JP2004189574A - カーボンナノチューブ集合体およびこれを設置したカーボンナノチューブ設置装置 - Google Patents

カーボンナノチューブ集合体およびこれを設置したカーボンナノチューブ設置装置 Download PDF

Info

Publication number
JP2004189574A
JP2004189574A JP2002362592A JP2002362592A JP2004189574A JP 2004189574 A JP2004189574 A JP 2004189574A JP 2002362592 A JP2002362592 A JP 2002362592A JP 2002362592 A JP2002362592 A JP 2002362592A JP 2004189574 A JP2004189574 A JP 2004189574A
Authority
JP
Japan
Prior art keywords
cnt
aggregate
cathode
anode
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002362592A
Other languages
English (en)
Other versions
JP3912276B2 (ja
Inventor
Takamine Mukai
敬峰 向井
Yasuhiko Nishi
泰彦 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2002362592A priority Critical patent/JP3912276B2/ja
Publication of JP2004189574A publication Critical patent/JP2004189574A/ja
Application granted granted Critical
Publication of JP3912276B2 publication Critical patent/JP3912276B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Cold Cathode And The Manufacture (AREA)

Abstract

【課題】長尺のカーボンナノチューブ(CNT)繊維、該CNT繊維同士が十分に絡まり合った所望の大きさのCNT集合体、および該CNT集合体を設置したCNT設置装置であって、電子放出特性や機械的強度に優れたものを提供する。
【解決手段】複数のCNT繊維が絡み合って一体化して生成されたCNT集合体であって、CNT繊維が密に絡み合った密領域と、疎に絡み合った疎領域とを有し、前記密領域が前記疎領域よりも突出することで開放空間に対して凸部を形成する。また、前記密領域が複数箇所に形成され、一方の密領域の中心と他方の密領域の中心との距離が2〜40μmである。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、カーボンナノチューブ集合体およびこれを設置したカーボンナノチューブ設置装置に関する。
【0002】
【従来の技術】
(カーボンナノチューブ)
カーボンナノチューブは、主にレーザ蒸発法(化学法)またはアーク放電法(物理法)によって生成され、炭素原子が六角形状または五角形状に規則正しく並んだシート(以下、グラフェンシートと称す)が円筒形に丸まったものであり、特異な性質を有していることから新素材として注目されている。
なお、グラフェンシートの筒が一重のものを単層カーボンナノチューブ(SWCNT)と称し、その直径は1〜数nmである。一方、グラフェンシートの筒が同心状に何重も重なっているものを多層カーボンナノチューブ(MWCNT)と称し、その直径は数nm〜数十nmである。また、グラフェンシートが略円錐状に丸まったものをカーボンナノホーンと称し、単層または多層カーボンナノホーン(SWCNH、MWCNH)がある。本発明においては、これらをカーボンナノチューブ(以下、CNTと称す)と総称する。また、このCNT単体をCNT繊維、該CNT繊維が集合したものをCNT集合体と称す。
【0003】
(気相生成法)
気相生成法は、原料ガス(CNT繊維を生成する為の原料蒸気をキャリアガスで希釈したもの)を反応管内に供給して加熱し、生成したCNTを該反応管内でまたは該反応管から排出して回収するものである。
なお、これによって生成されたCNT繊維は、表面に微少な突起ないし凹凸があって平滑でないこと、あるいは枝分かれしていることが理由の一つとして、電子放出特性や機械的強度が十分に発揮されない場合がある。また、不純物の混入割合が高いため、回収した後でこれを精製する作業が必須になっている。
【0004】
(アーク放電法)
アーク放電法は、炭素の蒸発にアーク放電を用いるものであって、炭素電極間でアーク放電を起こして高温になった陽極側から炭素を昇華させ、陰極先端に直接凝集した炭素質の堆積中およびアーク周辺に飛散した煤状物中にCNTを生成するものである。
特に、グラフェンシートを継目のない円筒形に丸く閉じた形状にしたグラファイト筒を、同心円状に積層して筒の中心部まで密に詰まった多層CNT繊維は、電子放出特性が優れているだけでなく、ウイスカ等と同様に複合材料に混合されて優れた機械的強化作用を奏するものである。該多層CNT繊維は、その先端部分のグラフェンシートが破れていることから、これが前記優れた特性の理由の一つと考えられている(例えば、特許文献1参照)。
【0005】
【特許文献1】
特開2000−327317号公報(第5−6頁、図3)
【0006】
【発明が解決しようとする課題】
しかしながら,該多層CNT繊維は、直径が10〜100nmで、長さ1μm以上のものが製造条件によって得られるものであるが、10μm以上の長尺のものは生成困難と推定されるため、多層CNT繊維同士を集合した際、多層CNT繊維同士が十分に絡まり合わないため、以下の問題点がある。
(イ)所望の大きさ(側面視における厚さ、平面視における広がり等)の多層CNT集合体が得られない。
(ロ)所望の機械的強度を具備した多層CNT集合体が得られない。
(ハ)所望の大きさに加工することが困難である。
(ニ)微粒子の紛体であるため、取り扱い時に飛散しやすくハンドリングが困難。
(ホ)多層CNT集合体の所定の面において、多層CNT繊維を所定の方向に配向することができない。
(ヘ)多層CNT繊維を集合体として使用する方法として、紛体状のCNT繊維を含むペーストの塗布が考えられるが、以下の問題がある。
▲1▼CNT繊維と基板との導電性もしくは伝熱性が悪化する。
▲2▼十分なCNT含有量がなく(純度が低く)電子放出や吸着などの機能が不十分となる。
▲3▼CNT同士が過剰に密着してCNTの有効表面積が減少する。
▲4▼塗布表面が微視的に平滑化して電解強度を高めることができない。
(ト)生成されたのち純度を高めるために、大気中で加熱する精製作業が必要であるから、製造装置および製造工程が複雑になるという問題点がある。
【0007】
本発明はかかる問題点を解決するためになされたもので、該CNT繊維同士が十分に絡まりあい、集合体表面が凹凸分布したCNT集合体、および該CNT集合体を設置したCNT設置装置を提供するものである。
【0008】
【課題を解決するための手段】
本発明のカーボンナノチューブ集合体は、下記のとおりである。
(1)複数のカーボンナノチューブが絡み合って一体化して生成されたカーボンナノチューブ集合体であって、
前記カーボンナノチューブが密に絡み合った密領域と、前記カーボンナノチューブが疎に絡み合った疎領域とを有し、
前記密領域が前記疎領域よりも突出することで開放空間に対して凸部を形成することを特徴とするものである。
(2)前記(1)において、前記密領域が複数箇所に形成され、一方の密領域の中心と他方の密領域の中心との距離が2〜40μmであることを特徴とするものである。
【0009】
(3)前記(1)または(2)において、前記密領域が形成する凸部の面積が0.01mm2以上であることを特徴とするものである。
(4)前記(1)乃至(3)の何れかにおいて、所定の方向から見た平面領域における領域端部間の最大距離が1mm以上となることを特徴とするものである。
【0010】
(5)前記(1)乃至(4)の何れかにおいて、前記複数のカーボンナノチューブに長さ10μm以上のカーボンナノチューブが含まれることを特徴とするものである。
(6)前記(1)乃至(5)の何れかにおいて、アーク放電法によって生成されることを特徴とするものである。
【0011】
さらに、本発明のカーボンナノチューブ設置装置は、下記のとおりである。
(7)前記(1)乃至(6)の何れかに記載のカーボンナノチューブ集合体が設置されている電子放出源であることを特徴とするものである。
(8)前記(7)において、カーボンナノチューブ集合体が、所定の方向から見た平面領域の面積が0.01mm2以上であることを特徴とするものである。
【0012】
(9)前記(1)乃至(6)の何れかに記載のカーボンナノチューブ集合体が設置されている電気機器または電子機器であることを特徴とするものである。
(10)前記(1)乃至(6)の何れかに記載のカーボンナノチューブ集合体が設置されている分離膜であることを特徴とするものである。
【0013】
(11)前記(1)乃至(6)の何れかに記載のカーボンナノチューブ集合体が設置されている 吸着剤または吸着材であることを特徴とするものである。
(12)前記(1)乃至(6)の何れかに記載のカーボンナノチューブ集合体が設置されている浄化装置であることを特徴とするものである。
(13)前記(1)乃至(6)の何れかに記載のカーボンナノチューブ集合体が設置されている放熱材料であることを特徴とするものである。
【0014】
【発明の実施の形態】
以下、実施の形態1においてCNTを生成する製造装置について、実施の形態2において前記製造装置に好適な電極材料について、実施の形態3においてCNTを生成する製造方法について、実施の形態4において生成されたCNTについて、実施の形態5においてCNTの加工について、そして、実施の形態6においてCNTの利用についてそれぞれ説明する。
【0015】
[実施の形態1]
(CNT製造装置1−固定中実陽極)
図1は本発明の実施の形態1に係るアーク放電によって生成されたCNTの製造方法におけるCNT製造装置の実施例1(以下、CNT製造装置1と称す)を示す模式図である。図1において、1はCNT製造装置、10は陽極、20は陰極、30はチャンバ、31は陽極ホルダ、32は陰極ホルダ、33はチャンバ30の内壁(天井面、側面、床面等)、34は陽極10を移動する陽極移動手段、35は通電手段、である。
また、T21は陰極20の表面21に堆積した陰極堆積物、T22は陰極20の側面22に堆積した陰極煤、T33はチャンバ30の内壁33(天井面、側面、床面等)に堆積したチャンバ煤である。
そして、生成したCNTは陰極堆積物T21、陰極煤T22およびチャンバ煤T33の中に存在している。
【0016】
(陽極)
陽極10は炭素材料、またはCNT合成の触媒作用を有する触媒物質を混合した混合材料(下記に別途説明する)である。また、陽極10は中実の棒状体または中空の筒状体に形成され、チャンバ30に設置された陽極ホルダ31によって把持され通電手段34を介して図示しないアーク放電用直流電源に接続されている。
【0017】
(陰極)
陰極20は炭素材料、またはCNT合成の触媒作用を有する触媒物質を混合した混合材料(下記に別途説明する)である。陰極20は板状、棒状(中実または中空)に形成され、陰極ホルダ32によって把持されて図示しないアーク放電用直流電源に接続されている。
なお、前記混合材料に代えて、炭素材料の表面に触媒物質を付着したものでもよい(下記に別途説明する)。
【0018】
(チャンバ)
チャンバ30は飛散した煤を捕捉するためのものであって、密閉してアルゴンガス等の不活性ガスもしくは不活性ガスを含む混合ガス(以下、放電用ガスと称す)の雰囲気(大気圧または減圧)を形成するもの、あるいは、一部を開放して全体は大気雰囲気にしてアーク放電発生部付近に限り局所的に放電用ガスの雰囲気にするものである。
また、図1において、陽極ホルダ31および陰極ホルダ32をチャンバ30に設置しているが、本発明はこれに限定するものではなく、別途フレームを設けてこれに陽極ホルダ31、陰極ホルダ32およびチャンバ30をそれぞれ別個に設置してもよい。
特に、チャンバ30が開放されている場合(密閉型でない場合)、チャンバ30は煤を捕捉するために必要な範囲に限定して配置することができるから、たとえば、アーク放電発生部の上部を覆うカバーであってもよい。さらに、煤の発生が少ない場合にはチャンバ30を撤去してもよい。
【0019】
(CNT製造装置2−冷却陽極)
図2は本発明の実施の形態1に係るアーク放電によって生成されたCNTの製造方法におけるCNT製造装置の実施例2(以下、CNT製造装置2と称す)を示す模式図である。図2において、2はCNT製造装置、40はアーク放電用電源、50は陽極冷却手段である。なお、図1と同じ部分にはこれと同じ符号を付し、一部の説明を省略する。
陽極10は炭素材料または金属材料によって形成され、外周に陽極冷却手段50が嵌設されている。陽極冷却手段50は、たとえば銅製の中空筒体であって、内部を冷却水が流れるものである。したがって、陽極冷却手段50による冷却によって陽極10の過熱を防ぐことができる。
【0020】
よって、陽極10が炭素材料によって形成された場合には炭素の過剰な蒸発が抑制されるため、該過剰蒸発炭素が生成されたCNTの表面(表層部)に不純物(たとえば、アモルファスカーボン等)として付着することが抑制され、また、炭素陽極自体の消耗を抑えて長寿命化が図られる。
一方、陽極10が金属材料によって形成された場合(雰囲気ガスまたは炭素陰極から炭素イオン等が供給されている)も同様に、金属陽極自体の消耗を抑えて長寿命化が図られる。
なお、陽極冷却手段50を陽極10の外周に摺動自在にして、陽極10が消耗した場合でも、常に陽極先端から一定の距離に位置するようにしてもよい。また、陽極10の消耗が少ない場合には、陽極冷却手段50を陽極10の内部に配置してもよい。さらに、CNT製造装置2をCNT製造装置1に準じてチャンバ30内に収容してもよい。
【0021】
(CNT製造装置3−予熱陰極)
図3は本発明の実施の形態1に係るアーク放電によって生成されたCNTの製造方法におけるCNT製造装置の実施例3(以下、CNT製造装置3と称す)を示す模式図である。図3において、3はCNT製造装置、50は陽極冷却手段、60は陰極予熱手段である。なお、図1または図2と同じ部分にはこれと同じ符号を付し、一部の説明を省略する。
陰極加熱手段60は、たとえばYAGレーザであって、レーザ照射により陰極20の表面21のアーク放電発生部を予熱もしくは加熱するものである。すなわち、陰極20のアーク放電発生部が予熱されるから、該予熱した領域にアーク放電が発生して、CNTが成長し易い条件が形成されると考えられるため、結果としてCNTの生成量が増大する。
なお、陰極加熱手段60はレーザ加熱に限定するものではなく、高周波誘導加熱等何れかであってもよい。また、陽極冷却手段50を設置しない場合、あるいは、CNT製造装置3をCNT製造装置1に準じてチャンバ30内に収容してもよい。
【0022】
(CNT製造装置4−ガス供給陽極)
図4は本発明の実施の形態1に係るアーク放電によって生成されたCNTの製造方法におけるCNT製造装置の実施例4(以下、CNT製造装置4と称す)を示す模式図である。図4において、4はCNT製造装置、11は筒状の陽極、12は陽極の貫通孔である。なお、図1と同じ部分にはこれと同じ符号を付し、一部の説明を省略する。
図4において、筒状陽極11の貫通孔12からアーク放電発生部に向けて前記放電用ガスを吹き付けるものである。かかる放電用ガスの噴出によって噴出経路にアークが発生し易い条件が形成される。すなわち、噴出された放電用ガスの電離度が高くなってガス噴出経路に直流アークが発生し易い条件が形成されたり、放電用ガスと接している貫通孔12の内表面に安定した陽極点が形成されたりすると考えられる。
【0023】
このため、直流アーク発生経路が拘束され、陰極電極上の直流アークの陰極点の不規則な移動が防止される。その結果、この固定された陰極点の発生位置(直流アークの中心部)において、CNTが生成される条件ができCNTが生成される。すなわち、この固定された陰極点の発生位置(直流アークの中心部)において、一旦できたCNTが生成される条件が維持されるから、この位置にアモルファスカーボン等の不純物が堆積することがない。よって、CNTの採取率を高めることができる。また、筒状陽極11を回転する陽極回転手段あるいは昇降する陽極昇降手段を設置してもよい
なお、CNT製造装置4をチャンバ30内に収容する場合がある。
さらに、筒状陽極11を前記製造装置1乃至3の何れかに用いてもよい。
【0024】
(CNT製造装置5−ノズル付き陽極)
図5は本発明の実施の形態1に係るアーク放電によって生成されたCNTの製造方法におけるCNT製造装置の実施例5(以下、CNT製造装置5と称す)を示す模式図である。図5において、5はCNT製造装置、10は陽極、70は陽極10の外面に設置された放電用ガスノズルである。なお、図1と同じ部分にはこれと同じ符号を付し、一部の説明を省略する。
すなわち、図5において、放電用ガスを放電用ガスノズル70から陽極10の外面に沿ってアーク放電発生部に向けてを吹き付けるものである。したがって、CNT製造装置4(図4)と同様に、放電用ガスの噴出によって噴出経路にアークが発生し易い条件が形成される。すなわち、噴出された放電用ガスの電離度が高くなってガス噴出経路に直流アークが発生し易い条件が形成されるため、直流アーク発生経路が拘束され、陰極電極上の直流アークの陰極点の不規則な移動が防止される。よって、CNTの採取率を高めることができる。
なお、CNT製造装置5をチャンバ30内に収容する場合がある。
さらに、ノズル付き陽極11を前記製造装置1乃至3の何れかに用いてもよい。
【0025】
(CNT製造装置6−移動陽極)
図6は本発明の実施の形態1に係るアーク放電によって生成されたCNTの製造方法におけるCNT製造装置の実施例6(以下、CNT製造装置6と称す)を示す模式図である。図6において、6はCNT製造装置、10は陽極、20は平板状の陰極、80は陽極10を移動する陽極移動機構である。なお、図2と同じ部分にはこれと同じ符号を付し、一部の説明を省略する。
陽極移動機構80は、陰極20と略平行に配置された走行レール81と、走行レール81上を走行自在な走行台車83(走行車輪82を具備している)と、走行台車83上で走行レール81に垂直方向に設けられて横行レール84と、横行レール84上を横行自在な横行台車86(横行車輪85を具備している)と、図示しない制御手段から構成され、横行台車86に陽極10が設置されている。
【0026】
したがって、陽極10は陰極20に対して、相対移動自在であるから、陰極堆積物T21を帯状に形成すること、すなわち、テープ状(所定の幅を有する長尺の箔)のCNTを採取することが可能になる。なお、陽極10を移動する陽極移動機構80に代えて、同様の移動機構を陰極20に設置して陰極20を移動自在にしてもよい。また、相対移動の要領は、連続した略己字状、略円形または矩形の渦巻き状等限定するものではない。
このとき、陽極10は陰極20の表面21に対して垂直であるものに限定するものではなく、所定の角度傾斜してもよい。
なお、CNT製造装置6に前記CNT製造装置1乃至5の何れかを適用してもよい。すなわち、チャンバ30を設置、陽極冷却手段50を設置、陰極加熱手段60を設置、放電用ガスノズル70を設置、あるいは、陽極10を筒状陽極11に置き換えてもよい。さらに、陽極10または筒状陽極11を回転する陽極回転手段あるいは昇降する陽極昇降手段を設置してもよい。
【0027】
(CNT製造装置7−回転陰極)
図7は本発明の実施の形態1に係るアーク放電によって生成されたCNTの製造方法におけるCNT製造装置の実施例7(以下、CNT製造装置7と称す)を示す模式図である。図7において、7はCNT製造装置、10は陽極、23は円柱または円筒状の回転陰極、90は陽極10および回転陰極23とを相対的に移動自在な陰陽極移動機構である。なお、図2および図3と同じ部分にはこれと同じ符号を付し、一部の説明を省略する。
陰陽極移動機構90は、回転陰極23の回転軸に略平行に配置された移動レール91と、移動レール91上を移動自在な移動台車93(移動車輪92を具備している)と、回転陰極23を回転する陰極回転機構94と、図示しない制御手段から構成され、移動台車93に陽極10が設置されている。
【0028】
したがって、陽極10は回転陰極23に対して、その回転軸の方向に移動自在であるから、陰極堆積物T21(図示しない)を帯状に形成すること、すなわち、テープ状(所定の幅を有する長尺の箔)のCNTを採取することが可能になる。
そして、陽極10の移動に同期して回転陰極23が回転するから、該テープの形状は、たとえば、螺旋状、略円環状で円環の始点に円環の終点が連結する直前で回転陰極23の回転軸方向に移行する多重の略円環状(一部が連結していない)、あるいは、回転陰極23の回転軸方向の略全長に渡り移動(往路)した後、回転陰極23を僅かに回転して再度逆方向に移動(復路)した連続する略己字状等、様々である。
【0029】
このとき、陽極10は回転陰極23の表面21に対して垂直(回転軸から発する放射状)であるものに限定するものではなく、所定の角度傾斜(回転軸から発する放射方向にオフセット)してもよい。
なお、CNT製造装置7に前記CNT製造装置1乃至5の何れかを適用してもよい。すなわち、チャンバ30を設置、陽極冷却手段50を設置、陰極加熱手段60を設置、放電用ガスノズル70を設置、あるいは、陽極10を筒状陽極11に置き換えてもよい。さらに、陽極10または筒状陽極11を回転する陽極回転手段あるいは昇降する陽極昇降手段を設置してもよい。
【0030】
[実施の形態2]
(電極材料1−炭素陰極)
従来、アーク放電によって生成されたCNT合成は、主として炭素陽極から発生した炭素蒸気および炭素イオンが陰極側に拡散して陰極表面(陽極より温度が低い)にて凝縮することによりCNT(特に多層CNT)が合成されると考えられていた。
しかしながら、本願発明者の実験によると、陽極からの炭素蒸気および炭素イオンのみを増加させても黒鉛質炭素紛もしくは非晶質炭素紛が陰極表面に多量に付着するため、CNTの採取率(回収した堆積物に含まれるCNTの割合)はむしろ低下することが判明した。
そこで、本願発明者は種々実験を繰り返した結果、CNTの採取率を高める重要なファクターとして陰極に着目し、以下の知見を得た。
【0031】
アーク放電によって生成されたCNTの合成に用いられる陰極用に炭素材料は、一般的に次のような工程にて製造され、原料や製造方法および製造時の熱処理温度によってその構造、組織、機械的特性や物性などが大きく異なる。すなわち、
▲1▼石油系または石炭系の各種コークス粉等を原料の炭素質粉とし、それにコールタールピッチや石油系ピッチ等の各種ピッチ類等を結合材とし混合・撹拌する。
▲2▼このように得られた有機物を型込成形、押出成形、CIP形成などの方法により形成し、
▲3▼一般に1500℃以下の温度にて焼成処理を行う。この時点で、原料有機物は重縮合をほぼ完了し、炭素化された状態となる。
▲4▼その後、必要に応じて各種ピッチ類等を含浸し、再熱処理を行ったり、さらに必要により、3000℃以下の温度にて黒鉛化熱処理を行う。このようにして、必要とされる機械性能および物性を有する炭素材料が製造されている。
【0032】
まず、製造時の熱処理温度に着目して、熱処理温度の異なる種々の炭素材料を陰極材料として用いてアーク放電を行い、CNTの合成量を比較したところ、熱処理温度が1500℃以下の低温処理の炭素材料を用いると多くのCNTを合成できることが判明した。すなわち、炭素の黒鉛化がほとんど進んでいない炭素(いわゆる「炭素質」と言われている)からなる炭素材料が当該陰極に好適であるという知見を得た。
【0033】
【表1】
Figure 2004189574
【0034】
表1は、陰極に用いる炭素材料を変更した場合(炭素質の状況を変化した場合)のCNTの採取状況を比較したものである。なお、アーク放電条件は、
(1)炭素陰極:直径36mmの棒状炭素材料で材質を種々変更(A〜G)、
(2)陽極:直径10mmの棒状炭素陽極、
(3)放電用ガス:Arガス(陽極放電発生部に供給)、
(4)雰囲気ガス:大気雰囲気である。
【0035】
表1において、炭素材料A、FおよびGを陰極にした場合、CNTが高純度(高い採取率)で多く生成された。これらは全て材質が炭素質であり、製造時の熱処理温度が1000℃から1500℃のものであったから、かかる熱処理温度が好適であることが分かった。
また、炭素材料A、FおよびGの固有抵抗値は、それぞれ5900μΩ・cm、4600μΩ・cm、11000μΩ・cmであったから、陰極炭素材料の固有抵抗値は、3500μΩ・cmより大きく、好ましくは4000μΩ・cm以上であればよいことが分かる。
さらに、炭素材料A、FおよびGの熱伝導率は、それぞれ23W/mK、31W/mK、20W/mKであったから、陰極炭素材料の熱伝導率は、52W/mKより小さく、好ましくは40W/mK以下であればよいことが分かる。
【0036】
一方、炭素材料B、C、DおよびEを陰極にした場合、CNTの純度(採取率)は低くまた収量(採取量)も少なかった。これらは全て材質が黒鉛質、あるいは黒鉛質と炭素質の混ざったものであった。
また、炭素材料Eの固有抵抗値は3500μΩ・cmであった。
さらに、陰極炭素材料Eの熱伝導率は52W/mKであった。
【0037】
なお、上記の実験において、陽極炭素材料の材質を変更したが、CNTの収量および純度にはほとんど影響がなかったことからも、陰極炭素材料の材質がCNTの収量および純度に大きく影響することが確認できた。
以上から、▲1▼製造時の熱処理温度を1000℃から1500℃にすることによって得られる炭素質からなる炭素材料、▲2▼電気抵抗値が4000μΩ・cm以である炭素材料、または、▲3▼熱伝導率が40W/mK以下となる炭素材料を陰極として用いることによって純度の高いCNTを生成できる。
もっとも、たとえ製造時の熱処理温度が1000℃から1500℃の範囲内でなかったとしても、原料炭素質粉や結合材材質を変化させて電気抵抗値が4000μΩ・cm以上、熱伝導率が40W/mK以下となる炭素材料であればよいという知見が得られた。
【0038】
図8および図9はCNT製造装置2(冷却陽極、図2参照)におけるアーク放電部の温度測定の結果を示すサーモビューア写真であって、それぞれ炭素材料Fおよび炭素材料Dにおけるものである。炭素材料F(黒鉛化の割合が低く、炭素質からなる)を用いた陰極のアーク放電部では高温領域が広くなっていることから、CNT生成の重要なファクターとして、炭素陰極の放電部の温度が関係しているとの知見が得られた。
すなわち、炭素材料Fは前記熱処理温度が比較的低い炭素質であって、黒鉛化(結晶化)度が低いため、電気抵抗値(固有抵抗)が高く、熱伝導率の低いものである。
このため、陰極のアーク発生部(陰極点に同じ)は高い電流密度になり、大きな電気抵抗発熱によって高温度に加熱される。また、低い熱伝導率のため熱が逃げ難いから、陰極点近傍の狭い範囲に熱が籠もりさらに高温に加熱されることになる。このとき、陰極の温度がCNTが生成され易い温度条件になるものと考えられる。
【0039】
(電極材料2−触媒陰極)
陰極に用いられる電極材料は、前記炭素材料(炭素材料F等)そのものである場合に他に、該炭素材料にCNT合成の触媒作用を有するNi等の触媒物質を混合した混合材料の場合がある。なお、触媒物質はNiの他に、Co、Fe、Pt等の金属やNi−Co、Fe−Ni等の金属化合物の何れかであってもよい。また、該金属および金属化合物の2以上を混合したものであってもよい。
さらに、前記混合材料に代えて、前記炭素材料の表面に触媒物質の微粒子(たとえば、Ni微粒子)をバインダによって付着しても、触媒物質を化学的真空蒸着(CVD)または物理的真空蒸着(イオンプレーティング)しても、触媒物質の微粒子と炭素粒子とバインダとを混合したもの塗布して付着しても、触媒物質の微粒子と炭素粒子とを混合してなるターゲットを用いて物理的真空蒸着してもよい。
【0040】
すなわち、陰極を触媒物質の供給源としているから、前記生成領域の近傍(直流アークの陰極点の近傍)において、アーク熱によって少量の触媒物質が蒸発し、該触媒物質のナノレベルの超微粒子(混合した触媒物質の粒サイズよりも小さい)が当該生成領域に生成される。かかる超微粒子化された触媒物質は触媒として有効に作用するため、そのほとんどが触媒として機能し、必要量だけが蒸発するから、触媒物質の無駄な消費がなくなる。
また、同時に、蒸発した触媒物質が過大サイズの粒子に成長しないから、過大サイズの触媒物質がCNTに混入する(一旦生成されたCNTの上に堆積する)ことがなくなる。
【0041】
さらに、直流アークは陽極から陰極へ向かって発生するので、陽極から触媒物質を供給した場合には直流アーク中で触媒粒子が大きく成長して、直流アークが乱れ易くなるもの、本発明のように陰極から触媒物質(陰極に混合した触媒物質の粒サイズが大きい場合であっも)を供給した場合には、直流アークの乱れが起こらずに安定した直流アーク放電が起こることになる。
【0042】
(電極材料3−触媒陽極)
陽極に用いられる電極材料は、易黒鉛化炭素の粒子を加圧成型して焼結した炭素材料、または、前記炭素材料(炭素材料F等)そのものである場合に他に、該炭素材料にCNT合成の触媒作用を有するNi等の触媒物質を混合した混合材料の場合がある。なお、触媒物質はNiの他に、Co、Fe、Pt等の金属やNi−Co、Fe−Ni等の金属化合物の何れかであってもよい。また、該金属および金属化合物の2以上を混合したものであってもよい。
【0043】
(電極材料4−金属陽極)
また、雰囲気ガスまたは炭素陰極から炭素蒸気ないし炭素イオンが供給される場合には、陽極を炭素材料に代えて、銅または銅合金等の金属材料によって形成することができる。このとき、陽極の消耗がほとんどないから、電極間距離の制御が容易になり安定しアーク放電が得られる。
さらに、金属陽極の場合、炭素蒸気もしくは炭素イオン供給量を他のパラメータと独立して制御できるため、余分な炭素原料を必要とせず、原料の削減が達成される。
【0044】
すなわち、炭素陽極の場合、炭素陽極側から供給される炭素は、主にアーク熱によって加熱された炭素陽極が昇華したガス状炭素であると考えられ、この昇華量はアーク熱(アーク電流、電圧、雰囲気によって変動する)と炭素陽極の熱容量(形状によって変動する)により決まる従属パラメータである。また、このような昇華量はCNT生成に必要な量に比べ圧倒的に多いと考えられる。
【0045】
[実施の形態3]
(CNT製造方法1−固定中実陽極)
図10は本発明の実施の形態3に係るCNTの製造方法の実施例1(以下、CNT製造方法1と称す)であって、CNT製造装置1(固定中実陽極、図1参照)におけるアーク放電状況(一般放電)を示す模式図である。図10における放電条件は以下である。
(1)陰極20:板状炭素材料(抵抗値3500μΩ・cm)
(2)陽極10:棒状炭素材料
(3)放電用ガス:Arガス(アーク放電発生部に供給)
(4)雰囲気ガス:大気雰囲気
【0046】
このとき、アーク放電の発生する位置が大きく動き回り、陰極点の位置が陰極表面21上で激しく不規則に移動する(図10において、ある時間に発生したアークA1と、これとは異なる時間に発生したアークA2を重ねて図示している)。A3は陰極ジェットであって、陰極の炭素が蒸発して一部の炭素原子が電離を起こしている部分である。
このようなアークの激しく不規則な移動は、大気圧下、アルゴンガス雰囲気中では特に顕著であるが、低圧力下のヘリウムガスや水素ガス雰囲気中でも、同様な動きが観察される。
【0047】
図11は、図10の一般放電によりアークを短時間発生させた場合の陰極点を観察した結果を示す走査型電子顕微鏡(SEM)写真である。図11の(a)は陰極点の中心部とその周辺部を示すSEM写真、(b)は陰極点中心部の拡大SEM写真、(c)は陰極点周辺部の拡大SEM写真である。
これらのSEM写真から明らかなように、陰極点の中心部はCNTが密集して生成されているのに対し、陰極点の周辺部においては、非晶質カーボン(アモルファスカーボン)の塊が堆積しているのみである。つまり、アークの陰極点ではCNTが合成される条件が整っているのに対し、その周辺部は、CNTが合成されない条件となっていることが分かる。
これらの結果から、陰極点が激しく不規則に移動する一般のアーク放電形態では、陰極表面21上でCNTが合成される条件とCNTが合成されない条件が交互に繰り返されると考えられる。
【0048】
(CNT製造方法2−冷却陽極)
本発明の実施の形態3に係るCNTの製造方法の実施例2(以下、CNT製造方法2と称す)は、CNT製造装置2(冷却陽極、図2参照)を用いてCNTを製造する方法であるが、前記CNT製造方法1(固定中実陽極)に同じであるため、説明を省略する。
【0049】
(CNT製造方法3−予熱陰極)
図12は本発明の実施の形態3に係るCNTの製造方法の実施例3(以下、CNT製造方法3と称す)であって、CNT製造装置3(予熱陰極、図3参照)におけるアーク放電の陰極点中心部の拡大写真である。すなわち、以下の生成条件において、板状炭素陰極20と棒状炭素陽極10との距離を適当に設け、アーク放電用電源40より電流を供給して1秒間アーク放電を行った。このときレーザ出力を変化させ板状炭素陰極20の表面21の加熱温度および生成したCNTの量を観察した。
(1)陰極20:板状炭素材料(抵抗値600μΩ・cm)
(2)陽極10:棒状炭素材料
(3)放電用ガス:Arガス(アーク放電発生部に供給)
(4)雰囲気ガス:大気雰囲気
(5)陰極加熱手段60:YAGレーザ(ビーム照射径が陰極表面21の放電発生部の径とほぼ等しくなるように調整した)
(6)陽極冷却手段50:水冷銅
【0050】
図12において、予熱をしなかった場合には、CNTは全く生成されなかった。500℃に予熱をしたものは、CNTが一面に生成されているのが分かる。また、2000℃に予熱をしたものは、CNTが一面に生成されると共に、CNT繊維が長く成長しているのが分かる。
一方、2500℃に予熱をしたものは、CNTが見られなかった。これは、2500℃に予熱された上にアーク放電による発熱が加わるため、陰極表面21が過熱され、CNTを生成する条件にならないこと、あるいは一旦生成したCNTが昇華あるいは分解することが一因と推定される。
これより、陰極の予熱温度によってCNTの生成は影響され、該予熱温度を500℃〜2000℃とすることが好適であることが分かる。
【0051】
(CNT製造方法4−ガス供給陽極)
図13および図14は、本発明の実施の形態3に係るCNTの製造方法の実施例4(以下、CNT製造方法4と称す)であって、CNT製造装置4(ガス供給陽極、図4参照)におけるアーク放電状況を示す模式図および生成されたCNTを示す走査型電子顕微鏡(SEM)写真である。該CNTは陰極堆積物の中心部におけるものであって、高純度の多層CNTが合成されていることが分かる。なお、生成条件は以下である。
(1)陰極20:板状炭素材料(抵抗値4600μΩ・cm)
(2)筒状陽極11:外径36mmで内径10mmの筒状の炭素材料
(3)放電用ガス:Arガス(アーク放電発生部に供給)
(4)雰囲気:開放空間すなわち大気圧下で大気雰囲気
(5)放電用ガス:3%の水素を含むアルゴンガス、10リットル/分の流量(筒状陽極11の貫通孔12から陰極20に向けて吹き出し)
(6)アーク放電:電流500A、電圧35V(アーク長約5mm)にて1分間アーク放電。
【0052】
すなわち、筒状電極11にから放電用ガスを吹き出すことによって、アークA4が放電用ガスの流路に沿って発生し、陰極点が放電用ガスの噴出口に常に対向する位置に発生するため、長時間に渡ってアークが安定する(陰極点が固定される)から、アーク放電の陰極点(陰極堆積物の中心部に同じ)に高純度のCNTが合成されている。
【0053】
これは、筒状電極11の貫通孔12の内面が放電用ガスと接しているため、ここに陽極点が安定して形成し易くなるためであると考えられる。
また、アルゴンなどの不活性ガスは、電子との衝突による電離能率が高く、アークA4を発生し易い空間を提供するから、筒状電極11の貫通孔12から陰極20に向けて吹き出された放電用ガスがアークA4の発生経路を拘束するためと考えられる。
よって、筒状電極11の貫通孔12から陰極20に向けて放電用ガスの送給を開始してからアークA4を発生させるようにすれば、アークA4の発生初期からアーク発生経路を拘束することができ、陰極点の不規則な移動を防止することができるから、かかる陰極点において形成されたCNTの生成条件が維持され、ここに高純度のCNTが堆積することになる。
【0054】
なお、筒状電極11の貫通孔12から送給する放電用ガスは、▲1▼純アルゴン、もしくは、▲2▼20%程度以下の水素ガスを混入したアルゴンガス、▲3▼20%程度以下の水素ガスやヘリウムガスを混入したアルゴンガスであってもよい。
特にアルゴンに水素ガスを数%〜数十%混ぜると、アークの安定性を損なうことなく、CNTの収量を増加することができた。これは、水素ガスにはアークを収束させる効果があり、アーク温度の上昇または陰極表面の電流密度が上昇し、CNTが生成されやすい条件となるためと考えられる。
【0055】
図15は、CNT製造装置4(ガス供給陽極、図4参照)における、筒状電極の貫通孔の断面積と供給する(吹き出すに同じ)放電用ガスの流量とアーク発生形態との関係を示す実験結果のグラフである。図15において、放電用ガス(純アルゴンもしくは20%程度以下の水素ガスやヘリウムガスを混入したアルゴンガス)の流量が貫通孔12の断面積1mm2 当り10ml/分よりも少なすぎると、プラズマガスとして十分に機能せず、また流量が孔11aの断面積1mm2 当り400ml/分よりも多すぎると、電極周辺部までプラズマガスの濃度が増加し、中央部だけでなく、周辺部でもアーク放電が起こり易い条件となり、アークを集中させることができなくなる。
すなわち、放電用ガスの流量を、貫通孔12の断面積1mm2 当り10〜400ml/分とすることにより、プラズマガスとして機能させつつ、筒状陽極11の中央部のみに周辺部に比べアーク放電し易い条件をつくり出すことができる。よって、陰極点が固定されるから純度の高いCNTを収率良く回収することが可能になる。
【0056】
図16は、CNT製造装置4(ガス供給陽極、図4参照)における、筒状電極の貫通孔の断面積と供給する(吹き出すに同じ)放電用ガスに触媒粉末を混入される状況を説明する模式図である。なお、図4と同じ部分にはこれと同じ符号を付し、一部の説明を省略する。
すなわち、筒状陽極11の貫通孔12と触媒混入容器71を連通している。そして、触媒となる金属粉末または金属化合物粉末M1(以下、触媒物質M1と称す)を収容した触媒混入容器71内において、放電用ガスと触媒物質M1とを混合して、陰極20に向けて吹き付けている。すなわち、放電用ガスに乗せて触媒物質M1をアーク発生部に供給している。
【0057】
このとき、アーク放電による高温下で、放電ガスの電離度が上がり、導電性が周辺部に比し大きくなるから、筒状電極11の陽極点が安定して形成され、放電用ガスの経路に沿ってアークA4が発生する拘束アーク形態(陰極点の固定に同じ)となる。さらに、放電用ガスに混入された触媒物質M1がアーク熱により超微粒化し、それが作用して単層のCNTが生成される。つまり、固定された陰極点およびその周辺部の陰極堆積物から高純度の単層CNTを回収することができる。
【0058】
(CNT製造方法5−ノズル付き陽極)
なお、本発明の実施の形態3に係るCNTの製造方法の実施例5(以下、CNT製造方法5と称す)は、CNT製造装置(添設した放電用ガスノズルから放電用ガスを吹き出している、図5参照)によってCNTを製造するものである。これにおいても、前記CNT製造方法4(筒状電極の貫通孔から放電用ガスを吹き出している)と同様に、陰極点の固定が観察され、固定された陰極点およびその周辺部の陰極堆積物から高純度の単層CNTが回収されている。
生成状況は前記CNT製造方法4(ガス供給陽極)に同じであるため説明を省略する。
【0059】
(CNT製造方法6−移動するガス供給陽極)
図17は本発明の実施の形態3に係るCNTの製造方法の実施例6(以下、CNT製造方法6と称す)であって、CNT製造装置6(移動陽極、図4および図6参照)において生成されたCNTを示す模式図である。なお、生成条件は以下である。
(1)陰極20:板状炭素材料(抵抗値3500μΩ・cm)
(2)筒状陽極11:外径10mmで内径4mmの筒状炭素材料
(3)雰囲気:開放空間すなわち大気圧下で大気雰囲気
(4)放電用ガス:3%の水素を含むアルゴンガス、1リットル/分の流量(筒状陽極11の貫通孔12から陰極20に向けて吹き出し)
(5)アーク放電:電流100A、電圧20V(アーク長約1mm)にて1分間アーク放電。
(6)陽極移動:10cm/分
【0060】
すなわち、筒状電極11を一方向に移動させながらアーク放電を行った結果、陰極表面21に帯状に付着した陰極体積物が生成された。該陰極体積物は中央部(アークA4の中心部(陰極点)が走査した経路に相当)が帯状に自然剥離するテープ状の物質C21と、その両側で陰極表面21に付着した付着物質T23によって構成されている。
このテープ状物質C21を走査型電子顕微鏡(SEM)および透過型電子顕微鏡(TEM)により観察したところ高純度のCNTの集合体で構成されていることが判明した(以下、高純度CNTテープまたはCNTテープと称す)。また、付着物質T23はアモルファスカーボンであった。
【0061】
図18は製造方法6(移動するガス供給陽極)における高純度CNTテープの生成機構(生成メカニズム)を推定した模式図である。CNTの生成機構は静止アーク(CNT製造方法4−ガス供給陽極、図16参照)の場合と同様である。すなわち、アークA4の中心部にCNTが生成され、その周辺部にアモルファスカーボンが堆積する。
【0062】
このため、陽極を移動する場合(以下、移動アークと称する場合がある)、アークA4の移動に伴ってCNTが生成され易い条件も一緒に移動する。このため、アークA4が近づくとアークA4の周辺部にアモルファスカーボンT23が堆積し、ここに、アークA4が到達すると、既に堆積しているアモルファスカーボンT23の上にCNTが生成され易い条件(アークA4の中心部に同じ)ができるから、この上にCNTが生成される。さらに、アークA4の中心部が去っていくと、生成されたCNTの位置においてCNTが生成され易い条件が崩れるため、生成したCNTの上にアモルファスカーボンT23が堆積することになる。
よって、CNTは上下左右をアモルファスカーボンT23に包囲されたテープ状に形成される(図18の上段(a)参照)。
【0063】
しかし、アークA4が過ぎ去った後、上面のアモルファスカーボンT23は高温の状態で大気と触れ合うため、酸化・燃焼して一部が焼失する(図18の中段)(b))。
【0064】
さらに、陰極堆積物が低温になると、CNTテープC21とアモルファスカーボンT23との熱膨張率の相違により、CNTテープC21がテープ状に剥離する現象を起こす(図18の下段(c))ものと考えられる。
すなわち、筒状電極11のアーク放電による陰極点の固定によって高純度のCNTが生成され、さらに、該筒状電極11を移動することによって高純度CNTをテープ状に形成でき、さらに、該CNTテープが自然剥離するから、かかる高純度CNTテープを容易に高い収率で回収することが可能になる。
【0065】
(CNT製造方法6の2−移動するガス供給陽極と加熱陰極)
図19はCNT製造装置6(移動するガス供給陽極)に加熱陰極を採用して生成されたCNTの製造方法6の2によって生成された高純度CNTテープを示す電子顕微鏡写真である。なお、生成条件は以下のとおりである。
(1)炭素陰極1:平板状炭素材料
(2)陽極3:棒状炭素材料
(3)放電用ガス:Arガス(陽極放電発生部に供給)
(4)雰囲気ガス:大気雰囲気
(5)陰極加熱手段:高周波誘導加熱装置(炭素陰極との間隔:4mm)
(6)陽極冷却手段:水冷銅
(7)台車19移動速度:10cm/min
【0066】
上記の条件で高周波誘導加熱装置の発振周波数を10kHzとして加熱を行うと、高周波誘導加熱のみで陰極温度が800℃に上昇した。この状態で放電用ガス供給装置よりArガスを放電空間に噴射し、陽極と陰極の間にアーク放電を発生させると、高密度・高純度のCNTテープが生成される。
なお、大気中放電時間を5分としたが、陽極を冷却しない場合には消耗が激しく、2分以上の連続放電は不可能であった。これに対して、陽極を水冷したものは放電開始直後に多少消耗するが、その後消耗量が低くなり長時間放電が可能になった。
【0067】
陽極を冷却した場合は冷却をしない場合に比べ、回収したCNTテープの表面に付着した不純物の量が減少しているから、陰極堆積物中の炭素不純物の多くは陽極からの飛来物であることが推定される。よって、陽極を冷却することにより必要以上の陽極消耗を抑え、陰極堆積物中の炭素不純物となる陽極からの飛散物の堆積を抑制することが可能となるだけでなく、陽極の長寿命化が図れることが実証できた。
【0068】
(CNT製造方法7−回転陰極)
図20は本発明の実施の形態3に係るCNTの製造方法の実施例7(以下、CNT製造方法7と称す)であって、CNT製造装置7(回転陰極、図7参照)におけるアーク放電状況を示す模式図である。図20における放電条件は以下である。
(1)回転陰極23:直径35mmの円柱状炭素材料、回転速度は1.5回転/分
(2)筒状陽極11:外径10mm、内径4mmの中空炭素電極、移動速度は35mm/分
(3)放電用ガス:純アルゴンガス、流量は1リットル/分
(4)雰囲気ガス:大気圧下・大気雰囲気
(5)放電条件:電流100A、電圧20V(アーク長約1mm)
すなわち、回転陰極23を回転させるとともに、筒状電極11を回転陰極23の軸方向に直線的に移動させて回転陰極上に螺旋を描く形で陰極点を移動させた。
【0069】
その結果、幅2〜3mm程度、厚さ100ミクロン程度の帯状箔である高純度CNTテープが生成された。このCNTテープの幅および厚さは、電極の形状、サイズおよび生成条件により変化させることが可能である。なお、本発明において、精製処理(加熱等)を施していないものを「非精製状態のCNT」と称す。
【0070】
図21および図22にそれぞれ生成された高純度CNTテープの外観写真およびSEM写真を示す。テープ表面には10nm程度の球状のアモルファスカーボンが付着しているが、内部は高純度のCNTの集合体で構成されている。なお、この程度の量のアモルファスカーボンは酸化雰囲気中の熱処理(別工程)により容易に除去することができる。
【0071】
(CNT製造方法7の2−移動するガス供給陽極と冷却ガス吹き付け)
図23は、CNT製造装置7(回転陰極)に冷却ガス吹き付け手段を配置したCNT製造方法7の2におけるアーク放電状況を示す模式図である。図23における放電条件は前記図20に示すものに同じである。なお、図20と同じ部分にはこれと同じ符号を付し、一部の説明を省略する。
すなわち、アークA4の陰極点の軌跡上に生成されている高純度CNTテープC21に、ガスノズル51から冷却用ガスを吹き付けるようにしたものである。
【0072】
CNTテープC21の生成後に冷却用ガスを吹き付けて冷却を促進することにより、剥離を助長させている。冷却用ガスは限定するものではなく、冷却効果をそ奏するものなら空気、窒素等、何でも使用可能である。
CNTテープC21は回転陰極23上に薄い膜状(帯状の箔状)に生成されているので、冷却用ガスを吹き付けることによって急速に冷却されると、周囲のアモルファスカーボンT23および回転陰極23との間に熱応力が働いて剥離が促進されるものである。
【0073】
なお、冷却用ガスに含まれた酸素、または冷却用ガスに巻き込まれた空気によって、CNTテープC21に付着しているアモルファスカーボン等(多結晶黒鉛および非晶質炭素の箔状片や粒子)の酸化・燃焼が促進されるため、CNTテープC21の純度が上がるとともに、回転陰極23の表面との付着力が弱まって剥離がさらに容易になる。
【0074】
また、該付着力は、陰極材料の表面の表面粗さ(たとえば、算術平均粗さ(Ra))によっても変動する。すなわち、陰極材料の表面粗さが粗い場合、該付着力が高まるため、たとえば、回転陰極23の上面を算術平均粗さ(Ra)が3.2μm以下にしておけば、付着力が弱まり自然剥離が進むから、CNTテープC21の回収がいたって容易になる。
【0075】
(CNT製造方法7の3−移動するガス供給陽極と陰極加熱)
図24は、CNT製造装置7(回転陰極、図20参照)に陰極加熱手段を配置したCNT製造方法7の3におけるアーク放電状況を示す模式図である。図24における放電条件は前記図20に示すものに同じである。なお、図20と同じ部分にはこれと同じ符号を付し、一部の説明を省略する。
すなわち、アークA4の陰極点もしくは回転陰極23上のアークA4の軌道におけるアークの進行方向前方部分を、レーザ発振器60からのレーザ光線によって加熱しながらアーク放電を行うようにしたものである。
【0076】
このとき、陰極点の温度は予熱がない場合に比べ高い温度になり、かつ純度の高いCNTテープC21を回収することができた。
なお、レーザ発振器60に代えて、通電による抵抗発熱によって陰極全体を予熱・加熱したり、周囲から輻射によって回転陰極の表面を予熱・加熱したりしてもよい。
以上、実施の形態3において、CNT製造方法を個別に説明しているが、本発明はこれに限定するものではなく、かかるCNT製造方法の何れか同士を適宜組み合わせて実施してもよい。
【0077】
[実施の形態4]
図25および図26は本発明の実施の形態4に係るアーク放電によって生成されたCNTを示す電子顕微鏡写真であって、図25の(a)は回収されたCNTの小片の外観写真、図25(b)、図26の(c)および(d)はその表面(非精製状態)を電子顕微鏡で観察したものである。
なお、CNTの生成方法は前記CNT製造方法4(ガス供給陽極)によるものであって、その放電条件は以下である。
(1)陰極20:直径20mm、厚さ5mmの板状炭素材料(抵抗値600μΩ・cm)
(2)筒状陽極11:直径11mm、内径4mmの炭素材料
(3)放電用ガス:Arガス、0.5〜5リットル/分
(4)雰囲気ガス:大気雰囲気
(5)放電条件:電流100A、電圧20V、放電時間0.1〜1秒
【0078】
このとき、陰極堆積物は円状に堆積したCNTと、その周囲に円環状に堆積したアモルファスカーボンからなり、該CNTの堆積した直径は4mmであって、アーク放電の放電発生部の大きさとほぼ一致している。なお、上記条件で電極を相対移動した場合には、幅4mmの帯状のCNTテープが得られる(以下に、別途説明する)。
堆積したCNTを電子顕微鏡によって観察すると、表面が滑らかな相当の長さを有する長い繊維(以下、CNT繊維と称す)がランダムに複雑に絡み合って綿状になったものである(以下、CNT集合体と称す)。
【0079】
(CNT繊維)
CNT集合体を構成するCNT繊維は、長さは10μm以上のものが大半を占め、中には20μmを越すものも見られた。より詳細な観察を行うと50μm以上や100μmに達するものまで、数は少ないが観察される。
各々のCNT繊維に注目すると、端部付近では直線状の形状を有しているが、連続的な円弧状を描くものが多く見受けられ、曲率半径が1〜10μmのものが多い。無論、直線部すなわち曲率半径無限大の部分も存在し、一方、折れ曲がった状態の曲率半径200nm程度のものも観察される。
【0080】
また、CNT繊維は途中で枝分かれしておらず、また、表面に露出した端部が直線状に延びていることから、アーク放電法特有の結晶性の高いCNT繊維で構成されていることが確認される。さらに、CNT繊維同士は、絡み合った個所において緩い弧を描いていることから弾性変形を起こしている状況が観察されるため、かかるCNT繊維は可撓性を有していると推定される。
【0081】
図27は、図25に示すCNT繊維の太さの測定結果を示す分布図である。図27より、直径約5〜10nmのものが略60%を占め、約15nm以下のものが略90%を占めている。
なお、このように長尺のCNT繊維(後記するように結晶性が高い)は、アーク放電を用いて生成することができるものである。一方、気相成長法(CVD法)やレーザアブレーション法では、このように結晶性が高く長尺のCNT繊維を生成することができず、またかかる長尺の繊維が絡まった綿状の集合体を得ることもできない。
【0082】
(結晶性)
従来は、グラフェン筒の構造が良くて一枚一枚のグラフェン筒が明確に認識できるCNTで長いものを生成することは困難であった。グラフェン筒の構造が良くて一枚一枚のグラフェン筒が明確に認識できることを、結晶性が良いという言葉で一般的に言い表されている。
結晶性が良いCNTは、一般にアーク放電法により生成されると言われているが、従来のアーク放電法では、長いものでも1μm程度のCNT繊維しか生成できなかった。
【0083】
一方、気相成長法(CVD法)では、長いCNTが生成できるとされているが、長いものはその直径も50nm以上と太いものが多く結晶性も悪いものであった。このような結晶性の悪いCNTは熱処理によって、結晶性の良いものに改質することができるが、改質のためには3000℃近い高温度の熱処理が必要であるばかりではなく、熱処理を行ってもCNTの長さ方向に、ある一定の確率で発生する層状欠陥を防止することは難しかった。また、熱処理過程において、CNTの長さが短くなってしまい、結晶性が良く、かつ10μmを超える程の長いCNTを得ることは困難であった。
【0084】
図28は本発明の実施の形態4に係るアーク放電によって生成されたCNTの結晶性を説明する模式図である。図28の(a)は、CNT側壁部の六角網面の状態を模式的に表したものであって、アーク法によるCNTの状態を示している。網平面が繊維軸に並行で長く、グラフェン筒を明確に形成しており、その積層間隔も均等なものになっている。
一方、図28の(b)はCVD法で生成されたCNTの構造であって、小さな網面が断続的に連なった状態であり、繊維軸にほぼ平行に配向しているものの、その面間隔もまちまちなものとなっている。
【0085】
本来、結晶とは、3次元的な原子の配置に規則性がなければならず、網面の積層方向にも所定の規則的な関係がなければならないが、一般にCVD法によって生成された多層CNTにはその関係はなく、いわゆる乱層構造となっている。
よって、厳密な意味で、黒鉛結晶とは異なるが、図3の(a)のように網平面が繊維軸に並行で長く、その積層間隔も均等なものをCNTの結晶性が良いという言葉で表している。このように、網平面が繊維軸に並行で長く繋がっているという構造が、強度および熱伝導性や導電性に優れた特性を示す要因となっている。
【0086】
さらに、図28の(c)および(d)は、CVD法によって生成されたるCNTを熱処理した際に発生し易い層状欠陥を表している。(c)は長さ方向途中における層の欠如を、(d)は長さ方向途中における層の食い違いを示している。
【0087】
本発明に係るCNTは、結晶性が良く、長尺の繊維状で、さらに純度が高いため、利用十分な強度を持って形成することができる。すなわち、薄く、かつミリメートルサイズの広がりを持った膜状物質として形成することができ、取り扱いも容易で、電子放出源やセンサまたは機能性分離膜など広い用途に、容易に使用できるようになる。
【0088】
一方、従来は結晶性が良く、長いCNTがなかったため、これを樹脂や金属などに混合して使用していたから、多くのCNTを用いなければならなかった。また、ミリメートルサイズの広がりを持った膜状物質として形成することが困難であって、長いCNTと同量混入したとしても導電性や強度および熱伝導性など多くの点で特性が劣っていた。
【0089】
(CNT集合体の疎密領域)
CNT集合体の中には、疎に集合した領域と、密に集合した領域が観察され、密に集合した部分は他の部分に対して開放空間側に凸になっている(盛り上がっている)。
また、この密になっている部分は長いCNTが束上に寄り添っており、先端に近づくほどCNTの本数が徐々に減り、先端では10本以下、ほとんどは5本以下、中には一本のCNTで終わっているものも観察される。
この密に集合した領域の間隔は、2〜40μmの範囲にあるが、この間隔は生成条件により異なり、本実施例の場合5〜20μmの間隔で均一に分布している。これを視野2μmの直方体で見た場合、体積密度(単位体積当りでCNT繊維が占める体積の割合であって嵩密度に同じ、なお、嵩比重との混同を避けるため体積密度と称す)1/5以上の領域さらに詳しく観察すると1/2以上の密の領域が存在する。
一方、疎に集合した領域は、視野2μmの直方体で見た場合、体積密度1/100以下さらに詳しく観察すると体積密度1/500以下、より詳細に観察すると数は少ないが体積密度1/1000以下の領域が観察された。
【0090】
(不純物)
CNT集合体の表面を観察すると、粒径の小さい不純物あるいは膜状の不純物が付着していることが観察される。
ある範囲における粒状の不純物の直径は100nm以下、観察した限りではほとんどが粒径50nm以下のものであり、これらの占める面積は視野全体の1%以下である(すなわち、CNTの表面における純度は99%を越える)。
なお、後記の手法により内部を露出させて観察したところ、前記不純物は見られなかった。したがって、該範囲におけるCNT集合体の全体の純度は極めて高く略100%に近いものである。
【0091】
また、他の範囲において、膜状の不純物が表面の20%以上、中には70%以上を占めるものがある。該不純物は、ほぼ炭素からなる膜状であって、この膜厚は厚いところで100nm〜数μm、重量換算で陰極堆積物の全体に対し多くとも20%以下の量であった。よって、CNT集合体の堆積物に占める割合(純度)は少なくとも80%以上であると言える。
【0092】
(CNTテープ)
図29は本発明の実施の形態4に係るアーク放電によって生成されたCNTを示す透過電子顕微鏡写真であって、その表面(非精製状態)を透過電子顕微鏡で観察したものである。なお、CNTの生成方法は前記CNT製造方法7(回転陰極)によるものであって、その放電条件は以下である。
(1)回転陰極23:直径36mmの円柱炭素材料、0.5〜3回転/分
(2)筒状陽極11:直径10mm、内径4mmの炭素材料、10〜50mm/分で陰極の軸方向に移動
(3)放電用ガス:Arガス、0.5〜5リットル/分
(4)雰囲気ガス:大気雰囲気
(5)放電条件:電流100A、電圧20V
【0093】
なお、陽極は水冷銅電極でもよい。陰極は抵抗率の大きいもの、好ましくは2000μΩ・cm以上、さらに好ましくは4000μΩ・cm以上がCNT集合体の生成に適している。また、抵抗率が低い場合には、陰極放電発生部を予熱(好ましくは500〜2000℃の範囲)しながら、アーク放電を行うことにより、同様のCNT集合体を得ることが可能である。
これによってテープ状のCNT集合体が回収され、非精製状態で幅1〜10mm、厚さ10〜500μm、長さは生成条件、製造装置によっても左右されるが、所望の長さのものを容易に回収することができる。なお、アーク放電によって陰極表面のアーク放電発生部は変質する。
【0094】
(目視形状)
図29において、CNT集合体を構成するCNT繊維は3層以上のグラフェンシートを有する多層CNT(MWCNT)がほとんどを占めている。また、あるCNT繊維において、一方のCNT繊維が接触している位置と他方のCNT繊維が接触している位置との距離(接触間隔)は様々であるが、少なくとも5μm以上、他さらに詳しく観察すると、この距離が10μm以上のものも見られ、中には、20μm以上のものも数少ないが表面付近に観察される。
アークが通過してから数秒〜数分が経過すると、回転陰極の表面から箔状の集合体が自然に剥離してくる場合があり、自然剥離しない場合においても強制冷却等によって容易に剥すことが可能である。よって、任意の長さを有したCNTテープを得ることができる。このCNTテープを、所定の長さもしくは任意の大きさに分割することにより、各種利用が可能なCNT集合体を得ることができる。
【0095】
(嵩比重)
さらに、厚さ50μmで各辺3mm角の正方形状シートにしたCNT集合体の質量はおよそ20μgであるから、嵩比重は44mg/cm3である。
なお、後記する透過顕微鏡観察からも明らかなように、多層CNTの繊維は内部に空間を有する管状(文字通りのチューブ)であるものの、内部の空間の割合は極めて少ない。すなわち、特定の多層CNT繊維を観察すると、これを形成するグラフェンシートを合計した体積が、該チューブの体積(最外層のチューブの体積に同じ)に対して略70〜90%であって、平均すると略80%である。
したがって、多層CNT繊維の体積密度を0.8とすると、黒鉛の比重が2.25g/cm3であることから、多層CNT繊維の比重は、1.8g/cm3となる。
すなわち、1cm3の体積中に多層CNT繊維が中実に詰まった場合1.8gであるのに対し、実際のCNT集合体は44mgであるから、体積密度は、44mg/1.8g=(1/41)となる。
ただし、この嵩比重はバラツキが大きく、また、外力により圧縮することで、より密にすることが可能である。
【0096】
(電子放出特性)
また、外力により、嵩比重を変化させた場合の電子放出特性を求めたところ、嵩比重が高くなるに従い電子放出特性が悪くなることが判明した。
たとえば、50μA/mm2の平均電子放出密度を得るために、
▲1▼嵩比重が35mg/cm3(体積密度1/51に相当)の場合には6〜7kV/mmの平均電界強度を得る電圧を印加するだけでよいのに対し、
▲2▼嵩比重が0.18g/cm3(体積密度1/10に相当)の場合には8kV/mm程度の平均電界強度を得る電圧を印加する必要が生じ、
▲3▼さらに、嵩比重が0.9g/cm3(体積密度1/2に相当)の場合は、15kV/mmの平均電界強度を得る電圧を印加する必要がある。
【0097】
これは、体積密度を高めることにより表面が巨視的に平滑化し、局所的電界強度が低下しているものと考えられる。
すなわち、体積密度1/10以下(嵩比重は0.18g/cm3以下)であれば、電子放出源として十分な機能を発揮することが判明した。
一方、一般のアーク放電法にて生成されたCNTを精製して純度を限りなく高めたものを塗布した場合、50μA/mm2の平均電子放出密度を得るために、7〜8kV/mm程度の平均電界強度を得る電圧を印加することから、本発明に係るCNT集合体は非常に良い電子放出特性であると言える。
【0098】
さらに、回収したCNTテープの電子放出源特性を調査した中で、低い印加電圧にて高い平均電流放出密度を得るものがいくつか見られたが、このCNT集合体の構成CNTの径を調べたところ、直径4〜15nmのCNTが全体の50〜80%を占めていた。
よって、本発明に係るCNT集合体を電子放出源として用いる場合、基板上に生成したままCNT集合体(不純物の除去する精製処理を不要とする)を接着するだけでよい。
【0099】
[実施の形態5]
(CNTの引っ張り加工)
図30は本発明の実施の形態5に係るアーク放電により製造されたCNTの引っ張り加工状況を説明する模式図である。図30において、幅3mmで長さ10mmのCNTテープ(図30の(a)参照)を、長手方向に引っ張ると、途中で破断して、破断面にCNT繊維の先端が毛羽立ったように露出する(以下、破断後の一方を加工片と称す、図30の(b)参照)。
よって、該加工片を基板E1に貼り付ける(図30の(c)参照)、または複数の加工片を並べて基板E1に貼り付ける(図30の(d)参照)ことで、良好な電子放出源を得ることができる。
【0100】
(CNTの引っ張り破断部の状況)
図31は本発明の実施の形態5に係るアーク放電により製造されたCNTを引っ張り加工した後の側面を示す電子顕微鏡写真である。図31は破断面の近くを側面から観察した電子顕微鏡写真であって、破断面と垂直に近い角度で、CNT繊維が開放空間に伸びている。この部分をさらに観察すると、CNT繊維は端部を有しているものがほとんどであった(両端がCNT集合体内に侵入して途中が破断面に現れたループ状のものが少ないに同じ)。
なお、ここで言う端部とは、CNT繊維が破断した端部、およびCNT繊維特有の炭素原子で閉じた面(本来、生成状態において端部を有するCNT繊維の端部)の両方を意味する。
かかる、引っ張り破断面にのみ着目した小範囲の電子放出特性は、50μA/mm2の平均電流密度を得るために、5〜6kV/mmの平均電界強度でよく、極めて良好な値を示している。
【0101】
(CNTの引き剥がし加工)
図32は本発明の実施の形態5に係るアーク放電により製造されたCNTの引き剥がし加工状況を説明する模式図である。図32の(a)において、CNTテープC21の裏面(陰極側)を電子放出源基板E1に、表面(陽極側)B2を他の電子放出源基板E2貼り付けた(それぞれ、接着剤B1、B2による)。
そして、図32の(b)において、電子放出源基板E1、E2を引き剥がしたところ、CNTテープC21は厚さ方向の中間で引き剥がされた形となった。すなわち、電子放出源基板E1、E2のそれぞれにCNTテープC21が接着したまま、CNT集合体の内部が新たに表面に現れたことになる。
【0102】
(引き剥がし面)
図33は本発明の実施の形態5に係るアーク放電により製造されたCNTの加工後の表面を示す電子顕微鏡写真である。図33において、引き剥がした後の表面(引き剥がし前はCNT集合体の内部であった)は、製造ままのCNTテープの表面に見られた不純物の量が激減し、さらに、CNTの端部が多く露出している。
【0103】
(引き剥がし面の電子放出特性)
この引き剥がしたCNT集合体を用いた電子放出源の電子放出特性を調べたところ、50μA/mm2の平均電流密度を得るために、5〜6kV/mmの平均電界強度でよく、引き剥がす前(非精製状態)のCNT集合体を用いた場合に比べ、電子放出特性が向上していることが分った。
この理由は定かでないが、(イ)不純物が極めて少ないこと、(ロ)多くのCNT繊維の端部が表面に毛羽立って露出していること、(ハ)さらにはいくつかのCNT繊維がCNT集合体の表面付近で破断し、一般的には閉じているとされているCNT繊維ののグラフェンシートが千切られ、グラフェンシートの端部が露出していることによるもの、と考えられる。
【0104】
(CNT集合体の加工片の電子放出特性)
本発明に係るCNT集合体の電子放出特性は、50μA/mm2の平均電子放出密度を得るために、6〜8kV/mm程度の平均電界強度を得る電圧を印加するだけで済み、特に、体積密度1/50の場合には、6〜7kV/mmの平均電界強度を得る電圧を印加するだけでよい。
一方、一般のアーク放電法にて生成されたCNTを精製して、その純度を限りなく高めたものを塗布した場合であっても、7kV/mmの平均電界強度を得る電圧を印加する必要があることから、本発明に係るCNT集合体の電子放出特性は極めて優れていると言える。
よって、本発明に係るCNT集合体を電子放出源として用いる場合、基板上に非精製状態のCNT集合体(不純物の除去する精製処理を不要とする)を接着するだけでよい。
【0105】
[実施の形態6]
以下、本発明の実施の形態6に係るアーク放電により製造されたCNTの利用について説明する。
(面積)
CNTの実使用を考えた場合は、必要に応じた面積を有するCNTが必要である。従来技術では大きな面積を持つ一体化したCNT集合体を得るためには、気相成長法などの化学プロセスによるか、もしくは、生成法は問わないがCNTを粉体として、塗布あるいは散布することで面を構成するしかなかった。
【0106】
しかしながら、気相成長法(CVD法)に代表される化学プロセスでは、たとえば平面基板の上でCNTを成長させると、成長速度を局所的に変化させることは困難であり、凹凸はほとんど生じない。加えて、気相成長法により作られたCNTは結晶性の低さから、無秩序に曲がりくねったものが生成されるため、表面にほとんど凹凸のない(非常に平滑)CNT集合体が得ることになる(なお、後記するように、CVD法によって生成されたCNT繊維の表面は平滑でなく、本発明に係るCNT繊維は表面が平滑で直線状である)。
【0107】
アーク放電法や気相成長法にて作られた粉体状のCNTを平板上に塗布あるいは散布した場合、やはり均一に散布され易く、少なくとも密な集合と疎な集合を狭い間隔、たとえば20μm毎に混在させることができない。
これに対し、本発明に係る集合体CNTは、0.1mm角の正方形(たとえば電子放出源として必要最小限と思われる領域)はもちろんのこと、直径4mmの円状、または幅5mmで長さ10mmの長方形さらに長尺のテープ状など種々寸法を生成可能である。
すなわち、生成条件を種々検討した結果、陰極材質に抵抗率の高い材質を選んだこと、陰極放電発生部を予熱し、陰極放電発生部のCNT生成速度を高めたことによる。
【0108】
(純度)
なお、CNT集合体は使用用途によらず、純度が高いほうが望ましい。ここで、少なくともある一面から見た純度が99%以上であれば、実質的には、特に電子放出源、吸着剤、ろ過材、放熱材としては不純物(以下に、別途説明する)を無視することができる。
また、CNT集合体の表面(陽極側の表面)のみに付着した不純物は、CNT集合体に対して量が微量であり、また不純物が極めて小さい場合には無視することが可能である。すなわち、本発明に係るCNT集合体は、非精製状態の(アーク放電直後の堆積ままに同じ)で純度99%以上が確保されるから、精製処理なしでそのまま工業材料として使用することが可能である。
ここで純度は、特定の視野内にある陰極体積物の全面積に対して、CNT集合体が占める面積を合計した合計CNT面積の割合を意味し、実質的に所定の体積の陰極堆積物に占めるCNT繊維の総体積の割合に同じである。
【0109】
(不純物)
また、不純物のサイズが、CNT繊維の直径、または、各CNT繊維同士の間隙と比べて極めて小さい場合には、電子放出源に用いた場合には電界に影響を与えず、また、ろ過材として用いた場合には、不純物の脱落による流体の汚染が少なく、さらに、吸着剤、放熱材など表面積を必要とするものに対しても影響が少ない。
このことから、不純物のサイズが直径100nm程度(CNT繊維としては太い部類に属する)以下であれば、実質的に害は少ないから、工業的には純度100%と同等に扱うことが可能となる場合がある。
【0110】
さらに、吸着剤、放熱材としてCNT集合体を用いる場合には、CNT集合体を構成するCNT繊維の実際の表面積が大きいほうが性能が良い。このため、ある一面から観察した純度よりむしろ、CNT集合体全体の純度が重要になる。CNT集合体の全体について、純度(CNT繊維の割合)が80%以上であれば、前記用途に使用可能である。
なお、ここで言う純度は、CNT集合体の全体(後記する密の領域および疎の領域を共に含んだ全体)で見たものであり、局所的な領域(後記する密の領域または疎の領域の一方のみを含む狭い領域)で測定した純度は80%以下であっても構わない。
【0111】
(電子放出特性の利用)
▲1▼電子放出源に用いることができ、これを用いた電気・電子機器、たとえば光電管やフラットパネルディスプレイを容易に製造することが可能となる。
▲2▼CNT繊維の細束性および結晶性が優れている特性により、電界放出用電子源として、蛍光表示管やフィールドエミッションディスプレイ(FED)などの陰極材料および電子顕微鏡の探針などへの利用が考えられる。
▲3▼また、CNT集合体を電子源として用いることにより、効率の良いイオンやオゾンの発生装置を作ることが可能となると考えられる。これらのイオンやオゾンは脱臭や消臭効果を有すると共に、特にマイナスイオンは人への心理面、生理面において良い影響を及ぼすことが報告されている。
【0112】
(電子放出特性の利用−電子放出源の大きさ)
ところで、CNTを電子放出源として用いる場合、より低い電圧で、より高い電流を実現できる電子放出特性が望まれる。電圧に関して言えば、CNTの形状効果により電界強度を高めることが有効とされており、そのためにはCNTの高アスペクト比化、特に細径化が有効であると言われている。
しかしながら、CNTの密度を上げていくと、巨視的に見れば表面はより平滑に近づきCNT先端の電界強度は低下してゆく。このため、CNTを高密度に塗布した電子放出源においては、配向を不規則にしてCNT先端の電界強度を高めるほうが、より電子放出特性が優れているとされている。
【0113】
また、電流に関して言えば、構成するCNT繊維の層数を増やし、一本当りの電流容量を増加させる方法と、一本当りの電流容量はそのままに、CNT集合体の密度を増加させる方法がある。
前者の場合、電流容量とCNTの断面積の間に相関があり、電子放出特性にCNT繊維のアスペクト比が効くことから、自ずと上限を有する。後者の場合、従来の塗布法等によれば、基板に直接接触しているCNTの上に、さらにCNTが積層され、この各々のCNTの接触は少数の点接触となる。この点接触部の電流容量は、CNTに比べ著しく低く、すぐに焼き切れてしまい、上部に堆積されたCNTは電子放出源として機能しなくなるだけでなく、不純物として電子放出特性を悪化させる。
【0114】
この問題に対し、本発明に係るCNT集合体は、複数本のCNT繊維が綿状に複雑に絡み合っているから、電子放出特性に優れたCNT集合体になっている。さらに、CNT集合体の表面の各CNT繊維の配向は不規則であり、CNT繊維の先端の電界強度をより高めることができる。
また、各CNT繊維同士の接触についても、多数の接触点を有し、かつCNT繊維の弾性によりより強固な接触を得られることから、表面を高密度のCNT集合体とした場合においても十分な電流容量を有することが可能となり、より高い電流を得られる電子放出源を得ることができる。
本発明に係るCNT集合体の表面のCNT繊維は不規則に配向されているため、微小面積にすると電子放出特性にばらつきが生じ易く、電子放出源として均質な電子放出特性を得るためには、少なくとも1辺が1mm以上の長さを有することが必要である。この場合の辺の長さは、円の直径、楕円の長円半径を含む。
【0115】
(電子放出特性の利用−CNT繊維の大きさ)
前記のごとく、CNTを電子放出源として用いる場合には、電子放出特性に優れたCNT繊維の形状を得ることが望ましい。CNT先端の電界強度に関しては、CNT単体であればアスペクト比により決定されるが、1μm以上の長さを持つCNT繊維であれば、長さの影響をほとんど受けず、ほぼ各CNT繊維の直径により電界強度が定まる。
これは、単体のCNT繊維のほとんどはCNT集合体の中に埋もれているため、CNT集合体の巨視的表面から飛び出したCNT繊維の突き出し長さおよぼ該突き出した長さ部分の長さと直径とのアスペクト比で電界強度が定まるためである。
【0116】
発明者らが試験した結果、直径15nm以下のCNT繊維からなるCNT集合体であれば電子放出源として十分な電界強度を得ることができた。また、電流容量に関しては、4nm以上の直径を有するCNT繊維から構成される集合体であれば、電子放出源として十分な電流容量を得ることができた。
よって、電子放出源としては、4〜15nmのCNT繊維によって構成されたCNT集合体が適していることになる。なお、純度(構成比率)について、直径4〜15nmのCNT繊維が50%以上含まれていれば、これ以外の直径のCNT繊維や不純物が50%以下の量混入していても電子放出特性にさほどの影響を及ぼさず、そのまま電子放出源として利用することが可能である。
【0117】
(電子放出特性の利用−CNT集合体の体積密度)
構成するCNT繊維が密に集合すると、CNT集合体の表面は巨視的に見ればより平滑に近づく。極端な場合、密度100%の集合体を考えると、表面が平滑な板状物質となり、各々のCNTに印加される電界強度は低下する。
このため、電子放出源として使用するCNT集合体としては、ある程度疎に集合していることが望ましく、さらに望ましくは、表面から見た場合に綿状に開口部を有していることが望ましい。
【0118】
このことから、自ずと電子放出特性に優れた体積密度が定まるが、発明者らが調査した結果、体積密度、言い換えればCNT集合体の見かけ体積に対するCNT繊維が占める実体積の割合が1/10以下であれば、電子放出源として利用でき、さらに1/50以下とすることで良好な電子放出特性を得ることができた。なお、実際のCNT繊維集合体はCNT繊維が複雑に絡み合っており、体積密度を測定することは困難であったため、体積密度に黒鉛の密度を乗じたものと、実際に測定したCNT集合体の質量の比より体積密度を求めている。
【0119】
(電子放出特性の利用−CNT繊維の接触間隔)
各々のCNT繊維の長さが短いCNT集合体においては、CNT繊維同士の接触点が少なくなり、電気伝導性や電流容量の低減を招く。すなわち、接触点の数が多いほど各CNT繊維間の電気的接触が確保される一方、電子放出特性を考えた場合には、CNT繊維が接触する接触点近傍では、各々のCNT繊維の電位がほぼ等しいことから(電位差が極めて小さい)電界強度の低下を招き、電子放出のために高い電界強度が必要となる。
【0120】
このため、あるCNT繊維aに一方のCNT繊維bが接触する一方の接触点abと該あるCNT繊維aに他方のCNT繊維cが接触する他方の接触点acとの距離(ab−ac)を接触間隔とすると、接触間隔が狭すぎると電子放出特性が低下する。
このため接触間隔がある程度以上開いていることが必要になる。実際には接触間隔と電界強度の関係は交差角、各々のCNT繊維の径、周囲形状により変化するが、接触間隔が5μm以上離れているものを含むことが望ましい。特に、表面10μm角の視野において、複数本含むことにより良好な電子放出特性を得ることができる。
【0121】
(電子放出特性の利用−CNT繊維の結晶性)
CNT集合体を構成するCNT繊維の結晶性は、集合体全体としての電子放出特性にも大きく影響する。結晶性が悪い場合、CNT繊維自体の電気伝導度が低下し、電流容量が低下するだけでなく、CNT繊維の全長もしくは一部が、他のCNT繊維と絶縁され、電子放出の妨げとなる。
しかしながら、厳密な結晶性の評価はラマン散乱等の手法を用いなければならず、CNT集合体の広い面積についてCNT繊維の結晶性を評価することは困難である。
【0122】
図34は本発明の実施の形態6に係るアーク放電により製造されたCNTの利用についてCNT繊維の特徴を比較する模式図である。図34の(a)に示す本発明によって生成されたCNT繊維は、略直線状であって、その直径は略均一であって、途中で枝分かれすることがないものである。一方、図34の(b)に示す気相成長法(CVD法)で生成されたCNT繊維は、本来直線状に成長するはずのCNT繊維が曲がりくねって成長したり、途中で枝分かれを起こしたり、長手方向の途中で外径が変化したりしている。
なお、一般の気相成長法(CVD法)では、アーク放電法に比べ結晶性が低いとされており、その根拠として、CNT繊維の前記屈曲、枝分かれ、径の不均一が挙げられることから、枝分かれがないものが結晶性が良いものであると評価することが可能である。よって、本発明に係る枝分かれのないCNT繊維によって構成されたCNT集合体は電子放出源としてより良い性能を有すると考えられる。
【0123】
(電子放出特性の利用−CNT繊維の絡み合い)
また、CNT集合体を電子放出源として用いる場合、CNT繊維同士の電気的接触を確実にすること、および結晶性を高めることが重要である。ここで、本来直線状に成長する結晶性のよいCNTが、複雑に絡み合うことにより、CNT繊維に弾性変形を生じ、接触を確実にし、各々のCNT繊維同士の電気的接触性、いわゆる通電性を向上させる効果がある。
【0124】
(電子放出特性の利用−CNT集合体の疎密領域)
さらに、電子放出源にCNT集合体を用いる場合、巨視的に見れば、密度は一定であるほうが、CNT集合体間における性能のばらつきが小さくなるのは言うまでもないが、微視的に見た場合、疎密がある方が電界強度を高めることができ、電子放出特性は向上する。すなわち、本発明に係るCNT集合体は、その内部にはCNT繊維が密に集合した第1の領域と、疎に集合した第2の領域を含んでいるから、良好な電子放出特性を発揮するものと考えられる。
【0125】
なお、第1の領域(CNT繊維が密に集合した)は、電子放出源としては、より多くのCNT繊維同士の接触点を有することが望ましく、また、吸着材料または放熱材料としては、より表面積を増やすことが望ましいため、体積密度1(嵩比重1.8g/cm3、中実に同じ)に近づくことが望ましい。しかしながら、綿状のCNT集合体を形成するためには、ある程度の空隙を許容する必要がある。また、第2の領域と明確に異なる領域と認識するため、すなわちCNT集合体が疎と密の領域を持つことを定義するために、体積密度1/5以上(嵩比重0.36g/cm3)である領域を密の領域と定義する。
【0126】
一方、第2の領域(CNT繊維が疎に集合した)は、電界強度の面から言えば理想的には一本もCNT繊維が含まれないことが望ましいが、現実には、体積密度1/100(0.0225g/cm3)以下であればよい。すなわち、体積密度1/100以下の場合、隣り合ったCNT繊維との間隔は、2次元的に平均観察すると、CNT繊維の直径の10倍以上であるから、実際の3次元空間に不規則に配置された状態では、CNT繊維の直径の30倍以上を有していることになり、一本も含まれない領域であるのと同等に考えることができる。
さらに、かかる疎密を判断する基準の体積は、視野の大きさによって相違する。このため、電界強度の強弱を高めるために電子放出特性を評価するためには、一辺2μmの直方体を切り出した領域を視野にすることが望ましい。
【0127】
(電子放出特性の利用−CNT集合体の疎密領域の凹凸)
さらに、本発明に係るCNT集合体は、その表面にCNT繊維が密に集合している領域と疎に集合している領域とがある。該密に集合している領域は先端が尖った円錐形状として凸になっている。この凸になっている領域には、CNTの端部を多く含み、他のところに比べ凸になっているため、形状効果による高い電界強度と相まって電子放出能が高い。さらに、この凸になっている領域がほぼ均一に分布して存在していることから、CNT集合体の面として見た場合の電子放出電流密度の分布も巨視的に見ればほぼ均一にすることができる。
【0128】
さらに、本発明に係るCNT集合体の凸部(密に集合している領域)は、根元側(開放空間と反対側、陰極側に相当)は多数のCNT繊維により、通電経路を多く持つことから、より多くの電流を流すことが可能である。加えて、先端(陽極側に相当、または、破断面側に相当)に向うに従い構成するCNT繊維の本数が徐々に減じ、凸の領域の先端は、一本ないし小数本のCNTとなっている。
このため、先端が尖ったっことによる効果と、突状である形状効果により電界強度を高めるという顕著な電子放出源特性を発揮している。さらに、後記するように、この尖った部分をCNT集合体の表面に対して、開放空間側に積極的に引き出すことによりさらに優れた電子放出特性が得られる。
【0129】
(電子放出特性の利用−CNT集合体の疎密領域の間隔)
CNTを電子放出源として用いる場合には、電子放出特性に優れることと、電子放出面における電子放出電流密度の均一性を確保する必要がある。そのためには、表面が開放空間に向かい凸になっている電界強度が高まる部分と、凹になっており電界強度が低くなる部分が、ある程度密にかつ均一に分布していることが望まれる。
【0130】
この間隔の適正値は、当然のことながら、対象となる製品や、電子放出源の大きさ、特に面積にも左右される。しかしながら、たとえば、300dpiの解像度を有するフラットパネルディスプレイを考えたとしても、各々の発光部は一辺80μmの正方形であり、この凸の領域の間隔が40μm以下であれば、この解像度においても必ず複数個の凸の領域を各々の発光部に含むことになる。
また、現在、比較的高解像度であるコンピュータの液晶ですら、150dpi程度であることを考えると、凸の領域の間隔が40μm以下、さらに好ましくは20μm以下であれば電子放出源の均一性としては、実用上問題ないと考えられる。
【0131】
また、この凸の領域同士の間隔が極めて小さい場合を考えると、CNT集合体の電子放出面はより平滑化し、形状効果による高い電界強度が得にくくなる。このため、少なくともCNT繊維の直径に対して100倍以上の間隔を有することが望ましく、電子放出特性に優れたCNT繊維の直径が20nm以下であることを考えると、この凸領域同士の間隔は2μm、さらに好ましくは5μm以上の間隔を有して分布していることが望ましい。
【0132】
このことから、工業的には電子放出面のうち、一辺40μmの視野において、少なくとも隣り合った間隔が2〜40μm、さらに好ましくは5〜20μmの間隔をおいて凸形状にCNTが集合した領域が存在することが望ましい。
なお、この隣り合った間隔の上限は、電子放出源として用いた場合の、電子放出領域の半径相当距離(たとえば、矩形の電子放出領域の一辺の長さ(たとえば一辺200μmの正方形の電子放出源においては100μm)、すなわち、電子放出領域の面積の平方根の半分)であれば、均一性としては問題なく所定の性能を発揮する。さらに好ましくは電子放出源領域の半径の半分(電子放出領域の面積の平方根の1/4、前記の例で言えば50μm)であっても、均一性としては問題なく、特に高い電子放出電流を必要としない場合には、この値を用いることも可能である。この場合の視野は電子放出源一領域の面積であることは言うまでもない。
【0133】
(電子放出特性の利用−CNT集合体の密領域を構成するCNT繊維)
さらに、CNT集合体に疎密領域を形成するためには、これを含まれるCNT繊の長さが10μm以上である必要がある。
すなわち、疎に集合した領域と密に集合した領域を有したCNT集合体を形成するためには、少なくとも、密に集合した領域を跨ぐ長さのCNT繊維を含むことが必要であるから、密に集合している領域の間隔が5〜20μmであるとき、疎に集合した領域(密に集合している領域の中間に位置する)は平均的に10μmの広がりを持つことになるから、これを跨ぐ10μm以上のCNT繊維が必要になる。
【0134】
加えて、CNT繊維は非常に小さく、またCNT繊維間の距離もきわめて小さいため、各々のCNT繊維間には分子間力が働き、互いに引き寄せ合っている。この、分子間力は極めて小さいが、CNT繊維が十分長ければ、CNT繊維の成長に伴い、徐々に引き寄せ合って、ついに密に集合した領域と疎に集合した領域とが生成されることも考えられる。
一方、CNT繊維の長さが10μmに満たない場合には、疎に集合している部分におけるCNT繊維同士の結合が弱く(接触点数そのものも少なくなり)集合体として形成できないと考えられる。
【0135】
(電子放出特性の利用−CNT繊維の先端)
複数のCNT繊維が絡み合い、綿状に一体化した集合体を分割すると(図32参照)、分割面から開放空間に向かい、端部を有したCNT繊維が伸びている。これは、CNT繊維が元々直線状に成長することと、分割面付近の一部の端部を有するCNT繊維に加わる拘束力が変化または開放し、他からの拘束によって円弧状に曲がっていたCNT繊維が直線状に戻ったものと考えられる。
また、一部は、分割時の変形力により、強制的に分割面から開放空間へ向かうよう再配向されたと考えられる。何れか、この分割面から開放空間に伸びた端部を有するCNT先端には、形状効果により高い電界強度を有し、電子放出源として用いる場合には高い電子放出特性を得ることができる。
【0136】
図35は本発明の実施の形態6に係るアーク放電により製造されたCNTの利用についてCNT繊維の特徴を示す模式図である。図35の(a)は引っ張り加工(図30参照)によって先端が破れたCNT繊維を示し、図35の(b)は同様に先端が破れた中実のCNT繊維を示している。何れかも、チューブを形成するグラフェンシートの端部(破断面)が空間に露出している。
これより、前記高い電子放出特性の理由は以下のように考えられる。
【0137】
(理由1)本発明に係るCNT集合体は、その表面にのみ不純物が僅かではあるが見受けられた(生成過程もしくはその後に付着)。電子放出源として使用する場合にこれらの不純物は、電子放出に寄与しないばかりか、マスクとして作用し、表面の電子放出を妨げる。このため、できるだけ不純物を取り除き、集合体内部の清浄部を表面に露出させることが望ましい。
【0138】
(理由2)電子放出特性を高めるためには、形状効果によって電界強度が高くなるから、CNT繊維の先端を表面に多く露出させることが望ましい。
すなわち、本発明に係るCNT集合体を引き千切ることにより、CNT繊維の端部が多く露出する。これは、綿を引き千切ったときに、破断面に繊維の先端が多く露出することからも容易に想像できる。
【0139】
(理由3)本発明においては、CNT集合体に引張力を加えることにより、綿状に複雑に絡み合っているCNT繊維は解きほぐされたり、または破断されたりするから、その破断面には、解きほぐされたCNT繊維の端部、およびある確率で破断されたCNT繊維が引っ張り方向に配向された状態で破断端部が現れる。この破断面には当然のことながらCNT繊維を形成している各層のグラフェンシートの端部が露出し、高い電子放出特性を有する。
【0140】
なお、CVD法等によって生成されたCNT(たとえば、カーボンナノホーン)で、チューブ上の炭素繊維の両端が円錐形に完全に閉じた構造になっているものに対し、酸化処理等でチューブの両端の炭素結合を破壊してチューブの先端にチューブを構成しているグラフェンシートの端部を露出させることにより、電子放出特性を向上させることができるという報告がなされている。
【0141】
(低い体積密度、表面積の利用)
▲1▼CNT集合体の体積密度は黒鉛の1/10以下であり、各CNT繊維が複雑に絡み合っていることから、ろ過材として使用可能である。
▲2▼さらに、実効の表面積が大きいことから、活性炭と同様に吸着剤として使用可能であり、重量当りの吸着量は活性炭に比べ大きいことが予想される。
▲3▼従来手法で作られたCNTは単体の大きさが小さく、直径70nm以下、長さ10μm未満のものが弱い機械的接合で、言うなれば、堆積、付着しているだけであり、流体が流れることで接合が解かれ、粉体と共に流れていくのに対し、本発明の集合体は流体の中においても崩れにくいことから、集合体そのものを前記機能膜もしくは機能体としてそのまま使用可能である。
▲4▼ナノサイズの直径を持つCNTが複雑に絡み合った綿状のCNTテープは、その密集度から決まるある大きさの空間を有しているため、特定の大きさを有する物質を選別するためのフィルタや分離膜としての利用が考えられる。
▲5▼また、その単位重量あたりの表面積の大きさは、活性炭をも凌ぐものであり、有害物質の吸着材や、水素やメタンなどのガス貯蔵材としての利用が考えられる。
【0142】
図36は本発明の実施の形態6に係るアーク放電により製造されたCNTを利用したフィルタを説明する概略図である。図36において、F1は流体導入口F2と流体排出口F5の間に、筒状のろ過部F3を有し、ろ過部F3にろ過体が配置されている。該ろ過体は複数のCNT集合体C21が平面状に配置された集合体層によって形成され、該集合体層が単層のまま又は複数が積層された状態でその表裏面が集合体保持手段F4によって保持されている。これにより、流体が通過する際にCNT集合体が撹拌されて粉々に千切れることが防止される。
これらを、用いることにより液中もしくは気体中の特定物質のみを透過する、ろ過装置や特定物質を吸着するフィルタ、または脱臭装置などへの応用も期待できる。なお、CNT集合体とは前記CNTテープまたは加工片であってもよい。
【0143】
(放熱特性の利用)
▲1▼本発明に係るCNT集合体をアルミ板に取り付け放熱特性を測定したところ、集合体なしの場合に比べ、20%放熱効果が向上した。これは、集合体そのものの放熱特性、たとえば綿状であることよりの実効表面積の大きさ、長いCNTが多くの熱伝達の良い接触点を持つことによる熱伝導性の良さから起因していると考えられる。
すなわち金属板に限らずたとえば、半導体集積回路に貼ることで放熱性能を向上させることも期待できる。付け加えれば、熱伝導の高さを活かし、伝熱材料たとえば冷却フィンと被冷却物の間に挟むことで、密着性を高めるのと同時に効率よく熱を伝えることも利用の一例として考えられる。
【0144】
(引っ張り強度の利用)
▲1▼結晶性が優れているということは、CNTの強度が高いことを意味している。すなわち、CNT繊維は、理論的には鉄の100倍以上の引張強度を有し、比重はアルミニウムの約半分であるため、樹脂や金属に混入したり、樹脂や金属とCNTとの複合化により、軽くて強度の高い構造材料を造ることができる。
▲2▼また、その名のとおり、ナノサイズの大きさであるので、マイクロマシンの構造部材やアクチュエータの構成部品としての利用も考えられる。
【0145】
なお、複数のCNT繊維が一体化するためには、何がしかの力でCNT繊維が結合する必要がある。たとえばCNT繊維が全て直線状である場合には、CNT繊維間の結合が基本的には分子間力、もしくは摩擦力のみとなる。
無論、複数本のCNT繊維を考えた場合、複雑に挟み込むことで接合力を確保することは可能であるが、外力、たとえば引っ張り力が加わった場合を考えると、各々のCNT繊維は外力方向または変形方向に配向するものと容易に想像される。このようにほぼ一方向に配向されたCNT繊維同士の結合は、分子間力、もしくは摩擦力のみになる。
【0146】
これに対し、曲線状の形態を持つCNT繊維は他の複数のCNT繊維と絡むこと、さらにCNT同士を結び合った状態となり、分子間力、摩擦力に加えて他のCNT繊維とのせん断力、引っ張り力等、種々の力が加わる。このため、CNT繊維自体の強度は鋼よりも強く、CNT集合体としてはより強く一体化するため、所定の強度を有する。すなわち、比較的小さな力、たとえばCNT集合体を持ち上げる力、液に浸した場合に作用する外力等に対しても分解せずCNT集合体のままで存在することが可能となる。
したがって、所定の曲率をもって湾曲したCNT繊維を30%以上含むCNT集合体であれば、所望の強度を確保することができる。
【0147】
CNT集合体として取り扱うためには、言うまでもないが、各々のCNT繊維が高い強度を有することが望ましい。
CNTには、グラフェンシートを1層しか有しない単層CNT、2層有する2層CNT、3層以上有する多層CNTに大別されるが、強度の面では層数が多い方が強く、CNT集合体を構成するCNT繊維としては、多層CNTのみで構成されることが望ましい。
しかしながら、CNTの生成メカニズムが完全に解明しておらず、また、構成するCNT繊維の数量も、数万〜数億本もしくはそれ以上の本数となるため、多層CNTのみで構成されているとは言い切れない。
よって、実質的に多層CNTで構成されていれば、強度的に集合体として取り扱いが可能なため、たとえば、95%以上の構成比で多層CNTを含むことが好ましい。
【0148】
なお、本発明に係るCNT繊維の多くが曲率半径1μm以上曲率半径10μm以下のものを含むものであるのに対し、気相成長法(CVD法)で作られるCNT繊維は結晶性の悪さから屈曲(曲率半径がおおよそ100nmオーダである)し、概してCNT繊維の強度が低いため切断され易いものである。
【0149】
また、前記のごとく本発明に係るCNT繊維の結晶性が良く強度が高いこと、および各々のCNT繊維が弾性変形して、変形能が高く、変形に対してもCNT繊維の破断が起こり難い。さらに、各々のCNT繊維が長いため、集合体としても破断しにくいという特徴を持つ。
このため、CNT生成時に絡み合った綿状の構造体として得られるCNT集合体は、CNT繊維同士が複雑に絡まって機械的に強固に結合し、CNT集合体からの分離、脱落を抑制している。
このことは、各種材料としてのCNT集合体のハンドリングを向上させ、球面、曲面基板に取り付けて使用することを可能とする。
【0150】
一方、CVD法等の別プロセスにて製造されたCNT繊維は各々が絡み合っていない。また、紛体状のCNTを撹拌等の処理によって製造した場合は、本来独立しているCNTを後工程において簡単に機械的に絡み合わせたただけであるため、ほぐれ易く、ハンドリング等の際、ほぐれたCNTが滓となり、脱落したり、電気的導通を失い、不純物となることが考えられる。さらに、流れる気体や液体に曝される場合にはこの傾向が顕著になる。
【0151】
(導電性の利用)
▲1▼また、導電性が優れているため、ICの配線材料としての利用が考えられる。
▲2▼樹脂や繊維に混入することにより、これらの物質に導電性を持たせたり、静電気の帯電防止機能を持たせることができる。
▲3▼塗料に混入させた導電性塗膜や導電性インクへの利用も考えられる。
これらのものは、導電性を必要とする部材に利用できると共に、電磁波の反射損失や誘電損失に基づく電磁波吸収・遮蔽材としても利用できる。
▲4▼また、二次電池の負極材料に混入させることにより、負極導電性の経年劣化を防止することができる。
▲5▼さらに、グリスに混入させることで、グリスに導電性を持たせると共に、通電部でのグリスの性能劣化を防止することができると考えられる。
▲6▼キャパシターの電極材料としての利用も考えられる。
【0152】
(導電性の利用−CNT繊維同士の接触)
各々のCNT繊維の長さが短いCNT集合体においては、CNT繊維同士の接触点が少なくなり、電気伝導性や電流容量の低減を招く。さらに、各々のCNT繊維の長さを長くし、複雑に絡み合わせることによりCNT繊維同士の接触力を高め、電気伝導性や電流容量の向上を行える。このためには、大部分、具体的にはCNTの構成比の50%以上、さらに好ましくは80%以上の比率で、長さ10μm以上のCNT繊維を含むことが必要である。
図37は本発明の実施の形態6に係るアーク放電により製造されたCNTの利用についてCNT繊維の特徴を示す模式図である。
例えば、CNT繊維を直列に接続した場合を考え、従来技術で作られるCNT繊維の長さを1μm(図37の(a))、本発明の集合体に含まれるCNT繊維の長さを10μm(図37の(b))とすると、同じ回路長さを構成する場合のCNT繊維同士の接触点は1/10に減少する。
接触点における抵抗率は、CNT繊維単体の抵抗率に対して大きいことから、接触点を減らすこと、すなわちCNT繊維の長さを長くすることにより、集合体としての導電性を高めることができる。
【0153】
また、前記のCNT繊維が同じ密度にて格子状に接続されたの場合を考えると、1μm長のCNT繊維F1とCNT繊維G1とによって形成された格子の接触点(図37の(c))と、10μm長のCNT繊維F10とCNT繊維G10とによって形成された格子の格子点(図37の(d))とでは、CNT繊維の長さが長い後者の方が増える、言い換えれば、より多くの通電経路を有することとなり、並列接続の効果として集合体の導電性を高めることができる。
よって、CNT繊維の長さは長いほど、例えば、20μmや50μm超の方が集合体の導電性を向上させる効果があるが、複雑に絡み合った綿状の集合体を構成するため、たとえば、10μm長さ以上のCNT繊維が50%以上、または30μm長さ以上のCNT繊維が40%以上、または50μm長さ以上のCNT繊維が30%以上のいずれかの構成比で含まれていればよい。
【0154】
(熱伝導性の利用)
▲1▼CNTはダイヤモンド以上の熱伝導性を有しているため、ICなどの放熱材としての利用も考えられる。放熱材として利用する場合は、単体でも、または、樹脂や金属に混入したものを用いても良い。また、アルミ板などの表面に塗布もしくは貼り付けることによっても放熱特性を大きく向上させることができるものと思われる。
【0155】
(量子効果の利用)
▲1▼さらに、ナノサイズのきわめて小さな構造体であるCNTは、量子効果を利用したダイオードやトランジスタ、および量子コンピュータの基本素子である量子ドットなどの電子部品の材料としても利用できるものと考えられる。
【0156】
(機能性の利用)
▲1▼また、特定ガスを検出するガスセンサなど機能材料としての利用も考えられる。
▲2▼さらに、触媒の担持材として利用することによって、各種化学反応の効率を向上させることが可能になると考えられ、
▲3▼さらには、医療分野等において、薬剤等を吸着・保持させて体内の病巣部へ運搬するキャリヤーとして利用できる可能性がある
【0157】
【発明の効果】
以上のように本発明においた、CNT繊維同士が十分に絡まりあい、集合体表面が凹凸分布したCNT集合体、および該CNT集合体を設置したCNT設置装置が得られる
【図面の簡単な説明】
【図1】本発明の実施の形態1に係るアーク放電によって生成されたCNTの製造方法におけるCNT製造装置の実施例1(CNT製造装置1)を示す模式図である。
【図2】本発明のCNT製造装置2(冷却陽極)を示す模式図である。
【図3】本発明のCNT製造装置3(予熱陰極)を示す模式図である。
【図4】本発明のCNT製造装置4(ガス供給陽極)を示す模式図である。
【図5】本発明のCNT製造装置5(ノズル付き陽極)を示す模式図である。
【図6】本発明のCNT製造装置6(移動陽極)を示す模式図である。
【図7】本発明のCNT製造装置7(回転陰極)を示す模式図である。
【図8】CNT製造装置2(冷却陽極)におけるアーク放電部の温度測定の結果を示すサーモビューア写真である。
【図9】CNT製造装置2(冷却陽極)におけるアーク放電部の温度測定の結果を示すサーモビューア写真である。
【図10】本発明の実施の形態3に係るCNTの製造方法の実施例1(CNT製造方法1)を示す模式図である。
【図11】図10の一般放電によりアークを短時間発生させた場合の陰極点を観察した結果を示す走査型電子顕微鏡(SEM)写真である。
【図12】本発明のCNT製造方法3(予熱陰極)を示す模式図である。
【図13】本発明のCNT製造方法4(ガス供給陽極)におけるアーク放電状況を示す模式図である。
【図14】本発明のCNT製造方法4(ガス供給陽極)において生成されたCNTを示す走査型電子顕微鏡(SEM)写真である。
【図15】本発明のCNT製造方法4における放電用ガスの流量とアーク発生形態との関係を示す実験結果のグラフである。
【図16】本発明のCNT製造方法4における放電用ガスに触媒粉末を混入される状況を説明する模式図である。
【図17】本発明のCNT製造方法6(移動するガス供給陽極)を示す模式図である。
【図18】本発明のCNT製造方法6(移動するガス供給陽極)における高純度CNTテープの生成機構を推定した模式図である。
【図19】本発明のCNT製造方法6の2によって生成された高純度CNTテープを示す電子顕微鏡写真である。
【図20】本発明のCNT製造方法7(ガス供給陽極)を示す模式図である。
【図21】本発明のCNT製造方法7(ガス供給陽極)において生成された高純度CNTテープの外観写真である。
【図22】本発明のCNT製造方法7(ガス供給陽極)において生成された高純度CNTテープのSEM写真である。
【図23】本発明のCNT製造方法7の2(移動するガス供給陽極と冷却ガス吹き付け)におけるアーク放電状況を示す模式図である。
【図24】本発明のCNT製造方法7の3(移動するガス供給陽極と陰極加熱)おけるアーク放電状況を示す模式図である。
【図25】本発明の実施の形態4に係るアーク放電によって生成されたCNTを示す電子顕微鏡写真であって、(a)は外観写真、(b)は電子顕微鏡写真である。
【図26】本発明の実施の形態4に係るアーク放電によって生成されたCNTを示す電子顕微鏡写真である。
【図27】図25に示すCNT繊維の太さの測定結果を示す分布図である。
【図28】本発明の実施の形態4に係るCNTの結晶性を説明する模式図である。
【図29】本発明の実施の形態4に係るCNTを示す透過電子顕微鏡写真である。
【図30】本発明の実施の形態5に係るCNTの引っ張り加工状況を説明する模式図である。
【図31】本発明の実施の形態5に係るCNTを引っ張り加工した後の側面を示す電子顕微鏡写真である。
【図32】本発明の実施の形態5に係るCNTの引き剥がし加工状況を説明する模式図である。
【図33】本発明の実施の形態5に係るCNTの加工後の表面を示す電子顕微鏡写真である。
【図34】本発明の実施の形態6に係るCNTの利用についてCNT繊維の特徴を比較する模式図である。
【図35】本発明の実施の形態6に係るCNTの利用についてCNT繊維の特徴を示す模式図である。
【図36】本発明の実施の形態6に係るCNTを利用したフィルタを説明する概略図である。
【図37】本発明の実施の形態6に係るCNTの利用についてCNT繊維の特徴を示す模式図である。
【符号の説明】
1 CNT製造装置、 10 陽極、 20 陰極、
30 チャンバ、 31 陽極ホルダ、 32 陰極ホルダ、
33 内壁、 34 陽極移動手段、 35 通電手段、
C21 テープ状の物質、 T21 陰極堆積物、 T22 陰極煤、
T23 付着物質、 T33 チャンバ煤、 50 陽極冷却手段、
60 陰極予熱手段、 70 放電用ガスノズル、80 陽極移動機構、
90 陰陽極移動機構

Claims (13)

  1. 複数のカーボンナノチューブが絡み合って一体化して生成されたカーボンナノチューブ集合体であって、
    前記カーボンナノチューブが密に絡み合った密領域と、前記カーボンナノチューブが疎に絡み合った疎領域とを有し、
    前記密領域が前記疎領域よりも突出することで開放空間に対して凸部を形成することを特徴とするカーボンナノチューブ集合体。
  2. 前記密領域が複数箇所に形成され、一方の密領域の中心と他方の密領域の中心との距離が2〜40μmであることを特徴とする請求項1記載のカーボンナノチューブ集合体。
  3. 前記密領域が形成する凸部の面積が0.01mm2以上であることを特徴とする請求項1または2記載のカーボンナノチューブ集合体。
  4. 所定の方向から見た平面領域における領域端部間の最大距離が1mm以上となることを特徴とする請求項1乃至3の何れかに記載のカーボンナノチューブ集合体。
  5. 前記複数のカーボンナノチューブに長さ10μm以上のカーボンナノチューブが含まれることを特徴とする請求項1乃至4の何れかに記載のカーボンナノチューブ集合体。
  6. アーク放電法によって生成されることを特徴とする請求項1乃至5の何れかに記載のカーボンナノチューブ集合体。
  7. 請求項1乃至6の何れかに記載のカーボンナノチューブ集合体が設置されている電子放出源であることを特徴とするカーボンナノチューブ設置装置。
  8. 請求項7において、カーボンナノチューブ集合体が、所定の方向から見た平面領域の面積が0.01mm2以上であることを特徴とするカーボンナノチューブ設置装置。
  9. 請求項1乃至6の何れかに記載のカーボンナノチューブ集合体が設置されている電気機器または電子機器であることを特徴とするカーボンナノチューブ設置装置。
  10. 請求項1乃至6の何れかに記載のカーボンナノチューブ集合体が設置されている分離膜であることを特徴とするカーボンナノチューブ設置装置。
  11. 請求項1乃至6の何れかに記載のカーボンナノチューブ集合体が設置されている吸着剤または吸着材であることを特徴とするカーボンナノチューブ設置装置。
  12. 請求項1乃至6の何れかに記載のカーボンナノチューブ集合体が設置されている浄化装置であることを特徴とするカーボンナノチューブ設置装置。
  13. 請求項1乃至6の何れかに記載のカーボンナノチューブ集合体が設置されている放熱材料であることを特徴とするカーボンナノチューブ設置装置。
JP2002362592A 2002-12-13 2002-12-13 カーボンナノチューブのテープ状集合体およびこれを設置したカーボンナノチューブ設置装置 Expired - Fee Related JP3912276B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002362592A JP3912276B2 (ja) 2002-12-13 2002-12-13 カーボンナノチューブのテープ状集合体およびこれを設置したカーボンナノチューブ設置装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002362592A JP3912276B2 (ja) 2002-12-13 2002-12-13 カーボンナノチューブのテープ状集合体およびこれを設置したカーボンナノチューブ設置装置

Publications (2)

Publication Number Publication Date
JP2004189574A true JP2004189574A (ja) 2004-07-08
JP3912276B2 JP3912276B2 (ja) 2007-05-09

Family

ID=32761001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002362592A Expired - Fee Related JP3912276B2 (ja) 2002-12-13 2002-12-13 カーボンナノチューブのテープ状集合体およびこれを設置したカーボンナノチューブ設置装置

Country Status (1)

Country Link
JP (1) JP3912276B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007111107A1 (ja) * 2006-03-24 2007-10-04 Fujitsu Limited 炭素系繊維のデバイス構造およびその製造方法
EP2052398A1 (en) * 2006-08-08 2009-04-29 Korea Advanced Institute of Science and Technology Method for manufacturing a field emitter electrode using the array of nanowires
JP2011068509A (ja) * 2009-09-25 2011-04-07 Aisin Seiki Co Ltd カーボンナノチューブ複合体およびその製造方法
JP5287237B2 (ja) * 2006-03-24 2013-09-11 富士通株式会社 炭素系繊維のデバイス構造およびその製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007111107A1 (ja) * 2006-03-24 2007-10-04 Fujitsu Limited 炭素系繊維のデバイス構造およびその製造方法
WO2007110899A1 (ja) * 2006-03-24 2007-10-04 Fujitsu Limited 炭素系繊維のデバイス構造およびその製造方法
US7736615B2 (en) 2006-03-24 2010-06-15 Fujitsu Limited Device structure of carbon fibers and manufacturing method thereof
US8093147B2 (en) 2006-03-24 2012-01-10 Fujitsu Limited Device structure of carbon fibers and manufacturing method thereof
JP5287237B2 (ja) * 2006-03-24 2013-09-11 富士通株式会社 炭素系繊維のデバイス構造およびその製造方法
EP2052398A1 (en) * 2006-08-08 2009-04-29 Korea Advanced Institute of Science and Technology Method for manufacturing a field emitter electrode using the array of nanowires
EP2052398A4 (en) * 2006-08-08 2009-12-09 Korea Advanced Inst Sci & Tech METHOD FOR THE PRODUCTION OF A FIELD MEMBER ELECTRODE USING THE ARRAY OF NANODRUHTS
EP2244277A3 (en) * 2006-08-08 2011-06-15 Korea Advanced Institute of Science and Technology (KAIST) Method of manufacturing a field emitter electrode using an array of nanowires
JP2011068509A (ja) * 2009-09-25 2011-04-07 Aisin Seiki Co Ltd カーボンナノチューブ複合体およびその製造方法

Also Published As

Publication number Publication date
JP3912276B2 (ja) 2007-05-09

Similar Documents

Publication Publication Date Title
JP2004189573A (ja) カーボンナノチューブ集合体およびこれを設置したカーボンナノチューブ設置装置
KR100734684B1 (ko) 카본 나노튜브를 함유하는 테이프상 물질, 카본나노튜브의 제조 방법, 그 테이프상 물질을 함유하는 전계방출형 전극 및 그 제조 방법
TW594931B (en) Method for preparing nano-carbon and nano-carbon prepared by such method and composite material or mixed material containing nano-carbon and metal fine particle, apparatus for preparing nano-carbon, method for patterning nano-carbon and nano carbon
KR100615103B1 (ko) 나노튜브, 상기 나노튜브를 구비한 전계 방출 음극과 음극선관 및 이들을 형성하기 위한 방법
JP3943272B2 (ja) カーボンナノチューブのフイルム化方法
JP3740295B2 (ja) カーボンナノチューブデバイス、その製造方法及び電子放出素子
JP4004973B2 (ja) 炭素物質とその製造方法及び電子放出素子、複合材料
KR20070001281A (ko) 카본나노구조체의 제조방법
JP2008509540A5 (ja)
JP2000277003A (ja) 電子放出源の製造方法及び電子放出源
JPH10203810A (ja) カーボンナノチューブの製法
Sridhar et al. Direct growth of carbon nanofiber forest on nickel foam without any external catalyst
JP4613327B2 (ja) カーボンナノチューブ製フィラメントおよびその利用
JP2005100757A (ja) カーボンナノチューブ製フィラメントおよびその利用
JP3912276B2 (ja) カーボンナノチューブのテープ状集合体およびこれを設置したカーボンナノチューブ設置装置
JP3912273B2 (ja) カーボンナノチューブのテープ状集合体およびこれを設置したカーボンナノチューブ設置装置
JP3912274B2 (ja) カーボンナノチューブのテープ状集合体およびこれを設置したカーボンナノチューブ設置装置
US20080241422A1 (en) Method for aerosol synthesis of carbon nanostructure under atmospheric pressure
JP3912275B2 (ja) カーボンナノチューブのテープ状集合体およびこれを設置したカーボンナノチューブ設置装置
JP2011009131A (ja) 電子源電極の製造方法
JP4915309B2 (ja) 電子放出素子とその作製方法及びそれを装着した装置
JP2004186102A (ja) 層構造を成しているカーボンナノチューブ集合体およびそれを用いた製品
JP2014185072A (ja) カーボンナノチューブ生成用再利用基材の製造方法
JP3861857B2 (ja) カーボンナノチューブテープの製造方法
JP2004189533A (ja) カーボンナノチューブ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees