WO2007111107A1 - 炭素系繊維のデバイス構造およびその製造方法 - Google Patents

炭素系繊維のデバイス構造およびその製造方法 Download PDF

Info

Publication number
WO2007111107A1
WO2007111107A1 PCT/JP2007/054549 JP2007054549W WO2007111107A1 WO 2007111107 A1 WO2007111107 A1 WO 2007111107A1 JP 2007054549 W JP2007054549 W JP 2007054549W WO 2007111107 A1 WO2007111107 A1 WO 2007111107A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
carbon nanotube
substrate
based fibers
aggregate
Prior art date
Application number
PCT/JP2007/054549
Other languages
English (en)
French (fr)
Inventor
Akio Kawabata
Shintaro Sato
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to JP2008507410A priority Critical patent/JP5287237B2/ja
Publication of WO2007111107A1 publication Critical patent/WO2007111107A1/ja
Priority to US12/237,020 priority patent/US7736615B2/en
Priority to US12/814,305 priority patent/US8093147B2/en
Priority to US12/814,308 priority patent/US20100316558A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76885By forming conductive members before deposition of protective insulating material, e.g. pillars, studs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/482Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
    • H01L23/485Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body consisting of layered constructions comprising conductive layers and insulating layers, e.g. planar contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5226Via connections in a multilevel interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53276Conductive materials containing carbon, e.g. fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4007Surface contacts, e.g. bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/10Applying interconnections to be used for carrying current between separate components within a device
    • H01L2221/1068Formation and after-treatment of conductors
    • H01L2221/1094Conducting structures comprising nanotubes or nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0242Shape of an individual particle
    • H05K2201/026Nanotubes or nanowires
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0275Fibers and reinforcement materials
    • H05K2201/0281Conductive fibers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/032Materials
    • H05K2201/0323Carbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs

Definitions

  • the present invention relates to a carbon fiber device structure and a method for producing the same.
  • Carbon nanotubes are excellent in electrical conductivity, thermal conductivity, and mechanical properties, and therefore have been tried to be applied in various fields. Therefore, applications as electronic devices, heat dissipation devices, LSI (Large Scale Integration) wiring, transistor channels, heat dissipation bumps, and electron emission sources are expected. In particular, oriented and grown carbon nanotubes are expected to be used for wiring and heat dissipation.
  • CVD chemical vapor deposition
  • Methods for aligning and growing carbon nanotubes include thermal CVD, plasma CVD, and hot filament CVD. Another method for obtaining carbon nanotubes close to the closest packing is the thermal decomposition method of SiC.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2004-185985
  • Patent Document 2 Japanese Translation of Special Publication 2002-530805
  • Patent Document 3 Japanese Patent No. 3183845
  • Patent Document 4 Japanese Patent Laid-Open No. 2002-329723
  • Non-Patent Document 1 A. Bezyadin, et al., Nature, Vol. 386, 1997, p. 474
  • Non-Patent Document 2 T. Iwai, et al., IEEE IEDM Tech. Digest, 2005, p. 265
  • Non-Patent Document 3 A. G. Rinzler, et al., Science, Vol. 269, 1995, p. 1550
  • carbon nanotubes that are oriented and grown on a substrate.
  • Examples of application of carbon nanotubes include LSI wiring and heat dissipation bumps. When carbon nanotube is applied, wiring resistance is reduced From the viewpoint of improving heat dissipation efficiency, it is desirable to grow carbon nanotubes with the highest possible density on the substrate.
  • carbon nanotubes that are oriented and grown by conventional methods have a low density. Also, some of the adjacent carbon nanotubes are in contact. Not all of them are in contact. That is, there is a problem that the interval between adjacent carbon nanotubes is increased. Growth of high-density carbon nanotubes is generally not easy, and the volume occupation ratio of carbon nanotubes grown by conventional methods is about 10%.
  • An object of the present invention is to provide a technique for increasing the density of carbon nanotubes. Means for solving the problem
  • the aggregate structure of the carbon-based fibers of the present invention is an aggregate structure of the carbon-based fibers composed of a plurality of carbon-based fibers, and the density of the carbon-based fibers at one end and the other
  • the aggregate strength of the carbon-based fibers in which the carbon-based fibers having different densities of the carbon-based fibers at the end portions are arranged in the length direction is also obtained.
  • the density of both ends of the aggregate of carbon-based fibers is different between one end and the other end, and the carbon at the other end is higher than the density of the carbon-based fiber at one end.
  • the density of the fiber is high.
  • the aggregate structure of carbon-based fibers of the present invention may have a substance different from that of the carbon-based fibers between adjacent aggregates of the carbon-based fibers.
  • the density of both ends of the carbon-based fiber aggregate is different between one end and the other end. Therefore, it is possible to have a substance different from the carbon-based fiber between the aggregates of adjacent carbon-based fibers.
  • the aggregate structure of the carbon-based fibers of the present invention can combine the aggregate of carbon-based fibers with a substance different from the carbon-based fibers.
  • the carbon-based fiber aggregate structure of the present invention may have a space between adjacent carbon-based fiber aggregates.
  • the density of both ends of the carbon-based fiber aggregate is different between one end and the other end. Therefore, there is a space between adjacent carbon fiber aggregates.
  • the aggregate structure of carbon-based fibers of the present invention can effectively utilize the space between the aggregates of adjacent carbon-based fibers.
  • the aggregate of adjacent carbon-based fibers may be arranged in different directions. According to the present invention, the density of both ends of the carbon-based fiber aggregate is different between one end and the other end.
  • carbon fiber aggregates can be arranged in different directions between adjacent carbon fiber aggregates.
  • the aggregate structure of carbon-based fibers according to the present invention can combine an aggregate of carbon-based fibers with an aggregate of carbon-based fibers arranged in different directions.
  • the carbon-based fibers at the other end which is higher in density than the carbon-based fibers at one end, They may be formed in close contact with each other.
  • the density of both ends of the aggregate of carbon-based fibers is different between one end and the other end, and the carbon-based fibers are formed in close contact with each other.
  • one end is bonded to a knock substrate, and the other end is higher in density than the carbon-based fiber at one end.
  • the end portion may be bonded to the semiconductor element.
  • the carbon-based fibers may be hollow. Furthermore, in the aggregate structure of carbon-based fibers of the present invention, the carbon-based fibers may be carbon nanotubes. In the aggregate structure of carbon-based fibers of the present invention, the carbon-based fibers may be carbon nanofibers. Further, in the aggregate structure of the carbon-based fibers of the present invention, the substance different from the carbon-based fibers may be any of a dielectric, an organic substance, a metal, and an insulator!
  • the method for producing an aggregate structure of carbon-based fibers includes a step of growing the aggregate of carbon-based fibers in which carbon-based fibers are arranged in a length direction in a substantially vertical direction from a substrate surface; A dense process in which one end in the length direction of the assembly of the system fibers is densely packed. According to the present invention, one end in the length direction of the aggregate of carbon-based fibers can be densely packed. Therefore, it is possible to manufacture an aggregate structure of carbon-based fibers having different densities at one end and the other end.
  • the method for producing an aggregate structure of carbon-based fibers grows an aggregate of carbon-based fibers in which carbon-based fibers are arranged in the length direction in a direction substantially perpendicular to the substrate surface force of the first substrate.
  • a crowding step for crowding the other end of the direction.
  • both end portions in the length direction of the aggregate of carbon-based fibers can be densely packed.
  • the dense step includes impregnating the aggregate of carbon-based fibers with a solvent containing an adhering substance different from the carbon-based fibers. And a step of evaporating the solvent. Further, in the method for producing an aggregate structure of carbon-based fibers according to the present invention, the dense step includes the step of impregnating the aggregate of carbon-based fibers with the solvent, and the aggregate of carbon-based fibers and the solvent are dried. The process of making it have.
  • the solvent may be selected from the group consisting of N, N-dimethylformamide, dichloroethane, isopropyl alcohol, methanol, and ethanol. Good.
  • the solvent may contain a surfactant or a functional polymer.
  • the aggregate of the carbon-based fibers includes the carbon-based fibers arranged in a length direction, and one end portion.
  • the density of the carbon-based fiber at the other end is different from the density of the carbon-based fiber at the other end, and the density of the carbon-based fiber at the other end is higher than the density of the carbon-based fiber at the other end.
  • the carbon fibers are formed in close contact with each other. According to the present invention, an electrode and a conductor included in a semiconductor substrate are electrically connected by an aggregate structure of carbon-based fibers. Connect with care. As a result, even when the current density increases, the possibility of disconnection between the electrode and the conductor can be reduced.
  • the step of bonding the electrode and the aggregate structure of the carbon-based fibers deposits a catalyst film on the electrode and uses a process gas. Melting the catalyst film to bond the electrode and the carbon-based fiber aggregate structure, and bonding the conductor and the carbon-based fiber aggregate structure to each other. A step of depositing a catalyst film thereon and melting the catalyst film using a process gas to bond the conductor and the aggregate structure of the carbon-based fibers may be used.
  • the catalyst film may be made of a metal selected from the group consisting of cobalt, iron and nickel, or an alloy containing the metal.
  • the process gas may include at least one of a hydrocarbon gas and alcohol.
  • the density of carbon nanotubes can be increased.
  • FIG. 1 is a view when carbon nanotubes 1 are oriented and grown by a conventional method.
  • FIG. 2 is a front view of carbon nanotube 1 when carbon nanotube 1 is oriented and grown by a conventional method.
  • FIG. 3 is a top view of carbon nanotube 1 when carbon nanotube 1 is oriented and grown by a conventional method.
  • FIG. 4 is a diagram showing a growth method of carbon nanotubes 1 according to the first embodiment.
  • FIG. 5 is a diagram showing an example in which a carbon nanotube group 5 is grown.
  • FIG. 6 is a view of immersing the carbon nanotube group 5 in a container 6 filled with a resin containing an organic solvent.
  • FIG. 7 is a view of immersing the carbon nanotube group 5 in a container 6 filled with a resin containing an organic solvent.
  • FIG. 8 A group of carbon nanotubes 5 is placed in a container 6 filled with a resin containing an organic solvent. It is a figure to immerse.
  • the carbon nanotube group 5 is immersed in a container 6 filled with a resin containing an organic solvent.
  • FIG. 10 is a front view of a carbon nanotube group 5 in which one end of each carbon nanotube 1 is formed close to each other.
  • FIG. 11 is a top view of the carbon nanotube group 5 formed with one end of each carbon nanotube 1 snuggled up.
  • FIG. 12 is a front view of a carbon nanotube group 5 in which one end of each carbon nanotube 1 is formed close to each other.
  • FIG. 13 is a top view of a group of carbon nanotubes 5 in which one end of each carbon nanotube 1 is formed close to each other.
  • FIG. 14 is a view showing a space where no carbon nanotube 1 exists.
  • FIG. 15 is a diagram in which a plurality of carbon nanotube groups 5 having different densities are arranged.
  • FIG. 16 is a front view when a plurality of carbon nanotube groups 5 having different densities are arranged so that the directions of the high density end portions are different from each other.
  • FIG. 17 is a view showing the iron film 8 after patterning.
  • FIG. 18 is a diagram showing a group of carbon nanotubes 5 that are oriented and grown on a silicon substrate 7 with an oxide film.
  • FIG. 19 is a diagram showing a step of attaching a solvent to the carbon nanotube group 5.
  • FIG. 20 is a diagram showing a step of attaching a solvent to the carbon nanotube group 5.
  • FIG. 21 is a diagram showing a step of attaching a solvent to the carbon nanotube group 5.
  • FIG. 22 is a diagram showing a step of attaching a solvent to the carbon nanotube group 5.
  • FIG. 23 is a diagram showing a step of attaching a solvent to the carbon nanotube group 5.
  • FIG. 24 is a diagram showing a step of attaching a solvent to the carbon nanotube group 5.
  • FIG. 25 is a front view of a carbon nanotube group 5 in which one end of each carbon nanotube 1 is formed close to each other.
  • FIG. 26 is a diagram showing a densified carbon nanotube group 5 and a substrate 20.
  • FIG. 27 A diagram showing the structure of the substrate 20 and the substrate 23.
  • ⁇ 28 A diagram showing a structure in which a substrate 23 with a low-melting point metal film and a substrate 20 are overlapped.
  • FIG. 3 is a diagram showing a structure in which nanotube groups 5 are in close contact with each other.
  • FIG. 30 is a process diagram in the case where the carbon nanotube group 5 is subjected to the densification treatment shown in the third embodiment.
  • FIG. 31 is a process diagram in the case where the carbon nanotube group 5 is subjected to the densification treatment shown in the third embodiment.
  • FIG. 32 is a process diagram when the carbon nanotube group 5 is subjected to the densification process shown in the third embodiment.
  • FIG. 33 is a process diagram in the case where the carbon nanotube group 5 is subjected to the densification treatment shown in the third embodiment.
  • FIG. 34 is a structural diagram showing a conventional transistor mounting.
  • FIG. 35 is a structural diagram showing flip-chip mounting.
  • FIG. 37 is a view showing a structure of an aluminum nitride substrate 50 on which an electrode 51 is formed.
  • FIG. 38 is a view showing a structure of an aluminum nitride substrate 50 on which carbon nanotube groups 5 are formed.
  • FIG. 39 is a diagram showing a structure of an aluminum nitride substrate 50 on which a densified carbon nanotube group 5 is formed.
  • FIG. 40 is a view showing a structure of an aluminum nitride substrate 50 on which carbon nanotube groups 5 having nonuniform lengths of carbon nanotubes 1 are formed.
  • FIG. 41 is a view showing a structure of an aluminum nitride substrate 50 in which an interlayer insulating film 60 is deposited so as to cover a carbon nanotube group 5.
  • FIG. 42 is a view showing the structure of the aluminum nitride substrate 50 after the carbon nanotube group 5 and the interlayer insulating film 60 are polished.
  • FIG. 43 is a diagram showing a structure of an aluminum nitride substrate 50 provided with a high-power transistor chip 40.
  • FIG. 44 is a diagram showing a structure of LSI (Large Scale Integration) 70.
  • FIG. 45 is a diagram showing the structure of a substrate 74 and an LSI substrate 75 on which a carbon nanotube group 5 is grown.
  • FIG. 46 is a diagram showing a structure in which a substrate 74 and an LSI substrate 75 are overlaid.
  • FIG. 47 This is a diagram showing a structure in which a gap between the substrate 74 and the LSI substrate 75 is filled with an interlayer insulating film 80.
  • FIG. 47 is a diagram showing a structure in which a gap between the substrate 74 and the LSI substrate 75 is filled with an interlayer insulating film 80.
  • FIG. 48 is a view showing a structure of a substrate 74 on which an interlayer insulating film 80 is deposited so as to cover the carbon nanotube group 5.
  • FIG. 49 is a view showing a structure in which the tip of the carbon nanotube group 5 is projected.
  • FIG. 50 is a diagram showing a structure of an LSI substrate 75 in which a carbon nanotube group 5 and an interlayer insulating film 80 are polished.
  • FIG. 51 is a diagram showing a structure of an LSI substrate 75 on which a copper wiring 71 is formed.
  • FIG. 52 is a diagram showing a structure of an LSI substrate 75 and a substrate 74 on which a copper wiring 71 is formed.
  • FIG. 53 is a diagram showing a structure in which a substrate 74 and an LSI substrate 75 on which copper wiring 71 is formed are overlaid.
  • FIG. 54 is a diagram showing a structure in which a carbon nanotube group 5 is in close contact with a copper wiring 71 formed on an LSI substrate 75.
  • FIG. 55 is a diagram showing the structure of an LSI substrate 75 in which the carbon nanotube group 5 and the interlayer insulating film 80 are polished.
  • FIG. 1 is a diagram in the case where carbon nanotubes 1 are oriented and grown by a conventional method. is there. As shown in FIG. 1, a large amount of carbon nanotubes 1 are growing. However, adjacent carbon nanotubes 1 may not be in contact with each other.
  • FIG. 2 is a front view of the carbon nanotube 1 when the carbon nanotube 1 is oriented and grown by a conventional method.
  • FIG. 3 is a top view of the carbon nanotube 1 when the carbon nanotube 1 is oriented and grown by a conventional method. As shown in FIGS. 2 and 3, there is a gap between adjacent carbon nanotubes 1. That is, there is a gap between adjacent carbon nanotubes 1. However, everything is not isolated without contact. In some cases, contacted portions are also required for orientation growth. In particular, when the carbon nanotubes are thin, alignment growth is difficult if there is no part in contact. Even in this case, a gap is generated between the adjacent carbon nanotubes 1.
  • a method for growing the carbon nanotube 1 of the present embodiment will be described with reference to FIGS.
  • a titanium (Ti) layer is formed on the silicon substrate 2.
  • a conoretate (Co) layer 4 is formed on the titanium layer 3.
  • the cobalt layer 4 is patterned with a diameter of about L m.
  • the force that patterns the core layer 4 with a diameter of about 1 ⁇ m is not limited to this, and may be patterned to an arbitrary size.
  • the silicon substrate 2 on which the titanium layer 3 and the cobalt layer 4 are formed is introduced into the thermal CVD chamber. Then, a mixture of argon (Ar) and acetylene (C H) in the thermal CVD chamber.
  • FIG. 5 is a diagram in which the carbon nanotube group 5 is grown on the cobalt layer 4.
  • the carbon nanotube group 5 refers to a group of carbon nanotubes 1 grown on the cobalt layer 4.
  • the carbon nanotubes 1 on the cobalt layer 4 grow in the vertical direction.
  • Fig. 5 shows an example of the growth of carbon nanotube group 5 and shows carbon nanotubes.
  • the number of tubes 1 is not limited to this.
  • cobalt is used as the catalyst metal when the carbon nanotube 1 is grown.
  • the catalyst metal is not limited to cobalt, and transition metals such as iron (Fe) and nickel (Ni) may be used!
  • the chemical vapor deposition method (CVD method), the hot filament CVD method and the plasma CVD method may be used as the growth method of the carbon nanotube 1.
  • the carbon nanotube group 5 is immersed in a resin containing an organic solvent (a solvent containing an adhesion substance different from the carbon nanotube). Specifically, the carbon nanotube group 5 shown in FIG. 5 is immersed in a container 6 filled with a resin containing an organic solvent. When carbon nanotube group 5 is immersed in a resin containing an organic solvent, carbon nanotube group 5 is immersed together with silicon substrate 2.
  • FIG. 6 is a diagram in which the carbon nanotube group 5 is immersed in a resin containing an organic solvent.
  • FIG. 6 the carbon nanotube group 5 is immersed up to a portion A in a container 6 filled with a resin containing an organic solvent.
  • FIG. 7 the carbon nanotube group 5 is immersed up to a portion B in a container 6 filled with a resin containing an organic solvent.
  • FIG. 6 and FIG. 7 are views showing the state immediately after dipping the bonbon nanotube group 5 in the container 6 filled with the resin containing the organic solvent.
  • the immersed portion of the carbon nanotube 1 is about half the length of the carbon nanotube 1.
  • the immersion part refers to a part in which the carbon nanotube 1 is immersed in a container 6 filled with a resin containing an organic solvent.
  • the immersed part is about 20 percent of the length of carbon nanotube 1.
  • the immersion part can be appropriately changed according to the type of organic solvent, the type of resin, and the like.
  • the root side (the end side coming into contact with the silicon substrate 2) of the carbon nanotube group 5 is an immersion part. Further, when the carbon nanotube group 5 is immersed in a container 6 filled with a resin containing an organic solvent, the tip side of the carbon nanotube group 5 (ie, the end side in contact with the silicon substrate 2) is immersed. You can also.
  • the tip side of each carbon nanotube 1 is an immersion part.
  • the carbon nanotube group 5 is immersed up to a portion C in a container 6 filled with a resin containing an organic solvent.
  • the carbon nanotube group 5 is immersed to the part D in the container 6 filled with the resin containing the organic solvent.
  • FIG. 8 and FIG. 9 are views showing the state immediately after the bonbon nanotube group 5 is immersed in the container 6 filled with the resin containing the organic solvent.
  • the carbon nanotube 1 is immersed in about half the length of the carbon nanotube 1.
  • the immersed part is about 20 percent of the length of carbon nanotube 1.
  • the time for immersing the carbon nanotube group 5 in a resin containing an organic solvent is about 1 minute.
  • the force for dipping the carbon nanotube group 5 in a resin containing an organic solvent is set to about 1 minute, but is not limited to this. Therefore, the structure may be changed as appropriate depending on the structure and number of the carbon nanotubes 1.
  • the organic solvent for example, alcohols such as methanol and ethanol are used.
  • the resin for example, a thermosetting resin, a photocurable resin or the like is used. More specifically, for example, epoxy resin is used as the resin.
  • the adjacent carbon nanotubes 1 come close to each other due to the surface tension. Further, when the organic solvent is volatilized, the carbon nanotubes 1 are covered with the resin. Then, the carbon nanotubes 1 covered with the resin are brought close to each other by the volume shrinkage when the organic solvent is volatilized. That is, when the organic solvent is volatilized from the resin containing the organic solvent, only the resin covers the carbon nanotubes 1. For this reason, the carbon nanotubes 1 covered with the resin further approach each other. [0037] Therefore, the carbon nanotubes 1 covered with the resin are close to each other to form the carbon nanotube group 5.
  • each carbon nanotube 1 when each carbon nanotube 1 comes into contact with the adjacent carbon nanotube 1, each carbon nanotube 1 maintains a state of being close to each other. That is, the carbon nanotubes 1 are held close to each other by the resin covering the carbon nanotubes 1. In other words, the resin covering each carbon nanotube 1 maintains a state where adjacent carbon nanotubes 1 are fixed to each other.
  • FIG. 10 is a front view of the carbon nanotube group 5 formed with one end of each carbon nanotube 1 snuggled up.
  • FIG. 10 is a view after the carbon nanotube group 5 is immersed in the container 6 filled with the resin containing the organic solvent and the carbon nanotube group 5 is pulled up from the container 6.
  • FIG. 11 is a top view of the carbon nanotube group 5 formed with one end of each carbon nanotube 1 snuggled up.
  • FIG. 11 is a view after the carbon nanotube group 5 is immersed in the container 6 filled with the resin containing the organic solvent and the carbon nanotube group 5 is pulled up from the container 6.
  • a resin containing an organic solvent may be dropped into the carbon nanotube group 5.
  • a resin containing an organic solvent may be dropped onto the carbon nanotube group 5 using a spin coating method.
  • each carbon nanotube 1 is dropped so as to be covered with a resin containing the organic solvent.
  • a resin containing an organic solvent is dropped onto a part of each carbon nanotube 1.
  • the resin containing the organic solvent is moved to a small part by dropping the resin containing the organic solvent by capillary action.
  • the carbon nanotube 1 is covered with the resin containing the organic solvent.
  • the carbon nanotubes 1 covered with the resin are close to each other to form the carbon nanotube group 5. Further, when each carbon nanotube 1 comes into contact with the adjacent carbon nanotube 1, each carbon nanotube 1 maintains a state of being close to each other. That is, the carbon nanotubes 1 are held close to each other by the resin covering the carbon nanotubes 1. In other words, the resin covering each carbon nanotube 1 maintains a state where adjacent carbon nanotubes 1 are fixed to each other.
  • each carbon nanotube 1 covered with resin is formed such that one of its end portions is close to each other.
  • the density of the carbon nanotube 1 in the carbon nanotube group 5 is different between the tip side and the root side of the carbon nanotube group 5. That is, the carbon nanotube group 5 in which the density of the carbon nanotubes 1 is different at one end and the other end is formed.
  • the density of the carbon nanotube 1 on the tip side of the carbon nanotube group 5 is higher than the density of the carbon nanotube 1 on the root side of the carbon nanotube group 5.
  • the resin containing the organic solvent is an epoxy resin diluted with ethanol.
  • the ratio of ethanol and epoxy resin is arbitrary.
  • a combination of an organic solvent and a resin is shown, but a microcrystalline material such as nanoporous silica (dielectric material) may be used instead of the resin.
  • a microcrystalline material such as nanoporous silica (dielectric material) may be used instead of the resin. This makes it possible to form carbon nanotubes in a shape close to a dielectric material that is not only a resin.
  • a second embodiment of the present invention will be described with reference to the drawings of FIGS.
  • the method of forming 5 has been described.
  • a method of forming the carbon nanotube group 5 in which the density of the carbon nanotubes 1 is different at one end and the other end by covering each carbon nanotube 1 with a metal will be described.
  • Other configurations and operations are the same as those in the first embodiment. Therefore, the same constituent elements are denoted by the same reference numerals as those in the first embodiment, and the description thereof is omitted. Refer to the drawings in Fig. 5 to Fig. 11 as necessary.
  • the carbon nanotube group 5 is grown on the silicon substrate 2 on which the titanium layer 3 and the cobalt layer 4 shown in FIG. 5 are formed.
  • the growth method of the carbon nanotube group 5 is the same as in the first embodiment, and the description thereof is omitted here.
  • metal is vapor-deposited on each carbon nanotube 1.
  • gold (Au) is used as a metal to be deposited on each carbon nanotube 1.
  • copper (Cu), aluminum (A1), lead (Pb), solder, or the like may be used as the metal to be deposited on each carbon nanotube 1! / ⁇ .
  • each carbon nanotube 1 When gold is vapor-deposited on each carbon nanotube 1, gold is vapor-deposited on the surface of each carbon nanotube 1 with a thickness of about 1 nanometer (nm) by sputtering. By using the sputtering method, gold can be accurately deposited on each carbon nanotube 1. For example, when a sputtering apparatus is used, by setting the film thickness of gold to be deposited to 1 nanometer (nm), each carbon nanotube 1 is deposited with gold having a film thickness of 1 nanometer (nm). In this case, the portion for depositing gold on the carbon nanotube 1 is arbitrary. Further, the volume of gold to be deposited is determined by the volume of the carbon nanotube group 5 to be deposited. Further, instead of depositing a metal on each carbon nanotube 1, each carbon nanotube 1 may be immersed in a molten metal.
  • the carbon nanotube group 5 is heat-treated at about 300 degrees.
  • the melting point of gold usually exceeds 1000 degrees. However, when gold is reduced to nano size, the melting point of gold decreases. Therefore, when the carbon nanotube group 5 is heat-treated at about 300 ° C., the gold deposited on each carbon nanotube 1 melts. Each carbon nanotube 1 is covered with molten gold.
  • the temperature of the heat treatment when, for example, copper (Cu), aluminum (A1), lead (Pb), solder, etc. is used as the metal to be deposited on each carbon nanotube 1 may be obtained by experiment or simulation. .
  • each carbon nanotube 1 When the gold deposited on each carbon nanotube 1 melts, the carbon nanotubes 1 covered with the adjacent gold nestle due to surface tension. Then, the carbon nanotubes 1 covered with gold are formed close to each other. Accordingly, the carbon nanotubes 1 covered with gold close to each other to form a carbon nanotube group 5. Further, when each carbon nanotube 1 comes into contact with the adjacent carbon nanotube 1, each carbon nanotube 1 maintains a state of being close to each other. That is, the carbon nanotubes 1 are held close to each other by the gold covering the carbon nanotubes 1. In other words, the gold covering each carbon nanotube 1 maintains the state in which the adjacent carbon nanotubes 1 are fixed to each other.
  • each carbon nanotube 1 covered with gold is formed such that one of its end portions is close to each other.
  • the density of the carbon nanotubes 1 in the carbon nanotube group 5 is different between the tip side and the root side of the carbon nanotube group 5. That is, the carbon nanotube group 5 in which the density of the carbon nanotubes 1 is different at one end and the other end is formed.
  • the density of the carbon nanotubes 1 on the tip side of the carbon nanotube group 5 is higher than the density of the carbon nanotubes 1 on the root side of the carbon nanotube group 5.
  • FIG. 12 is a front view of the carbon nanotube group 5 formed with one of the end portions of the carbon nanotubes 1 snuggled up.
  • Figure 13 shows one end of each carbon nanotube 1
  • FIG. 6 is a top view of a carbon nanotube group 5 formed by snuggling together.
  • a carbon nanotube group 5 in which the density of the carbon nanotubes 1 is different at one end and the other end is formed. In this way, the process of increasing the density of the carbon nanotubes 1 of the carbon nanotube group 5 is called a densification process.
  • each carbon nanotube 1 is covered with a metal, and each carbon nanotube 1 is covered with a resin containing an organic solvent.
  • the carbon nanotube group 5 is immersed in a resin containing an organic solvent. Accordingly, it is possible to promote that one of the end portions of each carbon nanotube 1 is formed close to each other.
  • the carbon nanotube group 5 in which the density of the carbon nanotubes 1 is different at one end and the other end can be used for, for example, a field emission electron source.
  • a third embodiment of the present invention will be described with reference to the drawing of FIG.
  • the method of forming the carbon nanotube group 5 in which the density of the carbon nanotubes 1 is different at one end and the other end has been described.
  • the carbon nanotube group 5 in which the density of the carbon nanotubes 1 is different is formed such that one of the end portions is close to each other.
  • the carbon nanotube group 5 in which the density of the carbon nanotubes 1 is different includes a space where the carbon nanotubes 1 do not exist. That is, as shown in FIG. 14, there is a space where the carbon nanotube 1 does not exist in the portion E.
  • a method of using a space in which no carbon nanotube 1 is present will be described.
  • a dielectric film is formed in a space where the carbon nanotube 1 does not exist.
  • a dielectric film is formed at a portion E in FIG.
  • the dielectric film is formed in the space where the single-bonn nanotube 1 does not exist, so that the carbon A group of carbon nanotubes 5 with different density of the nanotubes 1 can be used as a strength reinforcement for the dielectric film.
  • nanoporous silica that functions as a dielectric film has low mechanical strength. Therefore, the mechanical strength of the dielectric film can be reinforced by using the carbon nanotube group 5 having a different density of the carbon nanotubes 1 as a strength reinforcement for the dielectric film.
  • a metal by plating may be formed in a space where the carbon nanotubes 1 do not exist. That is, the metal layer may be formed in a space where the carbon nanotube 1 does not exist. Further, the space where the carbon nanotubes 1 do not exist may be filled with resin. Examples of the resin filling the space where the carbon nanotube 1 does not exist include an organic substance. In addition, an insulating film such as SiO may be formed in a space where the carbon nanotube 1 does not exist.
  • a fourth embodiment of the present invention will be described with reference to the drawings in FIGS.
  • a method of combining the carbon nanotube groups 5 having different densities formed according to the first embodiment or the second embodiment will be described.
  • a plurality of carbon nanotube groups 5 having different densities of the carbon nanotubes 1 are arranged on the same straight line. In this case, it arrange
  • a plurality of carbon nanotube groups 5 having different densities of carbon nanotubes 1 are arranged on the same straight line.
  • the carbon nanotubes 1 are arranged so that the other end portion in which the density of the carbon nanotubes 1 is higher than the one end portion is in the same direction.
  • the other end portion in which the density of the carbon nanotubes 1 is higher than that of one end portion is referred to as a high-density end portion.
  • a carbon nanotube group 5 having a different density of the carbon nanotubes 1 is further arranged between the carbon nanotube groups 5 having a different density of the plurality of carbon nanotubes 1 arranged on the same straight line.
  • multiple carbon nanotubes that are already aligned The carbon nanotube groups 5 having different densities of the carbon nanotubes 1 are further arranged so that the high-density ends are in the opposite direction with respect to the high-density ends of the carbon nanotube groups 5 having different densities of 1. That is, a plurality of carbon nanotube groups 5 having different densities of the carbon nanotubes 1 are arranged on the same straight line so that the directions of the high density end portions are staggered.
  • FIG. 16 is a front view of the case where a plurality of carbon nanotube groups 5 having different density of force-bonded nanotubes 1 are arranged on the same straight line so that the directions of the high-density ends are staggered.
  • the density of the carbon nanotube group 5 can be increased by further disposing the carbon nanotube group 5 having a different density of the carbon nanotube 1 in a space where the carbon nanotube 1 does not exist. That is, it becomes possible to form a high-density carbon nanotube group 5.
  • a fifth embodiment of the present invention will be described with reference to the drawings in FIGS.
  • a method for growing the carbon nanotube 1 of the present embodiment will be described with reference to FIGS. 17 and 18.
  • a catalyst is deposited on the silicon substrate 7 with an oxide film.
  • a finely divided catalyst may be used, or a film catalyst deposited by sputtering may be used.
  • a sputtering method will be described as a method for depositing an iron catalyst on the silicon substrate 7 with an oxide film.
  • a lnm-thick iron film 8 is deposited on a silicon substrate 7 with an oxide film by sputtering, and patterning is performed using photolithography so that the iron film 8 has a diameter of about 5 / zm.
  • Fig. 17 shows the iron film 8 after patterning. As shown in FIG. 17, a substantially circular iron film 8 is formed on a silicon substrate 7 with an oxide film by patterning.
  • the diameter of the iron film 8 is an exemplification, and the present invention is not limited to this.
  • the patterning of the iron film 8 may be performed at an arbitrary size.
  • the silicon substrate 7 with the oxide film on which the iron film 8 after notching is formed is placed on an overheating stage in a normal thermal CVD furnace, and evacuated. Then, the silicon substrate 7 with the oxide film is heated until the temperature of the silicon substrate 7 with the oxide film reaches 590 ° C. Thereafter, a mixed gas of argon (Ar) and acetylene (CH 3) is introduced into the thermal CVD furnace for 30 minutes. In this case, Argo The pressure of the mixed gas of hydrogen (Ar) and acetylene (CH 3) is IkPa. In this way, oxidation
  • Carbon nanotubes 1 are oriented and grown on a silicon substrate 7 with a film.
  • FIG. 18 shows a group of carbon nanotubes 5 that are oriented and grown on the silicon substrate 7 with an oxide film.
  • Each carbon nanotube 1 has a diameter of about lOnm and a length of about 20 m.
  • the density of the carbon nanotubes 1 of the carbon nanotube group 5 is about 10 11 pieces / cm 2. Since the density of the carbon nanotubes with a diameter of 5 nm in the close-packed state is about 10 12 Zcm 2 , the occupation ratio of the carbon nanotubes is only about 10%.
  • the carbon nanotube group 5 is immersed in the solvent 9.
  • an organic solvent such as DMF (N, N-dimethylformamide), dichloroethane, isopropyl alcohol, ethanol, or methanol, or an inorganic solvent such as water is used.
  • a solvent 9 having a room temperature is placed in a container 10 having a size capable of containing the silicon substrate 7 with an oxide film. Then, the carbon nanotube group 5 is immersed in the solvent 9 by placing the silicon substrate 7 with an oxide film in a container 10 containing the solvent 9 vertically or horizontally.
  • FIG. 19 to FIG. 21 are diagrams showing a process of attaching the solvent 9 to the carbon nanotube group 5.
  • a silicon substrate 7 with an oxide film is placed sideways in a container 10 containing a solvent 9, the carbon nanotube group 5 is immersed in the solvent 9, and then the container 10 containing the solvent 9 is also treated with an acid. Pull up the coated silicon substrate 7. Specifically, as shown in FIG. 19, the silicon substrate 7 with an oxide film is disposed horizontally. Then, as shown in FIG. 20, a silicon substrate 7 with an oxide film is immersed in a container 10 containing a solvent 9. In this case, the entire carbon nanotube group 5 is immersed in the solvent 9. That is, the solvent 9 is attached to the entire carbon nanotube group 5.
  • the carbon nanotube group 5 is pulled up from the solvent 9 as shown in FIG.
  • the time for immersing the carbon nanotube group 5 in the solvent 9 is not limited to 1 minute, and the immersion time is appropriately adjusted depending on the adhesion state of the solvent 9 to the carbon nanotube group 5.
  • FIG. 22 to FIG. 24 are diagrams showing a process of attaching the solvent 9 to the carbon nanotube group 5 It is.
  • the silicon substrate 7 with the oxide film is placed vertically in the container 10 containing the solvent 9, and after the carbon nanotube group 5 is immersed in the solvent 9, the container 10 containing the solvent 9 is also treated with the acid. Pull up the coated silicon substrate 7. Specifically, as shown in FIG. 22, the silicon substrate 7 with an oxide film is arranged vertically. Then, as shown in FIG. 23, the silicon substrate 7 with the oxide film is immersed in the container 10 containing the solvent 9. In this case, the entire carbon nanotube group 5 is immersed in the solvent 9. That is, the solvent 9 is attached to the entire carbon nanotube group 5.
  • the carbon nanotube group 5 is pulled up from the solvent 9 as shown in FIG.
  • the time for immersing the carbon nanotube group 5 in the solvent 9 is not limited to 1 minute, and the immersion time is appropriately adjusted depending on the adhesion state of the solvent 9 to the carbon nanotube group 5.
  • a surfactant such as SDS (sodium dodecyl sulfate) or a functional molecule such as pyrene, perylene, anthracene, volfilin, phthalocyanine, and DNA.
  • SDS sodium dodecyl sulfate
  • a functional molecule such as pyrene, perylene, anthracene, volfilin, phthalocyanine, and DNA.
  • the silicon substrate 7 with an oxide film is placed in the container 10 containing the solvent 9, and the bonbon nanotube group 5 is immersed in the solvent 9, and then the container 10 containing the solvent 9 is placed.
  • the method of pulling up the silicon substrate 7 with the oxide film from the above was explained.
  • the present invention is not limited to this, and the solvent 9 may be attached to the carbon nanotube group 5 by dropping the solvent 9 onto the carbon nanotube group 5 using a spin coating method.
  • the carbon nanotube group 5 is dried.
  • the method of drying the carbon nanotube group 5 may be a method of natural drying of the carbon nanotube group 5 or a method of rapidly heating the silicon substrate with an oxide film to about 200 ° C and drying it! /.
  • the density of the carbon nanotube 1 at the tip of the carbon nanotube group 5 and the root part of the carbon nanotube group 5 (the end of the carbon nanotube group 5 that is in contact with the silicon substrate with the oxide film)
  • the carbon nanotube group 5 having a different density from the carbon nanotubes 1 is formed.
  • the density of the carbon nanotubes 1 of the carbon nanotube group 5 formed in this way is different between the tip portion and the root portion of the carbon nanotube group 5. That is, a carbon nanotube group in which the density of the carbon nanotube 1 is different between one end and the other end of the carbon nanotube group 5 is formed.
  • the density of the carbon nanotube 1 at the tip portion of the carbon nanotube group 5 is higher than the density of the carbon nanotube 1 at the root portion of the carbon nanotube group 5. Therefore, in the carbon nanotube group 5 shown in FIG. 25, the carbon nanotubes 1 at the tip of the carbon nanotube group 5 have a high density that is close to the close packing.
  • the carbon nanotube group 5 formed by the method described in the first embodiment, the second embodiment, or the fifth embodiment is the carbon nanotube group 5 of one end of the carbon nanotube groups 5.
  • the density becomes high.
  • a method for increasing the density of the carbon nanotubes 1 at both ends of the carbon nanotube group 5 will be described. That is, a method of forming a state in which the carbon nanotubes 1 at both ends of the carbon nanotube group 5 are formed close to each other and the carbon nanotubes 1 of the carbon nanotube group 5 are formed as a whole will be described.
  • a substrate 20 on which the carbon nanotube group 5 is grown is prepared.
  • the silicon substrate 2 shown in the first embodiment and the second embodiment or the silicon substrate 7 with oxide film shown in the fifth embodiment is used as the substrate 20.
  • the process of increasing the density of the carbon nanotubes 1 of the carbon nanotube group 5 described in the first embodiment, the second embodiment, or the fifth embodiment is referred to as a densification process.
  • Carbon nanotubes The carbon nanotube group 5 in which the density of the carbon nanotubes 1 in group 5 has become high is called the carbon nanotube group 5 having high density.
  • the carbon nanotube group 5 grown on the substrate 20 is subjected to the densification process described in the first embodiment, the second embodiment, or the fifth embodiment, so that the density of the carbon nanotubes 1 in the carbon nanotube group 5 is increased. Increase the density.
  • FIG. 26 shows the densified carbon nanotube group 5 and the substrate 20.
  • a substrate 21 having the same size as the substrate 20 on which the carbon nanotube group 5 is grown is prepared.
  • a low melting point metal film 22 such as solder or indium is deposited on the surface of the substrate 21.
  • the thickness of the low melting point metal film 22 deposited on the surface of the substrate 21 is several m.
  • the substrate 23 with the low melting point metal film and the substrate 20 are overlapped so as to sandwich the carbon nanotube group 5.
  • the low melting point metal film 22 deposited on the surface of the substrate 21 and the end of the carbon nanotube group 5 are in contact with each other.
  • the substrate 23 with the low melting point metal film and the substrate 20 are overlapped.
  • the substrate with the low melting point metal film is heated so that the temperature of the substrate 23 with the low melting point metal film becomes equal to or higher than the melting point of the low melting point metal film 22, the substrate with the low melting point metal film Cool 23.
  • the substrate 23 with the low melting point metal film and the substrate 20 are separated.
  • the carbon nanotube group 5 and the substrate 23 with the low melting point metal film are in close contact with each other. That is, the carbon nanotube group 5 is peeled off from the substrate 20, and the carbon nanotube group 5 is in close contact with the substrate 23 with the low melting point metal film. As shown in FIG. 29, the carbon nanotube group 5 is peeled off from the substrate 20, and the carbon nanotube group 5 comes into close contact with the substrate 23 with the low melting point metal film.
  • the carbon nanotube group 5 When the adhesion between the substrate 20 and the carbon nanotube group 5 is strong, the carbon nanotube group 5 is not peeled off from the substrate 20, and the carbon nanotube group 5 does not adhere to the substrate 23 with the low melting point metal film.
  • the first embodiment, the second embodiment, and the fifth embodiment After depositing an extremely thin catalyst film (catalyst film of several nm or less) on the silicon substrate 2 or the silicon substrate 7 with an oxide film, the carbon nanotube group 5 is grown.
  • the silicon substrate 2 or the silicon substrate 7 with an oxide film is used as the substrate 20. Therefore, when an extremely thin catalyst film is deposited on the substrate 20, the adhesion between the substrate 20 and the carbon nanotube group 5 is weak. Therefore, the problem that the carbon nanotube group 5 is not peeled off from the substrate 20 does not occur! /.
  • the end in contact with the substrate 23 with a low melting point metal film is the other end.
  • the density of the carbon nanotubes 1 is higher than the end of the force-bonn nanotube group 5 that is not in contact with the substrate 23 with the low melting point metal film.
  • the width of the carbon nanotube group 5 increases as the distance from the substrate 23 with the low melting point metal film increases. That is, in the carbon nanotube group 5, the density of the carbon nanotubes 1 of the carbon nanotube group 5 decreases as the distance from the substrate 23 with the low melting point metal film increases.
  • the densification process described in the embodiment is performed. That is, among the both ends of the carbon nanotube group 5, the densification process described in the first embodiment, the second embodiment, or the fifth embodiment is performed on the end portion where the density of the carbon nanotube 1 is low.
  • FIG. 30 shows a process in which the carbon nanotube group 5 in close contact with the substrate 23 with the low melting point metal film is immersed in the container 10 containing the solvent 9.
  • FIG. 31 shows a process of pulling up the carbon nanotube group 5 closely attached to the substrate 23 with the low melting point metal film from the container containing the solvent 9.
  • the carbon nanotubes 1 at both ends have a high density close to the closest packing.
  • the densified carbon The nanotube group 5 can be further densified.
  • a method for further densifying the carbon nanotube group 5 in which the carbon nanotubes 1 at both ends of the strong carbon nanotube group 5 are densified will be described.
  • a substrate 30 is prepared.
  • the substrate 23 with the low melting point metal film and the substrate 30 with the low melting point metal film are the same size.
  • the substrate 30 with the low melting point metal film is obtained by depositing a low melting point metal film 32 such as solder or indium on the surface of the substrate 31.
  • a low melting point metal film 32 having a melting point higher than the melting point of the low melting point metal film 22 deposited on the substrate 23 with the low melting point metal film is deposited on the surface of the substrate 31.
  • the thickness of the low melting point metal film 32 deposited on the surface of the substrate 31 is several zm.
  • a substrate 23 with a low melting point metal film and a substrate 30 with a low melting point metal film are overlaid.
  • the end of the carbon nanotube group 5 (the end of the carbon nanotube group 5 that does not contact the substrate 23 with the low melting point metal film) and the low melting point deposited on the surface of the substrate 31
  • the substrate 23 with the low-melting point metal film and the substrate 30 with the low-melting point metal film are overlapped so that the metal film 32 is in contact.
  • the substrate 23 with the low melting point metal film and the temperature of the substrate 30 with the low melting point metal film and the temperature of the substrate 30 with the low melting point metal film 32 are equal to or higher than the melting point of the low melting point metal film 32.
  • the substrate 30 with the low melting point metal film is heated.
  • the substrate 23 with the low melting point metal film and the substrate 30 with the low melting point metal film are cooled.
  • the temperature of the substrate 23 with the low melting point metal film and the temperature of the substrate 30 with the low melting point metal film are higher than the melting point of the low melting point metal film 22 and lower than the melting point of the low melting point metal film 32. Cooling.
  • the substrate 23 with the low melting point metal film is separated from the substrate 30 with the low melting point metal film.
  • the strong bon nanotube group 5 and the substrate 30 with the low-melting-point metal film are in close contact with each other.
  • the carbon nanotube group 5 is peeled off from the substrate 23 with the low melting point metal film and is in close contact with the substrate 30 with the low melting point metal film.
  • the low melting point metal film 22 deposited on the substrate 23 with the low melting point metal film is in a molten state. Therefore, the adhesion between the carbon nanotube group 5 and the substrate 30 with the low melting point metal film is stronger than the adhesion between the carbon nanotube group 5 and the substrate 23 with the low melting point metal film. Therefore, the carbon nanotube group 5 is peeled off from the substrate 23 with the low melting point metal film and is in close contact with the substrate 30 with the low melting point metal film.
  • the density of the carbon nanotubes 1 of the carbon nanotube group 5 can be made high as a whole.
  • a seventh embodiment of the present invention will be described with reference to the drawings in FIGS.
  • a method of applying the carbon nanotube group 5 densified by the densification process described in the first embodiment, the second embodiment, or the fifth embodiment to a heat dissipation bump will be described. To do.
  • Figure 34 shows a conventional transistor implementation.
  • the high output transistor chip 40 and the package 41 are connected by wire bonding. That is, the electrode 42 formed on the surface of the high-power transistor chip 40 and the electrode (not shown) formed on the package 41 are connected by a wire such as a gold wire.
  • the transistor mounting shown in Fig. 34 uses a face-up structure, and heat dissipation is ensured by releasing heat through the high-power transistor chip 40.
  • the high output transistor chip 40 is turned over and the electrode 42 formed on the surface of the high output transistor chip 40 and the electrode of the package 41 are connected by the carbon nanotube bumps 43.
  • flip-chip mounting is performed on the surface of the high-power transistor chip 40 by turning over the high-power transistor chip 40.
  • the formed electrode 42 is connected to an electrode (not shown) formed on the package 41.
  • the electrode 42 formed on the surface of the high-power transistor chip 40 and the electrode formed on the package 41 are connected with the surface of the high-power transistor chip 40 directed toward the package 41.
  • the bump is a terminal formed in a protruding shape.
  • the carbon nanotube tube 43 is a terminal in which the carbon nanotube group 5 is formed on the protrusion.
  • the carbon nanotube bump 43 connects the electrode 42 formed on the surface of the high-power transistor chip 40 and the electrode formed on the package 41.
  • the high-power transistor chip 40 is turned upside down, and the electrode 42 formed on the surface of the high-power transistor chip 40 is directed toward the package 41.
  • the carbon nanotube bump 43 also serves as a heat dissipation path for dissipating the heat generated by the high-power transistor chip 40.
  • the occupation ratio of the carbon nanotubes 1 of the conventional carbon nanotube bumps 43 is about 10%, and it has been desired to increase the density of the carbon nanotubes 1 of the conventional carbon nanotube bumps 43.
  • the carbon nanotube group 5 densified by the densification process described in the first embodiment, the second embodiment, or the fifth embodiment is used for the carbon nanotube bumps 43. That is, by using the carbon nanotube group 5 having a high density as the carbon nanotube bump 43, the electrode 42 formed on the surface of the high-power transistor chip 40 and the electrode formed on the package 41 are connected.
  • the aluminum nitride substrate 50 is used as a substrate for growing the carbon nanotubes 1.
  • the aluminum nitride substrate 50 is used as a material for producing the knock 41.
  • the aluminum nitride substrate 50 used as the substrate for growing the carbon nanotubes 1 is an example, and the present invention is not limited to this.
  • an electrode 51 is formed on a metal substrate such as gold on an aluminum nitride substrate 50.
  • a metal substrate such as gold on an aluminum nitride substrate 50.
  • 5 nm thick aluminum is deposited.
  • iron having a thickness of 1 nm is deposited on the aluminum deposited on the electrode 51.
  • aluminum and iron are used as a catalyst for growing the carbon nanotubes 1.
  • Patterning is performed on aluminum deposited on the electrode 51 and iron deposited on the aluminum.
  • the shape of aluminum and iron formed by patterning is made to be the same shape as the shape of the electrode 42 formed on the surface of the high-power transistor chip 40.
  • the center position of aluminum and iron formed by NOTA JUNG is set to be the same position as the center position of the electrode 42 formed on the surface of the high-power transistor chip 40.
  • the size of aluminum and iron formed by patterning may be the same as the size of the electrode 42 formed on the surface of the high-power transistor chip 40, or may be several times larger.
  • FIG. 38 shows the carbon nanotube group 5 grown on the aluminum nitride substrate 50.
  • the occupation ratio of the carbon nanotube 1 in the carbon nanotube group 5 shown in FIG. 38 is about 10%.
  • the carbon nanotubes at the end of the carbon nanotube group 5 are in contact with the aluminum nitride substrate 50. Increase the density of 1.
  • the diameter of the end of the carbon nanotube group 5 where the density of the carbon nanotube 1 is high is the same as the size of the electrode 42 of the high-power transistor chip 40 or the high-power transistor chip 40.
  • the carbon nanotube group 5 is grown so as to be smaller than the size of the electrode 42.
  • Fig. 39 shows a densified carbon nanotube group 5 and an aluminum nitride substrate 50. Indicates.
  • the carbon nanotubes 1 have different lengths. In other words, the carbon nanotube group 5 is likely to grow as the length of each carbon nanotube 1 varies.
  • Each carbon nano of carbon nanotube group 5 In this case, each force of the carbon nanotube group 5 is processed to make the length of the single-bonn nanotube 1 uniform.
  • a process for making the lengths of the carbon nanotubes 1 of the carbon nanotube group 5 uniform will be described with reference to FIG. As shown in FIG. 40, in the carbon nanotube group 5 grown on the aluminum nitride substrate 50, the lengths of the carbon nanotubes 1 are not uniform.
  • the carbon nanotube group 5 shown in FIG. 40 is subjected to the densification processing described in the first embodiment, the second embodiment, or the fifth embodiment.
  • an interlayer insulating film 60 is deposited on the aluminum nitride substrate 50 so as to cover the carbon nanotube group 5.
  • a porous silica film, a SOG (spin on glass) film, or the like is used as the interlayer insulating film 60.
  • heat treatment is performed to solidify the interlayer insulating film 60.
  • FIG. 41 is a diagram showing a structure of an aluminum nitride substrate 50 in which an interlayer insulating film 60 is deposited so as to cover the carbon nanotube group 5
  • the carbon nanotube group 5 is solidified together with the interlayer insulating film 60.
  • the carbon nanotube group 5 and the interlayer insulating film 60 are polished by chemical mechanical polishing (CMP) treatment.
  • CMP chemical mechanical polishing
  • the carbon nanotube group 5 and the interlayer insulating film 60 are polished until the length of each carbon nanotube 1 of the carbon nanotube group 5 becomes uniform.
  • FIG. 42 shows the aluminum nitride substrate 50 after the carbon nanotube group 5 and the interlayer insulating film 60 have been polished.
  • interlayer insulating film 60 deposited on aluminum nitride substrate 50 is removed.
  • the interlayer insulating film 60 deposited on the aluminum nitride substrate 50 may not be removed.
  • the carbon nanotube group 5 can be stably bonded to the high-power transistor chip 40.
  • an aluminum nitride substrate 50 used for manufacturing the knock 41 is prepared.
  • the carbon nanotube group 5 is grown on the aluminum nitride substrate 50 by the growth method of the carbon nanotube group 5 described in the first embodiment or the second embodiment.
  • the carbon nanotube group 5 formed on the aluminum nitride substrate 50 is subjected to the densification process described in the first embodiment, the second embodiment, or the fifth embodiment. Further, the carbon nanotube group 5 formed on the aluminum nitride substrate 50 may have been subjected to a process for making the lengths of the carbon nanotubes 1 uniform.
  • gold having a thickness of 1 ⁇ m is deposited on the carbon nanotube group 5 formed on the aluminum nitride substrate 50.
  • the thickness of gold deposited on the carbon nanotube group 5 is an example, and the present invention is not limited to this.
  • gold may be deposited on the portion of the carbon nanotube group 5 formed on the aluminum nitride substrate 50 that is bonded to the electrode 42 formed on the surface of the high-power transistor chip 40!
  • the carbon nanotube group 5 on which gold is deposited and the electrode 42 formed on the surface of the high-power transistor chip 40 are bonded.
  • the pressure used to bond the carbon nanotube group 5 and the electrode 42 formed on the surface of the high-power transistor chip 40 is 6 kgZcm 2 and the temperature is 345 ° C.
  • the pressure and temperature are examples, and the present invention is not limited to these.
  • FIG. 43 is a diagram showing the structure of the aluminum nitride substrate 50 provided with the high-power transistor chip 40.
  • the carbon nanotube group 5 is used as the carbon nanotube bump 43.
  • An electrode 42 formed on the surface of the high-power transistor chip 40 and an electrode 51 on the aluminum nitride substrate 50 are connected via the carbon nanotube group 5.
  • the density of the carbon nanotubes 1 at the end that is attached is about 10 times the density of the carbon nanotubes 1 at the end that are not bonded to the high-power transistor chip 40. Therefore, it has higher heat dissipation than the conventional carbon nanotube bump 43.
  • the electrode 42 formed on the surface of the high-power transistor chip 40 and the electrode on the aluminum nitride substrate 50 are used. 51 can also be connected.
  • the carbon nanotube group 5 in which the density of the carbon nanotubes 1 is high as a whole can be produced by the method described in the sixth embodiment. By using the carbon nanotube group 5 in which the density of the carbon nanotubes 1 is high as a whole, it is possible to increase the degree of freedom in designing the wiring board.
  • FIGS. 1 An eighth embodiment of the present invention will be described with reference to the drawings in FIGS.
  • LSI wiring is multilayered with 10 or more layers, and copper is usually used as the wiring material.
  • copper is usually used as the wiring material.
  • FIG. 44 shows the structure of LSI70.
  • the LSI 70i, the insulating film 72 that sandwiches the copper alloy wire 71, and the via 73 that electrically connects the copper wiring 71 and the other copper wiring 71 are configured.
  • FIG. 45 a substrate 74 on which the carbon nanotube group 5 is grown is prepared.
  • the substrate 74 the silicon substrate 2 or the silicon substrate 7 with an oxide film may be used, or another substrate may be used.
  • the carbon nanotube group 5 is grown on the substrate 74 using the growth method of the carbon nanotube 1 shown in the first embodiment or the fifth embodiment. Furthermore, the carbon nanotube group 5 is densified using the densification process shown in the first embodiment, the second embodiment, or the fifth embodiment. In this embodiment, cobalt, iron, or another metal is used as a catalyst for growing the carbon nanotube group 5 on the substrate 74.
  • the carbon nanotube group 5 is grown on the substrate 74 by patterning the catalyst so that the carbon nanotube group 5 can be arranged at the position of the via 70 constituting the LSI 70.
  • a cobalt film 77 is deposited to a thickness of 5 nm on the electrode 76 of the LSI substrate 75, and a tantalum film 78 is deposited to a thickness of 5 nm on the cobalt film 77.
  • a titanium film 79 is deposited on top with a thickness of 5 nm.
  • a film of iron, nickel or the like may be used instead of the coronate film 77.
  • a film made of a coroline alloy, an iron alloy, nickel alloy, or the like may be used instead of the cobalt film 77.
  • the substrate 74 and the LSI substrate 75 are stacked and transferred to the CVD furnace. After evacuation in the CVD furnace, the stage on which the substrate 74 and the LSI substrate 75 are placed is heated. To do. After the temperature in the CVD furnace has stabilized, a process gas (mixed gas) is introduced into the CVD furnace at IkPa.
  • a process gas mixed gas
  • argon and acetylene (CH 3) are used as process gases.
  • the process gas of argon and acetylene (CH 3) uses methane (
  • a hydrocarbon gas such as CH 2) or ethylene (C 3 H 4) or alcohol may be added. Also,
  • Hydrocarbon gas or alcohol may be used. Further, the process gas may be composed of a plurality of types of hydrocarbon gas, or may be composed of a plurality of types of hydrocarbon gas and alcohol.
  • the cobalt film 77 deposited on the electrode 76 of the LSI substrate 75 is in a molten state. Therefore, the carbon nanotube group 5 and the electrode 76 of the LSI substrate 75 are firmly bonded.
  • the temperature of the stage in the CVD furnace is a force at which the cobalt film 77 and the process gas react with each other so that the carbon nanotube 1 of the carbon nanotube group 5 does not grow (for example, a temperature of about 350 ° C). It is desirable to do. Note that the temperature of the stage in the CVD furnace can vary depending on the type of process gas and the thickness of the film deposited on the LSI substrate 75.
  • the substrate 74 and the LSI substrate 75 are taken out of the CVD furnace. Then, the substrate 74 and the LSI substrate 75 are separated. When the substrate 74 and the LSI substrate 75 are separated, the carbon nanotube group 5 and the electrode 76 of the LSI substrate 75 are in close contact with each other. That is, the carbon nanotube group 5 is also peeled off from the substrate 74 and is in close contact with the electrode 76 of the LSI substrate 75.
  • the carbon nanotube group 5 is grown on the substrate 74 using the growth method of the carbon nanotube 1 described in the first embodiment or the fifth embodiment. That is, after a very thin catalyst film (a catalyst film of several nm or less) is deposited on the substrate 74, the single-bonn nanotube group 5 is grown. Since an extremely thin catalyst film is deposited on the substrate 74, the adhesion between the substrate 74 and the carbon nanotube group 5 is weak. Therefore, the problem that the carbon nanotube group 5 is not peeled off from the substrate 74 does not occur.
  • a very thin catalyst film a catalyst film of several nm or less
  • the substrate 74 and the LSI substrate 75 are filled with an interlayer insulating film 80 such as an SOG film or a porous silica film.
  • an interlayer insulating film 80 such as an SOG film or a porous silica film
  • the interlayer insulating film 80 is dissolved in a suitable solvent to make the interlayer insulating film 80 liquid.
  • the gap between the substrate 74 and the LSI substrate 75 is filled with the interlayer insulating film 80 by immersing the substrate 74 and the LSI substrate 75 in the liquid interlayer insulating film 80.
  • a liquid interlayer insulating film 80 is injected into the gap between the substrate 74 and the LSI substrate 75 to fill the gap between the substrate 74 and the LSI substrate 75 with the interlayer insulating film 80. May be.
  • the interlayer insulating film 80 is solidified, and the interlayer insulating film 80 is formed between the substrate 74 and the LSI substrate 75.
  • the interlayer insulating film 80 is formed in the gap between the substrate 74 and the LSI substrate 75.
  • the carbon nanotube group 5 is in contact with the LSI substrate 75 to which the carbon nanotube group 5 is adhered.
  • the interlayer insulating film 80 is formed.
  • the interlayer insulating film 80 is formed on the LSI substrate 75 by applying the liquid interlayer insulating film 80 to the LSI substrate 75 to which the carbon nanotube group 5 is in close contact using spin coating or the like.
  • the substrate 74 and the LSI substrate 75 may be overlapped. That is, the substrate 74 and the LSI substrate 75 are overlaid using the substrate 74 on which the interlayer insulating film 80 has already been formed. In this case, the interlayer insulating film 80 is formed on the substrate 74 by the following method.
  • an interlayer insulating film 80 is deposited on the substrate 74 so as to cover the carbon nanotube group 5.
  • heat treatment is performed to solidify the interlayer insulating film 80.
  • FIG. 48 is a view showing the structure of the substrate 74 on which the interlayer insulating film 80 is deposited so as to cover the carbon nanotube group 5. As shown in FIG. When the interlayer insulating film 80 is deposited on the substrate 74 and heat treatment is performed, the carbon nanotube group 5 is solidified together with the interlayer insulating film 80. As described above, the interlayer insulating film 80 is formed on the substrate 74.
  • the interlayer insulating film 80 is polished by chemical mechanical polishing (CMP) treatment.
  • CMP chemical mechanical polishing
  • the interlayer insulating film 80 is polished so that the tip of the carbon nanotube group 5 is exposed.
  • the carbon nanotube groups are kept until the lengths of the carbon nanotubes 1 of the carbon nanotube group 5 are uniform. 5 and interlayer insulating film 80 may be polished.
  • the tip of the carbon nanotube group 5 may be protruded. That is, as shown in FIG. 49, the length of the carbon nanotube group 5 is made longer than the length of the interlayer insulating film 80 formed on the substrate 74 in the thickness direction. Specifically, wet etching or dry etching is performed on the interlayer insulating film 80 to remove only the interlayer insulating film 80. By cutting only the interlayer insulating film 80, the tip of the carbon nanotube group 5 can be protruded.
  • the wet etching in the present embodiment uses liquid or gaseous dilute hydrogen fluoride.
  • a porous silica film is used as the interlayer insulating film 80, only the interlayer insulating film 80 is etched when wet etching is performed. Therefore, the leading end of the carbon nanotube group 5 can be projected.
  • the interlayer insulating film 80 is cut by dry etching, argon ions are struck against the interlayer insulating film 80 by sputtering.
  • dry etching is performed, only the interlayer insulating film 80 is etched. Therefore, the tip of the carbon nanotube group 5 can be protruded.
  • the interlayer insulating film 80 is formed on the substrate 74 in this way, the substrate 74 and the LSI substrate 75 are overlapped, and the substrate 74 and the LSI substrate 75 are separated from each other.
  • the insulating film 80 is formed and the carbon nanotube group 5 is in close contact.
  • CMP chemical mechanical polishing
  • the LSI substrate 75 on which the interlayer insulating film 80 is formed may be the LSI substrate 75 in which the interlayer insulating film 80 is formed after separating the substrate 74 and the LSI substrate 75 from each other. It may be an LSI substrate 75 on which an interlayer insulating film 80 is formed before the separation.
  • FIG. 50 shows the LSI substrate 75 after the carbon nanotube group 5 and the interlayer insulating film 80 have been polished.
  • a copper wiring 71 is formed on the LSI substrate 75. Specifically, copper is deposited on the single-bonn nanotube group 5 in close contact with the LSI substrate 75, and copper is deposited on the interlayer insulating film 80 formed on the LSI substrate 75. Then, patterning the deposited copper, LSI Copper wiring 71 is formed on the substrate 75. An interlayer insulating film 80 is formed between the copper wiring 71 and the other copper wiring 71. However, the formation of the interlayer insulating film 80 may not be performed at this stage.
  • FIG. 51 shows the LSI substrate 75 after the copper wiring 71 is formed.
  • the process of forming the carbon nanotube group 5 and the interlayer insulating film 80 on the LSI substrate 75 and forming the copper wiring 71 on the carbon nanotube group 5 and the interlayer insulating film 80 is referred to as a first wiring process.
  • the carbon nanotube group 5 is further formed on the LSI substrate 75. That is, the carbon nanotube group 5 is formed on the copper wiring 71, and the LSI substrate 75 is multilayered.
  • the process of forming the carbon nanotube group 5 on the copper wiring 71 will be described below.
  • a substrate 74 on which the carbon nanotube group 5 is grown is prepared.
  • the high density of the carbon nanotube group 5 grown on the substrate 74 is the same as in the first wiring step.
  • patterning the catalyst and growing the carbon nanotube group 5 on the substrate 74 so that the carbon nanotube group 5 can be arranged at the position of the via 70 constituting the LSI 70 is the first wiring process. It is the same.
  • patterning the catalyst and growing the carbon nanotube group 5 on the substrate 74 so that the carbon nanotube group 5 can be placed at the position of the via 70 constituting the LSI 70 is the first wiring process. It is the same.
  • a cobalt film 77 is deposited to a thickness of 5 nm on the copper wiring 71
  • a tantalum film 78 is deposited to a thickness of 5 nm on the cobalt film 77
  • a titanium film is deposited on the tantalum film 78.
  • 79 is deposited with a thickness of 5 nm.
  • a film of iron, nickel, or the like may be used instead of the cobalt film 77.
  • the LSI substrate 75 on which the copper wiring 71 is formed and the substrate 74 are overlapped. Specifically, as shown in FIG. 53, the substrate 74 and the LSI substrate 75 are overlapped so that the end of the carbon nanotube group 5 not in contact with the substrate 74 is in contact with the copper wiring 71. In this case, the substrate 74 and the LSI substrate 75 are overlapped so that the longitudinal direction of the substrate 74 is substantially parallel to the longitudinal direction of the LSI substrate 75. Further, the substrate 74 and the LSI substrate 75 are overlapped so that the end of the carbon nanotube group 5 and the electrode 76 of the LSI substrate 75 are in contact with each other by optical alignment.
  • the method of bonding the end of the carbon nanotube group 5 (the end of the carbon nanotube group 5 in contact with the substrate 74) to the copper wiring 71 is the carbon nanotube in the first wiring process. Similar to the method of bonding the end of group 5 to electrode 76.
  • FIG. 54 shows a state in which the carbon nanotube group 5 is peeled off from the substrate 74 and the carbon nanotube group 5 is in close contact with the copper wiring 71 formed on the LSI substrate 75.
  • CMP chemical mechanical polishing
  • copper wiring 71 is formed on the LSI substrate 75.
  • the method for forming the copper wiring 71 on the LSI substrate is the same as in the first wiring process.
  • a process of forming the carbon nanotube group 5 and the interlayer insulating film 80 on the copper wiring 71 and further forming the copper wiring 71 is referred to as a second wiring process.
  • the materials and methods used in the first wiring process can be used in the second wiring process.
  • the first wiring step of forming the carbon nanotube group 5 and the interlayer insulating film 80 on the LSI substrate 75 and forming the copper wiring 71 on the carbon nanotube group 5 and the interlayer insulating film 80 is performed.
  • the carbon nanotube group 5 and the interlayer insulating film 80 are formed on the copper wiring 71, and then a second wiring process for forming the copper wiring 71 is performed. By repeating the second wiring process, a multilayer wiring LSI using the carbon nanotube group 5 is formed.
  • the method of bonding the carbon nanotube group 5 to the electrode 76 or the copper wiring 71 using the cobalt film 77, the tantalum film 78, and the titanium film 79 of the present embodiment is used in the seventh embodiment. It is also possible. That is, by using the method for bonding the carbon nanotube group 5 and the electrode 76 in the present embodiment, the carbon nanotube group 5 in the seventh embodiment An electrode formed on the surface of the output transistor chip 40 may be adhered.
  • carbon nanofibers may be used in place of the carbon nanotubes 1 in the eighth embodiment.
  • the growth method of the carbon nanofiber is the same as the growth method of the single carbon nanotube 1, and the description thereof is omitted here.
  • the structure and method of the first to eighth embodiments of the present invention can be applied to a thin wire-like material such as carbon nanotube 1 or carbon fiber.
  • the structure and method of the eighth embodiment of the first embodiment of the present invention can be applied to carbon-based fibers.
  • the structures and methods of the first to eighth embodiments of the present invention can be applied to hollow carbon-based fibers and non-hollow carbon-based fibers.

Abstract

 カーボンナノチューブを高密度化する技術を提供する。炭素系繊維の集合体構造は、複数の炭素系繊維で構成される前記炭素系繊維の集合体構造であって、一方の端部における前記炭素系繊維の密度と他方の端部における前記炭素系繊維の密度とが異なる前記炭素系繊維が長さ方向に配列された前記炭素系繊維の集合体からなる。

Description

明 細 書
炭素系繊維のデバイス構造およびその製造方法
技術分野
[0001] 本発明は、炭素系繊維のデバイス構造およびその製造方法に関する。
背景技術
[0002] カーボンナノチューブ(Carbon Nano Tube (CNT) )は、電気伝導性、熱伝導性 、機械的特性に優れていることから、様々な分野で応用が試みられている。そのため 、電子デバイス、放熱デバイス、 LSI (Large Scale Integration)用配線、トランジスタの チャネル、放熱バンプ、電子放出源としての応用が期待されている。特に配向成長し たカーボンナノチューブは、配線応用、放熱応用が期待されている。なお、カーボン ナノチューブを配向成長させる方法として、現在、化学気相堆積法 (CVD)法が主流 であり、所望の基板上に直接 CNTを成長させることも一般的に行われている。カーボ ンナノチューブを配向成長させる方法として、熱 CVD法、プラズマ CVD法、ホットフィ ラメント CVD法などがある。また、最密充填に近いカーボンナノチューブを得る方法と して、 SiCの熱分解法がある。
特許文献 1 :特開 2004— 185985号公報
特許文献 2:特表 2002— 530805号公報
特許文献 3:特許第 3183845号公報
特許文献 4:特開 2002— 329723号公報
非特許文献 1 :A. Bezyadin,外、 Nature、 Vol. 386、 1997年、 p. 474
非特許文献 2 : T. Iwai、外、 IEEE IEDM Tech. Digest, 2005年、 p. 265
非特許文献 3 : A. G. Rinzler、外、 Science、 Vol. 269、 1995年、 p.1550
発明の開示
発明が解決しょうとする課題
[0003] カーボンナノチューブの応用にお 、ては、基板に配向成長させたカーボンナノチュ ーブを利用するものも多い。カーボンナノチューブの応用例として、例えば、 LSI用 配線や放熱バンプがある。カーボンナノチューブを応用した場合、配線抵抗の低減 や放熱効率の向上の点から、できるだけ密度が高いカーボンナノチューブを基板に 成長させることが望ましい。しかし、従来の方法によって配向成長させたカーボンナノ チューブは密度が低い。また、隣接するカーボンナノチューブの一部は接触している 力 そのすべてが接触しているわけではない。すなわち、隣接するカーボンナノチュ ーブの間隔が開くという問題がある。高密度のカーボンナノチューブの成長は、一般 的に容易ではなぐ従来の方法によって配向成長させたカーボンナノチューブの体 積占有率は、 10%程度である。また、 SiCの熱分解法は、熱処理温度が 1200〜22 00°Cである。そのため、基板選定や他のデバイスとのプロセス整合が困難となる。本 発明では、カーボンナノチューブを高密度化する技術を提供することを目的とする。 課題を解決するための手段
[0004] 本発明は、上記課題を解決するために、以下の手段を採用した。すなわち、本発 明の炭素系繊維の集合体構造は、複数の炭素系繊維で構成される前記炭素系繊維 の集合体構造であって、一方の端部における前記炭素系繊維の密度と他方の端部 における前記炭素系繊維の密度とが異なる前記炭素系繊維が長さ方向に配列され た前記炭素系繊維の集合体力もなる。本発明によれば、炭素系繊維の集合体の両 端の密度は、一方の端部と他方の端部とで異なり、一方の端部の炭素系繊維の密度 よりも他方の端部の炭素系繊維の密度が高い。
[0005] また、本発明の炭素系繊維の集合体構造は、隣接する前記炭素系繊維の集合体 の間に前記炭素系繊維と異なる物質を有するものでもよい。本発明によれば、炭素 系繊維の集合体の両端の密度は、一方の端部と他方の端部とで異なっている。その ため、隣接する炭素系繊維の集合体の間に炭素系繊維と異なる物質を有することが 可能となる。その結果、本発明の炭素系繊維の集合体構造は、炭素系繊維の集合 体と、炭素系繊維と異なる物質とを組み合わせることが可能となる。
[0006] また、本発明の炭素系繊維の集合体構造は、隣接する前記炭素系繊維の集合体 の間に空間を有するものでもよい。本発明によれば、炭素系繊維の集合体の両端の 密度は、一方の端部と他方の端部とで異なっている。そのため、隣接する炭素系繊 維の集合体の間に空間を有する。その結果、本発明の炭素系繊維の集合体構造は 、隣接する炭素系繊維の集合体の間の空間を有効に利用することが可能となる。 [0007] また、本発明の炭素系繊維の集合体構造は、隣接する前記炭素系繊維の集合体 が異なる方向に配置されてもよい。本発明によれば、炭素系繊維の集合体の両端の 密度は、一方の端部と他方の端部とで異なっている。そのため、隣接する炭素系繊 維の集合体の間に、炭素系繊維の集合体を異なる方向に配置することができる。そ の結果、本発明の炭素系繊維の集合体構造は、炭素系繊維の集合体と、異なる方 向に配置された炭素系繊維の集合体とを組み合わせることが可能となる。
[0008] また、本発明の炭素系繊維の集合体構造では、一方の端部の前記炭素系繊維の 密度よりも高密度である他方の端部の前記炭素系繊維は、各炭素系繊維が互いに 密着して形成されていてもよい。本発明によれば、炭素系繊維の集合体の両端の密 度は、一方の端部と他方の端部とで異なり、各炭素系繊維が互いに密着して形成さ れている。その結果、各炭素系繊維を互いに密着して形成することにより、一方の端 部の炭素系繊維の密度よりも他方の端部の炭素系繊維の密度を高くすることができ る。
[0009] また、本発明の炭素系繊維の集合体構造は、一方の端部がノ ッケージ基板に接合 されるともに、一方の端部の前記炭素系繊維の密度よりも高密度である他方の端部 が半導体素子に接合されてもよい。
[0010] また、本発明の炭素系繊維の集合体構造は、前記炭素系繊維が、中空状であって もよい。さらに、本発明の炭素系繊維の集合体構造は、前記炭素系繊維が、カーボ ンナノチューブであってもよい。また、本発明の炭素系繊維の集合体構造は、前記炭 素系繊維が、カーボンナノファイバーであってもよい。さらに、本発明の炭素系繊維 の集合体構造は、前記炭素系繊維と異なる物質が、誘電体、有機物質、金属、絶縁 体の 、ずれかであってもよ!/、。
[0011] 本発明の炭素系繊維の集合体構造の製造方法は、基板面から略垂直方向に炭素 系繊維が長さ方向に配列した前記炭素系繊維の集合体を成長させる工程と、前記 炭素系繊維の集合体の長さ方向の一方の端部を密集させる密集工程とを有する。 本発明によれば、炭素系繊維の集合体の長さ方向の一方の端部を密集させることが できる。そのため、一方の端部と他方の端部とで密度が異なる炭素系繊維の集合体 構造を製造することが可能となる。 [0012] 本発明の炭素系繊維の集合体構造の製造方法は、第 1の基板の基板面力 略垂 直方向に炭素系繊維が長さ方向に配列した前記炭素系繊維の集合体を成長させる 工程と、前記炭素系繊維の集合体の長さ方向の一方の端部を密集させる密集工程 と、前記炭素系繊維の集合体の長さ方向の他方の端部を第 2の基板の基板面に密 着させる工程と、前記第 1の基板の基板面に成長した前記炭素繊維の集合体を前記 第 1の基板の基板面から引き剥がす工程と、前記炭素系繊維の集合体の長さ方向の 他方の端部を密集させる密集工程とを有する。本発明によれば、炭素系繊維の集合 体の長さ方向の両方の端部を密集させることができる。
[0013] また、本発明の炭素系繊維の集合体構造の製造方法は、前記密集工程が、前記 炭素系繊維と異なる付着物質を含む溶媒を前記炭素系繊維の集合体に含侵させる 工程と、前記溶媒を蒸発させる工程とを有するものでもよい。また、本発明の炭素系 繊維の集合体構造の製造方法は、前記密集工程が、溶媒を前記炭素系繊維の集合 体に含侵させる工程と、前記炭素系繊維の集合体及び前記溶媒を乾燥させる工程と を有するものでもよい。
[0014] また、本発明の炭素系繊維の集合体構造の製造方法は、前記溶媒が、 N, N—ジ メチルホルムアミド、ジクロロェタン、イソプロピルアルコール、メタノール、エタノール 力らなる群より選択されるものでもよい。また、本発明の炭素系繊維の集合体構造の 製造方法は、前記溶媒が、界面活性剤又は機能性高分子を含むものでもよい。
[0015] また、本発明の半導体基板の配線形成方法は、前記半導体基板が備える電極上 に複数の炭素系繊維で構成される前記炭素系繊維の集合体構造を形成する工程と 、前記電極と前記炭素系繊維の集合体構造とを接着する工程と、前記炭素系繊維 の集合体構造上に導電体を形成する工程と、前記導電体上に前記炭素系繊維の集 合体構造を形成する工程と、前記導電体と前記炭素系繊維の集合体構造とを接着 する工程とを有し、前記炭素系繊維の集合体は、前記炭素系繊維が長さ方向に配 列され、一方の端部の前記炭素系繊維の密度と他方の端部の前記炭素系繊維の密 度とが異なり、一方の端部の前記炭素系繊維の密度よりも高密度である他方の端部 の前記炭素系繊維は、各炭素系繊維が互いに密着して形成されている。本発明によ れば、炭素系繊維の集合体構造によって、半導体基板が備える電極と導電体とを電 気的に接続する。その結果、電流密度が増加した場合でも、電極と導電体との間の 断線の可能性を低減させることができる。
[0016] また、本発明の半導体基板の配線形成方法は、前記電極と前記炭素系繊維の集 合体構造とを接着する工程が、前記電極上に触媒膜を堆積し、プロセスガスを使用 して前記触媒膜を溶融させて前記電極と前記炭素系繊維の集合体構造とを接着す る工程であり、前記導電体と前記炭素系繊維の集合体構造とを接着する工程が、前 記導電体上に触媒膜を堆積し、プロセスガスを使用して前記触媒膜を溶融させて前 記導電体と前記炭素系繊維の集合体構造とを接着する工程であってもよい。
[0017] また、本発明の半導体基板の配線形成方法は、前記触媒膜が、コバルト、鉄、ニッ ケルカ なる群より選択される金属、または当該金属を含む合金よりなるものでもよい 。また、本発明の半導体基板の配線形成方法は、前記プロセスガスが、炭化水素系 ガス及びアルコールのうち少なくとも一つを含むものでもよい。
発明の効果
[0018] 本発明によれば、カーボンナノチューブを高密度化することができる。
図面の簡単な説明
[0019] [図 1]従来の方法によってカーボンナノチューブ 1を配向成長させた場合の図である
[図 2]従来の方法によってカーボンナノチューブ 1を配向成長させた場合のカーボン ナノチューブ 1の正面図である。
[図 3]従来の方法によってカーボンナノチューブ 1を配向成長させた場合のカーボン ナノチューブ 1の上面図である。
[図 4]第 1実施形態のカーボンナノチューブ 1の成長方法を示す図である。
[図 5]カーボンナノチューブ群 5が成長した例を示す図である。
[図 6]有機溶媒を含む榭脂によって満たされた容器 6にカーボンナノチューブ群 5を 浸漬する図である。
[図 7]有機溶媒を含む榭脂によって満たされた容器 6にカーボンナノチューブ群 5を 浸漬する図である。
[図 8]有機溶媒を含む榭脂によって満たされた容器 6にカーボンナノチューブ群 5を 浸漬する図である。
圆 9]有機溶媒を含む榭脂によって満たされた容器 6にカーボンナノチューブ群 5を 浸漬する図である。
[図 10]各カーボンナノチューブ 1の端部の一方が寄り添って形成されたカーボンナノ チューブ群 5の正面図である。
[図 11]各カーボンナノチューブ 1の端部の一方が寄り添って形成されたカーボンナノ チューブ群 5の上面図である。
[図 12]各カーボンナノチューブ 1の端部の一方が寄り添って形成されたカーボンナノ チューブ群 5の正面図である。
[図 13]各カーボンナノチューブ 1の端部の一方が寄り添って形成されたカーボンナノ チューブ群 5の上面図である。
[図 14]カーボンナノチューブ 1が存在しない空間を示す図である。
[図 15]密度が異なるカーボンナノチューブ群 5を複数配置した図である。
[図 16]高密度の端部の方向が互 、違いになるように密度が異なるカーボンナノチュ ーブ群 5を複数配置した場合の正面図である。
圆 17]パターニング後の鉄膜 8を示す図である。
圆 18]、酸ィ匕膜付きシリコン基板 7に配向成長したカーボンナノチューブ群 5を示す 図である。
圆 19]カーボンナノチューブ群 5に溶媒を付着させる工程を示す図である。
圆 20]カーボンナノチューブ群 5に溶媒を付着させる工程を示す図である。
圆 21]カーボンナノチューブ群 5に溶媒を付着させる工程を示す図である。
圆 22]カーボンナノチューブ群 5に溶媒を付着させる工程を示す図である。
圆 23]カーボンナノチューブ群 5に溶媒を付着させる工程を示す図である。
圆 24]カーボンナノチューブ群 5に溶媒を付着させる工程を示す図である。
[図 25]各カーボンナノチューブ 1の端部の一方が寄り添って形成されたカーボンナノ チューブ群 5の正面図である。
[図 26]高密度化されたカーボンナノチューブ群 5及び基板 20を示す図である。 圆 27]基板 20及び基板 23の構造を示す図である。 圆 28]低融点金属膜付きの基板 23と基板 20とを重ね合わせた構造を示す図である 圆 29]基板 20からカーボンナノチューブ群 5が引き剥がされ、低融点金属膜付きの 基板 23にカーボンナノチューブ群 5が密着した構造を示す図である。
[図 30]カーボンナノチューブ群 5に、第 3実施形態で示した高密度化処理を行う場合 の工程図である。
[図 31]カーボンナノチューブ群 5に、第 3実施形態で示した高密度化処理を行う場合 の工程図である。
[図 32]カーボンナノチューブ群 5に、第 3実施形態で示した高密度化処理を行う場合 の工程図である。
[図 33]カーボンナノチューブ群 5に、第 3実施形態で示した高密度化処理を行う場合 の工程図である。
圆 34]従来のトランジスタ実装を示す構造図である。
圆 35]フリップチップ実装を示す構造図である。
圆 36]フリップチップ実装を示す構造図である。
[図 37]電極 51を形成した窒化アルミニウム基板 50の構造を示す図である。
[図 38]カーボンナノチューブ群 5を形成した窒化アルミニウム基板 50の構造を示す図 である。
[図 39]高密度化したカーボンナノチューブ群 5が形成された窒化アルミニウム基板 50 の構造を示す図である。
[図 40]各カーボンナノチューブ 1の長さが不均一のカーボンナノチューブ群 5が形成 された窒化アルミニウム基板 50の構造を示す図である。
[図 41]カーボンナノチューブ群 5を覆うように、層間絶縁膜 60を堆積させた窒化アル ミニゥム基板 50の構造を示す図である。
[図 42]カーボンナノチューブ群 5及び層間絶縁膜 60が研磨された後の窒化アルミ- ゥム基板 50の構造を示す図である。
圆 43]高出力トランジスタチップ 40を備え付けた窒化アルミニウム基板 50の構造を示 す図である。 [図 44]LSI (Large Scale Integration) 70の構造を示す図である。
[図 45]カーボンナノチューブ群 5を成長させた基板 74及び LSI基板 75の構造を示す 図である。
[図 46]基板 74と LSI基板 75とを重ね合わせた構造を示す図である。
圆 47]基板 74と LSI基板 75との間の隙間を、層間絶縁膜 80で埋めた構造を示す図 である。
[図 48]カーボンナノチューブ群 5を覆うように層間絶縁膜 80を堆積させた基板 74の 構造を示す図である。
圆 49]カーボンナノチューブ群 5の先端を突出させた構造を示す図である。
[図 50]カーボンナノチューブ群 5及び層間絶縁膜 80が研磨された LSI基板 75の構 造を示す図である。
[図 51]銅配線 71が形成された LSI基板 75の構造を示す図である。
[図 52]銅配線 71が形成された LSI基板 75及び基板 74の構造を示す図である。 圆 53]基板 74と銅配線 71が形成された LSI基板 75とを重ね合わせた構造を示す図 である。
[図 54]LSI基板 75に形成された銅配線 71にカーボンナノチューブ群 5が密着した構 造を示す図である。
[図 55]カーボンナノチューブ群 5及び層間絶縁膜 80が研磨された LSI基板 75の構 造を示す図である。
符号の説明
1 カーボンナノチューブ
2 シリコン基板
3 チタン層
4 コノ ノレ卜層
5 カーボンナノチューブ群
6 容器
7 酸ィ匕膜付きシリコン基板 10 容器
20 基板
21 基板
22 低融点金属膜
23 低融点金属膜付きの基板
30 低融点金属膜付きの基板
31 基板
32 低融点金属膜
50 窒化アルミニウム基板
51 電極
60 層間絶縁膜
70 し&)丄 (Large Scale Integration)
71 銅配線
72 絶縁膜
73 ビア
74 基板
75 LSI基板
76 電極
77 コバルト膜
78 タンタル膜
79 チタン膜
80 層間絶縁膜
発明を実施するための最良の形態
[0021] 以下、図面を参照して本発明の実施をするための最良の形態 (以下、実施形態と いう)について説明する。以下の実施形態の構成は例示であり、本発明は実施形態 の構成に限定されない。
[0022] 図 1は、従来の方法によってカーボンナノチューブ 1を配向成長させた場合の図で ある。図 1に示すように、大量のカーボンナノチューブ 1が成長している。しかし、隣接 するカーボンナノチューブ 1は、互いに接触していない場合がある。図 2は、従来の方 法によってカーボンナノチューブ 1を配向成長させた場合のカーボンナノチューブ 1 の正面図である。図 3は、従来の方法によってカーボンナノチューブ 1を配向成長さ せた場合のカーボンナノチューブ 1の上面図である。図 2及び図 3に示すように、隣接 するカーボンナノチューブ 1の間には間隔がある。すなわち、隣接するカーボンナノ チューブ 1の間には隙間が生じている。ただし、すべてが接触しないで孤立している わけではない。配向成長するには接触した部分も必要な場合がある。特にカーボン ナノチューブが細くなつた場合には一部接触した部分がないと配向成長しにくくなる 。この場合でも隣接するカーボンナノチューブ 1の間には隙間が生じる。
[0023] 〈第 1実施形態〉
図 4から図 11を用いて、本実施形態のカーボンナノチューブ 1の成長方法を示す。 図 4に示すように、シリコン基板 2上にチタン (Ti)層を形成する。そして、チタン層 3上 にコノ レト(Co)層 4を形成する。この場合、コバルト層 4を直径: L m程度でパター- ングしておく。本実施形態では、コノ レト層 4を直径 1 μ m程度でパターユングしてい る力 これに限定されず、任意の大きさにパターユングしてもよい。コバルト層 4をパタ 一-ングすることにより、カーボンナノチューブ 1が成長する位置を制御することがで きる。
[0024] 次に、チタン層 3及びコバルト層 4が形成されたシリコン基板 2を熱 CVDチャンバ一 に導入する。そして、熱 CVDチャンバ一にアルゴン (Ar)とアセチレン (C H )との混
2 2 合ガス(9: 1)を lkPaで導入する。
[0025] さらに、熱 CVDチャンバ一内の圧力が安定した後、シリコン基板 2を 30分かけて 51 0°Cに加熱する。次に、シリコン基板 2を 510°Cに加熱した状態で 10分間保持する。 上記の過程を経て、コバルト層 4上にカーボンナノチューブ 1が成長する。図 5は、コ バルト層 4にカーボンナノチューブ群 5が成長した図である。カーボンナノチューブ群 5とは、コバルト層 4上に成長したカーボンナノチューブ 1のまとまりをいう。
[0026] 図 5に示すように、コバルト層 4上のカーボンナノチューブ 1は、垂直方向に成長し ている。図 5は、カーボンナノチューブ群 5が成長した例であって、カーボンナノチュ ーブ 1の数はこれに限定されるものではない。また、本実施形態では、カーボンナノ チューブ 1を成長させる際に、触媒金属としてコバルトを使用している。しかし、触媒 金属としてコバルトに限らず鉄 (Fe)やニッケル (Ni)等の遷移金属を使用してもよ!/ヽ。 また、カーボンナノチューブ 1の成長方法として、化学的気相成長法 (CVD法)、ホット フィラメント CVD法及びプラズマ CVD法を使用してもょ 、。
[0027] 次に、有機溶媒 (カーボンナノチューブと異なる付着物質を含む溶媒)を含む榭脂 に、カーボンナノチューブ群 5を浸漬する。具体的には、有機溶媒を含む榭脂によつ て満たされた容器 6に図 5で示すカーボンナノチューブ群 5を浸漬する。有機溶媒を 含む榭脂にカーボンナノチューブ群 5を浸漬する場合、カーボンナノチューブ群 5は シリコン基板 2とともに浸漬する。図 6は、有機溶媒を含む樹脂にカーボンナノチュー ブ群 5を浸漬した図である。
[0028] 例えば、図 6に示すように、有機溶媒を含む榭脂によって満たされた容器 6にカー ボンナノチューブ群 5を Aの部分まで浸漬する。また、例えば、図 7に示すように、有 機溶媒を含む榭脂によって満たされた容器 6にカーボンナノチューブ群 5を Bの部分 まで浸漬する。図 6及び図 7は、有機溶媒を含む榭脂によって満たされた容器 6に力 一ボンナノチューブ群 5を浸漬した直後を示した図である。
[0029] 図 6では、カーボンナノチューブ 1の浸漬部分をカーボンナノチューブ 1の長さの半 分程度とする。浸漬部分とは、有機溶媒を含む榭脂によって満たされた容器 6にカー ボンナノチューブ 1を浸漬する部分をいう。図 7では、浸漬部分をカーボンナノチュー ブ 1の長さの 20パーセント程度とする。浸漬部分は、有機溶媒の種類、榭脂の種類 などに応じて適宜変更することができる。
[0030] 図 6及び図 7では、カーボンナノチューブ群 5の根元側(シリコン基板 2と接触して ヽ る端部側)を浸漬部分としている。また、有機溶媒を含む榭脂によって満たされた容 器 6にカーボンナノチューブ群 5を浸漬する場合、カーボンナノチューブ群 5の先端 側 (シリコン基板 2と接触して 、な 、端部側)を浸漬させることもできる。
[0031] 例えば、図 8に示すように、各カーボンナノチューブ 1の先端側を浸漬部分とする。
この場合、図 8に示すように、有機溶媒を含む榭脂によって満たされた容器 6にカー ボンナノチューブ群 5を Cの部分まで浸漬する。また、例えば、図 9に示すように、有 機溶媒を含む榭脂によって満たされた容器 6にカーボンナノチューブ群 5を Dの部分 まで浸漬する。図 8及び図 9は、有機溶媒を含む榭脂によって満たされた容器 6に力 一ボンナノチューブ群 5を浸漬した直後を示した図である。図 8では、カーボンナノチ ユーブ 1の浸漬部分をカーボンナノチューブ 1の長さの半分程度とする。図 9では、浸 漬部分をカーボンナノチューブ 1の長さの 20パーセント程度とする。
[0032] 有機溶媒を含む樹脂にカーボンナノチューブ群 5を浸漬する時間は、 1分程度とす る。本実施形態では、有機溶媒を含む樹脂にカーボンナノチューブ群 5を浸漬する 時間を 1分程度とした力 これに限定されるものではない。したがって、カーボンナノ チューブ 1の構造、数等によって適宜変更してもよい。
[0033] 有機溶媒として、例えば、メタノール、エタノールなどのアルコールを使用する。また 、榭脂として、例えば、熱硬化性榭脂、光硬化性榭脂などを使用する。榭脂として、よ り具体的には、例えば、エポキシ系榭脂を使用する。
[0034] 図 6及び図 7に示すように、有機溶媒を含む榭脂によって満たされた容器 6にカー ボンナノチューブ群 5を浸漬した場合、隣接するカーボンナノチューブ 1の間は有機 溶媒を含む樹脂で満たされる。そして、シリコン基板 2上のカーボンナノチューブ群 5 は、各カーボンナノチューブ 1の端部の一方が寄り添って形成される。
[0035] 有機溶媒を含む榭脂によって満たされた容器 6にカーボンナノチューブ群 5を浸漬 した場合、毛細管現象により有機溶媒を含む樹脂がカーボンナノチューブ 1を浸潰し ていない部分へ移動する。そして、有機溶媒を含む榭脂は、カーボンナノチューブ 1 の端部まで移動する。有機溶媒を含む樹脂がカーボンナノチューブ 1の端部まで移 動した場合、カーボンナノチューブ 1は有機溶媒を含む樹脂で覆われた状態となる。
[0036] 有機溶媒を含む樹脂がカーボンナノチューブ 1の端部まで移動する際に、表面張 力により、隣接するカーボンナノチューブ 1は寄り添う。また、有機溶媒を揮発させた 場合、カーボンナノチューブ 1は榭脂で覆われた状態となる。そして、有機溶媒が揮 発する際の体積収縮により、榭脂で覆われた各カーボンナノチューブ 1は寄り添う。 すなわち、有機溶媒を含む樹脂から有機溶媒が揮発した場合、榭脂のみが各カー ボンナノチューブ 1を覆う。そのため、榭脂で覆われた各カーボンナノチューブ 1はさ らに寄り添う。 [0037] したがって、榭脂で覆われた各カーボンナノチューブ 1が互いに寄り添ってカーボ ンナノチューブ群 5を形成する。また、各カーボンナノチューブ 1が隣接するカーボン ナノチューブ 1と接触した場合、各カーボンナノチューブ 1は互いに寄り添った状態を 保持する。すなわち、各カーボンナノチューブ 1を覆っている榭脂によって各カーボ ンナノチューブ 1は互いに寄り添った状態が保持される。言い換えれば、各カーボン ナノチューブ 1を覆っている榭脂は、隣接するカーボンナノチューブ 1同士が固着し た状態を保持する。
[0038] 図 10は、各カーボンナノチューブ 1の端部の一方が寄り添って形成されたカーボン ナノチューブ群 5の正面図である。図 10は、有機溶媒を含む榭脂によって満たされ た容器 6にカーボンナノチューブ群 5を浸漬し、カーボンナノチューブ群 5を容器 6か ら引き上げた後の図である。
[0039] 図 11は、各カーボンナノチューブ 1の端部の一方が寄り添って形成されたカーボン ナノチューブ群 5の上面図である。図 11は、有機溶媒を含む榭脂によって満たされ た容器 6にカーボンナノチューブ群 5を浸漬し、カーボンナノチューブ群 5を容器 6か ら引き上げた後の図である。
[0040] 図 10及び図 11に示すように、有機溶媒を含む榭脂によって満たされた容器 6に力 一ボンナノチューブ群 5を浸漬した場合、各カーボンナノチューブ 1の端部の一方が 寄り添って形成される。
[0041] 有機溶媒を含む樹脂にカーボンナノチューブ群 5を浸漬することに代えて、有機溶 媒を含む榭脂をカーボンナノチューブ群 5に滴下してもよい。また、スピンコート法を 用いて有機溶媒を含む榭脂をカーボンナノチューブ群 5に滴下してもよい。
[0042] 有機溶媒を含む榭脂をカーボンナノチューブ群 5に滴下する場合、各カーボンナノ チューブ 1が有機溶媒を含む樹脂で覆われるように滴下する。具体的には、各カー ボンナノチューブ 1の一部に有機溶媒を含む榭脂を滴下する。各カーボンナノチュー ブ 1の一部に有機溶媒を含む榭脂を滴下した場合、毛細管現象により有機溶媒を含 む榭脂を滴下して ヽな ヽ部分に有機溶媒を含む樹脂が移動する。有機溶媒を含む 榭脂を滴下して ヽな ヽ部分に有機溶媒を含む樹脂が移動した場合、カーボンナノチ ユーブ 1は有機溶媒を含む樹脂で覆われた状態となる。 [0043] 有機溶媒を含む樹脂が有機溶媒を含む榭脂を滴下して!/ヽな ヽ部分に移動する際 に、表面張力により、隣接するカーボンナノチューブ 1は寄り添う。また、有機溶媒を 揮発させた場合、カーボンナノチューブ 1は榭脂で覆われた状態となる。そして、有 機溶媒が揮発する際の体積収縮により、榭脂で覆われた各カーボンナノチューブ 1 は寄り添う。すなわち、有機溶媒を含む樹脂から有機溶媒が揮発した場合、榭脂の みが各カーボンナノチューブ 1を覆う。そのため、榭脂で覆われた各カーボンナノチ ユーブ 1はさらに寄り添う。
[0044] したがって、榭脂で覆われた各カーボンナノチューブ 1が互いに寄り添ってカーボ ンナノチューブ群 5を形成する。また、各カーボンナノチューブ 1が隣接するカーボン ナノチューブ 1と接触した場合、各カーボンナノチューブ 1は互いに寄り添った状態を 保持する。すなわち、各カーボンナノチューブ 1を覆っている榭脂によって各カーボ ンナノチューブ 1は互いに寄り添った状態が保持される。言い換えれば、各カーボン ナノチューブ 1を覆っている榭脂は、隣接するカーボンナノチューブ 1同士が固着し た状態を保持する。
[0045] このように、榭脂で覆われた各カーボンナノチューブ 1は、その端部の一方が互!ヽ に寄り添って形成される。その結果、カーボンナノチューブ群 5のカーボンナノチュー ブ 1の密度は、カーボンナノチューブ群 5の先端側と根元側とで異なる。すなわち、一 方の端部と他方の端部とでカーボンナノチューブ 1の密度が異なるカーボンナノチュ ーブ群 5が形成される。カーボンナノチューブ群 5の先端側のカーボンナノチューブ 1 の密度は、カーボンナノチューブ群 5の根元側のカーボンナノチューブ 1の密度よりも 高密度になる。
[0046] 例えば、有機溶媒としてエタノールを使用し、榭脂としてエポキシ榭脂を使用した場 合、有機溶媒を含む榭脂はエタノールで希釈したエポキシ榭脂である。また、ェタノ ールとエポキシ榭脂との比率は任意である。ただし、隣接するカーボンナノチューブ
1の間の隙間のすべてがエポキシ榭脂によって埋まらないようにする。隣接するカー ボンナノチューブ 1の間の隙間のすべてがエポキシ榭脂によって埋まると、隣接する カーボンナノチューブ 1は寄り添うことができない。その結果、榭脂で覆われた各カー ボンナノチューブ 1は、その端部の一方が互いに寄り添って形成できない。そのため 、例えば、有機溶媒を含む樹脂の体積をカーボンナノチューブ群 5の体積よりも少な くする。これにより、隣接するカーボンナノチューブ 1の間の隙間のすべてがエポキシ 榭脂によって埋まることがなくなる。
[0047] 本実施形態では、有機溶媒と榭脂の組み合わせを示したが、榭脂の変わりに、ナノ ポーラスシリカ(誘電体材料)などの微結晶材料を用いても良!ヽ。こうすることで榭脂 だけでなぐ誘電体材料でも寄り添った形のカーボンナノチューブが形成できる。
[0048] 〈第 2実施形態〉
本発明の第 2実施形態を図 12及び図 13の図面に基づいて説明する。上記第 1実 施形態では、有機溶媒を含む榭脂を用いて各カーボンナノチューブ 1を覆うことによ り、一方の端部と他方の端部とでカーボンナノチューブ 1の密度が異なるカーボンナ ノチューブ群 5を形成する方法について説明した。本実施形態では、金属を用いて 各カーボンナノチューブ 1を覆うことにより、一方の端部と他方の端部とでカーボンナ ノチューブ 1の密度が異なるカーボンナノチューブ群 5を形成する方法について説明 する。他の構成および作用は第 1実施形態と同様である。そこで、同一の構成要素に ついては、第 1実施形態と同一の符号を付し、その説明を省略する。また、必要に応 じて図 5から図 11の図面を参照する。
[0049] まず、図 5に示すチタン層 3及びコバルト層 4が形成されたシリコン基板 2にカーボン ナノチューブ群 5を成長させる。カーボンナノチューブ群 5の成長方法は、第 1実施形 態と同様であり、ここではその説明を省略する。次に、各カーボンナノチューブ 1に金 属を蒸着させる。例えば、各カーボンナノチューブ 1に蒸着させる金属として金 (Au) を使用する。また、各カーボンナノチューブ 1に蒸着させる金属として、例えば、銅 (C u)、アルミニウム (A1)、鉛 (Pb)、はんだ等を使用してもよ!/ヽ。
[0050] 各カーボンナノチューブ 1に金を蒸着させる場合、スパッタ法により各カーボンナノ チューブ 1の表面に金を 1ナノメートル (nm)程度の厚さで蒸着させる。スパッタ法を 用いることにより、各カーボンナノチューブ 1に金を正確に蒸着させることが可能であ る。例えば、スパッタ装置を用いる場合、蒸着させる金の膜厚を 1ナノメートル (nm)と 設定することにより、各カーボンナノチューブ 1は膜厚 1ナノメートル (nm)の金が蒸着 する。この場合、カーボンナノチューブ 1に対して金を蒸着させる部分は任意である。 また、蒸着させる金の体積は、蒸着させる対象となるカーボンナノチューブ群 5の体 積によって決定する。また、各カーボンナノチューブ 1に金属を蒸着させることに代え て、溶融した金属に各カーボンナノチューブ 1を浸漬させてもよい。
[0051] 次に、カーボンナノチューブ群 5に対して約 300度の熱処理を行う。金の融点は通 常 1000度を超える。しかし、金をナノサイズまで小さくした場合、金の融点は低下す る。したがって、カーボンナノチューブ群 5に対して約 300度の熱処理を行った場合、 各カーボンナノチューブ 1に蒸着した金は溶融する。そして、各カーボンナノチュー ブ 1は溶融した金で覆われる。各カーボンナノチューブ 1に蒸着させる金属として、例 えば、銅 (Cu)、アルミニウム (A1)、鉛 (Pb)、はんだ等を使用した場合の熱処理の温 度は、実験又はシミュレーションによって求めておけばよい。
[0052] 各カーボンナノチューブ 1に蒸着した金が溶融する際、表面張力により、隣接する 金で覆われたカーボンナノチューブ 1は寄り添う。そして、金で覆われた各カーボン ナノチューブ 1が寄り添って形成される。したがって、金で覆われた各カーボンナノチ ユーブ 1は、互いに寄り添ってカーボンナノチューブ群 5を形成する。また、各カーボ ンナノチューブ 1が隣接するカーボンナノチューブ 1と接触した場合、各カーボンナノ チューブ 1は互いに寄り添った状態を保持する。すなわち、各カーボンナノチューブ 1を覆っている金によって各カーボンナノチューブ 1は互いに寄り添った状態が保持 される。言い換えれば、各カーボンナノチューブ 1を覆っている金は、隣接するカーボ ンナノチューブ 1同士が固着した状態を保持する。
[0053] このように、金で覆われた各カーボンナノチューブ 1は、その端部の一方が互いに 寄り添って形成される。その結果、カーボンナノチューブ群 5のカーボンナノチューブ 1の密度は、カーボンナノチューブ群 5の先端側と根元側とで異なる。すなわち、一方 の端部と他方の端部とでカーボンナノチューブ 1の密度が異なるカーボンナノチュー ブ群 5が形成される。カーボンナノチューブ群 5の先端側のカーボンナノチューブ 1の 密度は、カーボンナノチューブ群 5の根元側のカーボンナノチューブ 1の密度よりも 高密度になる。
[0054] 図 12は、各カーボンナノチューブ 1の端部の一方が寄り添って形成されたカーボン ナノチューブ群 5の正面図である。図 13は、各カーボンナノチューブ 1の端部の一方 が寄り添って形成されたカーボンナノチューブ群 5の上面図である。図 12及び図 13 に示すように、各カーボンナノチューブ 1を金で覆うことにより、一方の端部と他方の 端部とでカーボンナノチューブ 1の密度が異なるカーボンナノチューブ群 5が形成さ れる。このように、カーボンナノチューブ群 5のカーボンナノチューブ 1の密度を高くす る処理を高密度化処理と 、う。
[0055] また、上記第 1実施形態の方法とともに本実施形態による方法を行ってもよい。すな わち、金属を用いて各カーボンナノチューブ 1を覆うとともに、有機溶媒を含む榭脂を 用いて各カーボンナノチューブ 1を覆う。金属が各カーボンナノチューブ 1の先端側 に多く蒸着した場合、カーボンナノチューブ群 5を有機溶媒を含む樹脂に浸潰させる 。そのことにより、各カーボンナノチューブ 1の端部の一方が互いに寄り添って形成さ れることを促進することが可能となる。一方の端部と他方の端部とでカーボンナノチュ ーブ 1の密度が異なるカーボンナノチューブ群 5は、例えば、フィールドェミッションの 電子源等に利用することができる。
[0056] 〈第 3実施形態〉
本発明の第 3実施形態を図 14の図面に基づいて説明する。上記第 1実施形態及 び上記第 2実施形態では、一方の端部と他方の端部とでカーボンナノチューブ 1の 密度が異なるカーボンナノチューブ群 5を形成する方法について説明した。カーボン ナノチューブ 1の密度が異なるカーボンナノチューブ群 5は、端部の一方が互いに寄 り添って形成されている。カーボンナノチューブ 1の密度が異なるカーボンナノチュー ブ群 5とは、一方の端部と他方の端部とでカーボンナノチューブ 1の密度が異なる力 一ボンナノチューブ群 5を!、う。
[0057] カーボンナノチューブ 1の密度が異なるカーボンナノチューブ群 5にはカーボンナノ チューブ 1が存在しない空間がある。すなわち、図 14に示すように、 Eの部分にカー ボンナノチューブ 1が存在しない空間がある。
[0058] 本実施形態では、カーボンナノチューブ 1が存在しない空間を利用する方法につ いて説明する。本実施形態では、カーボンナノチューブ 1が存在しない空間に誘電 体膜を形成する。すわわち、図 14の Eの部分に誘電体膜を形成する。このように、力 一ボンナノチューブ 1が存在しない空間に誘電体膜が形成されることにより、カーボン ナノチューブ 1の密度が異なるカーボンナノチューブ群 5を誘電体膜の強度補強財と して利用することができる。例えば、誘電体膜として機能するナノポーラスシリカは、 機械的強度が弱い。そこで、カーボンナノチューブ 1の密度が異なるカーボンナノチ ユーブ群 5を誘電体膜の強度補強財として利用することにより、誘電体膜の機械的強 度を補強することが可能となる。
[0059] また、カーボンナノチューブ 1が存在しない空間にメツキによる金属を形成してもよ い。すなわち、カーボンナノチューブ 1が存在しない空間に金属層を形成してもよい。 さらには、カーボンナノチューブ 1が存在しない空間に榭脂を充填してもよい。カーボ ンナノチューブ 1が存在しない空間に充填する榭脂としては、例えば有機物質がある 。また、カーボンナノチューブ 1が存在しない空間に SiO等の絶縁膜を形成してもよ
2
い。
[0060] このように、カーボンナノチューブ 1が存在しない空間に誘電体膜、金属層、榭脂及 び絶縁膜等が形成されることにより、デバイス特性の改善、放熱特性の改善、デバイ ス強度の改善が可能となる。
[0061] 〈第 4実施形態〉
本発明の第 4実施形態を図 15及び図 16の図面に基づいて説明する。本実施形態 では、第 1実施形態又は第 2実施形態によって形成された密度が異なるカーボンナノ チューブ群 5を組み合わせる方法について説明する。
[0062] まず、カーボンナノチューブ 1の密度が異なるカーボンナノチューブ群 5を同一直線 上に複数配置する。この場合、一方の端部よりも高密度である他方の端部が同じ方 向となるように配置する。図 15に示すように、カーボンナノチューブ 1の密度が異なる カーボンナノチューブ群 5は、同一直線上に複数配置されている。また、一方の端部 よりもカーボンナノチューブ 1の密度が高密度である他方の端部が同じ方向となるよう に配置されている。ここで、カーボンナノチューブ群 5の端部のうち、一方の端部より もカーボンナノチューブ 1の密度が高密度である他方の端部を高密度の端部という。
[0063] 次に、同一直線上に並んでいる複数のカーボンナノチューブ 1の密度が異なるカー ボンナノチューブ群 5の間に、カーボンナノチューブ 1の密度が異なるカーボンナノチ ユーブ群 5を更に配置する。この場合、既に並んでいる複数のカーボンナノチューブ 1の密度が異なるカーボンナノチューブ群 5の高密度の端部に対して、高密度の端 部が反対方向となるようにカーボンナノチューブ 1の密度が異なるカーボンナノチュ ーブ群 5を更に配置する。すなわち、カーボンナノチューブ 1の密度が異なるカーボ ンナノチューブ群 5を高密度の端部の方向が互い違いになるように同一直線上に複 数配置する。図 16は、高密度の端部の方向が互い違いになるように同一直線上に力 一ボンナノチューブ 1の密度が異なるカーボンナノチューブ群 5を複数配置した場合 の正面図である。
[0064] カーボンナノチューブ 1が存在しない空間にカーボンナノチューブ 1の密度が異な るカーボンナノチューブ群 5を更に配置することでカーボンナノチューブ群 5の密度を 増加させることができる。すなわち、高密度のカーボンナノチューブ群 5の形成が可 能となる。
[0065] 〈第 5実施形態〉
本発明の第 5実施形態を図 17から図 25の図面に基づいて説明する。図 17及び図 18の図面を用いて、本実施形態のカーボンナノチューブ 1の成長方法を説明する。 まず、酸化膜付きシリコン基板 7に触媒を堆積させる。この場合、微粒子化された触 媒を用いてもょ 、し、スパッタ法によって堆積させた膜状の触媒を用いてもょ 、。
[0066] 本実施形態では、酸化膜付きシリコン基板 7に堆積させる触媒として鉄を用いて説 明する。また、本実施形態では、酸ィ匕膜付きシリコン基板 7に鉄触媒を堆積させる方 法として、スパッタ法を用いて説明する。酸ィ匕膜付きのシリコン基板 7に厚さ lnmの鉄 膜 8をスパッタ法により堆積させ、フォトリソグラフィーを用いて、直径 5 /z m程度の鉄 膜 8となるようにパターユングを行う。図 17に、パターユング後の鉄膜 8を示す。図 17 に示すように、酸ィ匕膜付きのシリコン基板 7上に略円形の鉄膜 8がパターニングにより 形成される。鉄膜 8の直径は例示であって、本発明はこれに限定されず、任意のサイ ズで鉄膜 8のパターユングを行ってもょ 、。
[0067] ノターユング後の鉄膜 8が形成された酸ィ匕膜付きシリコン基板 7を、通常の熱 CVD 炉内の過熱ステージ上に置き、真空排気を行う。そして、酸ィ匕膜付きシリコン基板 7の 温度が 590°Cになるまで酸ィ匕膜付きシリコン基板 7を加熱する。その後、アルゴン (Ar )とアセチレン(C H )の混合ガスを熱 CVD炉内に 30間導入する。この場合、ァルゴ ン (Ar)とアセチレン(C H )の混合ガスの圧力は IkPaとする。このようにして、酸化
2 2
膜付きシリコン基板 7にカーボンナノチューブ 1を配向成長させる。
[0068] 図 18に、酸ィ匕膜付きシリコン基板 7に配向成長したカーボンナノチューブ群 5を示 す。個々のカーボンナノチューブ 1の直径は約 lOnmであり、長さは約 20 mである 。また、カーボンナノチューブ群 5のカーボンナノチューブ 1の密度は約 1011本/ cm 2である。直径 5nmのカーボンナノチューブが最密充填の状態の密度は、約 1012本 Zcm2程度であるので、カーボンナノチューブの占有率は 10%程度に過ぎない。
[0069] つぎに、図 19から図 25の図面を用いて、カーボンナノチューブ群 5のカーボンナノ チューブ 1の密度を高密度化させる工程を説明する。まず、カーボンナノチューブ群 5を溶媒 9に浸漬する。カーボンナノチューブ群 5を浸漬させる溶媒 9は、 DMF (N, N—ジメチルホルムアミド)、ジクロロェタン、イソプロピルアルコール、エタノール、メタ ノール等の有機溶媒や、水等の無機溶媒を用いる。
[0070] 具体的には、酸ィ匕膜付きシリコン基板 7を入れることができるサイズの容器 10に、室 温の溶媒 9を入れる。そして、溶媒 9が入った容器 10に、酸ィ匕膜付きシリコン基板 7を 縦又は横にして入れることにより、カーボンナノチューブ群 5を溶媒 9に浸漬させる。
[0071] 図 19から図 21は、カーボンナノチューブ群 5に溶媒 9を付着させる工程を示した図 である。この工程では、溶媒 9が入った容器 10に、酸ィ匕膜付きシリコン基板 7を横にし て入れ、カーボンナノチューブ群 5を溶媒 9に浸漬させた後、溶媒 9が入った容器 10 力も酸ィ匕膜付きシリコン基板 7を引き上げる。具体的には、図 19に示すように、酸ィ匕 膜付きシリコン基板 7を横に配置する。そして、図 20に示すように、溶媒 9が入った容 器 10に酸ィ匕膜付きシリコン基板 7を浸漬させる。この場合、カーボンナノチューブ群 5 の全体を溶媒 9に浸漬させる。すなわち、カーボンナノチューブ群 5の全体に溶媒 9 を付着させる。
[0072] 次に、カーボンナノチューブ群 5を溶媒 9に約 1分浸漬させた後、図 21に示すように 、カーボンナノチューブ群 5を溶媒 9から引き上げる。カーボンナノチューブ群 5を溶 媒 9に浸漬させる時間は 1分に限定されず、カーボンナノチューブ群 5に対する溶媒 9の付着状態により、浸漬時間を適宜調整する。
[0073] 図 22から図 24は、カーボンナノチューブ群 5に溶媒 9を付着させる工程を示した図 である。この工程では、溶媒 9が入った容器 10に、酸ィ匕膜付きシリコン基板 7を縦にし て入れ、カーボンナノチューブ群 5を溶媒 9に浸漬させた後、溶媒 9が入った容器 10 力も酸ィ匕膜付きシリコン基板 7を引き上げる。具体的には、図 22に示すように、酸ィ匕 膜付きシリコン基板 7を縦に配置する。そして、図 23に示すように、溶媒 9が入った容 器 10に酸ィ匕膜付きシリコン基板 7を浸漬させる。この場合、カーボンナノチューブ群 5 の全体を溶媒 9に浸漬させる。すなわち、カーボンナノチューブ群 5の全体に溶媒 9 を付着させる。
[0074] 次に、カーボンナノチューブ群 5を溶媒 9に約 1分浸漬させた後、図 24に示すように 、カーボンナノチューブ群 5を溶媒 9から引き上げる。カーボンナノチューブ群 5を溶 媒 9に浸漬させる時間は 1分に限定されず、カーボンナノチューブ群 5に対する溶媒 9の付着状態により、浸漬時間を適宜調整する。
[0075] また、カーボンナノチューブ群 5に対する溶媒 9の付着状態が悪い場合、 SDS (硫 酸ドデシルナトリウム)のような界面活性剤又はピレン、ペリレン、アントラセン、ボルフ ィリン、フタロシアニン、 DNAなどの機能性分子を溶媒 9に加えることにより、カーボン ナノチューブ群 5に対する溶媒 9の付着状態を良化させる。
[0076] 本実施形態では、溶媒 9が入った容器 10に、酸ィ匕膜付きシリコン基板 7を入れ、力 一ボンナノチューブ群 5を溶媒 9に浸漬させた後、溶媒 9が入った容器 10から酸ィ匕膜 付きシリコン基板 7を引き上げる方法を説明した。しかし、本発明は、これに限定され ず、スピンコート法を用いて溶媒 9をカーボンナノチューブ群 5に滴下することにより、 溶媒 9をカーボンナノチューブ群 5に付着させてもよい。
[0077] カーボンナノチューブ群 5に溶媒 9を付着させた後、カーボンナノチューブ群 5を乾 燥させる。カーボンナノチューブ群 5を乾燥させる方法は、カーボンナノチューブ群 5 を自然乾燥させる方法でもよ 、し、酸ィ匕膜付きシリコン基板の温度を 200°C程度にカロ 熱して急速に乾燥させる方法でもよ!/、。
[0078] カーボンナノチューブ群 5を乾燥させる過程において、カーボンナノチューブ群 5の 先端部分 (カーボンナノチューブ群 5の端部のうち酸ィ匕膜付きシリコン基板 7と接して V、な 、端部)のカーボンナノチューブ 1は、毛菅カにより各カーボンナノチューブ 1が お互いに引き寄せられる。お互いに引き寄せられたカーボンナノチューブ 1は、分子 間力によってカーボンナノチューブ 1同士が密着する。そのため、図 25に示すように 、カーボンナノチューブ群 5の先端部分は、各カーボンナノチューブ 1が寄り添った状 態が形成される。すなわち、カーボンナノチューブ群 5の先端部分のカーボンナノチ ユーブ 1の密度と、カーボンナノチューブ群 5の根本部分 (カーボンナノチューブ群 5 の端部のうち、酸ィ匕膜付きシリコン基板と接している端部)のカーボンナノチューブ 1 の密度とが異なるカーボンナノチューブ群 5が形成される。
[0079] このように形成されたカーボンナノチューブ群 5のカーボンナノチューブ 1の密度は 、カーボンナノチューブ群 5の先端部分と根本部分とで異なる。すなわち、カーボン ナノチューブ群 5の一方の端部と他方の端部とでカーボンナノチューブ 1の密度が異 なるカーボンナノチューブ群が形成される。カーボンナノチューブ群 5の先端部分の カーボンナノチューブ 1の密度は、カーボンナノチューブ群 5の根本部分のカーボン ナノチューブ 1の密度よりも高密度になる。したがって、図 25に示すカーボンナノチュ ーブ群 5は、カーボンナノチューブ群 5の先端部分のカーボンナノチューブ 1が最密 充填程度の高密度となる。
[0080] 〈第 6実施形態〉
本発明の第 6実施形態を図 26から図 33の図面に基づいて説明する。第 1実施形 態、第 2実施形態又は第 5実施形態において説明した方法によって形成されたカー ボンナノチューブ群 5は、カーボンナノチューブ群 5の端部のうち、一方の端部のカー ボンナノチューブ 1の密度が高密度となる。本実施形態では、カーボンナノチューブ 群 5の両方の端部のカーボンナノチューブ 1の密度を高密度化させる方法について 説明する。すなわち、カーボンナノチューブ群 5の両方の端部のカーボンナノチュー ブ 1が寄り添って形成され、カーボンナノチューブ群 5のカーボンナノチューブ 1が全 体として寄り添った状態を形成する方法について説明する。
[0081] まず、カーボンナノチューブ群 5を成長させた基板 20を用意する。本実施形態では 、第 1実施形態及び第 2実施形態で示したシリコン基板 2又は第 5実施形態で示した 酸化膜付きシリコン基板 7を基板 20として使用する。ここで、第 1実施形態、第 2実施 形態又は第 5実施形態において説明したカーボンナノチューブ群 5のカーボンナノ チューブ 1の密度を高くする処理を高密度化処理という。また、カーボンナノチューブ 群 5のカーボンナノチューブ 1の密度が高密度となったカーボンナノチューブ群 5を、 高密度化されたカーボンナノチューブ群 5という。基板 20に成長させたカーボンナノ チューブ群 5に対して、第 1実施形態、第 2実施形態又は第 5実施形態において説明 した高密度化処理を行い、カーボンナノチューブ群 5のカーボンナノチューブ 1の密 度を高密度化する。図 26に、高密度化されたカーボンナノチューブ群 5及び基板 20 を示す。
[0082] 次に、図 27に示すように、カーボンナノチューブ群 5を成長させた基板 20と同じサ ィズの基板 21を用意する。そして、基板 21の表面に、はんだやインジウム等の低融 点金属膜 22を堆積する。基板 21の表面に堆積させる低融点金属膜 22の厚さは数 / mとする。このように、基板 21の表面に低融点金属膜 22を堆積させると、低融点金 属膜付きの基板 23が作製される。
[0083] そして、図 28に示すように、カーボンナノチューブ群 5を挟むように、低融点金属膜 付きの基板 23と基板 20とを重ね合わせる。具体的には、基板 21の表面に堆積した 低融点金属膜 22と、カーボンナノチューブ群 5の端部(カーボンナノチューブ群 5のう ち基板 20と接していない端部)とが接触するように、低融点金属膜付きの基板 23と 基板 20とを重ね合わせる。
[0084] そして、低融点金属膜付きの基板 23の温度が、低融点金属膜 22の融点以上とな るように低融点金属膜付きの基板 23を加熱した後、低融点金属膜付きの基板 23を 冷却する。低融点金属膜付きの基板 23を冷却した後、低融点金属膜付きの基板 23 と基板 20とを引き離す。低融点金属膜付きの基板 23と基板 20とを引き離した場合、 カーボンナノチューブ群 5と低融点金属膜付きの基板 23とが密着された状態となる。 すなわち、カーボンナノチューブ群 5は、基板 20から引き剥がされ、カーボンナノチュ ーブ群 5は、低融点金属膜付きの基板 23に密着する。図 29に示すように、基板 20 からカーボンナノチューブ群 5が引き剥がされ、低融点金属膜付きの基板 23にカー ボンナノチューブ群 5が密着して ヽる。
[0085] 基板 20とカーボンナノチューブ群 5との密着が強い場合、カーボンナノチューブ群 5は、基板 20から引き剥がされず、カーボンナノチューブ群 5は、低融点金属膜付き の基板 23に密着しない。第 1実施形態、第 2実施形態及び第 5実施形態では、シリコ ン基板 2又は酸ィ匕膜付きシリコン基板 7の上に極めて薄い触媒膜 (数 nm以下の触媒 膜)を堆積させた後、カーボンナノチューブ群 5を成長させている。本実施形態では、 シリコン基板 2又は酸ィ匕膜付きシリコン基板 7を基板 20として使用している。したがつ て、基板 20の上に極めて薄い触媒膜を堆積させた場合、基板 20とカーボンナノチュ ーブ群 5との密着力は弱い。そのため、カーボンナノチューブ群 5が、基板 20から引 き剥がされな 、と 、う問題は生じな!/、。
[0086] 図 29に示すように、低融点金属膜付きの基板 23に密着したカーボンナノチューブ 群 5の端部のうち低融点金属膜付きの基板 23に接している端部は、他方の端部 (力 一ボンナノチューブ群 5の端部のうち低融点金属膜付きの基板 23に接していない端 部)よりもカーボンナノチューブ 1の密度が高い。カーボンナノチューブ群 5は、低融 点金属膜付きの基板 23から距離が遠くなるにつれて、カーボンナノチューブ群 5の 横幅が広くなる。すなわち、カーボンナノチューブ群 5は、低融点金属膜付きの基板 23から距離が遠くなるにつれて、カーボンナノチューブ群 5のカーボンナノチューブ 1の密度が低くなる。
[0087] カーボンナノチューブ群 5の両端部のうち、カーボンナノチューブ 1の密度が高い端 部を密着させた低融点金属膜付きの基板 23に対して、第 1実施形態、第 2実施形態 又は第 5実施形態で説明した高密度化処理を行う。すなわち、カーボンナノチューブ 群 5の両端部のうち、カーボンナノチューブ 1の密度が低い端部に対して、第 1実施 形態、第 2実施形態又は第 5実施形態で説明した高密度化処理を行う。
[0088] カーボンナノチューブ群 5の両端部のうち、カーボンナノチューブ 1の密度が低い端 部に対して、高密度化処理を行った場合、カーボンナノチューブ群 5の両端部の力 一ボンナノチューブ 1が高密度となるカーボンナノチューブ群 5が形成される。
[0089] 図 30は、低融点金属膜付きの基板 23に密着したカーボンナノチューブ群 5を溶媒 9が入った容器 10に浸漬させている工程を示している。図 31は、低融点金属膜付き の基板 23に密着したカーボンナノチューブ群 5を溶媒 9が入った容器から引き上げる 工程を示している。図 31に示すカーボンナノチューブ群 5は、両端部のカーボンナノ チューブ 1が最密充填に近い高密度となる。
[0090] また、融点の異なる低融点金属 (合金)を利用した場合、高密度化されたカーボン ナノチューブ群 5を、さらに高密度化することができる。図 32及び図 33を参照して、力 一ボンナノチューブ群 5の両端部のカーボンナノチューブ 1が高密度化されたカーボ ンナノチューブ群 5を、さらに高密度化する方法について説明する。
[0091] 図 32に示すように、カーボンナノチューブ群 5の両端部のカーボンナノチューブ 1 が高密度化されたカーボンナノチューブ群 5が密着した低融点金属膜付きの基板 23 と、低融点金属膜付きの基板 30とを用意する。低融点金属膜付きの基板 23と低融 点金属膜付きの基板 30とは同じサイズである。低融点金属膜付きの基板 30は、基板 31の表面に、はんだやインジウム等の低融点金属膜 32を堆積させたものである。こ の場合、低融点金属膜付きの基板 23に堆積させた低融点金属膜 22の融点よりも融 点が高い低融点金属膜 32を基板 31の表面に堆積させる。また、基板 31の表面に堆 積させる低融点金属膜 32の厚さは数; z mとする。
[0092] 次に、図 33に示すように、低融点金属膜付きの基板 23と低融点金属膜付きの基板 30とを重ね合わせる。具体的には、カーボンナノチューブ群 5の端部 (カーボンナノ チューブ群 5の端部のうち低融点金属膜付きの基板 23に接していない端部)と、基 板 31の表面に堆積した低融点金属膜 32とが接触するように、低融点金属膜付きの 基板 23と低融点金属膜付きの基板 30とを重ね合わせる。
[0093] そして、低融点金属膜付きの基板 23の温度及び低融点金属膜付きの基板 30の温 度が、低融点金属膜 32の融点以上となるように、低融点金属膜付きの基板 23及び 低融点金属膜付きの基板 30を加熱する。その後、低融点金属膜付きの基板 23及び 低融点金属膜付きの基板 30を冷却する。この場合、低融点金属膜付きの基板 23の 温度及び低融点金属膜付きの基板 30の温度が、低融点金属膜 22の融点以上であ つて、低融点金属膜 32の融点以下となるように冷却する。
[0094] そして、低融点金属膜付きの基板 23と低融点金属膜付きの基板 30とを引き離す。
低融点金属膜付きの基板 23と低融点金属膜付きの基板 30とを引き離した場合、力 一ボンナノチューブ群 5と低融点金属膜付きの基板 30とが密着された状態となる。す なわち、カーボンナノチューブ群 5は、低融点金属膜付きの基板 23から引き剥がされ 、低融点金属膜付きの基板 30に密着する。
[0095] 低融点金属膜 22の融点以上であって、低融点金属膜 32の融点以下の温度の場 合、低融点金属膜付きの基板 23に堆積した低融点金属膜 22は、溶融状態である。 そのため、カーボンナノチューブ群 5と低融点金属膜付きの基板 30との密着の方が、 カーボンナノチューブ群 5と低融点金属膜付きの基板 23との密着よりも強い。したが つて、カーボンナノチューブ群 5は、低融点金属膜付きの基板 23から引き剥がされ、 低融点金属膜付きの基板 30に密着する。
[0096] そして、低融点金属膜付きの基板 30に接着したカーボンナノチューブ群 5に対して 、第 1実施形態、第 2実施形態又は第 5実施形態で説明した高密度化処理を行うこと により、カーボンナノチューブ群 5のカーボンナノチューブ 1の密度をさらに高密度化 させることができる。このような処理を複数回繰り返すことも可能であり、カーボンナノ チューブ群 5のカーボンナノチューブ 1の密度をより高密度化することができる。
[0097] 本実施形態によれば、カーボンナノチューブ群 5のカーボンナノチューブ 1の密度 を、カーボンナノチューブ群 5の全体で高密度とすることができる。
〈第 7実施形態〉
本発明の第 7実施形態を図 34から図 43の図面に基づいて説明する。本実施形態 では、第 1実施形態、第 2実施形態又は第 5実施形態で説明した高密度化処理によ つて高密度化されたカーボンナノチューブ群 5を、放熱バンプに応用する方法につ いて説明する。
[0098] 従来、高出力トランジスタチップ 40をパッケージ 41に直接接合するフェイスアップ 構造を用いていた。図 34に、従来のトランジスタ実装を示す。高出力トランジスタチッ プ 40とパッケージ 41とは、ワイヤボンディングにより接続される。すなわち、高出力ト ランジスタチップ 40の表面に形成された電極 42とパッケージ 41に形成された電極( 図示せず)とを金線等のワイヤで接続する。図 34に示すトランジスタ実装は、フェイス アップ構造を用いており、高出力トランジスタチップ 40を通して熱を逃がすことで放熱 性を確保する。
[0099] また、高出力トランジスタチップ 40を裏返し、高出力トランジスタチップ 40の表面に 形成された電極 42とパッケージ 41の電極とをカーボンナノチューブバンプ 43で接続 するフリップチップ実装がある。図 35に示すように、フリップチップ実装は、高出力トラ ンジスタチップ 40をひつくり返すことにより、高出力トランジスタチップ 40の表面に形 成された電極 42と、パッケージ 41に形成された電極(図示せず)とを接続させる。す なわち、高出力トランジスタチップ 40の表面をパッケージ 41の方向に向けて、高出力 トランジスタチップ 40の表面に形成された電極 42とパッケージ 41に形成された電極 とを接続する。ここで、バンプは、突起状に形成された端子である。カーボンナノチュ ーブバンプ 43は、カーボンナノチューブ群 5を突起上に形成した端子である。
[0100] 図 36に示すように、カーボンナノチューブバンプ 43は、高出力トランジスタチップ 4 0の表面に形成された電極 42とパッケージ 41に形成された電極とを接続する。図 36 では、高出力トランジスタチップ 40は裏返しになっており、高出力トランジスタチップ 4 0の表面に形成された電極 42はパッケージ 41の方向に向いている。また、カーボン ナノチューブバンプ 43は、高出力トランジスタチップ 40が発生する熱を放熱させるた めの放熱の経路としての役割を持つ。高出力トランジスタチップ 40が発生する熱の 放熱を十分に行うためには、カーボンナノチューブバンプ 43のカーボンナノチューブ 1の密度を高める必要がある。しかし、従来のカーボンナノチューブバンプ 43のカー ボンナノチューブ 1の占有率は 10%程度であり、従来のカーボンナノチューブバンプ 43のカーボンナノチューブ 1の密度を高めることが望まれていた。
[0101] 本実施形態では、第 1実施形態、第 2実施形態又は第 5実施形態で説明した高密 度化処理によって高密度化されたカーボンナノチューブ群 5をカーボンナノチューブ バンプ 43に利用する。すなわち、高密度化されたカーボンナノチューブ群 5をカーボ ンナノチューブバンプ 43として用いることにより、高出力トランジスタチップ 40の表面 に形成された電極 42とパッケージ 41に形成された電極とを接続する。また、本実施 形態では、カーボンナノチューブ 1を成長させるための基板として窒化アルミニウム基 板 50を使用する。窒化アルミニウム基板 50は、ノ ッケージ 41を作製するための材料 として使用される。ただし、カーボンナノチューブ 1を成長させるための基板として使 用する窒化アルミニウム基板 50は、例示であって、本発明はこれに限定されない。
[0102] 図 37に示すように、窒化アルミニウム基板 50上に金などの金属で電極 51を形成す る。電極 51上に、 5nmの厚さのアルミニウムを堆積させる。そして、電極 51上に堆積 させたアルミニウムの上に、 lnmの厚さの鉄を堆積させる。この場合、アルミニウム及 び鉄は、カーボンナノチューブ 1を成長させる触媒として使用する。 [0103] 電極 51上に堆積させたアルミニウム及びそのアルミニウム上に堆積させた鉄に対し てパター-ングを行う。この場合、パターユングによって形成されるアルミニウム及び 鉄の形状が、高出力トランジスタチップ 40の表面に形成された電極 42の形状と同じ 形状となるようにする。また、ノターユングによって形成されるアルミニウム及び鉄の 中心位置が、高出力トランジスタチップ 40の表面に形成された電極 42の中心位置と 同じ位置になるようにする。パターユングによって形成されるアルミニウム及び鉄の大 きさは、高出力トランジスタチップ 40の表面に形成された電極 42の大きさと同じでも よいし、数倍の大きさになってもよい。
[0104] 次に、第 1実施形態又は第 5実施形態で説明した方法を用いて、窒化アルミニウム 基板 50上に 20 μ m以上の長さのカーボンナノチューブ群 5を成長させる。図 38に、 窒化アルミニウム基板 50上に成長したカーボンナノチューブ群 5を示す。図 38に示 すカーボンナノチューブ群 5のカーボンナノチューブ 1の占有率は 10%程度である。
[0105] そして、第 1実施形態、第 2実施形態又は第 5実施形態で説明した高密度化処理を 用いて、窒化アルミニウム基板 50と接して ヽな 、カーボンナノチューブ群 5の端部の カーボンナノチューブ 1の密度を高密度化させる。この場合、カーボンナノチューブ 群 5の端部のうちカーボンナノチューブ 1の密度が高密度である端部の直径のサイズ 力 高出力トランジスタチップ 40の電極 42のサイズと同じか、高出力トランジスタチッ プ 40の電極 42のサイズよりも小さくなるように、カーボンナノチューブ群 5を成長させ る。
[0106] 窒化アルミニウム基板 50に堆積する触媒の大きさを変えることにより、カーボンナノ チューブ群 5の端部のうちカーボンナノチューブ 1の密度が高密度である端部の直径 のサイズを変えることができる。したがって、カーボンナノチューブ群 5を成長させる窒 化アルミニウム基板 50に堆積した触媒に対してパターユングを行う際、高出カトラン ジスタチップ 40の電極 42のサイズを考慮して触媒の大きさを変更する。窒化アルミ- ゥム基板 50に堆積する触媒の大きさと、カーボンナノチューブ群 5の端部のうちカー ボンナノチューブ 1の密度が高密度である端部の直径のサイズとの関係は、実験又 はシミュレーションによって求めておけばよい。
[0107] 図 39に、高密度化されたカーボンナノチューブ群 5及び窒化アルミニウム基板 50 を示す。第 1実施形態、第 2実施形態又は第 5実施形態で説明した方法によって形 成されたカーボンナノチューブ群 5は、カーボンナノチューブ 1の長さがそれぞれ異 なる。すなわち、カーボンナノチューブ群 5は、各カーボンナノチューブ 1の長さが不 ぞろ 、となって成長する可能性が高 、。カーボンナノチューブ群 5の各カーボンナノ
Figure imgf000031_0001
、場合、カーボンナノチューブ群 5の各力 一ボンナノチューブ 1の長さを均一にする処理を行う。
[0108] 図 40力ゝら図 43を参照して、カーボンナノチューブ群 5の各カーボンナノチューブ 1 の長さを均一にする処理について説明する。図 40に示すように、窒化アルミニウム基 板 50に成長したカーボンナノチューブ群 5は、各カーボンナノチューブ 1の長さが均 一になつていない。図 40に示すカーボンナノチューブ群 5は、第 1実施形態、第 2実 施形態又は第 5実施形態で説明した高密度化処理が行われている。
[0109] まず、カーボンナノチューブ群 5を覆うように、窒化アルミニウム基板 50上に層間絶 縁膜 60を堆積させる。層間絶縁膜 60として、ポーラスシリカ膜や SOG (spin on glass )膜等を用いる。窒化アルミニウム基板 50上に層間絶縁膜 60を堆積させた後、加熱 処理を行い、層間絶縁膜 60を固化させる。図 41は、カーボンナノチューブ群 5を覆う ように、層間絶縁膜 60を堆積させた窒化アルミニウム基板 50の構造を示す図である
[0110] 窒化アルミニウム基板 50上に層間絶縁膜 60を堆積させ、加熱処理を行うと、カー ボンナノチューブ群 5は層間絶縁膜 60とともに固まる。カーボンナノチューブ群 5が 層間絶縁膜 60とともに固まった後、化学機械研磨 (CMP)処理により、カーボンナノ チューブ群 5及び層間絶縁膜 60を研磨する。この場合、カーボンナノチューブ群 5の 各カーボンナノチューブ 1の長さが均一となるまで、カーボンナノチューブ群 5と層間 絶縁膜 60とを研磨する。図 42に、カーボンナノチューブ群 5及び層間絶縁膜 60が研 磨された後の窒化アルミニウム基板 50を示す。
[0111] その後、窒化アルミニウム基板 50上に堆積させた層間絶縁膜 60を取り除く。ただし 、窒化アルミニウム基板 50上に堆積させた層間絶縁膜 60を取り除く必要性がない場 合、窒化アルミニウム基板 50上に堆積させた層間絶縁膜 60は取り除かなくてもよい [0112] このように、カーボンナノチューブ群 5の各カーボンナノチューブ 1の長さを均一に することにより、カーボンナノチューブ群 5を高出力トランジスタチップ 40に安定して 接着させることが可能となる。
[0113] 次に、カーボンナノチューブ群 5をカーボンナノチューブバンプ 43として用いること により、高出力トランジスタチップ 40の表面に形成された電極 42とパッケージ 41上に 形成された電極とを接続する方法につ!ヽて説明する。
[0114] まず、ノ ッケージ 41の作製に利用する窒化アルミニウム基板 50を用意する。第 1実 施形態又は第 2実施形態で説明したカーボンナノチューブ群 5の成長方法によって 、窒化アルミニウム基板 50上にカーボンナノチューブ群 5を成長させる。窒化アルミ -ゥム基板 50上に形成されたカーボンナノチューブ群 5は、第 1実施形態、第 2実施 形態又は第 5実施形態で説明した高密度化処理が行われている。また、窒化アルミ -ゥム基板 50上に形成されたカーボンナノチューブ群 5は、各カーボンナノチューブ 1の長さを均一化する処理が行われたものであってもよい。
[0115] 次に、窒化アルミニウム基板 50上に形成されたカーボンナノチューブ群 5に 1 μ m の厚さの金を堆積させる。ただし、カーボンナノチューブ群 5に堆積させる金の厚さは 例示であって、本発明はこれに限定されない。また、窒化アルミニウム基板 50上に形 成されたカーボンナノチューブ群 5のうち、高出力トランジスタチップ 40の表面に形成 された電極 42に接着させた ヽ部分に金を堆積させてもよ!ヽ。
[0116] そして、通常のフリップチップボンダ一を使用して、金を堆積させたカーボンナノチ ユーブ群 5と高出力トランジスタチップ 40の表面に形成された電極 42とを接着させる 。カーボンナノチューブ群 5と高出力トランジスタチップ 40の表面に形成された電極 4 2とを接着するために使用する圧力は 6kgZcm2であり、温度は 345°Cである。ただし 、圧力及び温度は例示であって、本発明はこれらに限定されない。
[0117] 図 43は、高出力トランジスタチップ 40を備え付けた窒化アルミニウム基板 50の構 造を示す図である。図 43では、カーボンナノチューブ群 5をカーボンナノチューブバ ンプ 43として使用している。カーボンナノチューブ群 5を介して、高出力トランジスタ チップ 40の表面に形成された電極 42と窒化アルミニウム基板 50上の電極 51とが接 続される。カーボンナノチューブ群 5の端部のうち、高出力トランジスタチップ 40に接 着している端部のカーボンナノチューブ 1の密度は、高出力トランジスタチップ 40に 接着していない端部のカーボンナノチューブ 1の密度の 10倍程度である。そのため、 従来のカーボンナノチューブバンプ 43に比べて高い放熱性を有する。カーボンナノ チューブ群 5の端部のうちカーボンナノチューブ 1の密度が高密度である端部と、高 出力トランジスタチップ 40に形成された電極 42とが接着されることにより、高出力トラ ンジスタチップ 40の熱がカーボンナノチューブ群 5を介して放熱される。
[0118] また、カーボンナノチューブ 1の密度が全体的に高密度であるカーボンナノチュー ブ群 5を用いて、高出力トランジスタチップ 40の表面に形成された電極 42と窒化アル ミニゥム基板 50上の電極 51とを接続することもできる。カーボンナノチューブ 1の密 度が全体的に高密度であるカーボンナノチューブ群 5は、第 6実施形態で説明した 方法により作製することができる。カーボンナノチューブ 1の密度が全体的に高密度 であるカーボンナノチューブ群 5を用いることにより、配線用の基板のデザインの自由 度を広げることが可能となる。
[0119] 〈第 8実施形態〉
本発明の第 8実施形態を図 44から図 51の図面に基づいて説明する。現在、 LSIの 配線は、 10層あるいはそれ以上の層による多層配線になっており、配線材料として 銅が通常用いられている。しかし、 LSIの配線幅の減少に伴う電流密度の増加により 、エレクト口マイグレーションによる断線が懸念される。そのため、 LSIの縦配線 (ビア 配線)を、より高 、電流密度に耐えられるカーボンナノチューブ 1に置き換える試みが 行われて ヽる。図 44に、 LSI70の構造を示す。図 44に示すように、 LSI70iま、銅酉己 線 71を挟む絶縁膜 72、銅配線 71と他の銅配線 71とを電気的に接続するビア 73か ら構成されている。
[0120] 本実施形態では、第 1実施形態、第 2実施形態又は第 5実施形態で説明した高密 度化処理によって高密度化されたカーボンナノチューブ群 5を、 LSI配線に応用する 方法について説明する。本実施形態では、図 44に示す LSI70を構成するビア 73を 高密度化されたカーボンナノチューブ群 5で置き替える。以下、図 45から図 51の図 面を参照して、 LSI70を構成するビア 73を高密度化されたカーボンナノチューブ群 5 で置き替える方法にっ 、て説明する。 [0121] まず、図 45に示すように、カーボンナノチューブ群 5を成長させた基板 74を用意す る。この場合、基板 74として、シリコン基板 2又は酸ィ匕膜付きシリコン基板 7を用いても よいし、他の基板を用いてもよい。第 1実施形態又は第 5実施形態に示すカーボンナ ノチューブ 1の成長方法を用いて、カーボンナノチューブ群 5を基板 74に成長させて おく。さらに、第 1実施形態、第 2実施形態又は第 5実施形態に示す高密度化処理を 用いて、カーボンナノチューブ群 5を高密度化させておく。本実施形態では、基板 74 にカーボンナノチューブ群 5を成長させるための触媒として、コバルト、鉄その他の金 属を使用する。
[0122] LSI70を構成するビア 73の位置にカーボンナノチューブ群 5を配置できるように、 基板 74にカーボンナノチューブ群 5を成長させる必要がある。そのため、本実施形態 では、 LSI70を構成するビア 70の位置にカーボンナノチューブ群 5を配置できるよう に、触媒に対してパターユングを行い、基板 74にカーボンナノチューブ群 5を成長さ せる。
[0123] 次に、 LSI基板 75の電極 76上に、コバルト膜 77を 5nmの厚さで堆積させ、コバル ト膜 77の上にタンタル膜 78を 5nmの厚さで堆積させ、タンタル膜 78の上にチタン膜 79を 5nmの厚さで堆積させる。なお、コノ レト膜 77に替えて、鉄、ニッケル等の膜を 使用してもよい。また、コバルト膜 77に替えて、コノ レト合金、鉄合金又はニッケル合 金等の膜を使用してもよい。
[0124] コバルト膜 77、タンタル膜 78及びチタン膜 79を堆積させた LSI基板 75と、基板 74 とを重ね合わせる。具体的には、図 46に示すように、カーボンナノチューブ群 5の端 部 (カーボンナノチューブ群 5の端部のうち基板 74と接触していない端部)力 LSI基 板 75の電極 76に接触するように、基板 74と LSI基板 75とを重ね合わせる。この場合 、 LSI基板 75の長手方向に対して、基板 74の長手方向が略平行方向となるように、 基板 74と LSI基板 75とを重ね合わせる。また、光学的位置合わせにより、カーボンナ ノチューブ群 5の端部と LSI基板 75の電極 76とが接触するように、基板 74と LSI基板 75とを重ね合わせる。
[0125] 基板 74と LSI基板 75とを重ね合わせた状態で、 CVD炉内に搬送する。 CVD炉内 において、真空排気を行った後、基板 74及び LSI基板 75を置いたステージを加熱 する。そして、 CVD炉内の温度が安定した後、 CVD炉内にプロセスガス (混合ガス) を IkPaで導入する。本実施形態では、プロセスガスとして、アルゴン及びアセチレン (C H )を使用する。また、アルゴン及びアセチレン(C H )のプロセスガスにメタン(
2 2 2 2
CH )、エチレン (C H )等の炭化水素系ガス又はアルコールをカ卩えてもよい。また、
4 2 4
プロセスガス中のアセチレン(C H )に替えて、メタン(CH )、エチレン(C H )等の
2 2 4 2 4 炭化水素系ガス又はアルコールを用いてもよい。また、プロセスガスは、複数種類の 炭化水素系ガスカゝら構成されてもょ ヽし、複数種類の炭化水素系ガス及びアルコー ルカ 構成されてもよい。
[0126] プロセスガスを CVD炉内に導入することにより、 LSI基板 75の電極 76上に堆積さ せたコバルト膜 77は、溶融状態となる。そのため、カーボンナノチューブ群 5と LSI基 板 75の電極 76とは、強固に結合する。
[0127] CVD炉内のステージの温度は、コバルト膜 77とプロセスガスとは反応する力 カー ボンナノチューブ群 5のカーボンナノチューブ 1が成長しない程度の温度(例えば、 3 50°C程度の温度)にすることが望ましい。なお、 CVD炉内のステージの温度は、プロ セスガスの種類、 LSI基板 75に堆積させる膜の厚さによって変動し得る。
[0128] カーボンナノチューブ群 5と LSI基板 75の電極 76とを結合させた後、基板 74及び LSI基板 75を CVD炉内力 取り出す。そして、基板 74と LSI基板 75とを引き離す。 基板 74と LSI基板 75とを引き離した場合、カーボンナノチューブ群 5と LSI基板 75の 電極 76とが密着された状態となる。すなわち、カーボンナノチューブ群 5は、基板 74 力も引き剥がされ、 LSI基板 75の電極 76に密着する。
[0129] 本実施形態では、第 1実施形態又は第 5実施形態で説明したカーボンナノチュー ブ 1の成長方法を用いて、基板 74にカーボンナノチューブ群 5を成長させている。す なわち、基板 74の上に極めて薄い触媒膜 (数 nm以下の触媒膜)を堆積させた後、力 一ボンナノチューブ群 5を成長させて 、る。基板 74の上に極めて薄 、触媒膜を堆積 させているため、基板 74とカーボンナノチューブ群 5との密着力は弱い。そのため、 カーボンナノチューブ群 5が、基板 74から引き剥がされないという問題は生じない。
[0130] また、図 47に示すように、基板 74と LSI基板 75との間の隙間を、 SOG膜又はポー ラスシリカ膜等の層間絶縁膜 80で埋めた後に、基板 74と LSI基板 75とを引き離して もよい。この場合、層間絶縁膜 80を適当な溶媒に溶かして、層間絶縁膜 80を液状に しておく。
[0131] そして、基板 74と LSI基板 75とを、液状の層間絶縁膜 80に浸漬させることにより、 基板 74と LSI基板 75との間の隙間を層間絶縁膜 80で埋める。また、これに代えて、 基板 74と LSI基板 75との間の隙間に、液状の層間絶縁膜 80を注入することにより、 基板 74と LSI基板 75との間の隙間を層間絶縁膜 80で埋めてもよい。
[0132] そして、基板 74及び LSI基板 75に対して熱処理を行うことにより、層間絶縁膜 80が 固化し、基板 74と LSI基板 75との間に層間絶縁膜 80が形成される。
[0133] 基板 74と LSI基板 75との間の隙間に層間絶縁膜 80を形成する前に、基板 74と LS I基板 75とを引き離した場合、カーボンナノチューブ群 5が密着した LSI基板 75に対 して層間絶縁膜 80を形成する。具体的には、スピンコート等を利用して、液状の層間 絶縁膜 80をカーボンナノチューブ群 5が密着した LSI基板 75に塗布することにより、 LSI基板 75に対して層間絶縁膜 80を形成する。
[0134] また、基板 74に層間絶縁膜 80を形成した後、基板 74と LSI基板 75とを重ね合わ せてもよい。すなわち、既に層間絶縁膜 80が形成された基板 74を使用して、基板 74 と LSI基板 75とを重ね合わせる。この場合、以下の方法により、基板 74に層間絶縁 膜 80を形成させる。
[0135] まず、カーボンナノチューブ群 5を覆うように、基板 74上に層間絶縁膜 80を堆積さ せる。基板 74上に層間絶縁膜 80を堆積させた後、加熱処理を行い、層間絶縁膜 80 を固化させる。図 48は、カーボンナノチューブ群 5を覆うように、層間絶縁膜 80を堆 積させた基板 74の構造を示す図である。基板 74上に層間絶縁膜 80を堆積させ、加 熱処理を行うと、カーボンナノチューブ群 5は層間絶縁膜 80とともに固まる。このよう に、基板 74に層間絶縁膜 80を形成する。
[0136] また、カーボンナノチューブ群 5が層間絶縁膜 80とともに固まった後、化学機械研 磨 (CMP)処理により、層間絶縁膜 80を研磨する。この場合、カーボンナノチューブ 群 5の先端が露出するように、層間絶縁膜 80を研磨する。さらに、カーボンナノチュ ーブ群 5の各カーボンナノチューブ 1の長さが均一でない場合、カーボンナノチュー ブ群 5の各カーボンナノチューブ 1の長さが均一となるまで、カーボンナノチューブ群 5及び層間絶縁膜 80を研磨してもよ ヽ。
[0137] また、既に層間絶縁膜 80が形成された基板 74を使用して、基板 74と LSI基板 75と を重ね合わせる場合、カーボンナノチューブ群 5の先端を突出させてもよい。すなわ ち、図 49に示すように、基板 74に形成された層間絶縁膜 80の厚さ方向の長さよりも カーボンナノチューブ群 5の長さを長くする。具体的には、層間絶縁膜 80に対して、 ウエットエッチング又はドライエッチングを行い、層間絶縁膜 80のみを削る。層間絶 縁膜 80のみが削られることにより、カーボンナノチューブ群 5の先端を突出させること ができる。
[0138] 本実施形態におけるウエットエッチングは、液体又は気体の希フッ化水素を使用す る。層間絶縁膜 80としてポーラスシリカ膜を使用する場合、ウエットエッチングを行うと 、層間絶縁膜 80のみがエッチングされる。そのため、カーボンナノチューブ群 5の先 端を突出させることができる。ドライエッチングで層間絶縁膜 80を削る場合、スパッタ リング法でアルゴンイオンを層間絶縁膜 80にぶつける。ドライエッチングを行うと、層 間絶縁膜 80のみがエッチングされる。そのため、カーボンナノチューブ群 5の先端を 突出させることができる。
[0139] このようにして基板 74に層間絶縁膜 80を形成した後、基板 74と LSI基板 75とを重 ね合わせ、基板 74と LSI基板 75とを引き離すことにより、 LSI基板 75には、層間絶縁 膜 80が形成され、かつカーボンナノチューブ群 5が密着した状態となる。
[0140] 次に、層間絶縁膜 80が形成された LSI基板 75に対して、化学機械研磨 (CMP)の 処理を行い、カーボンナノチューブ群 5の長さ及び層間絶縁膜 80の厚さが所望の範 囲になるまで、カーボンナノチューブ群 5及び層間絶縁膜 80を研磨する。層間絶縁 膜 80が形成された LSI基板 75は、基板 74と LSI基板 75とを引き離した後に層間絶 縁膜 80を形成した LSI基板 75であってもよいし、基板 74と LSI基板 75とを引き離す 前に層間絶縁膜 80を形成した LSI基板 75であってもよい。図 50に、カーボンナノチ ユーブ群 5及び層間絶縁膜 80が研磨された後の LSI基板 75を示す。
[0141] 次に、 LSI基板 75に銅配線 71を形成する。具体的には、 LSI基板 75に密着した力 一ボンナノチューブ群 5の上に銅を堆積させ、 LSI基板 75に形成された層間絶縁膜 80の上に銅を堆積させる。そして、堆積させた銅に対してパターユングを行い、 LSI 基板 75に銅配線 71を形成する。銅配線 71と他の銅配線 71との間には、層間絶縁 膜 80を形成する。ただし、この層間絶縁膜 80の形成はこの段階で行わなくてもよい。 図 51に、銅配線 71を形成した後の LSI基板 75を示す。
[0142] LSI基板 75にカーボンナノチューブ群 5及び層間絶縁膜 80を形成し、カーボンナ ノチューブ群 5及び層間絶縁膜 80の上に銅配線 71を形成する工程を第 1の配線ェ 程という。第 1の配線工程を行った後、 LSI基板 75に対して、カーボンナノチューブ 群 5をさらに形成する。すなわち、銅配線 71上にカーボンナノチューブ群 5を形成し 、 LSI基板 75を多層化する。銅配線 71上にカーボンナノチューブ群 5を形成するェ 程を以下に説明する。
[0143] 図 52に示すように、カーボンナノチューブ群 5を成長させた基板 74を用意する。基 板 74に成長させたカーボンナノチューブ群 5を高密度化させておくことは、第 1の配 線工程と同様である。また、 LSI70を構成するビア 70の位置にカーボンナノチューブ 群 5を配置できるように、触媒に対してパターユングを行い、基板 74にカーボンナノ チューブ群 5を成長させることは、第 1の配線工程と同様である。さらに、 LSI70を構 成するビア 70の位置にカーボンナノチューブ群 5を配置できるように、触媒に対して パター-ングを行い、基板 74にカーボンナノチューブ群 5を成長させることは、第 1の 配線工程と同様である。
[0144] 次に、銅配線 71上に、コバルト膜 77を 5nmの厚さで堆積させ、コバルト膜 77の上 にタンタル膜 78を 5nmの厚さで堆積させ、タンタル膜 78の上にチタン膜 79を 5nmの 厚さで堆積させる。なお、コバルト膜 77の代わりに、鉄、ニッケル等の膜を使用しても よい。
[0145] そして、銅配線 71を形成した LSI基板 75と基板 74とを重ね合わせる。具体的には 、図 53に示すように、基板 74と接触していないカーボンナノチューブ群 5の端部が、 銅配線 71に接触するように、基板 74と LSI基板 75とを重ね合わせる。この場合、 LSI 基板 75の長手方向に対して、基板 74の長手方向が略平行方向となるように、基板 7 4と LSI基板 75とを重ね合わせる。また、光学的位置合わせにより、カーボンナノチュ ーブ群 5の端部と LSI基板 75の電極 76とが接触するように、基板 74と LSI基板 75と を重ね合わせる。 [0146] ここで、カーボンナノチューブ群 5の端部(カーボンナノチューブ群 5のうち基板 74と 接して 、な 、端部)を銅配線 71に結合させる方法は、第 1の配線工程におけるカー ボンナノチューブ群 5の端部を電極 76に結合させる方法と同様である。
[0147] そして、基板 74と銅配線 71との間の隙間を層間絶縁膜 80で埋めた後に、基板 74 と LSI基板 75とを引き離す。基板 74と LSI基板 75とを引き離した場合、カーボンナノ チューブ群 5と銅配線 71とが密着された状態となる。すなわち、カーボンナノチュー ブ群 5は、基板 74から引き剥がされ、銅配線 71に密着する。図 54に、基板 74から力 一ボンナノチューブ群 5が引き剥がされ、 LSI基板 75に形成された銅配線 71にカー ボンナノチューブ群 5が密着した状態を示す。
[0148] 次に、層間絶縁膜 80が形成された LSI基板 75に対して、化学機械研磨 (CMP)の 処理を行い、カーボンナノチューブ群 5の長さ及び層間絶縁膜 80の厚さが所望の範 囲になるまで、カーボンナノチューブ群 5及び層間絶縁膜 80を研磨する。図 55に、 カーボンナノチューブ群 5及び層間絶縁膜 80が研磨された後の LSI基板 75を示す。
[0149] そして、 LSI基板 75に銅配線 71を形成する。 LSI基板に銅配線 71を形成する方法 は、第 1の配線工程と同様である。銅配線 71の上にカーボンナノチューブ群 5及び 層間絶縁膜 80を形成し、さらに銅配線 71を形成する工程を第 2の配線工程という。 第 1の配線工程で使用する材料及び方法は、第 2の配線工程において使用すること ができる。
[0150] 本実施形態では、 LSI基板 75にカーボンナノチューブ群 5及び層間絶縁膜 80を形 成し、カーボンナノチューブ群 5及び層間絶縁膜 80の上に銅配線 71を形成する第 1 の配線工程を行う。そして、本実施形態では、銅配線 71の上にカーボンナノチュー ブ群5及び層間絶縁膜 80を形成し、さらに銅配線 71を形成する第2の配線工程を行 う。第 2の配線工程を繰り返すことにより、カーボンナノチューブ群 5を利用した多層 配線の LSIが形成される。
[0151] また、本実施形態のコバルト膜 77、タンタル膜 78及びチタン膜 79を用いて、カーボ ンナノチューブ群 5を電極 76又は銅配線 71に接着させる方法は、第 7実施形態に利 用することも可能である。すなわち、本実施形態におけるカーボンナノチューブ群 5と 電極 76との接着方法を用いて、第 7実施形態におけるカーボンナノチューブ群 5と高 出力トランジスタチップ 40の表面に形成された電極とを接着してもよい。
[0152] 本実施形態によれば、 LSI70を構成するビア 73を高密度化されたカーボンナノチ ユーブ群 5で置き替えることにより、エレクト口マイグレーションによる断線の可能性を 低減させることができる。すなわち、 LSI70を構成する電極 76と銅配線 71との間の断 線の可能性を低減させることができる。
[0153] ぐ変形例〉
本発明の第 1実施形態力も第 8実施形態において、カーボンナノチューブ 1に代え てカーボンナノファイバーを用いてもよい。カーボンナノファイバーの成長方法は、力 一ボンナノチューブ 1の成長方法と同様であり、ここではその説明を省略する。また、 本発明の第 1実施形態から第 8実施形態の構造及び方法は、カーボンナノチューブ 1やカーボンファイバーのような細線状の物質に適用できる。さらに、本発明の第 1実 施形態力も第 8実施形態の構造及び方法は、炭素系繊維に適用できる。また、本発 明の第 1実施形態から第 8実施形態の構造及び方法は、中空状の炭素系繊維及び 中空状でない炭素系繊維に適用できる。

Claims

請求の範囲
[1] 複数の炭素系繊維で構成される前記炭素系繊維の集合体構造であって、
一方の端部における前記炭素系繊維の密度と他方の端部における前記炭素系繊 維の密度とが異なる前記炭素系繊維が長さ方向に配列された前記炭素系繊維の集 合体からなる炭素系繊維の集合体構造。
[2] 隣接する前記炭素系繊維の集合体の間に前記炭素系繊維と異なる物質を有する 請求項 1記載の炭素系繊維の集合体構造。
[3] 隣接する前記炭素系繊維の集合体の間に空間を有する請求項 1記載の炭素系繊 維の集合体構造。
[4] 隣接する前記炭素系繊維の集合体が異なる方向に配置される請求項 1記載の炭 素系繊維の集合体構造。
[5] 一方の端部の前記炭素系繊維の密度よりも高密度である他方の端部の前記炭素 系繊維は、各炭素系繊維が互いに密着して形成されている請求項 1記載の炭素系 繊維の集合体構造。
[6] 一方の端部がノ ッケージ基板に接合されるともに、一方の端部の前記炭素系繊維 の密度よりも高密度である他方の端部が半導体素子に接合される請求項 5に記載の 炭素系繊維の集合体構造。
[7] 前記炭素系繊維は、カーボンナノチューブ、カーボンナノファイバーの 、ずれかで あることを特徴とする請求項 1から 6のいずれかに記載の炭素系繊維の集合体構造。
[8] 前記炭素系繊維と異なる物質は、誘電体、有機物質、金属、絶縁体の!/ヽずれかで あることを特徴とする請求項 2記載の炭素系繊維の集合体構造。
[9] 基板面から略垂直方向に炭素系繊維が長さ方向に配列した前記炭素系繊維の集 合体を成長させる工程と、
前記炭素系繊維の集合体の長さ方向の一方の端部を密集させる密集工程とを有 する炭素系繊維の集合体構造の製造方法。
[10] 前記密集工程は、前記炭素系繊維と異なる付着物質を含む溶媒を前記炭素系繊 維の集合体に含侵させる工程と、
前記溶媒を蒸発させる工程とを有する請求項 9に記載の炭素系繊維の集合体構造 の製造方法。
[11] 前記密集工程は、溶媒を前記炭素系繊維の集合体に含侵させる工程と、
前記炭素系繊維の集合体及び前記溶媒を乾燥させる工程とを有する請求項 9に記 載の炭素系繊維の集合体構造の製造方法。
[12] 第 1の基板の基板面から略垂直方向に炭素系繊維が長さ方向に配列した前記炭 素系繊維の集合体を成長させる工程と、
前記炭素系繊維の集合体の長さ方向の一方の端部を密集させる密集工程と、 前記炭素系繊維の集合体の長さ方向の他方の端部を第 2の基板の基板面に密着 させる工程と、
前記第 1の基板の基板面に成長した前記炭素繊維の集合体を前記第 1の基板の 基板面から引き剥がす工程と、
前記炭素系繊維の集合体の長さ方向の他方の端部を密集させる密集工程とを有 する炭素系繊維の集合体構造の製造方法。
[13] 前記密集工程は、溶媒を前記炭素系繊維の集合体に含侵させる工程と、
前記炭素系繊維の集合体及び前記溶媒を乾燥させる工程とを有する請求項 12に 記載の炭素系繊維の集合体構造の製造方法。
[14] 前記密集工程は、前記炭素系繊維と異なる付着物質を含む溶媒を前記炭素系繊 維の集合体に含侵させる工程と、
前記溶媒を蒸発させる工程とを有する請求項 12に記載の炭素系繊維の集合体構 造の製造方法。
[15] 前記溶媒は、 N, N—ジメチルホルムアミド、ジクロロェタン、イソプロピルアルコール 、メタノール、エタノール力もなる群より選択される 13に記載の炭素系繊維の集合体 構造の製造方法。
[16] 前記溶媒は、界面活性剤又は機能性高分子を含むことを特徴とする請求 13に記 載の炭素系繊維の集合体構造の製造方法。
[17] 半導体基板の配線形成方法であって、
前記半導体基板が備える電極上に複数の炭素系繊維で構成される前記炭素系繊 維の集合体構造を形成する工程と、 前記電極と前記炭素系繊維の集合体構造とを接着する工程と、
前記炭素系繊維の集合体構造上に導電体を形成する工程と、
前記導電体上に前記炭素系繊維の集合体構造を形成する工程と、
前記導電体と前記炭素系繊維の集合体構造とを接着する工程とを有し、 前記炭素系繊維の集合体は、前記炭素系繊維が長さ方向に配列され、一方の端 部の前記炭素系繊維の密度と他方の端部の前記炭素系繊維の密度とが異なり、一 方の端部の前記炭素系繊維の密度よりも高密度である他方の端部の前記炭素系繊 維は、各炭素系繊維が互いに密着して形成されている半導体基板の配線形成方法
[18] 前記電極と前記炭素系繊維の集合体構造とを接着する工程は、前記電極上に触 媒膜を堆積し、プロセスガスを使用して前記触媒膜を溶融させて前記電極と前記炭 素系繊維の集合体構造とを接着する工程であり、
前記導電体と前記炭素系繊維の集合体構造とを接着する工程は、前記導電体上 に触媒膜を堆積し、プロセスガスを使用して前記触媒膜を溶融させて前記導電体と 前記炭素系繊維の集合体構造とを接着する工程である請求項 17に記載の半導体 基板の配線形成方法。
[19] 前記触媒膜は、コバルト、鉄、ニッケル力 なる群より選択される金属、または当該 金属を含む合金よりなる請求項 18に記載の半導体基板の配線形成方法。
[20] 前記プロセスガスは、炭化水素系ガス及びアルコールのうち少なくとも一つを含む 請求項 18に記載の半導体基板の配線形成方法。
PCT/JP2007/054549 2006-03-24 2007-03-08 炭素系繊維のデバイス構造およびその製造方法 WO2007111107A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008507410A JP5287237B2 (ja) 2006-03-24 2007-03-08 炭素系繊維のデバイス構造およびその製造方法
US12/237,020 US7736615B2 (en) 2006-03-24 2008-09-24 Device structure of carbon fibers and manufacturing method thereof
US12/814,305 US8093147B2 (en) 2006-03-24 2010-06-11 Device structure of carbon fibers and manufacturing method thereof
US12/814,308 US20100316558A1 (en) 2006-03-24 2010-06-11 Device structure of carbon fibers and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2006/305954 WO2007110899A1 (ja) 2006-03-24 2006-03-24 炭素系繊維のデバイス構造およびその製造方法
JPPCT/JP2006/305954 2006-03-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/237,020 Continuation US7736615B2 (en) 2006-03-24 2008-09-24 Device structure of carbon fibers and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2007111107A1 true WO2007111107A1 (ja) 2007-10-04

Family

ID=38540839

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2006/305954 WO2007110899A1 (ja) 2006-03-24 2006-03-24 炭素系繊維のデバイス構造およびその製造方法
PCT/JP2007/054549 WO2007111107A1 (ja) 2006-03-24 2007-03-08 炭素系繊維のデバイス構造およびその製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305954 WO2007110899A1 (ja) 2006-03-24 2006-03-24 炭素系繊維のデバイス構造およびその製造方法

Country Status (2)

Country Link
US (3) US7736615B2 (ja)
WO (2) WO2007110899A1 (ja)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2061077A2 (en) * 2007-10-22 2009-05-20 Fujitsu Limited Sheet structure and method of manufacturing the same
JP2009202328A (ja) * 2008-02-29 2009-09-10 Denso Corp シート状熱伝導材料の製造方法
JP2009268108A (ja) * 2008-04-28 2009-11-12 Qinghua Univ 熱音響装置
JP2009296594A (ja) * 2008-06-04 2009-12-17 Qinghua Univ 熱音響装置
JP2009296593A (ja) * 2008-06-04 2009-12-17 Qinghua Univ 熱音響装置
JP2009303217A (ja) * 2008-06-13 2009-12-24 Qinghua Univ 熱音響装置
JP2010004536A (ja) * 2008-06-18 2010-01-07 Qinghua Univ 熱音響装置
JP2010006697A (ja) * 2008-06-27 2010-01-14 Qinghua Univ 線熱源
JP2010206203A (ja) * 2009-03-02 2010-09-16 Qinghua Univ 熱伝導構造体の製造方法
EP2104141A3 (en) * 2008-03-18 2010-10-27 Fujitsu Limited Sheet structure and method of manufacturing sheet structure
JP2011051888A (ja) * 2009-08-25 2011-03-17 Qinghua Univ カーボンナノチューブ放熱装置を製造するための構造体及び製造方法
US8199938B2 (en) 2008-04-28 2012-06-12 Beijing Funate Innovation Technology Co., Ltd. Method of causing the thermoacoustic effect
US8225501B2 (en) 2009-08-07 2012-07-24 Tsinghua University Method for making thermoacoustic device
US8238586B2 (en) 2008-12-30 2012-08-07 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
US8249280B2 (en) 2009-09-25 2012-08-21 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
US8270639B2 (en) 2008-04-28 2012-09-18 Tsinghua University Thermoacoustic device
US8292436B2 (en) 2009-07-03 2012-10-23 Tsinghua University Projection screen and image projection system using the same
US8300855B2 (en) 2008-12-30 2012-10-30 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic module, thermoacoustic device, and method for making the same
US8331586B2 (en) 2008-12-30 2012-12-11 Tsinghua University Thermoacoustic device
US8406450B2 (en) 2009-08-28 2013-03-26 Tsinghua University Thermoacoustic device with heat dissipating structure
US8410676B2 (en) 2007-09-28 2013-04-02 Beijing Funate Innovation Technology Co., Ltd. Sheet-shaped heat and light source, method for making the same and method for heating object adopting the same
US8450930B2 (en) 2007-10-10 2013-05-28 Tsinghua University Sheet-shaped heat and light source
JP2013103286A (ja) * 2011-11-11 2013-05-30 Ihi Corp ナノ構造物およびナノ構造物の製造方法
US8457331B2 (en) 2009-11-10 2013-06-04 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
JP2013115094A (ja) * 2011-11-25 2013-06-10 Fujitsu Ltd 放熱材料及びその製造方法
US8494187B2 (en) 2009-11-06 2013-07-23 Tsinghua University Carbon nanotube speaker
US8537640B2 (en) 2009-09-11 2013-09-17 Tsinghua University Active sonar system
JP2013211430A (ja) * 2012-03-30 2013-10-10 Fujitsu Ltd 半導体装置、半導体ウエハ、及び半導体装置の製造方法
US8743546B2 (en) 2007-10-22 2014-06-03 Fujitsu Limited Sheet structure and method of manufacturing the same
US8811631B2 (en) 2009-11-16 2014-08-19 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
US8905320B2 (en) 2009-06-09 2014-12-09 Tsinghua University Room heating device capable of simultaneously producing sound waves
WO2014203550A1 (ja) * 2013-06-21 2014-12-24 独立行政法人産業技術総合研究所 導電構造及びその製造方法、電子装置及びその製造方法
WO2015097878A1 (ja) * 2013-12-27 2015-07-02 富士通株式会社 シート状構造体、これを用いた電子機器、シート状構造体の製造方法、及び電子機器の製造方法
JP2016519981A (ja) * 2013-06-04 2016-07-11 イノセラピー インコーポレーテッドInnotherapy Inc. 生体植込み型電極アセンブリ
JP2017092108A (ja) * 2015-11-04 2017-05-25 富士通株式会社 放熱シート、放熱シートの製造方法、電子装置、及び放熱シート製造装置
WO2018173884A1 (ja) * 2017-03-21 2018-09-27 日本電産リード株式会社 プローブ構造体、及びプローブ構造体の製造方法
WO2019181420A1 (ja) * 2018-03-20 2019-09-26 日本電産リード株式会社 接触端子、接触端子を備えた検査治具、及び接触端子の製造方法
JP2021119604A (ja) * 2016-05-06 2021-08-12 スモルテク アクティエボラーグ 組立プラットフォーム

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5187193B2 (ja) * 2006-03-16 2013-04-24 富士通株式会社 カーボンナノチューブ構造体、カーボンナノチューブの作製方法、電気的機能装置、カーボンナノチューブ成長用触媒微粒子
WO2007110899A1 (ja) * 2006-03-24 2007-10-04 Fujitsu Limited 炭素系繊維のデバイス構造およびその製造方法
US8283786B2 (en) * 2007-12-21 2012-10-09 Advanced Micro Devices, Inc. Integrated circuit system with contact integration
US8259968B2 (en) * 2008-04-28 2012-09-04 Tsinghua University Thermoacoustic device
US8249279B2 (en) * 2008-04-28 2012-08-21 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
US8259967B2 (en) * 2008-04-28 2012-09-04 Tsinghua University Thermoacoustic device
US8452031B2 (en) * 2008-04-28 2013-05-28 Tsinghua University Ultrasonic thermoacoustic device
EP2138998B1 (en) * 2008-06-04 2019-11-06 Tsing Hua University Thermoacoustic device comprising a carbon nanotube structure
US20100122980A1 (en) * 2008-06-13 2010-05-20 Tsinghua University Carbon nanotube heater
US20100126985A1 (en) * 2008-06-13 2010-05-27 Tsinghua University Carbon nanotube heater
CN101656907B (zh) * 2008-08-22 2013-03-20 清华大学 音箱
CN101715160B (zh) * 2008-10-08 2013-02-13 清华大学 柔性发声装置及发声旗帜
CN101715155B (zh) * 2008-10-08 2013-07-03 清华大学 耳机
JP5239768B2 (ja) * 2008-11-14 2013-07-17 富士通株式会社 放熱材料並びに電子機器及びその製造方法
CN101811658B (zh) * 2009-02-20 2012-09-19 清华大学 碳纳米管阵列传感器及其制备方法
WO2011005396A1 (en) 2009-06-12 2011-01-13 3M Innovative Properties Company Fluorinated aromatic bis(acyl)-containing compounds and polyesters prepared therefrom
CN102452648B (zh) * 2010-10-27 2013-09-25 北京富纳特创新科技有限公司 碳纳米管膜承载结构及其使用方法
JP6405914B2 (ja) * 2014-11-11 2018-10-17 株式会社デンソー 熱交換装置及び熱交換装置の製造方法
WO2017134653A1 (en) * 2016-02-03 2017-08-10 Technion Research & Development Foundation Limited Carbon nanotubes fabric as electrode current collector in li-ion battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999065821A1 (en) * 1998-06-19 1999-12-23 The Research Foundation Of State University Of New York Free-standing and aligned carbon nanotubes and synthesis thereof
WO2001027963A1 (fr) * 1999-10-12 2001-04-19 Matsushita Electric Industrial Co., Ltd. Dispositif emetteur d'electrons et source d'electrons le contenant, afficheur d'image a effet de champ, lampe fluorescente et leurs procedes de production
JP2002056772A (ja) * 2000-05-31 2002-02-22 Sharp Corp 電子源及びその製造方法
JP2004189574A (ja) * 2002-12-13 2004-07-08 Jfe Engineering Kk カーボンナノチューブ集合体およびこれを設置したカーボンナノチューブ設置装置
JP2004243477A (ja) * 2003-02-14 2004-09-02 Sharp Corp 炭素質ナノ構造体の製造方法、炭素質ナノ構造体及びそれを用いた電子源

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3183845B2 (ja) 1997-03-21 2001-07-09 財団法人ファインセラミックスセンター カーボンナノチューブ及びカーボンナノチューブ膜の製造方法
US6232706B1 (en) 1998-11-12 2001-05-15 The Board Of Trustees Of The Leland Stanford Junior University Self-oriented bundles of carbon nanotubes and method of making same
US7084507B2 (en) 2001-05-02 2006-08-01 Fujitsu Limited Integrated circuit device and method of producing the same
JP4212258B2 (ja) 2001-05-02 2009-01-21 富士通株式会社 集積回路装置及び集積回路装置製造方法
JP2004185985A (ja) 2002-12-03 2004-07-02 Toyota Motor Corp 電気伝導線
US7473411B2 (en) * 2003-12-12 2009-01-06 Rensselaer Polytechnic Institute Carbon nanotube foam and method of making and using thereof
US7545030B2 (en) * 2005-12-30 2009-06-09 Intel Corporation Article having metal impregnated within carbon nanotube array
WO2007110899A1 (ja) * 2006-03-24 2007-10-04 Fujitsu Limited 炭素系繊維のデバイス構造およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999065821A1 (en) * 1998-06-19 1999-12-23 The Research Foundation Of State University Of New York Free-standing and aligned carbon nanotubes and synthesis thereof
WO2001027963A1 (fr) * 1999-10-12 2001-04-19 Matsushita Electric Industrial Co., Ltd. Dispositif emetteur d'electrons et source d'electrons le contenant, afficheur d'image a effet de champ, lampe fluorescente et leurs procedes de production
JP2002056772A (ja) * 2000-05-31 2002-02-22 Sharp Corp 電子源及びその製造方法
JP2004189574A (ja) * 2002-12-13 2004-07-08 Jfe Engineering Kk カーボンナノチューブ集合体およびこれを設置したカーボンナノチューブ設置装置
JP2004243477A (ja) * 2003-02-14 2004-09-02 Sharp Corp 炭素質ナノ構造体の製造方法、炭素質ナノ構造体及びそれを用いた電子源

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8410676B2 (en) 2007-09-28 2013-04-02 Beijing Funate Innovation Technology Co., Ltd. Sheet-shaped heat and light source, method for making the same and method for heating object adopting the same
US8450930B2 (en) 2007-10-10 2013-05-28 Tsinghua University Sheet-shaped heat and light source
KR101111127B1 (ko) 2007-10-22 2012-03-14 후지쯔 가부시끼가이샤 시트 형상 구조체와 그 제조 방법 및 전자기기
EP2061077A3 (en) * 2007-10-22 2009-12-09 Fujitsu Limited Sheet structure and method of manufacturing the same
EP2061077A2 (en) * 2007-10-22 2009-05-20 Fujitsu Limited Sheet structure and method of manufacturing the same
US8743546B2 (en) 2007-10-22 2014-06-03 Fujitsu Limited Sheet structure and method of manufacturing the same
JP2009202328A (ja) * 2008-02-29 2009-09-10 Denso Corp シート状熱伝導材料の製造方法
US8749979B2 (en) 2008-03-18 2014-06-10 Fujitsu Limited Sheet structure and method of manufacturing sheet structure
EP2104141A3 (en) * 2008-03-18 2010-10-27 Fujitsu Limited Sheet structure and method of manufacturing sheet structure
JP2009268108A (ja) * 2008-04-28 2009-11-12 Qinghua Univ 熱音響装置
US8270639B2 (en) 2008-04-28 2012-09-18 Tsinghua University Thermoacoustic device
US8199938B2 (en) 2008-04-28 2012-06-12 Beijing Funate Innovation Technology Co., Ltd. Method of causing the thermoacoustic effect
JP2009296594A (ja) * 2008-06-04 2009-12-17 Qinghua Univ 熱音響装置
JP2009296593A (ja) * 2008-06-04 2009-12-17 Qinghua Univ 熱音響装置
JP2009303217A (ja) * 2008-06-13 2009-12-24 Qinghua Univ 熱音響装置
JP2010004536A (ja) * 2008-06-18 2010-01-07 Qinghua Univ 熱音響装置
JP2010006697A (ja) * 2008-06-27 2010-01-14 Qinghua Univ 線熱源
US8331586B2 (en) 2008-12-30 2012-12-11 Tsinghua University Thermoacoustic device
US8462965B2 (en) 2008-12-30 2013-06-11 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic module, thermoacoustic device, and method for making the same
US8763234B2 (en) 2008-12-30 2014-07-01 Beijing Funate Innovation Technology Co., Ltd. Method for making thermoacoustic module
US8300856B2 (en) 2008-12-30 2012-10-30 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
US8300855B2 (en) 2008-12-30 2012-10-30 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic module, thermoacoustic device, and method for making the same
US8306246B2 (en) 2008-12-30 2012-11-06 Beijing FUNATE Innovation Technology Co., Ld. Thermoacoustic device
US8311245B2 (en) 2008-12-30 2012-11-13 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic module, thermoacoustic device, and method for making the same
US8311244B2 (en) 2008-12-30 2012-11-13 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
US8315414B2 (en) 2008-12-30 2012-11-20 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
US8315415B2 (en) 2008-12-30 2012-11-20 Beijing Funate Innovation Technology Co., Ltd. Speaker
US8325949B2 (en) 2008-12-30 2012-12-04 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
US8325948B2 (en) 2008-12-30 2012-12-04 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic module, thermoacoustic device, and method for making the same
US8325947B2 (en) 2008-12-30 2012-12-04 Bejing FUNATE Innovation Technology Co., Ltd. Thermoacoustic device
US8238586B2 (en) 2008-12-30 2012-08-07 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
US8331587B2 (en) 2008-12-30 2012-12-11 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic module, thermoacoustic device, and method for making the same
US8345896B2 (en) 2008-12-30 2013-01-01 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
US8379885B2 (en) 2008-12-30 2013-02-19 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic module, thermoacoustic device, and method for making the same
JP2010206203A (ja) * 2009-03-02 2010-09-16 Qinghua Univ 熱伝導構造体の製造方法
US8221667B2 (en) 2009-03-02 2012-07-17 Tsinghua University Method for making thermal interface material
US8905320B2 (en) 2009-06-09 2014-12-09 Tsinghua University Room heating device capable of simultaneously producing sound waves
US8292436B2 (en) 2009-07-03 2012-10-23 Tsinghua University Projection screen and image projection system using the same
US8225501B2 (en) 2009-08-07 2012-07-24 Tsinghua University Method for making thermoacoustic device
US8615096B2 (en) 2009-08-07 2013-12-24 Tsinghua University Thermoacoustic device
JP2011051888A (ja) * 2009-08-25 2011-03-17 Qinghua Univ カーボンナノチューブ放熱装置を製造するための構造体及び製造方法
US8406450B2 (en) 2009-08-28 2013-03-26 Tsinghua University Thermoacoustic device with heat dissipating structure
US8537640B2 (en) 2009-09-11 2013-09-17 Tsinghua University Active sonar system
US8249280B2 (en) 2009-09-25 2012-08-21 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
US8494187B2 (en) 2009-11-06 2013-07-23 Tsinghua University Carbon nanotube speaker
US8457331B2 (en) 2009-11-10 2013-06-04 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
US8811631B2 (en) 2009-11-16 2014-08-19 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
JP2013103286A (ja) * 2011-11-11 2013-05-30 Ihi Corp ナノ構造物およびナノ構造物の製造方法
JP2013115094A (ja) * 2011-11-25 2013-06-10 Fujitsu Ltd 放熱材料及びその製造方法
JP2013211430A (ja) * 2012-03-30 2013-10-10 Fujitsu Ltd 半導体装置、半導体ウエハ、及び半導体装置の製造方法
US9925368B2 (en) 2013-06-04 2018-03-27 Innotherapy Inc. Bio-implantable electrode assembly
JP2016519981A (ja) * 2013-06-04 2016-07-11 イノセラピー インコーポレーテッドInnotherapy Inc. 生体植込み型電極アセンブリ
JP2015005659A (ja) * 2013-06-21 2015-01-08 独立行政法人産業技術総合研究所 導電構造及びその製造方法、電子装置及びその製造方法
WO2014203550A1 (ja) * 2013-06-21 2014-12-24 独立行政法人産業技術総合研究所 導電構造及びその製造方法、電子装置及びその製造方法
US10090248B2 (en) 2013-06-21 2018-10-02 Fujitsu Limited Conductive structure and manufacturing method thereof, and electronic device and manufacturing method thereof
WO2015097878A1 (ja) * 2013-12-27 2015-07-02 富士通株式会社 シート状構造体、これを用いた電子機器、シート状構造体の製造方法、及び電子機器の製造方法
JPWO2015097878A1 (ja) * 2013-12-27 2017-03-23 富士通株式会社 シート状構造体、これを用いた電子機器、シート状構造体の製造方法、及び電子機器の製造方法
JP2017092108A (ja) * 2015-11-04 2017-05-25 富士通株式会社 放熱シート、放熱シートの製造方法、電子装置、及び放熱シート製造装置
JP2021119604A (ja) * 2016-05-06 2021-08-12 スモルテク アクティエボラーグ 組立プラットフォーム
WO2018173884A1 (ja) * 2017-03-21 2018-09-27 日本電産リード株式会社 プローブ構造体、及びプローブ構造体の製造方法
JPWO2018173884A1 (ja) * 2017-03-21 2020-01-30 日本電産リード株式会社 プローブ構造体、及びプローブ構造体の製造方法
WO2019181420A1 (ja) * 2018-03-20 2019-09-26 日本電産リード株式会社 接触端子、接触端子を備えた検査治具、及び接触端子の製造方法

Also Published As

Publication number Publication date
US8093147B2 (en) 2012-01-10
WO2007110899A1 (ja) 2007-10-04
US20100317187A1 (en) 2010-12-16
US7736615B2 (en) 2010-06-15
US20100316558A1 (en) 2010-12-16
US20090016951A1 (en) 2009-01-15

Similar Documents

Publication Publication Date Title
WO2007111107A1 (ja) 炭素系繊維のデバイス構造およびその製造方法
EP2763167B1 (en) Heat-dissipating material and method for producing same, and electronic device and method for producing same
JP4823213B2 (ja) 半導体パッケージ、およびその製造方法
JP4350732B2 (ja) 基板上に炭素ナノチューブを形成させる方法、これを利用した導線形成方法及びこれを利用したインダクター素子製造方法
US8053678B2 (en) Interconnection, electronic device and method for manufacturing an electronic device
US20110103020A1 (en) Carbon Nanotube-Based Structures and Methods for Removing Heat from Solid-State Devices
JP2002141633A (ja) 垂直にナノ相互接続された回路デバイスからなる製品及びその製造方法
TW200951210A (en) Sheet structure and method of manufacturing sheet structure
US20090246507A1 (en) Systems and methods for fabrication and transfer of carbon nanotubes
JP4899703B2 (ja) カーボン配線構造およびその製造方法、および半導体装置
JP5636654B2 (ja) カーボンナノチューブシート構造体およびその製造方法、半導体装置
ITTO20100555A1 (it) Dispositivo elettronico comprendente uno strato di interfaccia di connessione basato su nanotubi, e procedimento di fabbricazione
US8394664B2 (en) Electrical device fabrication from nanotube formations
KR101110804B1 (ko) 배선 구조체의 형성 방법
JP2008210954A (ja) カーボンナノチューブバンプ構造体とその製造方法、およびこれを用いた半導体装置
CN108622879B (zh) 一种碳纳米管垂直阵列的干式接触转移方法
JP2007059647A (ja) 熱電変換素子およびその製造方法
JP2007281070A (ja) 熱電変換素子およびその製造方法
US20140338189A1 (en) Interconnection structure made of redirected carbon nanotubes
JP2009032819A (ja) 電子装置の製造方法及びそれを用いた電子装置
JP5287237B2 (ja) 炭素系繊維のデバイス構造およびその製造方法
JP2011119539A (ja) バンプ構造体及びその製造方法、電子機器とその製造方法
JP2009141087A (ja) 配線構造および半導体装置
JP2020184576A (ja) 導電性放熱フィルム、導電性放熱フィルムの製造方法、及び電子装置の製造方法
Zhu et al. In-situ opening aligned carbon nanotube films/arrays for multichannel ballistic transport in electrical interconnect

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07738040

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008507410

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07738040

Country of ref document: EP

Kind code of ref document: A1