 2と対向する面積がなるべく大きくなるような形状及 び配置で配置されることが好ましい。このためには、図 12Bに示されているように、吸 熱構造体 11が磁気記録層 2を横断するように設けられて ヽることが好適である。
[0060] カロえて、磁気記録層 2と対向する面積をなるベく大きくするためには、下部配線 15 と吸熱構造体 11とは、当該 MRAMのデザインルールの最小ピッチと同一の間隔で 分離されていることが好適である。同様に、下部配線 18と吸熱構造体 11とは、当該 MRAMのデザインルールの最小ピッチと同一の間隔で分離されていることが好適で ある。
[0061] (実施例 9)
図 13Aは、実施例 8の MRAMの構成を示す斜投影図である。実施例 8の MRAM では、磁気記録層 2の上面に対向する吸熱構造体 12A、 12Bが、上部配線 21が形 成される配線層と同一の配線層に設けられる。吸熱構造体 12A、 12Bは、上部配線 21から電気的に絶縁されている。吸熱構造体 12A、 12Bが、上部配線 21が形成さ れる配線層と同一の配線層に設けられる構成は、吸熱構造体を形成するための工程 を追カ卩的に必要としな 、ため好適である。
[0062] 吸熱構造体 12A、 12Bは、磁気記録層 2と対向する面積がなるべく大きくなるような 形状及び配置で配置されることが好ま Uヽ。磁気記録層 2と対向する面積をなるベく 大きくするためには、図 13Bに示されているように、吸熱構造体 12A、 12Bは、磁気 記録層 2の磁ィ匕反転領域 5の少なくとも一部に対向するように配置されることが好適 であり、吸熱構造体 12A、 12Bが磁ィ匕固定層 4の上面(トンネルバリア層 3に接合す る面)の少なくとも一部に対向するように配置されることが更に好適である。図 13Bに は、吸熱構造体 12A、 12Bのそれぞれ力 磁ィ匕固定層 4の上面の一部に対向する 配置が図示されている。上部配線 21と吸熱構造体 12Aとの間隔は狭いことが好適で あり、最も好適には、上部配線 21と吸熱構造体 12Aとは、当該 MRAMのデザインル ールの最小ピッチと同一の間隔で分離されていることが好適である。同様に、上部配 線 21と吸熱構造体 12Bとは、当該 MRAMのデザインルールの最小ピッチと同一の 間隔で分離されて ヽることが好適である。
実施例 1〜9では、磁気記録層 2の上面に対向する吸熱構造体と、下面に対向する 吸熱構造体の一方のみが含まれる MRAMが提示されて ヽるが、放熱効率を一層に 向上させるためには、磁気記録層 2の上面に対向する吸熱構造体と、下面に対向す る吸熱構造体の両方が MRAMに含まれることが好適である。詳細には、図 5A、図 6 、図 8、図 11A、図 12Aのうちの一の図に示されている吸熱構造体の配置と、図 7A、 図 9A〜図 9C、図 10A、図 13Aのうちの一の図に示されている吸熱構造体の配置と の両方が MRAMに採用されることが好適である。

Claims

請求の範囲
[1] 反転可能な磁化を有する磁化反転領域を備え、面内方向に書き込み電流が流さ れる磁気記録層と、
固定された磁ィ匕を有する磁ィ匕固定層と、
前記磁ィ匕反転領域と前記磁ィ匕固定層との間に設けられた非磁性層と、 前記磁気記録層に対向するように設けられ、前記磁気記録層で発生した熱を受け 取って放熱する機能を有する吸熱構造体
とを具備する
磁気ランダムアクセスメモリ。
[2] 請求の範囲 1に記載の磁気ランダムアクセスメモリであって、
前記磁気記録層は、更に、
前記磁化反転領域の第 1境界に接続され、固定された磁化を有する第 1磁化固 定領域と、
前記磁化反転領域の第 2境界に接続された固定された磁化を有する第 2磁化固 定領域
とを備え、
前記書き込み電流は、前記第 1磁化固定領域から前記第 2磁化固定領域に、又は 前記第 2磁化固定領域から前記第 1磁化固定領域に流される
磁気ランダムアクセスメモリ。
[3] 請求の範囲 2に記載の磁気ランダムアクセスメモリであって、
更に、
前記第 1磁化固定領域に電気的に接続された第 1配線と、
前記第 2磁化固定領域に電気的に接続された第 2配線
とを具備し、
前記吸熱構造体は、前記第 1磁化固定領域と前記第 1配線との間に設けられた 磁気ランダムアクセスメモリ。
[4] 請求の範囲 3に記載の磁気ランダムアクセスメモリであって、
更に、 前記第 2磁ィ匕固定領域と前記第 2配線とを接続するビアコンタクトを備え、 前記吸熱構造体には開口が設けられ、
前記ビアコンタクトは、前記開口を貫通するように設けられている
磁気ランダムアクセスメモリ。
[5] 請求の範囲 2に記載の磁気ランダムアクセスメモリであって、
更に、
前記第 2磁化固定領域と前記第 2配線との間に前記磁気記録層に対向するよう〖こ 設けられ、前記磁気記録層で発生した熱を受け取って放熱する機能を有する他の吸 熱構造体
を具備する
磁気ランダムアクセスメモリ。
[6] 請求の範囲 5に記載の磁気ランダムアクセスメモリであって、
前記吸熱構造体は、前記第 1磁ィヒ固定領域に直接に接合され、
前記他の吸熱構造体は、前記第 2磁ィ匕固定領域に直接に接合された
磁気ランダムアクセスメモリ。
[7] 請求の範囲 1に記載の磁気ランダムアクセスメモリであって、
前記吸熱構造体は、前記磁気記録層に直接に接合された
磁気ランダムアクセスメモリ。
[8] 請求の範囲 1に記載の磁気ランダムアクセスメモリであって、
更に、
前記磁化固定層に電気的に接続されて!ヽる第 3配線を備え、
前記吸熱構造体は、前記第 3配線と前記磁化固定層の間に設けられた 磁気ランダムアクセスメモリ。
[9] 請求の範囲 8に記載の磁気ランダムアクセスメモリであって、
前記吸熱構造体は、前記磁ィヒ固定層に直接に接合された
磁気ランダムアクセスメモリ。
[10] 請求の範囲 9に記載の磁気ランダムアクセスメモリであって、
前記吸熱構造体は、前記第 3配線が設けられている配線層の直下のビアコンタクト 層に設けられた
磁気ランダムアクセスメモリ。
[11] 請求の範囲 1に記載の磁気ランダムアクセスメモリであって、
更に、前記磁化固定層に電気的に接続された第 3配線を具備し、
前記第 3配線が、読み出し電流が流される第 1方向に延伸する配線本体部分と、前 記配線本体部分から、前記第 1方向に垂直な第 2方向に突出する突出部とを備える ことにより、前記吸熱構造体として機能する
磁気ランダムアクセスメモリ。
[12] 請求の範囲 2に記載の磁気ランダムアクセスメモリであって、
更に、前記第 1磁化固定領域に電気的に接続され、前記書き込み電流が流される 第 1配線を具備し、
前記第 1配線は、前記書き込み電流が流される第 1方向に延伸する配線本体部分 と、前記配線本体部分から、前記第 1方向に垂直な第 2方向に突出する突出部とを 備えることにより、前記吸熱構造体として機能する
磁気ランダムアクセスメモリ。
[13] 請求の範囲 2に記載の磁気ランダムアクセスメモリであって、
前記第 1磁化固定領域に電気的に接続された第 1配線と、
前記第 2磁化固定領域に電気的に接続された第 2配線
とを具備し、
前記吸熱構造体は、前記第 1配線及び前記第 2配線と同一の配線層に位置する 磁気ランダムアクセスメモリ。
[14] 請求の範囲 1に記載の磁気ランダムアクセスメモリであって、
前記磁化固定層に電気的に接続されて!ヽる第 3配線を備え、
前記吸熱構造体は、前記第 3配線と同一の配線層に位置する
磁気ランダムアクセスメモリ。
[15] 反転可能な磁化を有する磁化反転領域と、前記磁化反転領域の第 1境界に接続さ れた第 1磁化固定領域と、前記磁化反転領域の第 2境界に接続された第 2磁化固定 領域とを備え、面内方向に書き込み電流が流される磁気記録層と、 固定された磁ィ匕を有する磁ィ匕固定層と、
前記磁ィ匕反転領域と前記磁ィ匕固定層との間に設けられた非磁性層と、 前記第 1磁化固定領域に電気的に接続された第 1配線
とを具備し、
前記書き込み電流は、前記第 1磁化固定領域から前記第 2磁化固定領域に、又は 前記第 2磁化固定領域から前記第 1磁化固定領域に流され、
前記第 1配線は、
前記書き込み電流が流される第 1方向に延伸する配線本体部分と、
前記配線本体部分から、前記第 1方向に垂直な第 2方向に突出し、且つ、前記磁 気記録層に対向する突出部
とを備える
磁気ランダムアクセスメモリ。
反転可能な磁化を有する磁化反転領域を備え、面内方向に書き込み電流が流さ れる磁気記録層と、
固定された磁ィ匕を有する磁ィ匕固定層と、
前記磁ィ匕反転領域と前記磁ィ匕固定層との間に設けられた非磁性層と、 前記磁化固定層に電気的に接続された第 3配線
とを具備し、
前記第 3配線は、
読み出し電流が流される第 1方向に延伸する配線本体部分と、
前記配線本体部分から、前記第 1方向に垂直な第 2方向に突出し、且つ、前記磁 気記録層に対向する突出部
とを備える
磁気ランダムアクセスメモリ。
PCT/JP2007/057839 2006-04-11 2007-04-09 磁気ランダムアクセスメモリ WO2007119708A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/297,153 US8351249B2 (en) 2006-04-11 2007-04-09 Magnetic random access memory
JP2008510946A JP5099368B2 (ja) 2006-04-11 2007-04-09 磁気ランダムアクセスメモリ
US13/590,634 US8547733B2 (en) 2006-04-11 2012-08-21 Magnetic random access memory
US13/606,737 US8526222B2 (en) 2006-04-11 2012-09-07 Magnetic random access memory
US14/011,094 US8923042B2 (en) 2006-04-11 2013-08-27 Magnetic random access memory

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-108480 2006-04-11
JP2006108480 2006-04-11

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US12/297,153 A-371-Of-International US8351249B2 (en) 2006-04-11 2007-04-09 Magnetic random access memory
US13/590,634 Division US8547733B2 (en) 2006-04-11 2012-08-21 Magnetic random access memory
US13/606,737 Division US8526222B2 (en) 2006-04-11 2012-09-07 Magnetic random access memory

Publications (1)

Publication Number Publication Date
WO2007119708A1 true WO2007119708A1 (ja) 2007-10-25

Family

ID=38609468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057839 WO2007119708A1 (ja) 2006-04-11 2007-04-09 磁気ランダムアクセスメモリ

Country Status (3)

Country Link
US (4) US8351249B2 (ja)
JP (1) JP5099368B2 (ja)
WO (1) WO2007119708A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012019214A (ja) * 2010-07-07 2012-01-26 Crocus Technology Sa 熱閉じ込めを最適化した磁気デバイス
JP2020053647A (ja) * 2018-09-28 2020-04-02 Tdk株式会社 スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ
JP6777271B1 (ja) * 2019-12-23 2020-10-28 Tdk株式会社 磁気抵抗効果素子及び磁気記録アレイ
JP2021044429A (ja) * 2019-09-12 2021-03-18 キオクシア株式会社 磁気記憶装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2551913B1 (en) * 2010-03-25 2020-04-22 Nec Corporation Heat-type sensor and platform
JP6163038B2 (ja) * 2013-07-26 2017-07-12 株式会社東芝 磁気抵抗効果素子、磁気ヘッドおよび磁気記録再生装置
US9099116B2 (en) * 2013-08-28 2015-08-04 HGST Netherlands, B.V. Stiff discrete insert array for thermal PTR management with desired induced stress state that reduces tendency for write pole erasure
US10355203B2 (en) 2016-03-14 2019-07-16 Toshiba Memory Corporation Semiconductor memory device with variable resistance elements
EP3655718A4 (en) 2017-07-17 2021-03-17 Alexander Poltorak SYSTEM AND PROCESS FOR MULTI-FRACTAL HEAT SINK
JP6555404B1 (ja) 2018-08-02 2019-08-07 Tdk株式会社 磁壁移動型磁気記録素子及び磁気記録アレイ

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005004942A (ja) * 2003-06-12 2005-01-06 Seagate Technology Llc 低動作温度の磁気抵抗センサー
JP2005191032A (ja) * 2003-12-24 2005-07-14 Toshiba Corp 磁気記憶装置及び磁気情報の書込み方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6767655B2 (en) * 2000-08-21 2004-07-27 Matsushita Electric Industrial Co., Ltd. Magneto-resistive element
TW574753B (en) * 2001-04-13 2004-02-01 Sony Corp Manufacturing method of thin film apparatus and semiconductor device
KR100450794B1 (ko) * 2001-12-13 2004-10-01 삼성전자주식회사 마그네틱 랜덤 엑세스 메모리 및 그 작동 방법
KR20050053724A (ko) * 2002-10-03 2005-06-08 코닌클리케 필립스 일렉트로닉스 엔.브이. 프로그램가능 자기 메모리 장치
US6771534B2 (en) * 2002-11-15 2004-08-03 International Business Machines Corporation Thermally-assisted magnetic writing using an oxide layer and current-induced heating
US7450307B2 (en) * 2003-09-09 2008-11-11 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus, laser irradiation method, and method for manufacturing semiconductor device
JP2005093488A (ja) 2003-09-12 2005-04-07 Sony Corp 磁気抵抗効果素子とその製造方法、および磁気メモリ装置とその製造方法
US6970379B2 (en) 2003-10-14 2005-11-29 International Business Machines Corporation System and method for storing data in an unpatterned, continuous magnetic layer
JP4143020B2 (ja) 2003-11-13 2008-09-03 株式会社東芝 磁気抵抗効果素子および磁気メモリ
US7193259B2 (en) * 2004-07-23 2007-03-20 Hewlett-Packard Development Company, L.P. Thermally written magnetic memory device
JP2006073930A (ja) 2004-09-06 2006-03-16 Canon Inc 磁壁移動を利用した磁気抵抗効果素子の磁化状態の変化方法及び該方法を用いた磁気メモリ素子、固体磁気メモリ
JP4920881B2 (ja) 2004-09-27 2012-04-18 株式会社日立製作所 低消費電力磁気メモリ及び磁化情報書き込み装置
JP2006269885A (ja) * 2005-03-25 2006-10-05 Sony Corp スピン注入型磁気抵抗効果素子
WO2007020823A1 (ja) 2005-08-15 2007-02-22 Nec Corporation 磁気メモリセル、磁気ランダムアクセスメモリ、及び磁気ランダムアクセスメモリへのデータ読み書き方法
JP5077732B2 (ja) 2006-03-23 2012-11-21 日本電気株式会社 磁気メモリセル、磁気ランダムアクセスメモリ、半導体装置及び半導体装置の製造方法
JP2007317895A (ja) 2006-05-26 2007-12-06 Fujitsu Ltd 磁気抵抗メモリ装置
JP5146836B2 (ja) * 2006-12-06 2013-02-20 日本電気株式会社 磁気ランダムアクセスメモリ及びその製造方法
WO2008072421A1 (ja) * 2006-12-12 2008-06-19 Nec Corporation 磁気抵抗効果素子及びmram
JP5224127B2 (ja) * 2007-02-13 2013-07-03 日本電気株式会社 磁気抵抗効果素子、および磁気ランダムアクセスメモリ
US8310866B2 (en) * 2008-07-07 2012-11-13 Qimonda Ag MRAM device structure employing thermally-assisted write operations and thermally-unassisted self-referencing operations

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005004942A (ja) * 2003-06-12 2005-01-06 Seagate Technology Llc 低動作温度の磁気抵抗センサー
JP2005191032A (ja) * 2003-12-24 2005-07-14 Toshiba Corp 磁気記憶装置及び磁気情報の書込み方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012019214A (ja) * 2010-07-07 2012-01-26 Crocus Technology Sa 熱閉じ込めを最適化した磁気デバイス
JP2020053647A (ja) * 2018-09-28 2020-04-02 Tdk株式会社 スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ
US10998493B2 (en) 2018-09-28 2021-05-04 Tdk Corporation Spin-orbit-torque magnetoresistance effect element and magnetic memory
JP2021044429A (ja) * 2019-09-12 2021-03-18 キオクシア株式会社 磁気記憶装置
JP6777271B1 (ja) * 2019-12-23 2020-10-28 Tdk株式会社 磁気抵抗効果素子及び磁気記録アレイ
WO2021130796A1 (ja) * 2019-12-23 2021-07-01 Tdk株式会社 磁気抵抗効果素子及び磁気記録アレイ

Also Published As

Publication number Publication date
US20120326254A1 (en) 2012-12-27
US20130341744A1 (en) 2013-12-26
US20120320667A1 (en) 2012-12-20
JP5099368B2 (ja) 2012-12-19
US8547733B2 (en) 2013-10-01
US8351249B2 (en) 2013-01-08
US20100149862A1 (en) 2010-06-17
JPWO2007119708A1 (ja) 2009-08-27
US8526222B2 (en) 2013-09-03
US8923042B2 (en) 2014-12-30

Similar Documents

Publication Publication Date Title
WO2007119708A1 (ja) 磁気ランダムアクセスメモリ
JP4492780B2 (ja) 記憶機能を有する磁気スピン極性化および磁化回転装置および当該装置を用いた書き込み方法
CN105280214A (zh) 电流驱动型磁随机存取存储器和自旋逻辑器件
JP5982795B2 (ja) 記憶素子、記憶装置
JP2005191032A (ja) 磁気記憶装置及び磁気情報の書込み方法
KR20130008929A (ko) 개선된 자성층의 두께 마진을 갖는 자기 메모리 디바이스
JP2004153070A (ja) 磁気ランダムアクセスメモリ,及びその製造方法
JP6260873B2 (ja) 磁壁移動型メモリセル及びその初期化処理方法
CN101060011A (zh) 数据写入方法
JP2007294762A (ja) 磁気メモリセル及びランダムアクセスメモリ
KR20120087873A (ko) 자화 반전 장치, 기억 소자, 및 자계 발생 장치
KR101958420B1 (ko) 자기 메모리소자 및 그 동작방법
KR20100094974A (ko) 자기 메모리 소자, 그 구동 방법 및 불휘발성 기억장치
JP2010098259A (ja) メモリセル、ならびに、磁気メモリ素子
WO2010047276A1 (ja) 磁気抵抗素子、mram及び磁気抵抗素子の初期化方法
JP2004179192A (ja) 磁気ランダムアクセスメモリ
CN112242484A (zh) 磁性存储器结构
JP2013115299A (ja) 記憶素子、記憶装置
JP5397384B2 (ja) 磁性記憶素子の初期化方法
KR102060744B1 (ko) 기입 에러율이 낮은 스핀 전달 토크 자기 기억 소자
US11522123B2 (en) Magnetic memory device
JP2008192711A (ja) 磁気メモリ
JP5850147B2 (ja) 記憶装置、記憶素子
JP4264967B2 (ja) Mramメモリセル
JP5382295B2 (ja) 磁気ランダムアクセスメモリ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741275

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008510946

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12297153

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 07741275

Country of ref document: EP

Kind code of ref document: A1